
Finding a Maximum Induced Degenerate

Subgraph Faster Than 2n

Marcin Pilipczuk1,� and Micha�l Pilipczuk2,��

1 Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl

2 Department of Informatics, University of Bergen, Norway
michal.pilipczuk@ii.uib.no

Abstract. In this paper we study the problem of finding a maximum
induced d-degenerate subgraph in a given n-vertex graph from the point
of view of exact algorithms. We show that for any fixed d one can find a
maximum induced d-degenerate subgraph in randomized (2− εd)

nnO(1)

time, for some constant εd > 0 depending only on d. Moreover, our
algorithm can be used to sample inclusion-wise maximal induced d-
degenerate subgraphs in such a manner that every such subgraph is
output with probability at least (2 − εd)

−n; hence, we prove that their
number is bounded by (2− εd)

n.

1 Introduction

The theory of exact computations studies the design of algorithms for NP-hard
problems that compute the answer optimally, however using possibly exponential
time. The goal is to limit the exponential blow-up in the best possible running-
time guarantee. For some problems, like Independent Set [1], Dominating

Set [1, 2], and Bandwidth [3] the research concentrates on achieving better and
better constants in the bases of exponents. However, for many important compu-
tational tasks designing even a routine faster than trivial brute-force solution or
straightforward dynamic program is a challenging combinatorial question; the
answer to this question can provide valuable insight into the structure of the
problem. Perhaps the most prominent among recent developments in breaking
trivial barriers is the algorithm for Hamiltonian Cycle of Björklund [4], but
a lot of effort is put also into less fundamental problems, like Maximum In-

duced Planar Graph [5] or a scheduling problem 1|prec|∑Ci [6], among
many others [7–12]. However, many natural and well-studied problems still lack
exact algorithms faster than the trivial ones; the most important examples are
TSP, Permanent, Set Cover, #Hamiltonian Cycles and SAT. In par-
ticular, hardness of SAT is the starting point for the Strong Exponential Time
Hypothesis of Impagliazzo and Paturi [13, 14], which is used as an argument that
other problems are hard as well [15–18].

� Partially supported by NCN grant N206567140 and Foundation for Polish Science.
�� Partially supported by European Research Council (ERC) Grant “Rigorous Theory

of Preprocessing”, reference 267959.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 3–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 M. Pilipczuk and M. Pilipczuk

A group of tasks we are particularly interested in in this paper are the prob-
lems that ask for a maximum size induced subgraph belonging to some class Π .
If belonging to Π can be recognized in polynomial time, then we have an ob-
vious brute-force solution working in 2nnO(1) time that iterates through all the
subsets of vertices checking which of them induce subgraphs belonging to Π .
Note that the classical Independent Set problem can be formulated in this
manner for Π being the class of edgeless graphs, while if Π is the class of forests
then we arrive at the Maximum Induced Forest, which is dual to Feedback

Vertex Set. For both these problems algorithms with running time of form
(2 − ε)n for some ε > 0 are known [1, 11, 12]. The list of problems admitting
algorithms with similar complexities includes also Π being the classes of regular
graphs [19], graphs of small treewidth [20], planar graphs [5], 2- or 3-colourable
graphs [21], bicliques [22] or graphs excluding a forbidden subgraph [23].

The starting point of our work is the question raised by Fomin et al. in [5].
Having obtained an algorithm finding a maximum induced planar graph in time
O(1.7347n), they ask whether their result can be extended to graphs of bounded
genus or even to H-minor-free graphs for fixed H . Note that all these graph
classes are hereditary and consist of sparse graphs, i.e., graphs with the num-
ber of edges bounded linearly in the number of vertices. Moreover, for other
hereditary sparse classes, such as graphs of bounded treewidth, algorithms with
running time (2− ε)n for some ε > 0 are also known [20]. Therefore, it is tempt-
ing to ask whether the sparseness of the graph class can be used to break the 2n

barrier in a more general manner.
In order to formalize this question we study the problem of finding a maximum

induced d-degenerate graph. Recall that a graph is called d-degenerate if each
of its subgraphs contains a vertex of degree at most d. Every hereditary class
of graphs with a number of edges bounded linearly in the number of vertices
is d-degenerate for some d; for example, planar graphs are 5-degenerate, graphs
excluding Kr as a minor are O(r

√
log r)-degenerate, while the class of forests

is equivalent to the class of 1-degenerate graphs. However, d-degeneracy does
not impose any topological constraints; to see this, note that one can turn any
graph into a 2-degenerate graph by subdividing every edge. Hence, considering
a problem on the class of d-degenerate graphs can be useful to examine whether
it is just sparseness that makes it more tractable, or one has to add additional
restrictions of topological nature [24].

