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Preface

This volume contains the papers presented at SBMF 2012: the 15th Brazilian
Symposium on Formal Methods. The conference was held in the city of Natal,
Brazil, colocated with CBSoft 2012, the Third Brazilian Conference on Software:
Theory and Practice.

The conference program included two invited talks, given by John Rushby
(SRI International, USA) and Wolfram Schulte (Microsoft Research, USA).

A total of 14 research papers were presented at the conference and are in-
cluded in this volume; they were selected from 29 submissions. The submissions
came from 12 countries: Argentina, Brazil, Canada, China, France, Germany,
Morroco, Portugal, Swiss, Uruguay, the UK, and the USA. There was also a
special track for short papers, which are published as a technical report.

The deliberations of the Program Committee and the preparation of these
proceedings were handled by EasyChair, which indeed made our lives much
easier.

We are grateful to the Program Committee, and the additional reviewers,
for their hard work in evaluating submissions and suggesting improvements.
SBMF 2012 was organized by Departamento de Informática e Matemática Apli-
cada da Universidade Federal do Rio Grande do Norte (DIMAP/UFRN) under
the auspices of the Brazilian Computer Society (SBC). We are very thankful
of the organizer of this year’s conference, David Deharbe (UFRN), and we are
specially thankful to CBSoft2012 organizers Nélio Cacho (DIMAP/UFRN), Fred-
erico Lopes (DIMAP/UFRN), and Gibeon Aquino (DIMAP/UFRN), who ar-
ranged everything and made the conference run smoothly.

The conference was sponsored by the following organizations, which we thank
for their generous support:

– CNPq, the Brazilian Scientific and Technological Research Council
– CAPES, the Brazilian Higher Education Funding Council
– Microsoft Research
– Universidade Federal do Rio Grande do Norte

July 2012 Rohit Gheyi
David Naumann
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André Didier and Alexandre Mota

Investigating Time Properties of Interrupt-Driven Programs . . . . . . . . . . . 131
Yanhong Huang, Yongxin Zhao, Jianqi Shi, Huibiao Zhu, and
Shengchao Qin



X Table of Contents

Specifying and Verifying Declarative Fluent Temporal Logic Properties
of Workflows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Germán Regis, Nicolás Ricci, Nazareno M. Aguirre, and
Tom Maibaum

Composition of Model Transformations: A Categorical Framework . . . . . 163
Christoph Schulz, Michael Löwe, and Harald König
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The Versatile Synchronous Observer

John Rushby

Computer Science Laboratory, SRI International, USA
rushby@csl.sri.com

Abstract. A synchronous observer is an adjunct to a system model that
monitors its state variables and raises a signal when some condition is
satisfied. Synchronous observers provide an alternative to temporal logic
as a means to specify safety properties but have the benefit that they are
expressed in the same notation as the system model. Model checkers that
do use temporal logic can nonetheless employ synchronous observers by
checking for properties such as “never (signal raised).”

The use of synchronous observers to specify properties is well-known;
rather less well-known is that they can be used to specify assumptions
and axioms, to constrain models, and to specify test cases. The idea un-
derlying all these applications is that the basic model generates more
behaviors than are desired, the synchronous observer recognizes those
that are interesting, and the model checker is constrained to just the in-
teresting cases. The value in this approach is that it is usually much eas-
ier to write recognizers than generators. The approach is best exploited
in languages such as SAL that provide explicit first class operators for
synchronous and asynchronous composition.

The paper describes and illustrates these applications of synchronous
observers.

R. Gheyi and D. Naumann (Eds.): SBMF 2012, LNCS 7498, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Thirteen Years of Automated Code Analysis

at Microsoft

Wolfram Schulte

Microsoft Research, Redmond, USA
schulte@microsoft.com

Abstract. Modern program analysis and model-based tools are increas-
ingly complex and multi-faceted software systems. They analyze models
and programs using advanced type systems, model checking or model
finding, abstract interpretation, symbolic verification or a combination
thereof. In this talk I will discuss and compare 10 program analysis tools,
which MSR build during the last 10 years. They include theorem provers,
program verifiers, bug finders, malware scanners, and test case genera-
tors. I will describe the need for their development, their innovation, and
application. These tools had both had considerable impact on the re-
search community, as well as being shipped in Microsoft products such
as the Static Driver Verifier or as part of Visual Studio and other, widely-
used internal software development tools. I highlight that many of these
analyzers build on generic infrastructure, most of which is available out-
side of Microsoft as well. With every analyzer build there is a new oppor-
tunity, and with every solution there is a new challenge problem. Thus, I
will conclude with 10 challenges in program analysis which hopefully trig-
gers new aspiring directions in our joint quest of delivering predictable
software that is free from defect and vulnerabilities.

R. Gheyi and D. Naumann (Eds.): SBMF 2012, LNCS 7498, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Model Checking Propositional Deontic Temporal

Logic via a μ-Calculus Characterization

Araceli Acosta1, Cecilia Kilmurray2,
Pablo F. Castro2,3, and Nazareno M. Aguirre2,3

1 Facultad de Matemática, Astronomı́a y F́ısica, Universidad Nacional de Córdoba,
Córdoba, Argentina

aacosta@famaf.unc.edu.ar
2 Departamento de Computación, FCEFQyN, Universidad Nacional de Ŕıo Cuarto,

Ŕıo Cuarto, Argentina
{ckilmurray,pcastro,naguirre}@dc.exa.unrc.edu.ar

3 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)

Abstract. In this paper, we present a characterization of a propositional
deontic temporal logic into μ-calculus. This logic has been proposed to
specify and reason about fault tolerant systems, and even though is
known to be decidable, no tool realizing its corresponding decision pro-
cedure has been developed. A main motivation for our work is enabling
for the use of model checking, for analyzing specifications in this deontic
temporal logic.

We present the technical details involved in the characterization, and
prove that the model checking problem on the deontic temporal logic
is correctly reduced to μ-calculus model checking. We also show that
counterexamples are preserved, which is crucial for our model checking
purposes. Finally, we illustrate our approach via a case study, including
the verification of some properties using a μ-calculus model checker.

1 Introduction

With the increasing demand for highly dependable and constantly available sys-
tems, being able to reason about computer systems behavior in order to provide
strong guarantees for software correctness, has gained considerable attention,
especially for safety critical systems. In this context, a problem that deserves at-
tention is that of capturing faults, understood as unexpected events that affect
a system, as well as expressing and reasoning about the properties of systems in
the presence of such faults.

Various researchers have been concerned with formally expressing fault toler-
ant behavior, and some formalisms and tools associated with this problem have
been proposed [1,20,18,7,9,12,16,15,14,13]. A particular trend in formal methods
for fault tolerance, that concerns the work in this paper, is based on the observa-
tion that normal vs. abnormal behaviors can be treated as behaviors “obeying”
and “violating” the rules of correct system conduct, respectively. From a logical
point of view, this calls for a deontic approach, since deontic operators are es-
pecially well suited to express permission, obligation and prohibition, and thus

R. Gheyi and D. Naumann (Eds.): SBMF 2012, LNCS 7498, pp. 3–18, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



4 A. Acosta et al.

to describe fault tolerant systems and their properties [6]. This idea has been
exploited by various researchers in different ways (see for instance [6,17,8,5]). In
this paper, we are concerned with the approach taken in [5], where a proposi-
tional deontic logic (PDL) is introduced, and then extended with temporal logic
features to express temporal behavior with a distinction between normative (i.e.,
non faulty) and non normative (i.e., faulty) behaviors, with straightforward ap-
plications to fault tolerance.

In the context of formal approaches to software development, it is generally
recognized that powerful (semi-)automated analysis techniques are essential for
a method to be effectively used in practice. In particular, the possibility of al-
gorithmically checking whether a PDL formula, or a formula in its temporal
extension DTL, holds for a given system is of great relevance for the take up
of these logics as part of a formal method for fault tolerance. Fortunately, both
PDL and its temporal extension DTL are known to be decidable [5]: a decision
procedure for the logic DTL, based on a tableaux calculus, is proposed in [4].
However, the proposed decision procedure had a theoretical motivation, namely,
proving that the logic was decidable; in fact, this tableaux calculus proved useful
for investigating decidability and the logic’s complexity, but was not devised as
part of a tool for formal verification. Because of this fact, no practical consid-
erations were taken in the definition of this decision procedure, and it has not
been implemented in a tool for the analysis of fault tolerant specifications.

In this paper, we are concerned with the definition of a decision procedure for
PDL and its extension DTL, with the purpose of being used for automated ver-
ification. Our approach consists of characterizing PDL/DTL in μ-calculus, and
then use a μ-calculus model checker in order to verify whether a given system sat-
isfies a fault tolerance property expressed in PDL/DTL. We thoroughly present
our characterization of PDL/DTL in μ-calculus, and show how a fault tolerant
system, captured by a deontic structure, can be analyzed for the satisfaction of
PDL/DTL formulas, describing fault tolerant properties of the system. More-
over, we show that our translation from PDL/DTL into μ-calculus is correct, in
the sense that the model checking problem in PDL/DTL is soundly reduced to
model checking in μ-calculus. Moreover, we also show that counterexamples are
maintained, meaning that every μ-calculus counterexample, resulting from the
verification of a translated property on a translated model, can be mechanically
traced back to a counterexample of the original deontic temporal specification.
Finally, we provide some experimental results using the Mucke μ-calculus model
checker [2], on a small case study illustrating how deontic structures capture
systems with faults, and also illustrating our approach, as well as the details of
our translation.

The paper proceeds as follows. In section 2 we present some preliminaries,
including the syntax and semantics of PDL, as well as those of the μ-calculus.
Section 3 introduces our translation from the core logic PDL to μ-calculus, and a
proof of the correctness of the translation. Section 4 introduces DTL, consisting
of PDL extended with CTL temporal operators, and Section 5 deals with the
translation from DTL to μ-calculus, including a proof of the correctness of this



Model Checking Propositional Deontic Temporal Logic 5

characterization. The fact that counterexamples are preserved is also studied in
this section. Section 6 presents an example, consisting of a simple system with
faults, and various sample properties regarding this faulty system and its fault
tolerance mechanism. Finally, in Section 7 we draw some conclusions and discuss
our current lines of work.

2 Preliminaries

2.1 A Propositional Deontic Logic (PDL)

We start this section with an introduction to the logic presented in [5], with
some remarks. This logic is a propositional deontic action logic with boolean
operators over actions, which comprises vocabularies and actions.

Definition 1 (Language). A language or vocabulary is a tuple 〈Φ,Δ〉, where Φ
is a finite set of propositional variables and Δ is a finite set of primitive actions.

Primitive actions are used for describing the events that may occur during the
execution of the system. Intuitively, events are identified with state changes.
Primitive actions can be composed using the action operators ∅ (the abort ac-
tion), U (the execution of any action of the system), � (nondeterministic choice
of two actions) and � (parallel execution of two actions). Also, given an action
α, ¬α denotes the execution of an alternative action to α (complementation).
Given a set Δ0 of primitive actions, the set Δ of action terms is defined as the
closure of Δ0 using the above action operators. From now on, Greek letters are
used as action variables, and lowercase Roman letters are used as propositional
variables.

Given a language 〈Φ0, Δ0〉 1, the set Φ of formulas over this language is defined
as the minimal set satisfying the following:

– Φ0 ⊆ Φ,
– �,⊥ ∈ Φ,
– if α, β ∈ Δ, then α =act β ∈ Φ,
– if ϕ, ψ ∈ Φ, then ϕ ∧ ψ ∈ Φ and ¬ϕ ∈ Φ,
– if ϕ ∈ Φ and α ∈ Δ, then 〈α〉ϕ ∈ Φ,
– if α ∈ Δ, then P (α) ∈ Φ, Pw(α) ∈ Φ.

The models of PDL are given by deontic structures, which essentially consist
of standard Kripke structures where each arc is colored with one of two col-
ors: green, intuitively corresponding to allowed transitions, or red, intuitively
denoting forbidden transitions (representing faults). Formally, given a language
〈Φ0, Δ0〉, a deontic structure M over it is a tuple 〈W ,R, E , I,P〉, where:
– W is a set of states,

1 We will use the 0 subscript when referring to languages for deontic formulas (in PDL
or DTL).
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– R : E → W → W is a function that for each e ∈ E returns a function
R(e) :W →W . We say that w

e→ w′ when (R(e))(w) = w′.
– E is a non-empty set of events.
– I is an interpretation function, such that:

• for each p ∈ Φ0 : I(p) ⊆ W ,
• for each α ∈ Δ0 : I(α) ⊆ E ;

function I must also satisfy the following:
I.1 for each αi ∈ Δ0 :| I(αi)−

⋃{I(αj) | αj ∈ (Δ0 − αi)} |≤ 1;
I.2 for each e ∈ E : if e ∈ I(αi) ∩ I(αj) where αi �= αj ∈ Δ0, then

⋂
{I(αk) | αk ∈ Δ0 ∧ e ∈ I(αk)} = {e};

I.3 E =
⋃

αi∈Δ0
I(αi).

– P ⊆ W × E is a relationship indicating, for every state, the events that are
allowed in it.

Due to space restrictions, we are unable to provide a thorough explanation of
the intuitions behind the conditions on I. We refer the reader to [5] for a more
detailed explanation. It is worth remarking that the conditions on I imply that
there is a one-to-one mapping between events and subsets of actions; basically,
we can identify every subset of actions as the event that the parallel execution
of these actions produces.

The interpretation mapping I can be extended to action terms, as follows:

– I(¬ϕ) =W − I(ϕ),
– I(ϕ ∧ ψ) = I(ϕ) ∩ I(ψ),
– I(α � β) = I(α) ∪ I(β),
– I(α � β) = I(α) ∩ I(β),
– I(¬α) = E − I(α),
– I(∅) = ∅,
– I(U) = E .

Satisfaction of formulas in a deontic structure is defined, given a deontic structure
M = 〈W ,R, E , I,P〉 and a state w ∈ W , as follows:

– w,M |=PDL p⇐⇒ w ∈ I(p) with p ∈ Φ0,
– w,M |=PDL α =act β ⇐⇒ I(α) = I(β),
– w,M |=PDL ¬ϕ⇐⇒ not w,M |=PDL ϕ,
– w,M |=PDL ϕ1 ∧ ϕ2 ⇐⇒ w,M |=PDL ϕ1 and w,M |=PDL ϕ2,
– w,M |=PDL 〈α〉ϕ ⇐⇒ there exists some w′ ∈ W and e ∈ I(α) such that

w
e→ w′ and w′,M |=PDL ϕ,

– w,M |=PDL P (α)⇐⇒ for all e ∈ I(α), we have P(w, e),
– w,M |=PDL Pw(α)⇐⇒ there exists some e ∈ I(α) such that P(w, e).

From this definition, it becomes apparent that the “color” of arcs given by a
deontic structure is captured by the relation P . We have two deontic operators
for permission, the standard one and “weak” permission. Obligation is defined
in terms of these two, as follows:

O(α) = P (α) ∧ ¬Pw(¬α).
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2.2 The μ-Calculus

The μ-calculus, as other logics with fixed point operators, is an expressive for-
malism useful for investigating the expressiveness and algorithmic complexity of
temporal and modal logics. A detailed introduction to μ-calculus can be found
in [19]. In this section, we briefly recall the basic definitions regarding this for-
malism, since we use it as a target framework for interpreting the logic PDL,
and its extension DTL, introduced in Section 4.

Given a language 〈Φ1, Δ1〉2 and a set V of variables, the set Φμ of μ−calculus
formulas is defined as follows:

– Φ1 ⊆ Φμ

– V ⊆ Φμ

– if ϕ, ϕ1, ϕ2 ∈ Φμ, then ϕ1 ∧ ϕ2 ∈ Φμ and ¬ϕ ∈ Φμ

– if ϕ ∈ Φμ and α ∈ Δ1, then 〈α〉ϕ ∈ Φμ and [α]ϕ ∈ Φμ

– if ϕ ∈ Φμ, then μR.ϕ ∈ Φμ and νR.ϕ ∈ Φμ.

It is required that bound variables appear under an even number of negations.
Models of μ-calculus formulas are Kripke structures. More precisely, given a

language 〈Φ1, Δ1〉, a model for it is a tuple Mμ = 〈S, T, L〉, where:
– S is a set of states.
– L is a function L : Φ1 → ℘(S) assigning to each proposition the set of states

where it is true.
– T is a function T : Δ1 → ℘(S × S) which, given an action, returns a

binary relation whose domain and codomain is S. We say that s
a→ s′ if

(s, s′) ∈ T (a).
Satisfaction in μ-calculus is defined as follows. Given a model Mμ, a state
s ∈ S and a formula ϕ without free variables, s,M |=μ ϕ holds if and only
if s ∈ �ϕ�Mµρ, where ρ is a variable assignment (a mapping assigning values to
variables). The interpretation �ϕ�Mµρ is recursively defined in the following way:

– �p�Mµρ = L(p) for p ∈ Φ1,
– �R�Mµρ = ρ(R) for R ∈ V ,
– �¬ϕ�Mµρ = S − �ϕ�Mµρ,
– �ϕ ∧ ψ�Mµρ = �ψ�Mµρ ∩ �ϕ�Mµρ,

– �〈a〉ϕ�Mµρ = {s ∈ S | ∃t[s a→ t ∧ t ∈ �ϕ�Mµρ]},
– �[a]ϕ�Mµρ = {s ∈ S | ∀t[s a→ t ∧ t ∈ �ϕ�Mµρ]},
– �μR.ϕ�Mµρ is the least fixed point of the function τ : ℘(S)→ ℘(S), defined

as:
τ(T ) = �ϕ�Mµρ[R �→ T ]3,

– �νR.ϕ�Mµρ is defined in the same way, but using the greatest fixed point,

We will use �ϕ�M instead of �ϕ�Mµ when no confusion is possible.

2 We will use the 1 subscript when referring to languages for μ-calculus formulas, to
distinguish these from those for the deontic logics.

3 (ρ[R �→ T ]) is the assignment ρ “updated” with the mapping R �→ T , i.e., it maps
all elements as ρ, except for R which is mapped to T .
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3 A μ-Calculus Characterization of PDL

In this section, we start with our characterization of deontic temporal logic in
terms of μ-calculus, by first dealing with the deontic logic PDL. As we explained
in section 1, the purpose of this characterization, which we materialize via a
translation Tr, is to be able to use μ-calculus model checkers for the verifica-
tion of fault tolerance properties of systems, specified in PDL and its temporal
extension DTL.

In what concerns this section, we expect to reduce PDL model checking to
μ-calculus model checking, via Tr; that is, whenever we obtain that

Trm(w,M) �|=μ Tr(ϕ)

then we must have that
w,M �|=DPL ϕ

and vice versa. Thus, we need the translation from PDL to μ-calculus to satisfy
the following:

w,M |=PDL ϕ⇐⇒ Trm(w,M) |=μ Tr(ϕ).

Theoretically, translations between logics satisfying this property are called for-
ward morphisms [11]. As we will show later on, this property allows us to guar-
antee that the model checking problem is preserved by translation.

Let us start by formally defining our translation.

Definition 2. Let 〈Φ0, Δ0〉 be a language, andM = 〈W ,R, E , I,P〉 be a deontic
structure over that language. The mapping Gen : E → ℘(Δ0) is defined as:

Gen(e) = {α | α ∈ Δ0 ∧ e ∈ I(α)}
Given an event e, Gen(e) corresponds to the set of actions whose parallel exe-
cution yield event e.

Lemma 1. Gen is injective.
Proof: Let e, e′ ∈ E be events such that Gen(e) = Gen(e′) = {α1, α2, . . . , αn}.
First, notice that because of I.3, n �= 0.

If n = 1, we have that e, e′ ∈ I(α1), and ∀α ∈ Δ0−{α1} : e /∈ I(α)∧e′ /∈ I(α).
Then, {e, e′} ⊆ I(α1)−

⋃{I(αi) | αi ∈ (Δ0 − α1), and because of I.14, it must
be the case that e = e′.

If, on the other hand, n > 1, then there exist αi, αj ∈ Δ0 such that αi �= αj,
{e, e′} ⊆ I(αi) and {e, e′} ⊆ I(αj). But because of I.25, it must be the case that
e = e′.

Let us now define the translation of PDL models into corresponding μ-calculus
structures. This is, in fact, the first part of translation Tr.

4 For each αi ∈ Δ0 :| I(αi)−⋃{I(αj) | αj ∈ (Δ0 − αi)} |≤ 1.
5 For each e ∈ E : if e ∈ I(αi) ∩ I(αj) where αi �= αj ∈ Δ0, then

⋂{I(αk) | αk ∈
Δ0 ∧ e ∈ I(αk)} = {e}.
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Definition 3. Let 〈Φ0, Δ0〉 be a language, and M = 〈W ,R, E , I,P〉 and w ∈ W
be a deontic structure. The mapping Trm is defined as:

Trm(w,M) = w,Mμ,

where Mμ = 〈S, T, L〉 is a model of the language 〈Φ1, Δ1〉 such that:

– Δ1 = ℘(Δ0),
– Φ1 = Φ0 ∪ {Pa | a ∈ Δ1} ∪ {Ea | a ∈ Δ1},
– S =W,

– T = {w Gen(e)−→ w′ | w e−→ w′ ∈ R},
– L(p) = I(p), for every p ∈ Φ0,
– L(Pa) = {w | ∃e ∈ E : (w, e) ∈ P ∧Gen(e) = a}, for every a ∈ Δ1,

– L(Ea) = {s | ∃s′ : s
a−→ s′ ∈ T }.

It is worth noting that, in the above model translation, and since each event is
the result of the parallel execution of a set of actions, we capture each event as
the set of actions whose parallel execution produces it.

Now let us start dealing with the translation of formulas. First, notice that
PDL formulas use action letters from Δ0, whereas μ-calculus formulas use names
coming from Δ1 (i.e., subsets of Δ0). So, our translation must relate both sets.
In order to do so, we define the mapping Set, as follows.

Definition 4. The mapping Set : Δ0 → ℘(Δ1) is defined as

Set(α) = {a | a ∈ Δ1 ∧ α ∈ a}.
This mapping is extended recursively to action terms, in the following way:

– Set(∅) = ∅,
– Set(U) = Δ1,
– Set(¬α) = Δ1 − Set(α),
– Set(α � β) = Set(α) ∪ Set(β),
– Set(α � β) = Set(α) ∩ Set(β).

Finally, we are ready to define function Tr, that translates PDL formulas to
μ-calculus formulas.

Definition 5. The translation Tr, mapping PDL formulas to μ-calculus formu-
las, is defined as follows:

– Tr(p) = p, for every p ∈ Φ0,
– Tr(�) = �,
– Tr(⊥) = ⊥,
– Tr(¬ϕ) = ¬Tr(ϕ),
– Tr(ϕ1 ∧ ϕ2) = Tr(ϕ1) ∧ Tr(ϕ2),
– Tr(α =act β) =

∧
a∈(Set(α)∪Set(β))−(Set(α)∩Set(β)) ¬Ea,

– Tr(〈α〉ϕ) = ∨
a∈Set(α)〈a〉Tr(ϕ),

– Tr([α]ϕ) =
∧

a∈Set(α)(Ea → [a]Tr(ϕ)),

– Tr(P (α)) =
∧

a∈Set(α)(Ea → Pa),

– Tr(Pw(α)) =
∨

a∈Set(α) Pa.
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3.1 On the Correctness of Tr

Let us briefly discuss some characteristics of the defined translation. Transla-
tions between logical systems have been extensively studied by the community
of Institutions [10,11]. In this context, logical systems are captured in abstract
terms. The most usual kinds of translations between logical systems are the so
called morphisms and comorphisms (or representations). In both of these cases,
translations of models and formulas go in opposite directions. More precisely, a
morphism between logical systems L and L′ translates models of L into mod-
els of L′, and formulas of L′ into formulas of L, in a property-preserving way.
Comorphisms, on the other hand, behave in the opposite way. Both cases then
have the characteristics of Galois connections.

Our translation differs from morphisms and comorphisms, in the sense that
it maps models and formulas “in the same direction”. This kind of translation
is called forward morphism [11]. Fortunately, this is the kind of morphism that
we need, since forward morphisms are well suited for model checking reduction
(the purpose of our translation). In section 5, we show that traces of a translated
model can be traced back to the traces of the original model. Intuitively, this
means that our translation preserves counterexamples, a crucial property for our
model checking purposes.

The following theorem establishes that our translation is sound with respect
to model checking reduction. It is proved straightforwardly by induction on the
structure of PDL formulas, and resorting to their semantics and the definition
of translation Tr. Due to space restrictions, the proof is not reproduced here.

Theorem 1. Given a language 〈Φ0, Δ0〉, a structure M = 〈W ,R, E , I,P〉 and
a state w ∈ W, we have:

w,M |= φ⇔ Trm(w,M) |=μ Tr(φ).

4 A Temporal Extension of PDL

The propositional deontic logic PDL that we introduced previously involves de-
ontic operators for permission and obligation. In order to be able to express fault
tolerance system properties, these deontic operators are combined with temporal
ones, so that we can predicate about system executions. The temporal compo-
nent of the resulting logic, that we call DTL, is a CTL-like logic. Besides the
traditional CTL operators, this logic features an operator called Done, which
enables one to talk about the immediate past. Intuitively, Done(α) is true when
α was the last action executed in the system. Let us formally define this logic.

Definition 6. Given a PDL language (Φ0, Δ0), the set of temporal formulas
over it is defined as the minimal set ΦT satisfying the following:

– Φ ⊆ ΦT ,
– if α ∈ Δ, then Done(α) ∈ ΦT ,
– if ϕ, ψ ∈ ΦT , then ϕ ∧ ψ ∈ ΦT and ¬ϕ ∈ ΦT ,
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– if ϕ, ψ ∈ ΦT , then AGϕ ∈ ΦT , ANϕ ∈ ΦT , A(ϕUψ) ∈ ΦT , E(ϕUψ) ∈ ΦT .

Note that Φ represents the set of PDL formulas and Δ the set of actions terms
as defined on page 3.

Other CTL operators can be defined from the basic ones in the above definition,
in the usual way. The temporal operators enable us to reason about execution
traces. Let us define these traces formally.

Definition 7. Given a structure M = 〈W ,R, E , I,P〉 and an initial state w0,

a trace or path is a labeled sequence s0
e0→ s1

e1→ s2
e2→ . . . of states and events,

such that for every i: si
ei→ si+1 ∈ R and s0 = w.

The set of all the traces starting in w is denoted by Σ(w0).

Given a trace π, we use the following notation to refer to states and events in a
trace, to refer to subtraces, and to state that a trace is a prefix of another one:

– π.i = si,
– π→.i = ei,

– π[i, j] (where i ≤ j) is the subpath si
ei→ · · · ej−1→ sj ,

– we say that π′ � π, if π′ is an initial subpath of π; i.e. s0
e′0→ s′1

e′1→ s′2
e′2→

. . . s′k � s0
e0→ s1

e1→ s2
e2→ . . . iff s′i = si for all i ≤ k and e′i = ei for all i < k.

Let us define satisfaction for our deontic temporal logic (DTL). This definition
extends the definition of satisfaction for PDL.

Definition 8. Given a structure M = 〈W ,R, E , I,P〉, an initial state w0 ∈ W
and a path π ∈ Σ(w0), the relation |=DTL is defined as follows:

– π, i,M |=DTL ϕ⇐⇒ π.i,M |=PDL, if ϕ ∈ Φ,
– π, i,M |=DTL ¬ϕ⇐⇒ not π, i,M |=DTL ϕ,
– π, i,M |=DTL ϕ ∧ ψ ⇐⇒ π, i,M |=DTL ϕ and π, i,M |=DTL ψ,
– π, i,M |=DTL Done(α)⇐⇒ i > 0 and π→.(i− 1) ∈ I(α),
– π, i,M |=DTL ANϕ⇐⇒ for every π′ ∈ Σ(π.0) such that π[0, i] � π′ we have

that π′, i+ 1,M |=DTL ϕ,
– π, i,M |=DTL AGϕ⇐⇒ for every π′ ∈ Σ(π.0) such that π[0, i] � π′ we have

that ∀j ≥ i : π′, j,M |=DTL ϕ,
– π, i,M |=DTL A(ϕUψ) ⇐⇒ for every π′ ∈ Σ(π.0) such that π[0, i] � π′ we

have that ∃j ≥ i : π′, j,M |=DTL ψ and ∀k : i ≤ k < j : π′, k,M |=DTL ϕ,
– π, i,M |=DTL E(ϕUψ) ⇐⇒ there exists π′ ∈ Σ(π.0) such that π[0, i] � π′

we have that ∃j ≥ i : π′, j,M |=DTL ψ and ∀k : i ≤ k < j : π′, k,M |=DTL ϕ.

Given a structure M = 〈W ,R, E , I,P〉, an initial state w0 ∈ W and a formula
ϕ, we say that

M,w0 |= ϕ

if and only if
∀π ∈ Σ(w0) : π, 0,M |=DTL ϕ.
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5 Translating DTL Formulas to μ-Calculus

Now that we have extended PDL with temporal operators, obtaining the logic
DTL, we need also to extend the definition of Tr, to cope with temporal formulas.
Let us first deal with the translation of models, via a translation that we refer to
as Trtm. This involves explicitly identifying the initial states, which we achieve
via a function called Trs in the definition below.

Definition 9. Let (Φ0, Δ0) be a language, M = 〈W ,R, E , I,P〉 a structure over
that language, and w0 ∈ W an initial state in M . The functions Trtm and Trs

are defined as follows:

Trtm(M) =Mμ

Trs(w) = sw∅

where Mμ = 〈S, T, L〉, a μ-calculus model for the language 〈Φ1, Δ1〉, and sw∅ ∈ S
are obtained in the following way:

– Δ1 = ℘(Δ0),

– Φ1 = Φ0 ∪ {Pa | a ∈ Δ1} ∪ {Ea | a ∈ Δ1} ∪ {Da | a ∈ Δ1},
– S = {swa | w ∈ W ∧ a ∈ (Im(Gen) ∪ {∅})},6
– T = {swa

Gen(e)−→ sw
′

Gen(e) | w
e−→ w′ ∈ R∧ a ∈ (Im(Gen) ∪ {∅})},

– L(p) = I(p) for every p ∈ Φ0,

– L(Pa) = {w | ∃e ∈ E : (w, e) ∈ P ∧Gen(e) = a} for every a ∈ Δ1,

– L(Ea) = {s | ∃s′ : s
a−→ s′ ∈ T },

– L(Da) = {swa | w ∈ W}.

Let us now deal with the translation of DTL formulas into μ-calculus. Because
of the operator Done, this translation requires characterizing the last executed
action, as it can be seen in the next definition.

Definition 10. The translation Tr from PDL to μ-calculus is extended to DTL
formulas in the following way:

– for ϕ ∈ Φ, Tr(ϕ) is defined as described in Definition 5,

– Tr(¬ϕ) = ¬Tr(ϕ),
– Tr(ϕ ∧ ψ) = Tr(ϕ) ∧ Tr(ψ),
– Tr(Done(α)) =

∨
a∈Set(α)Da,

– Tr(ANϕ) = Tr([U ]ϕ),

– Tr(ENϕ) = Tr(〈U〉ϕ),
– Tr(AGϕ) = νR.(Tr(ϕ) ∧∧

a∈Δ1
[a]R),

– A(ϕUψ) = μR.(Tr(ψ) ∨ (Tr(ϕ) ∧∧
a∈Δ1

[a]R)),

– E(ϕUψ) = μR.(Tr(ψ) ∨ (Tr(ϕ) ∧∨
a∈Δ1

〈a〉R)).
6 Im(f) denotes the image of f .
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5.1 On the Correctness of the Extended Tr

The correctness of the translation extended to DTL is proved by generalizing
the theorem regarding the correctness of the translation on PDL. Let us first
define the translation of paths.

Definition 11. The mapping Trp is defined as follows:

Trp(w0
e0→ w1

e1→ w2
e2→ . . . ) = sw0

∅
Gen(e0)→ sw1

Gen(e0)

Gen(e1)→ sw2

Gen(e1)

Gen(e2)→ . . . .

Notice that, since Gen is injective, given a translated trace π in the target model,
we have a unique trace π′ in the original model, such that Trp(π′) = π. In other
words, the translation of traces is invertible. On the other hand, Trp is surjective
by construction, and therefore we obtain the following Lemma.

Lemma 2. Trp is a bijection.

The following theorem enables us to relate validities in μ-calculus with validities
in the deontic-temporal logic DTL.

Theorem 2. Given a language 〈Φ0, Δ0〉, a structure M = 〈W ,R, E , I,P〉, an
initial state w0 ∈ W, and a formula φ, swa ∈ �Tr(φ)�Trtm(M) if and only if
∀π, i · π, i,M |=DTL φ when swa = Trp(π).i.

This theorem implies the correctness of the translation of DTL formulas, in a
straightforward way.

Corollary 1. Given a language 〈Φ0, Δ0〉, a structure M = 〈W ,R, E , I,P〉, an
initial state w0 ∈ W and a formula ϕ, the following holds:

w0,M |=DTL ϕ↔ sw0

∅ , T rtm(M) |=μ Tr(ϕ)

It is worthwhile remarking that, since there is a bijection between paths (and
states and translated states maintain equivalent properties), for every path in a
translated model that is a counterexample of a given translated property, a trace
in the original model can be systematically constructed, which is guaranteed to
be a counterexample of the original property. In other words, counterexamples
that are obtained using μ-calculus model checkers can be systematically trans-
lated into counterexamples of the original DTL specification.

6 An Example

In this section, we describe a small example illustrating our translation. More-
over, we will use the Mucke model checker [2] in order to verify fault tolerance
properties over this example. Our example consists of a simple communication
scenario, composed of a producer, a consumer, and a channel used for communi-
cating these two. The structures in Figure 1 graphically depict these components.
In order to incorporate faults, and as a consequence the need for fault tolerance,
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Fig. 1. A producer, a consumer, and a faulty channel

Fig. 2. Composition of the producer, consumer and faulty channel

the channel is assumed to have “noise”, and therefore some messages might be
lost. In order to cope with this fault, the producer and consumer communicate
using a typical protocol that forces the sender to resend the last message until an
acknowledgement is received. The only forbidden action is the one correspond-
ing to “losing” a message held in the channel. The deontic operators will allow
us to indirectly refer to executions exercising normal (permitted) and faulty
(forbidden) transitions.

In this paper, we do not deal in detail with the way components are syn-
chronized. But basically, if an action, normal or faulty, is synchronized with
a faulty action, the composite action is also considered faulty. Therefore, and
since the use of the channel (sending a message) can be synchronized with the
correct “passing” of the message and with the unfortunate event of “losing” it,
the latter will be considered faulty. For this reason, in the system resulting of
the composition of the producer, the consumer, and the channel (see Figure 2),
the faulty actions are snd/lose and snd ack/lose.

In this example, the language of the deontic structure is given by the following
sets of propositional variables and actions:

Φ0 = {waiting, produced, passed, consumed}
Δ0 = {produce, consume, snd, rcv, snd_ack, rcv_ack, pass, lose}

The deontic structure for the example is formally the following:
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– the set of states W and the transition system R are defined as in Figure 2,
– the set of events is the following:

E = {produce, consume, snd/lose, snd/pass/rcv,

snd_ack/lose, snd_ack/pass/rcv_ack},
– the interpretation of the propositional variables is described in Figure 2, and

the interpretation of actions is given by
• I(produce) = {produce},
• I(consume) = {consume},
• I(snd) = {snd/lose, snd/pass/rcv},
• I(rcv) = {snd/pass/rcv},
• I(lose) = {snd/lose, snd_ack/lose},
• I(pass) = { snd/pass/rcv, snd_ack/pass/rcv_ack},
• I(rcv_ack) = {snd_ack/pass/rcv_ack},
• I(snd_ack) = {snd_ack/lose, snd_ack/pass/rcv_ack}.

– Allowed events are all the arrows in Figure 2, except for those labeled with
snd/lose and snd ack/lose.

Now let us describe the resulting μ-calculus model, obtained by translating the
above deontic structure. Following our description of the translation, the result-
ing model is composed of the following ingredients:

– Δ1 = {produce, consume, snd/lose, snd/pass/rcv,

snd_ack/lose, snd_ack/pass/rcv_ack },
– Φ1 = Φ0 ∪ {Pa | a ∈ Δ1},
– S =W = {waiting, produced, passed, consumed},
– T is as described in Figure 2,
– L(p) is as described in Figure 2,
– L(Pa) is true in those states in which we have a transition labeled with a,

other of the two faulty ones,
– L(Ea) is true in those states in which we have a transition labeled with a.

6.1 Expressing Properties of Producer-Consumer

Now that the model has been fully described, we may start specifying intended
properties of this model. Some interesting sample properties are the following:

– Whenever the system is in the waiting state, it is obliged to produce an item.
– After the production of an item, and if no fault occurs, then the system is

obliged to consume.
– If an item has been produced, then no new item can be produced until the

current item has been consumed.
– When a item has been consumed, then no additional items are consumed

until some new item is produced.
– When an item is produced, all possible ways of performing the send action

are allowed.
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These properties are captured using DTL rather straightforwardly, thanks to the
deontic component of this logic:

P1 waiting → O(produce)
P2 [ produce ] [ ¬lose ] O(consume)
P3 produced → A( O(¬produce) U consumed )
P4 consumed→ ANA( ¬consumed W produced )
P5 [ produce ] P (snd)

In order to model check these properties for the above described model, we have
to use our translation Tr from DTL to μ-calculus. This translation gives us the
following μ-calculus formulas for the above DTL properties:

TP1 waiting → Pproduce ∧ ∧
a∈δ ¬Pa ,where:

δ = {consume, snd/lose, snd/pass/rcv, snd_ack/lose,

snd_ack/pass/rcv_ack }
TP2 [ produce ]

(∧
a∈δ [ a ]

(
Pconsume ∧ ∧

a∈δ′ ¬Pa

))
, where:

δ = {produce, consume, snd/pass/rcv, snd_ack/pass/rcv_ack }
δ′ = {produce, snd/lose, snd/pass/rcv, snd_ack/lose,

snd_ack/pass/rcv_ack }.
TP3 produced →

μR.
(
consumed ∨

(∧
a∈δ(Ea → Pa) ∧ ¬Pproduce ∧ ∧

a∈Δ1
[ a ] R

))
,

where

δ = {consume, snd/lose, snd/pass/rcv, snd_ack/lose,

snd_ack/pass/rcv_ack }
TP4 consumed → ∧

a∈Δ1
[ a ] ((μR. (produced ∨ (¬consumed

∧ ∧
a∈Δ1

[ a ] R
)) ∨ νR.

(¬consumed ∧ ∧
a∈Δ1

[ a ] R
)
)

TP5 [ produce ]
∧

a∈δ(Ea → Pa), where:

δ = { snd/lose, snd/pass/rcv, snd_ack/lose, snd_ack/pass/rcv_ack }
The careful reader might notice that, technically, formula TP4 is not a valid
μ-calculus formula, since an odd number of negations appear under the scope
of fix point operators. However, our use of negation in this case is simply as
a shorthand: ¬consumed can be positively described as the disjunction of all
states different from consumed.

We employed the Mucke model checker to verify these formulas. Properties
P1, P2, P4 were found to hold in the presented model, whereas P3 and P5 are
invalid. The invalidity of P3 could seem surprising at first sight; the counterex-
ample found by the model checker is the following:

produced
snd/lose→ produced

snd/pass/rcv→ passed
consume→ consumed

Notice that the transition labelled by snd/lose is not allowed, and therefore it
is not obligatory, falsifying O(¬produce).
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7 Conclusions and Future Work

We have presented an approach for model checking a propositional temporal-
deontic logic, with applications to fault tolerance verification, based on a char-
acterization of this logic into the μ-calculus. This characterization is materialized
via two translations, one capturing deontic structures as Kripke structures for
μ-calculus, and the other translating formulas in the deontic-temporal logic into
μ-calculus. This translation is shown to be correct, in the sense that the model
checking problem in the deontic-temporal logic is reduced to model checking in
μ-calculus. Moreover, we also show that counterexamples are also maintained,
meaning that every μ-calculus counterexample, resulting from the verification of
a translated property on a translated model, can be mechanically traced back
to a counterexample of the original deontic temporal specification. Although the
deontic temporal logic subject of study in this paper was known to be decidable,
the decision procedure for it was not originally conceived for model checking
purposes, and therefore none of the practical considerations we had in our ap-
proach were previously taken. In our opinion, this justifies the relevance of our
work, aiming at automated verification of fault tolerance models.

We also provided a simple example illustrating various points. First, it illus-
trates the use of deontic structures for capturing systems with faults; second, it
allows us to show how fault tolerance properties are straightforwardly captured
by the combination of deontic and temporal operators; and third, it allowed us to
illustrate the translation from deontic temporal logic into μ-calculus. Moreover,
we employed the Mucke model checker in order to verify some sample properties
on the presented model, and found a nontrivial counterexample on a property
that was supposed to hold in the model.

As work in progress, we are developing a tool for fault tolerance system
description and verification, which this work is part of. We are also studying
the complexity of the model checking problem for PDL/DTL in relation to our
translation. It is known that SAT for PDL is in PSPACE [3], but we do not
have yet results regarding DTL, nor the complexity of these logics’ model check-
ing. Other concerns we are currently investigating are compositional reasoning
on the presented temporal deontic logic, and integrating the presented model
checking approach with the deductive mechanisms for verification presented in
[3].
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Abstract. This paper presents an approach to verify PLCs, a common
platform to control systems in the industry. We automatically translate
PLC programs written in the languages of the IEC 61131-3 standard to
B models, amenable to formal analysis of safety constraints and general
structural properties of the application. This approach thus integrates
formal methods into existing industrial processes, increasing the confi-
dence in PLC applications, nowadays validated mostly through testing
and simulation. The transformation from the PLC programs to the B
models is described in detail in the paper. We also evaluate the ap-
proach’s potential with a case study in a real railway application.
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1 Introduction

Programmable Logic Controllers (from now on, PLCs) perform control opera-
tions in a system, running in execution cycles : they receive information from
the environment as inputs, process them and affect this environment with the
resulting outputs.

In many industries, such as mass transport and energy, it is very common
to use PLCs in control applications. Those applications are mostly programmed
according to IEC 61131-3 [1], an international standard that specifies the five
standard PLC programming languages, namely: LD (Ladder Diagram) and FBD
(Function Block Diagram), graphical languages; IL (Instruction List) and ST
(Structured Text), textual languages; and SFC (Sequential Function Chart),
that shows the structure and internal organization of a PLC. It is not rare that
a variation of such languages is employed too.

As the complexity of the PLC applications increases, and as various are safety
critical, it is important to ensure their reliability [2]. Since testing and simulation,
the de-facto method in many branches to perform verification, can leave flaws
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undiscovered, something intolerable in safety-critical systems, another strategy
is necessary. A mean to fulfill this requirement is with formal methods. However,
they are difficult to integrate with the industrial process [3], since most control
engineers are not familiarized with formal verification [4].

Some recent works have been trying to integrate formal methods and PLC
programs verification, using different approaches. In [5], the authors created a
new language combining ST and Linear Temporal Logic, ST-LTL, to ease the use
of formal verification by control engineers. A method is presented in [6] to verify
applications using Safety Function Blocks with timed-automata through model-
checking and simulation. A model-driven engineering approach is used in [7] to
generate models in a FIACRE language from LD programs. To this date, these
approaches are concerned only with parts of the IEC 61131-3 standard.

Our approach consists of developing a tool that receives a PLC program based
in the IEC 61131-3 standard and builds an intermediary model from it. This
model is automatically translated to a formal model in the B notation [8]. Ad-
ditional safety constraints requirements are then manually inserted and verified
using theorem proving, thus avoiding state-explosion problems. We can also spec-
ify and verify dynamic properties, such as deadlock freedom, performing model
checking in the model using the tool ProB1, which also supports the definition
and verification of new constraints in Linear Temporal Logic. Our approach
is thus able to verify that the PLC is presenting the expected behavior in its
execution cycle.

We chose the B Method because it is used successfully in safety-critical ap-
plications, e.g. in the railway industry [12]. Besides, it has a strong support of
tools and the B language can handle decomposition, refinement and generation
of verified code. It is better discussed in 2.2.

In order to include all the IEC 61131-1 languages, we based our intermediary
model (from now on called “PLCmodel”) in the PLCopen [9] standard, which pro-
vides an interface representing all such languages in an XML-based format, work-
ing also as documentation. This PLCmodel stands between the PLCprogramsand
the formal models to be generated, then reducing the semantic gap between PLC
and B and defining a unique semantics for different PLC languages [7]. The pro-
cess also involves a customizable parser, so we can treat PLC programs that are
not strictly following the IEC standard; as numerous legacy systems deviate from
the standard, still our approach would thus be able to handle them.

Thus, as the generation of the formal model is automatic and as it makes
correctness, according to the specification, a realistic and achievable goal, we
facilitate the use of formal methods in industry and increase confidence in the
PLC applications.

We also present a case study in a real safety-critical railway system: the Cen-
tral Door Controller (from now on, CDC) of the doors subsystem of a train. We
show the step by step automatic generation of the formal specification from its
PLC program and, after defining the safety constraints, perform a full formal
verification in the application, at the end exhibiting the results.

1 http://www.stups.uni-duesseldorf.de/ProB

http://www.stups.uni-duesseldorf.de/ProB
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This paper presents the continuation of the work in [10] and [11]. A new
definition of the formal model generated, as well as improvements on how it is
generated and an evaluation of the whole method in a real case study are the
main contributions of this new paper.

Structure of the paper. Section 2 presents in more detail PLCs and the B method.
In section 3 we have the description of the different phases of our method, and in
section 4 we present our case study. Section 5 concludes the paper and presents
future work.

2 Context and Techniques

2.1 Programmable Logic Controllers

We base our work with PLCs on the PLCopen standard. This standard is an
effort to gather all the information of the five different languages of the IEC
standard and provide an interface with their supporting tools, as well as the
ability to transfer information between different platforms. It is an XML- based
standard able to store not just the textual, but also the graphical information
of a project, allowing complete translation from a representation to another.

The PLCopen standard structures PLCs in three specific parts: the Headers
structures, containing information such as the project name, the company as-
sociated, etc.; the Instance specific part, representing the configurations of the
environment in which the PLC may operate; and the Type specific part, where
we have the Program Organization Units (POUs) and the defined Data Types.
In our approach we will consider only the elements of Type.

The Data Types are either elementary (Bool, Integer, etc.), derived (Enumer-
ation, Array, Structure, etc.) or extended (Pointers); generic data types can also
be defined. They are used to type the variables used in the POUs.

The POUs represent the PLC programs, being divided in three categories:
functions, function blocks and programs :

– The POU functions, when executed, produce exactly one data statement – a
variable typed according to one of the possible data types in the standard –,
the function result, and arbitrarily many additional output variables. These
POUs are stateless: they contain no state information, i.e., invocation of a
function with the same arguments shall always produce the same result.

– The POU function blocks produce one or more data statements as result.
The state of a function block persists from one execution to the next –
they are stateful – , therefore invocation with the the same arguments may
produce different results.

– The POU programs are defined as a “logical assembly of all the programming
language elements and constructs necessary for the intended signal process-
ing required for the control of a machine or process by a programmable
controller system”. Their declaration and usage is equivalent to the function
blocks. It also may use the previous two POU types as auxiliary elements.
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The three POU elements have an interface with its several kinds of variables:
input, local, output, inout, etc. They also have a body, composed by IL (Instruc-
tion List), ST (Structured Text), LD (Ladder Diagram), FBD (Function Block
Diagram) or SFC (Sequential Function Chart) elements, according to the lan-
guage of the POU. In figure 1 we can see an example of a POU program in LD
that makes use of an instantiation of a POU function block in FBD. In section 4
bits of PLC programs in SFC and ST are shown as part of our case study. For
more details, see [1] and [9].

Fig. 1. LD program with rungs executed from left to right, sequentially. Boolean vari-
ables and a function block are evaluated in the execution.

2.2 B Method

The B Method [8] is a formal approach for the specification and development
of software. It includes a first-order logic with integers and sets, substitutions
and refinement rules. It is based on the Abstract Machine Notation (AMN),
which provides a unique language for the construction of machines, refinements
and implementations, thus representing the different levels of abstraction that
a specification of a system may take. Besides, the language supports decom-
position, since it is based around the concept of layered development and the
construction of larger components from collections of smaller ones.

The B Method provides a unified pragmatic and usable development method-
ology based on the concept of refinement, requiring the consistency verification
for each transformation of the specification from the abstract level towards the
concrete one. This, along with the generation and verification of proof obligations
to guarantee the consistency of the initial model, makes correctness according to
the specification a realistic and achievable goal throughout system development.

3 The Method

The method we are proposing consists of three main phases:

1. translate the information in the PLC programs into an intermediary model,
either from a standard or hybrid PLC program, or from an XML file in the
PLCopen standard;
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2. generate from it a B model that makes possible to check the structural and
safety properties of the project;

3. and at last complete the formal model with such safety properties, derived
from the project requirements (manually, for now).

Figure 2 illustrates the method. A case study covering all the phases of this
method is shown in section 4.

Fig. 2. Illustration of the complete method

3.1 Towards the PLC Model

The PLC model may be generated either directly from an PLCopen XML-based
representation, from the programs in the standard languages or from programs
in some hybrid language, presenting differences from the IEC 61131-3 standard.
Such languages are common, as adaptations to specific domain PLCs may be
necessary.

We projected a parser to analyze the programs; it deals with the elements
of the standard languages and may be customized to specified differences, to
accommodate new languages. This way we can deal with legacy programs that
are not strictly standard compliant. To handle XML, we developed a reader
module along with the default parser to load the PLC model.

Once the PLC model is constructed, we are able to work independently from
the PLC programs to generate the B specification. It is also possible to generate
a PLCopen XML, as documentation, to the PLCs that were not in this format.

3.2 Generation of the B Model

A good architecture is essential to generate a good model, as well as to define
which information from the PLC model will be responsible for which elements of
the B model. The architecture of this model is depicted in figure 3. It represents
a POU program and the auxiliary POU functions or function blocks that it may
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Fig. 3. B model representing a POU program and its use of auxiliary function and
function block POUs

use; in the sense of B, they are included by the refinement of the component
representing the POU program.

For the POU program2, the operations are derived from the SFC steps. At the
machine level, the bodies of the operations only make non-deterministic assign-
ments to the variables modified in the respective step; the translation of the ST
statements in the SFC action associated to the step forms the operation’s body
at the refinement level. The precondition of an operation is derived from the
translation of the ST statements in the SFC transition preceding the respective
step.

Variables are created to represent the internal representation of the POU
inputs, named by the prefix “int ” plus the input’s original name. These inputs
are received as parameters in a Start operation, representing the initialization of
the POU in each execution cycle. In the body of this operation, at the refinement
level, each internal variable receives the value of its corresponding input.

The POU outputs are treated as local variables; it is no loss of generality to
deal with them like that since we are dealing with the POUs only as independent
components. The safety constraints will concern mostly these outputs.

To emulate the execution cycle of the POU, non-existent in B, a boolean
variable is created for each step, named by the step’s original name plus the
suffix “ done”. It is stated true as the respective operation is performed and
falsified as the correspondent next operation in the execution cycle is reached.
These variables will be part of the operations’ preconditions: the predecessors
step variables must be valid so that a step can be reached.

A variable beginning is also created, stated true in the INITIALISATION
clause of the refinement, and is part of the precondition of the Start operation.
It marks the first execution cycle, when Start must always be available. In its
body beginning will be falsified.

In the auxPOU n components, the operations are constructed with the
translated statements from the auxiliary POUs, functions or function blocks,
either in ST, IL, LD or FBD. In the POU program’s machine and refinement
are created and typed variables according to the return type of these opera-
tions’ outputs; they are used whenever one of them is invoked.

Further refinements may be performed to optimize the model, like adding
invariants or changing its structure to facilitate automated proof.

2 Due to space limitations and to the fact that our case study in this paper deals partic-
ulary with SFC and ST, this explanation covers only the elements of these languages.
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3.3 Inserting the Safety Constraints

The next phase is to add safety constraints. Since PLC programs do not represent
such constraints explicitly, they have to be manually extracted from the project
requirements and modeled to be used in the formal models. This is a hard
task and still an open issue in the industry [13], and we have not decided yet
which methodology to adopt to tackle this problem. However, some promising
approaches as [14] and [15] may be suited for our purpose; the latter was used
in our case study.

Fig. 4. SFC program for CDC. Execution goes from the initial step to sequential ones
according to the validation of the transitions; the actions performed in each step are
implemented in ST.

Once the safety constraints are defined, they are inserted into the model as
invariants in the POU components, conditions that must always hold as the
PLC actions are performed. Tools such as Atelier B3 can perform automatic
verification of their consistency and point out where lies any problem, guiding
its treatment.

To guarantee that the PLC performs the expected behavior of its execution
cycle we may create LTL formulas over the variables representing the opera-
tions’ execution, verifying, e.g., if a given operation is ever reached from a
predecessor one.

3 http://www.atelierb.eu/

http://www.atelierb.eu/
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We may also verify properties that cannot be modeled with regular first or-
der logic, requiring modalities found in LTL: one example is the condition that
whenever a given variable has a given value, there must be some state reached by
the PLC where another certain variable receives another certain value. This can
be modeled with the operators �, meaning “it will always be the case that...”;
and �, meaning “it will eventually be the case that...”.

ProB is an animator and LTL model checker capable of handling B machines.
It also provides support to verify structural properties such as deadlock-freedom.

4 Case Study

Our case study is the CDC (Central Door Controller), a PLC part of the doors
subsystem of trains in the Metro-DF project, developed by AeS4, a small com-
pany in Brazil specialized in railway projects.

The CDC is responsible for controlling the opening and closing of the doors in
the train, guaranteeing that these actions are only executed under safe circum-
stances. It also controls the emergency situations that the train may be involved
in, which must be taken in consideration to determine whether a given scenario
is safe.

It receives, as input, information about the state of the train, such as the
current speed, and commands to open or close the doors. After verifying if the
conditions to execute some action are fulfilled, the CDC sends out commands,
as outputs, allowing or not the required actions.

Fig. 5. ST action associated to the SFC program of CDC. Tests if the conditions to
open the doors of the train are satisfied.

A simplified PLC representing the CDC is shown in figure 4, with a POU pro-
gram in SFC, and its transitions and actions written in ST – they are not all pre-
sented due to space limitations, but in figure 5 we have the action Test Opening
in detail. The CDC interface is shown in table 1. Associated with the CDC is
also a POU function, isHigher op, which receives an integer as input and returns
a boolean result indicating whether the input is higher than 6. This function is
used to check the speed of the train.

4 http://www.grupo-aes.com.br/site/home/

http://www.grupo-aes.com.br/site/home/
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Table 1. Interface of CDC

Name Class Type

train stopped Input BOOL
train in platform Input BOOL
train speed Input INT
train mode Input OPERATION MODES
mech emg actuated Input BOOL
close from ATC Input BOOL
close from cabin Input BOOL

doors closed InOut BOOL

ok opening Local BOOL
ok closing Local BOOL
emergency evaluated Local BOOL

control mech emg actuated Output BOOL
authorize emergency Output BOOL
cab emg sound Output BOOL
interlock doors traction Output BOOL
apply emg breaks Output BOOL

– Inputs: environment state and com-
mands.

– Locals: CDC operational variables.
– Outputs: Results of the CDC opera-

tions.

The execution begins at the step Start: the PLC reads the inputs of the ex-
ternal system and initialize its local variables. The transitions T1 and T2 will
test if an opening or closing operation, respectively, was requested, then direct-
ing the execution to Step1, where the CDC tests if the conditions to open the
doors are satisfied; or to Step2, where the CDC tests if the conditions to close
the doors are satisfied. If the conditions either to open or to close the doors were
satisfied, situation controlled respectively by the local variables ok opening and
ok closing, the execution continues; otherwise it goes back to Start, where the
CDC will wait until the next reading of inputs. In Step3 or Step4, responsi-
ble respectively for opening and closing operations, the outputs controlling the
state of the doors are modified, corresponding to the kind of action performed
– opening or closing; the emergency circumstances are evaluated in these steps;
the corresponding controlling outputs are also modified here.

4.1 Applying the Method

We use the tool Beremiz5 to create the PLC program and obtain a PLCopen
XML document representing the CDC. We translate the information in it into
our PLCmodel, then generate a B model representing the CDC. The architecture
of the generated model is presented in figure 6. This process is fully automatic.

The variables with the prefix “int ” are the internal variables created to rep-
resent the inputs received by the PLC. The local and the output variables are
created with the same names as the ones shown in table 1. The auxiliary variable
aux bool is created to be used when the operation isHigher op is invoked in
CDC r. The others are the step variables, used to represent the execution cycle,
plus beginning, signaling the first execution.

In figure 7, we can see part of the B operation produced by the translation of
Start. The precondition types the inputs and specify the conditions when Start
can be executed: the first execution cycle – beginning = TRUE; the condition
of transition T3 is satisfied and the execution is in Step1; the condition of
transition T6 is satisfied and the execution is in Step2; or the condition of
transition T7 is satisfied and the execution is in Step3 or Step4.

5 http://www.beremiz.org/

http://www.beremiz.org/
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Fig. 6. Architecture of the B model generated representing the CDC

Start(train stopped,train in platform, train speed, train mode,mech emg actuated,
close from ATC, close from cabin, doors closed) =

PRE
train stopped : BOOL & train in platform : BOOL & train speed : {0, 5, 10}
& mech emg actuated : BOOL & close from ATC : BOOL &
close from cabin : BOOL& train mode : OPERATION MODES &
doors closed : BOOL & (beginning = TRUE or ((not(ok opening = TRUE)
& step1 done=TRUE) or (not(ok closing = TRUE) & step2 done=TRUE)
or (emergency evaluated = TRUE & (step3 done = TRUE or
step4 done = TRUE))))

(...)

Fig. 7. Start operation in the CDC machine. Only the precondition is exhibited.

