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Abstract. We show how to check whether at least k clauses of an input
formula in CNF can be satisfied in time O∗(1.358k). This improves the
bound O∗(1.370k) proved by Chen and Kanj more than 10 years ago.
Though the presented algorithm is based on standard splitting techniques
its core are new simplification rules that often allow to reduce the size
of case analysis. Our improvement is based on a simple algorithm for a
special case of MAX-SAT where each variable appears at most 3 times.
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1 Introduction

1.1 Problem Statement

Maximum Satisfiability (MAX-SAT) is a well known NP-hard problem where
for a given boolean formula in conjunctive normal form one is asked to find
the maximum number of clauses that can be simultaneously satisfied. In the
parameterized version of MAX-SAT the question is to check whether it is possible
to find an assignment that satisfies at least k clauses. The best known upper
bound O∗(1.370k) for this problem was given in 2002 by Chen and Kanj [1]. The
previously known bounds are listed in the following table.

Bound Authors Year

O∗(1.618k) Mahajan, Raman [2] 1999
O∗(1.3995k) Niedermeier, Rossmanith [3] 1999
O∗(1.3803k) Bansal, Raman [4] 1999
O∗(1.3695k) Chen, Kanj [1] 2002

In this paper, we present an algorithm with the running time O∗(1.358k) for
parameterized MAX-SAT and O∗(1.273k) for parameterized (n, 3)-MAX-SAT.
(n, 3)-MAX-SAT is a special case of MAX-SAT where each variable appears at
most three times.

An alternative way to parametrize MAX-SAT is to ask whether at least �m
2 �+

k′ clauses can be satisfied ([2], [5], [6]). This is called parametrization above
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guaranteed values since one can always satisfy at least �m
2 � clauses (indeed,

the expected number of clauses satisfied by a random assignment is m
2 ). It is

shown in [2] that an upper bound φk for the parametrization considered in this
paper implies an upper bound φ6k′

for an alternative parametrization. We do
not known any better results for this parametrization.

1.2 General Setting

Literals and Formulas. Throughout the paper, n denotes the number of vari-
ables, m denotes the number of clauses, and k denotes the number of clauses
one is asked to satisfy. By MAX-SAT(F ) we denote the maximum number of
clauses in F that can be satisfied simultaneously. MAX-SAT(F, k) = true iff
MAX-SAT(F ) ≥ k. The constants true and false are denoted just by 1 and 0.
Let #F (l) be the number of occurrences of a literal l. By F [l] we denote a for-
mula obtained from F by removing all occurrences of l̄ and deleting all clauses
containing l. By F [x = ȳ] we denote a formula obtained by replacing x and x̄
by ȳ and y, respectively. We say that a variable has degree p if it occurs in the
formula exactly p times. Also we say that a variable x is of type (a, b) if the literal
x occurs a times and the literal x̄ occurs b times. We say that a variable x is a
(k, 1)-singleton ((k, 1)-non-singleton) if it is of type (k, 1) and the only negation
is contained (is not contained) in a unit clause. Unit clause is a clause of length
1. A literal l is called pure if the literal l̄ does not appear in the formula. A literal
y dominates a literal x if all clauses containing x contain also y. Two literals
are called inconsistent if one of them is a negation of the second. A literal y is
a neighbor of a literal x if they appear in a clause together. We use “. . . ” to
indicate the rest of a clause. E.g., (x∨ ȳ ∨ . . . ) is a clause containing literals x, ȳ
and probably something else.

Branchings. Instance of a problem is a pair (F, k). The question is whether it is
possible to satisfy at least k clauses in a formula F . For q > 1, we say that there
exists a branching (a1, . . . , aq) if we can quickly construct formulas F1, F2, . . . , Fq

such that the answer for the original problem can be found from the answers
to the problems (F1, k − a1), (F2, k − a2), . . . , (Fq, k − aq). If l is a literal of F ,
then clearly there exists a branching (F [l], k − #F (l)), (F [l̄], k − #F (l̄)). It is
well-known that if an algorithm on each stage uses only branchings from the set

(a1,1, . . . , a1,q1), (a2,1, . . . , a2,q2), . . . , (at,1, . . . , at,qt),

where ai,1 ≤ ai,2 ≤ · · · ≤ ai,qi , for 1 ≤ i ≤ t, then its running time is O∗(ck)
where c is the largest positive root of a polynomial

p(X) =
t∏

j=1

(Xaj,qj −
qj∑

i=1

Xaj,qj
−aj,i).