OurResults and Techniques. We make a step towards understanding the complex-
ity of finding a maximum induced subgraph from a sparse graph class by break-
ing the 2n-barrier for the problem of finding maximum induced d-degenerate sub-
graph. The main result of this paper is the following algorithmic theorem.

Theorem 1. For any integer d ≥ 1 there exists a constant εd > 0 and a
polynomial-time randomized algorithm Ad, which given an n-vertex graph G ei-
ther reports an error, or outputs a subset of vertices inducing a d-degenerate
subgraph. Moreover, for every inclusion-wise maximal induced d-degenerate sub-
graph, let X be its vertex set, the probability that Ad outputs X is at least
(2 − εd)−n.

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 5

Let X0 be a set of vertices inducing a maximum d-degenerate subgraph. If we
run the algorithm (2− εd)n times, we know that with probability at least 1/2 in
one of the runs the set X0 will be found. Hence, outputting the maximum size
set among those found by the runs gives the following corollary.

Corollary 2. There exists a randomized algorithm which, given an n-vertex
graph G, in (2−εd)nnO(1) time outputs a set X ⊆ V (G) inducing a d-degenerate
graph. Moreover, X is maximum with probability at least 1

2 .

As the total probability that Ad outputs some set of vertices is bounded by 1,
we obtain also the following corollary.

Corollary 3. For any integer d ≥ 1 there exists a constant εd > 0 such that
any n-vertex graph contains at most (2 − εd)n inclusion-wise maximal induced
d-degenerate subgraphs.

Let us elaborate briefly on the idea behind the algorithm of Theorem 1. Assume
first that G has large average degree, i.e., |E(G)| > λd|V (G)| for some large
constant λ. As d-degenerate graphs are sparse, i.e., the number of edges is less
than d times the number of vertices, it follows that for any set X inducing a
d-degenerate graph G[X], only a tiny fraction of edges inside G are in fact inside
G[X]. Hence, an edge uv chosen uniformly at random can be assumed with high
probability to have at least one endpoint outside X . We can further choose at
random, with probabilities 1/3 each, one of the following decisions: u ∈ X , v /∈ X
or u /∈ X , v ∈ X , or u, v /∈ X . In this manner we fix the status of two vertices
of G and, if λ > 4, the probability that the guess is correct is larger than 1/4. If
this randomized step cannot be applied, we know that the average degree in G
is at most λd and we can apply more standard branching arguments on vertices
of low degrees.

Our algorithm is a polynomial-time routine that outputs an induced d-
degenerate graph by guessing assignment of consecutive vertices with proba-
bilities slightly better than 1/2. We would like to remark that all but one of the
ingredients of the algorithm can be turned into standard, deterministic branch-
ing steps. The only truly randomized part is the aforementioned random choice
of an edge to perform a guess with enhanced success probability. However, to
ease the presentation we choose to present the whole algorithm in a randomized
fashion by expressing classical branchings as random choices of the branch.

Organization. In Section 2 we settle notation and give preliminary results on de-
generate graphs. Section 3 contains the proof of Theorem 1. Section 4 concludes
the paper.

2 Preliminaries
Notation. We use standard graph notation. For a graph G, by V (G) and E(G)
we denote its vertex and edge sets, respectively. For v ∈ V (G), its neighbor-
hood NG(v) is defined as NG(v) = {u : uv ∈ E(G)}. For a set X ⊆ V (G)
by G[X] we denote the subgraph of G induced by X . For a set X of vertices
or edges of G, by G \ X we denote the graph with the vertices or edges of X
removed; in case of vertex removal, we remove also all the incident edges.

6 M. Pilipczuk and M. Pilipczuk

Degenerate Graphs. For an integer d ≥ 0, we say that a graph G is d-degenerate
if every subgraph (equivalently, every induced subgraph) of G contains a vertex
of degree at most d. Clearly, the class of d-degenerate graphs is closed under
taking both subgraphs and induced subgraphs. Note that 0-degenerate graphs
are independent sets, and the class of 1-degenerate graphs is exactly the class of
forests. All planar graphs are 5-degenerate; moreover, every Kr-minor-free graph
(in particular, any H-minor-free graph for |V (H)| = r) is O(r

√
log r)-degenerate

[25–27].
The following simple proposition shows that the notion of d-degeneracy admits

greedy arguments.