The body of the Start operation at the refinement level, shown in 8, consists
of the translation of the statements in the ST action—the initialization of the
local variables—, plus the generated initialization of the variables representing
the outputs; then the assignments of the inputs to its internal variables; and
finally the initialization of the step variables, marking the active step as Start
– start done := TRUE.
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Start(train stopped,train in platform,train speed,train mode,mech emg actuated,
close from ATC, close from cabin, doors closed) =

BEGIN
ok opening :=FALSE; ok closing :=TRUE; emergency evaluated :=FALSE;

control mech emg actuation := FALSE; authorize emergency := FALSE;
cab emg sound := FALSE; interlock doors traction := FALSE;
apply emg breaks := FALSE;

int train stopped := train stopped; int train in platform := train in platform;
int train speed := train speed; int mech emg actuated := mech emg actuated;
int close from ATC := close from ATC;
int close from cabin := close from cabin;
beginning := FALSE; start done := TRUE; step1 done := FALSE;
step2 done := FALSE; step3 done := FALSE; step4 done := FALSE

END

Fig. 8. Start operation in the CDC r refinement

Step1 =
PRE

not(int close from ATC = TRUE or int close from cabin = TRUE)T1

& start done = TRUE
THEN

start done := FALSE; auxBool < −− isHigher op(int train speed);
IF auxBool = TRUE THEN

/*block opening*/
ok opening := FALSE

ELSE IF ((int train mode = MAN) or ((int train mode = MCS or
int train mode = ATO) & (int train stopped = TRUE)
& (int train in platform = TRUE)))
THEN

/*Opening allowed*/
ok opening := TRUE

ELSE
/*block opening*/
ok opening := FALSE

END
END;
step1 done := TRUE

END

Fig. 9. Operation representing Step1 (The precondition of the machine operation is
exhibited together with the refinement operation due to space limitations

The B operation resulting from the translation of Step1 is shown in figure 9.
In its precondition we have T1 and the obligation that Step1’s predecessor step
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INVARIANT
( (ok opening = TRUE) =>

( (int train speed<=6) & ( ( (int train mode=MCS or int train mode=ATO)
& (int train stopped = TRUE) & (int train in platform = TRUE) )
or (int train mode = MAN) )

)
) &
( (ok closing = FALSE) =>

(int train mode = ATO & int close from cabin = TRUE)
)

Fig. 10. Invariants concerning opening and closing safety

variable, start done, must be valid. Its body statements are the translation of the
ST statements in the step’s associated action, Test Opening, shown in figure 5.

The other operations are generated according to the same guidelines. Once
the B model is ready, the next phase in our method is to insert, manually, the
safety constraints of the project as invariants. We used the ProR approach [15] to
define the formal constraints from the natural language requirements, easing the
process and assuring reliable traceability; the whole effort is in [16]. We present
here only the results to the following requirements, concerning the opening and
closing operations:

1. The doors shall open only when the train’s speed is lower than or equal to
6km/h.

2. The conditions to open all the doors located in one or in the other side of the
train, when in the operation mode ATO or MCS, are the train be stopped
and in the platform.

3. The condition to open all the doors located in one or in the other side of the
train, when in the operation mode MAN, is the train’s speed be lower than
or equal to 6km/h.

4. In ATO mode, the Central Door Controller must not close the doors while
receiving the command to open them from the driver push buttons.

We have the resulting B invariants in figure 10. The first invariant, referring to
the situations where opening is allowed, covers the items 1, 2 and 3. The second
invariant, referring to the situation where closing is prohibited, covers the item 4.
The model is then ready to formally verify them.

The last phase of the process is to create the LTL formulas to check if the
PLC program’s behavior is as expected. Concerning the execution cycle, the
conditions to be verified and the respective formulas are shown below:
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1: Start is reachable :
2: Step2 must be reachable from
Start when Step1 is not :
3: Step1 must be reachable from
Start when Step2 is not :
4: Step3 must be reachable from
Step1 when Start is not :
5: Start must be reachable from
Step1 when Step3 is not :
6: Step4 must be reachable from
Step2 when Start is not :
7: Start must be reachable from
Step2 when Step4 is not :
8: Start must be reachable from
Step3 or Step4 :

1: � start done
2: �((start done ∧ ¬ � step1 done)
⇒ �step2 done)
3: �((start done ∧ ¬ � step2 done)
⇒ �step1 done)
4: �((step1 done ∧ ¬ � start done)
⇒ �step3 done)
5: �((step1 done ∧ ¬ � step3 done)
⇒ �start done)
6: �((step2 done ∧ ¬ � start done)
⇒ �step4 done)
7: �((step2 done ∧ ¬ � step4 done)
⇒ �start done)
8: �((step3 done ∨ step4 done)
⇒ �start done)

We also verify constraints non-expressible through the invariants, such as:

9: Always when the CDC attests
that the conditions to open are
satisfied, then the doors must open
at some point of its execution :
10: Always when the CDC at-
tests that the conditions to close
are satisfied, then the doors must
close at some point of its execution :

9: �(ok opening ⇒
� ¬int doors closed)

10: �(ok closing ⇒
� int doors closed)

4.2 Results

Once the model is complemented with the invariants representing the safety
constraints and the LTL formulas to verify the program’s behavior are defined,
we are in position to carry on formal verification through theorem proving of
proof obligations, model checking and LTL formulas check.

Ten proof obligations were generated to verify the invariants inserted in the
model: 6 in the operation Step1, related to the invariant concerning the opening
conditions; and 3 in the operation Step4, associated with the invariants repre-
senting the emergency conditions, not exhibited here due to space limitations.
The Atelier B theorem prover was able to prove them all automatically, without
any user interaction. The operation Step2 does not generate proof obligations
because its statements are strictly equal to the invariant concerning the closing
conditions, and the operation Step3, as it opens the doors, directly satisfies all
the invariants concerning emergency conditions, by vacuity.

Next, we model check the model for the properties not covered by the proof
obligations, such as deadlock-freedom and liveness. As a result we had 4969
states, all free from deadlock, and a total of 1792080 transitions were necessary
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to cover them all. An important observation is that in order to avoid a state-
explosion problem we restricted, only for the model checking phase, the values of
the INT variables - train speed and int train speed - to {0, 5, 10}; there is no loss
of generality, since the chosen values represent the three possible states of the
train: “stopped”, “in movement and with its speed lower than 6km/h” and “in
movement and with its speed not lower than 6km/h”. Without this restriction
an infinite number of states would have be generated by the model checker to
cover the possible values of the INT variables.

We can see in table 2 that most of the operations performed in the model
checking phase were at Start, where the inputs are received and the execution
cycle of the PLC is initiated. The computing time was of ten minutes.

Table 2. Total of transitions covered

Operation Number of visits

Initialisation 1536
Start 1787904
Step1 384
Step2 1152
Step3 48
Step4 1056

The final step was to check the LTL formulas to verify if the PLC was present-
ing the expected behavior. All the formulas were proven correct, so the CDC was
indeed executing as planned. The computing time was of less than one minute
per formula.

5 Conclusions and Future Work

We have overviewed a method to carry out formal verification of PLC programs,
according to the IEC 61131-3 standard, through the automatic generation of a
B specification. Safety constraints are inserted in the formal model and then
verified through theorem proving; we also verify structural properties and if the
PLC presents the expected behavior performing model checking and using LTL
formulas. Thus we increase the reliability of the application, having correctness
according to the specification as a realistic and achievable goal.

Another key point of our approach is that, as it allows the users to generate
the B models automatically from the PLC programs, only lacking the safety
properties, it boosts the process of formal verification of such programs, skip-
ping all the hard work to design and construct the model that prevents formal
methods from being easily inserted in industrial projects.

We also presented a case study in a real railway application where our ap-
proach was applied with success. We were able to attest the efficacy of the
automatic provers and verify the safety constraints of the project.
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Future work lies mostly in expanding and adjusting the generation of the B
models, improving the way the method deals with some issues, such as multi-
dimensional arrays, loops and data types supported, for instance. Scalability is
also an issue, since the bigger and more complex the generated models are, the
harder it is to verify them; we plan to tackle this exploiting the decomposition
support of B, splitting the complexity of the application in several components
and verifying them independently.

The results obtained from the model and LTL checking can be used to improve
the PLC, but we have not defined yet an appropriate methodology on how to
perform this improvement; that is in our future works as well. We are also
studying the automatization of the process of deriving the safety constraints
from the requirements.

To improve the confidence in our translation method, another future work
is to make the inverse process: generate the former PLC programs from the B
models, so that we can apply testing technique to validate our approach.

As we expand the scope of our method, we also intend to perform more case
studies. We are about to start one with the company ClearSy6, strongly involved
with the B method and safety critical systems engineering, in a real project also
in the railway field, to execute problem diagnosis in high speed trains.

References

1. IEC (2003): IEC 61131-3 - Programmable controllers. International Electrotechni-
cal Comission Standards (2003)

2. Kron, H.: On the evaluation of risk acceptance principles. In: 19th Dresden Con-
ference on Traffic and Transportation Science (2003)

3. Amey, P.: Dear sir, yours faithfully: an everyday story of formality. IN Proc. 12th
Safety-Critical Systems Symposium, p. 318 (2004)

4. Parnas, D.: Really rethinking ‘formal methods’. Computer (January 2010),
http://portal.acm.org/citation.cfm?id=1724964.1724987
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Abstract. Automatic verification techniques such as Probabilistic
Model Checking (PMC) have been successfully applied in the specifica-
tion and analysis of stochastic systems. Some biological systems
show these characteristics, allowing PMC usage in unexpected fields. We
present and analyze a probabilistic model for palytoxin toxin (PTX) ef-
fects on cell transport systems, structures which exchange ions across the
plasma membrane. Several diseases are linked to their irregular behavior
and their study could help drug development. The model developed in
this work shows that as sodium concentration increases, PTX action en-
hances, suggesting that individuals with diets high in sodium are more
vulnerable to PTX. An opposite effect is observed when the potassium
concentration increases. PMC can help significantly in the understand-
ing of how cell transport systems behave, suggesting novel experiments
which otherwise might be overlooked by biologists.

Keywords: Probabilistic Model Checking, Systems Biology, Sodium-
Potassium Pump, Palytoxin, Ion Channels Blockers and Openers.

1 Introduction

Probabilistic model checking (PMC) is an automatic procedure to model and
analyze non-deterministic, stochastic and dynamical systems. PMC completely
explores a probabilistic model, establishing if given properties in special types
of logics are satisfied by the model. Different properties can be expressed, such
as “What is the probability of an event happening?”, which offers important
information about the model [7,20,16].

PMC can be used to study biological systems, which show some of the charac-
teristics of PMC models. The PMC approach can obtain a better understanding
of these systems than others methods are able to, such as simulations, which
present local minima problems that PMC avoids [9,15,14,8,4].

We present and analyze a PMC model of the sodium-potassium pump
(or Na+/K+-ATPase), a transmembrane ionic transport system that is a
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fundamental part of all animal cells and plays an important role in several bio-
logical functions such as cell volume control and heart muscle contraction. The
Na+/K+-ATPase is one of the main targets of toxins and drugs and it is related
to several diseases and syndromes [3]. In this work we present a model where
the pump was exposed to a deadly toxin called palytoxin (PTX) — which com-
pletely alters the behavior of the pump — in order to understand PTX effects
on the pump [22].

The model has shown that high doses of sodium could enhance PTX effects.
For example, when the sodium concentration is increased by 10 times its normal
values, the probability of being in PTX related states is increased by 17,46%.
This suggests that individuals with electrolyte disturbances (changes in normal
sodium or potassium levels caused by diseases or syndromes) are more susceptible
to the toxin.

The opposite behavior is observed regarding high doses of potassium – when
the potassium concentration is increased by 10 times its normal values, PTX
effects are reduced by 23,17%. Both results suggest that sodium and potassium
levels could be changed to reduce PTX effects on the pump by decreasing sodium
and increasing potassium. Since electrolyte levels in the blood can be manipu-
lated up to a certain degree, the study of their role and capability to change
Na+/K+-ATPase behavior is important.

Our results show that PMC can improve the understanding of cell transport
systems and its behavior and may help in the development of new drugs.

This paper is part of an ongoing effort to better understand transmembrane
ionic transport systems. The PMC model of the pump was described in [9], where
the dynamics of the pump were studied. The toxin palytoxin was included in the
model in [4], where different scenarios for the pump disturbances caused by the
toxin in cell energy related reactions were studied.

Outline. In Section 2 we describe ionic pumps. The related work of the
analysis of these systems and PMC usage are covered in Section 3. Our model is
presented in Section 4 and 5, while our experiments, properties and results are
shown in Section 6. Finally, our conclusions and future works are in Section 7.

2 Transmembrane Ionic Transport Systems

Every animal cell contains structures named transmembrane ionic transport
systems, which exchange ions from the intra to the extracellular medium. An
electrochemical gradient is created due to charge and concentration differences
between ions in both sides. Gradient maintenance is conducted by cell transport
systems, and without it the cells would not perform their functions properly [2].

Transmembrane transport systems are divided in two types: ion channels (pas-
sive transport) which do not consume energy; and ionic pumps (active transport)
which consume cell energy (Adenosine Triphosphate or ATP).

The behavior of an ion channel depends on transported ion concentration
gradients and moves ions in favor of their gradient. Ionic pumps move ions against
their electrical charge, concentration gradient, or both [17].
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Only specific ions such as sodium, potassium and calcium can pass through ion
channels and ionic pumps. Ionic pumps can be viewed as two gates, one internal
and another external, that open or close based on chemical and electrical signals,
and other different factors [2].

The sodium-potassium pump (Na+/K+-ATPase), exchanges three sodium
ions from the intracellular medium for two potassium ions from the extracel-
lular medium (Figure 1). This pump can be in two different states: open to
either its internal or external side. When the pump is open to its internal side,
three sodium ions can bind to it. An ATP molecule binds to the pump, which is
followed by its hydrolysis (or energy consumption), releasing the sodium ions to
the external side. An Adenosine Diphosphate (ADP) molecule is released while
a phosphate molecule remains bound to the pump. Two potassium ions in the
external side bind to the pump, which are released in the internal side. The
phosphate is also released. The pump is ready now to repeat the cycle [2].

Fig. 1. The Na+/K+-ATPase cycle. Adapted from [24].

Ion channels and ionic pumps play an important role in cellular volume
control, nerve impulse, coordination of heart muscle contraction, release of accu-
mulated calcium in the sarcoplasmic reticulum for performance of muscle con-
traction, and several other biological processes [2]. Their irregular behavior is
associated with several diseases, such as hypertension and Parkinson’s disease.
This makes cell transport systems one of the main targets in research for dis-
covery and development of new drugs [2].
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Due to their major role in nervous functions, ion channels and ionic pumps
are the main targets of neurotoxins [2]. Palytoxin (PTX), a deadly toxin from
the coral Palythoa toxica, is an example of a toxin that can affect ionic pumps.
PTX changes the behavior of the Na+/K+-ATPase, essentially turning it into an
ion channel, which means that the pump transfers ions based on their concen-
tration gradient, instead of exchanging ions slowly against their concentration
gradient [3].

Despite the discovery of ion channels and ionic pumps over 50 years ago, they
are not yet completely understood [2]. However, recent studies about PTX effects
on the Na+/K+-ATPase are changing how these structures are viewed by the
scientific community, helping to understand better how they work [3].

Cell transport systems usually are investigated through expensive and time-
consuming experimental procedures in laboratories. Different types of simula-
tions, mathematical and computational methods are also employed to improve
the understanding of these structures. Ordinary differential equations (ODE)
and Gillespie’s algorithm for stochastic simulations are among the methods used
for this end [10]. However, despite their ability to obtain valuable information,
simulations are not capable of covering every possible situation, and might in-
cur local minima of the model state space, therefore possible overlooking some
events, such as ion depletion, where all ions of a cell side have been transferred
to the other side.

3 Related Work

3.1 Experimental and Simulational Techniques

Previous researchers have investigated PTX and its interactions with the Na+/K+-
ATPase [3]. They found that PTX drastically modifies the nature of the pump
after binding to it, which changes the behavior of the pump to the one of an ion
channel. They suggest that PTX could be an useful tool in experiments to discover
the control mechanisms for opening and closing the gates of ion pumps. Rodrigues
and co-workers [22] have also discussed this through mathematical simulations us-
ing non-linear ODEs and considering only states and reactions related to sodium
and potassium exchange.

Interactions of PTX with the complete model for the Na+/K+-ATPase are
analyzed in [23]. The series of works by Rodrigues and co-workers can be viewed
as simulational approaches of the experimental results of [3].

The specific sodium-potassium pump present in cardiac cells is examined
in [18] using different models of ODEs. Initially a thirteen state model is pre-
sented, however a reduction for the model containing only four states is obtained.
It is demonstrated the central role of the sodium-potassium pump in maintaining
the cellular concentration levels of calcium ions, essential for the cardiac muscle
contraction. Also, a model is presented for the pump coupled with states and
reactions related to cesium, a substance used to perform experiments, which
interfere in the behavior of the pump in the same way as drugs and toxins.



PTX Inhibits the Sodium-Potassium Pump – An Investigation Using PMC 39

3.2 Model Checking

The tools used in the formal verification of biological systems that are more
closely related to this work are PRISM [16], BioLab [8], Ymer [26], Bio-PEPA [6]
and SPiN [12].

PRISM supports different types of models, properties and simulators [16]. It
has been largely used in several fields, i.e. communication and media protocols,
security and power management systems. We have used PRISM in this work for
several reasons, which include: exact PMC in order to obtain accurate results;
Continuous-time Markov Chain (CTMC) models, suited for our field of study;
rich modeling language that allowed us to build our model; and finally property
specification using Continuous Stochastic Logic (CSL), which is able to express
qualitative and quantitative properties.

Clarke and co-workers [8] have introduced a new algorithm called BioLab. In-
stead of building explicitly all states of a model, the tool generates the minimum
number of necessary simulations, given error bounds parameterized for acceptance
of false positives and false negatives of the properties to be verified. This algorithm
is based on the works of [26], author of the approximate model checker Ymer. We
did not use BioLab or Ymer because our initial analysis demanded exact results.
Only after these preliminary results we could have used an approximate analysis.

In [27] the authors compare numerical and statistical methods for PMC, since
exact model checking is not always possible due to timewise and computational
resources restrictions. Therefore, approximate model checking is an alternative
when it is acceptable to lose exact results that demand prohibitive execution
time in order to obtain approximate results that are obtained in a timely manner.
Ymer uses this technique.

The authors illustrate in [15] the application of PMC to model and analyze
different complex biological systems for example the signaling pathway of Fi-
broblast Growth Factor (FGF), a family of growth factors involved in healing
and embryonic development. The analysis of other signaling pathways such as
MAPK and Delta/Notch can be seen in [14].

The use of PMC is demonstrated also in [13], where the authors examine and
obtain a better understanding of mitogen-activated kinase cascades (MAPK cas-
cades) dynamics, biological systems that respond to several extracellular stimuli,
i.e. osmotic stress and heat shock, and regulate many cellular activities, such as
mitosis and genetic expression.

4 The Na+/K+-ATPase Model

Our Na+/K+-ATPase model is written in the PRISM language (used by the
PRISM model checker) and consists of modules for each of the molecules (Sodium
or Na and Potassium or K) and one main module for the pump. This first part
of the model does not include palytoxin, which is later included in Section 5.
A fragment of the model is shown in Figure 4, and its complete version can be
found in the supplementary material [1]. The complete model has 409 lines and
11 reactions.
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Na+/K+-ATPase PRISM Model

module na
naIn : [0..(NI+NO)] init NI; // Number of Na inside cell
naOut : [0..(NI+NO)] init NO; // Number of Na outside cell

// reaction 2: 3naIn + E1 <-> NA3E1
[r2] naIn>=3 -> pow(naIn,3) : (naIn’=naIn-3);
[rr2] naIn<(NI+NO-3) -> 1 : (naIn’=naIn+3);

endmodule

module pump
E1 : [0..1] init 1; // e1 conformational state
NA3E1 : [0..1] init 0; // e1 bound to three sodium ions

// reaction 2: 3naIn + E1 <-> NA3E1
[r2] E1=1 & NA3E1=0 -> 1 : (E1’=0) & (NA3E1’=1);
[rr2] E1=0 & NA3E1=1 -> 1 : (E1’=1) & (NA3E1’=0);

endmodule

// base rates
const double r2rate = 2.00*pow(10,2)/(0.001*V*AV);
const double rr2rate = 8.00*pow(10,2);

// module representing the base rates of reactions
module base_rates

[r2] true -> r2rate : true;
[rr2] true ->rr2rate : true;

endmodule

Fig. 2. Na+/K+-ATPase PRISM Model

Each molecule module contains a variable to store the current number of
molecules (i.e. naIn for [Na+]i) and transitions that represent chemical reactions,
which are responsible for changing the number of molecules. The concentration of
sodium, potassium and palytoxin is discretized as described below in Section 4.1.
A list of reactions can be found in [22] and in the supplementary material [1].
Reactions which involve more than one element of each type have to take into
account the law of mass action as described below in Section 4.1.

The main module controls the pump, controlling its current state. The states
are a boolean vector, where only one position can and must be true. The main
module also has transitions which change the pump state.

The Albers-Post model [19] is a kinetic model that represents the Na+/K+-
ATPase cycle (Figure 3 - left side). Its translation to the PRISM language is
straightforward. According to it, the pump can be in different states, which
change depending on different reactions involving sodium or potassium. The
pump can be open or closed to the extra and intracellular sides. Two or three
sodium ions can bind to the pump when it is open to its intracellular side. Two
potassium ions can bind to the pump when it is open to its intracellular side.
The reactions are bidirectional and their rates were obtained in [22].

In our model, the pump can be in five states: open to its inner side (E1, in
our PRISM model); open to its outer side (E2); open to its inner side, with three
sodium ions bound to it (NA3E1); closed to both sides with two sodium ions
bound it (NA2E2); closed to both sides with two potassium ions bound it (K2E2).
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Fig. 3. The classical Albers-Post model [19], where [Na+]i and [Na+]o are the intra and
extracellular sodium (Na) concentrations, [K+]i and [K+]o are the intra and extra cel-
lular potassium (K) concentrations, and [PTX]o is the palytoxin (PTX) concentration.
Adapted from [21].

4.1 Discrete Chemistry

The main components of our model are molecules (sodium and potassium) and
the Na+/K+-ATPase, which can interact with each other through several el-
ementary reactions. There is one additional molecule (PTX) in the palytoxin
extension for this model, discussed below.

The concentration of each of these components is a discrete variable, instead of
a continuous function. Therefore, we have converted the amount of initial concen-
tration of molecules from molarity (M) to number of molecules. The stochastic
rates for forward and backward transitions are from [21]. The substrates concen-
trations ([Na]i = 0.00500, [K]i = 0.00495, [Na]o = 0.00006 and [K]o = 0.00495)
are from [5]. The cell volume is from [11].

In order to convert the initial amount of molecules given in molarity ([X]) into
quantities of molecules (#X), we have used the following biological definition [2]:

#X = [X ] × V × NA (1)

where V is the cell volume and NA is the Avogadro constant.
The law of mass action states that a reaction rate is proportional to the concen-

tration of its reagents. Therefore, we take into account the reagent concentrations



42 F.A.F. Braz et al.

in our model. Considering the discrete chemistry conversion discussed and the pa-
lytoxin binding to the pump:

E1 + PTX
rp′

1⇀ PTX ∼ E (2)

the final rate rp1 is given as follows:

rp1 = rp′1 × #(E1) × #(PTX) (3)

We have used the construct pow(x,y) from PRISM to represent the law of
mass action. For example, a reaction involving three sodium ions would have a
transition rate pow(naIn,3).

5 The Palytoxin Model

The palytoxin model is an extension of the Na+/K+-ATPase model described
above. It is represented in Figure 3 at the right side, within the dashed boundary.
It is based on the description by [22] and [3].

One molecule module (palytoxin) was added to this expanded model, as well
as additional states for the pump module and additional reactions for each of the
already present modules. Initial concentrations for [PTX]o and stochastic rates
for transitions between states are from [22]. A fragment of the model is shown in
Figure 5 and its complete version can be seen in the supplementary material [1].

The states correspond to the pump bound to PTX, when the pump is open
to both sides behaving like an ion channel. There are three additional states for
the pump: bound to a PTX molecule (PTXE, in our model); bound to a PTX
molecule, with two sodium ions bound to their binding sites (PTXNA2E); and
bound to a PTX molecule, with two potassium ions bound to their binding sites
(PTXK2E).

6 Results

6.1 Parameters and Model Complexity

Our model can be explored in six different dimensions: extracellular PTX con-
centration ([PTX]o), intra and extracellular sodium concentrations ([Na+]i and
[Na+]o, respectively), intra and extracellular potassium concentrations ([K+]i and
[K+]o, respectively) and pump volume. Each dimension can be modified (in-
creased or decreased) to affect one aspect of the model, which impacts directly
to model complexity regarding the number of states, transitions, topology, model
build time and property verify time.

Table 1 shows the changes in these values in function of different scenarios.
In the Control scenario, [Na+]i = 22 mM, [Na+]o = 140 mM, [K+]i = 127 mM,
[K+]o = 10 mM, [PTX]o =0.001 µm and the pump volume is 10−22 L. In the
High Sodium scenario, sodium concentrations are increased 10 times, therefore
[Na+]i = 220 mM, [Na+]o = 1400 mM, while the other parameters remain
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Palytoxin PRISM Model

module ptx
ptxOut : [0..(PTXO+1)] init PTXO; // Number of PTX outside the cell

// reaction p1: PTXo + E1 <-> PTXE
[rp1] ptxOut>=1 -> ptxOut : (ptxOut’=ptxOut-1);
[rrp1] ptxOut<(PTXO-1) -> 1 : (ptxOut’=ptxOut+1);

endmodule

module pump
PTXE : [0..1] init 0; // non selective pump bound to ptx

// reaction p1: PTXo + E1 <-> PTXE
[rp1] ptx!=0 & E1=1 & PTXE=0 -> 1 : (E1’=0) & (PTXE’=1);
[rrp1] ptx!=0 & E1=0 & PTXE=1 -> 1 : (E1’=1) & (PTXE’=0);

endmodule

// base rates
const double r1rate = 1.00*pow(10,2);
const double rr1rate = 0.01;

// module representing the base rates of reactions
module base_rates

[rp1] true -> rp1rate : true;
[rrp1] true -> rrp1rate : true;

endmodule

Fig. 4. Palytoxin PRISM Model

unchanged. Finally, in the High Potassium scenario, potassium concentrations
are increased 10 times, which changes only potassium to [K+]i = 1270 mM,
[K+]o = 100 mM.

The columns TBuild, TState and TRate refer to the time to build the model,
and to check a state and a transition reward properties. The experiments have
been performed in a Intel(R) Xeon(R) CPU X3323, 2.50GHz which has 17 GB
of RAM memory.

Table 1. Model complexity, build and check time for different scenarios

Scenario States Transitions TBuild TState TRate

Control 208 652 0.094 s 45.123 s 19.307 s
High Sodium 1880 6020 7.101 s 344.578 s 266.436 s

High Potassium 1274 7140 0.081 s 358.842 s 346.707 s

The standard animal cell volume is 10−12 L [11], which is prohibitive to repre-
sent in PMC since it would cause the classical problem of state space explosion.
Our analysis is restricted to only one cell pump. As a consequence, it would also
not be realistic to model the whole cell volume since it is shared between several
pumps and other cellular structures. Our abstraction reduces the cell volume fo-
cusing our analysis in one or few pumps and their surroundings. We achieve this
by maintaining the proportions between all interacting components. Therefore,
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our dimension for cellular volume is called pump volume and is usually 10−22

L. Even though those values are many orders of magnitude smaller than the
real values, they still represent proper pump behavior, and can be interpreted
as using a magnifying glass to investigate a portion of the cell membrane.

On the other hand, for some dimensions we have used more values than in-
tuition suggests, ranging from three orders of magnitude below and above their
literature reference values, shown in Section 4.1. This is particularly interesting
because we can model different situations for pump behavior, including abnormal
concentrations levels for [Na+]i due to some disease or syndrome, and different
degrees of exposure to [PTX]o, from mild to fatal exposure.

Due to space limitations we have chosen to present the most important proper-
ties that we have formulated: state and transition rewards (Sections 6.2 and 6.3).
There are also species depletion (reachability) properties (Section 6.4). These and
other properties can be seen in the supplementary material [1].

6.2 High [Na+] Enhances PTX Action

States and rates of the model can be quantified through rewards, a part of
PRISM language. One reward for each state and rate is created. Rewards are
incremented each time its conditions are true. After calculating each reward we
are able to determine state and rate probability. Figure 5 shows the rewards for
state PTXE, the pump open to both sides and bound to a PTX molecule. Rewards
for rates are nearly identical.

Now that the model has rewards for each state and rate, we are able to calcu-
late the expected accumulated reward associated with each state and rate over
time, with properties such as the one shown in Figure 5. The R operator allows
us to quantify the reward for some given event, for example the number of times
the model was in state PTXE. The operator C allows to quantify accumulated
rewards for a given time T , therefore we are able to observe rewards over time.

Considering a single pump, a pump volume of 10−22 L, a Control scenario
(described in the previous subsection), at instant T=100, the expected rewards
associated with the state PTXE is 36.2195. In other words, in 100 seconds, the
PTX inhibits the pump 36,11% of the time. In a High [Na+] scenario, the ex-
pected reward associated with PTXE changes to respectively 45.3599, 42.42%
of the time. Therefore, as we increased [Na+], the likelihood of the pump to
be bound exclusively to PTX increased 17,46%. This result can be seen in

State Rewards

rewards "ptxe"
(PTXE=1) : 1;

endrewards

Accumulated State Reward Property

R{“ptxe”}=? [ C<=T ]

What is the expected accumulated reward for the
state ptxe until time T?

Fig. 5. State Rewards and Accumulated State Reward Property
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Fig. 6. Probability of PTX Inhibiting the Pump for Different Scenarios in 100 seconds:
Control (normal ion concentration); High [K+] scenario (10 times more potassium than
normal) which reduces PTX effect by 23,17%; and High [Na+] scenario (10 times more
sodium than normal) which enhances PTX effect by 17,46%

Figure 6, which represents the probability of PTX inhibiting the pump for our
three different scenarios, and also its time series version in Figure 7.

This result suggests that sodium enhances PTX action, and as consequence
people with electrolyte disturbances would be more vulnerable to this toxin.
Sodium disturbances appears in different forms (i.e. hypernatremia) and have
different causes, such as diabetes insipidus, Conn’s syndrome and Cushing’s dis-
ease [25]. Sodium concentration could be reduced in order to reduce PTX action.
However, this is a solution to be taken with caution since sodium is necessary
for survival and its absence would shut down the pump. This is particularly
interesting since PTX is found in marine species, which inhabit an environment
with a high sodium concentration.

6.3 High [K+] Inhibits PTX Action

As the potassium concentration increases, an event opposite to the one discussed
the previous section is observed. In a High [K+] scenario, the expected reward as-
sociated with PTXE changes to respectively 29.2241, 27.74% of the time. There-
fore, as we increased [K+], the likelihood of the pump to be bound exclusively to
PTX decreased 23.17%. This result can be seen in Figures 6 and 7.

This result suggests that potassium inhibits PTX action. Therefore individuals
with diets low in potassium, or with a pathology which decreases the potassium
concentration in their metabolism could be more vulnerable to PTX. Potassium
concentration could be increased to fight PTX action. In a similar way to sodium,
there is another fine line here since a maximum amount of potassium is tolerated
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Fig. 7. Probability of PTX Inhibiting the Pump Time Series for Different Scenarios:
Control (regular ions concentrations); High [K+] scenario (10 times more potassium
than regular concentration) which reduces PTX effect; and High [Na+] scenario (10
times more sodium than regular concentrations) which enhances PTX effect

for one individual. There are a number of causes associated with a high potassium
concentration (hyperkaulemia), such as renal insufficiency, Addison’s disease,
Gordon’s syndrome and Rhabdomyolysis. Both results have been obtained from
a parametric study of the state and transitions rewards of our model.

6.4 Species Depletion

We have also investigated properties related to species (ion or molecule) de-
pletion events, i.e. there is no species in one side of the cell. For example, the
event “naOutDepletion” where there is no external sodium, or the event “ptxAll-
Bounded” where all palytoxin molecules are bound to the pump. These events
can be created in PRISM using labels (Figure 8).

Species depletion properties state that these events eventually (F operator)
will always happen (P>=1 operator). For example, in every scenario the event
“ptxAllBounded” eventually always happens. That is not the case for the event
“naOutDepletion”, which in every scenario it is not guaranteed that it will hap-
pen.

The event “kInDepletion” is sensitive to the parameter [K+]– in the Control
scenario, its property is true, while in the High [K+]scenario, the property be-
comes false, because it is more difficult to deplete internal potassium since there
is 10 times more potassium. One could check how long it takes for those events
to happen. For that we have to use a time reward, and reward properties, such
as the one shown in Figure 8. The event “ptxAllBounded” is expected to happen
in 1.7513E-5 seconds.
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Species Depletion Events
and Time Reward

label "ptxAllBounded" = ptxOut=0;

rewards "time"
true: 1;

endrewards

Species Depletion Properties

P>=1 [ F “ptxAllBounded” ]

The event “ptxAllBounded” will al-
ways eventually happen.

R{“time”}=? [ F “ptxAllBounded” ]

What is the expected time necessary
for the event “ptxAllBounded” to happen?

Fig. 8. Depletion Events and Properties, and Time Reward

Fig. 9. Heat Map: kinetic model for the Na+/K+-ATPase with state and rate proba-
bilities represented as colors. Each state and rate is colored based on its probability.
Red states/rates are likely while blue states/rates are improbable. This could be a
valuable tool for biologists as it shows model dynamics and it could be used to suggest
overlooked experiments.
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6.5 A Probabilistic and Quantified Kinetic Model

The classicalAlbers-Postmodel for the Na+/K+-ATPase was first proposed in [19].
It is a kinetic model which describes a set of directed chemical reactions that go
from one state to another, consuming or producing substrates. We are able to
quantify this kinetic model through PMC using state and transition rewards. We
calculate a state probability dividing its reward by the sum of all state rewards.
This is also applied to reactions and could be applied to substrates too.

We associate colors to states and reactions, in order to represent their proba-
bility. The kinetic model is colored using a jet palette which is often associated
with temperatures, where probabilities transit from red to blue, or from likely to
unlikely. This modified kinetic model is called a heat map. Red states and reac-
tions are more probable or hot while blue states and reactions are unlikely or cold.
An example of the heat map can be seen in Figure 9, where the states PTXK2E and
PTXE are more probable, and reactions involving PTXNA2E occur more often.

The heat map could be a valuable tool for biologists as it shows model dy-
namics and it could be used to suggest overlooked experiments. Since the kinetic
model is an abstraction suggested by experimental data, it could be incomplete,
which the heat map would assist towards its completion. The heat map raises sev-
eral questions, especially about likely reactions involved with improbable states.
For example, the reaction between the states NA2E2 and PTXNA2E is one of the
most actives, while the states themselves are the most inactives. This could
suggest that there might be an intermediary state between these two states.

7 Conclusions and Further Work

The sodium-potassium pump (Na+/K+-ATPase) is a cellular structure which
exchanges ions across the cell membrane. Its regular behavior is critical for
all animal cells, otherwise the individual could present some diseases or syn-
dromes. A stochastic model representing the Na+/K+-ATPase has been built
for a single pump using the Probabilistic Model Checking tool PRISM. In this
model, the pump has been exposed to the toxin palytoxin (PTX), which dras-
tically changes the pump regular behavior. PMC has allowed us to investigate
the model, which show unpredictable and complex characteristics. Properties
about biological events were expressed in probabilistic logics, e.g. “What is the
probability of being in PTX related states?”, which allowed the observation of
rare events.

The results presented by the model have shown that high concentrations of
sodium could enhance PTX effects. For example, when the sodium concentration
is increased by 10 times its normal values, the probability of PTX inhibiting
the pump increases 17,46%. This suggests that electrolyte disturbances could
make an individual more susceptible to the toxin. Since PTX is found in an
environment with a high concentration of sodium, this could represent some
kind of evolutionary pressure.

An opposite behavior is observed regarding high concentrations of potassium.
When potassium concentration is increased by 10 times its normal values, PTX
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effects are reduced by 23,17%. Both results suggest that electrolyte levels could
be changed to reduce PTX effects on the pump by decreasing sodium and in-
creasing potassium. Since electrolyte levels in the blood can be manipulated
up to a certain degree, the study of their role and capability to change our
Na+/K+-ATPase model behavior is even more important. PMC can improve
our understanding of cell transport systems and its behavior, and can lead to
the discovery and development of new drugs.

We have shown in this work that PMC can be used to obtain valuable infor-
mation about cell transport systems in a simple and complete way. This type of
analysis can provide a better understanding of how transmembrane ionic trans-
port systems behave, helping in the discovery and development of drugs. Future
work include performing electric current and ion concentration measurements;
confront the results with experimental validation; explore other dimensions such
as the number of pumps; and integrate to our model other toxins (e.g. ouabain)
or drugs (e.g. digitalis).
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Abstract. While formal methods provide ways to specify and verify
software systems with mathematical accuracy, testing techniques can
provide mechanisms to identify defects that were inserted in the sys-
tem during its implementation. With that in mind, this paper presents
an approach to generate test specifications based on a formal notation:
the B-Method. Our approach is supported by a tool and uses restrictions
described on a B specification, such as invariants, preconditions and con-
ditional statements, to create unit tests for an operation. The approach
uses equivalence classes and boundary value analysis techniques to parti-
tion the operation input space and relies on combinatorial criteria to se-
lect partitions to test. The approach and the tool were evaluated through
a small case study using specifications for the FreeRTOS micro kernel.

Keywords: Testing, Formal Methods, Unit Testing, B-Method.

1 Introduction

The process of software verification and validation (V&V) is known to consume
much of the time of the development process. Almost 50% of the time and costs of
the development of a system is consumed by V&V activities [18]. It is difficult to
ensure that a system is safe, robust and error-free. With that in mind, there are
many methods and techniques that try to improve quality assurance in software
development, such as software testing and formal methods. The cost of these
methods and techniques is however an important issue, motivating developers
and researchers to look for ways to improve quality assurance without increasing
V&V costs.

Formal methods and testing are V&V techniques which complement each
other. Formal verification is a static technique which can guarantee the validity
of certain specific properties, while testing, a dynamic technique, is the one V&V
technique that no one thinks of discarding in software development, although
its goal is mostly to show the presence of defects in the software. Nowadays,
there is an effort of both formal methods and testing communities to integrate
both disciplines. Even though formal methods allow a system to be verified
with mathematical accuracy, they are not enough to ensure that a system is
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error-free. Thereby, software testing can complement formal methods, providing
mechanisms to identify failures, exploiting possible defects that were inserted
into the software code during its implementation or maintenance. Besides, as
formal specifications usually describe requirements in a rigorous and unambigu-
ous way, they can be used as basis to create good test cases. If not better than
the ones created based on informal specifications of the system, at least, cheaper
to produce when formal specifications are reused from former activities, as more
automation is possible.

The generation of tests from formal specifications can be particularly useful in
scenarios where formal methods are not followed strictly. Sometimes, due to time
and budget restrictions, formal methods are only used in more abstract levels of
specification and the implementation of the system is done in an informal way.
In this scenario, tests generated from formal specifications would help verifying
the cohesion between specification and implementation, checking whether the
implementation is in accordance with the specification.

Different research groups have then been researching this integration in differ-
ent ways, targeting different kinds of tests, using different formal input models,
and with different levels of automation ([3,20,10,23,11,17,6,15,7,4,8]). This paper
presents the approach BETA (B Based Testing Approach) to derive unit tests
from formal specifications, contributing to this line of research. The approach
is partially supported by a tool and uses B Method [1] state machines to gen-
erate test specifications for an operation under test. There is no restriction on
the form and structure of the input B machine. The BETA approach uses input
space partitioning techniques [5] to define positive and some negative test cases.
Whilst positive test cases use valid input test data to test an operation, negative
test cases use invalid input test data (data that goes against the restrictions
imposed by the specification) to test it. Negative test cases are important to
evaluate the level of safety of the system, since malicious users usually exploit
this kind of errors. The negative test cases specified by the BETA approach aim
to contribute to the analysis of the software behavior when the operation is used
outside its input domain (i.e., when its preconditions are not respected).

The remainder of the paper is organized as follows: Section 2 gives a brief
introduction about the B-Method; In Section 3 we discuss about related work;
in Section 4 we present our approach to generate specifications of unit tests based
on B specifications; In Section 5 we present the tool we developed to automate
our approach; In Section 6 we discuss the results obtained on a case study; we
conclude in Section 7 with discussions and future work.

2 The B-Method

The B Method is a formal method that uses concepts of first order logic, set
theory and integer arithmetic to specify abstract state machines that represent
a software behavior. These specifications can be verified using proof obligations
that ensure the specification’s consistence. The method also provides a refine-
ment mechanism in which machines may pass through a series of refinements
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until it reaches an algorithmic level that can be automatically converted into
code.

A B machine may have a set of variables that represent the software state
and a set of operations that can modify it. Restrictions on possible values that
variables can assume are stated by the machine’s invariant. The method also
has a precondition mechanism for operations of a machine. To ensure that an
operation behaves as expected, it is necessary to ensure its precondition is re-
spected. Figure 1 presents an example of B machine from [22] that is responsible
for managing substitutions on a soccer team.

Fig. 1. Player machine specification[22]

The team squad is represented by a set PLAYER while the main team is
stored on the state variable team. There are two restrictions on the machine’s
invariant which establish that, first, the main team must be a subset of the whole
squad (line 7), and second, the main team must have exactly eleven players (line
8). The machine has two operations: substitute (lines 15-19) and query (lines
20-25). The substitute operation is responsible for making substitutions on the
team. It receives as parameters a player pp who will be replaced in the team and
a player rr who will take pp’s place. As preconditions, the operation establishes
that pp must belong to the main team (line 16), rr must belong to the squad
(also line 16) but should not be in the main team (line 17). The query operation
can verify if a particular player pp is currently on the team. It has a return
variable aa that will receive the value in if pp is indeed on the team or the value
out in case it is not on the team.

3 Related Work

During our research we also considered work that aims to generate tests from
formal specifications written in Z [24], Alloy [12], JML [13], VDM [19] and OCL
[26]. We chose these notations due to similarities they share with the B notation,
such as: the concept of abstract state machines, the transition between states
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using operations and the specification of functional requirements based on pre
and post conditions and invariants.

We evaluated papers which focus on different levels of testing. Most of the
available work based on these languages concerns the generation of test cases for
the module level [5]: the level of testing that is right above unit testing. While
unit tests are concerned with testing individual operations (such as functions
and methods), module testing is concerned with testing the interaction between
operations from a same collection, such as a class, a package or a file.

This is also the case for the reasearch that uses B models for test generation
([21], [20] and [10]), with very few focusing on unit testing [3]. For module testing,
the most meaningful and recent work is the one proposed by Butler et al. in [20],
in which they present an approach for test case generation based on model based
formal notations (such as B). The proposed approach distinguishes itself from
the others for its solution for scenarios with non-deterministic behavior and for
its tool support.

Work concerning unit tests is available ([3], [4], [23], [11] and [6]) to specify
or generate tests from other formal notations. However, it not always uses very
clear testing criteria. This is probably due to the fact that traditional test liter-
ature concerning testing from specifications usually presents different variations
of the same concepts, depending on the source. Only recently an important con-
solidation work has been carried out in [5] to present different levels of testing
and different coverage criteria in an uniform framework. In our work we tried
to improve this aspect, then, making clear how each software testing concept is
used throughout the approach, using input space partitioning criteria and data
combination criteria that is formally described in [5].

Besides, another problem found in related work – not only for B specifica-
tions but also for other formal notations – is the lack of tool support for the
proposed approaches. Tool support is essential to industry adoption as we con-
cluded after an initial case study for our approach [16]. In terms of tool support
the most developed work is the jmlunit tool [7] which generate tests based on
JML annotations. However, it only generates templates for test methods and
requires the user to provide test data. Concerning B models, we have the tools
introduced in [3], where the authors present the BZ-TT toolset which generates
tests using a boundary values technique from B and Z specifications, and in [20],
where the authors present an extension of the ProB animator to generate module
tests. In both cases, the tools were not available for evaluation. In our research
we developed a tool that automates most of the approach, generating test case
specifications for a given B operation. We also support specifications structured
in multiple components. Most of the available tools require the specification to
be done in a single file, which is not pratical in real projects.

4 Test Generation Approach

The BETA test generation has as goal to define (1) situations to be tested (test
cases) for each unit in a module, and (2) input data that create these situations. It
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defines its test cases based on input space partitioning, using formal information
extracted from B models of the unit under test (or operation under test, using
B terminology). This information, in the form of logical formulas, is first used to
define the partitions, according to some partitioning strategy, and then used to de-
fine combinations of the blocks that compose each of these partitions, according
to some combination pattern. Each formula resulting from this procedure specifies
the input data requirements for a different test case for the unit under test. The
selection of abstract data values that satisfy each test case formula is then carried
out via constraint solving procedures. Expected abstract results for the selected
input data can be obtained by referring to the original B model (manually or by
using a B model animator). Concrete input values and expected results can be de-
rived from the abstract ones by applying the inverse of the mapping from abstract
data to their implementation (the inverse of the retrieval relation, when available).
The result of the approach is the specification of a set of unit tests for the operation
under test that can be easily coded in the implementation programming language
to obtain concrete test case implementations.

In the following we more precisely describe the proposed test generation ap-
proach. An overview of the approach is presented in Figure 2. The white boxes rep-
resent artifacts that are used or produced during the approach while the gray ones
represent its steps. The approach is automated by the BETA tool from steps 1 to 7
(more information in Section 5), until the generation of the test case specifications.
Steps 8 and 9 must be performed manually to obtain the concrete test cases.

Fig. 2. Test generation approach overview

To illustrate the approach we will generate tests for the substitute operation of
the Player machine we presented in Section 2. The first step is self-explanatory.
For a given B machine, we must apply the approach on each operation we intend
to generate tests for. Currently, we only consider abstract B machines as input
for the whole generation process. Refinements or implementations could also
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be considered to gather extra information on the internals of an operation, but
should not be the main reference for input space partitioning as they may omit
preconditions, for instance. We assume that the given machine was specified and
verified in a separate tool and does not contain specification errors.

4.1 Defining the Input Space and Input Domain

Once the operation to be tested is chosen, we have to identify the variables that
compose the operation’s input space and, as such, may influence its behavior. The
input space of a B operation is composed of its formal parameters and of the ma-
chine state variables listed on its VARIABLES clause. However, the greater the
number of variables in the input space, the greater the risk of combinatorial explo-
sion on the number of test cases. On the other hand, in real problems it is common
to have only a subset of the state variables influencing the behavior of an operation.
For optimization purposes, then, we only consider a subset of the state variables:
the ones mentioned in the operation’s precondition and the ones which are related
to them via invariant clauses, so that the value of onemay represent further restric-
tions on the valid values of the other (a small fixpoint calculation is carried out to
identify this set). Additionally, the body of the operation specification (e.g., condi-
tionals) may also be analyzed to identify other variables in this input space. In our
example, the input space of the substitute operation is composed of the parameters
pp and rr, and of the state variable team.

After the definition of the input space variables for the operation under test
it is necessary to identify restrictions on the values they can assume. These
restrictions are the characteristics of the operation that should be assessed by
the tests. In step 3 we identify these characteristics which are used to establish
the operation’s input domain. Such characteristics are found on precondition and
invariant clauses (and, optionally, conditions from conditional statements used
in the body of the operation, also considered in the current implementation of
BETA). We do not require the B model logical formulas to be in normal form,
as is often the case in related work. However, B logical conditions presented in
invariants, pre-conditions and such, are a conjunction of simpler formulas. In the
BETA approach, a characteristic is then specified by each of these formulas.

In our example, for the substitute operation, we have 6 characteristics to
consider: the main team must be a subset of the squad (team ⊂ PLAY ER),
the main team must have exactly eleven players (card(team) = 11), the player
pp must be a PLAY ER (pp ∈ PLAY ER) and belong to the main team (pp ∈
team), the player rr must belong to the team squad (rr ∈ PLAY ER) but
should not belong to the main team (rr /∈ team). The conjunction of these
clauses results in the following formula that represents the valid input domain
for the operation substitute:

team ⊂ PLAY ER & card(team) = 11 & pp ∈ PLAY ER & pp ∈ team &
rr ∈ PLAY ER & rr /∈ team

In this example each characteristic corresponds to an atom, but we could as well
have more complex, including quantified, formulas.
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4.2 Creating Partitions and Defining Test Case Formulas

In step 4 we create partitions using the domain model constructed on the previ-
ous steps. Each characteristic gives rise to a partition composed of up to 4 blocks
of test data, depending on the formula that defines it and the chosen partition
strategy. The approach currently supports two partition strategies: equivalence
classes and boundary value analysis.

In most of the cases, we generate two blocks for each characteristic: one block
for positive tests, which satisfy the given formula (the block is defined by all
values which satisfy the formula describing the characteristic), and another block
for negative tests, which contain values that disrespect the restriction described
by the formula (the block is defined by all values which satisfy the negation of
the formula describing the characteristic). There are two exceptions to this rule:

– cases in which the formula states that some variable in the input space
accepts values from a range of values, also called interval (e.g., xx : 10..25 ).
In these cases, if we are using equivalence classes to partition, the partition
is composed of three blocks: one block for values inside the interval, one
block for values preceding the interval and one block for values following
the interval. In cases where the boundary value analysis technique is chosen,
the proposal is to cover it with four values, corresponding to the two valid
limits of the range and its two invalid limits (immediately below and above
the range). This can correspond to four blocks: one block containing the
values below the limit, one block containing the values above the limit, and
two blocks for the valid range, where each one contains one of the valid
limits. An example of a pair of blocks satisfying this criterium is to have one
singleton with the inferior limit of the range and the other block containing
the rest of the range.

– cases in which the negation of the formula corresponds to situations for which
we are not interested in generating test cases. In this case, the characteristics
correspond to a trivial, one block, partition. Our approach considers 2 situ-
ations to be “not-interesting” for test generation: (1) to give value of a given
type to a parameter or variable of a different type (usually corresponds to a
compilation error); and (2) to have an invalid value (a value that does not
satisfy the invariant) for a state variable at the operation input, meaning
that the system was already in an invalid state before the execution of the
operation under test. Although this is important for security analysis, when
we may be interested in security breaches provoked by attackers, and will
be considered in future work, it is not so for the basic testing schema that
we propose here. This means that the input domain model may ignore the
negation of typing and invariant characteristics, generating trivial partitions
for them.

In our substitute operation example, the partitions are then the ones presented
on Table 1.
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Table 1. Characteristics and blocks for the substitute operation

Characteristic Block 1 Block 2

team ⊂ PLAY ER team ⊂ PLAY ER -

card(team) = 11 card(team) = 11 -

pp ∈ PLAY ER pp ∈ PLAY ER -

pp ∈ team pp ∈ team pp /∈ team

rr ∈ PLAY ER rr ∈ PLAY ER -

rr /∈ team rr /∈ team rr ∈ team

After the definition of the blocks, we have to choose which of these blocks
we will use on our test cases. The first thought might be to test all possible
combinations of blocks. Unfortunately, due to high number of blocks created,
to test all possible combinations of blocks is usually impractical. Therefore, we
need ways to choose more meaningful combinations of blocks; for this, we use
test data combination criteria.

Our approach currently supports three combination criteria:

– All-combinations : all combinations of blocks from all characteristics must be
tested. As we said, this criteria is usually impractical to perform, but we still
give the test engineer the option to use it if needed;

– Each-choice: one value from each block for each characteristic must be
present in at least one test case. This criteria is based on the classical con-
cept of equivalence class partitioning, which requires that every block must
be used in a test case of our test set;

– Pairwise: one value of each block for each characteristic must be combined
to one value of all other blocks for each other characteristic. The algorithm
we used for this criteria was the In-Parameter-Order Pairwise, presented in
[25].

As a result of the combination of blocks using one of these criteria, we will have a
set of formulas to test sub-domains of the operation. Each formula is a conjunc-
tion of the formulas describing a set of blocks, representing a (possibly empty)
portion of the input domain, and corresponds to a test case to be executed. In
our example, we obtain the following combinations for the Each-choice criterium:

1. pp ∈ PLAY ER & card(team) = 11 & pp ∈ team & rr /∈ team &
rr ∈ PLAY ER & team ⊂ PLAY ER

2. pp ∈ PLAY ER & card(team) = 11 & pp /∈ team & rr ∈ team &
rr ∈ PLAY ER & team ⊂ PLAY ER

And the following for the Pairwise or All-combinations criteria, which, in this
case, give rise to the same set of test cases:

1. pp ∈ PLAY ER & pp /∈ team & team ⊂ PLAY ER & rr /∈ team &
rr ∈ PLAY ER & card(team) = 11
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2. pp ∈ PLAY ER & pp /∈ team & team ⊂ PLAY ER & rr ∈ team &
rr ∈ PLAY ER & card(team) = 11

3. pp ∈ PLAY ER & pp ∈ team & team ⊂ PLAY ER & rr ∈ team &
rr ∈ PLAY ER & card(team) = 11

4. pp ∈ PLAY ER & pp ∈ team & team ⊂ PLAY ER & rr /∈ team &
rr ∈ PLAY ER & card(team) = 11

In order to obtain test input data for our test cases, we need to find values for
each variable (and parameter) in the operation’s input space that satisfy the
test case input specification formula. If no such values exist, the specified test
case is unfeasible. If different combinations of values satisfy the formula, any of
them is selectable. The classical tool to verify this is a constraint solver. Because
we are already dealing with B specifications, our implementation uses the ProB
animator as constraint solver, and to do it, we have to use a small trick: in step
6 we create an auxiliary B machine that is animated to generate test data for
the specified test cases.

This auxiliary machine contains one operation for each test case. The input
space variables (state variables and parameters of the operation under test) are
declared to be parameters of the test case operation and the test case input
data description formula (each combination obtained in the previous step) is
defined to be its precondition. The animator then uses constraint solving to
identify values that satisfy the precondition. These values are then guaranteed
to exercise the conjunction of blocks which should be tested in that specific test
case. In Figure 3 we present an example of auxiliary machine to generate test
data.

4.3 Creating Test Case Specifications

In step 7 we animate the auxiliary test machine presented in Figure 3 to obtain
input data for our test cases. For the substitute operation, using the Each-choice
combination criteria, the auxiliary machine may generate the following input
data, where PLAYERi, i : 1..12 are the values created by ProB to populate the
abstract set PLAYER for animation purposes:

1. In: pp=PLAYER1, rr=PLAYER12, team={PLAYER1, PLAYER2, ...,
PLAYER11};

2. In: pp=PLAYER12, rr=PLAYER1, team={PLAYER1, PLAYER2, ...,
PLAYER11};

In step 8 we use this data to create test case specifications. An example of
test case specification generated by the tool is presented in Figure 4. Before
each test case the document presents the test formula that originated it (lines
3-10). With this information, the user knows to which situation the test case
corresponds. This may be useful for debugging, when the test case reveals an
error, selecting test cases for execution, combining the generated test cases with
others, completing them, etc. The test case then specifies the desired input state
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Fig. 3. Auxiliary test machine for substitute

(line 12). The state variables which are not on the operation’s identified input
space can assume any valid values in each test case and do not need to have their
values specified. For instance, any value that they assume after initialization
of the component is acceptable. And because of the fixpoint calculation done
during the identification of the input space, we can be sure that the values of
the variables of the input space are not influenced by the ones outside it. From
the specified input state, the operation under test should be executed with test
value parameters (line 13). The oracle values (lines 14-17) must be calculated
manually by the test engineer or using the approach suggested in the next section.

4.4 Calculating Oracle Values and Implementing Concrete Test
Cases

To complete our test cases we need to calculate the oracle values, in step 9, for
each test operation. The oracle generated in this step aims to verify if, for the
given input data, the results obtained after the execution of the operation under
test are in accordance with its specification.

From this step on, the approach is not yet integrated on the BETA tool,
but the calculation of positive test case oracles can easily be obtained from a
specification animator such as ProB, at least when the operation specification is
deterministic. Given some input data for an operation under test, the animator
calculates the expected results through the calculus of post-conditions. The non-
deterministic case requires some extra work to provide the description of the set
of acceptable return values, but this is not a major problem. In the future, the
BETA tool can be improved to generate oracle values for positive test cases
automatically.

Negative tests, on the other hand, violate the operation’s preconditions and
this means that the behavior of the operation is not specified for them, at
least, not in the formal model (this is the standard use of the pre-post condi-
tion, contract-based, specification paradigm). The criteria used by the oracle to
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Fig. 4. Example of test specification for the substitute operation

evaluate the results must be manually defined by the test engineer, according to
some criteria (e.g. safety criteria) not included in the model.

Using an Animator to Calculate (Deterministic) Expected Values for
Positive Test Cases. To use an animator to calculate the oracle values we
need to animate the operation under test with the input data corresponding
to each test case. For the presented test case specification in Figure 4 for the
substitute operation, the steps are the following:

1. Set the team variable to its input state value. To do this we call the operation
set team passing as a parameter the required value for the team variable:
set team({PLAYER1, ..., PLAYER10, PLAYER11});

2. Animate the operation under test using the parameter test data we obtained
previously: substitute(rr=PLAYER12, pp=PLAYER1);

3. Verify the new state of the machine (and/or operation outputs). In our test
case the expected test result is the value for the team variable to be changed
to team = {PLAYER2, ..., PLAYER11, PLAYER12}

The ProB tool can also be used (and we recommend it) to perform this pro-
cess, though other animation tools could be used as well. Once the oracle values
are filled on the test specification, the test engineer can implement the concrete
test cases. Figure 5 presents an example of concrete test that was implemented
based on the test case specification presented in Figure 4 and on an implemen-
tation using a java implementation of sets, and the abstract set PLAYER was
implemented by integer numbers, with the mapping from PLAY ERi to i.
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Fig. 5. Example of concrete test implementation

5 The BETA Tool

To automate part of the approach, we developed the BETA tool. This tool au-
tomates the presented approach from steps 1 to 8, generating unit test specifica-
tions for the operation under test, such as the one presented in Figure 4. BETA
is free and open-source. More information on the tool and links for download
are available on: http://www.forall.ufrn.br/beta.