For branching (a1, . . . , aq), where a1 ≤ a2 ≤ · · · ≤ aq, we denote by
τ(a1, a2, . . . , aq) the unique positive root of a polynomial Xaq − (Xaq−a1 +
Xaq−a2 + · · ·+Xaq−aq ). τ(a1, a2, . . . , aq) is called a branching number.
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We say that a branching (b1, b2, . . . , bq) is dominated by branching a
(a1, a2, . . . , aq) iff for every i, ai ≥ bi.

1.3 The Main Idea of the Algorithm

A straightforward branching on a variable of high degree immediately gives a
good branching number. As it is common with branching algorithms, the main
bottleneck is when a formula consists of variables of low degree only. It is easy
to see that variables of degree at most 2 can be eliminated from the formula.
Consider a variable x of degree 3: (x ∨ A)(x ∨ B)(x̄ ∨ C), where A,B,C are
disjunctions of literals. If A or B consists of just one literal, then we can replace
(x ∨ A)(x ∨ B)(x̄ ∨ C) with (Ā ∨ B ∨ C)(A ∨ C). If A and B are long, then we
can branch according to the following “resolution-like” rule:

• replace (x ∨ A)(x ∨B)(x̄ ∨ C) by (A ∨ C)(B ∨ C);
• set to 0 all literals from A,B,C.

More formally the correctness of these steps is shown in Simplification Rule 5
and Branching Rule 2.

For solving MAX-SAT restricted to instances consisting of (3, 1)- and (4, 1)-
singletons we use the algorithm for the Minimum Set Cover problem by van
Rooij and Bodlaender [7]. The running time of the algorithm is estimated in
Theorem 3.

1.4 Organization of the Paper

In Section 3 we present a very simple algorithm for (n, 3)-MAX-SAT. Its analysis
is based on tricks mentioned above and contains no case analysis at all. In
Section 4 we show that the presented rules can be used to simplify a case analysis
of branching on a variable of degree 3. In Section 5 we improve the upper bound
for Parameterized MAX-SAT.

2 Preliminaries: Simplification and Branching Rules

The following simplification rule is straightforward so we state it without a proof.

Simplification Rule 1. A literal l can be assigned the value 1 if l is a pure
literal or number of unit clauses (l) is not smaller than number of clauses con-
taining l̄.

Simplification Rule 2. A variable of degree ≤ 2 can be eliminated.

Correctness: If l is a pure literal, then we can set l = 1. Otherwise, F = G∧(l∨
A)∧(l̄∨B). It is easy to see that MAX-SAT(F, k) = MAX-SAT(F∧(A∨B), k−1).

�	
Simplification Rule 3. Pairs of clauses (x) and (x̄) can be removed.
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Correctness: Clearly, MAX-SAT(F ∨ (x) ∨ (x̄), k) = MAX-SAT(F, k − 1). It
does not matter whether the variable x appears in F or not. �	
Simplification Rule 4. If two variables x and y of degree 3 appear together in
3 clauses, then all these 3 clauses can be satisfied by assigning x and y.

Correctness: One can satisfy 2 clauses by assigning x the remaining clause can
be satisfied by assigning y. �	
Simplification Rule 5. Let x be a variable of degree 3: F = G∧ (x∨A)∧ (x∨
B) ∧ (x̄ ∨ C). If A or B has length < 2 then we can reduce the problem.

Correctness: Wlog, assume that A has length < 2. If the length of A equals to
1 then A is a single literal. It is easy to see that

MAX-SAT(F, k) = MAX-SAT(G ∧ (Ā ∨B ∨ C) ∧ (A ∨C), k − 1).

If A is empty we can set x = 1. The parameter is reduced by 2. �	
Remark 1. It is easy to see that all Simplification Rules can be applied in poly-
nomial time and decrease k at least by one. Note that some of the simplifications
rules make several clauses of a formula satisfied while others may replace existing
clauses with new clauses and reduce the parameter (like SR2 and SR5). Since as
a result of applying a rule the number of satisfied clauses increases we usually
say that applying a simplification rule satisfies some clauses.