Proposition 4. Let G be a graph and v be a vertex of degree at most d in G.
Then G is d-degenerate if and only if G \ v is.

Proof. As G\v is a subgraph of G, then d-degeneracy of G implies d-degeneracy
of G\v. Hence, we only need to justify that if G\v is d-degenerate, then so does
G. Take any X ⊆ V (G). If v ∈ X , then the degree of v in G[X] is at most its
degree in G, hence it is at most d. However, if v /∈ X then G[X] is a subgraph of
G \ v and G[X] contains a vertex of degree at most d as well. As X was chosen
arbitrarily, the claim follows. ��
Proposition 4 ensures that one can test d-degeneracy of a graph by in turn
finding a vertex of degree at most d, which needs to exist due to the definition,
and deleting it. If in this manner we can remove all the vertices of the graph,
it is clearly d-degenerate. Otherwise we end up with an induced subgraph with
minimum degree at least d + 1, which is a sufficient proof that the graph is not
d-degenerate. Note that this procedure can be implemented in polynomial time.
As during each deletion we remove at most d edges from the graph, the following
proposition is straightforward.

Proposition 5. Any n-vertex d-degenerate graph has at most dn edges.

3 The Algorithm

In this section we prove Theorem 1. Let us fix d ≥ 1, an n-vertex graph G and
an inclusion-wise maximal set X ⊆ V (G) inducing a d-degenerate graph.

The behaviour of the algorithm depends on a few constants that may depend
on d and whose values influence the final success probability. At the end of this
section we propose precise values of these constants and respective values of εd
for 1 ≤ d ≤ 6. However, as the values of εd are really tiny even for small d, when
describing the algorithm we prefer to introduce these constants symbolically,
and only argue that there exists their evaluation that leads to a (2−εd)−n lower
bound on the probability of successfully sampling X .

The algorithm maintains two disjoint sets A,Z ⊆ V (G), consisting of vertices
about which we have already made some assumptions: we seek for the set X
that contains A and is disjoint from Z. Let Q = V (G) \ (A ∪ Z) be the set of
the remaining vertices, whose assignment is not yet decided.

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 7

We start with A = Z = ∅. The description of the algorithm consists of a
sequence of rules; at each point, the lowest-numbered applicable rule is used.
When applying a rule we assign some vertices of Q to the set A or Z, depending
on some random decision. We say that an application of a rule is correct if,
assuming that before the application we have A ⊆ X and Z ∩ X = ∅, the
vertices assigned to A belong to X , and the vertices assigned to Z belong to
V (G) \X . In other words, a correct application assigns the vertices consistently
with the fixed solution X .

We start with the randomized rule that is triggered when the graph is dense.
Observe that, since G[X] is d-degenerate, G[X ∩Q] is d-degenerate as well and,
by Proposition 5, contains less than d|X ∩ Q| edges. Thus, if |E(G[Q])|/|Q| is
significantly larger than d, then only a tiny fraction of the edges of G[Q] are
present in G[X]. Hence, an overwhelming fraction of edges of G[Q] has at least
one of the endpoints outside X , so having sampled an edge of G[Q] uniformly at
random with high probability we may assume that there are only three possibil-
ities of the behaviour of its endpoints, instead of four. This observation leads to
the following rule. Let λ > 4 be a constant.

Rule 1. If |E(G[Q])| ≥ λd|Q|, then:

1. choose an edge uv ∈ E(G[Q]) uniformly at random;
2. with probability 1/3 each, make one of the following decisions: either assign

u to A and v to Z, or assign u to Z and v to A, or assign both u and v to Z.

Lemma 6. Assume that A ⊆ X and Z ∩X = ∅ before Rule 1 is applied. Then
the application of Rule 1 is correct with probability at least λ−1

3λ .

Proof. As |E(G[Q])| ≥ λd|Q|, but |E(G[X ∩Q])| ≤ d|X ∩Q| ≤ d|Q| by Propo-
sition 5, the probability that uv /∈ E(G[X]) is at least λ−1

λ . Conditional on the
assumption uv /∈ E(G[X]), in the second step of Rule 1 we make a correct deci-
sion with probability 1/3. This concludes the proof. ��

Note that the bound λ−1
3λ is larger than 1/4 for λ > 4.