In Figure 6 we have an overview of the BETA architecture. The tool receives as
input an abstract B machine (a) and passes it thought a parser (b) which checks
if the specification is syntactically correct. If it is in fact correct, the parser
outputs the specification’s syntactic tree (c). As parser we used the BParser
which is the same one used on the ProB tool [14].

The generated syntactic tree is then used by the partitioner module (d) to
extract the information needed to implement the approach such as: machine
operations, states variables, operation parameters, invariant and precondition
clauses, and conditional statements. This information is then used by the par-
titioner module to generate blocks (e) of data based on characteristics from the
input domain of the operation under test. The generated blocks are then com-
bined into test formulas by the combinator module (f) using the chosen test data
combination criteria (All-combinations, Each-choice or Pairwise).

To select input data for each test case, the resulting combination of test formu-
las (g) is passed through a constraint solver. BETA uses the ProB tool command
line interface for this. To prepare the formulas for ProB they are passed to the
machine builder module (h) which creates an auxiliary B machine that contains
one test operation for each test formula generated (i). As result, we have an
auxiliary test machine such as the one presented in Figure 3. The ProB model
checker animator (j) then generates test data for the selected blocks. The data
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Fig. 6. The BETA architecture

generated by ProB is formatted in a file which is read by the specification builder
module (l) to generate unit test specifications (m) for the operation under test.

6 Case Study

We evaluated the approach and the tool through a small case study using B spec-
ifications for FreeRTOS [9]. FreeRTOS 1 is a micro kernel for real time systems
that provides a layer of abstraction between the application being developed and
the hardware, making it easier for applications to access hardware features.

In our case study we generated test case specifications for the Queue module
of FreeRTOS, which is responsible for managing message queues in the system.
In this paper we will present the results for three of its operations: q queueCreate,
q queueDelete and q sendItem. These operations are respectively responsible for
creating a new message queue on the system, deleting a message queue from the
system and sending an item to a given queue. Table 2 presents some information
obtained by the tool on these operations.

All the test cases were generated using equivalence classes partitioning. In
Table 3 we present an overview of the unit tests generated in a run of BETA
for these three operations. The table shows the number of test cases generated
according to the chosen data combination criteria (AC = All Combinations, EC
= Each-choice e PW = Pairwise) .

Not all of the specified test cases are feasible, however. Different reasons may
cause a test case to be unfeasible, but usually, unfeasibility is due to a inter-
dependence among different formulas specifying different blocks which should

1 http://www.freertos.org

http://www.freertos.org
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Table 2. Information about the operations from Queue

Operation Variables Characteristics Blocks Non-trivial Partitions

q queueCreate 2 2 3 1

q queueDelete 10 27 32 5

q sendItem 12 28 34 6

Table 3. Test cases generated according to each combination criteria

Operation AC EC PW

q queueCreate 2 = 21 2 2

q queueDelete 32 = 25 2 7

q sendItem 64 = 26 2 8

indeed not lead to real test cases. For instance, the precondition of an operation
which requires a parameter xx to be member of a set yy and yy to be non-empty,
may lead to a negative test combination containing xx : yy & yy = {}, which is
clearly unsatisfiable. Then, there are two possibilities: either no other combina-
tion would lead to a satisfiable formula, such as in this case, and 100% coverage
is not achievable, or extra tests can be added to cover specific situations (test
requisites) which were not covered by automatic generation.

One other reason for not obtaining test input values in some cases is not
intrinsic of the problem, but related to the ProB behavior. Considering the
q queueDelete operation, a problem we could find in some of the test formulas
generated to q queueDelete was the negation of a clause stating that the queue
to be deleted should be an active queue (pxQueue ∈ queues), when the orig-
inal specification did not contain the typing clause for pxQueue (pxQueue ∈
QUEUE). The constraint solver can use pxQueue ∈ queues to infer the type
of pxQueue but from the negated clause the constraint solver cannot infer the
type of pxQueue and, as consequence, is not able to animate these particular test
formulas. One simple solution to increase the number of automatically defined
input data in this case is to enforce explicit typing (pxQueue ∈ QUEUE), as it
is already done in some B tools. Note that, as we are not considering negation
of typing clauses, this extra information corresponds to a trivial partition and
has no influence on the generated combinations.

Finally, the combination of multiple negative test blocks more often results
in unfeasible scenarios. A different combination approach could be to only use
one negative block per test formula, as it is recommended in classic equivalence
partitioning methods. Besides the reduction of unfeasible scenarios, this could
also make it easier to evaluate the results of the negative tests.

7 Discussions and Future Work

In this paper we presented an approach to generate unit test specifications from
B machine specifications. The approach uses restrictions specified on these ma-
chines in the form of invariants, preconditions and conditional statements to
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create partitions for an operation input space and then combine these parti-
tions using test data combination criteria to generate test cases. The approach
is supported by a tool that is capable of generating part of the test specifications
automatically. We also evaluated the approach through a small case study using
B specifications for the FreeRTOS micro kernel.

There is still much room for improvement of the approach and the tool. There
are many open topics in the theme of generating tests from formal specifications
such as the generation of test oracles, the relation between abstract a concrete
test data, problems concerning testing operations with non-deterministic behav-
ior among others.

As further work we plan to automate the process of oracle generation so the
whole test generation process can be completely automatic. Besides, we plan
to extend the approach to generate test cases for other levels of testing, such
as integration and system testing. We intend to develop a strategy to generate
test cases for the system level using Event-B [2] specifications. These tests could
complement the unit tests already generated with tests that are concerned with
a higher level of abstraction.

Acknowledgements. The authors would like to thank the anonymous review-
ers whose comments helped to improve the quality of this paper.
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Abstract. SCR is a formal requirements language and method designed
to detect and correct errors during the requirements phase. In this paper
we start with an SCR specification, translate it into a CSP model (par-
ticularly the CSP# variant) and then apply LTL model checking on the
CSP# specification to generate test vectors as counter-examples. Before
the actual test vector generation, our strategy supports the verification
of properties like completeness and determinism of the model; this is one
of the advantages of using a process algebra for an intermediate model
representation. Our strategy has been assessed by considering typical
system requirements of the Aviation Industry. We compared the test
vectors generated by our strategy with test vectors written manually by
specialists. With respect to the examples used, our strategy has proven
to be feasible and was able to generate the same test vectors.

Keywords: CSP, Process Algebra, SCR, LTL, Generation, Test Vector.

1 Introduction

During the last fifty years, the industry has seen a significant increase of embed-
ded HW-SW components in critical systems. A report from NASA [15] highlights
that, from 1960 to 2000, the amount of functionalities provided to military air-
crafts by embedded software has grown from 8% to 80%. This scenario is not a
privilege of the Aviation Industry. The Automobile Industry, for instance, has
become even more dependent on embedded components.

Clearly, this trend increases software size and complexity, and impacts specif-
ically critical systems, as well as its safety and reliability. Currently, many re-
searches are focusing on how to achieve the safety and reliability levels required
for these systems. Some approaches to treat the problem are based on formal
verification [4, 10], whereas others rely on Model-Based Testing (MBT) tech-
niques [14, 5]. To avoid inconsistent and incomplete requirements, regardless of
the adopted approach, most works use a (semi-)formal language as input, for
example: UML2 (Unified Modeling Language) [14], ITML (IMA Test Modeling
Language) [5], Lustre [1] and SCR (Software Cost Reduction) [7].
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Particularly, SCR was designed to detect and correct errors during the re-
quirements phase. SCR-based tools, like T-VEC1 and SCR Toolset2, can for-
mally evaluate properties of the system and consequently produce test vectors
when the properties are valid. Internally, these tools rely upon constraint solvers.

In this paper, we propose a strategy for translating SCR specifications into
the CSP process algebra (particularly the CSP# variant[11]). Besides generating
test vectors, our strategy supports the verification of properties like completeness
and determinism of the model, and we can check whether a particular test vector
makes sense with respect to the specification without the need of previously
generating all test vectors.

The contributions of this work are: (1) a translation from SCR specifications
into CSP#, (2) a test vector generation strategy based on Linear Temporal Logic
(LTL) model checking for CSP#, (3) a mechanism for verifying properties like
completeness and determinism of the model, and (4) empirical results on a real
case study provided by our industrial partner Embraer, a Brazilian aerospace
company that produces commercial, military and executive aircraft.

The next section briefly presents background concepts. Section 3 details the
proposed translation strategy. Section 4 describes how test vectors can be au-
tomatically generated from CSP# specifications as well as how other kinds of
analyses can be performed. Section 5 presents evaluation results of our strategy
applied to a real case study provided by Embraer. Section 6 addresses related
work, and finalises the paper with our conclusions and future work.

2 Background Concepts

In what follows we briefly explain basic concepts of CSP# and SCR.

2.1 CSP#

Communicating Sequential Processes (CSP) is a formal language designed to
describe behavioural aspects of systems. The fundamental element of a CSP
specification is a process. For practical purposes, CSP has some machine readable
versions (dialects). The two main dialects of CSP are CSPM , processed by the
FDR tool3, and CSP#, used by the PAT tool4. These formalisms present some
differences. For instance, CSP# provides communication via message passing
as well as shared memory, whereas CSPM provides only message passing. The
tools provide different functionalities as well. FDR is based on process refinement
whereas PAT adds to this the ability to perform LTL on-the-fly model checking.
We chose CSP# and PAT as the main technology to support our proposal. We
have actually developed a similar strategy for CSPM/FDR, but it has not scaled,
as further discussed in the concluding section.

1 www.t-vec.com
2 www.nrl.navy.mil/chacs/5546/scr_toolset/index.php
3 www.fsel.com/fdr2_download.html
4 www.comp.nus.edu.sg/~pat/

www.t-vec.com
www.nrl.navy.mil/chacs/5546/scr_toolset/index.php
www.fsel.com/fdr2_download.html
www.comp.nus.edu.sg/~pat/
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The behaviour of a process is described by the set of events it can communicate
to other processes. An event is considered as a transition that changes the process
behaviour or state. An event is also defined as an atomic operation. To define a
process as a sequence of events, we use the prefix process (ev → P ) , where ev
is an event and P a process. We can use the prefix process to create an infinite
(recursive) process such as P () = a → b → P (). In CSP# events are naturally
atomic, but if we want to make the behaviour of a process (a sequence of events)
atomic, we shall use the atomic{P ()} operator. Two primitive processes are the
one that represents the successful termination (Skip) and the one that stands
for an abnormal termination (Stop), also interpreted as a deadlock.

In CSP#, we are also able to define constants, using the #define opera-
tor, as in #define Off 0. To declare global variables we use the following
syntax (var v = initial value;). As a consequence, v becomes a shared mem-
ory used in communications. When we need to change the value of a global
variable, we shall use a special type of event called data operation (event{v =
new value; v2 = new value2; ...}). All assignments described inside a data op-
eration are performed sequentially and atomically. CSP# also offers a spe-
cial event name tau when we do not need a meaningful name for a particular
event. This is usually used in conjunction with data operations, for instance,
P () = a→ tau{x = 2; } → b→ Skip;.

To define alternating behaviours, we use (external, internal, or conditional)
choice operators. An external choice ([∗]) represents a deterministic choice be-
tween two processes, whereas the internal one (<>) involves a non-deterministic
choice. The conditional (if ) choice operator is similar to the ones of standard
programming languages. A particularity of CSP# is that the evaluation of a
conditional choice is performed by an internal (not visible) event. Thus, there
is another conditional choice operator, named ifa, where the evaluation of the
condition does not create an event. Besides these operators, there is the guard
operator [condition]P , which is a shortcut to ifa(condition){P}else{Stop};.

Two other relevant operators are the sequential and parallel ones. For ex-
ample, the following sequential composition P () = P1();P2(); states that the
behaviour of P is equivalent to the behaviour of P1() followed by the behaviour
of P2, exactly when P1() terminates successfully. Concerning the parallel com-
position, CSP# allows a composition with or without synchronisation between
the processes being composed. In this work we use only the parallel composition
without synchronisation, the interleaving operator (P1|||P2).

From a CSP# specification, the PAT tool can check desirable properties, such
as: (1) deadlock-freedom, (2) deterministic behaviour, (3) divergence-freedom,
(4) successful termination, and (5) if a process satisfies some LTL formulae.

2.2 SCR

SCR is a requirements method created by the U.S. Navy for documenting the
requirements of the U.S. Navy A-7 Aircraft [8]. It was designed to detect and cor-
rect errors during the requirements phase. Currently, SCR is being applied in sev-
eral different control system industries. According to [7], SCR has been applied
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by organisations like Grumman, Bell Laboratories and Lockheed. The largest
applicaton of SCR we currently know is the specification of the C-130J Flight
Program requirements. This produced a source code with more than 250,000
LOC. Nowadays, there are some commercial tools that are able to process SCR
specifications, such as, for instance: T-VEC [3] and the SCR Toolset [7].

In SCR, system requirements are defined in terms of monitored and controlled
variables. Besides that, SCR also allows the use of mode classes, to model system
states, and terms, internal variables declared for reuse purposes. A set of assump-
tions can be made to impose constraints on the variables. It is also possible to
define assertions describing properties, such as security and safety.

The behaviour of the system is described using functions that specify how
changes of the monitored variables, and even controlled ones, affect each con-
trolled variable. In more details, the functions describe conditions (predicates)
that (when satisfied) change a specific variable in a particular way. SCR al-
lows two types of predicates: condition predicate (inside if...f i scope) and event
predicate (inside ev...ve scope). The former is defined considering a single system
state, whereas the latter takes into account the changes that happen between
two states. An SCR event predicate has the form: †(c) WHEN d, where † stands
for @T, @F, @C. Considering that a dashed (′) variable stands for the variable
value in the new state, and the undashed variable its value in the previous state,
the precise meaning of these event predicates are: @T(c) WHEN d = ¬c∧c′∧d,
@F(c) WHEN d = c ∧ ¬c′ ∧ d, and @C(c) WHEN d = c �= c′ ∧ d. If WHENd
is omitted, the meaning is defined not considering the value of d.

For a concrete example, consider Figure 1.1. It is an excerpt from a control
System for Safety Injection in a nuclear power plant. The complete specification
can be seen in [9]. Figure 1.1 shows how the mode class mcPressure evolves
according to changes of mWaterPres, a monitored variable. For example, line
3 states that if mcPressure is TooLow and mWaterPres becomes higher than
or equal to Low, then mcPressure will be Permitted in the next state.

Figure 1.1. SCR Specification Example

1 var mcPressure :=

2 case mcPressure

3 [ ] TooLow ev [ ] @T(mWaterPres >= Low) −> Permitted ve

4 [ ] Permitted

5 ev

6 [ ] @T(mWaterPres >= Permit ) −> High

7 [ ] @T(mWaterPres < Low) −> TooLow

8 ve

9 [ ] High ev [ ] @T(mWaterPres < Permit ) −> Permitted ve

10 e sac

From the SCR proposal, some extensions were introduced. For instance,
WHERE and WHILE, besides WHEN : WHERE, means that d is true only
in the next state and WHILE means that d is true in the previous and next
states. Another important extension is the DUR(p) operator. It represents the
time duration since p became true. In SCR, the system time is represented by
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an implicit integer variable (time), nondecreasing and non-negative. For more
details on SCR see, for instance, [7, 9].

3 Translating SCR Specifications into CSP# Processes

The SCR specification is translated into CSP# processes by the progressive ap-
plication of 8 steps. In the first step, SCR types and constants are translated to
#define clauses. The second step is responsible for creating CSP# variables for
each SCR variable. After that, CSP# processes are created to model the input
scenarios (values the monitored values may assume). The fourth step defines a
CSP# process that models the time passing behaviour. The fifth step defines
other CSP# processes, now for modeling the output scenarios (values the con-
trolled variables, terms and mode classes may assume). The sixth step defines a
loop where input values iteratively evolve modifying the system outputs.

The last two steps are optional and may be executed for optimization pur-
poses: reduce the CSP# model state space by means of data abstraction and
eliminate eventual CSP# variables that are not used. All the steps are detailed
in the following subsections and exemplified also considering the Safety Injection
System (SIS) specification presented in [9]. Currently, the translation is system-
atic and is implemented in a prototype tool, but it is informal; a proven correct
translation is our current focus of investigation.

3.1 Step 1 - Mapping Types and Constants

The SCR enumerations and constants become #define clauses in CSP#. The
SCR boolean types become CSP# int types, where 0 means false, and 1 means
true. The SCR float types must be cast to CSP# int types. As PAT does not
support floating numbers, we first abstract inexact numbers by multiplying all of
them by the same slowest factor 10n that is enough for eliminating the decimal
precision. For instance, 3.2 becomes 32 and 0.5 becomes 5. In this case, n is 1.
All related operations are abstracted as well. Figure 1.2 shows an example.

Figure 1.2. Definition in CSP# of SCR Constants

1 \\ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− SCR −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 type mcPressure : enum in {TooLow , Permitted , High } ;
3 Low=900: i n t e g e r ; Permit=1000 : i n t e g e r ;

4 \\ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSP# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 #de f i n e TooLow 0 ; #d e f i n e Permitted 1 ; #d e f i n e High 2 ;

6 #de f i n e Low 900 ; #d e f i n e Permit 1000 ;

3.2 Step 2 - Mapping SCR Variables

For each monitored or controlled variable, term, and mode class we create two
CSP# variables: one to hold the current state and another to keep the previous
(suffix old) state. The initial values of these variables are obtained directly from
the initial values specified in the SCR specification.
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These current and previous state variables are necessary to support the trans-
lation of @T , @F and @C events. For instance, @T (input1) becomes the predi-
cate input1 == true && input1 old == false. Therefore, the number of CSP#
variables produced by this step doubles the number of SCR variables. Figure 1.3
shows an example.

Figure 1.3. Definition in CSP# of SCR Variables

1 \\ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− SCR −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 mcPressure : type mcPressure , i n i t i a l l y TooLow ;

3 \\ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSP# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 var mcPressure = TooLow ; var mcPressure o ld = TooLow ;

3.3 Step 3 - Modeling Input Possibilities

Let mV i be an SCR monitored variable, such that mV i can assume the values
v 1, ..., v n. We create a process following the template presented in Figure 1.4.

Figure 1.4. Template - Definition in CSP# of Input Possibilities

1 V i ( ) = tau{ mV old = mV; } −>
2 ( ( mV v 1{ mV = v 1 ; } −> Skip ) [ ∗ ]

3 . . . ( mV v n{ mV = v n ; } −> Skip ) ) ;

4 MONITOREDVARIABLES( ) = V 1 ( ) ; . . . ; V n ( ) ;

V i (lines 1–3) models, using external choices, the possible values mV i can as-
sume. Before updating the mV i value, the current value is stored in the old
variable (line 1). We create a process named MONITORED VARIABLES to
represent the assignment possibilities of all monitored variables. As each SCR
monitored variable is independent of each other, with respect to the same time
step, any updating order would produce the same result. We could use the inter-
leaving operator to represent all updating orders, but, for optimization purposes,
we compose the processes sequentially considering some order, which is valid as
any of them would be as well. Figure 1.5 shows a concrete example.

Figure 1.5. Example - Definition in CSP# of Input Possibilities

1 \\ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− SCR −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 yWPres : i n t e g e r in [ 0 , 2 00 0 ] ; mWaterPres : yWPres , i n i t i a l l y 0 ;

3 mBlock , mReset : ySwitch , i n i t i a l l y Off ;

4 \\ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSP# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 WATERPRES( ) = tau{ mWaterPres old = mWaterPres ; } −>
6 ( ( mWaterPres 0{ mWaterPres = 0 ; } −> Skip ) [ ∗ ]

7 . . . (mWaterPres 2000{ mWaterPres = 2000 ; } −> Skip ) ) ;

8 BLOCK() = . . . ; RESET() = . . . ;

9 MONITOREDVARIABLES( ) = WATERPRES( ) ; BLOCK() ; RESET( ) ;
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3.4 Step 4 - Representing Time Passing

A CLOCK process is created to represent the time passing. This is accomplished
by means of a cyclic tick event that updates the current time of the system. To
avoid an infinite CSP# process, a clock upper bound is defined. It represents
the number of cycles the CSP# model for the SCR specification will evolve.
Therefore, when the clock upper bound is reached, the system deadlocks. Figure
1.6 shows the code for an upper bound equal to 5.

Figure 1.6. Definition in CSP# of Time Passing

1 #de f i n e CLOCK UPPERBOUND 5; var c l o ck = 0 ;

2 CLOCK() = i f a ( c l o ck < CLOCK UPPERBOUND ) { t i c k { c l o ck++} −> Skip }
3 e l s e { t ime l im i t −> Stop } ;

3.5 Step 5 - Mapping SCR Functions

Let cV i be an SCR controlled variable, term or mode class, such that cV i
can assume the values v 1, ..., v n when the SCR predicates p 1, ..., p n are satis-
fied, respectively. Then we create a process following the template presented in
Figure 1.7, where cV i COND 1, ..., cV i COND n are conditional expressions
semantically equivalent to p 1, ..., p n.

Figure 1.7. Template - Definition in CSP# of SCR Functions

1 #de f i n e cV i COND 1 p 1 ; . . . #d e f i n e cV i COND n p n ;

2 V i ( ) = V i o ld { cV i o l d = cV i ; } −> (

3 ( [ cV i COND 1 ] V i c o n d i t i o n s a t i s f i e d −>
4 cV i COND 1 v 1{ cV i o l d = cV i ; cV i = v 1 ;} Skip )

5 [ ∗ ] . . .

6 ( [ cV i COND n ] V i c o n d i t i o n s a t i s f i e d −>
7 cV i COND n v n{ cV i o l d = cV i ; cV i = v n ;} Skip )

8 [ ∗ ]

9 ( [ ! cV i COND 1 && . . . && ! cV i COND n ]

10 V i empty cond i t ion −> Skip ) ) ;

11 OUT() = atomic{V 1 ()} | | | . . . | | | atomic{V n ( )} ;

V i (lines 2–7) models, using external choice, the possible values cV i can
assume. However, before updating the cV i value, the current value is stored in
the old variable (line 2). To update the value of cV i to v i, the conditional
expression cV i COND j (equivalent to the SCR predicate p j of cV i) must
be true. This is ensured in this template by guards.

Lines 9–10 models a special case when all defined SCR predicates are false. In
this situation, according to the SCR semantics, the value of the variable remains
unchanged. These lines (9–10) may be removed in the CSP# when analysing
completeness of the specification, as we are going to see in Section 4.

After that, we create a process named OUT to represent the update of all
controlled variables, terms and mode classes. In SCR, the evaluation of a func-
tion is atomic. Therefore, in OUT , each process Vi is atomically performed
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(atomic{V i} clause). Differently from monitored variables, controlled variables,
terms and modes may be dependent of each other. In other words, the update
order is relevant. To model all ordering possibilities, we compose the processes
V i using the interleaving operator. Figure 1.8 shows a concrete example.

An important aspect of this step is the definition of conditional expressions
(c i) semantically equivalent to SCR predicates (p i). For @T,@F,@C events as
well as conditions (without DUR operator) the translation is quite straightfor-
ward. We just need to follow the definition of events and conditions as depicted
in Section 2.2. However, the DUR operator requires special attention.

ConsideringDUR(p i), currently we restrict p i to be of the form (var † value),
where † stands for <,≤, >,≥,=, �=. For each p i we create a variable to store the
time stamp (clock value) when p i becomes true. To do this, we need to comple-
ment the processes defined by Step 3 with respect to this new information. For ex-
ample, consider the following SCR predicate @T (DUR(mWaterPres = 1) = 2).
It represents the exact moment when mWaterPres is equal to 1 for 2 time units.

We create a new variable (mWaterPres eq1 moment) and complement the
CSP# process ofmWaterPres as depicted in Figure 1.9.WhenmWaterPres be-
comes equal to 1,we store the current clock value inmWaterPres eq1 moment. In
any other situation, we reset this variable to -1. However, we still need to consider
the first iteration: ifmWaterPres becomes equal to 1, the current clockwill not be
savedbecause the old value ofmWaterPres is also equal to 1 (recall that the initial
values of the CSP# variables are obtained from the initial values specified in the
SCR specification). Therefore, we also need to define a process to deal with the first
cycle situation (in this case,WATERPRES FIRSTCYCLE ). Based on these con-
siderations, the SCRpredicate previouslymentioned, canbe expressed inCSP#as
mWaterPres eq1 moment ! = −1 && (clock−mWaterPres eq1 moment) ==
2. Figure 1.9 shows the CSP# for this example.

Figure 1.8. Example - Definition in CSP# of SCR Functions

1 \\ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− SCR −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 var mcPressure := . . . ( se e Figure 1 . 1 )

3 var tOverr idden := . . . var c S a f e t y I n j e c t i o n := . . .

4 \\ −−−−−−−−−−−−−−−−−−−−−−−−−−−−− CSP# −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
5 #de f i n e mcPressure COND 1

6 ( mcPressure == TooLow && mWaterPres >= Low && mWaterPres old < Low ) ;

7 . . .

8 #de f i n e mcPressure COND 4

9 ( mcPressure==High && mWaterPres < Permit && mWaterPres old >= Permit ) ;

10 PRESSURE() = tau{ mcPressure o ld = mcPressure ; } −> (

11 ( [ mcPressure COND1 ] p r e s s u r e c o n d i t i o n s a t i s f i e d −>
12 mcPressure COND 1 Permitted{ mcPressure = Permitted ; } −> Skip )

13 [ ∗ ] . . . [ ∗ ]

14 ( [ mcPressure COND4 ] p r e s s u r e c o n d i t i o n s a t i s f i e d −>
15 mcPressure COND 4 Permitted{ mcPressure = Permitted ; } −> Skip )

16 [ ∗ ]

17 ( [ ! mcPressure COND1 && . . . && ! mcPressure COND4 ]

18 p re s su r e empty cond i t i on −> Skip ) ) ;

19 OUT() = atomic{PRESSURE()} | | | . . . | | | atomic{SAFETY INJECTION ( ) } ;
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Figure 1.9. Adaptation in the CSP# Code to Support the SCR DUR Operator

1 WATERPRES( ) = tau{ mWaterPres old = mWaterPres ; } −>
2 ( . . . [ ∗ ] ( mWaterPres 1{ mWaterPres = 1 ; } −>
3 i f a ( mWaterPres old != 1 ) {
4 tau{ mWaterPres eq1 moment = c l o ck ; } −> Skip

5 } ; Skip )

6 [ ∗ ] . . . [ ∗ ] ( mWaterPres 2000{ mWaterPres = 2000 ;

7 mWaterPres eq1 moment = −1; } −> Skip ) ) ;

8 WATERPRESFIRSTCYCLE() = . . .

9 } e l s e i f a ( mWaterPres == 1 ) {
10 tau{ mWaterPres eq1 moment = c l o ck ; } −> Skip } . . .

11 } e l s e i f a ( mWaterPres == 2000 ) {
12 tau{ mWaterPres eq1 moment = −1; } −> Skip } ;
13 MONITORED VARIABLES FIRSTCYCLE() = WATERPRES FIRSTCYCLE() ; . . . ;

3.6 Step 6 - Representing the SCR Loop Behaviour

The formal semantics of SCR is given by a state machine Σ = (S, S0, Em, T ),
where S is the set of states, S0 ⊆ S is the set of initial states, Em is the set
of monitored events and T : Em x S → S is the transition relation. In each
transition, defined by T, only one monitored variable may have its value changed
from one state to the next (One Input Assumption). Thus, when one monitored
variable value changes the system evolves to a new state where the variables
(controlled, terms and mode classes) that depend on this monitored variable are
updated. After that, new changes may occur again.

In this step, we create a process to capture the semantics briefly described in the
previous paragraph. It is important to note that we allow multiple changes of in-
put values, what is not allowed by the SCR semantics. However, multiple changes
of input values are equivalent to a sequence of SCR transitions, where intermedi-
ate values of controlled (and other) variables are not considered relevant. Consider
the following example: a system has two monitored variables (M1 andM2) whose
values shall change simultaneously (same value of T ) from 0 to 1. When this hap-
pens, the system output changes from 0 to 2. In SCR, this behaviour is captured
by three state transitions (Figure 1 - left side). In CSP# we will capture this as a
single transition where intermediate states are discarded (Figure 1 - right side).

Fig. 1. P and Q LTS

Another difference in our case is that we do not allow indefinite changes. As
previously said, to avoid an infinite process, we shall set a clock upper bound
such that, when this is reached, the entire system deadlocks. In SCR this is not
necessary as the system is symbolic modeled and analysed by constraint solvers.
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Figure 1.10 shows the code that is generated in this step. In the first cycle,
the system behaves as MONITORED VARIABLES FIRSTCYCLE due to the
treatment related to the DUR operator, as explained in the previous section.
After that, the time evolves and the system enters in a recursion.

Figure 1.10. Definition in CSP# of System Process to Model SCR Loop Behaviour

1 var f i r s t c y c l e = true ;

2 SYSTEM() = i f a ( ! f i r s t c y c l e ) { MONITORED VARIABLES( )

3 } e l s e { MONITORED VARIABLES FIRSTCYCLE() }
4 ; OUT() ; tau{ f i r s t c y c l e = f a l s e ;} −> CLOCK() ; SYSTEM( ) ;

3.7 Step 7 - Data Abstraction

Data abstraction techniques, for instance the one discussed in [6], may be applied
to reduce the CSP# specification state space. Particularly, we reduce the number
of external choices produced in Step 3 to consider only meaningful values.

For example, if we carefully analyse the SIS specification [9] we notice that
the mWaterPres value range can be split into three classes of equivalence:
mWaterPres < 900, 900 <= mWaterPres < 2000 and mWaterPres = 2000.
Thus, we can simplify the definition of WATERPRES (see Figure 1.5) to the
one presented in Figure 1.11

Figure 1.11. CSP# Optimization due to Data Abstraction

1 WATERPRES( ) = tau{ mWaterPres old = mWaterPres ; } −>
2 ( ( mWaterPres 899{ mWaterPres = 899 ; } −> Skip ) [ ∗ ]

3 ( mWaterPres 900{ mWaterPres = 900 ; } −> Skip ) [ ∗ ]

4 ( mWaterPres 1000{ mWaterPres = 1000 ; } −> Skip ) ) ;

3.8 Step 8 - Elimination of Unnecessary Variables

Some of the CSP# old variables declared in Step 2 might eventually not be
used. This happens if the corresponding variable is never used inside an event
predicate (@T,@F,@C). Thus, in this situation, we do not need to store the old
value of this variable.

Considering the SIS example, the variable tOverridden old is not used be-
cause there is no event (@T,@F,@C) with respect to tOverriden. Therefore,
this variable may be removed from the CSP# specification as well as all assign-
ments tOverriden old = tOverridden;.

4 Generating Test Vectors from CSP# Specifications

After creating the SY STEM process we can verify whether it satisfies some de-
sired properties and generate test vectors automatically, supported by a strategy
we propose based on LTL model checking. In the following subsections we focus
on how this verification and generation can be performed.
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4.1 Specification Properties

Specification Completeness. With respect to a clock upper bound with value
n (n > 0), a CSP# specification is complete if and only if for all possible input
values, at least one guard of each process created by Step 5 evaluates to true.

This property ensures that the specification dictates how the controlled vari-
ables, terms and mode classes shall evolve for each possible value of monitored
variables. If this property is false, there is at least one input scenario (valuation
of monitored variables) where the specification does not specify how the output
shall be updated. Thus, this means that the desired reactive behaviour of the
system for this input is undefined.

Theorem 1. Let dlf be a function that verifies if a system S (created in Step 6
of our translation strategy - with a clock upper bound equal to n, and n > 0) is
deadlock free, ce dlf be a function that returns a counter-example of deadlock
freedom using Breadth First Search, a system S is complete if and only if S is not
deadlock free and the last event of the counter-example is time limit. Formally:
¬dlf(S) ∧ tail(ce dlf(S,BFS)) = time limit↔ cmplt(S)

Proof Sketch. Initially, it is necessary to note that there are only two possibili-
ties of reaching a deadlock in S: (1) when the clock upper bound is reached, and
the event time limit occurs before the Stop process, and (2) if all the guards of
at least one process created by Step 5 (for modeling the SCR functions) eval-
uate to false (considering the guard semantics, this is equivalent to Stop). It is
important to notice that the only deadlock introduced by the steps is the one
after the time limit event.

Thus, let the clock upper bound be n (n > 0). For clock equal to 0 (first cycle),
if the system is incomplete, then there is at least one input scenario (valuation
for the monitored variables) that will not satisfy any guard of a process V i
(one of the processes created in the Step 5 for modeling the SCR functions).
In this situation, the process V i deadlocks due to the guard semantics. If V i
deadlocks, then S deadlocks as well. However, in this case, the last performed
event will not be time limit because clock has not reached n. If the system is
complete, then some output will be produced and the time will evolve to 1. If the
system is incomplete, it will deadlock and the trace will not contain time limit
either. If S evolves until time limit is performed, what only happens when clock
is equal to the clock upper bound n, then a deadlock has not happened before.
If so, for all input scenarios previously evaluated, we always had at least one
guard being satisfied. Thus, the system is complete. �

Corollary 1. If S is complete for a clock upper bound equal to n, m ≤ n and
m > 0 then S is complete with respect to m.

Corollary 2. If the guard [ !cV i COND 1 && ... && !cV i COND n ] is con-
sidered then S is always complete.

Corollary 1 is a consequence of the inductive proof previously presented. Con-
cerning Corollary 2, this happens because always one guard will be satisfied.
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Briefly speaking: cV i COND 1 ‖ ... ‖ cV i COND n ‖ ( !cV i COND 1 && ...
&& !cV i COND n ) is always true.

If we are modeling a system whose requirements must define the output for
all combinations of input values, we should remove this guard. In this case, due
to Corollary 2, the system is not necessarily complete. However, if we consider
the value of controlled and terms variables, as well as mode classes, shall remain
unchanged when a combination of input values (not covered by the system re-
quirements) are provided, we should maintain the guard. In this last case, due
to Corollary 2, the system will always be complete.

Specification Determinism. With respect to a clock upper bound equal to n
(n > 0), a CSP# specification is deterministic if and only if for all possible input
values, nomore than one guard of each process created by Step 5 evaluates to true.

This property ensures that, for all input scenarios, nomore than one output pos-
sibility is expected.Toverify thispropertyweuse thedeterminismassertionofPAT.
If we have a nondeterministic CSP#model, there is at least one input scenario that
will satisfy at least two guards of a process V i (one of the processes created in the
Step5). In this situation, theLTSproducedto theCSP#modelwill haveat least two
events with the same name (V i condition satisfied) leading to different states.
Considering the CSP semantics, this characterizes a non-deterministic behaviour.

An interesting property, a consequence of the Theorem 1 and the specification
determinism definition, is that if a SYSTEM is complete and deterministic, then
for all input scenarios exactly one guard of the processes created by Step 5
evaluates to true.

4.2 Generating Test Vectors

In this work, a test vector (TV ) is defined as a non-empty sequence of mappings,
as follows: < in 1 = iv 1 1, ..., in n = iv 1 n → out 1 = ov 1 1, ..., out m =
ov 1 m, ..., in 1 = iv k 1, ..., in n = iv k n → out 1 = ov k 1, ..., out m =
ov k m >, where in and out are prefixes for input and output variables, iv i j
stands for the ith value of input variable in j, and ov i j stands for the ith value
of output variable out j.

Each mapping of TV associates a tuple of the values of monitored variables to
a corresponding tuple of the values of controlled variables. If the scenario we want
to test implies in time passing, the TV will have more than one element, and we
assume a tick has occurred (the time has evolved in one unit) between them. We
do not consider the values of mode classes and terms in the test vector because
we assume them as internal, and non-observable, elements of the system. For
example, considering Figure 1, we could have the following test vector: <M1=0,
M2=0, Out=0>.

Consider a controlled variable cV ar, in the context of a CSP# process with
n guards. If we want to generate test vectors for cV ar we shall find out all
value combinations for the inputs that will make each ith guard evaluate to true.
We can generate these value combinations using Linear Temporal Logic (LTL)
formulae. The idea is to check whether SYSTEM never satisfies the ith condition;
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if this is false (the ith condition can be satisfied by some value combination for
the inputs), then PAT will return a counter-example (say ce 1).

#assert SYSTEM |= !(<> output1_i-th_condition); // false
#define ce_1 (input_1=v_1_1 && ... && input_n=v_n_1 && cVar=v_1 );

The input values can be inferred by the name of the events performed in ce 1. If
we want to find another counter example, we should repeat the previous check,
but stating that SY STEM will never satisfy the ith condition in a situation
different from the one described by ce 1.

#assert SYSTEM |= !(<> (output1_i-th_condition && !ce_1) ); // false
#define ce_2 (input_1=v_1_2 && ... && input_n=v_n_2 && cVar=v_1 );

This idea can be repeated incrementally. When SYSTEM satisfies the predicate,
then we will have generated all scenarios that satisfy the ith condition of cV ar
with respect to the value defined to the clock upper bound.

Example. To illustrate the approach to automatic generation of test vectors,
consider the Safety Injection System previously discussed. Test vectors for this
system can be generated in the following manner:

=> First assertion for the first condition of cSafety_Injection
#assert SYSTEM |= !(<> cSafety_Injection_COND1_Off );

=> Counter example produced by PAT using BFS
<init -> tau -> pressure_empty_condition -> overriden_empty_condition ->
safety_injection_condition_satisfied -> cSafety_Injection_COND2_On -> tau -> tick -> tau ->
mWaterPres_899 -> tau -> mBlock_On -> tau -> mReset_Off -> overriden_condition_satisfied ->
tOverridden_COND1_true -> safety_injection_condition_satisfied -> cSafety_Injection_COND1_Off>

=> Test vector defined by the previous counter example
TV_1 = < (mWaterPres=0, mBlock=Off, mReset=Off -> cSafety_Injection=On),

(mWaterPres=899, mBlock=On, mReset=Off -> cSfety_Injection=Off) >

=> State after the execution of TV1
#define cond1_state1 ( mWaterPres==899 && mBlock==On && mReset==Off &&

mcPressure==TooLow && tOverridden==1 && cSafety_Injection==Off );

=> Second assertion for the first condition of cSafety_Injection
#assert SYSTEM |= !(<> ( cSafety_Injection_COND1_Off && !cond1_state1 ) );

... and so on!

Based on each automatically generated test vector (TVi), the behaviour of Sys-
tem Under Test (SUT) may be verified. The collection of the generated test
vectors forms the test suite to be exercised against the SUT.

5 Empirical Analyses

In this section, we evaluate our strategy for generating test vectors focusing on
two aspects: (1) the time required to generate test vectors, and (2) comparing
the number of automatically generated test vectors with those created manually
by domain specialists. As examples of specifications, we considered two typical
aeronautical functions provided by our industrial partner (Embraer).
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The first function (Priority Command) decides whether the pilot or the copilot
will have priority in controlling the airplane side stick. The decision is based
on: (i) if some side stick is not on the neutral position, (ii) if some side stick
priority button has been pressed, and (iii) who pressed the priority button first.
The second function (Fade In/Out) is responsible for linearly incrementing and
decrementing a system output based on variations of two inputs.

Table 1 summarizes the empirical results. The first function was described by
8 system requirements. We created an SCR specification of 34 lines of code from
these requirements. Running a prototype tool that implements the steps described
in Section 3, we obtained a CSP# specification with 81 lines of code composed
by 11 global variables. Domain specialists created 17 test vectors manually. Us-
ing the strategy described in Section 4, we were able to automatically generate 20
test vectors, containing the 17 test vectors produced by the specialists. Our gener-
ation strategy took only 6 seconds for generating them. The second line of Table 1
corresponds to a similar analysis performed on the second aeronautical function.

Table 1. Results for the Application of our Test Vector Generation Strategy

Spec #Req SCR LOC CSP# LOC CSP# Var. #Man. #Aut. % Time

Priority Cmd. 8 34 81 11 17 >17 100% 6s

Fade In/Out 5 33 60 9 12 12 100% 4s

We also evaluated our strategy for verifying properties of the specification. As
a practical result, we identified that the original description of the aeronautical
functions presented situations of nondeterminism and incompleteness. When we
applied the verifications (deadlock-freedom and determinism assertion) we were
able to identify these two problems: the Priority function did not specify who
should gain priority when both priority buttons are pressed simultaneously (this
led to a deadlock in the CSP# output function as we did not consider the
clause produced by Step 5), and the Fade In/Out function had a scenario where
two different outputs could be produced for the same inputs (this led to a non-
determinism as two guards of the CSP# output function were evaluated to true).

Despite the promising results, these empirical analyses have some threats to va-
lidity. The most relevant ones are: (1) threat to External Validity - we have just
analysed two examples of one specific Domain, and (2) threat to Conclusion Valid-
ity - we do not have a proof of soundness for our translation from SCR to CSP#.

Concerning the first threat, we plan to perform more case studies for other
examples of different domains. Regarding the second threat, we are currently
working on the formalisation of the translation. However, the empirical analyses
give some evidence that the generated CSP# specifications are meaningful and
capture the semantics of the system requirements and of the SCR specification,
as, from them, our generation strategy was able to produce only relevant test
vectors: most of them coincided with those that have been written by the do-
main specialists, and the additional ones were also considered relevant by them
(although they test conditions already verified by other vectors).
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6 Conclusions

This paper presented a strategy based on the process algebra CSP (particularly
the CSP# variation) for generating test vectors from high-level specifications
written in SCR. This strategy relies on the application of 8 translation steps.
Based on the CSP# model, using LTL-based model checking, test vectors are
automatically generated. Moreover, the CSP# model is also suitable to perform
some analysis with respect to specification completeness and determinism.

The proposed strategy was evaluated in the context of two typical functions
of the aeronautical domain. The results are promising as the strategy was able
to generate the same vectors that were manually written by domain special-
ists. Besides that, the strategy also identified specification problems concerning
completeness and determinism.

The generation of test vectors is a well known problem and has been studied
for many years. For instance, the work reported in [2] uses symbolic execution
and model checking to produce test vectors for C programs; and the work [13]
uses genetic algorithms for generating test vectors. Despite the use of different
techniques, these works are different from the strategy proposed here because
they assume as input a concrete specification (an implementation in some pro-
gramming language), and time aspects are not considered.

SCR has been used for years to generate test vectors [3, 7–9] from high-
level specifications with time aspects. These works apply constraint solvers to
generate test vectors. They also allow verifying specification properties like the
ones described in Section 4.

Our work can be regarded as an alternative technique, which uses process
algebra instead of solvers, for generating test vectors. The advantage we foresee
relies on particular properties of process algebras. For instance, using process
refinement we may be able to compare if an SCR specification is a refinement
of another SCR specification. Thus, we can combine model checking and testing
in a uniform framework. We can also explore compositional testing and analysis
by benefitting from the rich repertoire of CSP operators. However, probably this
strategy will be slower than the usage of constraint solver.

Initially, we tried to use FDR. However, the CSPM way of modeling shared
memory led to larger state machines. Thus, it took an unfeasible time to per-
form deadlock and determinism assertions. When we used PAT we obtained
smaller state machines, and the time required for analysing system properties
and generating test vectors was considerably small.

There are some studies that already used process algebras to generate tests,
such as, for example [12]. However, these works generate test procedures and
not test vectors in the style presented here. Also, the generation strategy in [12]
is based on refinement checking, whereas we have based our approach on LTL
model checking, which seems to be more potentially scalable for the kind of
analysis involved in test generation. Therefore, to our knowledge, our strategy is
innovative concerning the usage of a process algebra for generating test vectors
from high-level descriptions (in SCR) of systems.
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We foresee many interesting future works: formalise the steps of our transla-
tion strategy from SCR to CSP#, which is our current focus of investigation;
investigate the strategy concerning properties of composition, coverage and
soundness of the generated test cases; and apply the strategy to other prob-
lems and domains, exploring more elaborate abstraction techniques.

Acknowledgments. This work was partially supported by the National Insti-
tute of Science and Technology for Software Engineering (INES5), funded by
CNPq and FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08, by CNPq
grant 476821/2011-8 and by the Brazilian Space Agency (UNIESPACO 2009).

References

1. Bergerand, J.L.: Lustre, un Langage Déclaratif pour le Temps Réel. Ph.D. thesis,
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Abstract. Essential characteristics of the behavior of a system may be described
by properties. These descriptions must be precise and unambiguous to enable
verification through (semi-)automated tools. There are many appropriate mathe-
matical languages for writing system requirements, but they are often difficult to
be applied by user without a good mathematical background. Patterns for prop-
erty specifications capture recurring solutions for common problems, simplifying
this task. This paper presents specification patterns for properties over reachable
states of graph grammars, that is, properties of complex graph structures. This
proposal may be used to aid the verification of systems where states are repre-
sented as graphs.

1 Introduction

During the past two decades, various case studies and industrial applications [1, 2] have
been confirming the significance of the use of formal methods to improve the quality
of both hardware and software designs. The description of a system by a formal spec-
ification language has shown to provide a solid foundation to guide later development
activities and obtain, through verification, a high confidence that the system satisfies its
requirements. Well-formed specifications, validated with respect to critical properties,
have supplied a basis for generating correct and efficient source code.

Nevertheless, the employment of such methods is far from trivial: it typically re-
quires some mathematical expertise. Despite a significant number of successful stories,
the software engineering community has not been convinced to widely use formal ap-
proaches on a large scale [3]. The most cited reasons for not using formal methods in
practice are the extension of cycle development, the need for extensive personnel train-
ing, the difficulties in finding suitable abstractions and the mathematical knowledge
required. Several improvements are needed to turn the use of these methods and their
support tools into a common practice in software development process.

One of the main advantages of the use of formal descriptions of systems is the pos-
sibility to use analysis methods to guarantee that the system fulfills its requirements.
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Independently of the verification technique chosen to be applied, a description of both
the system and its desired properties in some formal specification language is needed.
The level of maturity and experience required to write these specifications is one of the
first obstacles to the adoption of such techniques. This paper provides a contribution
towards making the specification of properties easier.

Graph grammars [4, 5] are appealing as specification formalism because they are for-
mal and based on simple, but powerful, concepts to describe behavior. At the same time
they also have a nice graphical layout that helps even non-theoreticians to understand
a specification. The basic idea of this formalism is to model the states of a system as
graphs and describe the possible state changes as (graph) rules The operational behavior
of the system is expressed via applications of these rules to graphs depicting the current
states of the system. Graph grammars have been used in a variety of applications [6]. In
previous work [7, 8] we proposed a relational approach to graph grammars, providing
an encoding of graphs and rules into relations. This enabled the use of first-order logic
formulas to express properties of reachable states of a graph grammar. Verification of
infinite-state systems specified as graph grammars is possible using our approach using
theorem proving techniques [9]. However, during the development of the case studies,
we noticed that, although the specification of the behavior of the system could be rather
intuitively described with graph grammars, the specification of properties was not triv-
ial. Properties over (reachable) states are properties over graphs, typically composed of
different kinds of edges and vertices. Logical formulas describing graph properties are
not always straightforward to express and understand.

The goal of this paper is to propose patterns for the presentation, codification and
reuse of property specifications. The patterns are based on functions that describe typ-
ical characteristics or elements of graphs (like the set of all edges of some type, the
cardinality of vertices, etc.). These functions make the approach more flexible, enabling
its use in other formalisms that use graphs as states. The pattern provides the first steps
in the direction of helping and simplifying the task of stating precise requirements to be
verified. Besides, it should prevent ambiguities and inaccuracies during the validation
stage. Differently from most existing approaches [10–12] we focus on properties about
reachable states for (infinite-)state verification, where states are described by graphs.
Most of existing patterns for property specification describe properties about traces for
finite-state verification tools. These two approaches are complementary.

The next section brings the presentation of the graph grammar specification language
together with an example. Section 3 defines a standard library of functions to be used in
the specifications. Section 4 describes our taxonomy and explain the patterns. Section
5 concludes and present future works.

2 Graph Grammars

Graph grammars generalize Chomsky grammars from strings to graphs: they specify a
system in terms of states, described by graphs, and state changes, described by rules
having graphs at the left- and right-hand sides.
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2.1 Attributed Graph Grammars

Basically, a graph is composed by a set of vertices and edges connecting them. We
consider directed edges, therefore the source and target vertices of each edge must be
defined. Both edges and vertices can be enriched with additional information, like labels
and attributes. Graphs in which vertices (and edges) can be associated to attributes of
some data type are often called attributed graphs. Attributed graphs generally consist of
two parts: a graph-part and a data-part. We use algebraic specifications to define data
types, and algebras to describe the values that can be used as attributes. We assume that
the reader is familiar with algebraic specifications. Basic concepts will be informally
introduced in the next paragraph.

A signature SIG = (S,OP ) consists of a set S of sorts and a set OP of constants
and operations symbols. Given a set of variablesX (of sorts in S), the set of terms over
SIG is denoted by TOP (X) (this is defined inductively by stating that all variables
and constants are terms, and then all possible applications of operation symbols in OP
to existing terms are also terms). An equation is a pair of terms (t1, t2), and is usu-
ally denoted by t1 = t2. A specification is a pair SPEC = (SIG,Eqns) consisting
of a signature and a set of equations over this signature. An algebra for specification
SPEC, or SPEC-algebra, consists of one set for each sort symbol of SIG, called
carrier set, and one function for each operation symbol of SIG such that all equations
in Eqns are satisfied (satisfaction of one equation is checked by substituting all vari-
ables in the equation by values of corresponding carrier sets and verifying whether the
equality holds, for all possible substitutions). Given two SPEC-algebras, a homomor-
phism between them is a set of functions mapping corresponding carrier sets that are
compatible with all functions of the algebras. The set obtained by the disjoint union of
all carrier sets of algebra A is denoted by U(A).

The following definition describes graphs whose vertices may be attributed by values
from some data type. Relations between attributed graphs are defined by morphisms,
that assure that there is a structural compatibility between the graphs, as well as an
attribution compatibility.

Definition 1 (Attributed graph and attributed graph morphism). A graph G is a
tuple (vertG, edgeG, sourceG, targetG), where vertG is a set of (regular) vertices,
edgeG is a set of edges, and sourceG, targetG : edgeG→ vertG are total functions,
defining source and target of each edges, respectively.

Given a specification SPEC, an attributed graph is a tuple AG = (G,A,AttrG,
valG, elemG), where G is a graph, A is a SPEC-algebra, AttrG is a set, and
valG : AttrG→U(A), elemG : AttrG→vertG are total functions. Vertices belonging
to AttrG are called attribute vertices.

Given two graphsG = (vertG, edgeG, sourceG, targetG) andH = (vertH, edgeH,
sourceH, targetH), a (partial) graph morphism f : G �→ H is a tuple
(f_V : vertG �→ vertH, f_E : edgeG �→ edgeH) such that f commutes with source
and target functions, i.e.

∀e ∈ dom(f_E) · f_V (sourceG(e)) = sourceH(f_E(e)) and
∀e ∈ dom(f_E) · f_V (targetG(e)) = targetH(f_E(e))



86 S.A. da Costa Cavalheiro, L. Foss, and L. Ribeiro

A (partial) attributed graph morphism g between attributed graphsAG andAH is a
triple g = (gGraph, gAlg, gAttr) consisting of a graph morphism gGraph = (g_V, g_E),
an algebra homomorphism gAlg and a partial function gAttr between the corresponding
components that are compatible with the attribution, i.e.

∀a ∈ dom(gAttr)· gAlg(valG(a)) = valH(gAttr(a)) and
g_V (elemG(a)) = elemH(gAttr(a))

An attributed graph morphism g is called total or injective if all components are total
or injective, respectively.

The role of the type graph is to define the types of vertices and edges of instance graphs.
It is thus adequate that the part of the type graph describing data elements consists of
names of types. Therefore, we require that the algebra of the type graph is a final one,
that is, an algebra in which all carrier sets are singletons. In practice, we will use the
name of the corresponding sort as the only element in a carrier set interpreting it. With
respect to the attributes, there may be many different kinds of attribute vertices for the
same vertex, and this is described by the existence of many of such vertices connected
to the same vertex of the type graph. For example, Fig. 1(a) shows a type graph T .
T is composed of: two regular vertices (represented by boxes) Ant and Usr; two at-
tribute vertices (represented by circles) max and cn; and three edges: Acn, Ucn and
Cal. Moreover, in T we can see one type of attribute: natural number. Functions valG
and elem are depicted as arrows, connecting an attribute vertex to an attribute type or
to a regular vertex, resp. For a better visualization, we will use the notation shown in
Fig. 1(b) to represent this type graph. We use different images to represent each regular
vertex, as well as, different arrow shapes to represent each edge. Attributes are repre-
sented by dotted arrows connecting regular vertices to attribute type. The (conditional)
algebraic specification used in this graph is shown in Fig. 2. It defines the types natural
numbers and booleans and some operations that will be used in the graph grammar spec-
ification. Graph G0 (Fig. 1(c)) is typed over T (the type morphism is given implicitly
by using the same graphical notation to mapped items). The morphism on the algebra
component is not shown: the algebra of T will have as carrier sets TNat = {Nat}
and TBool = {Bool}, and the algebra for G0 will have GNat = {0, 1, 2, 3, 4, 5, . . .}
and GBool = {true, false}. The mapping between algebras of G and T associates all
natural numbers to the element Nat and true and false to Bool.

Definition 2 (Attributed type graph, typed attributed graphs). Given a specification
SPEC, an attributed type graph is an attributed graph AT = (T,A,AttrT, valT,
elemT ) in which all carrier sets of A are singletons.

A typed attributed graph is a tuple AGAT = (AG, tAG,AT ), where AG is an
attributed graph, called instance graph, AT is an attributed type graph and tAG :
AG→AT is a total attributed graph morphism called attributed typing morphism.

A typed attributed graph morphism between graphs AGAT and AHAT with at-
tributed type graph AT is an attributed graph morphism g between AG and AH such
that tAG ≥ tAH ◦ g (that is, g may only map between elements of the same type).

Since in the following we will be dealing only with typed attributed graphs, we will
omit the word “typed".
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(a) Attributed type graph T (b) Graphical notation

(c) Attributed graph G0 typed over T

Fig. 1. Type and initial graphs for the mobile system

A rule consists of a left-hand side, describing items that must be present in a state to
enable the rule application and a right-hand side, expressing items that will be present
after the rule application. We will restrict possible attributes in left- and right-hand sides
to be variables, and the possible relations between these variables will be expressed
by equations associated to each rule. When applying a rule, all its equations will be
required to be satisfied by the chosen assignment of values to variables. Moreover, we
require that rules do not collapse vertices or edges and do not delete vertices. Since
here our aim is to find a finite representation of attributed graph grammars, we use just
terms as attributes, that is, we use the term algebra over the signature of the specification
as attribute algebra (in the definition below, we equivalently use the term algebra over
a specification without equations). In such an algebra, each carrier set consists of all
terms that can be constructed using the operations defined for the corresponding sort,
functions just represent the syntactical construction of terms (for example for a term t
and algebra operation opA corresponding to an operator op in the signature, we would
have opA(t) = op(t)). Consequently, all terms are considered to represent different
values in a term algebra, since they are syntactically different. The satisfaction of the
equations will be dealt with in the match construction, in a rule application.

Definition 3 (Attributed rule). Given a specification SPEC = (SIG,Eqns). An
attributed rule with NACs over SPEC with type AT is a triple attRule = (α,X,
ruleEqns), where

– X is a set of variables over the sorts of SPEC;
– α : ALAT �� ARAT is an injective attributed graph morphism over the spec-

ification (SIG,∅), with AL = (L, TOP (X), AttrL, valL, elemL) and AR =
(R, TOP (X), AttrR, valR, elemR), in which α_V : vertL� vertR is a total
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MSys : sorts Bool, Nat
opns eqns

true : → Bool ∀x, y ∈ Nat:
false: → Bool succ(error) = error
0 : → Nat 0 + 1 = succ(0)
error : → Nat succ(x) + 1 = succ(succ(x))
succ(_) : Nat → Nat error + 1 = error
_ + 1 : Nat → Nat 0 - 1 = error
_ - 1 : Nat → Nat succ(x) - 1 = x
_ < _ : Nat × Nat → Bool error - 1 = error

x < 0 = false

x < succ(y) =

⎧⎨
⎩

true if succ(x) = succ(y)
∧ x �= error

x < y if otherwise.
x < error = false

Fig. 2. Specification SPECMSys

function on the set of vertices and the algebra component is the identity on the term
algebra TOP (X);

– ruleEqns is a set of equations using terms of TOP (X);

In last definition we do not require that variables that appear only in the right-hand side
of the rule are involved in equations. The effect of this situation in a rule application is
that a value for the corresponding attribute will be generated non-deterministically.

Rule r5 in Fig. 3 is an example of attributed rule. Variables x and y are used as
attribute values in its left-hand side. There is one equation that restricts the application
of this rule. It states that the rule can only be applied if the max attribute of node Ant1
is less than the cn attribute of the same node. By abuse of notation, we write x < y
instead of x < y =true. To apply this rule, besides finding a match for the graphical
part of the rule, we have to find an assignment of values to variables x and y that satisfies
the equation of the rule. The application of this rule will change both graph- and data-
parts. The effect of the application on the graph-part will be that a node Usr1 will be
created, as well as, an edge connecting Usr1 to Ant1; and the effect of the application
on attributes will be that the value of the cn of Ant1 will be increased of one unit.

An attributed graph grammar with respect to some specification of data types SPEC
is composed of an attributed type graph, an initial graph and a set of rules.

Definition 4 (Attributed Graph Grammar). Given a specification SPEC and a
SPEC-algebraA, a (typed) attributed graph grammar is a tupleAGG = (AT,AG0,
R), such that AT (the type of the grammar) is an attributed type graph over SPEC,
AG0 (the initial graph of the grammar) is an attributed graph typed over AT using
algebra A, and R is a set of rules over SPEC with type AT .

The behavior of a graph grammar system is given by successive applications of the
rules of the grammar to the initial graph. Applications are done by finding matches of
the left-hand sides of rules in the graph that represents the actual state of the system.
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Fig. 3. Mobile System Graph Grammar

Matches of attributed rules must take into account not only the graphical part, but must
assure that all equations of the rule are satisfied by the chosen assignment of values
to the variables. Since the purpose of this paper is to define properties of (attributed)
graphs, we will not present the formal definitions of rule application and semantics of
graph grammars. The reader may find these definitions, for example, in [8].