Branching Rule 1. For any literal l, one can branch as (F [l], k −
#F (l)), (F [l̄], k −#F (l̄)).

Branching Rule 2. Let x be a variable of degree 3: F = G ∧ (x ∨ A) ∧ (x ∨
B) ∧ (x̄ ∨ C). Then there is a branching:

• (G ∧ (A ∨ C) ∧ (B ∨ C), k − 1)
• (G′, k−2), where G′ is obtained from G by assigning all literals from A,B,C

to 0.

Correctness: Let R = (A ∨ C) ∧ (B ∨ C). It is a simple observation that if
an optimal assignment satisfies s clauses from R, where s = 1, 2, then we can
satisfy s+1 clauses from F −G but cannot satisfy s+2. However, if an optimal
assignment does not satisfy any clause from R we can still satisfy two clauses
from F −G by setting x = 1. �	
Corollary 1. If A∪B ∪C contains inconsistent literals, then one can consider
only the first branch. It means that one can reduce (F, k) to (G∧ (A∨C)∧ (B ∨
C), k − 1).

Remark 2. We write BR2(x) if we apply Branching Rule 2 to a variable x.
Branching on a variable means applying Branching Rule 1. We write SRi(x) for
1 ≤ i ≤ 5, if we apply Simplification Rule i to a variable x.
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Lemma 1 (Kulikov, Kutzkov [8]). If a literal y dominates a literal x, then
one can branch as

• x = 1, y = 0;
• x = 0.

Proof. If in some assignment the literals x and y both have the value 1, then
flipping the value of x cannot decrease the number of satisfied clauses. Indeed,
all clauses that can be satisfied by x = 1 are also satisfied by y = 1. �	
Lemma 2. Let x be a (t, 1)-non-singleton variable. Then branching on x is a
(t, 2)-branching.

Proof. Let y be a neighbor of x̄. In the branch x = 1 we satisfy at least t clauses.
In the branch x = 0 we can set y = 0 and satisfy at least 2 clauses. The lemma
follows from Lemma 1, in this case we use literals y, x̄ instead of y, x. �	
Lemma 3. If F contains a variable x of degree ≥ 6, then branching number on
x is at most τ(1, 5).

Proof. This follows from the fact that τ(1, 5) > τ(2, 4) > τ(3, 3). �	

3 Solving (n, 3)-MAX-SAT in 1.2721k Time

By (n, 3)-MAX-SAT we denote MAX-SAT restricted to instances in which each
variable appears in at most 3 clauses. In this section we give a simple algorithm
for (n, 3)-MAX-SAT. The running time of the algorithm is 1.2721k. Note that
the previous known upper bound for (n, 3)-MAX-SAT w.r.t. k is 1.3247k and
it follows from proof of Chen and Kanj for the general MAX-SAT. Throughout
this section we assume that F is an (n, 3)-MAX-SAT formula.

Lemma 4. Let x be a variable of degree 3: F = G∧ (x∨A) ∧ (x ∨B)∧ (x̄∨C)
and rules SR1-4 are not applicable to F . If A has length < 2, then we have
(2, 4)-branching and the resulting formulas are (n, 3)-MAX-SAT formulas.

Proof. IfA has length 0, then we can set x = 1. Otherwise, by Simplification Rule
5 we eliminate one clause and get a new formula F ′ = G∧ (Ā∨B∨C)∧ (A∨C).
Variables of degree 4 in the formula F ′ can appear only in A and C. Branching
on the variable A gives (n, 3)-MAX-SAT formulas in both branches. A has degree
4, so the branching gives at least (1, 3)-branching (note that τ(2, 2) < τ(1, 3)).
As one clause is already satisfied, the resulting branching is at least (2, 4). �	
Lemma 5 (Bliznets [9]). If each variable of F appears once negatively and
twice positively and all negative literals occur in unit clauses, then MAX-SAT(F )
can be computed in polynomial time.

Proof. Construct a graph GF = (V,E) in the following way. Introduce a vertex
for each clause consisting of positive literals, introduce an edge between two
vertices if the corresponding two clauses share a variable. Then MAX-SAT(F ) =
n+ ν(GF ), where ν(GF ) is the size of a maximum matching in GF . �	
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Algorithm 1. (n, 3)-MAX-SAT-Alg — solving (n, 3)-MAX-SAT in time
1.2721k.