Equipped with Rule 1, we may focus on the case when G[Q] has small average
degree. Let us introduce a constant κ > 2λ and let S ⊆ Q be the set of vertices
having degree less than κd in G[Q]. If Rule 1 is not applicable, then |E(G[Q])| <
λd|Q|. Hence we can infer that |S| ≥ κ−2λ

κ |Q|, as otherwise by just counting the

degrees of vertices in Q \ S we could find at least 1
2 · 2λ

κ |Q| · κd = λd|Q| edges
in G[Q]. Consider any v ∈ S. Such a vertex v may be of two types: it either
has at most d neighbours in A, or at least d + 1 of them. In the first case, we
argue that we may perform a good guessing step in the closed neighbourhood
of v, because the degree of v is bounded and when all the neighbours of v are
deleted (assigned to Z), then one may greedily assign v to A. In the second case,
we observe that we cannot assign too many such vertices v to A, as otherwise
we would obtain a subgraph of G[A] with too high average degree. Let us now
proceed to the formal arguments.

8 M. Pilipczuk and M. Pilipczuk

Rule 2. Assume there exists a vertex v ∈ Q such that |NG(v) ∩ Q| < κd and
|NG(v)∩A| ≤ d. Let r = |NG(v)∩Q| and v1, v2, . . . , vr be an arbitrary ordering
of the neighbours of v in Q. Let γ = γ(r) ≥ 1 be such that

γ−1 + γ−2 + . . . + γ−r−1 = 1.

Randomly, make one of the following decisions:

1. for 1 ≤ i ≤ r, with probability γ−i assign v1, v2, . . . , vi−1 to Z and vi to A;

2. with probability γ−r−1 assign all vertices v1, v2, . . . , vr to Z and v to A.

Note that the choice of γ not only ensures that the probabilities of the options
in Rule 2 sum up to one, but also that γ(r) ≤ γ(�κd − 1) < 2. We now show a
bound on the probability that an application of Rule 2 is correct.

Lemma 7. Assume that A ⊆ X and Z ∩X = ∅ before Rule 2 is applied. Then
exactly one of the decisions considered in Rule 2 leads to a correct application.
Moreover, if in the correct decision exactly i0 vertices are assigned to A∪Z, then
the probability of choosing the correct one is equal to γ−i0 .

Proof. Firstly observe that the decisions in Rule 2 contradict each other, so at
most one of them can lead to a correct application.

Assume that (NG(v)∩Q)∩X �= ∅ and let vi0 be the vertex from (NG(v)∩Q)∩X
with the smallest index. Then the decision, which assigns all the vertices of
NG(v)∩Q with smaller indices to Z and vi0 to A leads to a correct application.
Moreover, it assigns exactly i0 vertices to A∪Z and the probability of choosing
it is equal to γ−i0 .

Assume now that (NG(v) ∩ Q) ∩ X = ∅. We claim that v ∈ X . Assume
otherwise; then v has at most d neighbours in X , so by Proposition 4 after
greedily incorporating it to X we would still have G[X] being a d-degenerate
graph. This contradicts maximality of X . Hence, we infer that the decision which
assigns all the neighbours of v from Q to Z and v itself to A leads to a correct
application, it assigns exactly r+ 1 vertices to A∪Z and has probability γ−r−1.

��

We now handle vertices with more than d neighbours in A. Intuitively, there
can be at most d|A| such vertices assigned to A, as otherwise A would have an
induced subgraph with too high average degree. Hence, if there is significantly
more than 2d|A| such vertices in total, then picking one of them at random with
probability higher than 1/2 gives a vertex that needs to be assigned to Z. Let
us introduce a constant c > 2.

Rule 3. If there are at least cd|A| vertices in Q that have more than d neigh-
bours in A, choose one such vertex uniformly at random and assign it to Z.

Lemma 8. Assume that A ⊆ X and Z ∩X = ∅ before Rule 3 is applied. Then
the application of Rule 3 is correct with probability at least 1 − 1/c.

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 9

Proof. Let P = {v ∈ Q : |NG(v) ∩ A| > d}. As |P | ≥ cd|A|, to prove the lemma
it suffices to show that |P ∩X | < d|A|. Assume otherwise, and consider the set
((P ∩X) ∪ A) ⊆ X . The number of edges of the subgraph of G[X] induced by
(P ∩X) ∪ A is at least

(d + 1)|P ∩X | = d|P ∩X | + |P ∩X | ≥ d(|P ∩X | + |A|) = d|(P ∩X) ∪ A|.