2.2 Specification of a Mobile System Using Graph Grammars

We describe the use of graph grammars specifying a very simple mobile system. The
system consists of a network of interconnected antennas and mobile users. Each user,
connected to a single antenna, may start/finish a communication with another user. The
user may be switched to another antenna. New antennas and users can be added to the
system at any time. Each antenna has a maximal capacity of simultaneous connections,
which blocks new connection.

Fig. 1(b) shows the type graph T of the system. It describes two types of nodes Ant
(Antenna) and Usr (User), three types of edges Acn (connection between antennas),
Ucn (connection between users and antennas) and Cal (communication between users).
Nodes of type Ant have two attributes max (maximum connection) and cn (number of
connections). The initial graph, illustrated in Fig. 1(c), represents the initial state of
the system. G0 specifies a system with two antennas and two users. Each antenna has
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a different capacity of connections: Ant1 supports up to 10 connections while Ant2
supports up to 7 connections. Both antennas have one connection in the initial state.

The behavior of the system is modeled by the set of rules depicted in Fig. 3. Rule
r1 models the establishment of a communication between users. Rule r2 describes the
introduction of a new antenna into the network. Rule r3 specifies the situation in which
a user is switched to another antenna. Rule r4 expresses the end of communication
between users. The inclusion of new users is depicted by rule r5 and the introduction of
new links between existing antennas is delineated by rule r6.

Examples of properties that are interesting of being verified in the mobile system
are the following: "Users are always connected to antennas", "It is always possible to
make a call into the network", "It is possible to establish a connection between each
pair of antennas" and many others (some are detailed in subsection 4.1). In order to
state these properties in some logical language, graph grammar components, such as
vertices, edges, vertices of type t, edges of type t and reachable vertices must be for-
mally defined to be referred in the property specification. Section 3 details a standard
library of functions that allow the description of these components. Section 4 makes use
of these definitions in the patterns specifications.

3 The Standard Library of Functions

In [9] we defined the translation of graph grammars into Event-B structures, showing
how to perform proofs of properties of graph grammars using theorem proving. The
strategy used to develop proofs is the following. First, we specify the system as a graph
grammar (according to definitions of previous section). Then, the property to be verified
is stated as an invariant (using first-order logic enriched with set theory), indicating that
it must be true for all reachable states of the system. Finally, proofs are developed by
induction: in base case, the property is verified for the initial graph and, at the inductive
step, the property is verified for the graph resulting from the application of each rule of
the grammar to a reachable graph G, considering that the property is valid for G. On
the one hand, the use of this approach requires user interaction during the development
of the proofs, but on the other hand, it allows the verification of systems with huge or
infinite state spaces. During the development of case studies, we noticed the need for
some help to express properties of graphs. We concluded that it would be very helpful to
have a set of pre-defined functions over (typed)graphs to build the formulas representing
graph properties. This is what is presented in this section. Besides helping to express
properties, the library makes the approach more flexible to be used by other formalisms
that also use the notion of graph as state: all it is needed is to describe (or implement)
the functions of the library in the other formalism and one would be able to use the
property patterns to aid the analysis of systems specified in this other formalism.

Tables 1 and 2 present the library functionsL. The library is not complete and should
grow over as new functions are recognized as relevant to express graph properties. Con-
sidering that the properties describe the structure of reachable states (graphs), at the first
moment we define functions that describe common characteristics or typical elements
of graphs. Depending on the description, functions may return a set (as (1) to (15) and
(20) to (21)), a natural number (as (16) to (19)) or a boolean (as (22) to (24)). Many
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functions and sets used in definitions come from the definitions of the previous section.
For instance, function (2) tvert returns the vertices of type t of a typed graph G. It is
defined restricting the elements of typing morphism tG_V for those with image in t.
Any property that states about vertices of a specific type must use such function in its
description. If another formalism should be used instead of graph grammars, one should
describe how to obtain the corresponding sets and functions in the chosen formalism.

Additionally, we use Graph(V ertG,EgdeG) to represent all graphs containing
vertices and edges from V ertG and EdgeG, resp.; analogously for Graph(V ertT,
EgdeT ); TypedGraph(V ertG∪V ertT,EdgeG∪EdgeT ) denotes the set of all typed
graphs whose type graph contains only vertices and edges from V ertT and EdgeT ,
resp., and instance graph contains only vertices and edges from V ertG and EdgeG,
resp; TypedAGraph(V ertG∪V ertT,EdgeG∪EdgeT,A,AttrG∪AttrT ) denotes
the set of all attributed typed graphs whose attributed type graph contains vertices and
edges from V ertT and EdgeT , resp., and attribute vertices from AttrT , instance at-
tributed graph contains vertices and edges from V ertG andEdgeG, resp., and attribute
vertices from AttrG, and A denotes the union of the algebras of G and T . We assume
that V ertG ∩ V ertT = ∅, EdgeG ∩ EdgeT = ∅ and AttrG ∩ AttrT = ∅.

This collection should help the developer not only to state the properties specification
but also in the construction of proofs. The idea is to build later a theory including such
functions together with a series of theorems that may be used to simplify proofs of
properties which involves functions of the standard library. Space limitations prohibit
the proof of well-definedness of each function of the library.

4 Property Patterns

Patterns are developed to capture recurrent solutions to design and coding problems.
According to Dwyer et al. [10], through a pattern system, the specifier can identify sim-
ilar requirements, select patterns that fit to those requirements and instantiate solutions
that incorporate the patterns. A state property specification pattern is a generalized de-
scription of a frequently occurring requirement on the admissible states of a system.
It describes the essential arrangement of some aspect of the states of the system and
provides expression of this arrangement.

Now we define a collection of patterns for state property specifications. Instead of
specifying state properties just as forbidden or desired graphs as frequently done, we
adopt first-order logic formulas to describe them. As emphasized in [13], formulas over
graph structure are more expressive than pattern graphs. We attempt to give a collec-
tion of independent patterns from which a set of interesting specifications about the
states of systems can be constructed. We do not intend to provide the smallest set of
patterns that can generate all useful specifications. We indeed try to specify patterns
which commonly appear as state property specifications and expect that this collection
be expanded, as new property specifications do not match with the existing patterns.

The patterns should assist developers into the process of mapping descriptions of the
states of the system into the formalism, allowing the specification of state properties
without much expertise. To help the user in finding the appropriate pattern for each
situation, we organized the patterns using the taxonomy in Table 3.
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Table 1. Standard Library

Ref. Description Function Definition

(1) Edges of tedg : TypedGraph(V ertG ∪ V ertT,EdgeG ∪ EdgeT ) × EdgeT → 2EdgeG

specific type tedg(G, t) = dom(tG_E � {t}) (� is the range restriction operator)

(2) Vertices of tvert : TypedGraph(V ertG ∪ V ertT,EdgeG ∪EdgeT ) × V ertT → 2V ertG

specific type tvert(G, t) = dom(tG_V � {t})
(3) Pairs of loop ploop : TypedGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT ) × EdgeT×

edges of ×EdgeT → 2EdgeG×EdgeG

specific types ploop(G, t1, t2) = {(e, f) | e 
= f ∧ e ∈ edgeG ∧ f ∈ edgeG ∧
with source ∧ tG_E(e) = t1 ∧ tG_E(f) = t2 ∧
and target in ∧ ∃x[sourceG(e) = x ∧ targetG(e) = x ∧
the same vertex ∧ sourceG(f) = x ∧ targetG(f) = x]}

(4) Edges with edgs : TypedGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT ) × V ertT → 2EdgeG

specific edgs(G, t) = {x|x ∈ edgeG ∧
source ∧ ∃y[sourceG(x) = y ∧ tG_V (y) = t}

(5) Edges with edgt : TypedGraph(V ertG ∪ V ertT,EdgeG ∪ EdgeT ) × V ertT → 2EdgeG

specific edgt(G, t) = {x|x ∈ edgeG ∧
target ∧ ∃y[targetG(x) = y ∧ tG_V (y) = t}

(6) Edges with edgl : TypedGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT ) × V ertT×
specific source ×V ertT → 2EdgeG

and target edgl(G, t1, t2) = {x|x ∈ edgeG ∧
∧ ∃y, z[sourceG(x) = y ∧ targetG(x) = z ∧
∧ tG_V (y) = t1 ∧ tG_V (z) = t2}}

(7) Loop loop : Graph(V ertG,EdgeG) → 2EdgeG

edges loop(G) = {x|x ∈ edgeG ∧
∧ ∃y [sourceG(x) = y ∧ targetG(x) = y]}

(8) Source verto : Graph(V ertG,EdgeG) → 2V ertG

vertices verto(G) = {x |x ∈ vertG ∧ ∃y [y ∈ edgeG ∧ sourceG(y) = x] ∧
∧ �y [y ∈ edgeG ∧ targetG(y) = x]}

(9) Sink verti : Graph(V ertG,EdgeG) → 2V ertG

vertices verti(G) = {x |x ∈ vertG ∧ ∃y [y ∈ edgeG ∧ targetG(y) = x] ∧
∧ �y [y ∈ edgeG ∧ sourceG(y) = x]}

(10) Isolated ivert : Graph(V ertG,EdgeG) → 2V ertG

vertices ivert(G) = {x | x ∈ vertG ∧ �y [y ∈ edgeG ∧
∧ (sourceG(y) = x ∨ targetG(y) = x)]}

(11) Vertices that verts : TypedGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT ) × EdgeT → 2V ertG

are source of verts(G, t) = {x | x ∈ vertG ∧
specific edges ∧ ∃y[y ∈ edge(G) ∧ sourceG(y) = x ∧ tG_E(y) = t]}

(12) Vertices that vertt : TypedGraph(V ertG ∪ V ertT,EdgeG ∪EdgeT ) × EdgeT → 2V ertG

are target of vertt(G, t) = {x | x ∈ vertG ∧
specific edges ∧ ∃y[y ∈ edge(G) ∧ targetG(y) = x ∧ tG_E(y) = t]}

(13) Vertices that rvert : Graph(V ertG,EdgeG) × V ertG → 2V ertG

are reachable rvert(G, v) = {x | [x = v ∧ v ∈ vertG] ∨ ∃y, z [y ∈ rvert(G, v) ∧
from a specific ∧ z ∈ edgeG ∧ sourceG(z) = y ∧ targetG(z) = x]}
vertex

(14) Value of tattr : TypedAGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT, A,AttrG ∪ AttrT )×
specific attributes ×AttrT → 2U(A)

tattr(G, t) = {x | x ∈ U(a) ∧ ∃a [a ∈ attrG∧
∧ tG_attrV (a) = t ∧ valG(a) = x]}

(15) Pairs of vertices tattrv : TypedAGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT, A,AttrG ∪AttrT )×
and values of ×AttrT → 2V ertG×U(A)

specific attributes tattrv(G, t) = {(v, x) | v ∈ vertG ∧ ∃a [a ∈ attrG ∧ elemG(a) = v ∧
∧ tG_attrV (a) = t ∧ valG(a) = x]}
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Table 2. Standard Library (Cont.)

Ref. Description Function Definition

(16) Cardinality cardV : Graph(V ertG,EdgeG) → N
of vertices cardV (G) = �vertG (� is the cardinality operator)

(17) Cardinality cardE : Graph(V ertG,EdgeG) → N
of edges cardE(G) = �edgeG

(18) Cardinality tcardV : TypedGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT ) × V ertT → N
of specific tcardV (G, t) = �(tG_V � {t})
vertices

(19) Cardinality tcardE : TypedGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT ) × EdgeT → N
of specific tcardE(G, t) = �(tG_E � {t})
edges

(20) Transitive closure tranc : TypedGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT ) × EdgeT →
of specific edges → 2V ertG×V ertG

tranc(G, t) = {(x, y) | ∃e[e ∈ edgeG ∧ tG_E(e) = t ∧ sourceG(e) = x ∧
∧ targetG(e) = y] ∨ [(x, z) ∈ tranc(G, t) ∧ (z, y) ∈ tranc(G, t)]

(21) Root vertices root : Graph(V ertG,EdgeG) → 2V ertG

root(G) = {x | x ∈ vertG ∧ �y[y ∈ edgeG ∧ targetG(y) = x] ∧
∧ ∃y[y ∈ edgeG ∧ sourceG(y) = x]}

(22) Ring topology ring : TypedGraph(V ertG ∪ V ertT, EdgeG ∪ EdgeT ) × EdgeT →
→ {True, False}

ring(G, t) = ∀x [x ∈ vertG → (x, x) ∈ tranc(G, t)]∧
∧ ∀e, f, x[e ∈ edgeG ∧ sourceG(e) = x ∧ tG_E(e) = t ∧
∧ f ∈ edgeG ∧ sourceG(f) = x ∧ tG_E(f) = t → e = f ] ∧
∧ ∀x, z [x ∈ vertG ∧ z ∈ vertG → (x, z) ∈ tranc(G, t)]

(23) Tree topology tree : Graph(V ertG,EdgeG) → {True, False}
tree(G) = ∃!x [x ∈ root(G)] ∧

∧ ∀x [x /∈ root(G) → ∃!y[y ∈ edgeG ∧ targetG(y) = x]]∧
∧ �x, y [x ∈ edgeG ∧ sourceG(x) = y ∧ targetG(x) = y] ∧
∧ ∀x, y, z, w [x ∈ edgeG ∧ sourceG(x) = y ∧ targetG(x) = z ∧
∧w ∈ edgeG ∧ sourceG(w) = y ∧ targetG(w) = z → x = w] ∧
∧ ∀x, y [x ∈ vertG ∧ y ∈ root(G) → x ∈ rvert(G, y)]

(24) Star topology star : Graph(V ertG,EdgeG) → {True, False}
star(G) = ∃x [x ∈ vertG ∧ ∀y [(y ∈ vertG ∧ y 
= x) →

→ (∃w [w ∈ edgeG ∧ sourceG(w) = x ∧ targetG(w) = y] ∧
∧ �z [z ∈ vertG ∧ z 
= x ∧ z 
= y ∧ y ∈ rvert(G, z)])]]

We define three levels of hierarchy. The first level differentiates properties that ex-
press functional aspects of the system from properties that specify structural character-
istics of the states. The functional pattern is divided in the second level according to the
kind of information that it describes: the pattern resources deal with relations between
vertices, edges (that do not describe attributes) and their types; the pattern data handle
attribute edges. The structural pattern considers the arrangement between vertices and
edges: in its second level, the topology pattern depicts the physical configuration of the
states, determining how the vertices are connected, while the adjacency pattern treats
the neighboring between vertices, edges and their types. The third level distinguishes,
for each specificity, if the properties occur, do not occur or occur for all items of def-
inite characteristics. This level still discriminates properties that deal with cardinality
and dependence of specific items. In the following, we briefly describe the formulas
of the third level of the taxonomy. Important to notice that each property is always
specifying a characteristic that must hold for all reachable states.

Absence: state formulas specifying the non-occurrence of particular characteristics.
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Table 3. A Pattern Taxonomy

1. Functional
1.1 Resources

1.1.1 Absence
1.1.2 Existence
1.1.3 Universality
1.1.4 Cardinality
1.1.5 Dependence

1.2 Data
1.2.1 Absence
1.2.2 Existence
1.2.3 Universality
1.2.4 Cardinality
1.2.5 Dependence

2. Structural
2.1 Topology

2.1.1 Absence
2.1.2 Existence

2.2 Adjacency
2.2.1 Absence
2.2.2 Existence
2.2.3 Universality
2.2.4 Cardinality
2.2.5 Dependence

Existence: state formulas specifying the occurrence of particular characteristics.
Universality: state formulas specifying characteristics of all vertices or edges (possi-

bly of some specific type).
Cardinality: state formulas specifying characteristics about the number of vertices or

edges (possibly of some specific type).
Dependence: conditional state formulas.

Table 4 depicts the patterns. For Resources, Data and Adjacency, PA describes the
absence pattern, PE the existential pattern, PU the universality pattern, PC the cardi-
nality pattern and PD the dependence pattern. The set S and the binary relation S′ that
can appear in atoms definitions A(y) and A(y1, y2) is what differentiate the patterns.
Table 5 specifies them according to the pattern. Roughly speaking, the functions of the
standard library allowed in each pattern are what effectively characterize the require-
ment. Table 4 also defines the Topology pattern. PAT specifies the absence of topology
pattern and PET the existence of topology pattern.

4.1 Properties Specification for the Mobile System

Considering the mobile system described in subsection 2.2, the pattern system and the
standard library previously presented can assist, for example, in the statement of the
properties detailed in Table 6. The specification of properties can be done according to
the following steps:

SP1 Textual and informal description of the property;
SP2 Identification of the state-graph elements that guarantee the requirement described

in step SP1 and rewrite of the property according to the graph structure;
SP3 Identification of the pattern and the necessary functions in the standard library;
SP4 Formal specification (instantiation) of the property.

These steps will be illustrated by specifying two properties of the mobile system de-
scribed in Section 2.2.
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Table 4. Property Patterns

Property Patterns for Resources, Data and Adjacency

PA : �x1, . . . , xn[P (x1, . . . , xn)]
�x1, . . . , xn[P (x1, . . . , xn) ∧ U(x1, . . . , xn)]

PE : ∃x1, . . . , xn[P (x1, . . . , xn)]
∃x1, . . . , xn[P (x1, . . . , xn) ∧ U(x1, . . . , xn)]

PU : ∀x1, . . . , xn[P (x1, . . . , xn) → Q(x1, . . . , xn)]

PC : (E | card({x | P (x)})) α (E | card({x | P ′(x)})), such that
α ∈ {<,≤, >,≥,=, �=}, and
E is a numeric expression possibly with some free non-negative integer variables or a
value returned by functions (16) to (19) in L.

PD : A(x1, . . . , xn) → B(x1, . . . xn)

considering

P (x1, . . . , xn) := A | A ∧ P (x1, . . . , xn) | A ∨ P (x1, . . . , xn) | ¬P (x1, . . . , xn)
A := A(y) | A(y1, y2) | R(y1, y2)

A(y) := y ∈ S | y /∈ S such that y ∈ {x1, . . . , xn} and S is a set (see Table 5)
A(y1, y2) := y1 �→ y2 ∈ S′ | y1 �→ y2 /∈ S′, such that y1, y2 ∈ {x1, . . . , xn} ∪ C,

where C is a set of constants and S′ is a relation (see Table 5)
R(y1, y2) := E1 α E2, such that

α ∈ {<,≤, >,≥,=, �=}
E1, E2 are boolean or numeric expressions possibly with some
variables or values returned by functions (14) to (19) in L or
the result of card({x | P (x)})

Q(x1, . . . , xn) := P (x1, . . . , xn) | ∃y1, . . . yk.P (y1, . . . yk) | �y1, . . . yk.P (y1, . . . yk) |
| U(x1, . . . , xn)

U(x1, . . . , xn) := ∀y1, . . . , yn[P (y1, . . . , yn) → P ′(y1, . . . , yn)]

A(x1, . . . , xn) := PA | PE | PU | PC

B(x1, . . . , xn) := PA | PE | PU | PC

Property Patterns for Topology

PAT :f(x) ≡ false PET :f(x) ≡ true

such that f is one of the functions (22) to (24) in L
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Table 5. Specification of S and S′ according to the pattern

S may be... S′ may be...

Resources vertG, edgeG tG_V, tG_E, sourceG, targetG
or the sets returned by functions (1), (2),
(4) to (9), (11), (12) or (16) to (19) in L

or the set of ordered pairs returned by
function (3) in L

Data vertG, attrG tG_attr, tG_Alg, valG, elemG
or the set returned by functions (1), (2),
(14) in L

or the set of ordered pairs returned by
function (15) in L

Adjacency vertG, edgeG tG_V, tG_E, sourceG, targetG
or the sets returned by functions (1), (2),
(10) to (13) or (21) in L

or the set of ordered pairs returned by
function (20) in L

Step SP1. Textual and informal description of the property. This step is accomplished
by describing textually the requirements. For instance we want to specify the following
requirements: (P1) "Users are always connected to antennas"; and (P2) "There is no
antenna with more connections than its capacity".

Step SP2. Identification of the state-graph elements that guarantee the requirement de-
scribed in step SP1 and rewrite of the property according to the graph structure. In this
step we have to identify the elements of graph structure that will guarantee the require-
ments. In case of property (P1), a user will be connected to an antenna when the vertex
of type Usr, which models the user, is source of an edge of type Ucn, which models the
connection of a user with an antenna. That is, (P1) must be rewritten as "All vertices of
type Usr are source of edges of type Ucn." For (P2), the value of attribute vertices cn
and max associated to a vertex of type Ant are what determine, respectively, the num-
ber of connections and the capacity of the antenna. Then, it can be rewritten as: "For all
vertices of type Ant , the cn attribute is not great than the max attribute".

Step SP3. Identification of the pattern and the necessary functions in the standard li-
brary. In case of property (P1), we want to establish a requirement that must be true
for all vertices of type Ucn. Functions to be used of L are functions (2) tvert (which
returns vertices of specific type) and (11) verts (which returns vertices that are source
of specific edges). Then, the pattern is the universality of resources (1.1.3). In case of
property (P2), we want to establish a requirement that must be true for all vertices of
type Ant. Functions to be used of L are functions (2) tvert (which returns vertices of
specific type) and (15) tattrv (which returns pairs of vertices and values of specific
attributes). Then, in such case, we are in the pattern universality of data (1.2.3).

Step SP4. Formal specification (instantiation) of the property. Both properties fit on
the pattern PU . For (P1) the antecedent P (x) must select vertices of type Usr and the
consequent Q(x) must guarantee that they are source of edges of type Ucn. Thus, the
instantiated formula must be ∀x [x ∈ tvert(G,Usr) → x ∈ verts(G,Ucn)] . For
(P2) the antecedent P (x) must select vertices of type Ant and the consequent Q(x)
must guarantee that there is no cn attribute that is great than the max attribute. So, the
instantiated formula is ∀x [x ∈ tvert(G,Ant) → ¬∃y, z [(x, y) ∈ tattrv(G,max) ∧
(x, z) ∈ tattrv(G, cn) ∧ z > y]] .
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Table 6. Properties Specification for the Mobile System

Description Property Formula Pattern

It is always possible
to make a call into
the network.

There is an edge of type
Acn.

∃x [x ∈ tedg(G,Acn)] 1.1.2

Users are always
connected to anten-
nas.

All vertices of type Usr
are source of edges of
type Ucn.

∀x [x ∈ tvert(G,Usr) → x ∈
verts(G,Ucn)]

1.1.3

There are at least
two antennas into
the network.

The number of vertices
of type Ant is great or
equal to 2.

card({x|x ∈ tvert(G,Ant)}) ≥ 2 1.1.4

There is no antenna
with more connec-
tions than its capac-
ity.

For all vertex of type
Ant , the cn attribute is
not great than max at-
tribute.

∀x [x ∈ tvert(G,Ant) →
¬∃y, z [(x, y) ∈ tattrv(G,max) ∧
(x, z) ∈ tattrv(G, cn) ∧ z > y]]

1.2.3

There are no dis-
connected users.

There are no isolated
vertices of type Usr.

�x[x ∈ ivert(G)∧x ∈ tvert(G,Usr)] 2.2.1

It is possible to es-
tablish a connection
between each pair
of antennas.

For all pairs of Ant ver-
tices, one is reachable
from another.

∀x, y[x ∈ tvert(G,Ant) ∧ y ∈
tvert(G,Ant) → y ∈ rvert(G,x)]

2.2.3

5 Conclusions and Future Work

In this paper we presented the first step towards specification patterns for properties
over states in the context of graph grammars. This proposal contains 17 pattern classes
in which functional and structural requirements of reachable states can be formulated.
We believe that this pattern system provides enough help for the specification of prop-
erties over reachable states of graph grammars. Based on the statement of these prop-
erties, techniques used to prove over infinite domains such as structural induction can
be applied to ensure that a system meets its requirements. Additionally, this work pro-
vided a standard library of functions that are commonly needed to state properties over
graphs. These functions were used to construct the patterns, and provide flexibility to
the proposed approach: other formalisms may use the approach to state properties, what
is needed is to identity in these formalisms the graph components used in this library.

Most of the existing pattern systems [14, 10–12] are oriented to classify and express
properties over computations of systems. These are typically described using some tem-
poral logics. The focus of our approach has been to describe properties of reachable
states of systems, where the description of the state is modeled by a graph. Our intent
was to provide the first steps in order to simplify the stating of properties about the
structure of states. For this reason, together with the definition of the standard library of
functions, the pattern has the purpose of offering several possible direct instantiations of
properties over states or simply of guiding the developer of about functions that may be
used in the specifications. Although it is possible (to some extent) to encode properties
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over states in computations and the other way around, we believe that such encodings
give rise to non-intuitive and often very complex logical formulas, making the proof
process more difficult. We believe that our pattern system complements the existing
approaches and provides the first steps in the direction of a pattern for infinite-state
verification through graph grammars.

Several directions for future work are possible. We have used event-B and its theorem
provers in the Rodin platform [15] to specify the graph grammar systems[9]. Adopting
theorem proving, the process of proof is usually semi-automated. Recently, a new tool
was integrated in the Rodin platform that allows the creation and use of theories to de-
fine data types. Thus, the standard library could be implemented as a Graph Theory,
together with a set of theorems that could aid the process of proving properties of graph
grammars. Moreover, it is possible to define the property patterns together with strate-
gies for proving them, Also, the description of requirements with higher-order logics
is a natural extension of the patterns. We should, finally, complement and evaluate our
pattern system surveying an appropriate number of case studies.
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Abstract. Model-driven engineering involves the automatic generation
of software artifacts from models of structure and functionality. The use
of models as ‘source code’ has implications for the notions of compo-
sition and refinement employed in the modelling language. This paper
explores those implications in the context of object-oriented design: es-
tablishing a necessary and sufficient condition for a collection of classes
to be treated as a component, identifying an appropriate notion of re-
finement for the generation process, and investigating the applicability
of data and process refinement to object models.
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1 Introduction

Compositionality is a fundamental notion in software engineering, and an im-
portant property of design methods and modelling languages. A language is
compositional for a notion of meaning M when the meaning of a compound
expression is determined by the meanings of its components. That is, for every
means of composition ⊕ in the language, there is a function f⊕ such that

M [[ A⊕B ]] = f⊕ (M [[ A ]],M [[ B ]])

This is an essential tool for tackling complexity: a system may be designed,
implemented, and analysed as a collection of smaller components.

Refinement describes the intended relationship between specification and im-
plementation, or between a given component and a suitable replacement; the in-
tention being that the meaning of the implementation should be consistent with
that of the specification. In this context, meaning is often described in terms of the
range of possible behaviours or effects, and B is a refinement of A, written A ! B ,
if and only if every behaviour of B is also a behaviour of A: that is

A ! B ⇔ M [[A ]] ⊇ M [[ B ]]

Refinement is another essential tool for tackling complexity, allowing the com-
parison of descriptions at different levels of abstraction, and checking that one
component may be safely replaced with another.
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Model-driven engineering is the automatic generation of software artifacts
from models of structure and functionality. Where the artifacts in question are
at a lower level of abstraction than the models then this may be seen as a pro-
cess of automatic refinement. The additional information needed is introduced
by transformations that provide context or describe implementation strategies
within a particular domain. This affords a significant factorisation of effort: the
same transformations can be used in the development of many different systems,
or many different versions of the same system.

A model-driven approach allows the developer to work at a higher level of
abstraction, with concepts and structures that are closer to the users, or the
processes, that the software is intended to support. Themodel-driven architecture
(MDA) proposed for object-oriented development [1] has been characterised as
“using modeling languages as programming languages” [2]. For such an approach
to work, the concepts and structures of the modeling language must admit a
precise, formal interpretation within the chosen domain, even if this is expressed
only in terms of the transformation and the generated code.

A considerable amount of research has been published concerning the formal
interpretation of the most widely-used object-oriented modelling language, the
Unified Modeling Language (UML). However, code generation from UML models
is typically limited to the production of data structures and default, primitive
methods for structures such as JavaBeans [3], and the implementation of more
complex, user-defined methods remains a manual task—error-prone, and time-
consuming. The principal reason for this is the lack of any suitably-abstract
means of describing intended behaviour: in most cases, it is easier to express
and understand design intentions directly in terms of executable code.

In a sequential context, behaviour can be described in the transformational
or state-based style characteristic of formal techniques such as Z [4], and the
Refinement Calculus [5], and adopted in more recent developments such as the
Object Constraint Language (OCL) [6]. Here, operations are specified in terms
of the relationship between the state of the system before and after the oper-
ation has been performed, together with the values of any inputs and outputs.
The specification is usually given as a pair of constraints: a precondition and a
postcondition. The Z notation differs, notably, in regarding the precondition as
a derived property, calculated as the domain of the resulting relation.

Where formal techniques are used in the design of novel programs or algo-
rithms, the specifications may describe precisely what is to be achieved, but
are unlikely to support the automatic generation of a suitable implementation.
Within a specific domain, however, it is entirely possible to establish a useful
set of heuristics, transformations, or strategies for translating abstract spec-
ifications into program implementations: this is formally-based, model-driven
engineering in practice. For the domain of information systems, in particular,
most postconditions are readily translated into combinations of guarded assign-
ments: for example, the constraint that a ∈ S could be translated to the action
S.insert(a).
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In earlier work [7,8], we presented a formal language for the model-driven
development of information systems; we have applied this language, and the
corresponding model transformation techniques, to the production of several,
large systems, including a secure, online patient monitoring system. In the course
of this work, it became clear that the original characterisation of the generation
process in terms of data refinement, presented in [8], was problematic. It became
clear also that a suitable notion of composition was required for models, in order
that a large system might be designed and maintained in several parts.

In this paper, we identify a suitable notion of composition for object models in
this context. We revisit our characterisation of the generation process, concluding
that data refinement is an unrealistic expectation, and arriving at an improved
characterisation in terms of trace refinement or partial correctness. We consider
the question of when one object model might usefully refine another in this
context, and the related question of when a class might usefully be defined as a
subclass of another. These points are illustrated using a small example model,
and placed in the context of related work.

2 Object Models and Abstract Data Types

In object-oriented programming, a class may be seen as “an implementation of
an abstract data type” [9]. In object-oriented modelling, the situation is not so
straightforward: the interpretation of a particular class may depend upon infor-
mation presented elsewhere in the model; consideration of the class declaration
itself may not be enough. For example, consider the two classes, described using
the notation of UML and OCL, shown in Figure 1. The operation increment on
A should increase the value of attribute m by 1; however, its applicability may
be constrained by the value of n in any corresponding instance of class B.

0..1

a
A

m : Number

+ increment ()

context A::increment ( )
post m = m@pre + 1

B

n : Number

context B
inv n > a.m

b

1

Fig. 1. A constraint between associated classes

A mapping of A and B to separate abstract data types may not admit an
adequate interpretation of operation increment. Instead, the operation increment
should be considered as an operation on a component whose state encompasses
both A and B objects, and this component should be mapped to a single abstract
data type, whose state is an indexed collection of A and B objects.

We may use the schema notation of Z [4] to describe the corresponding data
type. In this description, the given set I denotes the set of object references,
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and [0 . .1] a postfix, generic abbreviation for sets of cardinality at most one—in
combination with the unique selection operator μ, a simple way of representing
optionality. The state of the data type is described by the schema System State,
in combination with the local schemas A State and B State, and the single data
type operation by the schema A Increment .

A State
m : N
b : I [0 . . 1]

B State
n : N
a : I

System State
as : I �→ A State
bs : I �→ B State

∀ b : ran bs • (as b.a).m < b.n

A Increment
ΔSystem State
this : I

this ∈ dom as
(as ′ this).m = (as this).m + 1

In this description, the constraint upon the applicability of the operation is cap-
tured implicitly within the global state schema. We could make it explicit by
adding the conjunct (as this).b �= ∅ ⇒ (as this).m < (bs (μ ((as this).b))).n to
the operation schema. The complexity of this conjunct, even in such a simple ex-
ample, is representative of the difficulty posed by constraints that extend across
associations.

Nevertheless, we should expect to find this kind of constraint in object mod-
els. For example, the opposite property for “mutually-constrained attributes”
is part of the core UML language definition; the principal reference texts for
OCL, including that for OCL in MDA [6], include many examples of constraints
upon attributes of associated classes; and the class-responsibility-collaboration
approach developed by Beck and Cunningham [10] insists that “objects do not
exist in isolation” [11].

As a consequence, we should expect specifications of operations, given in the
context of individual classes, to be less applicable than their precondition part
would suggest. In the above example, the specification post m = m@pre + 1 does
not tell the whole story; the given constraint cannot apply when the resulting
value of m would be equal to or greater than the value of n in an associated
object of class B. Although the object-oriented approach affords the convenience
of defining operations within classes—within the context of the most relevant
data, or the most obvious reference point—a complete understanding of the
operation may require a consideration of other parts of the model.

It should be clear that the ADT corresponding to the model containing both
A and B cannot be derived from the ADTs corresponding to A and B: for our
implicit mapping M from models to data types, there is no function f⊕ such that

M (A⊕ B) = f⊕(M (A),M (B))

where ⊕ denotes the combination of class declarations within a model.
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Observation 1. Classes are not necessarily components in the context of model-
driven development. In particular, they may not be an appropriate unit of com-
position for behavioural information.

3 Model-Driven Development

Where the model is to be used as source code, as the basis for the automatic
generation of a working system, the specification provided for each operation is
final : the constraint information provided in the model is all that the compiler
has to work with. In particular, then the compiler will need to determine what is
to happen if the operation is called in circumstances where the constraint is not
applicable: that is, for combinations of state and input values that lie outside
the calculated precondition.

If the generated system holds data of any value, then it would not seem sen-
sible to allow an arbitrary update to the state: in the absence of any default
action, the effect of calling an operation outside its precondition should leave
the state of the system unchanged. Further, if we wish to adopt a compositional
approach, in the sense that a composite operation should be inapplicable when-
ever one or more of its components is inapplicable, then it is not enough for
the operation to leave the state unchanged; instead, its inapplicability must be
recorded or communicated.

Within the precondition, the specification is applicable, and the intended effect
of the operation is known. However, it may be that the compiler does not know
how to achieve this effect: that is, part of the constraint information may lie
outside the domain of the model transformation rules that are used to generate
the implementation. For example, the constraint

x = y − 1 ∧ y = 2x − 3

describes a condition achievable by the assignment x , y := 4, 5, but it is quite
possible that the model transformations used in the compiler do not address the
solution of such a system of simultaneous equations.

Where this is the case, then the intended effect of the operation is known, but
is not achievable; in the generated implementation, the operation should not
be allowed to proceed—unless, of course, the desired condition already holds,
in which case the effect can be achieved simply by doing nothing. Again, the
inapplicability of the specification should be reflected by the exceptional, or
blocking, behaviour of the implementation.

In practice, we are more likely to encounter a constraint that readily admits
two or more different implementations, any of which could be easily generated,
but for which the intention behind the specification is unclear. That is, although
an implementation could be generated that would satisfy the constraint, it seems
more likely that the user would prefer to extend or qualify the specification,
rather than accept—or be surprised by the behaviour of—the generated imple-
mentation.
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Consider, for example, the situation illustrated by the class diagram of Fig-
ure 2, in which the operation cleanUp has the effect of ensuring that the two
associations d1 and d2 are disjoint. If an object d is present in both associations
when the operation cleanUp() is called, the intention in the model is unclear:
should we remove d from d1 or from d2?

C

context C :: cleanUp ()
post d1->intersection(d2)->isEmpty()

D
d1

d2

Fig. 2. A postcondition admitting multiple implementations

While it could be the case that either alternative is equally acceptable, it is
more likely that the designer has failed to make their intentions clear. Deleting
one of these links may have consequences for other data: it may even be that, to
achieve a new state in which the model constraints are satisified, deletions need
to be propagated across the whole system. Is this what the designer intends?
For information systems, where the data may be of considerable value, it may
be better to generate an implementation that blocks when intentions are unclear,
instead of making unexpected or unintended modifications.

The nature of refinement associated with code generation for model-driven
engineering should now be clear: it is neither failures refinement, where the
concurrent availability of interactions is preserved; nor is it data refinement,
where sequential availability is preserved. We argue instead that it should be
trace refinement : if the implementation is able to perform an operation, then its
postcondition is achieved; however, it may be that the implementation blocks in
some, or even all, circumstances where the precondition applies.

Model 
M

Abstract Data Type 
A

Implementation 
I

Abstract Data Type
C

RA

RC

T

Fig. 3. Abstract data type semantics of model and implementation

To see this, consider the commuting diagram of Figure 3, in which T denotes
the code-generating transformation, and A and C denote the representation of
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the model and the implementation, respectively, as abstract data types. As the
model is intended as source code for system generation, it is reasonable to assume
that the data model contained within it will be reflected in the implementation,
to the extent that data types A and C have equivalent state components and
initialisations. It is reasonable to assume also that the model and implementation
present the same interface in terms of operation names, inputs, and outputs.

We will write RA to denote the mapping from a model operation to the
corresponding operation on an abstract data type, and RC to denote a similar
mapping for implementation-level operations, then the correctness constraint
upon our model transformation is simply that

RC [[ T (op) ]] ⊆ RA [[ op ]]

for every operation op: the transformation should respect the precondition and
postcondition, along with any related model constraints. There is no requirement
that domRA [[ op ]] should be contained within domRC [[ T (op) ]], and hence no
guarantee that C is a data refinement of A [4,5].

However, if we consider the processes PA and PC , defined using the notation
of Communicating Sequential Processes (CSP) as follows:

PA(s) =

� op : Op •
s ∈ domRA [[ op ]] & op → � s ′ : RA [[ op ]](|{s}|) • PA(s ′)

PC (s) =

� op : Op •
s ∈ domRC [[ T (op) ]] & op → � s ′ : RC [[ T (op) ]](|{s}|) • PC (s ′)

where the event op represents a successful, completed execution of the operation
op, chosen from the set of all operations Op defined in the model, and & denotes
the guard operator: in the expression g & P , the actions of process P are available
only if g is true. For any code-generating model transformation T satisfying the
correctness constraint above, it should be clear that

PA(init) !T PC (init)

where init represents the initial state of the system, and !T denotes trace re-
finement.

Observation 2. The correctness of a code-generating model transformation may
be characterised as trace refinement between specification and implementation:
guaranteeing safety, but not liveness.

4 Model Refinement

In model-driven development, improvements are made to an implementation by
updating the model used to generate it. Some updates can be characterised as
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formal refinements, in the sense that data type corresponding to the new model
is a refinement of the data type corresponding to the old. In this case, it would be
useful to know whether the old and new implementations are related in the same
way: if they are, then any testing, integration, or further development based upon
the generated code, rather than the model, need not be repeated. (Of course,
we would prefer an approach to development in which any such activity is based
solely upon the model, but this is not always possible.)

In a sequential context, the notion of model refinement that we will consider
is based upon data refinement of the corresponding abstract data types. A model
M2 will refine another model M1 precisely when the effect of any sequence of op-
erations upon the corresponding data type A2, in terms of the possible changes
in state and outputs generated, is contained within the effect of the same se-
quence upon the corresponding data type A1. The fact that such a refinement
relationship exists is shown most often by exhibiting a forward simulation.

If schema s1 denotes the set of all states—the state space—of data type A1, s2
denotes the state space of A2, and i1 and i2 are subsets representing the initial
configurations of each data type, then f is a forwards simulation precisely when
i2 ⊆ i1 o

9 f and

domRA [[Op1 ]]� (f o
9 RA [[Op2 ]]) ⊆ RA [[Op1 ]] o

9 f

ran(domRA [[Op1 ]]� f ) ⊆ domRA [[Op2 ]]

for every corresponding pair of operations Op1 and Op2, where RA denotes
the relational semantics of the operation at the model level, � denotes domain
restriction, and o

9 denotes forward relational composition. This is the character-
isation of [4], with the omission of the identity relation for input and output.

In the case where the two models have precisely the same classes, attributes,
associations, and initialisation, this reduces to a constraint upon the updates
made to the specification of each operation:

domRA [[Op1 ]]� RA [[Op2 ]] ⊆ RA [[Op1 ]]

domRA [[Op1 ]] ⊆ domRA [[Op2 ]]

where Op2 represents the updated version of Op1. Thus we may produce a re-
finement of the model by weakening the precondition of an operation—that is,
extending the domain of the corresponding relation—while strengthening the
postcondition. To guarantee that the generated implementation is refined in the
same way, we need to know also that

domRC [[ T (Op1) ]]� RC [[ T (Op2) ]] ⊆ RC [[ T (Op1) ]]

domRC [[ T (Op1) ]] ⊆ domRC [[ T (Op2) ]]

where RC denotes the semantics of the operation at the implementation level.
The argument of the previous section tells us that any suitable code-generating

model transformation T will guarantee that

RC [[ T (Op) ]] ⊆ RA [[Op ]]
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for any operation Op, but this is not enough. The following monotonicity prop-
erty of T would suffice:

RA [[Op ]] ⊆ RA [[Op′ ]]⇒ RC [[ T (Op) ]] ⊆ RC [[ T (Op′) ]]

for any pair of operations Op and Op′. However, this property is unlikely to hold
in practice: it requires that the refinement proposed by the designer is one that
is performed automatically in the course of code generation. While this would
produce a model in which more of the corresponding implementation is made
explicit, it seems unlikely that we would wish to propose such a refinement in
the context of model-driven engineering.

To see why, consider the definitions of Op1 and Op2 presented as operation
schemas upon a state State =̂ [x : N], with their implementations T (Op1) and
T (Op2) written in an extended language of guarded commands. In a data type
with state State, and attribute x accessible, replacing Op1 with Op2 would pro-
duce a data refinement.

Op1
ΔState

x = 0 ∧ x ′ ∈ {0, 1}

Op2
ΔState

x = 0 ∧ x ′ = 1

T (Op1) =̂ x = 0→ skip T (Op2) =̂ x = 0→ x := 1

Here, T represents a plausible implementation strategy. If Op1 is called when
x = 0, then the subsequent value of x should be 0 or 1: the implementation
T (Op1) might quite sensibly leave the value of a variable unchanged when the
current value would satisfy the postcondition. In the new specification, Op2,
this nondeterminism in Op1 has been resolved, and T (Op2) must change the
value of x when x is initially zero. The data type corresponding to the second
implementation is not a refinement of the one corresponding to the first.

Observation 3. A model refinement in which postconditions are strengthened
may lead to the generation of a system that is different to, and not a refinement
of, the current implementation.

There is however a circumstance in which refinement at the model level can
be guaranteed to produce refinement in the implementation: when the domain
or precondition of an operation is extended, but the applicable postconditions
are left unchanged. Such a circumstance is quite likely to arise in the course
of iterative development. Having specified an operation, a designer may find
that the specification is less applicable than they had expected: that there are
cases that have not been considered. If they then extend the specification to
cover these cases, then they might reasonably expect that the behaviour of the
implementation would remain the same for those cases already covered: that is,
those within the domain of the existing specification.
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For this to be the case, the following property must hold of transformation
T : for any set of states S ,

S � RA [[Op ]] = S � RA [[Op′ ]]⇒ S � RC [[ T (Op) ]] = S � RC [[ T (Op′) ]]

That is, if Op and Op′ have the same relational semantics for that region of
the state space, then so do their respective implementations. For any pair of
operations for which the specifications agree within the domain of the first:

domRA [[Op1 ]]� RA [[Op2 ]] = RA [[Op1 ]]

[specifications agree where Op1 defined]

⇒ domRA [[Op1 ]]� RA [[Op2 ]] = domRA [[Op1 ]]� RA [[Op1 ]]

[domain restriction]

⇒ domRA [[Op1 ]]� RC [[ T (Op2) ]] = domRA [[Op1 ]]� RC [[ T (Op1) ]]

[property above]

⇒ domRA [[Op1 ]]� RC [[ T (Op2) ]] ⊆ RC [[ T (Op1) ]]

[domain restriction]

⇒ domRC [[ T (Op1) ]]� RC [[ T (Op2) ]] ⊆ RC [[ T (Op1) ]]

[partial correctness of T , domain restriction]

The second condition for refinement, that the domain of the operation is pre-
served, follows from the same condition. The correctness of transformation T
guarantees that domRC [[ T (Op1) ]] ⊆ domRA [[Op1 ]] and hence

domRA [[Op1 ]]� RC [[ T (Op2) ]] = domRA [[Op1 ]]� RC [[ T (Op1) ]]

[third line of argument above]

⇒ domRA [[Op1 ]]� RC [[ T (Op2) ]] = RC [[ T (Op1) ]]

[partial correctness of T , domain restriction]

⇒ dom(domRA [[Op1 ]]� RC [[ T (Op2) ]]) = domRC [[ T (Op1) ]]

[property of domain operator dom]

⇒ domRA [[Op1 ]] ∩ dom(RC [[ T (Op2) ]]) = domRC [[ T (Op1) ]]

[domain restriction]

⇒ domRC [[ T (Op1) ]] ⊆ domRC [[ T (Op2) ]]

Observation 4. A model refinement in which preconditions are weakened, but
already-applicable postconditions are left unchanged, will produce a corresponding
refinement of the implementation.

The condition that T should produce the same implementation from Op1 and
Op2, when restricted to the domain of Op1, can be translated into a constraint
upon the interaction of T and the grammar of our modelling language. As we
suggested above, the constraints

x = 4 ∧ y = 5 and x = y − 1 ∧ y = 2x − 3
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may produce the same relational semantics, but it may be that only the first of
them is successfully translated into an implementation. To guarantee a refine-
ment at the implementation level, we need to know that the constraints of Op1
and Op2 will be treated in the same way by transformation T .

In practice, the easiest way to ensure this is to have an operator “or” within the
modelling language that corresponds to disjoint union in the relational semantics,
and extend the precondition of the specification so that

Op2 =̂ Op1 or Ope

where Ope describes the intended behaviour of the operation in circumstances
left uncovered by Op1, so that domRA [[Op1 ]] ∩ domRA [[Ope ]] = ∅.

The suitability of a data refinement will depend upon our interpretation of
preconditions at the implementation level. In Section 3, we argued that—where
data is important—we should interpret preconditions as guards. Weakening a
precondition may make an operation available in some circumstance where it is
currently blocked, perhaps with good reason. For example, if the precondition
for an edit() operation includes the constraint that the current value of user
matches the value of owner, then weakening this condition might not constitute
an improvement in the design.

The difficulty here is that we are not distinguishing between a constraint that
has been included deliberately—and is intended as a restriction upon availability—
and one that appears as a consequence of “underspecification”. A simple solution
is to include a description of the intended availability of an operation, or of a
sequence of operations, as part of the model. If we treat this as part of the pre-
condition for the purposes of code generation, then we can guarantee that it will
be respected in the implementation. However, as a separate, distinguished part
of the specification, it can be excluded from consideration in any subsequent,
manual refinements.

The same approach allows us to address the issue of liveness in the implemen-
tation. Since the correctness of the code generation process is characterised as
trace refinement, we have no guarantee that the implementation will do anything
at all. If we have an indication A of the intended availability of an operation, or
sequence of operations, then we may compare this with the precondition P of
the generated implementation: if A �= P , then the operation is less available than
A would suggest. As the comparison involves determining the semantic equiva-
lence of two different predicates, we would not in general be able to rely upon
fully-automatic verification. However, restrictions upon the form of the specifica-
tions, coupled with the expected regularity of preconditions for implementations,
should mean that automation is a perfectly feasible proposition.

Observation 5. In the model-driven engineering of information systems, we
can establish “safety properties”, or partial correctness, automatically. Live-
ness or availability properties may require manual intervention, through semi-
supervised testing or proof.



110 J. Davies et al.

5 Generalisation and Inheritance

In object-oriented design, a distinction is often drawn between generalisation
and inheritance. For example, the UML reference manual [12] states that:

Generalisation is a taxonomic relationship among elements. It describes
what an element is. Inheritance is a mechanism for combining shared
incremental descriptions to form a full description of an element. They
are not the same thing, although they are closely related.

In this view, generalisation is a modelling concept and inheritance a program-
ming concept. This begs a question: in the context of model-driven engineering,
where we are using a modelling language as a programming language, which of
these concepts is applicable?

If we define one class B as a specialisation of another class A—being the
inverse of generalisation—then we expect everything that we know about A to
remain true of B . Any class invariant should be strengthened, and so too should
any operation specifications. This means that an operation specification declared
in the context of A may be less applicable when considered in the context of B .
As an example, consider the classes shown in Figure 4, where the operation
setWidth(w:Number) should have the effect of setting the width of the current
figure to w.

Square

Rectangle

width : Number
height : Number

+ setwidth(w : Number)

context Square
inv width = height

context Rectangle :: setwidth(w : Number)
post width = w

Fig. 4. Square and Rectangle

We would argue that the most appropriate strategy for code generation, in
the face of such a specification, is to produce an assignment to the attribute
width and—in the context of Rectangle—to leave the value of all other attributes
unchanged. Any other approach might come as something of a surprise to the
user, and thus reduce the utility of the notation as a programming language.
However, when we consider setWidth in the context of Square, we find that it
has the implicit precondition w = height.
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It should be immediately apparent that we cannot simply use an instance
of Square whenever we might have used an instance of Rectangle: a setWidth
operation in which the width is set to anything other than the current height
would fail for an instance of Square, when it would have succeeded for an instance
of Rectangle. Whether this amounts to a violation of the substitivity condition
of Liskov and Wing [13]—

Let P(x ) be a property provable about objects x of type T . Then P(y)
should be true for objects y of type S where S is a subtype of T .

—depends upon the notion of properties involved. Certainly, if setWidth is per-
formed on an instance of Square, then we know at least as much about the states
of the object before and after the operation as we would if it had been performed
on an instance of Rectangle. However, if we were to consider the availability of the
operation as a property of interest, then the condition would indeed be violated.

As was the case with code-generating model transformations, the fact that
preconditions are strengthened rather than weakened means that specialisation
may not characterised simply as data refinement. Instead, a more appropriate
characterisation may be that of trace refinement, under the assumption that no
new operations are introduced—or, at least, that no new operations are intro-
duced that may update the state in such a way as to affect the availability or
effect of one or more of the existing operations.

Observation 6. In the context of model-driven development, specialisation need
not correspond to subtyping in the programming sense; for transformational spec-
ifications, trace refinement may be a more appropriate notion.

Of course, in the design of an object-oriented program, the relationship of Fig-
ure 4 may well have been reversed. The class Rectangle might have been intro-
duced as an extension of Square, with the addition of a distinct height property.
Consider the two fragments of Java code shown below

class Square{ class Rectangle extends Square{

float width; float height;

float getArea(){ ... } float getArea(){ ... }

} }

Here, Rectangle will inherit the attributes of class Square, and will redefine the
method getArea()—to use both width and height. This form of inheritance
represents code re-use, and it is certainly possible to exhibit specifications in
which Rectangle is a refinement of Square, in terms of corresponding abstract
data types. For example, we might imagine a specification for Square.getArea()
that stated

post (self.oclIsKindOf(Rectangle) and result = width ∗ height)
or
(self.oclIsKindOf(Square) and result = width ∗ width)
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If Rectangle.getArea() were assigned the same specification, or merely the
first disjunct above, then we could exhibit a forward simulation between the two
corresponding data types.

Such specifications might be produced in the course of a post-hoc activity in
which existing Java code is annotated with specifications that take account of
any inheritance hierarchy. However, in a model-driven context, our purpose in
supplying specifications is to enable the generation of an implementation: a suit-
able specification for Square.getArea() would be post result = width ∗ width,
and one for Rectangle.getArea() would be post result = width ∗ height. These
specifications would not produce a forward simulation, or a data refinement, in
the corresponding abstract data types.

Furthermore, in model-driven development the emphasis is upon specifica-
tion re-use, rather than the specification of code re-use. In this example, the
potential for re-use is in the other direction: Square should be seen as a speciali-
sation of Rectangle, inheriting the constraints as additional conjuncts alongside
any new specification provided. This will also support the expected refinement
relationship—trace refinement—between classes in an inheritance hierarchy.

Observation 7. In model-driven development, re-use is afforded by specialisa-
tion rather than inheritance.

6 Discussion

In this paper, we have argued that classes are not a suitable basis for behavioural
composition in the context of model-driven engineering. For the purposes of code
generation, a component is a closed collection of associated classes: closed in the
sense that every constraint refers only to attributes declared in classes within
the collection. This applies whether the component is implemented as a separate
system, communicating by means of a messaging protocol, or whether it is used
to generate part of the applications programming interface for a larger system.

We have argued also that the notion of correctness associated with code gen-
eration, and with specification re-use, should be that of trace refinement. This
reflects our understanding that the model transformations used to generate the
code may not be able to resolve all of the nondeterminism within the specifi-
cations supplied: either because the specification ‘problem’ cannot be solved, or
because it is unclear which of the possible solutions corresponds to the inten-
tions of the designer. Our strategy for the verification of liveness properties is
to provide a separate constraint specifying the intended availability of a given
operation, or a given sequence of operations. This can be compared with the gen-
erated guard or availability constraint in the implementation: if it is stronger,
then we may wish to modify the model and repeat the generation process.

Finally, we have argued that refinements to the model need not correspond
to refinements of the implementation. We identified a necessary and sufficient
condition for this to be the case, but argued that this would be an unrealistic
objective in practice. We then identified a necessary condition that would be
eminently achievable in the iterative development of operation specifications.
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If the existing description is correct, but fails to address all of the relevant
combinations of state and input values, then we may extend the specification
with an appropriate alternation operator, and repeat the generation process,
without the need to repeat any testing or development based on the previous,
generated implementation.

The question of whether classes can be treated as components has been ad-
dressed before, although not in this context. Most relevant is the work of Szyper-
ski [14], who characterises a component as a unit of independent deployment
and of composition, with no externally observable state, and an object as a unit
of instantiation that may have an externally observable state. If we interpret
‘observability’ as the ability to refer to an attribute in an externally-declared
constraint, then his argument that components are collections of classes, rather
than individual classes, is in line with that presented in this paper. In the area
of formal techniques, Barnett and Naumann [15] come to the same conclusion
about association constraints in ‘real-life situations’, and provide a mechanism
for working with collections of ‘cooperating classes’.

The formal technique Object-Z [16] allows the definition of object references,
and constraints can mention attributes of other classes. Such object coupling
induces additional conditions upon the constraint information in a model in order
to achieve individual class refinement [5]: in object-oriented design, as we have
argued, these conditions may not be fulfilled. Some authors [17,18] rule out such
constraints, insisting that read access to attributes is through accessor methods
only, or aligning preconditions of component methods by introducing derived
input attributes. A similar approach is taken in OhCircus [19]. The result is a
semantics that aligns closely with that of CSP: each class is a separate process,
with no externally observable state.

CSP-OZ [20] and TCOZ [21], building upon earlier work on action systems [22],
allow the definition of a separate guard, as well as a precondition, for each op-
eration. In these methods, the guard and the precondition together define the
operation. Our approach is different in that the user-supplied precondition is
treated as an upper bound on availability: if it does not hold, then the operation
should be blocked. In the code generation process, our preconditions are treated
as (partial) guards. There is value in providing a second, separate piece of in-
formation, analogous to a guard, that corresponds to a lower bound upon the
intended availability: a liveness constraint. This could be used as the basis for
the generation of a suite of tests, or as a property to be checked using a theorem
prover.

Our objective is to add useful, formal support for model-driven, object-oriented
development. In doing so, we have identified a need for two different notions of
composition: one in which classes are combined to produce a complete descrip-
tion of a sequential component, and one in which sequential components are
combined to produce a complete working system. In this paper, we have fo-
cussed our attention on the first of these, where the notion of composition is
purely static: the behaviours of the sequential component cannot be derived
from the behaviours of the individual classes; instead they emerge as the result
of the combination of classes and associations.
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Abstract. Critical control systems can only be used after approval of
certification authorities due to safety reasons, among other aspects. Un-
detected failures in such systems can be catastrophic, including the loss
of human lives or huge amounts of money. The safety assessment process
aims to minimize such problems. But actually it still is largely dependent
on human support (engineer’s experience). To decrease this human de-
pendency, we propose a systematic hardware-based failure identification
strategy. Following common practices in industry, which use Simulink
diagrams to design (critical) control systems, the starting point of our
proposed strategy is Simulink diagrams. The systematic identification
is performed by the model checker FDR [11]. Therefore, we translate
Simulink diagrams into CSPM specifications [30]. With our strategy, en-
gineers only need to label certain Simulink elements as hardware and
choose specific failure names for the generic ones our strategy provides.
We illustrate our work on a simple but real case study supplied by our
industrial partner EMBRAER.

Keywords: fault injection, failure logic, safety assessment, Simulink,
CSPM .

1 Introduction

The development process of (critical) control systems is based essentially on
the rigorous execution of guides and regulations [2,8,9,31]. Moreover, specialized
agencies (like FAA, EASA and ANAC in the aviation field) use these guides and
regulations to certify such systems.

Control systems are traditionally based on Simulink diagrams [23,26]. These
diagrams are models of real systems, aiming at cost reduction by avoiding tests
and simulations on real incorrectly designed systems.

Safety is another concern of great importance for these systems and it is the
responsibility of the safety assessment process. ARP-4761 [31] defines several
techniques to perform safety assessment. One of them is FMEA (Failure Mode
and Effects Analysis). It has two categories: functional and piece-part FMEA.
IF-FMEA [28] (Interface Focused FMEA) extends the piece-part FMEA to per-
form compositional analysis. This allows failures modes, annotated on known
components, to be used to derive failures on higher layers. These versions of

R. Gheyi and D. Naumann (Eds.): SBMF 2012, LNCS 7498, pp. 115–130, 2012.
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FMEA are used to obtain information to perform other analyses—for example,
FTA (Fault Tree Analysis) [31]. The table depicted in Figure 1 shows an example
of an IF-FMEA table with annotated failure logic1 in the style of HiP-HOPS [28]
(Hierarchically Performed Hazard Origin and Propagation Studies).

Fig. 1. Annotations table of the ACS provided by EMBRAER

The work [24] reports a way of integrating functional verification with safety
assessment. Failure logic makes such a connection. But in that work failure logic
is provided manually by engineers, as well as in the example shown in Figure 1.