Input: F — instance of (n, 3)-MAX-SAT.
Parameter: k — number of clauses asked to satisfy.
Output: true, if k clauses can be satisfied simultaneously; false otherwise.

1: apply Simplification Rules 1–4
2: if all negations are singletons then
3: return answer (use Lemma 5).
4: choose x, s.t. x̄ is not a singleton: (x ∨ A)(x ∨ B)(x̄ ∨ C), |C| > 0, |A| ≤ |B|
5: if |A| ≤ 1 then
6: use Lemma 4 for branching
7: if |A| ≥ 2 then
8: branch BR 1(x)

Theorem 1. Algorithm (n, 3)-MAX-SAT-Alg solves (n, 3)-MAX-SAT in time
1.2721k.

Proof. By Lemma 5 the running time of step 3 is polynomial. Step 6 gives
(2, 4)-branching by Lemma 4. Branching at step 8 gives at least (4, 2)-branching.
Indeed, |C| > 0 and Lemma 1 implies that in case x = 0 we can satisfy at least
two clauses: one is (x̄ ∨ C) and one more with a literal t̄ where t is some literal
from C. By SR4, there are at least 4 clauses containing variables from A. In the
branch x = 1 two clauses are satisfied by x and there exist variables y, z that
appear one or two times in the new formula. There are at least 2 clauses that
contain variable y or z. Hence, SR2 applied to variables y, z from A satisfies two
new clauses. Thus, branching on x gives (4, 2)-branching. The running time of
the algorithm is max(τ(2, 4), τ(3, 3))k = τ(2, 4)k < 1.2721k. �	

4 Removing Variables of Degree 3

In this section we show that if a formula contains a variable of degree 3 then we
can either decrease k or find a good branching. Suppose that x occurs three times
in F and no simplification rules are applicable to F . Assume that F contains
clauses (x ∨ A), (x ∨ B), (x̄ ∨ C) where A,B,C are disjunctions of literals. We
consider only cases where |A|, |B| ≥ 2 because otherwise we can apply SR5(x)
or assign 1 to x.

Definition 1. Denote by LN(!A1, . . . , !Ak) the set of all clauses of F containing
a negation of some literal from A1 ∪ · · · ∪ Ak

Throughout this section we assume that A∪B∪C does not contain inconsistent
literals. Otherwise, by Corollary 1 the formula can be simplified.

Lemma 6. Let y, z be literals such that y, z ∈ A∪B ∪C, ȳ occurs two or more
times and dominates z̄ (call this situation a first special case of domination).
Then there is a (2, 4)-branching.
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Proof. Recall that ȳ, z̄ appear in some clauses from LN(!A, !B, !C). Consider
the branching F [y], F [ȳ]. In the second case two clauses are satisfied with ȳ and
z can be substituted by 1, because it becomes a pure literal. z = 1 satisfies at
least one of the following clauses: (x ∨ A), (x ∨ B), (x̄ ∨ C). After that we use
SR2(x) since x appears at most two times. This satisfies at least 4 clauses. In
the formula F [y] we use SR2(x) and that is why the parameter is decreased
by 2. �	
Lemma 7. Let y, z be literals from A ∪ B ∪ C such that ȳ occurs once and
dominates z̄ (call this situation a second special case of domination). Then there
is a (3, 3)-branching.

Proof. Like in the previous lemma in F [ȳ] we can assign 1 to z. A literal z
appears at least two times because z̄ occurs once in the formula. So z = 1
satisfies two more clauses(z and z̄ do not appear in one clause). This satisfies at
least 3 clauses. In F [y] — we satisfy 2 clauses containing y and one using SR2(x)
because after assigning y = 1 we have one or two clauses containing the variable
x. We get a (3, 3)−branching. �	
Lemma 8. If |LN(!A, !B, !C)| < 3 then we have a special case of domination
or A = B = y ∨ z. In the former case we have a good branching ((2, 4)-, (3, 3)-,
(1, 6)-branching or better), while in the latter case the parameter can be decreased.