This contradicts the assumption that G[X] is d-degenerate, due to Proposition 5.
��

Note that 1 − 1/c > 1/2 for c > 2.
We now show that if Rules 1, 2 and 3 are not applicable, then |A∪Z| is large,

which means that the algorithm has already made decisions about a significant
fraction of the vertices of the graph.

Lemma 9. If Rules 1, 2 and 3 are not applicable, then |A ∪ Z| > αn for some
constant α > 0 that depends only on the constants d, λ, κ and c.

Proof. As Rule 1 is not applicable, Q contains at most 2λ
κ |Q| vertices of degree

at least κd in G[Q]. As Rule 2 is not applicable, the remaining vertices have
more than d neighbours in A. As Rule 3 is not applicable, we have that

κ− 2λ

κ
|Q| < cd|A| ≤ cd|A ∪ Z|.

As Q = V (G) \ (A ∪ Z), simple computations show that this is equivalent to

|A ∪ Z|
|V (G)| >

(
cdκ

κ− 2λ
+ 1

)−1

,

and the proof is finished. ��
Lemma 9 ensures that at this point the algorithm has already performed enough
steps to achieve the desired success probability. Therefore, we may finish by
brute-force.

Rule 4. If |A ∪ Z| > αn for the constant α given by Lemma 9, for each v ∈ Q
independently, assign v to A or Z with probability 1/2 each, and finish the
algorithm by outputting the set A if it induces a d-degenerate graph, or reporting
an error otherwise.

We now summarize the bound on the success probability.

Lemma 10. The algorithm outputs the set X with probability at least

max

(√
3λ

λ− 1
, γ(�κd − 1),

c

c− 1

)−αn

2−(1−α)n,

which is equal to (2 − εd)n for some εd > 0.

10 M. Pilipczuk and M. Pilipczuk

Proof. Recall that 3λ
λ−1 < 4, γ(�κd − 1) < 2, c

c−1 < 2 and α > 0, by the choice
of the constants and by Lemma 9. Therefore, it suffices to prove that, before
Rule 4 is applied, the probability that A ⊆ X and Z ∩X = ∅ is at least

max

(√
3λ

λ− 1
, γ(�κd − 1),

c

c− 1

)−|A∪Z|
.

However, this is a straightforward corollary of Lemmata 6, 7 and 8. ��
This concludes the proof of Theorem 1. In Table 1 we provide a choice of values
of the constants for small values of d, together with corresponding value of 2−εd.

Table 1. Example values of the constants together with the corresponding success
probability

d 1
λ 4.0238224
κ 9
c 2.00197442
α 0.050203

2− εd 1.99991

d 2
λ 4.00009156
κ 17/2
c 2.00000763
α 0.01449

2− εd 1.9999999

d 3
λ 4.000000357628
κ 25/3
c 2.0000000298
α 0.0066225

2− εd 1.9999999999

d 4
λ 4.000000001397
κ 33/4
c 2.0000000001164
α 0.0037736

2− εd 1.9999999999996

d 5
λ 4.000000000005457
κ 41/5
c 2.0000000000004548
α 0.0024331

2− εd 1.999999999999999

d 6
λ 4.000000000000021316
κ 49/6
c 2.0000000000000017833
α 0.0016978

2− εd 1.999999999999999997

4 Conclusions

We have shown that the Maximum d-degenerate Induced Subgraph prob-
lem can be solved in time (2 − εd)nnO(1) for any fixed d ≥ 1. There are two
natural questions arising from our work. First, can the algorithm be derandom-
ized? Rules 2 and 3 can be easily transformed into appropriate branching rules,
but we do not know how to handle Rule 1 without randomization.

Second, our constants εd are really tiny even for small values of d. This is
mainly caused by two facts: the gain over a straightforward brute-force algo-
rithm in Rule 2 is very small (i.e., γ(�κd�) is very close to 2) and the algorithm
falls back to Rule 4 after processing only a tiny fraction α of the entire graph.
Can the running time of the algorithm be significantly improved? Another inter-
esting question would be to investigate, whether the Maximum d-degenerate

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 11

Induced Subgraph problem can be solved in time (2 − ε)nnO(1) for some
universal constant ε that is independent of d.

Apart from the above questions, we would like to state here a significantly
more challenging goal. Let G be a polynomially recognizable graph class of
bounded degeneracy (i.e., there exists a constant d such that each G ∈ G is
d-degenerate). Can the corresponding Maximum Induced G-Subgraph prob-
lem be solved in (2 − εG)n time for some constant εG > 0 that depends only on
the class G? Can we prove some meta-result for such type of problems?