In this work we propose a systematic hardware-based failure identification
strategy. We focus on hardware failures because we assume that software does
not fail. This is the view of our industrial partner and we agree with it in the
sense that the functional behaviour is completely analysed by functional verific-
ation [32]. To follow industry common practices, we assume Simulink diagrams
as a starting point. But our strategy is stated in terms of the formal language
CSPM [30] (this variant is the machine-readable version of CSP) that allows an
automatic analysis by the model checker FDR. Thus, our strategy requires the
translation from Simulink to CSPM [15].

As this work is a result of a partnership with EMBRAER, most terms and
artifacts are related to the aviation field. Nevertheless, our strategy applies, in
principle, to any critical control system.

Our main contributions in this paper are:

1. Extract failure logic from nominal behaviour of simple components expressed
as a Simulink model;

2. Connect functional analysis and safety assessment [24];
3. Improve an existing translation from Simulink to CSPM [15] to allow fault

injection;
4. Apply the strategy to a real case study provided by our industrial partner.

As we will show in this paper our failure logic is at least the same as that stated
by highly experienced safety engineers. It can be strengthened based on previous
knowledge or testing. We leave this decision to the safety specialist.

This paper is organized as follows: in Section 2 we show the concepts and tools
used as basis for our strategy, Section 3 presents our strategy, and Section 4 the
case study. In Section 5 we report the related work and present our conclusions
and future work in Section 6.
1 Failure logic means failure conditions, expressed as a boolean expression, where each
operand expresses the occurrence of a fault on the component, as annotated in the
column Annotation, in Figure 1.



Identifying Hardware Failures Systematically 117

2 Background

In what follows we present CSPM in Section 2.1 and Simulink in Section 2.2.

2.1 The CSPM Language

The CSPM language combines the concurrent and functional paradigms in a
single language. Expressing a complex behaviour requires few lines, unlike other
languages even those that support concurrency. In this section we briefly present
its notation and operators tailored to this work, as well as the traces refinement
theory which is the basis of our strategy.

The supported data types are: integers (32 bits), booleans, sets, sequences,
tuples and enumerations. Although CSPM does not support floating-point num-
bers, we use data abstraction techniques [6,7,10] to deal with them in terms of
integers.

Concerning data structures we have sequences and sets. Sequences use the
symbols < and >, and sets the symbols { and }. The language supports set de-
clarations as set comprehension, for example, { (x,y) | x<-X, y<-Y } represents
the cartesian product of X and Y. This is similar for sequences.

It is also possible to declare functions, including anonymous ones (lambda).
For example: \x,...,z @ expr(x,...,z) is a function with parameters (x,...,z),
and result given by expr.

The language identifiers are characters with no spaces, with the following
naming convention: (i) all in upper case for processes (MONITOR, ACTUATOR),
(ii) first letter in upper case for types and type constructors (SwitchValues,
RelationalOperatorValues) and all in lower case for functions and channels (input,
output monitor).

It has keywords for declaring types and channels. For types, there are two:
nametype (to state an abbreviation) and datatype (for enumerations). For chan-
nels and events, CSPM uses the keyword channel.

A process behaviour is basically described through its traces. Traces are
defined in [30] as the set of all event sequences that a process can perform.
By definition, every process can communicate nothing (thus, the empty trace).
The set of possible traces are defined by the use of the process operators. In
Table 1 we summarize the meaning of the operators that we use in our work.
Other operators are explained deeply in [30]. Just for illustration, the traces of
the process P = a -> STOP is the set {〈〉, 〈a〉}, because the process STOP (dead-
lock) cannot perform any trace.

Model-checking is an exhaustive technique to verify system properties. Tradi-
tionally, it uses temporal logic, where M |= f means that the temporal formula
f is valid in the model M . For CSP [30], there is an alternative for temporal
logic that is based on a refinement theory of processes. CSP uses a technique
named refinement checking, where M |= f becomes Pf !M2 such that both Pf

and M are CSP processes and Pf is the most non-deterministic process that is
known to satisfy f . Refinement checking is supported by the FDR tool [11].

2 In this work we only use traces refinement, defined following.
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Table 1. Some CSPM operators

CSPM operator Meaning

P ||| Q Interleaving. P and Q communicate without any synchroniza-
tion.

P [] Q External choice. The environment chooses behaving like P or Q.

P [[b <- a]] All events b of P are replaced by a.

P [| X |] Q Sharing in X. The processes synchronize in the events of the set
X.

P [ X || Y ] Q Alphabetized parallel. The processes synchronize in the inter-
section of X and Y.

if b then P else Q If b is true, P is enabled, otherwise, Q.

b & P Guard. The same as if b then P else STOP.

The traces refinement is the simplest refinement relation. The refinement
P !T Q, written in CSPM using the statement P [T= Q, is defined as
traces(Q) ⊆ traces(P ) [30]. This refinement relation is used as the basis of our
strategy.

To be exhaustive, model-checking requires the state space to be finite. Data
abstraction [7,18] is the most powerful technique to do that. Data abstraction
consists of mapping concrete elements (normally infinite) into abstract elements
(potentially finite) and proposing new corresponding operations to handle these
abstract elements, so that analyses on the abstract model correspond to analyses
on the concrete model [5]. When it is possible, data independence [18] can be
used, as presented in [6,10], to make data abstraction completely automatic.

2.2 System Modelling and Simulation with Simulink

Control system modelling using Simulink block diagrams is recommended in [26].
We follow this recommendation in this work.

Simulink [23] is a complementary tool of Matlab [22]. In fact, it works as
a graphical interface to Matlab. A Simulink model has blocks and connections
between these blocks, named signals. Each block has inputs and outputs and
an internal behaviour expressed by its mathematical formula, which defines a
function of the inputs for each output. There are many predefined blocks in the
tool; it is also possible to create new blocks or use subsystems that encapsulate
other blocks. A simulation adds extra parameters to a block diagram, like elapsed
time and time between states. The elapsed time of a simulation is an abstraction
for the quantity of possible simulation states and the time between states is
related to the lowest common denominator of the sample time. Some components
define different sample times, depending on their mode of operation. Usually, the
value for this property is set to auto, allowing Simulink to choose a proper value
automatically.

Nowadays, control systems are usually composed of an electromechanical part
and a processor. Figure 2 shows the components of a feedback system [3] which
was provided by EMBRAER. In this system, the feedback behaviour is given
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by the Controller (1), Actuator (2) and Sensor (3). A command is received
by the Controller, which sends a signal to the Actuator to start its movement.
The Sensor detects the actual position of the Actuator and sends it back to the
Controller, which adjusts the given command to achieve the desired position.
This loop (feedback) continues until the desired position given by the original
command is reached.

Fig. 2. Block diagram of the ACS provided by EMBRAER

Figure 3 shows the internal elements of the monitor component (Figure 2 (A)),
which is used as case study in Section 4 to illustrate our strategy. The outputs
of the hardware elements are annotated with HW , which are the two power
sources and an internal component of the monitor (switch command).

Fig. 3. Internal diagram of the monitor component (Figure 2 (A))

3 Systematic Strategy to Find Failures

In our proposed strategy (Figure 4), the engineer creates a system model in Sim-
ulink (A) and annotates the signals that represent hardware component commu-
nications (2); this is illustrated in Figure 3. The tool reported in [15] (with the
changes we explain in the following subsections) is used to generate a CSPM

specification (B), from such an annotated Simulink diagram. In this work, that
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CSPM specification also includes our strategy files (C) which have a refinement
relation verification (CSPM assert clause). We load this specification in FDR
and perform the refinement checks. This gives several counterexamples (D) that
represent the failures of the system. From these traces, we extract the failure
logic (4) automatically, with a tool that we also created.

Fig. 4. Overview of the strategy for finding failures in nominal models

3.1 Proposed Changes on the Translation From Simulink to CSPM

The translation strategy from Simulink to CSPM [15] contains a compiler based
on four auxiliary files:

Prelude.csp: Defines basic functions used by the other files.
Types.csp: Defines new types and operations, corresponding to Simulink ele-

ments, including the floating point type.
Block.csp: Contains basic processes that represent the simulation control and

the base processes used on the predefined Simulink blocks translation.
BlockLibrary.csp: Contains the declarations of the processes that represent the

predefined Simulink blocks. The compiler uses the signatures of the declared
processes in this CSPM file.

As a result of the translation, each Simulink component is converted into a CSPM

process and the signals are translated into channels. For example, for a block
SIMPLE with one input port (In1), one output port (Out1) and a signal
connecting them, the translation yields:

TIn1 = { ... }
L02_SIMPLE =

let In1 = B_Inport(1, TIn1)(sig.N02_SIMPLE.1)(Sampler__CONTINUOUS)
Out1 = B_Outport(1, TIn1)(sig.N02_SIMPLE.1)(Sampler__CONTINUOUS)
CS = { (In1, {| tick, in.1.xD, sig.N02_SIMPLE.1.xD | xD<-TIn1 |}),

(Out1, {| tick, sig.N02_SIMPLE.1.xD, out.1.xD | xD<-TIn1 |}) }
within B_Subsystem(CS)
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The processes In1 and Out1 are put in parallel with the synchronization on
the channel (sig.N02.SIMPLE.1) using the set CS as a parameter of the process
B Subsystem, in a way that the data flow on the channels corresponds to the data
flow on the signals. The process B Subsystem is defined as:

B_Subsystem(CS) = || (p,cs): CS @ [ cs ] p \ signals(Union(ran(CS)))

where signals is a function to match each sig event to hide the internal commu-
nications of the component. Note that the parameter CS is a set of pairs, where
each pair (p, cs) is formed by a process (p) and its communicating events as a
set (cs). The synchronization sets contain the channels that correspond to the
signals that connect the Simulink blocks.

We proposed changes to the compiler to capture the information of which
components are annotated as hardware, adding the SW/HW information on the
channels, as well as enabling the fault injection on the signals. We also needed
to change the files of the translation strategy (Types.csp and Block.csp). Finally,
the Breaker Process shown in Section 3.2 uses those structures to compare the
nominal (without injected faults) and fallible (with injected faults) behaviours
through a traces refinement to generate where these behaviours differ, what
determines a failure.

One of the proposed changes is the Simulink signal representation in CSPM .
Originally, a signal, which is the connection between blocks, is translated into a
CSPM channel. We propose to represent a signal as two channels and a process: a
channel for the connected output port (cout), another channel for the input port
of the next component (sig) and a process to connect the values between these
channels (Signal or HwSignal). This change is fairly simple and easily automated.
It enables fault injection on signals. We present below the process that represents
a signal:

Signal(o, i, Tin) = tick -> o?v:Tin -> i!v -> Signal(o, i, Tin)

This process has three parameters: o corresponds to the output of a compon-
ent, i the input of another component and Tin the set of values channel o can
communicate. These parameters are usually instantiated with channels cout of
a component, a sig of a connected component and the type for cout. The be-
haviour of Signal is simply communicating a tick event, followed by an output
communication restricted by Tin (o?v:Tin) and an input (i!v) in an infinite
recursion. The tick event is used in the translation strategy [15] to represent
time passing on a Simulink simulation. To enable fault injection, we change the
behaviour of this process for the hardware signals. Therefore, the process that
represents a hardware signal is written as:

HwSignal(o, i, Tin) = tick -> o?vo:Tin -> i?vi:Tin -> HwSignal(o, i, Tin)

The only difference on the behaviour is the independence of values communicated
on the output and input channels. It allows the value received on the following
component (input channel) to be different of the value observed on the output
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channel. Although it is a small change, it is significant for the fault injection to
work properly. The Breaker Process controls these values to obtain the nominal
behaviour (vi = vo) and the fallible behaviour (vi �= vo).

Changes in Block.csp. The Breaker Process requires the communication chan-
nels of the components to be controlled. To achieve that, we created a different
structure for a subsystem: rather than defining a subsystem as a process, we
define it as a set of communications (CS). We use this set to initialize a process
during the analysis. The original version [15] uses this set to define the final
behaviour of the process with a replicated alphabetized parallel operator and
hides the internal signals to externalize only the input and output channels of a
component. In our strategy, the visibility control is defined by the Breaker Pro-
cess, which externalizes the internal hardware channels, the inputs and outputs
and the faults documentation, when they are present, which are used to extract
the failure logic, shown on Section 3.2. The behaviour with the replicated alpha-
betized parallel operator is kept to correspond to the behaviour in the original
strategy.

Thus, the processes of the components under analysis are defined as the in-
ternal processes and their signals. If an internal element is also a subsystem,
then its internal signals are also externalized to be controlled by the Breaker
Process.

Only the behaviour of the component under analysis is changed. It is necessary
to keep both behaviours in this layer: the original, as a process, for the other
components, and as set, for the components under analysis.

Changes in Types.csp. In this layer, the basic types are defined, like in-
tegers, booleans, floating-point numbers and vectors. The relational operators
(like greater than, less than and equals) and mathematical operations (like sum,
division etc.) are defined for these types.

To detect failures related to signal omission, we perform a lifting by adding
a new data type “omission” (OMISSION), which can be communicated in any
channel. We changed the comparison functions and the mathematical operators
to support this new data type.

Generated CSPM Specification. To prepare the generated CSPM specific-
ation to run with the Breaker Process, we need to do the following:

1. Add the signal omission on the types of the input channels;
2. Replace Signal processes by HwSignal processes for components annotated

as hardware;
3. Change the behaviour of the component under analysis from process to a

set. The internal elements which are subsystems also need to be converted
from process to a set.

By applying our adjustments to the translation from Simulink to CSPM , the
SIMPLE process becomes:
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TIn1 = { OMISSION, ... }
L02_SIMPLE =

let In1 = B_Inport(1, TIn1)(cout.SW.N02_SIMPLE.1)(Sampler__CONTINUOUS)
Sig_N02_SIMPLE = Signal(cout.SW.N02_SIMPLE.1,

sig.SW.N02_SIMPLE.1, TIn1)
Out1 = B_Outport(1, TIn1)(sig.SW.N02_SIMPLE.1)(Sampler__CONTINUOUS)
CS = { (In1, {| tick, in.1.xD, sig.SW.N02_SIMPLE.1.xD | xD<-TIn1 |}),

(Sig_N02_SIMPLE, {| tick, cout.SW.N02_SIMPLE.1.xD,
sig.SW.N02_SIMPLE.1.xD | xD<-TIn1 |}),

(Out1, {| tick, sig.SW.N02_SIMPLE.1.xD, out.1.xD | xD<-TIn1 |}) }
within CS

If the connecting signal (sig.SW.N02 SIMPLE.1) was annotated as hardware in the
Simulink model, then we should use HwSignal instead of Signal to declare the
process Sig N02 SIMPLE.

3.2 Breaker Process

The Breaker Process aims at: (i) controlling the fault injection on the components
and (ii) documenting the counterexample traces with enough information to
assemble the failure logic. The infrastructure of this process is composed of:

1. A generic process named ComponentBehaviour, parametrized by (i) the set of
pairs of processes and theirs communications3, (ii) the function that handles
the hardware channels’ behaviour and (iii) the function that documents the
failures:

ComponentBehaviour(CS, fFailure, fDoc) =
let
Component = B_Diagram(CS)
(...)
SignalsSync = Union({ ComponentInputs, ComponentOutputs, HwOutputs, HwInputs })
HiddenSignals = Union({ HwInputs, HwOutputs, SwSignals, FEvaluations, {tick} })
(...)
SignalsBehaviour = ... -- it uses fFailure and fDoc

within (Component [|SignalsSync|] SignalsBehaviour) \ HiddenSignals

where B Diagram(CS) = || (p,cs): CS @ [ cs ] p (replicated alphabetized
parallel).

2. Two instances of ComponentBehaviour, one representing nominal behaviour
(Nominal) and another for fallible behaviour (Breakable):

Nominal(CS) =

ComponentBehaviour(CS,

\ v, vs @ {v}, -- fFailure

\ vi, vs @ vs) -- fDoc

Breakable(CS) =

ComponentBehaviour(CS,

\ v, vs @ diff(vs, {v}), -- fFailure

\ vi, vs @ {vi}) -- fDoc

3 It is the set CS, which is used on the alphabetized parallel operator to put all internal
elements in parallel.
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where the function fFailure of the nominal behaviour enables only the com-
munication of the event v, returning the set {v} and, in the failure behaviour,
all, except v (diff(vs, {v})). The function fDoc, enables the documentation
of any fault in the nominal behaviour, returning the set vs and, for the
fallible behaviour, enables only the fault event, through the set {vi}.

3. Documentation channels, named failure.Hardware with extra parameters to
identify faulty channels.

The main idea behind the Breaker Process is to add documentation channels of
the faults and to control the communication of the signal values. The nominal
behaviour allows the documentation of any faults, but limits the behaviour of
the hardware channels to the nominal behaviour. On the other hand, the fallible
behaviour allows the communication of any value except the nominal value on
the hardware channels and its corresponding fault is documented on the special
channel (failure). The original translation from Simulink to CSPM [15] exposes
the inputs and outputs of the component under analysis through the channels
in and out. Our strategy compares these channels in the nominal and fallible
behaviour in a way that, if, for the same values on the input channels, the out-
put channels have different values of the the nominal behaviour, the generated
trace is a failure trace. FDR generates the counterexamples by processing the
following assertion:

assert Nominal(CS COMPONENT) [T= Breakable(CS COMPONENT)

where CS COMPONENT is the set of pairs of type (p, cs), such that p is a process
of an internal element of the component and cs is the communications set of
the internal element, as shown in Section 3.1. Always a component has at least
one hardware element, FDR will generate counterexamples, where each one is
a failure condition in terms of individual hardware component faults. For the
L02 SIMPLE process, this command is written as:

assert Nominal(L02 SIMPLE) [T= Breakable(L02 SIMPLE)

To be able to obtain any amount of counterexamples we use FDR in batch
mode4. For instance,

fdr2 batch -max <K> -trace <file.csp>

instructs FDR to find at most K counterexamples. As the number of counter-
examples can be large in some situations, we created a tool that extracts the
combinations of fault occurrences automatically.

To create the failure logic, we see each trace as a conjunction where events
become propositions. After converting each trace into a conjunction, we combine
them into a big disjunction. If needed we can simplify this disjunction using tool
support [33]. This will be illustrated in more detail in the next section.

4 The FDR GUI is preconfigured to report at most 100 counterexamples.
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4 Case Study

EMBRAER provided us with the Simulink model of an Actuator Control System
(depicted in Figure 2). The failure logic of this system (that is, for each of its
constituent components) was also provided by EMBRAER (Figure 1). In what
follows we illustrate our strategy using only the Monitor component (A) to save
space.

The monitor component is a system commonly used for fault tolerance [27,17].
Initially, the monitor connects the main input (power source on input port 1)
with its output. It observes the value of this input port and compares it to
a threshold. If the value is below the threshold, the monitor disconnects the
output from the main input and connects to the secondary input. We present
the Simulink model for this monitor in Figure 3.

We translated the monitor to CSPM according to the changes presented in
Section 3. We present part of the generated code in what follows (we omit some
parts to save space5):

B_L02_S_Monitor(threshold) =
let

MonIn1 = B_Inport(1, Tbattery1)(cout.HW.N04_MonIn1.1)(...)
Sig_N04_MonIn1_1 = HwSignal(cout.HW.N04_MonIn1.1, sig.HW.N04_MonIn1.1, Tbattery1)
(...)
RelOperator = B_GTE(<Tbattery1,Tthreshold>)(...)
[[ in.1.x1 <- sig.HW.N04_MonIn1.1.x1, in.2.x2 <- sig.SW.N04_Threshold.1.x2,

out.1.xB <- cout.HW.N04_RelOperator.1.xB
| x1<-Tbattery1, x2<-Tthreshold, xB<-Tboolean ]]

(...)
CS = {
(MonIn1, {| tick, in.1.xI, cout.HW.N04_MonIn1.1.xI | xI<-Tbattery1 |}),
(Sig_N04_MonIn1_1, {| tick, cout.HW.N04_MonIn1.1.xI, sig.HW.N04_MonIn1.1.xI

| xI<-Tbattery1 |}),
(...)
(RelOperator,

{| tick, sig.HW.N04_MonIn1.1.x1, sig.SW.N04_Threshold.1.x2,
cout.HW.N04_RelOperator.1.xB | x1<-Tbattery1, x2<-Tthreshold, xB<-Tboolean |}),

(...) }
within CS

We then execute the following assertion:
assert Nominal(L02 S Monitor(I.3)) [T= Breakable(L02 S Monitor(I.3))

in FDR, obtaining the following traces:

--TRACE 1:
in.1.I.5
failure.Hardware.N04_RelOperator.1.EXP.B.true
failure.Hardware.N04_RelOperator.1.ACT.B.false
in.2.I.5
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
out.1.OMISSION

-- TRACE 2:
in.1.I.5

failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION
in.2.I.5
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
out.1.OMISSION

-- TRACE 3:
in.1.I.5
failure.Hardware.N04_MonIn1.1.EXP.I.5

5 The complete specification can be downloaded from
http://www.cin.ufpe.br/~alrd/2012SBMF/2012SBMF.zip. Unzip and open the file
“Monitor-InterfaceBreaker.mdl.csp” in FDR.

http://www.cin.ufpe.br/~alrd/2012SBMF/2012SBMF.zip


126 A. Didier and A. Mota

failure.Hardware.N04_MonIn1.1.ACT.OMISSION
in.2.I.5
failure.Hardware.N04_RelOperator.1.EXP.B.false
failure.Hardware.N04_RelOperator.1.ACT.B.true
out.1.OMISSION

-- TRACE 4:
in.1.I.5

failure.Hardware.N04_MonIn1.1.EXP.I.5
failure.Hardware.N04_MonIn1.1.ACT.OMISSION
failure.Hardware.N04_RelOperator.1.EXP.B.false
failure.Hardware.N04_RelOperator.1.ACT.B.true
in.2.I.5
failure.Hardware.N04_MonIn2.1.EXP.I.5
failure.Hardware.N04_MonIn2.1.ACT.OMISSION
out.1.OMISSION

To briefly understand which fault information each trace carries with it, con-
sider the first trace (TRACE 1). This trace presents two faults: the expected value
(labelled EXP) on the relational operator control input (N04 RelOperator) is true,
but the actual observed value is false (labelled ACT). On the second input port
(N04 MonIn2), the value 5 is expected, but the signal omission (OMISSION) was
observed. Thus, the failure condition this trace captures is: N04 RelOperator AND

N04 MonIn2.
By applying our strategy to all traces found and taking their disjunction, we

obtain the following failure logic:

(RelOperator.1 AND MonIn2.1) OR (MonIn1.1 AND MonIn2.1) OR
(MonIn1.1 AND RelOperator.1) OR (MonIn1.1 AND RelOperator.1 AND MonIn2.1)

which can be simplified to:

(RelOperator.1 AND (MonIn1.1 OR MonIn2.1)) OR (MonIn1.1 AND MonIn2.1)

This is exactly (except for naming conventions) the failure logic provided by
EMBRAER (Figure 1 (A)), written manually by safety engineers.

We also applied our strategy to the actuator component (Figure 2), where
FDR found 8.820 counterexamples. After this exercise, due to the large number
of traces, we realised the need to develop a tool to extract the failure logic
automatically. We implemented such a tool. As result, we extracted a failure
logic weaker (that is, our logic considers more cases) than the one provided by
the EMBRAER engineers. We leave the decision on eventually discarding certain
parts of this logic to the safety specialists. It is worth noting that our failure
logic is at least the same as that stated by highly experienced safety engineers.

Another noteworthy aspect of our strategy is that because it is component-
wise and the component’s behaviour is in general relatively simple, our strategy
does not suffer from the state explosion problem. If the component’s behaviour
is in fact more complex, we can use our strategy to lower level components and
then use HiP-HOPS to derive the failure logic of the higher level component.

5 Related Work

The work reported in [20] presents a similar strategy, but it uses tables to create
fault trees. Rather than using tables, we capture the nominal behaviour from
the Simulink block diagrams [23,15,28] and use an existing technique to perform
safety assessment [12].



Identifying Hardware Failures Systematically 127

The search for failures in systems by fault injection is a technique that has
been used both directly in hardware [32,25] (with patents [14,21]) or in mod-
els [16,1,34,19]. In real components it is expensive, because, generally, it requires
the damage of these components to observe their fallible behaviour.

The work reported in [34] presents a strategy for fault injection in a Simulink
model similar to ours. They provide values for all input signals (stimuli file).
Furthermore, it is possible to select failure modes for each input port using the
tool they created. In our work, it is not necessary to provide possible input values,
nor the failure modes: we instruct FDR to search for these fault values. Another
similarity with our work is the comparison of the failure behaviour against the
nominal behaviour, which in [34] is called “the golden run”.

The work reported in [19] presents a strategy to generate fault trees automat-
ically from annotated nominal behaviour. The final goal of our work is also the
generation of fault trees, as reported in [12]. The difference to this work is that
we do not need to annotate nominal behaviour because it is extracted directly
from the Simulink model.

6 Conclusion

In our work we presented a systematic strategy to obtain failure logic from a nom-
inal model. This failure logic is essential for system safety assessment [28,15,12].
We use Simulink as starting point because it is a standard tool in the control
systems industry. Furthermore, our work connects the strategy presented in [24]
with the works reported in [15] (functional analysis) and in [12,28] (safety as-
sessment) through the failure conditions found by our strategy.

Our strategy is based on exhaustive search (model checking) to find failures.
To handle large finite sets or infinite sets specifications, we consider data ab-
straction [10,6]. Due to the exhaustive aspect, we can find failures that are even
unlikely to occur in a statistical sense (its probability of occurrence can be negli-
gible in practice). Therefore, our strategy is particularly suitable for new systems,
where there is no historical records to be used by safety engineers. Our strategy
finds all possible (untimed) failures and we leave to engineers the decision on
whether such and such failure must be considered or not.

Another contribution of our work is that we have improved the translation
strategy reported in [15]. We identified some missing Simulink blocks, which
had not their behaviour declared in the layer BlockLibrary.csp. We implemented
functions for floating-point number calculations (which is not directly supported
by FDR) in terms of integers that were not completely implemented in [15].

A limitation of our work is that we cannot detect time related failures, like
too early or too late failures [4,13]. In principle, we could follow two approaches
to solve this: the first is to extract the discrete time passing information, already
present in [15], to represent them in the counterexample traces. The second
is to represent the time in a continuous domain and use timed-CSP [29]. The
drawback with this second way is that we need to use a theorem prover instead
of a model checker and thus we will not have counterexamples to create the
failure logic. This is a topic for future research.
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Another future work we intend to do is to implement our strategy completely.
Currently our implementation is limited to extract the failure logic from the
counterexamples found. The connection with [15] and [12] is through the failure
logic in the form of boolean expressions. We intend to make this connection
through a tool.

Instead of changing the translation strategy reported in [15], maybe it would
be easier to apply refactoring rules on the Simulink diagrams. Such a trans-
formation would add new blocks for each signal. By applying [15] as originally
proposed, without changing it, maybe the resulting CSPM specification is equi-
valent to the one presented here with less effort. We need to investigate this issue
as well.

We plan to apply our strategy in the COMPASS6 project which is related to
SoS (Systems of Systems). We may adapt our strategy to SysML (Systems Mod-
elling Language), which uses diagrams and is semi-formal, and CML (COMPASS
Modelling Language), the underlying formal language specific to SoS, based on
CSPM and VDM (Vienna Development Method).
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Abstract. In design of dependable software for real-time embedded sys-
tems, time analysis is an important but challenging problem due in part
to the randomicity and nondeterminism of interrupt handling behaviors.
Time properties are generally determined by the behavior of the main
program and the interrupt handling programs. In this paper, we present
a small but expressive language for interrupt-driven programs and pro-
pose a timed operational semantics for it which can be used to explore
various time properties. A number of algebraic laws for the computa-
tion properties that underlie the language are established on top of the
proposed operational semantics. We depict a number of important time
properties and illustrate them using the operational semantics via a small
case study.

Keywords: time, interrupt, operational semantics.

1 Introduction

With the rapid development of the computer industry, multitudinous operat-
ing systems spring up in the past forty years. An operating system (OS), as a
particular software running on computers, not only manages the computer hard-
ware, but also provides the common platform for efficient execution of various
application software. It acts as a bridge between the computer hardware and
application programs. A real-time OS is a multitasking OS that aims at exe-
cuting real-time applications. This kind of OS involves both logical correctness
and timeliness. Usually the interrupt mechanism is introduced as a technique
to support multi-threads, device drivers and OS in real-time computing, which
enables OS to handle time-sharing tasks and concurrency.

An interrupt-driven system indicates that the OS can schedule the tasks’ exe-
cution and perform reasonable allocation of time and other resources in the form
of hardware interrupt or software interrupt. The interrupts are usually imple-
mented in terms of asynchronous signals and synchronous events. The generation
of interrupt requests (signals/events) is usually random and nondeterministic,
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which make interrupt behaviors extremely difficult to reason about in the devel-
opment of OS.

The analysis and verification of interrupt therefore becomes the focus of at-
tention in both industry and academia. There have been proposals suggesting
that interrupts can be regarded as threads and may be verified like threads using
some similar verification methods [2–5]. Some researchers have attempted to ap-
ply different formal methods to the interrupt programs [6–8]. In an earlier work,
we have developed a formal model of interrupt programs from a probabilistic
perspective, designed the probabilistic operational semantics for interrupt pro-
gram to capture the potential properties, and specified the time constraint of
interrupt programs [1].

Most real-time operating systems require responsive interrupt handling to
meet the real-time requirements. As this kind of OS has been widely used in our
society, the correctness of timing behavior in this kind of OS becomes increasingly
important. There has been work reported on analyzing the time properties of
interrupt-driven programs. Jens Palsberg et al. have performed a series of studies
on interrupt-driven Z86-based software. They have developed a tool to analyze
interrupt latencies, stack sizes, deadline as well as verified fundamental safety
and liveness properties [9–12]. John Regehra has proposed a set of design rules for
interrupts in real-time and embedded software, where he believes it is necessary
to consider the stack overflow, interrupt overload and real-time analysis problems
[13].

There has also been work reported to improve the performance of the interrupt
mechanism, in order to make real-time embedded operating systems to provide
correct and timely services in the presence of constrained resources. Eleiderma-
cher suggests that the most important characteristic that makes an operating
system a real-time system is the ability to handle interrupts quickly. He pro-
poses a few rules to minimize interrupt response time in worst case [14]. Jinkyu
et al. [15] suggest a novel scheme to minimize the performance degradation in
embedded operating systems with real-time support, where they present trans-
parent and selective real-time interrupt services which transparently monitor the
system and postpone interrupt handling that are not relevant to real-time tasks.

With the development of various formal methods and emergence of the corre-
sponding tools, such as automata theory, B method, Z notation, CSP, VDM, etc.,
formal methods can be applied with the assistance of automated and human-
assisted tools. This makes the analysis and verification of programs more and
more viable. In this paper, we develop a formal model of interrupt-driven pro-
grams from a timing perspective, in order to analyze time properties during
the development of such programs. We propose an interrupt-driven program-
ming language and define a timed operational semantics for interrupt-driven
programs written in this language and explore various time properties using the
semantics. The main contributions of our work includes:

• Interrupt-driven Programs. We present a language of the interrupt-
driven programs including some interrupt operators like enable/disable/set.
In our model, the system can enable or disable interrupts to decide whether



Investigating Time Properties of Interrupt-Driven Programs 133

the system should enable/disable the interrupt mechanism which is to in-
teract with the environment via interrupt handling. Moreover, the system
can request any interrupt itself by setting a interrupt signal which help the
system schedules multiple tasks.

• Timed Operational Semantics. Time is introduced into operational se-
mantics to specify the meanings of the interrupt-driven programs. We pro-
vide two ways to handle the interrupt requests. One is an ordinary way that
the received interrupt requests are always handled, and the other is a safe
way that the system may ignore some interrupts so as to make sure that the
program always meet the deadline. Meanwhile, the algebraic laws [16] that
underlie the language are established in terms of the suggested operational
semantics.

• Time Properties. We depict a number of important time properties which
are essential to the real-time embedded operating systems in our frame-
work: interrupt response time, interrupt activated time, interrupt overload
and deadline. The analysis of four properties will help the analysis of the
real-time embedded OS. Based on these, we give an example to present the
feasibility and effectiveness of our approach.

The remainder of the paper is organized as follows: Section 2 introduces the
interrupt handling mechanism which we discuss about in this paper and pro-
vides an approach to describing the program’s operating environment. Section
3 defines the language which has two parts, i.e., the main program and the in-
terrupt handlers. Section 4 is devoted to a timed operational semantics for our
interrupt-driven language. Section 5 lists some interesting algebra laws for the
computation properties of our programs. The time properties of interrupt pro-
grams are specified and a corresponding case study is presented in Section 6,
followed by our concluding remarks in Section 7.

2 Overview of the Interrupt Mechanism

In this section, we depict the interrupt mechanism in our model, which has been
used in some real-time embedded operating systems. The interrupt mechanism
provides an efficient way for an operating system to interact with and react to
its operating environment. Such a mechanism is illustrated in Figure 1. In our
model, the interrupts are implemented in terms of signals which can be produced
by either the software program or the hardware device; in other words, by ei-
ther the system or the environment. Firstly, when an interrupt is received, the
program that is currently running is suspended and its state is saved. Secondly,
the code that has already been associated with the interrupt starts to run. Such
code can be found in the interrupt vector. At last, the control returns to where
the interrupt has occurred and all the preserved states should be returned as if
the interrupt has never happened.
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Fig. 1. The Mechanism of Interrupt

Based on the interrupt mechanism, we give an informal introduction about
the system and the environment in our model in what follows.

2.1 System

In our model, the system is divided into two parts, i.e., the main program and
the interrupt handlers. The main program provides basic services and can be
expressed as a particular sequential program. The interrupt handlers interact
with the environment to make sure the system can provide correct and timely
services. Although they both are programs from a coding perspective, they still
have their own characteristics due to different duties.

The main program’s characteristics:

– A real-time embedded operating system usually supports multiple tasks, and
it always has a scheduling strategy to manage the tasks and to locate the
limited resources. In our model, we assume there is one processor and only
one task is running at all time. So the system can be described as a sequential
program ( “the main program” called here).

– The main program can enable or disable the interrupt handling. An inter-
rupt signal is used to denote an interrupt request. Only when the inter-
rupt handling is enabled, the system can receive interrupt signals which are
then handled by the corresponding interrupt handlers in the order in which
they were received. On the other hand, if the interrupt handling is disabled,
the system ignores all interrupt signals received during the disabled period.
Moreover, when the interrupt handling option is switched from enabled to
disabled, the accumulated interrupt requests are cleared.

– The main program prevents itself from continuously being interrupted by re-
quiring itself to step forward once returning back from an interrupt handler.
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The interrupt handlers’ characteristics:

– An operating system usually tries to ensure that the time spent on interrupt-
handling is kept to a minimum. It saves the state of the interrupted program
when the context is switched to that of an interrupt handler. In our model,
interrupt handlers may require a little handling time but they will not modify
the data states of their interrupted programs. Moreover, for simplicity, we
assume no priorities for interrupt handlers here; all interrupt requests are
therefore dealt with in the order they were received. It is acceptable for the
system to ignore some interrupt signals in order to meet its deadline.

– Both the system and environment can request interrupts by issuing interrupt
signals. In our model, the system may issue any interrupt signal in any
place wherever it needs. Meanwhile, the environment may also produce any
interrupt signal unexpectedly at any time. As we mentioned above, only
when the interrupt handling is enabled, interrupt requests can be received
and handled as soon as possible (but not necessarily immediately). In our
model, we assume that there would not be two or more interrupt signals
happened at the same time (such a scenario rarely happens in fact).

– In our model, the system forbids interrupt nesting. But during the execution
of an interrupt handler, the system can still receive and record interrupt
requests.

2.2 Environment

The correctness of an real-time embedded operating system depends not only on
its logical correctness but also its correct response to the operating environment.
For better interaction with the environment, the system must respond the inter-
rupts timely on one hand, and the main program of the system must meet its
time deadline on the other hand. So analyzing such kind of systems must take
into account the variable environment.

In our model, we assume there are only a finite number of different kinds
of interrupt signals, and the environment may produce different sequences of
interrupt requests made up of these signals. For a given sequence, we can analyze
the behavior of the system in the corresponding environment and investigate
its time properties. To have a better analysis of the behavior of the system in
a specific environment, we assume that each signal in the sequence is labeled
with its arrival time. Despite of the randomicity and nondeterminism of the
interrupts, we would still expect that any user-given interrupt sequence can
reflect the real scenarios to a large extent, so that our analysis can reveal more
accurate performance of the system in such reasonable situations.

3 The Language

In this section, we present our language to specify interrupt-driven programs,
which includes some ordinary program constructs as well as three new constructs
related to interrupt handling, namely enable, disable and set. We also define a
function to estimate the execution time of program which supports the time
analysis of interrupt-driven programs.
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3.1 Syntax

In our model, a system is composed of a main program and a set of interrupt
handlers. We use the notation Sys ::= [M, I] to describe a system, where M
and I denotes the main program and the set of interrupt handlers respectively.
The main program can be interrupted by interrupt signals corresponding to
any of the interrupt handlers in the interrupt set I. As mentioned earlier, the
interrupt nesting is forbidden in our model. That is, an interrupt handler cannot
be interrupted by other handlers. The abstract syntax of the language is defined
in the following.

M ::= enable | disable | set(is) | P | M ;M |
M � b�M | [b ∗M ]n

(is→ P ) ∈ I
When the system starts, the interrupts are usually enabled so that the system
can interact with the environment timely. After that, the main program can
enable or disable interrupts. The main program itself can also set an interrupt
signal is via set(is) to take the initiative to request an interrupt. The notion
(is → P ) ∈ I denotes an interrupt handler P identified by the interrupt signal
is. Note that P , which appears in both the main program and interrupt handlers
above, stands for an ordinary program and is defined in what follows.

P ::= skip|x := e|P ;P |P � b� P |[b ∗ P ]n|atomic(P )

skip is a program that does not change anything. x := e assigns the value of
e to the variable x. The programs P ;Q denotes the sequential composition of
P and Q (similarly for M1;M2). The program P � b � Q behaves like P if the
boolean expression b is true, or Q otherwise (similarly for M1 � b � M2). The
iteration [b ∗ P ]n iterates P whenever b is true. For simplicity, we assume the
number of iterations is statically known and is given by the annotation n. The
assignment x := e and the evaluation of boolean expression b are atomic, that is,
their computation cannot be interrupted. Informally atomic(P ) behaves like P
except that any interrupts occurred would not dealt with during the execution.
However, it is not equal to (disable;P ; enable). The difference lies in that the
system can still receive interrupt requests during the execution of atomic(P )
while (disable;P ; enable) will make the system to ignore all interrupt requests
including previously received ones.

3.2 Workload Function

In this subsection, we give a definition of workload function f : M × σ → N to
estimate the execution time of program. The time that elapses during the pro-
gram’s execution is interrelated with the program’s structure and data states.
If the initial state of program is definite, then the finial state is definite. M is
program while σ stands for the program’s current data states. And N is natural
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number denoting time. The user can define the execution time of each program by
f , here we assume that the interrupt operations enable, disable and set don’t cost
any time and all of them can be considered as instantaneous operation following
the previous ones, where f(enable, σ) = 0, f(disable, σ) = 0 and f(set(is), σ) = 0.
In particular, we define skip won’t cost time f(skip, σ) = 0. Moreover, we assume
the computation of expression e or b won’t cost time as they are prepared to
evaluate their values in the former operations.

Our group has developed a virtual machine called xBVM which we introduced
in [17]. This machine which based on xBIL language can be used to execute the
xBIL code and calculate the program’s execution time. With this example,
we can assure that the workload function is feasible and practical. Absolutely,
the user can use any feasible machine to help estimate the program’s execution
time, which makes better use of our approach for analyzing the time properties
of programs.

Property 1. For a sequential program P ;Q, its execution time is the sum of
the time cost by P and Q. The program P starts with initial state σ and Q
performs at the state passed from P which is a definite state P (σ).

P-1 f(P ;Q, σ) = f(P, σ) + f(Q,P (σ))

Property 2. This function distributes over conditional operator.

P-2 f(P � b�Q, σ) = f(P, σ) � b(σ) � f(Q, σ)

Property 3. The atomic(P ) costs the same time as program P .

P-3 f(atomic(P ), σ) = f(P, σ)

Property 4. The execution time of iteration program is interrelated with the
boolean expression and loop times.

P-4 f([b ∗ P ]n, σ) = f(P ; [b ∗ P ]n−1, σ) � b(σ) � f(skip, σ)

4 Operational Semantics

In the section, we present an operational semantics for the interrupt-driven pro-
gram. The operational semantics specifies how the effect of a computation is
produced. It is given in terms of transitions between configuration. The configu-
ration is defined as a tuple 〈M,σ, t, i, q〉 consisting of the following components:

– M describes the program to be executed. We can use workload function to
estimate the execution time of this program.

– A state σ ∈ Σ : V ars → N which is a mapping of the given finite set V ars
of variables to the set N of natural numbers. The data states of the main
program and the interrupt handlers have no intersection.

– t ∈ N denotes the time spent by the running program.
– The identifer i indicates the running state of the system. It has three values,

i.e., 0, 1, and 2. 0 stands for the interrupts are enabled and the main program
can be interrupted at any time. 1 denotes that the interrupts are enabled,
but the main program cannot be interrupted until progressing one step. And
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it makes there won’t be more than one interrupt handled in the same place.
At last, 2 stands for the interrupts are disabled.

– We employ interrupt signals queue q to record the received signals.

We give a few of the operational rules for the interrupt-driven program as follows.
In our framework, each program has a deadline (denoted by d) which is given in
specification to help analyze the behavior and time properties of program. For
all the transitions, we assume they satisfy a precondition that a good program
M to be executed will always meet its deadline, so there exists such a invariance
f(M,σ) ≤ d during the program normally running. Moreover, the system con-
tains a set of interrupt handlers, and the arrow→I means the transition happens
within the interrupt set I.

Nontermination
We employ 〈M,σ, t, i, q〉 where t > d to indicate the nontermination of the
program. The notation t > d means programM has already missed its deadline.

Assignment

〈x := e, σ, t, 0, nil〉 →I 〈skip, σ[e/x], t′, 0, q〉
〈x := e, σ, t, 1, q〉 →I 〈skip, σ[e/x], t′, 0, q′〉
〈x := e, σ, t, 2, nil〉 →I 〈skip, σ[e/x], t′, 2, nil〉

where t′ = t+ f(x := e, σ)

The assignment x := e is an atomic action which cannot be interrupted. We
write σ[e/x] for the state that agrees with σ except at x, which is mapped to
σ(e). The σ(e) means the natural number value of e in σ.

There are three kinds of transitions for assignment. Firstly, system is in 0
state, the assignment can execute only when q = nil, otherwise the interrupt in
q will be handled before the assignment running. During its execution, the envi-
ronment may produce interrupt signal, where nil may change into q. Secondly,
system is in 1 state which means the system returns from handling an interrupt
just now, the assignment will always execute no matter whether there is any
more interrupt request in q or not. And q may extend to q′ as the environment
may issue interrupt signal. The assignment is considered as one step, the system
can turn its state from 1 to 0 after it executed. At last, when the system is
in 2 state, there shouldn’t be any interrupt. When the assignment finishes, the
execution time t adds the time consumed by itself.

Sequential Composition

〈M1, σ, t, i, q〉 →I 〈skip, σ′, t′, i′, q′〉
〈M1;M2, σ, t, i, q〉 →I 〈M2, σ

′, t′, i′, q′〉
〈M1, σ, t, i, q〉 →I 〈M ′

1, σ
′, t′, i′, q′〉

〈M1;M2, σ, t, i, q〉 →I 〈M ′
1;M2, σ

′, t′, i′, q′〉
The sequential composition of two programsM1;M2 is executed by running M1

first and running M2 until M1 terminates. If M1 is unable to terminate, so is
M1;M2.
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Choice
b(σ) = true

〈M1 � b � M2, σ, t, i, q〉 →I 〈M1, σ, t, i, q〉
b(σ) = false

〈M1 � b � M2, σ, t, i, q〉 →I 〈M2, σ, t, i, q〉
The notation b(σ) is defined for the boolean value of b in σ, and the evaluation of
expression b cannot be interrupted. In our framework, we assume b’s computation
won’t cost time as it is prepared to evaluate true or false in the former operations.
The program behaves like M1 if the boolean expression b is true, or M2 if false.

Iteration
b(σ) = true ∧ n ≥ 1

〈[b ∗M ]n, σ, t, i, q〉 →I 〈M ; [b ∗M ]n−1, σ, t, i, q〉
b(σ) = false ∨ n = 0

〈[b ∗M ]n, σ, t, i, q〉 →I 〈skip, σ, t, i, q〉
The iteration is similar with the choice program that the interrupt cannot hap-
pen during the evaluation of b. The real-time embedded system usually forbids
infinite iteration, especially the interrupt handlers, so it is always limited to a
number of cycles.

Atomic Action

〈atomic(skip), σ, t, i, t〉 →I 〈skip, σ, t, i, q〉
〈P, σ, t, 0, nil〉 →I 〈P ′, σ′, t′, 0, q〉

〈atomic(P ), σ, t, 0, nil〉 →I 〈atomic(P ′), σ′, t′, 0, q〉
〈P, σ, t, 1, q〉 →I 〈P ′, σ′, t′, 0, q′〉

〈atomic(P ), σ, t, 1, q〉 →I 〈atomic(P ′), σ′, t′, 0, q′〉
〈P, σ, t, 2, nil〉 →I 〈P ′, σ′, t′, 2, nil〉

〈atomic(P ), σ, t, 2, nil〉 →I 〈atomic(P ′), σ′, t′, 2, nil〉
where t′ = t+ (f(P, σ)− f(P ′, σ′))

The user can define atomic action to ensure a series of actions complete with-
out interrupted. The behavior of atomic(P ) is the same as program P without
interrupt. It has three kinds of transitions like the assignment.

Enable/Disable Interrupt

〈enable, σ, t, i, q〉 →I 〈skip, σ, t, 0, q〉
〈disable, σ, t, i, q〉 →I 〈skip, σ, t, 2, nil〉

The statement enable is an atomic action which can change the system’ state
into 0. So that the program can receive the interrupt request and handle the
interrupt as soon as possible. The disable is also an atomic action and it makes
the system’s state turn into 2 and empties the interrupt signals queue q. Once
the system is disabled, the received and the new interrupt requests are all be
ignored. In our model, we mentioned both of the two operations are considered
to take no time.
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Request Interrupt

〈set(is), σ, t, 0, nil〉 →I 〈skip, σ, t, 0, is〉
〈set(is), σ, t, 1, q〉 →I 〈skip, σ, t, 0, q�is〉
〈set(is), σ, t, 2, nil〉 →I 〈skip, σ, t, 2, nil〉

The main program can request any interrupt actively. The set(is) denotes that
the main program requests the is interrupt. set(is) is an atomic action and it has
the same transitions as assignment except that it won’t cost time. Only when the
interrupts enabled, the request signal will be accepted and put into the queue
in occurred order.

Handle Interrupt

head(q) = is ∧ 〈I(is), σI , t, 2, nil〉 →I 〈skip, σ′
I , t

′, 2, nil〉
〈M,σ, t, 0, q〉 →I 〈M,σ, t′, 1, q′〉

where t′ = t+ f(I(is), σI)

As we mentioned before, there is no intersection of data states between the main
program and interrupt handlers, where σ ∩ σI = ∅. When the interrupts can
be executed, they are always handled in First In First Out order. So the head
signal is got out of queue and the corresponding interrupt handler executes. The
interrupt handler cannot be interrupted, so its state is set to 2 and q is nil.

After the interrupt terminates, the time t of the main program should also
records the time spent by the interrupt. And the system’state changes from 0 to
1 to denote the main program cannot be interrupted again in the same place.
The environment may produce interrupt signal during the execution of interrupt
handler, so q′=is�q or q′=is�q�q′′. If the interrupt consumes so much time that
make the main program miss the deadline, the deadline is negative.

Handle Interrupt Safely
In our model, we also provides a mechanism that can make the program always
meet the deadline. Before the ready interrupt handler running, the system will
evaluate whether there is enough time for the main program’s execution. We use
the arrow

s−→I to denote the transition is based on the safe mechanism.

head(q) = is ∧ f(I(is), σI) ≤ T∧ 〈I(is), σI , t, 2, nil〉 s−→I 〈skip, σ′
I , t

′, 2, nil〉
〈M,σ, t, 0, q〉 s−→I 〈M,σ, t′, 1, q′〉

where T = d− f(M,σ) and t′ = t+ f(I(is), σI)

head(q) = is ∧ f(I(is), σI) > T

〈M,σ, t, 0, q〉 s−→I 〈M,σ, t, 0, q′〉
where T = d− f(M,σ)

The safe transition is the same as the normal transition when there is enough
time for the interrupt to be executed, in other words, the inequality f(I(is), σI) ≤
(d− f(M,σ)) establishes. If there isn’t enough time and the system adopts safe
transition, the system may reject the interrupt request to make the main program
meet its deadline. The states of the system remain the same except removing
the ignored interrupt signal out of q.
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We present two equivalence relations in our framework like bisimulation [18,
19]. We assume two programsM1 and M2 with the same interrupt set I execute
in the same environment, and they have same initial states except deadline. For-
mally, let→1

I mean one step and→∗
I mean 0 or more steps under the operational

semantics.

Definition 1. We say an equivalence relation =t over the interrupt-driven pro-
grams. M1 =t M2 iff for any state σ,

if 〈M1, σ, t1, 2, nil〉 →∗
I 〈skip, σ′

1, t
′
1, 2, nil〉 and

〈M2, σ, t2, 2, nil〉 →∗
I 〈skip, σ′

2, t
′
2, 2, nil〉

then (σ′
1 = σ′

2) ∧ (t′1 − t1 = t′2 − t2)
When discussing about =t-equivalence, we assume the interrupt mechanism is
disabled to analyze the main program’s own behavior. When the two programs
terminate, their data states are still same and they consume same execution
time.

Definition 2. We define an equivalence relation R over configurations as a

I -bisimulation if 〈M1, σ, t, i, q〉R 〈M2, σ, t, i, q〉 implies,

if 〈M1, σ, t, i, q〉 →1
I 〈M ′

1, σ
′
1, t

′
1, i

′
1, q

′
1〉

then 〈M2, σ, t, i, q〉 →∗
I 〈M ′

2, σ
′
2, t

′
2, i

′
2, q

′
2〉 and

〈M ′
1, σ

′
1, t

′
1, i

′
1, q

′
1〉R〈M ′

2, σ
′
2, t

′
2, i

′
2, q

′
2〉

if 〈M2, σ, t, i, q〉 →1
I 〈M ′

2, σ
′
2, t

′
2, i

′
2, q

′
2〉

then 〈M1, σ, t, i, q〉 →∗
I 〈M ′

1, σ
′
1, t

′
1, i

′
1, q

′
1〉 and

〈M ′
1, σ

′
1, t

′
1, i

′
1, q

′
1〉R〈M ′

2, σ
′
2, t

′
2, i

′
2, q

′
2〉

Definition 3. (a) Two configurations C1 and C2 are I -bisimilar, written as
C1 =I C2, if there exists a I -bisimulation R such that C1RC2. (b) Two pro-
grams M1 and M2 are I -bisimilar, denoted as M1 =I M2, if for any states σ, t,
i and q, 〈M1, σ, t, i, q〉R〈M2, σ, t, i, q〉.

According to the definition of operational semantics and the two kinds of equiv-
alences, we can educe if =I -bisimilar establishes, then =t-equivalence must es-
tablish. Define if M1 =I M2 then M1 =t M2.

Example. (x := x) �=t skip since they may have different execution time. More-
over, (disable x := 1 enable) =t (x := 1) but (disable x := 1 enable) �=I (x := 1).
Although they cost same time, the latter can receive interrupt quest. So they
may have different system state and interrupt queue.

5 Algebraic Laws

Program properties can be expressed as algebraic laws (equations or inequa-
tions), which can be verified by using the formalized semantics. We explore a
set of important and useful algebraic laws which hold for the interrupt-driven
program in this section. Proofs that the laws are sound with respect to the
operational semantics are straightforward and have been omitted due to space
limit.
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Algebra is well-suited for direct use by engineers in symbolic calculation of
parameters and the structure of an optimal design. Algebraic proof by term
rewriting is the most promising way in which computers can assist in the process
of reliable design [16]. From the point of view of language design it is desirable
to impose as few constraints as possible on the programming constructs, and
make the laws as widely applicable as possible. Here we will confine ourselves to
those laws involving the introduced operators.

Atomic Statement

Atomic statement is idempotent.

A-1 atomic(P ) =I atomic2(P ).

Atomic statement distributes over conditional choice.

A-2 atomic(P � b�Q) =I atomic(P ) � b� atomic(Q).

Interrupt Operation

The programs enable and disable are idempotent.

I-1 enable;P =I enable; enable;P

I-2 disable;P =I disable; disable;P

Program disable makes the following program set(is) no sense.

I-3 disable; set(is) =I disable

The atomic operator between disable and enable behaves no sense.

I-4 disable; atomic(P ); enable =I disable;P ; enable.

6 Time Properties and a Case Study

Real-time embedded operating systems support real-time applications; there-
fore, the designers of such systems should consider their real-time features. The
correctness of this kind of operating systems involves both the logical correctness
and timeliness. In this section, we will analyze some time properties about our
interrupt-driven programs listed as below.

Interrupt Response Time. The system usually takes time to respond to an
interrupt request. This is the time between the arrival of the interrupt signal and
the start of the execution of the corresponding interrupt handler. In order for
the system to have better interaction with the environment, the system should
handle the interrupt request timely. So we think the analysis of interrupt-driven
programs should take this property into account. The system requirement usually
give worst-case upper bounds on interrupt response time. In our model, we use
σw to denote the worst case response time of the analyzed program.

Interrupt-Activated Time. This time denotes the total period when the in-
terrupts are enabled. The system allows the main program to enable or disable
interrupts. The system requirement usually extends interrupt activated time to
make sure that the system can interact with the environment promptly. So it is
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necessary to consider the interrupt activated time in a specified environment to
evaluate the system’s real-time behaviors.

Interrupt Overload. If there come too many interrupt requests, the system
may not have enough time to handle all of them, or it may miss its deadline.
Interrupt overload is a problem to consider in real-time analysis. The designer
usually adopts a few strategies to help make interrupt overload less likely or
impossible in real-time embedded operating systems. For example, they may
keep the execution time of interrupt handlers short or bound the arrival rates
of interrupt signals. Given its importance, we shall also analyze this property of
the system in a given environment.

Deadline. A reliable real-time embedded operating system should be such a
system that it meets its deadline in most cases but may miss its deadline very
rarely (the probability for such cases is so low that it can be tolerated). There
may be a deadline for every program, but we assume the interrupt handler always
meet its deadline in our model. Here we just consider whether the main program
meet the deadline or not in a variable environment.

The Case Study
To carry out the study, we can define a specific environment which contains a
sequence of interrupt signals to happen as well as their happening time. For
instance, the user can assume that there are three kinds of interrupts in the
system, denoted as is1, is2, and is3. For convenience, we assume each of the in-
terrupt handlers costs the same time in different data states, and we assume that
f(I(is1), σI) = τ , f(I(is2), σI) = 2τ and f(I(is3), σI) = 4τ , where τ indicates
the time unit. We also assume that the environment may produce a sequence
such as 〈is2τ1 , is3τ1 , is

4τ
2 〉 or another sequence: 〈isτ1 , is3τ2 , is5τ3 〉, e.g., is2τ1 means at

the second time unit, the environment will produce the interrupt signal is1. We
can analyze the behavior and the time properties about the system in such given
environments.

A main program P whose deadline is 10τ is defined as below, and meanwhile
the interrupts are enabled at the very beginning. We define the execution time
for the program begins in a unique initial data state σ by workload function f .
Here we assume σ = σw that the analyzed program is running in the worst case
scenario. We use superscripts like (n) to label each operation for simplicity.

P =df x := 1(1); y := 2(2);
atomic(x := x+ 1; y := y + 1)(3);

z := x+ y(4); disable(5);x := x− 2(6);

f(x := 1, σ) = τ
f(y := 2, σ1) = τ where σ1 = x := 1(σ)
f(x := x+ 1, σ2) = τ where σ2 = y := 2(σ1)
f(y := y + 1, σ3) = τ where σ3 = x := x+ 1(σ2)
f(z := x+ y, σ4) = τ where σ4 = y := y + 1(σ3)

f(x := x− 2, σ5) = τ where σ5 = z := x+ y; disable(σ4)
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Case 1: The program P executes in such an interrupt sequence: 〈is2τ1 , is3τ1 , is4τ2 〉.
The table below has four parts: P presents the last executed program, t denotes
the execution time of program, i indicates the system’s state, and q certainly
denotes the interrupt signal queue. Take the row 2 for example, when x := 1
finishes running, it costs one time unit τ . The system state is 0 and the interrupt
queue has no interrupt signal.

Table 1. Steps shown in the case 1

P t i q

1 0 0 nil

2 1 τ 0 nil

3 2 2τ 0 is1
4 I(is1) 3τ 1 is1
5 3 5τ 0 is�1 is2
6 I(is1) 6τ 1 is2
7 4,5 7τ 2 nil

8 6 8τ 2 nil

We analyze four properties we mentioned above in case 1. The average of the
interrupt response time is τ , where (0 + 2τ)/2 = τ that the first two interrupt
requests are handled. The interrupt activated time is the sum of time when the
system in 0 and 1 states, and it is 6τ in case 1. During the whole execution
of program P , there comes three interrupts but only two are handled before it
finishes. At last, t = 8τ < d indicates P meet its deadline.
Case 2a: The program P executes in another interrupt sequence: 〈isτ1 , is3τ2 , is5τ3 〉.

Table 2. Steps shown in the case 2a

P t i q

1 0 0 nil

2 1 τ 0 is1
3 I(is1) 2τ 1 nil

4 2 3τ 0 is2
5 I(is2) 5τ 1 is3
6 3 7τ 0 is3
7 I(is3) 11τ 1 nil

Case 2b: According to Case 2a, we get program P miss the deadline where
t = 11τ > d at last. Here we analyze the behavior of the system by following
the safe interrupt handler transition rules. In this case, the is3 interrupt which
costs so much time won’t be handled so P would meet the deadline.