Proof. We know that |A|, |B| ≥ 2. So A ∪B contains more than two literals or
equals y∨ z. In the former case three literals should occur in two clauses, so this
is a domination. In the latter case we can replace clauses with the variable x by
the clause (y ∨ z ∨C) and decrease the parameter by two. �	
Now we can assume that we only work with formulas where |LN(!A, !B, !C)| > 2.
If |LN(!A, !B, !C)| > 3 using BR2(x) we immediately get (1, 6)-branching. So
for the rest of this section |LN(!A, !B, !C)| = 3.

Lemma 9. If |A ∪ B ∪ C| > 3 then we have a special case of domination
and hence one of the Lemmas 6,7 is applicable. So there is a (2, 4)- or (3, 3)-
branching.

Proof. At least 4 negations of the literals from |A ∪B ∪ C| should be placed in
3 clauses and it is impossible without special case of domination. �	
From the previous lemma we conclude that it is enough to consider formulas
where |A ∪B ∪ C| ≤ 3.

Lemma 10. If min{|A|, |B|} ≥ 3 then either there is a special case of domina-
tion or the parameter can be decreased.

Proof. If |A ∪ B ∪ C| > 3 we have a special case of domination because of
Lemma 9. Otherwise from |A ∪ B ∪ C| ≤ 3 and min{|A|, |B|} ≥ 3 it follows
that |A| = |B| = 3 and x ∨ A = x ∨ B = x ∨ y1 ∨ y2 ∨ y3. So, we can replace
x ∨ A, x ∨B, x̄ ∨ C by A ∨ C and decrease the parameter by 2. �	
Now wlog we can assume that x ∨ A = x ∨ y ∨ z.
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Lemma 11. If we have an instance (F, k) and for all variables x that appear
three times the following holds:

• x occurs in clauses x ∨Ax, x ∨Bx, x̄ ∨Cx

• LN(!Ax, !Bx, !Cx) = 3

then we can decrease the parameter or apply one of the following branchings:
(3, 3), (2, 4) or better.

Proof. Suppose that all previous lemmas are not applicable otherwise we are
done. So we can choose a variable x that occurs three times and Ax = y ∨ z.
Note that if ȳ occurs three times then we have a case of domination and in
this situation a good branching ((2, 4)-, (3, 3)-, (1, 6)-branching or better) exists.
Consider two cases: ȳ appears exactly once or twice.

Case 1: ȳ appears exactly once.

Case 1.1: ȳ has a neighbor.
F contains the following clauses:

(x ∨ y ∨ z), (x ∨ . . . ), (x̄ ∨ . . . ), (ȳ ∨ w ∨ . . . ).

In F [ȳ] by Lemma 1 we can assign 0 to w and use SR5(x) or SR2(x).
So, we decrease the parameter by 3. In F [y] we satisfy at least two
clauses and using SR2(x) we decrease the parameter by 1. We obtain
(3, 3)-branching. So in all other cases we must have a clause (ȳ).

Case 1.2: y appears more than 2 times and there is an occurrence

outside a variable x.
After F [y] and SR2(x) we satisfy at least 4 clauses. In F [ȳ] using SR5(x)
we decrease the parameter by 2.

Case 1.3: a literal y appears in all clauses with a variable x.
We have the following clauses:

(x ∨ y ∨ z), (x ∨ y ∨ . . . ), (x̄ ∨ y ∨ . . . ), (ȳ).

The variable y does not occur in the rest of the formula, otherwise we
can treat it as a case 1.2. So, it is enough to consider y = 0. Because
an assignment with x = 1, y = 0 is not worse than the same assignment
with x = y = 1 and x = 0, y = 1. It means that we can satisfy one clause
and one variable without branching.

Case 1.4: y occurs exactly twice
Using symmetry we can conclude that the clause with x̄ does not contain
any other literals. Otherwise we have case 1.1. Again using symmetry
ideas we may conclude that either z̄ appears twice or z̄ appears once
and z appears exactly twice and there is a clause (z̄) . Consider these
two subcases separately.
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Case 1.4.1: z̄ appears once and z appears exactly twice

(x ∨ y ∨ z), (x ∨ . . . ), (x̄), (ȳ), (z̄).

In F [x] using SR2(y), SR2(z) we decrease the parameter by 4. In
F [x̄] it is easy to see that we can assume y = z̄. So we obtain (4, 4)-
branching.

