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Abstract. We study the problem of computing an ensemble of multiple
sums where the summands in each sum are indexed by subsets of size p
of an n-element ground set. More precisely, the task is to compute, for
each subset of size q of the ground set, the sum over the values of all
subsets of size p that are disjoint from the subset of size q. We present
an arithmetic circuit that, without subtraction, solves the problem using
O((np +nq) log n) arithmetic gates, all monotone; for constant p, q this is
within the factor log n of the optimal. The circuit design is based on view-
ing the summation as a “set nucleation” task and using a tree-projection
approach to implement the nucleation. Applications include improved
algorithms for counting heaviest k-paths in a weighted graph, comput-
ing permanents of rectangular matrices, and dynamic feature selection
in machine learning.

1 Introduction

Weak Algebrisation. Many hard combinatorial problems benefit from algebri-
sation, where the problem to be solved is cast in algebraic terms as the task of
evaluating a particular expression or function over a suitably rich algebraic struc-
ture, such as a multivariate polynomial ring over a finite field. Recent advances
in this direction include improved algorithms for the k-path [25], Hamiltonian
path [4], k-coloring [9], Tutte polynomial [6], knapsack [21], and connectivity [14]
problems. A key ingredient in all of these advances is the exploitation of an alge-
braic catalyst, such as the existence of additive inverses for inclusion–exclusion,
or the existence of roots of unity for evaluation/interpolation, to obtain fast
evaluation algorithms.

Such advances withstanding, it is a basic question whether the catalyst is
necessary to obtain speedup. For example, fast algorithms for matrix multipli-
cation [11,13] (and combinatorially related tasks such as finding a triangle in a
graph [1,17]) rely on the assumption that the scalars have a ring structure, which
prompts the question whether a weaker structure, such as a semiring without
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additive inverses, would still enable fast multiplication. The answer to this par-
ticular question is known to be negative [18], but for many of the recent advances
such an analysis has not been carried out. In particular, many of the recent alge-
brisations have significant combinatorial structure, which gives hope for positive
results even if algebraic catalysts are lacking. The objective of this paper is to
present one such positive result by deploying combinatorial tools.
A Lemma of Valiant. Our present study stems from a technical lemma of
Valiant [22] encountered in the study of circuit complexity over a monotone
versus a universal basis. More specifically, starting from n variables f1, f2, . . . , fn,
the objective is to use as few arithmetic operations as possible to compute the
n sums of variables where the jth sum ej includes all the other variables except
the variable fj , where j = 1, 2, . . . , n.

If additive inverses are available, a solution using O(n) arithmetic operations
is immediate: first take the sum of all the n variables, and then for j = 1, 2, . . . , n
compute ej by subtracting the variable fj.

Valiant [22] showed that O(n) operations suffice also when additive inverses
are not available; we display Valiant’s elegant combinatorial solution for n = 8
below as an arithmetic circuit.

e₂ = f₁       ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₇ ⊕ f₈ 
e₃ = f₁ ⊕ f₂       ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₇ ⊕ f₈
e₄ = f₁ ⊕ f₂ ⊕ f₃       ⊕ f₅ ⊕ f₆ ⊕ f₇ ⊕ f₈
e₅ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₄       ⊕ f₆ ⊕ f₇ ⊕ f₈
e₆ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₄ ⊕ f₅       ⊕ f₇ ⊕ f₈
e₇ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₆       ⊕ f₈
e₈ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₇  

e₁ =       f₂ ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₇ ⊕ f₈ 
f₂ 
f₃
f₄
f₅
f₆
f₇

f₁ 

f₈
Generalising to Higher Dimensions. This paper generalises Valiant’s lemma
to higher dimensions using purely combinatorial tools. Accordingly, we assume
that only very limited algebraic structure is available in the form of a commu-
tative semigroup (S, ⊕). That is, ⊕ satisfies the associative law x ⊕ (y ⊕ z) =
(x⊕y)⊕z and the commutative law x⊕y = y ⊕x for all x, y, z ∈ S, but nothing
else is assumed.