We compare the performance of program P in the same environment but
following different transition rules, namely, an ordinary rule in case 2a, and a
safe rule in case 2b. The interrupt response time is respectively 2/3τ and 0.
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Table 3. Steps shown in the case 2b

P d i q

1 0 0 nil

2 1 τ 0 is1
3 I(is1) 2τ 1 nil

4 2 3τ 0 is2
5 I(is2) 5τ 1 is3
6 3 7τ 0 is3
7 4,5 8τ 2 nil

8 6 9τ 2 nil

The interrupt activated time is respectively 11τ and 7τ . Three interrupts are all
handled in case 2a, while only the first two interrupts are handled in case 2b.
Due to the is3 interrupt executes or not, P misses the deadline in case 2a, but
meets the deadline in case 2b.

According to the examples above, it’s convenient for the user to analyze the
time properties of the interrupt-driven program through the language and the
timed operational semantics in our framework.

7 Conclusion and Future Work

It remains a challenging problem to analyze time properties for programs in the
presence of interrupts. In this paper we make a small step forward in tackling
this problem. We provide a small interrupt-driven programming language and
propose a timed operational semantics for it. To simplify the analysis, we consider
only finite programs where the number of iterations are statically known. We
make use of a workload function to estimate the execution time of programs. We
also have some preliminary discussions on algebraic laws based on the proposed
operational semantics. Several time properties for such programs are introduced
and analyzed under several scenarios with the help of the operational semantics.

As for future work, we will extend the model to cover more advanced issues,
such as interrupt priorities, interrupt nesting, enabling/disabling some interrupt
services (but not all). We shall also try to provide a formal specification for the
time properties and offer a more formal analysis as to how good a programming
model would behave in terms of those time properties.
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Abstract. In this paper, we present a characterization of workflows as
labeled transition systems, focusing on an encoding of workflow speci-
fications based on workflow patterns. This encoding models tasks in a
convenient way, enabling us to exploit fluent linear time temporal logic
formulas for capturing typical constraints on workflows. Fluents enable us
to flexibly characterize the activities associated with workflow tasks, and
also to easily express a wide range of constraints on workflows. Moreover,
our characterization of workflows as labeled transition systems, and the
use of fluent linear time temporal logic as a language to express work-
flow properties, allows us to employ model checking for automatically
guaranteeing that a property is satisfied by a workflow, or generating
violating workflow executions when such property does not hold.

We use YAWL as a language for expressing workflows. Our charac-
terization of workflows as labeled transition systems is implemented in a
tool that translates YAWL models into FSP, and then employs the LTSA
tool to automatically verify properties of workflows, expressed as fluent
linear time temporal logic properties, on the resulting FSP models.

1 Introduction

The importance of efficiency in companies requires constant improvement to
their organizational processes. This has led to the need for expressing such pro-
cesses, typically referred to as workflows, and to the proposal of various workflow
languages. Indeed, there exist many workflow languages, differing in their degree
of formalization (e.g., informal, only with a formal syntax, with a formal syntax
and semantics, etc.), their corresponding approaches for workflow description
(e.g., declarative or procedural), their expressiveness (e.g., some support ad-
vanced conditional routing and some not), their support for automated analysis,
etc. An aspect that we consider particularly important is formal semantics. This
aspect is crucial for the analysis of models in the language, and is also strongly
related to expressiveness, since more expressive languages are more difficult to
fully formalize. Furthermore, expressiveness and automation in analysis are typi-
cally conflicting aspects, and the design of a good language involves the search of
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an adequate balance between these aspects. This applies not only to the language
in which a workflow is expressed, but also to the language used for describing
declarative properties of a workflow. The importance of declarative properties of
workflows is acknowledged by several researchers (see for instance [10,19,14,21]).
In particular, in [19] a declarative approach to business process modeling and ex-
ecution is proposed, where declarative behavioral properties of workflow models
are a central characteristic.

In this paper, we present a characterization of workflows as labeled transition
systems, focusing on an encoding of workflow specifications based on workflow
patterns. This encoding models tasks in a convenient way, enabling us to exploit
fluent linear time temporal logic (FLTL) [7], to describe declarative behavioral
properties of workflow models. As we show later on, fluents enable us to flexibly
characterize the activities associated with workflow tasks, and also to easily ex-
press a wide range of constraints on workflows. Our characterization of workflows
as labeled transition systems has as an additional motivation (besides enabling
for the use of FLTL as a language to express properties of workflows) the pos-
sibility of using Model Checking [5] for automatically verifying that a workflow
satisfies a given property. Thus, our encoding of workflows as labeled transition
systems allows us to use FLTL to express properties of workflows, as well as to
automatically verify these properties via model checking on the resulting transi-
tion systems, generating violating workflow executions when these properties do
not hold. This mechanism for the analysis of declarative properties of workflows
is very flexible, as opposed to existing tools for workflow analysis that focus on
specific properties such as soundness or deadlock-freedom (e.g., the tool in [2]).

Our approach is in essence language independent, and could in principle be
applied to any formal workflow language. In this paper, we choose to use YAWL
(Yet Another Workflow Language) [2] models to express workflows. YAWL is a
powerful workflow language based on the use of workflow patterns [1], that is
supported by an open source toolset, and has a formal semantics based on Petri
Nets. It is considered an expressive formalism, as various works dealing with
its expressiveness in relation to other business process or workflow languages
(e.g., Business Process Modeling Notation, Event-Driven Process Chains, etc)
demonstrate [9]. Indeed, the use of YAWL allows us to ensure the applicability of
our approach to other workflow languages, in many cases via the use of available
automated tools mapping other formalisms into YAWL.

The paper proceeds as follows. In the next section, we discuss workflows, and
present the use of the YAWL tool for their specification. We then argue about
the importance of being capable of expressing properties of workflows, as well
as guaranteeing their validity. In section 3 we provide the formal foundations
of our work. In section 4, we propose an automated way of encoding YAWL
specifications as Finite State Processes (FSP), characterizing tasks as fluents.
We show how convenient fluents are for expressing behavioral properties, in the
context of fluent temporal logic. In order to do that, we develop in detail a case
study, taken from the YAWL toolset, whose complexity enables us to illustrate
the advantages of the approach. Finally, we discuss related work in the area and
draw some conclusions.
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2 Business Processes, Workflows and Patterns

In the last decade, several languages and tools have been developed in order
to provide an organized view of the structural behavior of systems. One of the
main goals of these languages and tools is to provide a setting for describing and
analyzing procedural descriptions (workflows) of the activities that take place on
the system. As part of these efforts, the Workflow Pattern Initiative was created
with the aim of identifying and providing a conceptual basis for business process
specifications. This resulted in the specification of a wide range of workflow
patterns (control flow, data, resource, etc.), and the development of a formally
founded language (and accompanying toolset), known as YAWL [2].

2.1 Workflow Specification Using YAWL

Yet Another Workflow Language (YAWL) is a language for modeling workflows.
YAWL has a formal foundation based on Petri Nets (PN) [8], and its models are
specified using workflow patterns [1]. In this paper, we concentrate on control
flow patterns; these are composed of tasks, conditions and a flow relation between
tasks and conditions. The semantics of a given model is influenced by that of
PNs, in the sense that a task is enabled when there are enough tokens in its input
conditions, according to the pattern behavior. When a task is executed, it takes
tokens out of the input conditions and puts tokens in its output conditions. As
opposed to the case of PNs, in a YAWL specification one can connect two tasks
directly. A distinguishing feature of YAWL is that it provides direct support for
the so-called cancel region pattern. This pattern enables one to model situations
in which a task can have a cancellation set associated with it. When a task is
executed, all tasks in its cancellation set are aborted (i.e., disabled if these were
not running, canceled if these were in the middle of a process).

Conditions: Simple Input Output

Tasks: Atomic Composite Multiple Instance

Split Tasks: AND XOR OR

Join Tasks: AND XOR OR

Cancel Region: . . .

Fig. 1. YAWL Symbols

A workflow specification (control flow perspective) in YAWL is a set of hier-
archically organized YAWL nets. Figure 1 shows the symbols corresponding to
the elements of the language. A YAWL net is composed of:

– A single input (start) condition and a single output (end) condition.

– Tasks : the language provides three types of tasks, namely: atomic, composite
and multiple instance.
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• Atomic tasks are at the lowest description level of the system.
• Composite tasks are associated with corresponding YAWL nets, model-
ing their behavior. It is assumed that there exists a main YAWL net,
which is not associated with any composite task.

• Multiple instance (MI) tasks have corresponding lower and upper bounds
on the number of instances created when the task is “started up”; MI
tasks also have a modifier indicating whether instance creation is static
or dynamic (i.e., indicating whether all instances are created at once, or
if these are dynamically created during the execution of the system).

A task T can be related to a cancel region, i.e., a set of conditions and tasks
that will be aborted when A is completed.

– Specific control flow patterns for the net. The control flow constructs used
for pattern definition are those depicted in Fig. 1. Their intended meaning
is the following:

• AND-join: a task associated with this construct starts when all of the
incoming branches have been enabled, i.e., all the preceding tasks or
associated conditions were completed.

• OR-join: a task associated with this construct starts when at least one
of the incoming branches has been enabled.

• XOR-join: the associated task starts when exactly one of the incoming
branches has been enabled.

• AND-split: when the incoming branch of this construct is enabled, the
thread of control is passed to all of the branches associated with it.

• OR-split: when the incoming branch of the OR-split is enabled, the
thread of control is passed to one or more of the branches following
the OR-split, based on the evaluation of conditions associated with each
of the outgoing branches.

• XOR-split: when the incoming branch of the XOR-split is enabled, the
thread of control is passed to exactly one of the outgoing branches, based
on the evaluation of conditions associated with them.

3 The Formal Framework

3.1 Labeled Transition Systems

Labeled Transition Systems (LTS) are typically used to model the behavior of
interacting components [13]. LTS models describe a system as a set of inter-
acting components characterized by states and transitions between them. The
transitions represent events in the system, and different components synchronize
via shared events. The behavior of the whole system is the result of the parallel
composition of its components, understood as the interleaving of the behaviors
of the components. Formally, an LTS P is a quadruple 〈Q,A, δ, q0〉, where: Q
is a finite set of states, A is the alphabet of P , a subset of the universe Act of
events; δ ⊆ Q×A ∪ {τ} ×Q is a labeled transition relation and q0 is the initial
state.
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The semantics of an LTS P is its set of executions, i.e., the set of sequences of
events that P can perform, starting in its initial state and following P ’s transition
relation. For systems with more than a few states, their representation as LTSs
becomes impractical. In such situations, a representation of systems as processes
in the process algebra FSP, is more convenient [13]. FSP expressions can be
automatically mapped into finite LTS, and vice versa.

An FSP specification contains two sorts of process definitions: primitive pro-
cesses and composite processes. Primitive processes are expressed using event
prefix “->”, choice “|” and recursion. Conditional choices can be expressed by
means of “when” clauses or “if” expressions. Both event labels and local pro-
cess names may be indexed, and primitive processes can be parameterized. As
an example, consider the following specification of a simple bounded buffer, and
its corresponding LTS.

� �

BUFF(N=3) = STATE[0],

STATE[i:0..N] = (

when (i<N) put[i] ->STATE[i+1]

| when (i>0) get[i] ->STATE[i-1]).
� �

Fig. 2. FSP Buffer specification Fig. 3. LTS of the previous buffer

In Fig. 2, the specification contains a primitive process, parameterized with
a bound for the buffer (a default value for the parameter is provided). The
possible behaviors of the buffer are specified by means of a primitive process
which contains a choice for the two available actions, put and get. These actions
are “multiplied” via indexing, and the resulting behavior is illustrated in the LTS
in Fig. 3.

Processes can be composed in a sequential (“;”) or parallel (“||”) way. The
parallel composition combines the behavior of two processes by synchronizing
the events common to their alphabets, and interleaving the remaining events.
Continuing with our previous example, consider two processes PROD and CONS,
representing a producer and a consumer, respectively, as specified below. These
processes are composed in parallel with a buffer, instantiated with a Size (con-
stant declaration); they are synchronized via the relabeling operator “/”. Rela-
beling is a relation between actions; in our example, this is used to synchronize
all put (resp. get) actions with the action produce (resp. consume).
� �

PROD = (produce ->PROD). CONS = (consume ->CONS).

|| BOUNDEDBUFFER = (PROD || BUFF(Size) || CONS)

/{ put[0..Size-1]/produce, get[1..Size]/consume }.
� �

3.2 Linear Time Temporal Logic

In order to reason about the behaviors of an LTS, one needs a logic in which to
express properties of these behaviors. Linear Time Temporal Logic (LTL) [15,16]
is a language that is able to predicate about infinite sequences of states. Each
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formula expresses a property of the executions of an LTS. Given a set of atomic
propositions P , a well-formed formula is defined inductively using the standard
boolean operators and the temporal operators X (next) and U (strong until), in
the following way: (i) every p ∈ P is a formula, and (ii) if φ and ψ are formulas,
then so are ¬φ, φ ∨ ψ, φ ∧ ψ, Xφ, φUψ.

An infinite word w = x0x1x2 . . . over the power set of propositions P satisfies
an LTL formula φ, written w |= φ, if the following conditions hold:

– w |= p⇔ p ∈ x0
– w |= φ ∨ ψ ⇔ (w |= φ) or (w |= ψ)
– w |= ¬φ⇔ not w |= φ
– w |= φ ∧ ψ ⇔ (w |= φ) and (w |= ψ)
– w |= Xφ⇔ w1 |= φ
– w |= φUψ ⇔ ∃i ≥ 0 : wi |= ψ and ∀0 ≤ j ≤ i, wj |= φ

where w1 is the suffix of w resulting from removing the first element in the
sequence. The temporal operators F (eventually), G (always) and W (weak
until) are defined as follows: Fφ ≡ trueUφ, Gφ ≡ ¬F¬φ, and φWψ ≡ ((φUψ)∨
Gφ), where “true ≡ φ ∨ ¬φ”.

3.3 Fluent Linear Time Temporal Logic

Fluent Linear Time Temporal Logic (FLTL) is a variant of LTL, that is partic-
ularly well suited for describing properties of event-based discrete systems (e.g.,
LTSs) [13]. Basically, FLTL provides a convenient way of expressing state prop-
erties of a labeled transition system, associated with the occurrence of events
in the system. More precisely, FLTL extends LTL by incorporating the possibil-
ity of describing certain abstract states, called fluents, characterized by events
of the system. As defined in [17], Fluents are time-varying properties of the
world, which hold at particular instants of time if they have been initiated by a
triggering event (occurring at some earlier instant in time), and have not been
terminated by any terminating event since its initiation. Similarly, a fluent is
false at a particular time instant if none of its triggering events ever occurred, or
if it has been previously terminated (by one of its associated terminating events)
and not yet re-initiated. More formally, Fl = 〈{s1, ..., sn}, {e1, ..., en}〉initially B
defines a fluent Fl, where B is a boolean value indicating if the fluent is true or
not in the initial state, and {s1, ..., sn} and {e1, ..., en} are disjoint sets of events;
when any of the initiating events {s1, ..., sn} occurs, the fluent starts to be true,
and it becomes false again when any of the terminating events {e1, ..., en} occurs.
If the term initially B is omitted then Fl is initially false.

LTSA, a tool for the analysis of FSP descriptions, has direct support for fluent-
based specifications. Consider as an example the following characterization of
the states full and empty, capturing the obvious associated properties of the
bounded buffer:
� �

fluent Full = < put[Size-1], get[1..Size]>

fluent Empty = < get[1], put[0..Size-1]> initially True
� �
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3.4 Model Checking

In the last two decades, the development of algorithmic methods for software
and hardware verification has led to powerful analysis mechanisms. One of these
is model checking [5]. Model checking provides an automated method for veri-
fying finite state systems, by determining whether or not a property described
by a (typically temporal) formula holds on the system’s state graph. Various
alternative model checking approaches have been proposed, which vary in the
representation of the system’s state transitions (e.g., explicit state or symbolic),
in the logic used for describing properties (e.g., linear time temporal logic, or
computation tree logic, etc.), and the language in which systems are actually
described (e.g., directly as code in a programming language, or as a model in
some more abstract modeling language, etc.). Moreover, tools are available for
many of these alternative approaches. In our case, we will use Labelled Transi-
tion System Analyzer (LTSA), a verification tool for concurrent systems models.
A system in LTSA is modeled as a set of interacting finite state machines. LTSA
supports Finite State Process notation (FSP) for concise description of compo-
nent behavior, and directly supports FLTL property verification. Following the
previous examples, we can employ the model checker behind LTSA in order to
verify that the buffer cannot simultaneously be empty and full; this is captured
by the following FLTL formula: assert CORRECT BUFFER = [](!(Full && Empty)).

4 From YAWL Workflows to Labeled Transition Systems

In this section, we present an encoding of YAWL nets into FSP processes. Basi-
cally, this encoding, which is fully automated, will allow us to interpret YAWL
(procedural) workflows as FSP processes, and thus we will be able to express
properties of workflows, using FLTL formulas over their corresponding encoding
in FSP. As we mentioned previously, this encoding will enable us to employ the
LTSA model checker for verifying behavioral properties of task activities of the
business process (BP) specifications. The basic intuition behind the encoding of
a YAWL net (control flow perspective) into FSP is the following. A system’s
behavior is characterized by the occurrence of its tasks. In an abstract way, we
can capture a task as an entity having some activity in the system between its
start and end events. So, a trace of these events describes a possible execution
of the system. In this way, a system’s behavior, i.e., all its possible runs, is cap-
tured by the set of all its execution traces. These traces are obviously constrained
according to the control flow of the system.

According to our previous observation, it is straightforward to see that a task
activity can be captured by means of a fluent, becoming true when its start
event takes place, and turning back to false when its end event task occurs. In
order to capture the behavior of the workflow’s control flow, we will need to
introduce appropriate event synchronizations and process compositions, relating
the events related to the tasks that conform the workflow. Once we achieve a
characterization of workflows as FSP processes, we can express properties of the
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workflows by expressing temporal formulas, employing task-related fluents as
the basic ingredient.

T1

T2

T3

T4

Fig. 4. Simple YAWL net with XOR-split and XOR-join control flow

In order to illustrate the intuition behind our encoding of YAWL into FSP,
and our motivation in doing so, let us consider the simple YAWL net shown in
Fig.4. According to the YAWL semantics, the set of all possible task occurrences
for this net is: {T1T2T4, T1T3T4}. Each of these corresponds to a trace of events
of the system; for instance, [T1.start T1.end T2.start T2.end T4.start T4.end
] corresponds to the first of the above task occurrences. We will capture the
activity of a task straightforwardly via a fluent. For instance, T2’s activity is
captured by the fluent 〈{T2.start}, {T2.end}〉. Now, these fluents can be used
in expressing properties of the system’s execution, in a declarative way. A basic
sample property of the above workflow would be to guarantee that tasks T2 and
T3 are always run mutually exclusively. This is expressed by the FLTL formula
G¬(T2 ∧ T3).

To formally describe our translation from YAWL into FSP, we consider a
formal semantics of YAWL nets [9], given in terms of Reset Petri Nets. Taking
into account this semantics, we propose an encoding for tasks and conditions,
with a particular treatment for input and output conditions. For conditions, and
due to constraints of finite LTSs (the formalism underlying our approach), we
limit their behavior to a bounded number of tokens in them. Even though we
have this significant limitation, every YAWL model can be encoded as an FSP
model. The mismatch between (unbounded) condition tokens and our intrinsi-
cally bounded setting will be reflected when analyzing properties of workflows,
via false positives reporting deadlocks. However, the analysis is still conserva-
tive: if no violations to a property are detected, then it is guaranteed that no
violations exist.

It is worth mentioning that FSP supports nondeterministic choice, and there-
fore branching constructs such as non-free choice and deferred choice can be
faithfully captured. Also, since our property language is FLTL, there is no need
to consider a branching semantics for our processes (nor a bisimulation seman-
tics) for the purpose of property verification: all possible executions (i.e., all
possible interleavings of parallel processes) are taken into account by the model
checking tool, thus exhaustively covering all behaviours of the system.

In order to represent a net behavior, we specify how to compose tasks and
conditions. In this composition we consider the control flow operators associated
with the tasks of the net, and provide an encoding for them. Finally, we address
especially sophisticated elements of YAWL nets, such as cancel regions and com-
posite tasks. Multiple instance tasks are simply treated as abbreviations of nets
composed of as many instances as the tasks indicate. The dynamic evolution
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of multiple instance tasks is characterized via sequential compositions and OR
operations.

Definition 1. A YAWL net is a tuple (nid, C, i, o, T, TA, TC ,M, F, Split, Join,
Default, Rem,Nofi) where:

– nid is the unique identification of the YAWL net.
– C is a set of conditions, i ∈ C and o ∈ C are the input (start) and output

(end) conditions, respectively;
– T is a set of tasks; TA ⊆ T is the set of atomic tasks, and TC ⊆ T is the set

of composite tasks. M ⊆ T is the set of multiple instance tasks;
– F ⊆ (C\{o}× T )∪ (T ×C\{i})∪ (T × T ) is the control flow relation; every

node in the graph (C ∪ T, F ) is on a directed path from i to o;
– Split : T � {AND,XOR,OR} specifies the split behavior of each task;
– Join : T � {AND,XOR,OR} specifies the join behavior of each task;
– Default ⊆ F denotes the default arc for the OR-Split, ensuring that at least

one outgoing arc is enabled;
– Rem : T � P

+(T ∪C\{i, o}) specifies the tokens to be removed and the tasks
that should be canceled as a consequence of an instance of the task completing
its execution;

– Nofi : M → N × N
inf × N

inf × {dynamic, static} specifies the configura-
tion of multiple instance tasks: lower and upper bounds, the threshold for
continuation, and its creation’s behavior.

Let N be a YAWL net. The process representing the input(i) and output(o)
conditions, starting and ending N , is the following:
� �

YNET = (i_cond ->o_cond -> YNET).
� �

For each t ∈ TA (atomic task), we generate an FSP process characterizing its
start and end events:
� �

TASK = (start ->end -> TASK).
� �

As mentioned before, the encoding of conditions are restricted to a bounded
number of tokens. With this limitation, we represent the conditions in a way
similar to a bounded buffer, but with two parameters indicating the possible
input and output connections. The bound for tokens is the amount of input
connections given by default.
� �

CONDITION (IN=2,OUT=2) = STATE[0], STATE[i:0..IN] =

(when(i<IN) in[i:1..IN]->STATE[i+1]|when(i>0) out[j:1..OUT]->STATE[i-1]).
� �

The input/output connections are encoded as the in and out actions, and we refer
to them as ports. Let tsk1, tsk2 ∈ TA∧ (tsk1 /∈ Dom(Split)∧ tsk2 /∈ Dom(Join))
be atomic tasks of N , without split and join decorations, respectively; let c ∈
C\{i, o} be a condition with n and m input and output ports, respectively. In
order to compose tsk1 and tsk2, we have:
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– Sequential composition of tsk1 and tsk2: achieved by synchronizing tsk1.end
and tsk2.start, by means of relabeling.
� �

|| SYSTEM = tsk[1..2]:TASK /{tsk[2].start/tsk[1].end}
� �

– Composition of tsk1 with tsk2 through c (condition in between two tasks):
achieved by connecting the finalization of tsk1 with some input port of c,
and the start of tsk2 with some output port of c.
� �

|| SYSTEM = tsk[1..2]:TASK || c:CONDITION(n,m)

/{c.in[i]/tsk[1].end, tsk[2].start/c.out[j]}
� �

where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
– Composition with decorations: Consider T ∈ TA ∧ (T ∈ Dom(Split) ∨ T ∈
Dom(Join)), i.e., T is an atomic task with some and or join decoration
(AND, OR, XOR). Let us call these decorations gates. For each possible
gate, we generate a process according to its behavior. These processes are
parameterized by the corresponding input and output ports (e.g., the process
corresponding to a join gate may have 2..n input ports and only one output).
As shown in Fig. 5, if T has some join (j) or split (s) gate associated, the
interconnection between T and the gates will be achieved by the synchro-
nization of J.out with T.start, and T.end with S.in, respectively. Let us
consider tsk1, tsk2 to be tasks of the system. In order to compose tsk1 with
tsk2 through T , we synchronize tsk1.end with some input port of J , and
tsk2.start with some output port of S.

TJ S
out start end in

in1

inn

out1

outn

Fig. 5. Task gates configurations

In order to model the task occurrences in the system, for every task Ti we define
a fluent of the form Ti = 〈{tski.start}, {tski.end}〉. This fluent predicates that
T is active between the occurrences of its start and end events. As an example,
the encoding for the YAWL net of Fig. 4 as an FSP process is the following:
� �

|| SYSTEM=(YNET ||tsk[1..4]:TASK ||xors: XOR_SPLIT(2) ||xorj:XOR_JOIN(2))

/{ TSK[1].start/i_cond, TSK[4].end/o_cond,

xors.in/TSK[1].end, TSK[2].start/xors.end[1], TSK[3].start/xors.end[2],

xorj.in[1]/TSK[2].end, xorj.in[2]/TSK[3].end, TSK[4].start/xorj.out }.

fluent T[i:1..4] = <{tsk[i].start}, {tsk[i].end}>
� �

4.1 Encoding of Gates

For each kind of gate we will generate a corresponding FSP process capturing
its behavior. These processes are parameterized by input and output ports. Due
to space limitations, we present the encodings only for some gates.
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For AND-split, XOR-split and OR-split, the FSP processes are characterized
by one input port and N > 1 output ones. The processes will be parameterized
with N and their encodings depend on the corresponding behavior, e.g., for the
AND-split we generate a process of the form:
� �

AND_SPLIT_TRIGGER(N=1) = (in ->out[I] ->ANDSPLIT_TRIGGER).

|| AND_SPLIT(N=2) = ( forall [i:1..N] ANDSPLIT_TRIGGER(i)).
� �

The AND SPLIT process triggers as many out actions as specified by the pa-
rameter which shares the in action (forall is an abbreviation for parallel “||”
composition). When the in action occurs, all the out are made available, i.e.,
the control (token) is passed to all connected output tasks or conditions.

Notice that, in the XOR and OR split gates, we use state variables in order to
encode the corresponding guard conditions. Due to restrictions in the datatypes
supported by LTSA, we only consider integer and boolean types. The choices
for the out ports are constrained by formulas involving those variables, used as
conditional when clauses in the obvious way.

The XOR-join encoding is simply a choice over its incoming events; once one
of them arrives, the outgoing event must occur: XOR JOIN (N=2) = in[1..N] ->

out -> XOR JOIN).

OR-join: Due to its non local semantics, this kind of gate has different inter-
pretations across different business process specification languages. In [9], there
is a survey of the OR-join semantics in Business Process Modeling Notation
(BPMN), in Event-driven Process Chains (EPCs) (see also [11]), etc., and the
complications in the analysis of these gates in the presence of cancel regions,
loops, or multiple instances. In YAWL, the evaluation of the gate in order to
determine if an OR-join can be fired is made via backward firing and coverability
analyses in reset nets. The encoding of the OR-join gates employed to perform
our analysis of the models mimic the informal semantic of the OR-join (cf. [9],
p. 104), that prioritizes all possible incoming events before firing the out port.
In order to encode this gate, the following process is generated:
� �

OR_JOIN(N=2) = OR_JOIN_DEF[0], OR_JOIN_DEF[b:0..1] =

( in[1..N] -> OR_JOIN_DEF[1] | when (b!=0) out ->OR_JOIN ).
� �

where all incoming events are “listened to”, and if at least one of them is acti-
vated, the outgoing event will be fired. The priority on accept incoming events
before firing the output is encoded by means of the priority operator of FSP,
giving lower (>>) priority to the out action.

4.2 Cancel Regions and the Encoding of Composite Tasks

Cancel Regions provide the ability of disabling a set of tasks in a process instance.
If any of the tasks belonging to this region is already being executed (or is
currently enabled), then they are immediately terminated. Cancelation captures
the interference of an activity in the execution of others. In order to model this
interference in YAWL, a canceling task can be associated with a cancel region,
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Fig. 6. YAWL net corresponding to the Order Fullfilment Process

indicating a set of tasks or conditions to be canceled. In order to encode cancel
regions in FSP, first we consider an extended version for the encoding of tasks
and conditions belonging to a cancelable region. For these tasks, instead of the
original FSP process, we define a process representing a task that starts and,
either the task ends, or the task can be canceled. In a similar way, we define the
processes corresponding to the cancelable conditions. In this setting, the start
action of a canceling task is synchronized with the cancel actions of the canceled
tasks and conditions.
� �

CANCELABLE_TASK = CTASK_INACTIVE,

CTASK_INACTIVE = ( start ->CTASK_ACTIVE | cancel ->CTASK_INACTIVE ),

CTASK_ACTIVE = ( end ->CTASK_INACTIVE | cancel ->CTASK_INACTIVE ).
� �

For systems involving composite tasks, each of these tasks will have an associated
YAWL net specifying its corresponding behavior. So, in order to encode the
system, we generate a process CTi for each net associated with a composite
task, following the above procedure. Then, in the net encoding corresponding
to the main system, we declare an instance of each CTi, and we connect them
synchronizing their i cond and o cond with the corresponding input and output
task or condition. Finally, the activities corresponding to the composite tasks are
defined by fluents whose logical values depend on the occurrence of their i cond
and o cond actions in the expected way. Note that we can specify the activity of
a task ti belonging to a composite task CTk on the main process, prefixing the
task with the name of the composite task, i.e., CTk.ti.

5 Case Study

We take a case study accompanying the YAWL tool, that we consider to be a
complex and complete model, involving all kinds of components of the YAWL
language. The sources of the YAWL model can be downloaded1. The case study
describes the process of order fulfillment followed in a fictitious company, which
is divided into the following phases: ordering, logistics (which includes carrier
appointment, freight in transit, freight delivered), and payment. The order ful-
fillment process model is shown in Fig. 6, where each of the above phases is
captured by a composite task. Due to space limitations, we only explain in more
detail one of the subtasks, the Carrier Appointment process. The YAWL model
corresponding to the CA is show in Fig. 7. Basically, the model specifies that af-
ter confirmation of a Purchase Order on the previous phase, a route guide needs

1 http://www.yawlfoundation.org

http://www.yawlfoundation.org
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to be prepared and the trailer usage needs to be estimated. These operations
are performed in parallel. If either task takes too long (calculated by the task
Carrier Timeout), a timeout is triggered, which leads the termination of the
overall process. If not, the task Prepare Transportation Quote takes place, by
establishing the cost of shipment. After this task, a distinction is made among
shipments that require a full truck load (FTL), those that require less than a
truck load (LTTL) and those that simply concern a single package (SP). In or-
der to simplify the view of the model, we depict FTL and LTTL as composite
tasks. After the FTL and LTTL, there are subsequent opportunities to modify
the appointments information until a Shipment Notice is produced; after that,
the freight can be picked up. For SP the process is straightforward.

The encoding of YAWL specifications into FSP processes is fully automated,
and a tool called YAWL2FSP was developed for this task. This tool is publicly
available2. The FSP specification was automatically generated and the resulting
LTS for the complete Order Fulfillment net (58 tasks, 30 gates, 36 conditions, 2
cancel regions) was generated in 0.298 seconds, using 28,96 Mbytes of memory,
with the tool LTSA. The LTS contains 13164 states and 59722 transitions. The
analysis for the system was performed in two phases. First, we verified properties
over tasks based on the templates published in the Declare Tool [9], including
precedence, non-coexistence, response, etc. Next, and taking advantage of the
fluent characterizations and FLTL expressiveness, we verified properties of the
system involving “sub-traces” of the execution, e.g. activities of a subtask, or
properties where the desired behavior is characterized by the occurrence of a
disjoint set of events. Due to space limitations, we only report here some of the
most relevant properties, and show how these are captured in FLTL:

1. If timeout occurs in CA, then no shipment notice can be produced.
� �

assert PROPERTY_1 = (CarrierTimeout ->!ProduceShipmentNotice)
� �

Notice that this property uses two fluents, that capture the execution of
corresponding atomic actions. The previous section describes the details on
how these fluents are defined; for instance, for CarrierTimeout, the fluent is:
fluent CarrierTimeout = <C A.task[5].start,C A.task[5].end>, where
C A references the Carrier Appointment net, and task[5] represents the
FSP process id corresponding to the CarrierTimeout task.

2. Tasks belonging to different ways of transportation cannot occur simultane-
ously. To capture this property we define three fluents, corresponding to the
whole activity of the FTL, LTTL or SP ways of transportation. For exam-
ple, FullTruckLoad=<C A.ftl.i cond,C A.ftl.o cond>, where ftl is the FSP
id of the translated sub-net, and i/o.cond are the initial and end events,
respectively. The property is specified as:
� �

assert PROPERTY_2 = !( (FullTruckLoad && LessThanTruckLoad) ||

(FullTruckLoad && SinglePackage) ||

(SinglePackage && LessThanTruckLoad) )
� �

2 http://sourceforge.net/projects/yawl2fsp/

http://sourceforge.net/projects/yawl2fsp/
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Fig. 7. YAWL net corresponding to Carrier Appointment Process

3. If Shipment Notice was produced, necessarily a delivery and pickup appoint-
ment were arranged. We define two fluents, characterizing the arranging
appointment activities, i.e., pickup and delivery. These fluents will be ac-
tivated by any of the corresponding activities of the three possible ways of
transportation (FTL, LTTL or SP). Here we can appreciate the flexibility of
fluents in order to describe abstract states in the model. As example consider
the fluent corresponding to Delivery Appointment Arranged, which is en-
abled by the occurrence of an event corresponding to the main net and events
of the FTL and LTTL sub-nets: <{C A.task[7].end,C A.ftl.task[2,3,7].end,

C A.ltl.task[2,5].end},C A.o cond> . The property is expressed as follows:
� �

assert PROPERTY_3 = ( ShipmentNoticeProduced ->

(DeliveryAppointmentArranged && PickupAppointmentArranged))
� �

The time consumption associated with the verification of the above properties
was: (1) 154ms, (2) 152ms and (3) 185ms, and the memory consumption (1)
11.8MB, (2) 11.9MB and (3) 16.6MB. The encoding and verification were per-
formed using an Intel Core 2 Duo 2.2 Ghz processor, 2 GB 667 Mhz DDR2
SDRAM memory and a Unix based Operating System. Although we are unable
to provide a fully-developed example due to space limitations, it is important to
notice that in case some property does not hold, the model checker underlying
LTSA would provide a trace reproducing the erroneous behavior of the system;
this is extremely useful information, that is normally used in order to correct
the model, or the corresponding workflow.

6 Related Work and Conclusions

The formal specification and verification of business processes has gained relevance
in the last decade, not only in academic settings but also, and most importantly, in
industry, where business process optimization is a crucial task. Various languages
and methods for business process description have been proposed, most of which
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were initially informal, but for which different formal characterizations have been
proposed. In [18] a general survey for BP specification can be found and in [4] a sur-
vey of formalizations for the Business Process Execution Language (BPEL) is an-
alyzed. Other formal approaches include that presented in [20], where a semantics
based on timed automata is proposed for the verification of Product ProcessMod-
eling Language (PPML) models. Since our work is essentially a formalization of
workflows in terms of labeled transition systems, there exist some relevant related
works; in particular, in [10] an automata-based method for formalizing workflow
schemas is proposed, but the approach suffers from expressive power limitations,
in relation to YAWL (beyond our bounded condition tokens limitation).

We have presented an encoding of YAWL (procedural) workflows into FSP pro-
cesses. This encoding, which can be performed automatically and has been imple-
mented in a tool, models tasks in a convenient way, enabling us to exploit fluent
linear time temporal logic formulas for capturing typical constraints on workflows,
and to use the model checker behind LTSA for verifying such constraints. The en-
coding adequately maps YAWL constructs to FSP elements, in order to make in-
tensive use of fluents, in particular to capture workflow tasks, and their properties.
Workflows, and in particular those based on a control-flow pattern, are inherently
event-based, and thus using state-based formal languages such as LTL makes it
more complicated to express declarative properties. FLTL, on the other hand, al-
lows one to more naturally describe execution situations in workflows, via abstract
activating/disabling events, as our encoding and examples in this paper illustrate.

We are currently conducting some experiments regarding a comparison of
ease of use of LTL vs. FLTL for the specification of properties of workflows. In
this respect, our work is twofold: we are working on a tool for automatically
translating Declare constraint models to FLTL formulas, in order to verify those
constraints over a procedural YAWL workflow, and we are developing a front-
end (graphical tool) to assist the end user in the description of properties via
FLTL and to represent violation executions when counterexamples are reported.

WehavechosentobaseourworkonYAWLbecause ithasaformalfoundation,and
it supports awide range ofworkflowpatterns, providing an expressive environment
forBPspecification.Aswementioned, theYAWLtoolsetprovides theverificationof
somepropertiesofworkflowssuchassoundnessanddeadlock-freedom[3],butitdoes
notprovideasuitableflexible language fordeclarativelyexpressingotherbehavioral
properties of its models. In this respect, the Declare tool might be applicable, but
only tomonitor executions of YAWLmodels, or analyzing the consistency of differ-
ent declarative, linear temporal logic, constraints on a proceduralYAWLworkflow.
In particular, Declare does not provide features for the verification of properties of
executions. In this aspect,works closer to our approachare thosepresented in [12,6],
where the SPINmodel checker is used to automatically verify properties of YAWL
models.However, in theseworks, standardLTL is employed as aproperty language,
which is better suited for state-based settings but less appropriate for event-based
frameworks, as is the case of workflowdescriptions [7].
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Abstract. Consistency management in evolving information systems is
hard, for two reasons. On the one hand, large databases exist which have
to be adjusted. On the other hand, many programs access those data.
Data and programs all have to be synchronized in a consistent manner.
It cannot be relied upon, however, that no running processes exist during
such a migration. Consequently, a restructuring of an information system
needs to take care of the migration of object-oriented systems compris-
ing data, programs, and processes. This co-evolution together with the
notion of model transformation and instance migration has been intro-
duced in earlier papers. This paper builds upon this exploratory work
and analyses under which circumstances composed model transforma-
tions are compatible with composed instance migrations. We develop
the notion of shortcut paths and show that composition is possible if
shortcut paths are reflected by the underlying model transformations.

Keywords: Composition, Model transformation, Instance migration,
Data synchronization, Data-schema co-evolution.

1 Introduction

Software systems are subject to many kinds of changes. Obviously, this is because
the environment in which software development is performed is very pliable. As
Brooks once wrote, “The software entity is constantly subject to pressures for
change. [...] Partly it is because software can be changed more easily—it is pure
thought-stuff, infinitely malleable.” [2, p. 184–185] Consequently, managers, team
leaders and sometimes even developers expect changes in software requirements
to be processed quickly.

But reality is different: Changing software is hard. There are two aspects which
are independent of the modelling and programming language used to describe
the software and which have a considerable impact on its changeability:

1) Is there any persistent data associated with the software to be changed?
2) Do processes (running instances) exist?

At least, the answer to the first question is “yes”. For example, ERP software
tends to have very large data bases associated, the contents of which possess
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important business value. No one will risk changing existing software with the
consequence of losing valuable data. The second question is important in envi-
ronments with a high demand for software running 24/7/365. Obviously needed
in critical environments as nuclear power plants, this requirement has in the
meantime also reached the business world over the last decade, as being able
to do business without interruptions has become very important, especially for
globally positioned companies. Consequently, running applications should not
be disturbed or terminated by software updates whenever possible. Generally,
we think that model evolution becomes agile only if consistency between models
and dependent artifacts is spontaneously maintained.

Facing these challenges, we propose a formal method based on universal alge-
bra and some basic facts from category theory that is capable of describing com-
plete object-oriented systems. By this, we mean the combined software and data
model (MOF1 level “M1”) together with data, programs, and processes, which
build together the instances (MOF level “M0”) and are typed in the model. Endo-
geneous model transformations2 at medium or fine granularity, i.e. changes at the
level of class structures or attribute assignments, are described by special rela-
tions between old and new model. The strength of this approach is the possibility
to automatically induce a correct migration of all instances, i.e. data, programs,
and processes, for a given model transformation. Here, “correct” firstly means
that the resulting instances are correctly typed in the target model. Secondly,
our formal method provably guarantees that the various migrated instances are
adapted as much as necessary and as little as possible, due to sound constructions
which are categorically founded. All these properties allow us to apply several
model transformations to the current model and expect the migrated system
to perform as the former system but to be typed in the new (improved) model.
This is exactly what is desired when doing refactoring in software development.

But refactoring can almost never be done at one go. On the contrary, a good
refactoring is characterized by applying a set of primitive and well-defined steps
[8]. This is typically motivated by giving the developers the ability to test their
software at several points during the refactoring process in order to ensure that
the changes are sound. But even if the underlying refactoring framework can
guarantee a correct result, it is reasonable to be able to model refactorings by a
series of small atomic model transformations. Some advantages of this approach
are e.g. that the single steps may be more understandable than the complete
transformation, they may be documented separately, they can serve as a foun-
dation for a refactoring tool offering arbitrary model transformations, and they
aid in finding modelling errors more easily if the migration outcome is not what
was desired. However, the ability of composing a big refactoring out of a set of
elementary model transformations is also desired, for two reasons. First, it allows
to build meaningful abstractions which can be reused to cut down the complexity
of any problem. Second, applying the composed refactoring may perform better

1 “Meta Object Facility”, see http://www.omg.org/mof/ for details.
2 A model transformation is called endogenous if both the source and target models

possess the same meta model [18].

http://www.omg.org/mof/
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than applying its steps, due to potential synergy effects. So it is reasonable to
analyze how to compose model transformations and what consequences emerge
when migrating instances along such composed transformations.

The whole formal model has been developed in [21]. In [22, 23], we presented
the modelling of data, programs, and processes. Correctness formulated in cate-
gorical terms has been invented in [14]. In this paper, we focus on the composition
problem. After describing the basic data modelling features in the section 2, we
recap in section 3 model transformations and induced instance migrations. In
section 4, we present the requirements for sound composition of model transfor-
mations and show that not all model transformations meet these requirements.
We finally develop a sufficient criterion for model transformations which enforces
composability and relies on the reflection of so-called shortcut paths. In section
5 we give an overview over related work. Finally, in section 6 an outlook is given
over future research related to our work. Due to space limitations, this paper
neither discusses the migration of programs and processes nor does it include all
proofs; they can be found in [13, 21].

2 Modelling Data

The model and the instance level of object-oriented systems are modelled by sys-
tems wrt. an extended specification.3 An extended specification Spec = (Σ ,H ) is
an extended signature together with a set of positive Horn formulas H over a set
of variables X . An extended signature Σ = (S ,OP ,P) consists of a set of sorts S ,
a family of operation symbols OP = (OPw,s)w∈S∗,s∈S , and a family of predicates
P = (Pw )w∈S∗ such that =s ∈ Ps s for each sort s ∈ S . A system A wrt. an
extended signature Σ = (S ,OP ,P), for short a Σ -system, consists of a family of
carrier sets (As)s∈S , a family of operations (opA : Aw → As)w∈S∗,s∈S,op∈OPw,s ,
and a family of relations (pA ⊆ Aw )w∈S∗,p∈Pw such that =A

s ⊆ As × As is
the diagonal relation for each sort s .4 A system A wrt. an extended specifi-
cation Spec = (Σ ,H ) is a Σ -system such that all axioms are valid in A. A
Σ -homomorphism h : A → B between two Σ -systems A and B wrt. an ex-
tended signature Σ = (S ,OP ,P) is a family of mappings (hs : As → Bs )s∈S

such that the mappings are compatible with the operations and relations, i. e.,
hs ◦ opA = opB ◦ hw for all operation symbols op : w → s and hw (pA) ⊆ pB

for all predicates p : w where w = s1s2 . . . sn ∈ S ∗.5 Each Σ -homomorphism
h : A → B between two Spec-systems A and B wrt. an extended specification
Spec = (Σ ,H ) is called a Spec-homomorphism.

We model object-oriented systems by externalizing the typing relation and
consider only graphs for depicting models as well as data or processes [22, 23].
Typing an instance graph I in a model graph S is done by a homomorphism
I

type−−−→ S . Additional structure is provided by certain predicates:
3 See [17] for the special case when signatures consist of one sort only.
4 Given w = s1s2 . . . sn , Aw is an abbreviation for the product set As1 ×As2 ×· · ·×Asn .
5 Given w = s1s2 . . . sn , the term hw (x1, x2, . . . , xn ) is a shorthand notation for the

term tuple (hs1(x1), hs2(x2), . . . , hsn (xn )).
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Definition 1 (Specification MP). The specification MP is defined as below:
MP =
sorts

N , E (nodes and edges)
opns

s, t : E → N (source and target node of an edge)
prds

under , rel : N N (subnode of/related to)
axms

x ∈ N : under(x , x)(MP.1)
x , y ∈ N : under(x , y) ∧ under(y , x) ⇒ x = y(MP.2)

x , y, z ∈ N : under(x , y) ∧ under(y , z ) ⇒ under(x , z )(MP.3)
x , y ∈ N : rel(x , y) ⇒ rel(y , x)(MP.4)

x , y, z ∈ N : rel(x , y) ∧ rel(y , z ) ⇒ rel(x , z )(MP.5)
x , y ∈ N : under(x , y) ⇒ rel(x , y)(MP.6)

	

Nodes correspond to classes or object particles and edges correspond to asso-
ciations or links, depending on the context. Note that in our model, objects
are expressed as a conglomerate of so-called particles which resemble the typing
hierarchy of the object’s class. This allows us to type an object with possibly
incoming and outgoing links into the model by the use of a simple homomor-
phism. The predicate under models the inheritance relation between classes and
the subparticle relation between object parts. The predicate rel encompasses a
symmetric and transitive closure of the under relation and builds components
from the inheritance structure on classes and objects.6 It is needed to be able to
express the typing condition T.1 presented below.

In order to ensure that the modelling of object-oriented systems is sound, we
extend the specification by the two typing conditions T.1 and T.2:

typing conditions
x , y ∈ N : rel(x , y) ∧ type(x ) = type(y) ⇒ x = y(T.1)
x , y ∈ E : s(x) = s(y) ∧ type(x ) = type(y) ⇒ x = y(T.2)

Condition T.1 prevents one object to contain more than one particle for the same
type which is a typical requirement of object-oriented languages. Condition T.2
forces all associations to be many-to-at-most-one. This simplifies programmatic
dereferencing at the instance level.7

6 Note, however, that with positive Horn formulas, it is not possible to specify that
rel is exactly the symmetric and transitive closure – the rel relation may be larger.

7 Nevertheless, multi-valued associations can be used by employing a container such
as a linked list using single-valued associations only.
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We use the following notation: Alg(MP) denotes the category of MP-systems
and MP-homomorphisms. Given a fixed model S , the slice category Alg(MP)↓S
expresses the category of Alg(MP)-arrows I

type−−−→ S and compatible morphisms
between them, and the category Sys(S ) denotes the full subcategory of
Alg(MP)↓S whose objects (i.e. type-like arrows) satisfy the typing conditions.

See [14, 23] for the proof of the following proposition which expresses that for
each system that does not satisfy the typing conditions, it is possible to find a
minimal and uniquely determined set of changes such that the typing conditions
are valid in the resulting system:

Proposition 2 (Free functor FS). For each MP-system S , there is a func-
tor FS : Alg(MP)↓S → Sys(S ) which is left-adjoint to the inclusion functor
IS : Sys(S ) → Alg(MP)↓S . 	

Summarizing our results so far, an object-oriented model is described by an MP-
system S . An instance of this model consists of an MP-system I and a typing
MP-homomorphism type : I → S such that I

type−−−→ S is an object of the category
Sys(S ). Every instance I

type−−−→ S in Alg(MP)↓S can freely be transformed into
an object of the category Sys(S ) by the free functor FS .

3 Modelling Transformations

In this section we introduce model transformations that can uniquely be ex-
tended to instance migrations.

Definition 3 (Transformation). A transformation t : S � S ′ in the category

Alg(MP) is a span S lt←− S rt−→ S ′. 	

A general transformation allows reduction and unfolding (or copying) as well as
extension and folding (or identifying) through the use of non-surjective homomor-
phisms (reduction and extension) and non-injective homomorphisms (unfolding
and folding) on the left and right side of the span, respectively. It expresses a
relation between the old model S and the new model S ′. In the following, we
use the term model transformation if the span consists of model objects, and
(instance) migration if the span consists of instance objects.

Given a typed instance I
typeI−−−→ S and a model transformation S lt←− S rt−→ S ′,

the migration is performed as follows (visualized in Fig. 1):

1) P lt , the pullback functor along l t , is applied to I
typeI−−−→ S , resulting in the

typed instance I
typeI−−−→ S .8 This part of the transformation is responsible for

unfolding instance elements if l t is not injective, and for deleting elements if
l t is not surjective.

8 This corresponds to the construction of the pullback of typeI and l t in Alg(MP)
which is known to exist as Alg(MP) is complete, see [23].
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typeI ′
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Fig. 1. Model transformation and instance migration

2) Frt

, the composition functor along r t , is applied to I
typeI−−−→ S , resulting in

the typed instance I
rt◦typeI−−−−−→ S ′. This part of the transformation is used to

retype instance elements and to add new types without any instances.

3) I
rt◦typeI−−−−−→ S ′ may violate the typing conditions T.1 and T.2. To fix this, we

apply FS ′
: Alg(MP)↓S ′ → Sys(S ′) from Proposition 2 to it, obtaining the

typed instance I ′ typeI ′−−−−→ S ′. This part of the transformation is responsible for
identifying instance elements due to the application of the typing conditions.

Composing these functors yields the migration functor (compare [14]):

Definition 4 (Migration functor). Let S lt←− S rt−→ S ′ be a model trans-
formation. The migration functor Mt : Sys(S ) → Sys(S ′) is then defined as
Mt ::= FS ′ ◦ Frt ◦ P lt . 	


We now give two examples of simple model transformations. We have customers
(class “C”) and third-party insurance products (class “TPI”) which are connected
by the association “prod” (product). The first transformation t1 introduces in-
surances (class “I”) as an abstraction of third-party insurances (see Fig. 2a). The
second transformation t2 moves the association end of “prod” to the new su-
perclass “I”, thereby allowing customers to be linked to more general insurance
products (see Fig. 2b). Both model transformations represent actions that are
typical for the development of object-oriented software.

Now we show how to migrate the instance in Fig. 3a, typed in the model
on the left side of t2.9 In the first step, the instance is pulled back along l t2 ,
yielding the instance in Fig. 3b. In the second step, this instance is only retyped,
yielding the instance in Fig. 3c. Note that the object 2 of class TPI now possesses
two particles of the type I. This instance violates the typing condition T.1. So
applying the free functor FS ′

identifies these two particles, resulting in the final
instance shown in Fig. 3d.

A catalogue of supported model transformations is presented in [21].

9 The model transformation t2 has been chosen as it makes the migration more
interesting.
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(a) First transformation t1: Creating superclass
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(b) Second transformation t2: Moving association end to superclass

Fig. 2. Two simple model transformations

4 Composition of Model Transformations

Given two model transformations t1 ::= S lt1←−− S rt1−−→ S ′ and t2 ::= S ′ lt2←−− S rt2−−→
S ′′, a composed model transformation t2 ◦ t1 has to fulfil two requirements:

1) (syntactical) t2 ◦ t1 has to be a span S l←− X r−→ S ′′ for some object X .
2) (semantical) Migrating a typed instance along the composed model transfor-

mation has to result in the same typed instance as the two-step migration
along the two separate model transformations:

Mt2◦t1 = Mt2 ◦Mt1 (migration compatibility condition)

The syntactical requirement is easily fulfilled: As transformations are spans, they
can be composed by taking the pullback of the “inner” span homomorphisms:

Definition 5 (Composition of model transformations). Let two model

transformations t1 ::= S lt1←−− S rt1−−→ S ′ and t2 ::= S ′ lt2←−− S rt2−−→ S ′′ be given.

Then the composition t2 ◦ t1 is defined to be the span S lt1◦l t2←−−−− PS rt2◦rt1−−−−→ S ′′,

where S l
t2←−− PS rt1−−→ S is pullback of S rt1−−→ S ′ lt2←−− S (see Fig. 4).

	

The semantical requirement, however, is more involved. The following counterex-
amples demonstrate that the migration compatibility condition is not always
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(a) Original instance
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(b) After pullback
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2: TPI

2: I

2: I
3:prod

(c) After retyping

1: C

2: TPI

2: I
3:prod

(d) After factoring

Fig. 3. A migration example

PS
l
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��������

P.B.S Slt1��

rt1 �������� S
lt2

��������
rt2 �� S ′′

S ′

Fig. 4. Composition of transformations

true for arbitrary model transformations. In the first example (see Fig. 5), the

second model transformation M1
lt2←−− M12

rt2−−→ M2 deletes an association which
results from merging two separate associations by the first model transforma-

tion M0
lt1←−− M01

rt1−−→ M1 (5a). If the migration is done step-by-step (5b), the
first model transformation causes instances of the merged associations to iden-
tify their targets if they start at the same particle due to typing condition T.2.
When migrating along the composed model transformation (5c), the deletion is
done earlier as the right side of the first model transformation and the left side
of the second model transformation are interchanged. The effect of this is that
no particles are identified on the right side of the composed transformation, as
there are no associations to be merged at all at this point.

In the second example (see Fig. 6), the first transformation M0
lt1←−− M01

rt1−−→
M1 merges the two related classes B and C (i.e. (B,C) ∈ relM0, indicated by the

squiggly line between B and C ).10 The second transformation M1
lt2←−− M12

rt2−−→

10 Note that B is neither a superclass nor a subclass of C.
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Fig. 5. Composition incompatible with migration (1)

M2 deletes the merged class (6a).11 If I0 is migrated step-by-step (6b), the missing
inheritance link from 1 :A to 1 :D is added to I1 by the free functor F due to
axiom MP.3. If I0 is migrated at once (6c), B and C are deleted before being
merged as l ′t2 is effectively interchanged with r ′t1 . Hence, there is nothing to
merge and so no inheritance link is added between the particles 1 :A and 1 :D.

Because of these two effects, we need a compatibility condition for model trans-
formations. First, observe that the counterexamples are based on the fact that
the pullback functor P lt2 interacts badly with the free functor FM1 . The next

11 Note that due to the axioms MP.4, MP.5, and MP.6, the property holds that if two
classes are directly or indirectly connected via the under and/or rel predicates, they
are also directly connected via rel .
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Fig. 6. Composition incompatible with migration (2)

proposition develops this idea and states that if a certain commutativity property
between these functors is given, composition is compatible with migration.

Proposition 6 (Composition of migrations [13, Theorem 26]). Let two

model transformations t1 ::= S lt1←−− S rt1−−→ S ′ and t2 ::= S ′ lt2←−− S rt2−−→ S ′′ be
given. If the pullback functor on the left-hand side of the second migration and
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Fig. 7. Example of a homomorphism reflecting shortcut paths

the free functor can be swapped, i.e. if P lt2 ◦FS ′
= FS ◦P lt2 , then the migration

compatibility condition Mt2◦t1 = Mt2 ◦Mt1 holds. 	

It remains to find a criterion for ensuring the condition above. In the first coun-
terexample, the problem arises from identifying associations. So we require that
model transformations are not allowed to identify associations on the right side.
We call such model transformations “proper”:

Definition 7 (Proper transformation). A transformation S lt←− S rt−→ S ′ in
Alg(MP) is proper if r t is injective on associations, i. e., if r t

E (x ) = r t
E (y) ⇒

x = y holds for all x , y ∈ SE .

The problem that arises in the second counterexample can be solved by requiring
that the left-hand side of a model transformation reflect inheritance “shortcuts”.
Consider again Fig. 6: In M1, the inheritance path A � ��D is a shortcut for the
(longer) inheritance path A � ��BC � ��D . In M12, however, the dotted inheri-
tance relation is not a shortcut path. This leads to the anomaly where the free
functor does not adapt instances due to missing elements. So we define

Definition 8 (Homomorphisms reflecting shortcut paths). Let f : A → B
be a MP-homomorphism. Then f is said to reflect shortcut paths if for every
triple (x , y ′, z ) ∈ AN ×BN ×AN with (x , z ) ∈ underA, (fN (x ), y ′) ∈ underB , and
(y ′, fN (z )) ∈ underB there is some y ∈ AN with fN (y) = y ′, (x , y) ∈ underA,
and (y , z ) ∈ underA (see Fig. 7).

	

Definition 9 (Admissible model transformations). Let t be a model trans-

formation S lt←− S rt−→ S ′. Then t is said to be admissible if it is proper and if l t

reflects shortcut paths. 	

It is easy to show that admissible model transformations are closed under com-
position. It remains to show that composing admissible model transformations
is compatible with migration:

Proposition 10 (Pullback and free functor commute [21, Proposition

11.49]). Let two admissible model transformations t1 ::= S lt1←−− S rt1−−→ S ′ and

t2 ::= S ′ lt2←−− S rt2−−→ S ′′ be given. Then P lt2 ◦ FS ′
= FS ◦ P lt2 holds. 	
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We conclude the main result of our paper:

Theorem 11 (Composition is compatible with migration [21, Theorem

11.50]). Let two admissible model transformations t1 ::= S lt1←−− S rt1−−→ S ′ and

t2 ::= S ′ lt2←−− S rt2−−→ S ′′ be given. Then the migration compatibility condition
Mt2◦t1 = Mt2 ◦Mt1 holds.

Proof. This follows directly from Proposition 10 and Proposition 6.

Consider again the first counterexample Fig. 5. If t1 is replaced by the proper
identity model transformation t ′1, migrating I0 along t ′1 results in I1 being identi-
cal to I0. Applying t2 to it deletes both links 4 :x and 5 :y, resulting in a system
equal to I ′

2. Now consider the second counterexample in Fig. 6. If t2 is replaced
by the model transformation t ′2 which equals t2 except that the dotted inheri-
tance relation in M12 is removed, t ′2 reflects shortcut paths on the left side as
there are no inheritance paths in M12 at all anymore. Migrating I1 along t2 leads
to systems I12 and I2 without an inheritance link between 1 :A to 1 :D . Hence,
with the dotted path removed, migrating I0 along t1 and then I1 along t2 yields
the same system as the migraton of I0 along t2 ◦ t1, according to Theorem 11.