Case 1.4.2: z̄ appears twice.
In this case we have the following clauses:

(x ∨ y ∨ z), (x ∨ . . . ), (x̄), (ȳ), (z̄ ∨ . . . ), (z̄ ∨ . . . ).

F [z] and then SR2(x), SR2(y) decrease the parameter by 3. In F [z̄]
we can assume that x = ȳ. We get a (3, 4)-branching.

Case 2: ȳ appears exactly twice.
Using symmetry we conclude that z̄ also appears twice otherwise we have
the situation described in case 1. So, we have the following family of clauses:

(x ∨ y ∨ z), (x ∨B), (x̄ ∨ . . . ), (ȳ ∨ . . . ), (ȳ ∨ . . . ).

Assume y ∈ B (the case z ∈ B is similar). F [y] and then x = 0 removes
3 clauses. In F [ȳ] we use SR5(x) and this removes 3 clauses. If y, z do not
appear in B we have |B| < 2 or |A∪B| ≥ 4 and we get a special domination
case, considered before.

�	
Theorem 2. If x occurs exactly 3 times in F , then either the parameter can be
decreased or there is a (1, 6)-, (2, 4)- or (3, 3)-branching.

5 Solving MAX-SAT in 1.358k

In this section we present a simple algorithm that improves the upper bound for
Parameterized MAX-SAT (Algorithm MAX-SAT-Alg). The main bottleneck
of the analysis is when all variables are (1, 3)-singletons or (1, 4)-singletons. We
consider this case separately.

We reduce an instance of this restricted MAX-SAT to the instance of Mini-
mum Set Cover. The Minimum Set Cover is, given a universe U and a collection
S of subsets of U , to find the minimum cardinality of a subset S′ ⊂ S which
covers U :

⋃
Si∈S′ Si = U . For e ∈ U , f(e) (frequency of e) denotes the number

of subsets of S in which e is contained.
It can be shown that algorithm for the Minimum Dominating Set given by

van Rooij and Bodlaender [7] in fact solves also the Minimum Set Cover in
time 1.28759k(U,S), where k(U,S) = ∑

e∈U v(f(e))+
∑

Si∈S w(|Si|), and v, w are
weight functions. The maximum value of v is 0.595723 and the maximum value
of w is 1. We note that for sets of cardinality ≤ 4 the maximum value of w is
0.866888 (see the end of section 3 in [7]). Therefore, we can use the following
lemma due to van Rooij and Bodlaender [7].
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Theorem 3. Algorithm msc solves the Minimum Set Cover prob-
lem where the cardinality of each set in S is at most 4 in time
O∗(1.287590.595723|U|+0.866888|S|) = O∗(1.290.6|U|+0.9|S|).

The following theorem was proved by Lieberherr and Specker [10]. Later Yan-
nakakis [11] gave a simple proof of this bound by the probabilistic method.

Theorem 4. If any three clauses in F are satisfiable, then at least 2m
3 clauses

are simultaneously satisfiable.

Theorem 3 is used for instances with m < 1.5k, while Theorem 4 is used for
instances with m ≥ 1.5k. We are now ready to prove an upper bound.

Theorem 5. Algorithm MAX-SAT-Alg solves MAX-SAT in time
O∗(1.3579k).

Proof. Below we show that in each case the algorithm branches with branching
number at most τ(5, 10, 1) < 1.3579, so the running time of the algorithm is
O∗(1.3579k).

• Step 3. If deg(x) ≥ 6 then by Lemma 3 we get (1, 5)-branching. τ(1, 5) ≈
1.3248 < 1.3579.

• Step 5. If deg(x) = 3 then by Theorem 2 we get (1, 6)-branching. τ(1, 6) ≈
1.2852 < 1.3579.

• Step 7. A (3, 2)-variable gives τ(3, 2) ≈ 1.3248 < 1.3579. By Corol-
lary 2, branching on (4, 1)-non-singleton or (3, 1)-non-singleton gives at least
τ(3, 2) ≈ 1.3248 < 1.3579.

• Step 10. x is a (2, 2)-variable, y is a (1, 4)-singleton, neighbor of x and literal
y does not dominate x, x̄ simultaneously. Branching on y gives τ(4, 1) and
the next iteration in branch y = 1 has a variable of degree 3 or smaller. The
overall branching number is smaller than τ(4 + 1, 4 + 6, 1) = τ(5, 10, 1) <
1.3579.