By “higher dimensions” we refer to the input not consisting of n values (“vari-
ables” in the example above) in S, but rather

(
n
p

)
values f(X) ∈ S indexed by

the p-subsets X of [n] = {1, 2, . . . , n}. Accordingly, we also allow the output to
have higher dimension. That is, given as input a function f from the p-subsets
[n] to the set S, the task is to output the function e defined for each q-subset Y
of [n] by

e(Y ) =
⊕

X:X∩Y =∅
f(X) , (1)

where the sum is over all p-subsets X of [n] satisfying the intersection constraint.
Let us call this problem (p, q)-disjoint summation.
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In analogy with Valiant’s solution for the case p = q = 1 depicted above, an
algorithm that solves the (p, q)-disjoint summation problem can now be viewed
as a circuit consisting of two types of gates: input gates indexed by p-subsets X
and arithmetic gates that perform the operation ⊕, with certain arithmetic gates
designated as output gates indexed by q-subsets Y . We would like a circuit that
has as few gates as possible. In particular, does there exist a circuit whose size
for constant p, q is within a logarithmic factor of the lower bound Θ(np + nq)?

Main Result. In this paper we answer the question in the affirmative. Specifi-
cally, we show that a circuit of size O

(
(np + nq) log n

)
exists to compute e from

f over an arbitrary commutative semigroup (S, ⊕), and moreover, there is an
algorithm that constructs the circuit in time O

(
(p2 + q2)(np + nq) log3 n

)
. These

bounds hold uniformly for all p, q. That is, the coefficient hidden by O-notation
does not depend on p and q.

From a technical perspective our main contribution is combinatorial and can
be expressed as a solution to a specific set nucleation task. In such a task we start
with a collection of “atomic compounds” (a collection of singleton sets), and the
goal is to assemble a specified collection of “target compounds” (a collection
of sets that are unions of the singletons). The assembly is to be executed by a
straight-line program, where each operation in the program selects two disjoint
sets in the collection and inserts their union into the collection. (Once a set is in
the collection, it may be selected arbitrarily many times.) The assembly should
be done in as few operations as possible.

Our main contribution can be viewed as a straight-line program of length
O

(
(np + nq) log n

)
that assembles the collection {{X : X ∩ Y = ∅} : Y } starting

from the collection {{X} : X}, where X ranges over the p-subsets of [n] and Y
ranges over the q-subsets of [n]. Valiant’s lemma [22] in these terms provides an
optimal solution of length Θ(n) for the specific case p = q = 1.

Applications. Many classical optimisation problems and counting problems can
be algebrised over a commutative semigroup. A selection of applications will be
reviewed in Sect. 3.

Related Work. “Nucleation” is implicit in the design of many fast algebraic
algorithms, perhaps two of the most central are the fast Fourier transform of
Cooley and Tukey [12] (as is witnessed by the butterfly circuit representation)
and Yates’s 1937 algorithm [26] for computing the product of a vector with the
tensor product of n matrices of size 2 × 2. The latter can in fact be directly used
to obtain a nucleation process for (p, q)-disjoint summation, even if an inefficient
one. (For an exposition of Yates’s method we recommend Knuth [19, §4.6.4];
take mi = 2 and gi(si, ti) = [si = 0 or ti = 0] for i = 1, 2, . . . , n to extract the
following nucleation process implicit in the algorithm.) For all Z ⊆ [n] and
i ∈ {0, 1, . . . , n}, let

ai(Z) = {X ⊆ [n] : X ∩ [n − i] = Z ∩ [n − i], X ∩ Z \ [n − i] = ∅} . (2)

Put otherwise, ai(Z) consists of X that agree with Z in the first n − i elements of
[n] and are disjoint from Z in the last i elements of [n]. In particular, our objective
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is to assemble the sets an(Y ) = {X : X ∩ Y = ∅} for each Y ⊆ [n] starting from
the singletons a0(X) = {X} for each X ⊆ [n]. The nucleation process given by
Yates’ algorithm is, for all i = 1, 2, . . . , n and Z ⊆ [n], to set

ai(Z) =

{
ai−1(Z \ {n + 1 − i}) if n + 1 − i ∈ Z,

ai−1(Z ∪ {n + 1 − i}) ∪ ai−1(Z) if n + 1 − i /∈ Z.
(3)