Our Rules 1 and 3 are valid for any such class G; however, this is not true
for the greedy step in Rule 2. In particular, we do not know how to handle the
Maximum Induced G-Subgraph problem faster than 2n even if the input is
assumed to be d-degenerate.

Acknowledgements. We would like to thank Marek Cygan, Fedor V. Fomin
and Pim van ’t Hof for helpful discussions.

References

1. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 1–32 (2009)

2. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/Exclusion Meets Measure
and Conquer. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 554–
565. Springer, Heidelberg (2009)

3. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput.
Sci. 411(40-42), 3701–3713 (2010)

4. Björklund, A.: Determinant sums for undirected hamiltonicity. In: 51th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 173–182.
IEEE Computer Society (2010)

5. Fomin, F.V., Todinca, I., Villanger, Y.: Exact Algorithm for the Maximum Induced
Planar Subgraph Problem. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 287–298. Springer, Heidelberg (2011)

6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Scheduling Partially
Ordered Jobs Faster Than 2n. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA
2011. LNCS, vol. 6942, pp. 299–310. Springer, Heidelberg (2011)

7. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated Domination Faster Than
O(2n). In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 74–80. Springer,
Heidelberg (2010)

8. Binkele-Raible, D., Brankovic, L., Cygan, M., Fernau, H., Kneis, J., Kratsch,
D., Langer, A., Liedloff, M., Pilipczuk, M., Rossmanith, P., Wojtaszczyk, J.O.:
Breaking the 2n-barrier for irredundance: Two lines of attack. J. Discrete Algo-
rithms 9(3), 214–230 (2011)

9. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Solving the 2-Disjoint
Connected Subgraphs Problem Faster Than 2n. In: Fernández-Baca, D. (ed.)
LATIN 2012. LNCS, vol. 7256, pp. 195–206. Springer, Heidelberg (2012)

10. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumer-
ating Minimal Subset Feedback Vertex Sets. In: Dehne, F., Iacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 399–410. Springer, Heidelberg (2011)

12 M. Pilipczuk and M. Pilipczuk

11. Razgon, I.: Exact Computation of Maximum Induced Forest. In: Arge, L.,
Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Hei-
delberg (2006)

12. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

13. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.
Sci. 62(2), 367–375 (2001)

14. Calabro, C., Impagliazzo, R., Paturi, R.: The Complexity of Satisfiability of Small
Depth Circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917,
pp. 75–85. Springer, Heidelberg (2009)

15. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: Ostrovsky, R. (ed.) FOCS, pp. 150–159. IEEE (2011)

16. Lokshtanov, D., Marx, D., Saurabh, S.: Known Algorithms on Graphs of Bounded
Treewidth are Probably Optimal. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 777–789 (2011)

17. Pătraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 1065–1075 (2010)

18. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Pa-
turi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNFSAT. CoRR
abs/1112.2275 (2011)

19. Gupta, S., Raman, V., Saurabh, S.: Fast Exponential Algorithms for Maximum
r-Regular Induced Subgraph Problems. In: Arun-Kumar, S., Garg, N. (eds.)
FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Heidelberg (2006)

20. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Marion, J.Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

21. Angelsmark, O., Thapper, J.: Partitioning Based Algorithms for Some Colouring
Problems. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005.
LNCS (LNAI), vol. 3978, pp. 44–58. Springer, Heidelberg (2006)

22. Gaspers, S., Kratsch, D., Liedloff, M.: On Independent Sets and Bicliques in
Graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 171–182. Springer, Heidelberg (2008)

23. Gaspers, S.: Exponential Time Algorithms: Structures, Measures, and Bounds.
PhD Thesis, University of Bergen (2008)

24. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization Hard-
ness of Connectivity Problems in d-Degenerate Graphs. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 147–158. Springer, Heidelberg (2010)

25. Kostochka, A.V.: Lower bound of the hadwiger number of graphs by their average
degree. Combinatorica 4(4), 307–316 (1984)

26. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cam-
bridge Philos. Soc. 95(2), 261–265 (1984)

27. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser.
B 81(2), 318–338 (2001)

	Finding a Maximum Induced DegenerateSubgraph Faster Than 2n
	Introduction
	Preliminaries
	The Algorithm
	Conclusions
	References