• Step 12. x is a (2, 2)-variable. Neighbors of x are variables of degree 4 or x, x̄
are dominated by y. So, both F [x] and F [x̄] contain a variable of degree 3.
By Theorem 2, a variable of degree 3 gives (1, 6),- (2, 4)- or (3, 3)-branching.
So the possible branchings are τ(2 + 1, 2 + 6, 2 + 1, 2+ 6), τ(2 + 2, 2+ 3, 2+
2, 2+3), τ(2+3, 2+3, 2+3, 2+3) the worst case among them is τ(3, 8, 3, 8) ≈
1.3480 < 1.3579.

In the following we assume that all variables are (3, 1)- or (4, 1)-singletons.

• Step 14. Now all variables are singletons. It means that we can satisfy n
clauses by setting all variables to 0. If k ≤ n this solves the problem.

• Step 16. We assume that each variable occurs 3 or 4 times positively and once
negatively in a unit clause. Note that all clauses are either negative singletons
or positive clauses (all variables in positive clauses occur only positively).
We claim that for such a formula there always exists an optimal assignment
satisfying all positive clauses. Indeed, if some positive clause is not satisfied
then by flipping any of its variables we can only increase the number of
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Algorithm 2. MAX-SAT-Alg — solving MAX-SAT in time 1.3579k.

Input: F — instance of MAX-SAT.
Parameter: k — number of clauses asked to satisfy.
Output: 1, if k clauses can be satisfied simultaneously; 0 otherwise.

1: apply Simplification Rules 1–5.
2: if there is x, s.t. deg(x) ≥ 6 then
3: branch on x
4: if there is x of degree 3 then
5: branch on x according to Theorem 2

{Now we have only variables of degree 4 and 5.}
6: if F contains a variable x of type (3, 2), (3, 1)-non-singleton or (4, 1)-non-singleton

then
7: branch on x

{Now we have only singletons and (2, 2)-variables.}
8: if F contains a variable x of type (2, 2) then
9: if x has a neighbor (4, 1)-singleton y and x, x̄ are not simultaneously dominated

by y then
10: branch on y
11: else
12: branch on x

{Now all variables are (3, 1)-singletons or (4, 1)-singletons.}
13: if k ≤ n then
14: return 1
15: if m < 1.5k then
16: return k ≤ msc(F )
17: if there is a clause of length 2: (x ∨ y) then
18: branch as F [x, y];F [x = ȳ].
19: else
20: return 1

satisfied clauses. It means that we want to assign 1 to the minimal number of
variables to satisfy all positive clauses. It is the Minimum Set Cover problem.
We construct an instance of the Minimum Set Cover problem in the following
way. U is the set of positive clauses (|U | = m−n). S contains n sets. Set Si ∈
S consists of positive clauses, which contains a variable xi. Now we would
like to cover U by the minimal number of sets from S. If t is the minimal
number of sets required to cover U , then the maximum number of satisfied
clauses is m− t. We can compare this number to k and return the result. By
Theorem 3, the algorithm for Minimum Set Cover for sets of cardinality ≤ 4
has running time T (F ) = O∗(1.29(0.6|U|+0.9|S|)) = O∗(1.29(0.6(m−n)+0.9n)).
We know that k > n and m < 1.5k. Thus T (F ) ≈ 1.3574k < 1.3579k.

• Step 18. We know that the formula contains clauses (x̄) and (ȳ). If there is
a clause (x ∨ y), then some optimal solution satisfies clause (x ∨ y). Indeed,
if it does not, we can just set x = 1 and the number of satisfied clauses does
not decrease. So, we can branch as x = y = 1 and x = ȳ. In the first branch
we satisfy at least 3 clauses, because x is a (3, 1)− or (4, 1)−variable. In
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the second branch we satisfy clause (x ∨ y) and by Simplification Rule 3 we
satisfy one of the clauses (x) and (x̄). We obtain (2, 3)-branching.

• Step 20. Now we have a formula with m ≥ 1.5k clauses. F does not contain
clauses of length 2. Therefore, every triple of clauses is satisfiable. By The-
orem 4 there is an assignment, which satisfies at least 2m

3 ≥ k clauses. �	
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