This results in 2n−1n disjoint unions. If we restrict to the case |Y | ≤ q and
|X | ≤ p, then it suffices to consider only Z with |Z| ≤ p + q, which results in
O

(
(p + q)

∑p+q
j=0

(
n
j

))
disjoint unions. Compared with our main result, this is not

particularly efficient. In particular, our main result relies on “tree-projection”
partitioning that enables a significant speedup over the “prefix-suffix” partition-
ing in (2) and (3).

We observe that “set nucleation” can also be viewed as a computational prob-
lem, where the output collection is given and the task is to decide whether there
is a straight-line program of length at most � that assembles the output using
(disjoint) unions starting from singleton sets. This problem is known to be NP-
complete even in the case where output sets have size 3 [15, Problem PO9];
moreover, the problem remains NP-complete if the unions are not required to
be disjoint.

2 A Circuit for (p, q)-Disjoint Summation

Nucleation of p-Subsets with a Perfect Binary Tree. Looking at Valiant’s
circuit construction in the introduction, we observe that the left half of the
circuit accumulates sums of variables (i.e., sums of 1-subsets of [n]) along what
is a perfect binary tree. Our first objective is to develop a sufficient generalisation
of this strategy to cover the setting where each summand is indexed by a p-subset
of [n] with p ≥ 1.

Let us assume that n = 2b for a nonnegative integer b so that we can identify
the elements of [n] with binary strings of length b. We can view each binary
string of length b as traversing a unique path starting from the root node of
a perfect binary tree of height b and ending at a unique leaf node. Similarly,
we may identify any node at level � of the tree by a binary string of length �,
with 0 ≤ � ≤ b. See Fig. 1(a) for an illustration. For p = 1 this correspondence
suffices.

For p > 1, we are not studying individual binary strings of length b (that is,
individual elements of [n]), but rather p-subsets of such strings. In particular, we
can identify each p-subset of [n] with a p-subset of leaf nodes in the binary tree.
To nucleate such subsets it will be useful to be able to “project” sets upward in
the tree. This motivates the following definitions.

Let us write {0, 1}� for the set of all binary strings of length 0 ≤ � ≤ b. For
� = 0, we write ε for the empty string. For a subset X ⊆ {0, 1}b, we define the
projection of X to level � as

X |� =
{

x ∈ {0, 1}� : ∃y ∈ {0, 1}b−� such that xy ∈ X
}

. (4)
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Fig. 1. Representing {0, 1}-strings of length at most b as nodes in a perfect binary tree
of height b. Here b = 4. (a) Each string traces a unique path down from the root node,
with the empty string ε corresponding to the root node. The nodes at level 0 ≤ � ≤ b
correspond to the strings of length �. The red leaf node corresponds to 0110 and the
blue node corresponds to 101. (b) A set of strings corresponds to a set of nodes in the
tree. The set X is displayed in red, the set W in blue. The set W is the projection of
the set X to level � = 2. Equivalently, X|� = W .

That is, X |� is the set of length-� prefixes of strings in X . Equivalently, in the
binary tree we obtain X |� by lifting each element of X to its ancestor on level-�
in the tree. See Fig. 1(b) for an illustration. For the empty set we define ∅|� = ∅.

Let us now study a set family F ⊆ 2{0,1}b . The intuition here is that each
member of F is a summand, and F represents the sum of its members. A circuit
design must assemble (nucleate) F by taking disjoint unions of carefully selected
subfamilies. This motivates the following definitions.

For a level 0 ≤ � ≤ b and a string W ⊆ {0, 1}� let us define the subfamily of
F that projects to W by

FW = {X ∈ F : X |� = W } . (5)

That is, the family FW consists of precisely those members X ∈ F that project
to W . Again Fig. 1(b) provides an illustration: we select precisely those X whose
projection is W .