It remains to discuss whether restricting oneself to admissible model transfor-
mations is a serious limitation. Regarding the reflection of shortcut paths, recall
that shortcuts in models generally result from the transitive closure of the inher-
itance graph. So transforming a shortcut path into a non-shortcut path on the
left side of a model transformation means that some indirect superclass becomes
a direct superclass due to the removal of an intermediate class (e.g. D becomes a
direct superclass of A on the left side of t2). In our opinion, this is not a “natural”
model transformation, as the data and operations associated with the removed
intermediate class simply disappear which may lead to problems wrt. the seman-
tics of the model. One would rather merge the intermediate class with one of
its super- or subclasses in order to retain the associated data and operations.
So restricting oneself to model transformations reflecting shortcut paths on the
left side only rules out transformations that are problematic from a semantics
point of view. Identifying associations on the right side is slightly more useful
but generally unsafe as it may lead to object merging (see the first counterexam-
ple). Additionally, [21] shows that identifying associations causes problems when
migrating programs ([22] describes how to model programs and processes with
our model). So sticking to proper model transformations is sensible.

Now we continue the example of section 3. Let the model on the left side of
t1 be called the source model and the model on the right side of t2 be called the
target model. Then both t1 and t2 are syntactically composable as the left side
of t2 is equal to the right side of t1. Moreover, they are both admissible: Both
of them do not identify associations on the right side, and they reflect shortcut
paths on the left side simply because there are no shortcut paths on the left
side of both t1 and t2. By composing the spans according to Def. 5, we obtain
the composed model transformation t1+2 as shown in Fig. 8. Fig. 9 presents the
underlying pullback construction in more detail.
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Fig. 9. Construction of the composed model transformation t1+2

If, for example, we assume an instance identical to the source model (one
customer linked to one third-party insurance product), it is easy to see that
migrating this instance along t1 and t2 yields the same result as migrating the
same instance along t1+2 (in both cases, an instance identical to the target model
is produced).
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5 Related Work

There exist algebraic models for object-oriented data and program structures,
e.g. [6, 7, 11, 12]. However, to our knowledge, our model is different in that
it represents object structures at the instance level as conglomerates of sepa-
rate particles. Although this approach, called object slicing, has already been
described in [15, 24], it has not been used within an algebraic or categorial
framework yet. Additionally, our approach has been extended by a model for
programs and processes. Also, our approach is unique in the respect that it com-
bines an algebraic model for object-oriented data, programs, and processes with
a model for schema transformations and induced instance migrations.

The transformation of typed instances using pullbacks is described e.g. in
[5] where instances are models typed in metamodels. Co-transformations of de-
pendent entities are also discussed in [3, 9, 10]. However, unlike our model, the
migration of data and programs has to be provided explicitly and is not automati-
cally derived from the model transformation. In contrast, [1] focuses on deriving
instance migrations from model transformations automatically by generating
transformation software from the relationship between old and new model. How-
ever, it remains unclear to what extent the correction of the migration process
can be guaranteed by the framework.

In [19], model transformations that respect constraints are formalized. Our
model does currently not support arbitrary constraints except the built-in ones.
It would be interesting to investigate whether our model can be combined with
the Diagram Predicate Framework [20] to overcome this issue.

6 Outlook

In this paper we showed that our model of schema transformations and induced
migrations is powerful enough to achieve compositionality with only a small re-
striction. Compositionality of transformations and migrations is the key property
needed for supporting the software developer with powerful refactoring tools for
his daily work. Unlike graph transformations, however, which ignore unnecessary
context and concentrate on that part of the graph to be transformed, schema
transformations have to be formulated for the complete model until now. This
is a main obstacle for forthcoming tool support, as it requires either the tool
or (even worse) the developer to explicitly mark all unchanged schema elements.
A combination with the DPO framework [6] where rules are used to describe
model parts to be transformed is not possible because the DPO model requires
the rule morphisms to be injective, whereas our model is dependent on the pos-
sibility to specify non-injective spans. Here more powerful graph transformation
frameworks as sesqui pushout [4] or span rewriting [16] have to be examined and
combined with the transformation model as presented in this paper.

The results of this paper are also valid when migrating programs and processes
as described in [22]. In particular, disallowing the identification of associations
on the right side is important if one wants to achieve that methods remain
consistent during a migration. Details can be found in [21, Chapter 11.3].
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For the time being, multiplicities and other complex conditions (e.g. OCL
constraints) are not supported by our model and subject to future research.
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Abstract. The Eiffel exception mechanism supports two methodolog-
ical aspects. First, a method specification by a pre- and postcondition
also determines when the method exits exceptionally, namely when the
stated postcondition cannot be satisfied. Secondly, the rescue and retry
statements combine catching an exception with a loop structure, thus
requiring a dedicated form of correctness reasoning. We present verifica-
tion rules for total correctness that take these two aspects into account.
The rules handle normal loops and retry loop structures in an analogous
manner. They also allow the Eiffel’s mechanism to be slightly general-
ized. The verification rules are derived from a definition of statements
by higher-order predicate transformers and have been checked with a
theorem prover.

1 Introduction

Programming languages offer exception handling for responding to detected fail-
ures, for dealing with rare or undesired circumstances, and for allowing for imper-
fections in the design (like an incomplete implementation). Compared to treating
these situations by an explicit case analysis—with testing for permissibility of an
operation a priori or testing for success of an operation a posteriori—exception
handling allows the original, idealized design to remain largely unchanged and
separates the concern of exceptional situations.

The exception mechanism of Eiffel is particularly methodological in that it is
combined with the specification of methods by pre- and postconditions that are
evaluated at run-time [16]. When a precondition does not hold, it is the caller’s
fault and an exception is signalled in the caller. When a postcondition does
not hold, it is the callee’s fault and an exception is signalled in the callee. If the
callee cannot establish the desired postcondition by alternative means, the callee
propagates the exception to the caller. Thus, a single postcondition determines
whether a method exits normally or exits exceptionally, i.e. fails. This is in
contrast to the view that exceptions provide an alternative exit from methods
(like “item not found”), and as such have to be mentioned in method interfaces,
together with the condition when they are raised and the postcondition in that
case [12,14,15]. The second methodological aspect in Eiffel is that an exception
handler may retry a method, in which case execution continues at the beginning
of a method. The exception handler has to ensure that the precondition of the
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method holds, independently of where the exception in the body occurred, as in
following fragment:

meth
require
pre

do
body

ensure
post

rescue
handler
retry

end

Here, handler is invoked if post does not hold at the end of body. The retry
statement will restart the method, hence handler has to establish pre. Unlike
in the termination model (as in Java) and the resumption model (as in Mesa),
the retrying model of exception handling leads to a loop structure [5,24]. In this
paper we are concerned with the correctness theory of exception handling in the
retrying model of Eiffel.

The main contribution of this paper is a mechanically formalized verification
theory for total correctness based on weakest precondition predicate transform-
ers. Predicate transformers, as introduced by Dijkstra, define the input-output
behaviour of statements and at the same time allow the extraction of verifica-
tion conditions. The treatment of exception handling with predicate transformers
goes back to Cristian [7]: statements have one entry and multiple exits (one of
those being the normal one) and are defined by a set of predicate transformers,
one for each exit. As King and Morgan point out, this disallows nondetermin-
ism [11], which is useful for the specification and development of sequential
programs and necessary for defining concurrent programs. The solution is to
use a single weakest exceptional precondition predicate transformer with one
postcondition for each exit instead. Leino and Snepscheut derive weakest excep-
tional preconditions of statements from a trace semantics [13]. Here we start
immediately with weakest exceptional preconditions. Jacobs gives a mechanical
formalization of try-catch-finally statements [10]. However, that formalization
includes all the other “abrupt termination” modes of Java, which we do not
need for Eiffel, and uses state transformers rather than predicate transformers,
which again precludes nondeterminism.

Verification rules for partial correctness of Eiffel statements have been proposed
by Nordio et al. [17]. The present work extends these rules by considering total cor-
rectness, which necessitates loop variants for normal loops and retry variants for
methods with a retry statement. Loop variants were originally considered in Eif-
fel, but not retry variants [16]. Nordio et al. justify the rules with respect to an
operational semantics; here we derive the rules from a (denotational) predicate
transformer semantics. Another difference is the linguistic form for retrying. Eiffel
originally has a retry statement which can appear only in the exception handler.
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Nordio et al. propose instead to have a retry variable, a boolean variable which de-
termines if at the end of an exception handler the body is attempted again.Tschan-
nen et al. use this formof retrying for translatingEiffel into theBoogie intermediate
verification language [21]. Here we consider retry statements, as they are of interest
on their own and as the current versions of EiffelStudio (version 7) and SmartEiffel
(version 2.3) only support retry statements. As a consequence, all statements have
three exits, the normal, exceptional, and retry exit.

All theorems (formulae (1) to (23)) have been checked with the Isabelle/HOL
theorem prover; for this reason, we allow ourselves to omit proofs 1. The formal-
ization is a shallow embedding in which each statement is directly defined as a
term in the logic. This style goes back to Gordon [8] and has been explored for
program verification and refinement, e.g. [4,23,18]. As noted by Harrison [9], this
is a more natural formalization compared to a deep embedding, in which the syn-
tax of statements and their meaning are inductively defined. A shallow embed-
ding has also the advantage that all data types and operators of the underlying
logic are immediately available in the programming language for specification
and reasoning. The advantage of a deep embedding, to allow proofs over the
structure of statements, is not needed here. The second contribution of this pa-
per is to work out a shallow embedding of Eiffel statements with three exits. By
comparison, the formalization of Jacobs uses a deep embedding [10]. Program-
ming languages have partially defined expressions (pointer dereferencing, array
indexing, arithmetic operations) and conditional boolean operators (and then
and or else), which cannot be expressed directly in HOL, a logic of total func-
tions. In order to avoid a dedicated logic with partial functions, the approach is
to introduce partial functions within HOL only for program expression and to
continue using total functions for reasoning about statements.

An elegant way to define loops is in terms of strong iteration Sω, which stands
for S being repeated zero or more times, i.e., skip, S , S ; S , . . ., but possibly
infinitely often. (Weak iteration S ∗ repeats S only finitely often.) Such a defini-
tion allows the algebraic properties of loops to be derived, which are useful for
transformations like splitting/merging loops and atomicity refinement, e.g. as
in [3,6,22]. The third contribution of this paper is to explore an algebraic style
of defining retry loops. Here we have statements with three exits, i.e. with three
kinds of “sequential composition”, one for each exit. Thus three kinds of strong
iteration are defined, one for each exit.

This work originated in an effort to identify and formalize design patterns
for exception handling; one of those patterns is a simpler form of retrying [19].
The formalization here covers specifically the Eiffel mechanism of retrying. The
authors’ work on a new notion of partial correctness was inspired by the method-
ological aspects of exception handling in Eiffel [20].

Outline. As a prelude, the meaning of program expressions with undefinedness
and conditional operators is given in Section 1. The definition of Eiffel statements
is split in two parts. First a core language is defined by weakest preconditions

1 The Isabelle/HOL formalization is available at
http://www.cas.mcmaster.ca/~zhangt26/SBMF/

http://www.cas.mcmaster.ca/~zhangt26/SBMF/
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in Section 2. The remaining statements of Eiffel are defined in terms of the core
statements in Section 3. Correctness assertions are derived from the weakest
preconditions for all statements in Section 4. This allows the conditions for
method correctness to be derived in Section 5. The example of computing the
square root by binary search is used to illustrate the application of the rules in
Section 6. We conclude with a summary and discussion.

Notation. Following higher order logic, every term has a type and predicates
are boolean terms. We write = for the equality of terms and ≡ for the equality
of predicates. Arithmetic operators bind stronger than =, which itself binds
stronger than boolean operators, which themselves bind stronger than ≡.

2 Program Expressions

Before embarking on defining statements, we need to determine on how to treat
possible undefinedness in expressions. We distinguish terms in the underlying
logic, here higher order logic, from program expressions, here those of Eiffel. A
boolean term, even one like x/y > 0 and a[i ] < k is always true or false. However,
the program expressions x/y > 0 and a[i ] < k may not always yield a result. For
program expression E its definedness ΔE and value ‘E ’ are in part determined
by the underlying machine; the result of ΔE and ‘E ’ are terms. Formally, a
program expression of type T is a total function whose range is either some
element of T or None.

We consider a subset of Eiffel operators on booleans and integers: assuming
that c is a constant, x a variable, and ≈ is =, < or another relational operator,
◦ is +,−, or ∗, and | is // or \\ (integer division and modulo), we have

Δc =̂ True ‘c’ =̂ c

Δx =̂ True ‘x ’ =̂ x

Δ(E andF ) =̂ ΔE ∧ΔF ‘E andF ’ =̂ ‘E ’ ∧ ‘F ’

Δ(E orF ) =̂ ΔE ∧ΔF ‘E orF ’ =̂ ‘E ’ ∨ ‘F ’

Δ(E and thenF ) =̂ ΔE ∧ (‘E ’⇒ ΔF ) ‘E and thenF ’ =̂ ‘E ’ ∧ ‘F ’

Δ(E or elseF ) =̂ ΔE ∧ (¬‘E ’⇒ ΔF ) ‘E or elseF ’ =̂ ‘E ’ ∨ ‘F ’

Δ(E ≈ F ) =̂ ΔE ∧ΔF ‘E ≈ F ’ =̂ ‘E ’ ≈ ‘F ’

Δ(E | F ) =̂ ΔE ∧ΔF ∧ ‘F ’ �= 0 ‘E | F ’ =̂ ‘E ’ | ‘F ’

Δ(E ◦ F ) =̂ ΔE ∧ΔF ∧
min int ≤ ‘E ◦ F ’

≤ max int

‘E ◦ F ’ =̂ ‘E ’ ◦ ‘F ’

where min int and max int are the smallest and largest machine-representable
integers, operators and and or evaluate both operands, and operators and then
and or else evaluate conditionally. For example, assuming that min int ≤ 0 ≤
l ≤ u ≤ max int , we can show for program expression (l + u) // 2 that
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Δ((l + u) // 2) ≡ l + u ≤ max int (1)

‘(l + u) // 2’ = (l + u) // 2 (2)

and:

Δ(l + (u − l) // 2) ≡ True (3)

‘l + (u − l) // 2’ = l + (u − l) // 2 = (l + u) // 2 (4)

That is, program expressions (l + u) // 2 and l + (u − l) // 2 have the same
value, namely the term (l + u) // 2, but the later is always defined under above
assumption, whereas the former is not. We give the proof of (4):

‘(l + (u − l) // 2)’ = (l + u) // 2

≡ l + (u − l) // 2 = (l + u) // 2 definition of val

≡ l ∗ 2 + (u − l) // 2 ∗ 2 = (l + u) // 2 ∗ 2 congruence, distribution

≡ l ∗ 2 + (u − l) = l + u as x // y ∗ y = x if y �= 0

≡ l + u = l + u arithmetic

The distinction between terms in the logic and program expressions keeps the
logic simple, e.g. all familiar laws of the boolean algebra like the law of the
excluded middle still hold, while allowing to capture all restrictions of an under-
lying machine.

3 Core Statements

We consider a core language of statements with three exits, namely normal,
exceptional, and retry exit. The statement abort is completely uncontrollable
and the statement stop blocks execution. The statements skip, raise, retry do
not modify any variables, but jump to each of the three exits directly instead.
skip terminates normally, raise terminates exceptionally, and retry terminates
retrying.

Let a, b, c be predicates. In a language with single exit, the statement
assume a or [a] terminates if a is true and blocks if a is false. With three
exits, the statement [a, b, c] terminates normally if a is true, terminates excep-
tionally if b is true, terminates retrying if c is true, and blocks if all are false.
If several conditions are true, the choice among the corresponding exits is non-
deterministic. The assignment x := e, where x is a variable and e is a term,
always terminates normally. The nondeterministic choice S �T executes either
S if S does not block and executes T if T does not block. If both do not block,
the choice is nondeterministic. The normal (sequential) composition S ;T starts
with statement S and continues with statement T on normal termination of S ,
the exceptional (sequential) composition S ;E T continues with T on exceptional
termination of S , and the retrying (sequential) composition S ;R T continues with
T on retrying termination of S .
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This is formalized by a generalization of Dijkstra’s weakest precondition pred-
icate transformers. For predicates q, r , s ,

wp ‘S ’ (q, r , s)

is the weakest precondition such that S terminates, on normal termination q
holds finally, on exceptional termination r holds finally, and on retrying termi-
nation s holds finally 2:

wp ‘abort’ (q, r , s) =̂ False

wp ‘stop’ (q, r , s) =̂ True

wp ‘skip’ (q, r , s) =̂ q

wp ‘raise’ (q, r , s) =̂ r

wp ‘retry’ (q, r , s) =̂ s

wp ‘[a, b, c]’ (q, r , s) =̂ (a ⇒ q) ∧ (b ⇒ r) ∧ (c ⇒ s)

wp ‘x := e’ (q, r , s) =̂ q[x\e]
wp ‘S � T ’ (q, r , s) =̂ wp ‘S ’ (q, r , s) ∧ wp ‘T ’ (q, r , s)

wp ‘S ; T ’ (q, r , s) =̂ wp ‘S ’ (wp ‘T ’ (q, r , s), r , s)

wp ‘S ;ET ’ (q, r , s) =̂ wp ‘S ’ (q,wp ‘T ’ (q, r , s), s)

wp ‘S ;RT ’ (q, r , s) =̂ wp ‘S ’ (q, r ,wp ‘T ’ (q, r , s))

As a direct consequence, we have that stop = [False,False,False], skip =
[True,False,False], raise = [False,True,False], and retry=[False,False,True].
For local variable declarations, let X0 be the initial value of variables of type X
and let q, r , s be predicates that do not mention variable x :

wp ‘ local x : X S ’ (q, r , s) =̂ (wp ‘S ’ (q, r , s))[x\X0]

One more construct is needed for defining loops. In a language with single-exit
statements, the iteration Sω repeats S an arbitrary number of times, i.e. in-
tuitively is skip�S � (S ; S ) � (S ; S ; S ) . . ., until S blocks. While-loops can
be defined in terms of iteration by while g doS end = ([g] ; S )ω ; [¬g]. Here,
statements have three exits, so three variants of iteration exist: Sω repeats S
on normal termination; if S terminates exceptionally or retrying, Sω terminates
immediately. The iteration SωE repeats S on exceptional termination; if S ter-
minates normally or retrying, SωE terminates immediately. Finally, the iteration
SωR repeats S on retrying termination; if S terminates normally or exceptionally,
SωR terminates immediately.

Iterations are defined in terms of fixed points. We skip the definition here
and instead give the main rule for reasoning about iterations 3. The formulation

2 In the formalization with Isabelle/HOL, a statement is identified with its predicate
transformer, thus we would write S(q , r , s) instead of wp ‘S ’ (q , r , s). We use the
latter notation here for familiarity.

3 The Isabelle/HOL formalization contains the details.
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follows the treatment of statements with single exits by Back and von Wright [2].
Let W �= ∅ be a well-founded set, i.e. a set in which there are no infinitely
decreasing chains, and let pw for w ∈W be an indexed collection of predicates
called ranked predicates of the form pw ≡ p ∧ v = w . Here p is the invariant
and v the variant. We define p<w ≡ (∃w ′ ∈ W · w ′ < w ∧ pw ′ ) to be true if a
predicate with lower rank than pw is true:

(∀w ∈W · qw ⇒ wp ‘S ’ (q<w , r , s))⇒ (q ⇒ wp ‘Sω’ (q, r , s)) (5)

(∀w ∈W · rw ⇒ wp ‘S ’ (q, r<w , s)) ⇒ (r ⇒ wp ‘SωE ’ (q, r , s)) (6)

(∀w ∈W · sw ⇒ wp ‘S ’ (q, r , s<w )) ⇒ (s ⇒ wp ‘SωR ’ (q, r , s)) (7)

The first of these rules states that if under qw statement S terminates normally
while decreasing the rank of qw , then under q statement S terminates eventually
with q; if S terminates exceptionally with r or retrying with s , then Sω termi-
nates likewise. Similarly, the last of these rules states that if under sw statement
S terminates retrying while decreasing the rank of sw , then under r statement
S terminates eventually with s ; if S terminates normally with q or exceptionally
with r , then Sω terminates likewise.

A fundamental property of weakest preconditions is conjunctivity; it allows
the weakest precondition of a conjunction of postconditions to be determined in
terms of the precondition of each of the postconditions. Let Q be a non-empty
set of triples of predicates. Extending ∧ element-wise to triples, we say that
statement S is conjunctive if:

wp ‘S ’ (∧Q ∈ Q ·Q) ≡ (∧Q ∈ Q · wp ‘S ’Q)

All statements above are conjunctive or preserve conjunctivity. A consequence
of conjunctivity is monotonicity, which states that for predicate triples Q ,R:

(Q ⇒ R)⇒ (wp ‘S ’Q ⇒ wp ‘S ’R)

where ⇒ is extended element-wise to triples. Hence all statements above are
monotonic.

Weakest preconditions allow to define various useful domains. The termina-
tion domain tr ‘S ’ characterizes those states in which S will terminate at any
exit. The normal termination domain nr ‘S ’, the exceptional termination domain
ex ‘S ’, and the retrying termination domain rt ‘S ’ characterize those states in
which S is guaranteed to terminate normally, exceptionally, or retrying. The
enabledness domain en ‘S ’ characterizes those states in which S does not block:

tr ‘S ’ ≡ wp ‘S ’ (True,True,True)

nr ‘S ’ ≡ wp ‘S ’ (True,False,False)

ex ‘S ’ ≡ wp ‘S ’ (False,True,False)

rt ‘S ’ ≡ wp ‘S ’ (False,False,True)

en ‘S ’ ≡ ¬wp ‘S ’ (False,False,False)
For example retry always terminates, never terminates normally or exception-
ally, always terminates retrying, and never blocks. We do not go further into the
properties of domain.
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4 Derived Statements

The assignment x := E , where E is now a program expression, terminates nor-
mally if E is defined, in which case the value of E is assigned to x , and ter-
minates exceptionally if E is undefined, without changing any variables. The
statement checkB end only evaluates B without changing any variables and
terminates exceptionally if B is not defined or its value is false. The statements
if B thenS end and if B thenS elseT end also terminate exceptionally if B is
not defined.

x := E =̂ [ΔE ,¬ΔE ,False] ; x := ‘E ’

checkB end =̂ [ΔB ∧ ‘B ’,¬ΔB ∨ ¬‘B ’,False]

if B thenS end =̂ ([ΔB ∧ ‘B ’,¬ΔB ,False] ; S ) �
[ΔB ∧ ¬‘B ’,¬ΔB ,False]

if B thenS elseT end =̂ ([ΔB ∧ ‘B ’,¬ΔB ,False] ; S ) �
([ΔB ∧ ¬‘B ’,¬ΔB ,False] ; T )

Immediately we have that checkB end = if B then skipelse raise end and
if B thenS end = if B thenS else skip end as consequences.

The loop fromS untilB loopT end first executes S and then, as long as B
is false, executes T , and repeats that provided T terminates normally. If S or T
terminate exceptionally, the whole loop terminates immediately exceptionally. If
S or T terminate retrying, the whole loop terminates immediately retrying.

fromS untilB loopT end =̂ S ;
([ΔB ∧ ¬‘B ’,¬ΔB ,False] ; T )ω ;
[ΔB ∧ ‘B ’,¬ΔB ,False]

The rescue statement do S rescueT end starts with S and if S terminates nor-
mally, the whole statement terminates normally. If S terminates exceptionally,
T is executed. If T terminates normally or exceptionally, the whole statement
terminates exceptionally. This is captured by U = S ;E (T ; raise). If T ter-
minates retrying, S the whole rescue statement is attempted again. Intuitively
U ωR = skip�U � (U ;RU ) � (U ;R U ;RU ) . . . repeats zero or more times. How-
ever, doS rescueT end repeats indefinitely when T terminates retrying and
may only terminate normally or retrying. This is captured by U ωR ;R stop, hence:

do S rescueT end =̂ (S ;E (T ; raise))ωR ;R stop

This kind of exception handling differs from try S catchT end = S ;E T in two
respects: there is no loop structure in a try-catch statement and normal termi-
nation of handler T leads to normal termination of the whole statement but
to exceptional termination in do S rescueT end. This means that in Eiffel the
handler cannot contain an alternative computation to establish the desired post-
condition, but must instead direct the body S to attempt that, typically by
setting a corresponding variable and retrying.

Eiffel does not allow retry statements in the body S of doS rescueT end.
Above definition permits those, with the meaning that the whole statement is
attempted again immediately.
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5 Correctness Assertions

The total correctness assertion {p} S {q, r , s} states that under p, statement S
terminates normally with q, exceptionally with r , and retrying with s :

{p} S {q, r , s} =̂ p ⇒ wp ‘S ’ (q, r , s)

We start with two universal rules, generalizing analogous ones for single-exit
statements. In a correctness assertion, the precondition can be strengthened
and any of the three postconditions weakened. Also, correctness assertions of
a statement can be conjoined, thus allowing proofs to be split. By convention,
predicates listed on separated lines are to be conjoined:

p′ ⇒ p
{p} S {q, r , s}
(q ⇒ q ′) ∧ (r ⇒ r ′) ∧ (s ⇒ s ′)

⇒ {p′} S {q ′, r ′, s ′} (8)

{p} S {q, r , s}
{p′} S {q ′, r ′, s ′} ⇒ {p ∧ p′} S {q ∧ q ′, r ∧ r ′, s ∧ s ′} (9)

The first of these follows from the monotonicity of wp ‘S ’ and the second from
the conjunctivity of wp ‘S ’. The correctness rules for Eiffel statements are:

p ⇒ s ≡ {p} retry {q, r , s} (10)

p ∧ΔE ⇒ q[x\‘E ’]
p ∧ ¬ΔE ⇒ r

≡ {p} x := E {q, r , s} (11)

p ∧ΔB ∧ ‘B ’⇒ q
p ∧ ¬ΔB ⇒ r
p ∧ ¬‘B ’⇒ r

≡ {p} checkB end {q, r , s} (12)

{p} S {t , r , s}
{t}T {q, r , s} ⇒ {p} S ; T {q, r , s} (13)

{p ∧ΔB ∧ ‘B ’} S {q, r , s}
p ∧ΔB ∧ ¬‘B ’⇒ r
p ∧ ¬ΔB ⇒ s

⇒ {p} if B thenS end {q, r , s} (14)

{p ∧ΔB ∧ ‘B ’} S {q, r , s}
{p ∧ΔB ∧ ¬‘B ’}T {q, r , s}
p ∧ ¬ΔB ⇒ s

⇒ {p} if B thenS elseT end {q, r , s} (15)

For the loop from S untilB loopT end, we assume that the postconditions are
of a particular form: at normal termination, the loop invariant holds, B is defined
and true. At exceptional termination, either the exceptional postcondition of S or
T holds (in case S or T failed), or the invariant holds and B is not defined (in case
the evaluation of B failed). On retrying termination, the retrying postcondition
of S or T holds (in case S or T executed retry). The role of S is to establish
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the loop invariant, here q:

{p} S {q, r , s}
{qw ∧ΔB ∧ ¬‘B ’}T {q<w , r , s}

⇒ (16)

{p} from S untilB loopT end {q ∧ΔB ∧ ‘B ’, r ∨ (q ∧ ¬ΔB), s}

Recall that qw = q ∧ v = w where q is the invariant, v the variant, and w ∈W .
In Eiffel, variants are integer expressions and the well-founded set W of their
values are non-negative integers. For integer variants, we have the following rule,
where w > 0:

{p} S {q, r , s}
{q ∧ v = w ∧ΔB ∧ ¬‘B ’}T {q ∧ v < w , r , s}

⇒ (17)

{p} from S untilB loopT end {q ∧ΔB ∧ ‘B ’, r ∨ (q ∧ ¬ΔB), s}

The rule for doS rescueT end requires that progress towards termination is
made whenever S or T exits retrying; termination here means normal termina-
tion if S terminates normally or exceptional termination if T terminates nor-
mally or exceptionally:

{pw} S {q, tw , p<w}
{tw}T {r , r , p<w}

⇒ (18)

{p} do S rescueT end {q, r , s}

For integer variants, we have following rule, where w > 0:

{p ∧ v = w} S {q, t ∧ v = w , p ∧ v < w}
{t ∧ v = w}T {r , r , p ∧ v < w}

⇒ (19)

{p} do S rescueT end {q, r , s}

Here p is the retry invariant and v is the retry variant.

6 Method Correctness

In Eiffel, each method is specified by a single precondition and single postcondi-
tion only. The normal exit is taken if the desired postcondition is established and
the exceptional exit is taken if the desired postcondition cannot be established.
Thus the situations under which an exceptional exit is taken is implicit in the
method specification and a “defined” outcome is always possible, even in the
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presence of unanticipated failures. Since methods never terminate retrying, and
some statements only terminate normally, we introduce two abbreviations:

{p} S {q, r} =̂ {p} S {q, r ,False}
{p} S {q} =̂ {p} S {q,False}

We propose to restrict the exceptional postcondition in case the specified post-
condition cannot be established [20]. Since classes typically have a class invariant,
the class invariant should hold even at exceptional termination, as otherwise the
program is left in an inconsistent state and a subsequent call to the same ob-
ject may fail. (As a consequence, if re-establishing the class invariant cannot
be guaranteed, the class invariant needs to be weakened appropriately.) More
generally, let p be the condition that holds before a call to method m with
body local x : X do S rescueT end, where p captures the computation that
has been made by the whole program up to this point. We then require a call to
m either to terminate normally with the desired postcondition q or terminate
exceptionally with p:

{p} local x : X do S rescueT end {q, p}
That is, in case of failure, the method may leave the state changed, but has to
undo sufficiently such that p holds again. This regime allows then failures to be
propagated back over arbitrarily many method calls. From the correctness theo-
rems for statements, we get immediately following rule, where p, q are predicates
that may not mention x and p′

w is a collection of ranked predicates.

p ∧ x = X0 ⇒ p′

{p′
w} S {q ′, tw , p′

<w}
{tw}T {p′, p′, p′

<w}
p′ ⇒ p

q ′ ⇒ q

⇒
{p}
local x : X doS rescueT end

{q, p}
(20)

For integer variants, we have following rule, where w > 0:

p ∧ x = X0 ⇒ p′

{p′ ∧ v = w} S {q ′, t ∧ v = w , p′ ∧ v < w}
{t ∧ v = w}T {p′, p′, p′ ∧ v < w}
p′ ⇒ p

q ′ ⇒ q

⇒
{p}
local x : X doS rescueT end

{q, p}

(21)

7 Example: Binary Search of Square Root

Suppose the task is to compute the approximate non-negative integer square
root of n, which is a non-negative integer itself, such that Result2 ≤ n <
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(Result+1)2 using bounded arithmetic 4. Assume that the result must be be-
tween l and u. The loop

fromuntil u − l = 1 loop

m := l + (u − l) // 2

if n < m ∗m then u := m else l := m end

end

maintains the invariant p ≡ 0 ≤ l < u ∧ l2 ≤ n < u2. The statement m :=
l + (u − l) // 2 will establish m = (l + u) // 2 according to (4) and never fail
according to (3). However, the if statement will fail if m ∗m > max int . Since
necessarily n ≤ max int , we know that in case of failure n < m ∗m, thus after
assigning u := m the loop can continue. We use the abbreviation {retry: q} for
{False,False, q}. The full implementation with annotation is as follows:

sqrt(n, l , u : INTEGER) : INTEGER
{p}
local
m : INTEGER

{retry invariant: p}
{retry variant: u − l}
do
{loop invariant: p}
{loop variant: u − l}
fromuntil u − l = 1 loop
m := l + (u − l) // 2
{p ∧m = (l + u) // 2}
if n < m ∗m then u := m else l := m end
{p, p ∧m = (l + u) // 2 ∧ n < m2}

end
{p ∧ u − l = 1}
Result := l

rescue
{p ∧m = (l + u) // 2 ∧ n < m2}
u := m
{p}
retry
{retry: p}

end
{Result 2 ≤ n < (Result+1)2}

Note that the retry loop only needs to decrease the variant on the retry exit.

4 The Eiffel Standard [1] and Meyer [16] suggest that an arithmetic overflow leads to an
exception. SmartEiffel (version 2.3) does raise an exception, but EiffelStudio (version
7) does not. However, the example can be expressed in EiffelStudio by first formulat-
ing a class for safe arithmetic, see http://www.cas.mcmaster.ca/~zhangt26/SBMF/

http://www.cas.mcmaster.ca/~zhangt26/SBMF/
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8 Discussion

In this paper we have derived verification rules for the retrying mechanism of
Eiffel exceptions. Beside the contribution of total correctness rules, the novel
aspects of the derivation are that we started with a weakest exceptional precon-
dition semantics and defined both normal loops and retry loops through strong
iteration. All theorems have been checked with Isabelle/HOL.

The statements considered include the check statement, but we have not
discussed ensure and require method specifications. Since these are evaluated
at run-time in Eiffel, they are restricted to be program expressions (extended
with the old notation). However, since these are evaluated program expression
they have be treated like the check statement. It should be straightforward to
extend the approach for method correctness (Sec. 6) accordingly.

We have neither considered dynamic objects, therefore no method calls, nor
other features of Eiffel like inheritance. While we believe that exception handling
is largely independent of other features and the treatment here would carry over
to a more general setting, this remains to be shown.

Strong and weak iteration are appealing because of their rich algebraic struc-
ture. However, we have not explored the resulting algebraic properties of rescue
and retry statements. For example, following theorems can be shown to hold:

do skip rescue S end = skip (22)

doraise rescue retry end = abort (23)

An interesting consequence of our definition of statements is that retry state-
ments can also appear in the main body of a method, not only the exception
handler. The proof rule (18) supports this use. With this, the binary search of
the square root example can be rewritten without the from / until loop, using
only the retry loop:

sqrt2(n, l , u : INTEGER) : INTEGER
{p}
local
m : INTEGER

{retry invariant: p}
{retry variant: u − l}
do
m := l + (u − l) // 2
{p ∧m = (l + u) // 2}
if n < m ∗m then u := m else l := m end
{p, p ∧m = (l + u) // 2 ∧ n < m2}
if u − l > 1 thenretry end
{p ∧ u − l = 1, retry: p ∧ u − l > 1}
Result := l

rescue
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{p ∧m = (l + u) // 2 ∧ n < m2}
u := m
{p}
retry
{retry: p}

end
{Result 2 ≤ n < (Result+1)2}

Nordio et al. propose to replace the retry statement with a retry variable in
order to avoid the third exit [17]. Below is their example of safe division, with
annotation to show termination of the retry loop; the example shows that the
third exit does not cause further complications:

safe division (x , y : INTEGER) : INTEGER
local
z : INTEGER

{retry invariant: (y �= 0 ∧ z = 0) ∨ (y = 0 ∧ (z = 1 ∨ z = 0))}
{retry variant: 1− z}
do
Result := x // (y + z )
{(y = 0⇒ Result = x ) ∧ (y �= 0⇒ Result = x // y), y = 0 ∧ z = 0}

rescue
{y = 0 ∧ z = 0}
z := 1
{y = 0 ∧ z = 1}
retry
{retry: y = 0 ∧ z = 1}

end
{(y = 0⇒ Result = x ) ∧ (y �= 0⇒ Result = x // y)}

Acknowledgement. We are grateful for the helpful comments of the reviewers.
In particular, one reviewer suggested theorems (22) and (23).
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Abstract. Formal dynamic analysis of Message Passing Interface (MPI) pro-
grams is crucially important in the context of developing HPC applications.
Existing dynamic verification tools for MPI programs suffer from exponential
schedule explosion, especially when multiple non-deterministic receive state-
ments are issued by a process. In this paper, we focus on detecting message-
orphaning deadlocks within MPI programs. For this analysis target, we describe
a sound heuristic that helps avoid schedule explosion in most practical cases while
not missing deadlocks in practice. Our method hinges on initially computing the
potential non-deterministic matches as conventional dynamic analyzers do, but
then including only the entries which are found relevant to cause a refusal dead-
lock (essentially a macroscopic-view persistent-set reduction technique). Experi-
mental results are encouraging.

1 Introduction

The Message Passing Interface (MPI, [9]) is one of the central APIs used in large-scale
high performance computing (HPC) simulations. Most of today’s supercomputers and
high performance clusters are programmed using MPI, and this trend is expected to
continue [6]. There are also embedded system communication standards built around
message passing, such as MCAPI [8]. In this paper, we study the problem of adequately
testing message passing programs using formal techniques for the purpose of deadlock
detection. While our research is conducted with MPI-specific details, with relatively
minor modifications our results also apply to other message passing paradigms.

In MPI, message send commands directly address the destination process while mes-
sage receives are of two types: either directly address the source process (called de-
terministic receives) or the non-deterministic (or “wildcard”) receives that can receive
from any sender that targets the process issuing such a receive. The sends and receives
issued by an MPI process that target the same destination or source from the same
process are required to match in program order (the “non-overtaking rule of MPI”,
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Section 3.5 in [9]). The MPI runtime computes the eligible matches for each receive
operation. The matching operations are called match pairs. At any runtime state of an
MPI program, a deterministic receive will always have a single matching send, thus,
all concurrent match pairs consisting of deterministic receives and matching sends can
commute (i.e. match pairs can interleave resulting in the same program state). This is
because all such match pairs have non-overlapping destinations/sources. However, non-
deterministic receive matches do not, in general, commute. A non-deterministic receive
R(∗) can have multiple eligible matching senders; an R(∗) matching a send S i results
in a system state different from when another send S j matches the same receive where
S i and S j are issued from different processes. This is not good news for dynamic par-
tial order reduction (DPOR [3]) methods because in many MPI programs, R(∗) calls
occur in sequence (typically in a loop). Thus, it seems that any DPOR technique is
doomed to examine an exponential number of interleavings—something that does not
bode well for our Exascale computing aspirations (exascale roadmap [10]) in which
several message passing APIs (including MPI) are expected to play an important role.
This paper develops a simple but very effective (in practice) heuristic that avoids the
afore-mentioned schedule explosion in many cases.

Background and Related Work. It is important to have a balanced portfolio of verifi-
cation tools in any area—including for MPI. Informal testing approaches for MPI (e.g.,
based on schedule perturbation [18]) do not guarantee coverage, and are also highly
redundant because they will, in practice, generate many equivalent schedules (e.g., per-
muting deterministic message match pairs). While static analyzers for MPI exist (e.g.,
[1]), they are known to be unsound (can generate too many false alarms) when used
for bug-hunting, due to their overapproximation of possible message matches. Model-
checking based methods (e.g., MPI-SPIN [12]) can guarantee coverage, but on models
of MPI programs; such models are very difficult to create, and become obsolete with
each design change.

From a designer’s perspective, dynamic formal testing tools are attractive in many
ways: (1) they are sound (meaning no false alarms), (2) they can be made complete with
respect to non-determinism coverage (meaning no omissions w.r.t. a safety property).
Formal dynamic verifiers such as ISP [14,17] and DAMPI [15,16] take an approach
that integrates the best features of testing tools (ability to run on user applications) and
model checking (message match non-determinism coverage guarantees). They run the
MPI program under the control of verification-oriented scheduling mechanisms (a cen-
tral scheduler for ISP and logical clocks for DAMPI). The MPI semantics-aware algo-
rithms of these tools guarantee non-determinism coverage (e.g., all the potential match
pairs w.r.t. a non-deterministic receive) while not examining the schedule space with
respect to commuting deterministic receive/send match pairs. They have been shown to
scale up to 1000 MPI processes for many MPI programs (in the case of DAMPI). The
scheduling mechanisms in these tools are robust across all MPI-compliant platforms
and computational delays between communication calls. However, these dynamic veri-
fication tools suffer from the aforesaid exponential schedule explosion when a sequence
of R(∗) commands are issued. A practical dynamic verification tool that avoids this
schedule explosion and provides reasonable coverage is, to the best of our knowledge,
currently unavailable. This paper describes such a tool.
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Contributions. The specific contributions of this paper are as following:

– Our general focus is on the problem of detecting deadlocks in MPI programs. We
define a notion of orphaning deadlocks in which an MPI receive is left without a
matching send in some MPI program execution state. We modify ISP’s dynamic
partial order reduction algorithm called POE (standing for Partial Order avoiding
Elusive interleavings, [14]) to result in a new algorithm called MSPOE (Macro-
Scopic POE). MSPOE applies to MPI programs that “do not decode data,” i.e., do
not employ data dependent control flows, and do not alter their control flows based
on which sends a non-deterministic receive matches with. It is a reasonable assump-
tion since a large class of SPMD programs are coded in a manner that is consistent
with our simplification.

– The formulation of MSPOE relies on a notion of commuting sends; this notion re-
sults from a macroscopic re-interpretation of the basic tenets of partial order reduc-
tion. To this end, we modify and re-state the definition of independent transitions
in the context of MPI programs.

– We measure the efficacy of MSPOE on real examples, and show that MSPOE can
dramatically reduce the number of interleavings examined.

MSPOE is, by design, incomplete. In practice, MSPOE has caught all the deadlocks
that ISP has discovered on the set of selected realistic benchmarks. A study of any
successful large-scale formal software testing or analysis approach (e.g. [5]) shows that
rather than aiming for a theoretically complete algorithm, one almost always has to aim
for “completeness in practice.”1

Detailed Look at an Example. Let a call denoted by S i, j(k) be a asynchronous send
call from process i sending to process k with the local process program counter (PC) at
j. Similarly an asynchronous receive call sourcing from process k which is issued by
process i indexed at j is denoted by Ri, j(k). A non-deterministic asynchronous receive is
represented by Ri, j(∗). We will use this notation through the rest of the paper. Note that
in the notation, the arguments of the call can be suppressed for brevity since each call
can also be uniquely identified by the process ID and the PC value. For instance, Ri, j(∗)
can be uniquely identified by Ri, j. We would use the actual and suppressed notation
interchangeably in the paper. Let us examine the example shown in Figure 1. Assume
that all the asynchronous calls have their associated wait calls (wait is a blocking call to
ensure the successful completion of the associated non-blocking send/receive request,
Section 3.7.3 in [9]) posted which are not shown in the example for brevity. A sched-
uler such as ISP will explore 24 interleavings for this example. This is because, the first
wildcard receive will have 4 eligible matching sends and the subsequent receive will
have 3 eligible matching sends and so forth, leading to a total of 4! schedules. As long
as all sends commute, such examples cannot have deadlocks and there is no necessity to
examine other schedules. In the example under discussion, observe that all sends com-
mute. MSPOE will analyze the program in Figure 1 in the following way: MSPOE will
explore the first interleaving and will subsequently discover that the program does not
issue any deterministic receive calls and all sends commute. Thus, it will conclude that

1 In practice, it seems one can obtain at most two of the following three attributes: sound, com-
plete, scalable.
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P0 P1 P2 P3 P4

S 0,1(4); S 1,1(4); S 2,1(4); S 3,1(4); R4,1(∗);
R4,2(∗);
R4,3(∗);
R4,4(∗);

Fig. 1. Example illustrating explosion in schedule space

Deadlock

S0,1 4,1 S1,1R4,1 S2,1R4,1 S3,1R4,1

R4,2

Initial State

R

Fig. 2. Deadlocking match for R4,1(∗)

every receive must find a match in each interleaving. It will terminate the exploration
right after the first run.

Now consider the same example of Figure 1, however, replace R4,2(∗) by R4,2(3). The
code now has a deadlock. Figure 2 illustrates the various match-pairs possible for the
receive R4,1. If R4,1 were to match S 3,1 (right-most transition from the initial node), the
subsequent deterministic call (R4,2) will be orphaned, thus creating a refusal deadlock.
ISP and other verification schedulers like DAMPI explore all the matches starting from
leftmost choice shown in Figure 2 and then moving right with every new run, generating
four interleavings before finding the deadlock. MSPOE, on the other hand, discovers
that since there is a deterministic receive R4,2, its matching send can get consumed by a
prior wildcard receive. Thus, MSPOE prioritizes the schedule in which S 3,1 is matched
with R4,1 thus forcing the program to take a schedule where R4,2 is orphaned. MSPOE
detects the deadlock in two interleavings.

2 Preliminaries

Let P be a concurrent MPI program and Pi is the ith sequential process executing P
where i ∈ PID and PID = {0, 1, ..., n}. We assume the program is executed with finite
many processes. Each Pi is Li instructions long. Let l denote the program counter (PC)
array; thus, li ∈ l denotes the PC value for the ith process. The jth MPI command in the
ith process is denoted pi, j where j = li.

The work presented in this paper can be understood with only a subset of MPI calls
which comprises of: non-blocking send, non-blocking receive, wait, and the barrier call.
Since providing the whole overview of MPI is beyond the scope of this paper, we will
restrict the presentation to the afore-mentioned subset of MPI calls. We have already
presented the notations for representing non-blocking send and receive calls. A non-
blocking send or receive call returns a “handle” that is waited upon by a later issued
wait (W) operation. For instance, the wait call for the corresponding S i, j(k) would be
represented as Wi,li (hi, j). In our illustrations of examples, we suppress showing the W
calls explicitly. We replace them by suitably adding the program order edges. Note that
our implementation handles them correctly. A blocking send call’s effect is obtained by
placing wait call immediately after the non-blocking send call. A blocking receive can
be obtained in a similar fashion. An MPI Barrier operation by process i is represented as
Bi, j where j is the li for that process. Let Op be the set of MPI operations comprised of
S i, j(k), Ri, j(k), Ri, j(∗), Wi, j′(hi, j) and Bi, j, for all possible i, j, j′, k. Note that an operation
belonging to Op is a visible operation and all other operations (non MPI) are invisible.
A visible operation is one that is intercepted by the ISP scheduler.
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The execution state of an MPI program together with the MPI runtime is modeled us-
ing σ where σ = 〈I,M,C, l〉 that consists of issued (I ⊆ Op) instructions, persistent-set
(M) set, completed set of instructions (C ⊆ I), and the PC array l. This is also the state
that the ISP scheduler goes by (probing the internal state of the MPI processes and run-
time is impractical). Let S denote the set of all states of an MPI program. Persistent-set
M at a state σ ∈ S (denoted by Mσ) is a set of match-set moves. A match-set at a state is
either a set of matching send and deterministic receive or a set of matching sends and a
wildcard receive. Since match-set transitions the system from one state to a subsequent
state, we view match-set moves as the transitions of the MPI program under the exe-
cution of a verification scheduler like ISP. The terms match-sets and transitions in this
paper would be used interchangeably. Thus, when a send call S i,li(k) matches a receive
call Rk,lk (i) at σ, the associated transition t ∈ Mσ is represented by 〈S i,li (k), Rk,lk(i)〉 or
just 〈S i,li , Rk,lk〉. We denote the issue set and the completed set at σ by Iσ and Cσ re-
spectively. Let T denote the set of all transitions of the system. A t ∈ T enabled at state

σ which when executed results in a unique successor state σ′, written as σ
t−→ σ′ . The

successor state is also represented by the following: σ′ = t(σ). We define the whole
MPI program as a state transition system AG = (S,T , σ0). where σ0 is the starting state
of the system. We now define the transition rules to model MPI program execution as
governed by ISP.

2.1 State Transition Rules (MPI/ISP)

Before we present the state transition rules, it is important to understand the Matches-
Before (MB) ordering among MPI instructions. We define MB ordering among two
operations issued from the same process by the operator ≺lp. MPI standard requires in-
struction pairs S i, j(k) ≺lp S i, j′ (k), Ri, j(k) ≺lp Ri, j′(k), and Ri, j(∗) ≺lp Ri, j′(k/∗) where
j < j′. The standard also enforce the following ordering: Wi, j(−) ≺lp anyi, j′ and
Bi, j ≺lp anyi, j′ where any ∈ Op and the symbol “−” denotes don’t care condition.
MPI instructions are allowed to re-order and violate the program order, however, they
must always obey the MB ordering.

Our state transition rules employ a precondition Ready to model MB ordering re-
striction based matching of transitions.

Ready(σ) = {x ∈ Iσ|∀y : (y ≺lp x⇒ ∃σ′ ∈ Prev(σ) : y ∈ Cσ′ }

An instruction would be ready to be matched in a certain state only when all prior MB
ordered operations have matched. Prev(σ) returns the set of preceding states where
each state upon firing a unique transition (enabled at that state) leads to σ. Function
isW tests whether the instruction that is passed as an argument is a wait call. Similarly
functions such as isS and isR test whether a given instruction is a send or a receive
respectively. The rules called RS and RR can be used to model how the state advances
upon instruction issue of send and receive calls from the process Pi.

RS ,RR :
Σ(σ as 〈I,M,C, l〉), (isS (xi,−) ∨ isR(xi,−))
Σ〈I ∪ {xi,−}, M, C, l[i← (li + 1)]〉

Here, Σ is the predicate for the set of reachable states from the start state. Similarly, we
define the rules for instruction issue of wait and barrier calls:
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RW ,RB :
Σ(σ as 〈I,M,C, l〉), (isW(xi,−) ∨ isB(xi,−))

Σ〈I ∪ {xi,−}, M, C, l〉
The successful return of wait and barrier calls are modeled by the following rules:

RWret :
Σ(σ as 〈I,M,C, l〉), isW(xi, j(hi, j′)), ∃yi, j′ : yi, j′ ∈ C

Σ〈I, M, C ∪ {xi, j}, l[i← li + 1]〉

RBret :
Σ(σ as 〈I,M,C, l〉), Bars = {xi,− ∈ Ready(σ)|isB(xi,−), i ∈ PID},
|Bars| = PID
Σ〈I, M, C ∪ Bars, (k ∈ PID, l[k← lk + 1])〉

We now define the transition rule for the completion of send and receive instructions:
RS RM:

Σ(σ as 〈I,M,C, l〉), {S i, j(k),Rk,n(i/∗)} ⊆ Ready(σ)

Σ〈I, M ∪ {S i, j(k),Rk,n(i)},C}, l〉
RS R:

Σ(σ as 〈I,M,C, l〉), {S i, j(k),Rk,n(i)} ⊆ Ready(σ)

Σ〈I, M \ {S i, j(k),Rk,n(i)}, C ∪ {S i, j(k),Rk,n(i)}, l〉
Rule RS RM is responsible for constructing the persistent-set M at each state. In order
to define the matching and completion of wildcard receive calls we first introduce the
Fnc predicate. Let σ→ denote σ has a next state, σ→RS R denote that σ has a next
state through RS R (i.e., RS R can fire at σ), and σ�RS R denote that RS R cannot fire at σ.
Similarly, σ�RS R,RB denotes that neither RS R nor RB can fire at σ. Then we define the
fence predicate as follows,

Fnc(σ) = σ�RS R,RW ,RB,RWret,RBret ,RS ,RR

When fence predicate is true then the only transition that is enabled at sigma is the
wildcard transition. We can now define RS R∗ to be:

Σ(σ as 〈I,M,C, l〉), {S i, j(k),Rk,n(∗)} ⊆ Mσ, Fnc(σ)

Σ〈I, M \ {S i, j(k),Rk,n(i)}, C ∪ {S i, j(k),Rk,n(i)}, l〉

In particular, we show the dynamic rewriting by changing ‘*’ to i. Readers are encour-
aged to refer [14] for more details. We have presented only the required rules and details
in order to make the paper self-contained.

We finally present the classical notion of persistent sets [4] which is crucial in un-
derstanding the match-set reductions presented later in the paper.

Definition 1 (Persistent in σ). A set T of transitions enabled in a state σ is persistent
in σ iff, for all non empty sequences of transitions from σ in AG

σ = σ1
t1−→ σ2

t2−→ σ3...
tn−1−−→ σn

tn−→ σn+1

and including only transitions ti � T, 1 ≤ i ≤ n, tn is independent in σn with all
transitions in T .
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Fig. 3. Dependence among DTG transitions

Informally, this means that when a transition sequence is generated from a state s by
choosing only transitions that are independent with transitions in T then the final state
reached cannot have a transition that is dependent with any of the transitions in T . The
interleavings obtained by only executing the entries in the persistent-set at every state
are the representative interleavings and result a reduced state graph denoted as AR.

2.2 Nature of Transitions in a Persistent-Set

A persistent-set at a state can contain multiple transitions. Persistent-sets are constructed
in a prioritized manner as discussed in [13] (appropriately summarized in the state tran-
sition rules, as needed, in this paper). The only possibility of a persistent-set containing
multiple transitions is when there is a wildcard receive involved. When all the potential
senders to a wildcard receive R(∗) are determined at an execution state, ISP forms a
transition involving R(∗) and each of the sends. The work in [13] views all resulting
entries in the persistent-set of a state as dependent and designates the collection of such
transitions as dependence transition group (DTG). For instance, consider the example
in Figure 3. This figure shows one trace of the program. Here, the solid un-directed
arrows represent the match-sets along which the execution proceeded. The dotted un-
directed arrow represents another possible match-set (not realized in the present exe-
cution). The solid directed arrows capture the IntraMB (“Intra process matches-before
ordering) relation2. The DTG with respect to the receive R0,1 has the following tran-
sitions: t1 = 〈S 1,1,R0,1〉 and t2 = 〈S 2,2,R0,1〉. We define a function Dtg(σ) �Ri,l that
returns a set of transitions that are enabled at a state σ and belong to the DTG w.r.t. to
the wildcard receive Ri,l.

Notice, however, multiple DTGs can co-exist at a state, and they can influence each
other. The example shown in Figure 3 illustrates such a scenario. Observe that if DTG2

is fired before the transitions in DTG1, then S 2,2 would be co-enabled with S 1,1, and
both these sends can match R0,1. In this case, DTG1 must be augmented.

In our example, DTG1 is augmented—from containing the transition 〈S 1,1,R0,1〉 to
containing two transitions 〈S 1,1,R0,1〉 and 〈S 2,2,R0,1〉. This is the main source of the
exponential explosion alluded to in this paper.

MSPOE seeks to ameliorate this explosion. The whole exercise of MSPOE is to op-
timistically treat transitions within a DTG in σ as independent. This observation is true
of MPI programs where application state is independent of the sender that matched the

2 The edge between R2,1 and S 2,2 indicates that there must be a wait operation W bound to R2,1

lying in-between. This W has been suppressed but the effects are appropriately captured in the
MB edge shown.
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Fig. 5. Transition independence

wildcard receive. MSPOE takes a lazy approach to augmenting DTGs. As mentioned
under example explanation on Page 196, as far as orphaning deadlocks are concerned, it
is the competition between a wildcard and a deterministic receive for a particular send
that must be regarded as the dependency relation that truly matters. We shall see that
DTG augmentation done precisely at these moments leads to an exploration technique
(MSPOE) that often generates a single interleaving (implying the absence of deter-
ministic receives). In contrast, POE generate an interleaving blowup. Our results show
that orphaning deadlocks are detected by MSPOE in all practical cases, avoiding this
explosion.

3 Independent Transitions

In order to define independent transitions, we first introduce the notion of commuting
sends that are part of the transitions within a single DTG.

Definition 2 (Commuting Sends). Sends S i,l(k) and S j,m(k) are commuting sends iff
the following conditions hold at a state σ:

– Exists Rk,n(∗) ∈ Ready(σ) such that t1 = 〈S i,l(k),Rk,n(∗)〉 and t2 = 〈S j,m(k),Rk,n(∗)〉
and t1, t2 ∈ Pσ.

– S j,m(k) ∈ t′2 and S i,l(k) ∈ t′1 where t′2 ∈ Pt1(σ) and t′1 ∈ Pt2(σ).3

Observe that in Definition 2, two sends, S i,l and S j,m can commute only when they
are enabled and part of transitions t1 and t2 in a state σ and matching one send at σ
should not leave the other send disabled or unmatchable in the resulting state. Let C be
the set of pairs of such commuting sends (“commutes” predicate). Then, we have the
following: that t1 ≡C t′1 and t2 ≡C t′2.

We now define the independence relation used by MSPOE as:

Definition 3 (Independent Relation). Ind ⊆ T × T is an independence relation iff
for each 〈t1, t2〉 ∈ Ind the following conditions hold:

1. Enabledness: t1 and t2 ∈ Pσ and there exists a Rk,n(∗) such that t1, t2 ∈ Dtg(σ) �Rk,n .
2. Commutativity: If S i,l(k) ∈ t1 and S j,m(k) ∈ t2 then (S i,l, S j,m) ∈ C.

3 Here, we treat t′1 and t′2 as sets; they really are send-receive pairs which model transitions.
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Algorithm 1. MSPOE Algorithm
1: Input:
2: Stack of State: St � St has σ0; initial state
3: Vector of Set: P � Persistent-set for each state
4: Vector of Set: RP � Reduced Persistent-set for each state

5: σ← First(S t) � Get bottom of Stack St
6: S t← GenerateInterleaving(σ)
7: while ∼ Empty(S t) { � continue until St becomes empty
8: σ← T op(S t) � Get top of Stack St
9: RPσ ← RPσ \ {Curr(σ)} * � Curr(σ) returns the match-set chosen at state σ

10: Pσ ← Pσ \ {Curr(σ)}
11: if Empty(RPσ) { * � RPσ was singleton and was explored in the interleaving
12: S t← Pop(S t) � Remove state σ from St
13: } else
14: S t← GenerateInterleaving(σ)
15: }
16: }

Thus, with the independent relation, we now can say two transitions t1 and t2 are de-
pendent when the send operations in t1 and t2 do not commute. Consider the example
and its corresponding state graph shown in Figure 4 and Figure 5. The initial state σ0

has two enabled transitions, namely: t1 = 〈S 1,1,R0,1〉 and t2 = 〈S 2,1,R0,1〉. Note that the
sends S 1,1 and S 2,1 commute. Firing t1 disables t2 in the next state, however, the transi-
tion enabled at t1(s) is t′2 = 〈S 2,1,R0,2〉 and t2 ≡c t′2. Thus, t1 and t2 are independent. If
the send calls in t1 and t2 were not commute (assuming t1 was fired from σ) then:

– The send from t2 is disabled at t1(σ).
– The operation available at t1(σ) is not a receive that t2’s send can match with. If the

operation enabled at t1(σ) is a receive, then it must be a deterministic receive which
is sourcing from a process other than the process that issued t2’s send.

This explanation formulates a detailed summary of our initial observation for the refusal
deadlocks. We discuss in detail the ability of MSPOE to compute the independence of
transitions in Section 6.

4 Macroscopic Partial Order Elusive (MSPOE) Algorithm

Algorithm 1 presents the MSPOE algorithm in detail (statements tagged with ∗ are addi-
tions to POE which help transform POE into MSPOE). In this algorithm, the match-set
move (or the transition) selected at a particular state σ in an interleaving is denoted by
Curr(σ) ∈ Pσ where Pσ is the persistent-set at state σ. RPσ is the reduced persistent-
set at state σ which is what MSPOE will accomplish (it trims down persistent-set sizes
according to our macroscopic POR independence rules presented in § 3). We also main-
tain a stack S t of states that have been visited but not completely explored. Algorithm 2
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Algorithm 2. GenerateInterleaving from state σ
1: Input:
2: State: σ
3: Stack of State: St

4: Output:
5: Stack of State: St

6: while σ is not NULL { � Continue until next state can’t be found
7: m← Choose(Pσ) � Choose a match-set to explore from σ
8: RPσ ← RPσ ∪ {m} *
9: if m = 〈S i,l( j),Rj,m(i)〉 { * � if m has det recv

10: for all σ′ from σ until First(S t) { * � Update RPσ′
11: if ∃Bi,− ∈ Pσ′ : Bi,− ≺lp S i,l { *
12: goto Next State *
13: }
14: if ∃m′ ∈ Pσ′ : m′ = 〈S i,−( j),Rj,−(∗)〉 ∧ m′ � RPσ′ { *
15: RPσ′ ← RPσ′ ∪ {m′} *
16: }
17: }
18: }
19: Next State: σ← Explore(σ,m) � Get the next state by firing m from σ
20: S t← Push(S t, σ) � Add σ to the Stack
21: }
22: return S t

Algorithm 3. Choose Pσ
1: Input:
2: State: σ
3: Output:
4: Match-set: m

5: if ∃m ∈ Pσ : m contains barrier {
6: return m
7: else if ∃m ∈ Pσ : m contains wait {
8: return m
9: else if ∃m ∈ Pσ : m contains deterministic recv {

10: return m
11: else if ∃m ∈ Pσ : m contains non-deterministic recv {
12: return m
13: }

presents ISP scheduler’s functioning to generate the interleaving of the program ac-
cording to POE. Algorithm 3 depicts the prioritized match-set selection policy of POE
which remains the same for MSPOE.

MSPOE starts with the initial state σ0 in the stack. It generates a complete interleav-
ing by calling the function GenerateInterleaving (line 6 in Algorithm 1). It repeats the
following steps from this point forwards until the state stack (S t) becomes empty:
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Fig. 6. MSPOE with redundant exploration

– Select the last state σ from the trace and remove the match-set entry explored in
the trace from Pσ and RPσ (lines 8-10). If RPσ becomes empty then pop the state
off from the state stack S t (lines 11-12).

– If after executing the step the last state has non-empty RPσ then generate further
interleaving from σ (line 14).

Algorithm 2 takes as input a state and generates an interleaving from that state in the
following manner:

– From Pσ, choose a match-set m according to POE’s prioritized match-set selection
procedure (line 7).

– Add m to RPσ (line 8).
– If m involves a deterministic receive, then search for each state σ′ in the stack S t

and perform the following: (1) If Pσ′ contains a match-set m′ involving a send from
the same process whose send is a part of m at Pσ then add m′ to RPs′ (lines 10, 14-
15). (2) However, if Ps′ contains a barrier operation MB ordered with the send that
is part of m then terminate (lines 10-12) and move-on to explore the next state in the
interleaving (line 19). (3) While generating the new state we fire the state transition
rules described in Section 2.1. Consider the example shown in Figure 6. Notice
that no matter which interleaving is explored, S 1,3 can never be enabled and be a
potential match for receive calls R2,1 and R2,2 since such a match is restricted by the
presence of barriers. We avoid such unnecessary augmentation of persistent states
by adding the barrier check (lines 12-13) to the MSPOE algorithm. This serves as
a favorable optimization for MSPOE.

– Repeat all the step until no more states can be explored.

Formal Details. MSPOE is sound, as it explores only feasible interleavings. It is de-
liberately incomplete: our aim is to have a practical alternative to ISP and DAMPI
which guarantee completeness (in terms of non-determinism coverage), but suffer from
an exponential schedule blow-up. §5 shows that MSPOE is a welcome addition to the
practitioners’ toolkit.

5 Experimental Results

All the experiments were run on Intel Core i7 quad-core 2.67 GHz with 8 GB of RAM.
We set a time limit of 2 hours to verify the benchmarks. We abort the verification process
if it did not complete within the time-limit. Example that were deadlock-free and did not
finish in 2 hours were independently run on ISP and were verified to be deadlock-free.
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Table 1. Interleaving results for deadlock detection

Interleavings Time(sec)
Benchmark Buffering # of procs Deadlocks? ISP MSPOE MSPOE

Mat-Multiply
0

4 No 54 1 0.001
8 No 120 1 0.002

∞ 4 No 54 1 0.3
8 No 120 1 0.3

2D-Diffusion
0 4 Yes 1 1

√
0.013

∞ 4 No 90 1 0.314
8 No > 10, 500 1 0.442

Pi- Monte-Carlo
0

4 No 36 1 0.002
8 No 5040 1 0.003

∞ 4 No 36 1 0.24
8 No 5040 1 0.3

Integrate mw 0
4 No 81 81 20.19
8 No 2401 2401 1806.738

Madre
0 4 Yes 1 1

√
0.05

∞ 4 No > 8000 1 1.48
8 No > 8000 1 3.09

Parmetis 0 4 No 1 1 128.933

Gaussian Elimination
0

4 No 1 1 0.24
8 No 1 1 0.276

∞ 4 No 180 1 0.31
8 No > 20, 000 1 0.324

Heat Diffusion 0 8 Yes 5041
√

23
√

12.033

P0 P1 P2

R0,1(∗) S 1,1(0) S 2,1(0)
R0,2(∗) S 1,2(0) S 2,2(0)
R0,3(∗)
R0,4(∗)
B0,5 B1,3 B2,3

S 0,7(1) S 1,4(2) S 2,4(0)
· · · · · ·

Fig. 7. Communication in 2D-Diff

The results pertaining to the reductions obtained are documented in Table 5. Summary
of the tabulated results is that MSPOE explored only one interleaving for almost all
benchmarks detecting the same deadlocks that ISP did. The sign

√
in the MSPOE col-

umn next to the number of interleavings examined illustrates that MSPOE also caught
the same deadlock as ISP did.

2D-Diffusion. We tested ISP’s POE and MSPOE algorithm on 2D-Diffusion [2] exam-
ple. The code has a deadlock when evaluated in zero buffering mode. In this mode, the
send calls act as synchronous operations. The deadlock was caught by ISP and MSPOE
right in the first interleaving. When the same code is run on infinite buffering mode, the
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Worker i: while(1) {
R(from 0, any-tag); // Recv task
if(work-tag)
S(master, result-tag);

else break;
}

Master: for(i = 1 to nprocs-1) {
Send(i, work-tag); // send to each worker the task
tasks++;

}
while(tasks <totalTasks){
Recv(*, result-tag); // recv result
S(S.S, work-tag); // assign more task
tasks++;

}
for(i = 1 to nprocs-1) {
Recv(i, result-tag); // recv result
S(i, terminate-tag); // terminate signal to worker i

}

Fig. 8. High-level Code Pattern of “Integrate”

code becomes deadlock free. The code was modified to run with a single time-step. Its
communication pattern is shown in the Figure 7. Note that if sends were treated as syn-
chronous then after barriers each process is blocked on their respective sends causing a
deadlock.

Integrate. Integrate mw [2] is another benchmark that uses heavy non-determinism
to compute an integral of sin function over the interval [0, Pi]. Integrate has a master-
slave pattern where the root process divides the interval in a certain number of tasks.
The root process then delegates to each worker process a single task and then waits for
results from them by posting wildcard receive calls. Workers that finish early with their
work are provided with more tasks until all tasks are distributed (as detailed in the high
level code in Figure 8).

This benchmark does not have a deadlock. Notice that MSPOE does not demon-
strate any savings over ISP while exploring the schedule space. This is because, the
master process finally posts deterministic receive calls targeting each worker before it
sends termination signals to each worker. This causes the MSPOE to fully expand the
persistent-sets of each prior wildcard receive.

MADRE. MADRE [11], a memory aware data redistribution engine, is a library writ-
ten in MPI which mainly performs load balancing tasks in an efficient manner. MADRE
moves the data blocks across nodes in a distributed system within the bounds of mem-
ory available to each of the application’s process. We tested MADRE with its unitBred
algorithm on various data-sets. unitBred algorithm is of particular interest to us because
it uses MPI ANY SOURCE and MPI ANY TAGS. MADRE has no bugs provided nor-
mal MPI send calls are not treated as blocking calls. We ran ISP’s POE and then MSPOE
algorithm with sbt9 dataset with unitBred algorithm and the results are documented in
the Table 5.

Parmetis. Parmetis [7] is a parallel hypergraph partitioning code-base. Since, Parmetis
only uses deterministic calls, ISP and MSPOE complete the verification process in
a single interleaving. Parmetis was selected as a benchmark despite the absence of
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non-determinism because the application issues a lot of MPI calls which served as a
basis to evaluate the scalability of the data-structures used in MSPOE. When run on 4
processes, Parmetis issues ∼ 55, 000 calls.

Heat Diffusion. This is the benchmark obtained from the Supecomputing 2011 tutorial
presented by T. Hilbrich, G. Gopalakrishnan and others. The benchmark solves the heat
equation on a 2-D grid. ISP discovered the deadlock in 5041st interleaving after running
for almost 2.5 hours, however, the same deadlock was discovered by MSPOE in mere
23 interleavings running for approximately 12 seconds.

6 Discussion

As shown, in all our experiments, MSPOE has managed to detect deadlocks whenever
POE (supported by the ISP tool) has; and managed to return (by generating) a small
number (typically 1) of interleavings in other cases. In the latter cases, MSPOE com-
putes the full persistent sets, but trims it down based on our macroscopic reduction
criterion. The real value to a designer is the following (take an example similar to 2D
diffusion for discussion): if given 103 processes, POE will simply take forever while
exploring the persistent sets computed from the initial trace. MSPOE will, on the other
hand, examine the initial trace, and perform macroscopic commutation aware persistent
set reductions. This is a search bounding method substantially different from other ob-
vious reduction approaches (e.g., depth-bounding or bounded mixing [15]), and further
this bounding heuristic is tuned toward detecting orphaning deadlocks. Further studies
are underway to further characterize MSPOE.

An important question pertaining to the working of MSPOE is the following: Does
MSPOE precisely compute all the dependent actions in an MPI program? Notice that
MSPOE only augments the persistent-set of prior states (at which a wildcard move took
place) only when a deterministic receive is witnessed later in the trace. It is by no means
a complete criterion to discover all dependent transitions.

Consider, for instance, some patterns that MSPOE cannot handle. In the example
shown in Figure 9, if S 3,1 matched R1,1 then S 1,2 and S 2,1 would engage in a cyclic
wait on each other causing a deadlock. Notice that S 1,2 can’t match unless S 2,1 suc-
cessfully completes since R2,2 is the only match of S 2,1 and S 2,1 is an enabler operation
for R2,2. Notice that MSPOE will fail to discover such a deadlock. However, a perti-
nent question that will underscore the usability of MSPOE is the following: how often
such coding patterns are employed in applications, if at all? In real MPI codes that
we have assessed, we did not witness such a coding style. Typically, a deterministic
communication from a process following a wildcard receive is accomplished by reply
channels. Processes often employ reply channels to perform dynamic load balancing
duties by sending data/task to the sender that matched the prior wildcard receive. Thus,
in our opinion, it is rare (almost to none) to observe that applications issue hard-wired
deterministic receives/sends following a wildcard receive operation. Notice that in Fig-
ure 9, if S 1,2(2) is re-written as S 2,1(status.S ource) (indicating a reply-channel) then
the deadlock in the code disappears.

Figure 10 is another example where MSPOE will fail to detect a deadlock. In Fig-
ure 10, note that the barriers would not discharge if S 3,2 were to match R1,1 thereby
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Fig. 9. Deadlock because cyclic dependency be-
tween S 1,2 and S 2,1
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Fig. 10. Deadlock because barriers do not dis-
charge

causing the deadlock. Notice that S 3,2 is unordered w.r.t. B3,1. This can happen only
when S 3,2 is issued before B3,1 however the wait associated with S 3,2 is issued after
the barrier. Again, such a coding practice is flawed and we have not witnessed any real
MPI program so far that employs such a coding style. Typically, global fence opera-
tions (such as barriers) are issued only after the local fence operations such as waits are
successfully discharged. If such were to be the programming style then the wait calls
for both R1,3 and S 3,2 should have been issued before the respective process barriers.
In which case, the match-set 〈B1,2, B2,2, B3,1〉 would be issued only after the completion
of 〈S 3,2,R1,3〉. Even in alternate trace when S 3,2 pairs-up with R1,1, notice that S 2,1 will
now find a match in R1,3. Hence, the deadlock will disappear.

In all our benchmarks, none of above mentioned coding styles were employed except
the deterministic receive calls following a wildcard receive. MSPOE, thus, as a result
of such observations, despite being incomplete works extremely well (in other words,
appears complete) in practice. Constructing a methodology that is complete forms the
basis of our future work.

7 Conclusions

We have presented a novel algorithm MSPOE that demonstrates significant savings in
the exploration space of programs for the purpose of communication deadlock detec-
tion. In many cases the reductions were from tens of thousands of interleavings to just
one interleaving. We document the MSPOE reduction results observed over several
benchmarks. We further present evidence on the criticality of the match-set selection in
avoiding redundant explorations and for early detection of bugs.

Future Work. Conditional communication flow pattern is sill not tackled by MSPOE.
However, MSPOE algorithm can be notified of the causal receive calls whose buffers
when decoded would result in a conditional communication flow. Such information can
be statically mined and provided to the dynamic verification scheduler. To gather the
afore-said information, we would require an MPI specific control flow graph (CFG).
Work in [1] presents pCFG which is a CFG for MPI programs. Our future work would
therefore lie in modifying the pCFG work to handle non-deterministic MPI operations.
Furthermore, we will develop flow-sensitive static analysis methods on top of the im-
proved pCFG to analyze conditional communication patterns.
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Abstract. This work presents a complete formalization of Alternating-
time Temporal Logic (ATL) and its semantic model, Concurrent Game
Structures (CGS), in the Calculus of (Co)Inductive Constructions, using
the logical framework Coq. Unlike standard ATL semantics, temporal
operators are formalized in terms of inductive and coinductive types,
employing a fixpoint characterization of these operators. The formaliza-
tion is used to model a concurrent system with an unbounded number
of players and states, and to verify some properties expressed as ATL
formulas. Unlike automatic techniques, our formal model has no restric-
tions in the size of the CGS, and arbitrary state predicates can be used
as atomic propositions of ATL.

1 Introduction

Linear-time and branching-time temporal logics are natural specification lan-
guages for reactive systems [8,16]. Alternating-time Temporal Logic (ATL), in-
troduced by Alur, Henzinger and Kupferman [1,2], is a temporal logic suitable
for open systems specificiations, where an open system is a system that interacts
with its environment and whose behavior depends on the state of the system as
well as the behavior of the environment [2].

The logic ATL offers selective quantification over those paths that are possible
outcomes of games. For instance, by preceding the temporal operator “eventu-
ally” with a selective path quantifier, it is possible to specify that in a game
between a reactive system and the environment, the system has a strategy to
reach a certain state.

An ATL formula is interpreted over Concurrent Game Structures (CGS) [2].
Every state transition of a CGS results from a simultaneous choice of moves,
one for each player. The players represent individual components and the en-
vironment of an open system. CGS can capture various forms of synchronous
composition for open systems.

In this work we formalize the CGS semantics of ATL in the Calculus of
(Co)Inductive Constructions (CIC) [6,15,9], using the logical framework Coq
[19,4]. This formalization is divided in two parts: the logic ATL and the CGS
semantics for a given game structure S. We show that the proof of the Coq
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proposition ϕ q guarantees that the CGS S satisfies the ATL formula ϕ in the
state q of S (i.e. q |= ϕ). This work uses a general approach to deal with CGS
where the number of states is unbounded; this generality is scarcely obtained
using standard model checking techniques [3].

There exists previous work in formalizing temporal logic in systems other than
Coq. We can mention the axiomatic encoding of Lamport’s Temporal Logic of
Actions in Isabelle [14]; and formalizations of Linear Temporal Logic (LTL) [16]
in PVS [17] and HOL [18].

The choice of the CIC is dictated by its considerable expressive power as
well as by the fact that it is supported by a tool of industrial strength, namely
the Coq proof assistant. As one example of its applicability, Coq has been used
for the development and formal verification of a compiler of a large subset of
the C programming language [12]. Furthermore, there are works that formal-
ize temporal logics in the CIC. We can mention the formalization of LTL [7]
and Computation Tree Logic (CTL) [13]. LTL assumes implicit universal quan-
tification over all paths that are generated by system moves. CTL [21] allows
explicit existential and universal quantification over all paths. ATL introduces a
more general variety of temporal logic; offers selective quantification over those
paths that are possible outcomes of games. As compared to previous work by
the authors [13], the present formalization of ATL is more general and complex.

A detailed description of the formalization is presented in Spanish in [22].
This document, along with the full formalization in Coq may be obtained from
http://www.fceia.unr.edu.ar/~dante/.

The rest of the paper is organized as follows. In Section 2 we introduce CGS
as well as the syntax and semantics of ATL. In Section 3 are formalized both
the logic ATL and CGS including the notions of coalition and strategies. Unlike
standard ATL semantics, temporal operators are formalized in terms of inductive
and coinductive types, employing a fixpoint characterization of these operators.
Then, Section 4 shows a complete list of axioms, theorems and inference rules for
ATL according to [10] that have been proved in Coq with our proposal [22,23].
In Section 5 we present the usual train example [2] as a simple (due to space
restrictions) case study for the bounded and unbounded cases. Finally, Section
6 concludes with a summary of our contributions and directions for future work.

2 Alternating-Time Temporal Logic

In this section we introduce CGS (Section 2.1) as well as the syntax and the
semantics of ATL (Section 2.2) as found in [2].

2.1 Concurrent Game Structures

Definition 1 (CGS). A CGS is a tuple S = 〈Σ,Q,Π, π, d, δ〉 with:
– A set Σ = {1, . . . , k} of players or agents.
– A set Q of states.

http://www.fceia.unr.edu.ar/~dante/
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– A finite set Π of atomic propositions.
– For each q ∈ Q, a set π(q) ⊆ Π of propositions true at q.
– For each player a ∈ Σ and each state q ∈ Q, a natural number da(q) ≥ 1 of

moves available at state q to player a. We identify the moves of a at state
q with the numbers 1, . . . , da(q). For q ∈ Q, a move vector at q is a tuple
〈j1, . . . , jk〉 such that 1 ≤ ja ≤ da(q) for each player a. We define D(q) as
the set of move vectors available at q; function D is called the move function.

– For each state q ∈ Q and each move vector 〈j1, . . . , jk〉 ∈ D(q), a state
δ(q, j1, . . . , jk) ∈ Q that results from state q if each player a ∈ Σ chooses
move ja. The function δ is called transition function.

For two states q and q′, we say that q′ is a successor of q if there exists a move
vector 〈j1, . . . , jk〉 such that q′ = δ(q, j1, . . . , jk). A computation of S is an infinite
sequence ω = q0, q1, q2, . . . of states such that for all i ≥ 0, the state qi+1 is a
successor of qi. We refer to a computation starting at state q as a q-computation.
For a computation ω and a position i ≥ 0, we use ω[i] and ω[0, i] to denote the
i-th state and the finite prefix q0, . . . , qi, respectively.

2.2 ATL Syntax and Semantics

Definition 2 (ATL). Let Π be a set of atomic propositions, and Σ a set of k
players. The set of ATL formulas is inductively defined as follows:

– p, for each p ∈ Π.
– ¬ϕ, ϕ ∨ ψ, ϕ ∧ ψ, ϕ→ ψ, where ϕ, ψ are ATL formulas.
– 〈〈A〉〉�ϕ, 〈〈A〉〉�ϕ, 〈〈A〉〉ϕU ψ, where ϕ, ψ are ATL formulas and A ⊆ Σ.

The operator 〈〈 〉〉 is a path quantifier; � (next), � (box) and U (until) are
temporal operators.

ATL can be viewed as a generalization of the branching-time temporal logic CTL
where path quantifiers can be parametrized by sets of players. In particular, we
obtain a CTL-equivalent logic restricting A to ∅ or Σ in Def. 2.

Formulas in ATL are interpreted over states of a CGS with the same players
and atomic propositions. The concept of strategy is introduced in [2] to formalize
the semantics.

Definition 3 (Strategy). Let S = 〈Σ,Q,Π, π, d, δ〉 be a CGS and a ∈ Σ. A
strategy for a is a function fa : Q+ → N that maps every nonempty finite state
sequence α ∈ Q+ to a natural number such that if q is the last state of α, then
1 ≤ fa(α) ≤ da(q).

Given a state q ∈ Q, and A ⊆ Σ, an A-strategy FA = {fa | a ∈ A} is a set of
strategies, one for each player in A. The outcomes of FA from a state q is the set
of traces that players in A can enforce when they follow the strategies in FA. A
computation ω = q0, q1, . . . belongs to out(q, FA) if q0 = q and for all positions
i, there is a move vector 〈j1, . . . , jk〉 such that (1) if a ∈ A, ja = fa(ω[0, i]), and
(2) δ(qi, j1, . . . , jk) = qi+1.
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Definition 4 (Standard ATL Semantics). Let S be a CGS and q a state of
S. We write q |= ϕ to indicate that the ATL formula ϕ holds at q. The relation
|= is defined inductively as follows:

– q |= p , for atomic propositions p ∈ Π iff p ∈ π(q).
– q |= ¬ϕ iff q �|= ϕ.
– q |= ϕ1 ∨ ϕ2 iff q |= ϕ1 or q |= ϕ2 .
– q |= ϕ1 ∧ ϕ2 iff q |= ϕ1 and q |= ϕ2 .
– q |= ϕ1 ⇒ ϕ2 iff q |= ϕ2 given that q |= ϕ1 .
– q |= 〈〈A〉〉�ϕ iff there exists an A-strategy FA = {fa | a ∈ A}, such that for

all ω ∈ out(q, FA), we have ω[1] |= ϕ .
– q |= 〈〈A〉〉�ϕ iff there exists an A-strategy FA = {fa | a ∈ A} such that for

all ω ∈ out(q, FA) and all positions i ≥ 0 we have ω[i] |= ϕ .
– q |= 〈〈A〉〉ϕ1 U ϕ2 iff there exists an A-strategy FA = {fa | a ∈ A}, such that

for all ω ∈ out(q, FA) there exists a position i ≥ 0 such that ω[i] |= ϕ2 and
for all positions 0 ≤ j < i we have ω[j] |= ϕ1 .

3 Formalizing CGS and ATL

Our formalization is divided in two main parts. Section 3.2 provides a way to rep-
resent CGS, coalitions and strategies. In Section 3.3 we proceed to formalize the
logic ATL. The formalization of temporal operators follows the axiomatization
presented in [10], using fixpoints characterizations for 〈〈A〉〉�ϕ and 〈〈A〉〉ϕU ψ.

We believe that giving semantics to temporal operators using fixpoint defi-
nitions by means of inductive and coinductive types has some advantages over
the standard semantics from def. 4. The inductive and coinductive principles
associated to our definition of temporal operators can be used to construct more
elegant and concise proofs for ATL theorems (sect. 4) and for specific propierties
of reactive systems (sect. 5).

3.1 The CIC and Coq

The CIC is a type theory, in brief, a higher order logic in which the individuals are
classified into a hierarchy of types. The types work very much as in strongly typed
functional programming languages which means that there are basic elementary
types, types defined by induction, like sequences and trees, and function types.
An inductive type is defined by its constructors and its elements are obtained as
finite combinations of these constructors. Data types are called “Sets” in the CIC
(in Coq). When the requirement of finiteness is removed we obtain the possibility
of defining infinite structures, called coinductive types, like infinite sequences.
On top of this, a higher-order logic is available which serves to predicate on the
various data types. The interpretation of the propositions is constructive, i.e. a
proposition is defined by specifying what a proof of it is and a proposition is
true if and only if a proof of it has been constructed. The type of propositions is
called Prop. We use the usual notation for logical connectives and quantifiers (→,
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∨, ∧, ¬, ∀, ∃). For anonymous functions and predicates, we utilize a notation
similar to the Coq specification language. For instance, predicate pos : N→ Prop
is written as (λn : N⇒ n > 0).

We define a (co)inductive predicate I by giving introduction rules of the form:

P1 . . . Pm

I x1 . . . xn
(introi)

where free ocurrences of variables are implicitly universally quantified.
In this work we use some inductive types defined in the Coq Standard Li-

brary [20]. We employ notation { } for the empty type, {1} for unit type, A+B
for disjoint union (sum type). Type (seq A) denotes the set of finite sequences
of type A. Empty sequence is noted as 〈〉, and the infix notation s� e is used to
denote the sequence resulting by appending element e to sequence s. The Stream
type is used to represent infinite sequences of objects from a fixed type A. Con-
structor Cons adds an element e : A to an infinite sequence ω. Infix notation
e �ω is used for (Cons e ω). We refer to [19,4] for further details on the CIC and
Coq.

3.2 Formalizing CGS

We assume three basic types in sort Set: State, the set of states; Player , the
players in the system; and Move, the set of moves (or actions). These types are
specification parameters, and must be instantiated when specifyng a concrete
CGS. Observe that we do not imposse any finiteness requirement to these types.

Move Vectors and Transitions. A move vector is a function that assigns

a move to each player, 〈Move〉 def
= Player → Move. The transition function is

introduced as a relation δ : State → 〈Move〉 → State → Prop. We say that
the move m is enabled at state q for player a if there exists a move vector
mv and a state q′ such that mv assigns m to player a and q′ is the successor
of q when players in Σ chooses the movements in mv. Formally, the relation
enabled : State → Player → Move → Prop has one constructor:

mv : 〈Move〉 q′ : State mv a = m δ q mv q′

enabled q a m
(enabled intro) (1)

A proof of type (enabled q a m) is interpreted as “player a can choose move
m at state q”. Two expected properties are assumed over δ; the property δ f
guarantees that the relation is indeed a function, while the property δ d guaran-
tees that for every state q, if you choose a move vector mv such that (mv a) is
enabled at q for every player a, then you will found an outgoing transition from
q labeled with mv.

δ f : ∀(q, q′, q′′ : State)(mv : 〈Move〉), δ q mv q′ → δ q mv q′′ → q′ = q′′

δ d : ∀(q : State)(mv : 〈Move〉),
(∀a : Player , enabled q a (mv a))→ ∃(q′ : State), δ q mv q′

(2)
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Coalitions. A coalition is a set of playersA ⊆ Σ. The Coq Standard Library [20]
defines a set over a universe U as an inhabitant of type U → Prop. We say that
element x belongs to set X if we can exhibit a proof of proposition (X x).

In particular, the union of sets X,Y is defined as Union X Y
def
= (λx : U ⇒

X x∨Y x). However, this formalization of sets is not satisfactory for our purposes
due to its lack of computational content. This computational content is required,
for instance, to prove the valid formula 〈〈A〉〉�ϕ→ 〈〈B〉〉�ψ → 〈〈A∪B〉〉� (ϕ∧ψ),
when A and B are disjoint sets. The proof “joins” the strategies for A and B
given in the premises to construct a new strategy for the coalition A ∪ B. For
a player a ∈ A ∪ B, the new strategy chooses the strategy given by the first
premise when a ∈ A, and the strategy given by the second premise when a ∈ B.

As we will introduce strategies as an object with computational content, i.e.
an inhabitant of sort Set, the election of a strategy cannot be made eliminating
an inhabitant in Prop [19]. We conclude that proofs of set membership must live
in sort Set. Therefore, we define a coalition as a term of type Player → Set. We
say that player a belongs to coalition C if we can construct an element in type
(C a). Coalitions Σ and ∅, and the union of two coalitions are defined as:

Σ
def
= λa⇒ {1} ∅ def

= λa⇒ { } A %B def
= λa⇒ A a+B a (3)

Other operators, like coalition complement, can be defined easily. We refer the
interested reader to [23].

Strategies. A strategy decides the next move taking into account the complete
history of the game:

Strategy
def
= seq State → State → Move (4)

where the first argument is the past sequence of states, and the second the
current state of the game. Let A be a coalition. A strategy for coalition A is a
term of type (StrategySet A), where:

StrategySet(A : Coalition)
def
= ∀a : Player , A a→ Strategy (5)

A term FA : (StrategySet A) gives a strategy for each player a, provided that
a ∈ A. We define the notion of FA-successor state for a coalition strategy FA.
Let q be the current state, and qs the game history. We say that q′ is an FA-
successor of qs � q if there exists a move vector mv such that: (1) a transition
from q to q′ labelled with mv exists; and (2) strategy fa ∈ FA for player a ∈ A
is such that fa(qs � q) = mv(a). Formally, relation suc is introduced by means
of the following definition:

suc : ∀A : Coalition , StrategySet A→ seq State → State → State → Prop

mv : 〈Move〉 δ q mv q′

∀(a : Player )(H : A a), FA a H qs q = mv a

suc A FA qs q q′
(suc intro)

(6)
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In the sequel, we will omit the first argument, since it can be inferred from the
second. Also, we write q′ ∈ suc(qs, q, FA) for a proof of (suc FA qs q q′).

Now, we define coinductively the set of traces that a coalition A can enforce
by following the strategy FA. The relation isOut determines if the trace (q�q′�ω)
is a possible result of the game when players in A follows strategies in FA and
game history is qs:

isOut : ∀A : Coalition , StrategySet A→ seq State → Trace → Prop

q′ ∈ suc(qs, q, FA) isOut A FA (qs� q) (q′ � ω)
isOut A FA qs (q � q′ � ω)

(isOut intro)
(7)

where Trace
def
= (Stream State). The set out(q, FA) of traces a coalition A can

enforce if follows strategies in FA is defined as:

ω ∈ out(q, FA)
def
= isOut A FA 〈〉 (q � ω) (8)

3.3 Formalizing ATL

In this section we present a formalization of the syntax and semantics of ATL. Let

S be a CGS, an ATL state formula is a term of type StateForm
def
= State → Prop.

If q : State and ϕ : StateForm, a proof (term) of (ϕ q) is interpreted as q |= ϕ .

Constants and Boolean Connectives. The � and ⊥ formulas are easily

defined as � def
= (λ q : State⇒ True), and ⊥ def

= (λ q : State⇒ False). We use a
standard point-free use of boolean connectives. For example, for state formulas

ϕ, ψ, disjunction is defined as ϕ ∨ ψ def
= (λ q : State ⇒ ϕ q ∨ ψ q).

Temporal Operators. The standard ATL semantics presented in Def. 4 for
〈〈A〉〉� ϕ uses the notion of execution traces. We present here an alternative
(and equivalent) semantics using only the notion of successor state. Let q be
the current state of a game. To guarantee that the property ϕ holds in the
next state a coalition A should follow a strategy FA such that for every possible
FA-successor state q

′ we have q′ |= ϕ .

Definition 5 (Next). Let A : Coalition, q : State and ϕ : StateForm. The rela-
tion Next : Coalition → StateForm → StateForm is defined with one constructor
as follows:

F : StrategySet A ∀q′, q′ ∈ suc(〈〉, q, F )→ ϕ q′

Next A ϕ q
(next) (9)

The ATL axiomatization found in [10] establishes that 〈〈A〉〉�ϕ is the greatest
fixed point of equation X ↔ ϕ∧〈〈A〉〉�X . Following this approach, we introduce
a coinductive predicate to model this semantics for formulas of the form 〈〈A〉〉�ϕ.
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Definition 6 (Box). Let A : Coalition, ϕ : StateForm and q : State. The
coinductive predicate Box : Coalition → StateForm → StateForm is defined as:

ϕ q F : StrategySet A
∀q′, q′ ∈ suc(〈〉, q, F )→ Box A ϕ q′

Box A ϕ q
(box) (10)

To construct a proof of q |= 〈〈A〉〉�ϕ two conditions must hold: (1) ϕ must
be valid at state q; and (2) we need to find an A-strategy F such that, for all
F -successor state q′ of q we have q′ |= 〈〈A〉〉�ϕ .

Using the fact that 〈〈A〉〉ϕU ψ is the least fixed point ofX ↔ ψ∨(ϕ∧〈〈A〉〉�X)
we introduce the semantics of 〈〈A〉〉ϕU ψ by an inductive relation.

Definition 7 (Until). Let A : Coalition, ϕ, ψ : StateForm and q : State. The
inductive relation Until : Coalition → StateForm → StateForm → StateForm is
defined with two constructors as follows:

ψ q

Until A ϕ ψ q
(U1)

F : StrategySet A ϕ q
∀q′, q′ ∈ suc(〈〉, q, F )→ Until A ϕ ψ q′

Until A ϕ ψ q
(U2) (11)

If q |= ψ , then q |= 〈〈A〉〉ϕU ψ (constructor U1). To prove q |= 〈〈A〉〉ϕU ψ using
constructor U2, we need to prove that q |= ϕ and there exists an A-strategy F
such that, if players in A follow this strategy, in all FA-successor state q

′ of q we
have q′ |= 〈〈A〉〉ϕU ψ.

Derived operators like 〈〈A〉〉�ϕ (eventually), and 〈〈A〉〉 ∞
F ϕ (infinitely often)

have been defined. For example, 〈〈A〉〉∞F ϕ def
= 〈〈A〉〉�〈〈∅〉〉�ϕ. For details see [23].

4 A Deductive System for ATL

The formalization presented in Section 3 can be used to reason about proper-
ties of ATL and CGS. To prove ATL theorems we often use general properties
involving coalitions and strategies.

A complete set of axioms and inference rules for ATL is presented in [10].
We have proved all these results in our formalization. Due to space constraints,
proofs are merely outlined; however, all proofs have been formalized in Coq and
are available as part of the full specification [23].

Theorem 1. The following formulas are valid in all states of all CGS:

(⊥) ¬〈〈A〉〉�⊥.
(�) 〈〈A〉〉��.
(Σ) ¬〈〈∅〉〉�¬ϕ→ 〈〈Σ〉〉�ϕ.
(S) 〈〈A1〉〉�ϕ1 ∧ 〈〈A2〉〉�ϕ2 → 〈〈A1 ∪ A2〉〉� (ϕ1 ∧ ϕ2) , if A1 ∩ A2 = ∅.
(FP�) 〈〈A〉〉�ϕ↔ ϕ ∧ 〈〈A〉〉� 〈〈A〉〉�ϕ.
(GFP�) 〈〈∅〉〉� (θ → (ϕ ∧ 〈〈A〉〉�θ))→ 〈〈∅〉〉� (θ → 〈〈A〉〉�ϕ).
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(FPU ) 〈〈A〉〉ϕ1 U ϕ2 ↔ ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉� 〈〈A〉〉ϕ1 U ϕ2).
(LFPU ) 〈〈∅〉〉� ((ϕ2 ∨ (ϕ1 ∧ 〈〈A〉〉�θ))→ θ)→ 〈〈∅〉〉� (〈〈A〉〉ϕ1 U ϕ2 → θ).

Also, the following inference rules preserves validity 1:

ϕ→ ψ

〈〈A〉〉�ϕ→ 〈〈A〉〉�ψ
(monotonicity)

ϕ

〈〈∅〉〉�ϕ (necessitation)

Proof. The proof of (FP�) in our system is trivial, because we have used this
formula as a definition for 〈〈A〉〉�. Formula (GFP�) is a consequence of the
use of a coinductive type for this operator. A similar consideration can be done
about formulas (FPU ), used to define formulas involving U ; and (LFPU ), con-
sequence of the inductive definition. Formula (Σ) is valid only in classical logic.
In constructive logic we can prove (Σ ′): ¬〈〈∅〉〉�¬ϕ → ¬¬〈〈Σ〉〉�ϕ. To demon-
strate the equivalence (Σ)↔ (Σ′) from classical logic in our system, we must add
the excluded middle law explicitly. Proof of (S) involves reasoning about union
of coalitions and strategies, as well as relating the “join” of coalition strategies
(collaborative game) and the traces in which each coalition plays regardless the
other one (competitive game). These results are properties about game struc-
tures, and we have proved them in [23] using definitions introduced in Section
2.1. Rule monotonicity is proved by showing that strategy FA given by premise
〈〈A〉〉�ϕ is an A strategy ensuring ψ in all states q′ ∈ suc(〈〉, q, FA). We prove
necessitation by coinduction, unfolding Def. 6 and using the fact that ϕ is valid
in all states. ��
To show that our formalization can be used as a suitable proof system for ATL,
we have proved in [23] an extensive list of ATL theorems taken from [10]. Lemma
1 shows a list with a subset of such formulas.

Lemma 1 (Derived formulas). The following judges can be proved valid in
our formalization:

(1) Regularity: & 〈〈A〉〉�ϕ→ ¬〈〈Σ\A〉〉�¬ϕ.
(2) And monotonicity: & 〈〈A〉〉� (ϕ ∧ ψ)→ 〈〈A〉〉�ϕ.
(3) Coalition monotonicity: & 〈〈A〉〉�ϕ→ 〈〈A %B〉〉�ϕ.
(4) Monotonicity of 〈〈 〉〉�: (ϕ→ ψ) & 〈〈A〉〉�ϕ→ 〈〈A〉〉�ψ.
(5) Monotonicity of 〈〈 〉〉 U : (ϕ→ ϕ′), (ψ → ψ′) & 〈〈A〉〉ϕU ψ → 〈〈A〉〉ϕ′ U ψ′.
(6) Necessitation of 〈〈 〉〉�: ϕ & 〈〈A〉〉�ϕ.
(7) Induction for 〈〈 〉〉�: (ϕ→ (ψ ∧ 〈〈A〉〉�ϕ)) & ϕ→ 〈〈A〉〉�ψ.
(8) Induction for 〈〈 〉〉 U : (ψ ∨ (ϕ ∧ 〈〈A〉〉�χ)→ χ) & 〈〈A〉〉ϕU ψ → χ.

5 A Case Study

The formalization presented in Section 3 has been used in Section 4 to prove
general properties over CGS and the logic ATL. In this section, we specify and

1 We omit the modus ponens rule from [10], since this rule is already valid in our
meta-logic via the shallow embedding.
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verify a simple concrete system which is a good guide to model and analyze
many systems. Section 5.1 presents an example taken from [2], describing a
control protocol for a train entering a railroad crossing. Section 5.2 presents
a generalization of this model where an unknown number of trains compete
to enter a gate, and the gate controller must ensure some safety and liveness
properties. This example can not be directly analyzed using model checking
techniques because it involves an unbounded space of states.

5.1 Controlling a Railroad Crossing

We formalize a protocol for a train entering a railroad crossing with a finite
CGS. All components for this CGS are instantiated using definitions presented in
Section 3.2, and some properties for the system are specified using ATL formulas
as described in Section 3.3.

Example 1. The CGS ST = 〈k,Q,Π, π, d, δ〉 has the following components:

– k = 2. Player 1 represents the train, and player 2 the gate controller.
– Q = {qout , qreq , qgran , qin}.
– Π = {Out ,Request, In gate,Grant}.
– π(qout ) = {Out}, the train is outside the gate; π(qreq) = {Out ,Request},

the train is still outside the gate, but has requested to enter; π(qgran) =
{Out,Grant}, the controller has given the train permission to enter the gate;
π(qin ) = {In gate}, the train is in the gate.

– • d1(qout ) = 2 and d2(qout ) = 1.
At qout , the train can choose to either stay outside the gate, or request
to enter the gate.

• d1(qreq) = 1 and d2(qreq) = 3.
At qreq , the controller can choose to either grant the train permission to
enter the gate, or deny the train’s request, or delay the handling of the
request.

• d1(qgran) = 2 and d2(qgran) = 1.
At qgran , the train can choose to either enter the gate, or relinquish its
permission to enter the gate.

• d1(qin) = 1 and d2(qin ) = 2.
At qin , the controller can choose to either keep the gate closed, or reopen
the gate to new requests.

– The transition function δ is depicted in Figure 1.

A Model Based on CGS. In order to prove properties of the protocol de-
scribed in Example 1, we proceed to model all the components of ST following
definitions presented in Section 3.2.
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qout

Out

qreq

Out,Request

qin

In gate

qgran

Out,Grant

〈2,1〉

〈1,1〉 〈1,3〉

〈1,2〉 〈1,1〉

〈1,1〉

〈1,2〉

〈1,1〉

〈2,1〉

Fig. 1. Graphical representation of Example 1

States, Players and Moves. These sets are introduced as types with one con-
structor for each element in the set, excepting the sets of moves, where a unique
constructor is used to represent an idle move.

State : Set
def
= | qout | qreq | qgran | qin

Player : Set
def
= | Train | Controller

Move : Set
def
= | stayOut | request | grant | delay | deny | enter
| relinquish | keepClosed | reopen | idle

We use the tuple notation 〈mt,mc〉 to denote the move vector: λ p : Player ⇒
(match p withTrain ⇒ mt | Controller ⇒ mc).

Transitions. Transitions are introduced with the following predicate 2:

δ : State → 〈Move〉 → State → Prop
def
=

| δ qout 〈stayOut , idle〉 qout | δ qout 〈request , idle〉 qreq
| δ qreq 〈idle , grant〉 qgran | δ qreq 〈idle , delay〉 qreq
| δ qreq 〈idle , deny〉 qout | δ qgran 〈enter , idle〉 qin
| δ qgran 〈relinquish , idle〉 qout | δ qin 〈idle , keepClosed 〉 qin
| δ qin 〈idle , reopen〉 qout

Coalitions. Singleton sets of players T = {Train} and C = {Controller} are
defined as:

T
def
= λ p⇒ match p withTrain ⇒ {1} | Controller ⇒ { }

C
def
= λ p⇒ match p withTrain ⇒ { } | Controller ⇒ {1}

Atomic State Formulas. The atomic state formulas are easily introduced using
case analysis over the current state. For example, a state formula representing
the fact that the train is not in the gate is:

OutGate
def
= λ q ⇒ match q with qin ⇒ False | ⇒ True

. In a similar way, we have defined formulas Requested , Granted and InGate
according to Example 1.

2 For the sake of readability, we omit here the name of contructors.
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Proving Properties. The following properties, taken from [2], are provable in
our system:

1. Whenever the train is out of the gate, the controller cannot force it to enter
the gate:

〈〈∅〉〉� (OutGate → ¬〈〈C〉〉�InGate)

2. Whenever the train is out of the gate, the train and the controller can coop-
erate so that the train will enter the gate:

〈〈∅〉〉� (OutGate → 〈〈Σ〉〉�InGate)

For space constraints, we omit proofs here, and we refer the interested reader
to [23].

5.2 Controlling an Unbounded Number of Trains

Suppose there is an unknown number of trains to cross a single gate. The gate
controller must ensure some safety (for instance, at most one train is in the gate)
and liveness (for instance, a request must be processed) properties.

Formalizing the System Using CGS. We propose an extendend CGS S∞
as a model of the system described above.

Players. The system components are the controller and the set of trains:

Player : Set
def
= Train : Id → Player | Controller : Player

where Id
def
= N. We abbreviate tn the term Train n, denoting the n-th train.

States. In each state of the system, we should have information about the trains
that have made a request to enter the gate, and which train has obtained such
permission. To represent the set of trains that want to enter to the gate, we

introduce the type Petition
def
= Id → Bool . For a function f : Petition , we say

that tn wants to enter the gate if f tn = true. The set of states is defined as:

State : Set
def
= | qout : State | qreq : Petition → State
| qgran : Petition → Id → State | qin : Petition → Id → State

The first argument of states qreq , qgran and qin is used to represent the set of
trains that have made a request. The second argument of state qgran (qin ) is the
id of the train having permission to enter (has entered) the gate.

Moves and Move Vectors. The set of moves is similar to the finite case. Addi-
tional moves are used for communication between components. The set of moves
is extended in the following way:

Move
def
= | stayOut : Move | request : Move | grant : Id → Move
| delay : Move | deny : Id → Move | denyAll : Move
| enter : Move | relinquish : Move | keepClosed : Move
| reopen : Move | idle : Move
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In the following moves appear the main difference with the finite example:
(deny n) represents a move where the controller rejects a request from train tn,
denyAll models a situation where controller can reject all requests, and (grant n)
represents a situation where controller gives permission to tn.

Let mc : Move be a move of the controller and let mt : Id → Move be a
function assigning a move to each train, we use the notation 〈mt,mc〉 to represent
the move vector defined as λ p⇒ (match p with tn ⇒ mt n | Controller ⇒ mc).

Transitions. To model the transition relation we use the following auxiliary func-
tions: =b: Id → Id → Bool , that decides equality in type Id ; and an overwrite
operator ⊕ : Petition → Id → Bool → Petition , such that (f ⊕{n← b}) applied
to m returns b if m = n, and f m otherwise. The transition relation is defined
as follows 3:

δ
def
= | δ qout 〈λn⇒ stayOut , idle〉 qout
| ∀f, (∃n : Id , f n = true)→
δ qout 〈λn⇒ if f n then request else stayOut , idle〉 (qreq f)

| ∀f n, f n = true →
δ (qreq f) 〈λn⇒ idle, grant n〉 (qgran (f ⊕ {n← false}) n)

| ∀f, δ (qreq f) 〈λn⇒ idle , delay〉 (qreq f)
| ∀f n, (∃m : Id ,m �= n ∧ f m = true)→
δ (qreq f) 〈λn⇒ idle, deny n〉 (qreq f ⊕ {n← false})

| ∀f n, (∀m : Id ,m �= n→ f m = false)→
δ (qreq f) 〈λn⇒ idle, deny n〉 qout

| ∀f, δ (qreq f) 〈λn⇒ idle , denyAll〉 qout
| ∀f n, δ (qgran f n) 〈entern, idle〉 (qin f n)
| ∀f n, (∀k : Id , k �= n→ f k = false)→
δ (qgran f n) 〈relinquishn, idle〉 qout

| ∀f n, (∃k : Id , k �= n ∧ f k = true)→
δ (qgran f n) 〈relinquishn, idle〉 (qreq f)

| ∀f n, δ (qin f n) 〈λn⇒ idle , keepClosed〉 (qin f n)
| ∀f n, (∀m, f m = false)→ δ (qin f n) 〈λn⇒ idle , reopen〉 qout
| ∀f n, (∃m, f m = true)→ δ (qin f n) 〈λn⇒ idle , reopen〉 (qreq f)

where entern, relinquishn : Id →Move are defined as:

entern
def
= λm⇒ if m =b n then enter else idle

relinquishn
def
= λm⇒ if m =b n then relinquish else idle

The relation δ takes into account the existence of different train requests using
the petition function. For instance, when the system is in state qout , there are
two possible transitions: (1) no train make a request, then the system stays in
qout ; and (2) there exists a subset of trains making a request to enter the gate,
represented with f ; in this case, the system make a transition to state (qreq f).

3 We have omitted constructors names.
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Coalitions. Different coalitions can be defined for this system, depending on the
properties to be specified. For example:

{tn} def
= λ p⇒ match p with | Train k ⇒ if n =b k then {1} else { }

| Controller ⇒ { }

State Formulas. State formulas can be defined by pattern matching on states.
For example, we define formula Out , valid if the current state is qout , and In(n),
valid if train tn is in the gate:

Out
def
= λ q ⇒ match q with | qout ⇒ True | ⇒ False

In(n)
def
= λ q ⇒ match q with | qin f m⇒ if n =b m then True else False

| ⇒ False

Properties. Some properties proved in S∞ are:

– Controller and train tn can cooperate so that this train will enter the gate:

〈〈∅〉〉� (Out → 〈〈{tn} % {Controller}〉〉�In(n)) (12)

– Cooperation is needed in order to ensure progress: Neither the set of trains
nor the controller can enforce a trace where state In(n) is reached, for some
n:

〈〈∅〉〉� (Out → ¬ (〈〈{Controller}〉〉�In(n) ∨ 〈〈{t1, t2, . . .}〉〉�In(n))) (13)

Formula (12) express a liveness property. To prove it, we construct a strategy
FA for coalition A = {tn,Controller}; then, we proceed to show that, if player
in A follows strategy FA, a state where In(n) is valid will be eventually reached,
regardless the behaviour of the other components. To prove the safety property
(13), we show that it is not the case that controller (the set of trains) can
construct an strategy F such that, if controller (the set of trains) follows F , then
state qin will be eventually reached. A detailed proof of these properties can be
found in [23], along with the analysis of other safety and liveness properties.

6 Conclusions and Future Work

ATL is a game-theoretic generalization of CTL with applications in the formal
verification of multi-agent systems. In this paper we have presented a formal-
ization of ATL and its semantic model CGS. Unlike standard ATL semantics,
temporal operators have been interpreted in terms of inductive and coinductive
types, using a fixpoint characterization of these operators in the CIC.

The formalization presented here was used to model a concurrent system with
an unbounded number of players and states, and we have verified some safety
and liveness properties expressed as ATL formulas. Unlike automatic techniques,
our formal model has no restriction in the size of the CGS, and arbitrary state
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predicates can be used as atomic propositions of ATL. We conclude that in
systems with an intractable size, our formal model, based on an existent type
theory (the CIC) with the proof assistant Coq can be used as a specification and
verification tool for open multi-agent systems.

A possible extension of our system would consist of formalizing fair-ATL [2], a
logic extending ATL semantics with fairness constraints. These constraints rule
out certain infinite computations that ignore enabled moves forever.

The logic ATL is a fragment of a more expressive logic, ATL* [2]. In ATL*,
a path quantifier 〈〈A〉〉 is followed by an arbitrary linear time formula, allow-
ing boolean combination and nesting, over � , � and U . Another interesting
extension to our work is to formalize this logic in the CIC.

ATL has been used to specify properties in contract signing protocols where n
agents exchange signatures [11,5]. The model checker Mocha [3] has succeeded
in verifying these protocols in the case where two agents are involved [5]. How-
ever, model checking algorithms fail in case of multi-party protocols (n > 2),
since these algorithms can be used only with a fixed (and, in practice, small)
value for n.

The formalization presented in this work can be used as basis for a formal
verification of such protocols. Thus, a further extension of this work involves the
verification of multi-party protocols following an approach similar to the one of
Section 5.
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C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 255–272. Springer, Hei-
delberg (1999)

19. The Coq development team. The Coq proof assistant reference manual, version
8.2. LogiCal Project, Distributed electronically (2010), http://coq.inria.fr

20. The Coq development team. The Coq Standard Library. LogiCal Project (2010),
http://coq.inria.fr/stdlib/

21. van Leeuwen, J. (ed.): Handbook of Theoretical Computer Science, vol. B: Formal
Models and Semantics. Elsevier and MIT Press (1990)

22. Zanarini, D.: Formalización de lógica temporal alternante en el cálculo de con-
strucciones coinductivas. Master’s thesis, FCEIA, Universidad Nacional de Rosario,
Argentina (2008), http://www.fceia.unr.edu.ar/~dante

23. Zanarini, D.: Formalization of alternating time temporal logic in Coq (2010),
http://www.fceia.unr.edu.ar/~dante

http://coq.inria.fr
http://coq.inria.fr/stdlib/
http://www.fceia.unr.edu.ar/~dante
http://www.fceia.unr.edu.ar/~dante


Author Index

Acosta, Araceli 3
Aguirre, Nazareno M. 3, 147

Barbosa, Haniel 19
Braz, Fernando A.F. 35
Bronevetsky, Greg 194

Campos, Sérgio V.A. 35
Carvalho, Gustavo 67
Castro, Pablo F. 3
Cruz, Jader S. 35

da Costa Cavalheiro, Simone André 83
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Löwe, Michael 163
Luna, Carlos 210

Maibaum, Tom 147
Martins Moreira, Anamaria 51
Milward, David 99
Mota, Alexandre 67, 115

Qin, Shengchao 131

Regis, Germán 147
Ribeiro, Leila 83
Ricci, Nicolás 147
Rushby, John 1

Sampaio, Augusto 67
Schulte, Wolfram 2
Schulz, Christoph 163
Sekerinski, Emil 179
Sharma, Subodh 194
Shi, Jianqi 131
Sierra, Luis 210

Welch, James 99

Zanarini, Dante 210
Zhang, Tian 179
Zhao, Yongxin 131
Zhu, Huibiao 131


	Title Page
	Preface
	Organization
	Table of Contents
	The Versatile Synchronous Observer
	Thirteen Years of Automated Code Analysis at Microsoft
	Model Checking Propositional Deontic Temporal Logic via a μ-Calculus Characterization
	Introduction
	Preliminaries
	A Propositional Deontic Logic (PDL)
	The -Calculus

	A -Calculus Characterization of PDL
	On the Correctness of Tr

	A Temporal Extension of PDL
	Translating DTL Formulas to -Calculus
	On the Correctness of the Extended Tr

	An Example
	Expressing Properties of Producer-Consumer

	Conclusions and Future Work
	References

	An Approach Using the B Methodto Formal Verification of PLC Programsin an Industrial Setting
	Introduction
	Context and Techniques
	Programmable Logic Controllers
	B Method

	TheMethod
	Towards the PLC Model
	Generation of the B Model
	Inserting the Safety Constraints

	Case Study
	Applying the Method
	Results

	Conclusions and Future Work
	References

	Palytoxin Inhibits the Sodium-Potassium Pump –An Investigation of an Electrophysiological ModelUsing Probabilistic Model Checking
	Introduction
	Transmembrane Ionic Transport Systems
	Related Work
	Experimental and Simulational Techniques
	Model Checking

	The Na+/K+-ATPase Model
	Discrete Chemistry

	The Palytoxin Model
	Results
	Parameters and Model Complexity
	High [Na+] Enhances PTX Action
	High [K+] Inhibits PTX Action
	Species Depletion
	A Probabilistic and Quantified Kinetic Model

	Conclusions and Further Work
	References

	BETA: A B Based Testing Approach
	Introduction
	The B-Method
	Related Work
	Test Generation Approach
	Defining the Input Space and Input Domain
	Creating Partitions and Defining Test Case Formulas
	Creating Test Case Specifications
	Calculating Oracle Values and Implementing Concrete Test Cases

	The BETA Tool
	Case Study
	Discussions and Future Work
	References

	A Process Algebra Based Strategy for Generating Test Vectors from SCR Specifications
	Introduction
	Background Concepts
	CSP#
	SCR

	Translating SCR Specifications into CSP# Processes
	Step 1 - Mapping Types and Constants
	Step 2 - Mapping SCR Variables
	Step 3 - Modeling Input Possibilities
	Step 4 - Representing Time Passing
	Step 5 - Mapping SCR Functions
	Step 6 - Representing the SCR Loop Behaviour
	Step 7 - Data Abstraction
	Step 8 - Elimination of Unnecessary Variables

	Generating Test Vectors from CSP# Specifications
	Specification Properties
	Generating Test Vectors

	Empirical Analyses
	Conclusions
	References

	Specification Patterns for Properties over Reachable States of Graph Grammars
	Introduction
	Graph Grammars
	Attributed Graph Grammars
	Specification of a Mobile System Using Graph Grammars

	The Standard Library of Functions
	Property Patterns
	Properties Specification for the Mobile System

	Conclusions and Future Work
	References

	Compositionality and Refinement in Model-Driven Engineering
	Introduction
	Object Models and Abstract Data Types
	Model-Driven Development
	Model Refinement
	Generalisation and Inheritance
	Discussion
	References

	Identifying Hardware Failures Systematically
	Introduction
	Background
	The CSPM Language
	System Modelling and Simulation with Simulink

	Systematic Strategy to Find Failures
	Proposed Changes on the Translation From Simulink to CSPM
	Breaker Process

	Case Study
	Related Work
	Conclusion
	References

	Investigating Time Properties of Interrupt-Driven Programs
	Introduction
	Overview of the Interrupt Mechanism
	System
	Environment

	The Language
	Syntax
	Workload Function

	Operational Semantics
	Algebraic Laws
	Time Properties and a Case Study
	Conclusion and Future Work
	References

	Specifying and Verifying Declarative Fluent Temporal Logic Properties of Workflows
	Introduction
	Business Processes, Workflows and Patterns
	Workflow Specification Using YAWL

	The Formal Framework
	Labeled Transition Systems
	Linear Time Temporal Logic
	Fluent Linear Time Temporal Logic
	Model Checking

	From YAWL Workflows to Labeled Transition Systems
	Encoding of Gates
	Cancel Regions and the Encoding of Composite Tasks

	Case Study
	Related Work and Conclusions
	References

	Composition of Model Transformations: A Categorical Framework
	Introduction
	Modelling Data
	Modelling Transformations
	Composition of Model Transformations
	Related Work
	Outlook
	References

	Verification Rules for Exception Handlingin Eiffel
	Introduction
	Program Expressions
	Core Statements
	Derived Statements
	Correctness Assertions
	Method Correctness
	Example: Binary Search of Square Root
	Discussion
	References

	A Sound Reduction of Persistent-Sets for Deadlock Detection in MPI Applications
	Introduction
	Preliminaries
	State Transition Rules (MPI/ISP)
	Nature of Transitions in a Persistent-Set

	Independent Transitions
	Macroscopic Partial Order Elusive (MSPOE) Algorithm
	Experimental Results
	Discussion
	Conclusions
	References

	Alternating-Time Temporal Logic in the Calculus of (Co)Inductive Constructions
	Introduction
	Alternating-Time Temporal Logic
	Concurrent Game Structures
	ATL Syntax and Semantics

	Formalizing CGS and ATL
	The CIC and Coq
	Formalizing CGS
	Formalizing ATL

	A Deductive System for ATL
	A Case Study
	Controlling a Railroad Crossing
	Controlling an Unbounded Number of Trains

	Conclusions and Future Work
	References

	Author Index