The following technical observations are now immediate. For each 0 ≤ � ≤ b,
if ∅ ∈ F, then we have

F∅ = {∅} . (6)

Similarly, for � = 0 we have

F{ε} = F \ {∅} . (7)

For � = b we have for every W ∈ F that

FW = {W } . (8)

Now let us restrict our study to the situation where the family F ⊆ 2{0,1}b con-
tains only sets of size at most p. In particular, this is the case in our applications.
For a set U and an integer p, let us write

(
U
p

)
for the family of all subsets of U of

size p, and
(

U
↓p

)
for the family of all subsets of U with size at most p. Accordingly,

for integers 0 ≤ k ≤ n, let us use the shorthand
(

n
↓k

)
=

∑k
i=0

(
n
i

)
.
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Fig. 2. Illustrating the proof of Lemma 1. Here b = 5. The set X (indicated with red
nodes) projects to level � = 2 to the set W (indicated with blue nodes) and to level
� + 1 = 3 to the set Z (indicated with yellow nodes). Furtermore, the projection of Z
to level � is W . Thus, each X ∈ F is included to FW exactly from FZ in Lemma 1.

The following lemma enables us to recursively nucleate any family F ⊆
(

{0,1}b

↓p

)
.

In particular, we can nucleate the family FW with W in level � using the families
FZ with Z in level � + 1. Applied recursively, we obtain F by proceeding from
the bottom up, that is, � = b, b − 1, . . . , 1, 0. The intuition underlying the lemma
is illustrated in Fig. 2. We refer to the full version of this paper for the proof.

Lemma 1. For all 0 ≤ � ≤ b − 1, F ⊆
(

{0,1}b

↓p

)
, and W ∈

(
{0,1}�

↓p

)
, we have that

the family FW is a disjoint union FW =
⋃ {

FZ : Z ∈
(

{0,1}�+1

↓p

)

W

}
.

A Generalisation: (p, q)-Intersection Summation. It will be convenient to
study a minor generalisation of (p, q)-disjoint summation. Namely, instead of
insisting on disjointness, we allow nonempty intersections to occur with “active”
(or “avoided”) q-subsets A, but require that elements in the intersection of each
p-subset and each A are “individualized.” That is, our input is not given by
associating a value f(X) ∈ S to each set X ∈

(
[n]
↓p

)
, but is instead given by

associating a value g(I, X) ∈ S to each pair (I, X) with I ⊆ X ∈
(

[n]
↓p

)
, where I

indicates the elements of X that are “individualized.” In particular, we may insist
(by appending to S a formal identity element if such an element does not already
exist in S) that g(I, X) vanishes unless I is empty. This reduces (p, q)-disjoint
summation to the following problem:

Problem 1. ((p, q)-intersection summation) Given as input a function g that
maps each pair (I, X) with I ⊆ X ∈

(
[n]
↓p

)
and |I| ≤ q to an element g(I, X) ∈ S,

output the function h :
(

[n]
↓q

)
→ S defined for all A ∈

(
[n]
↓q

)
by

h(A) =
⊕

X∈([n]
↓p)

g(A ∩ X, X) . (9)

The Circuit Construction. We proceed to derive a recursion for the function
h using Lemma 1 to carry out nucleation of p-subsets. The recursion proceeds
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from the bottom up, that is, � = b, b−1, . . . , 1, 0 in the binary tree representation.
(Recall that we identify the elements of [n] with the elements of {0, 1}b, where
n is a power of 2 with n = 2b.) The intermediate functions h� computed by the
recursion are “projections” of (9) using (5). In more precise terms, for � = b, b −
1, . . . , 1, 0, the function h� :

(
{0,1}b

↓q

)
×

(
{0,1}�

↓p

)
→ S is defined for all W ∈

(
{0,1}�

↓p

)

and A ∈
(

{0,1}b

↓q

)
by

h�(A, W ) =
⊕

X∈
({0,1}b

↓p

)
W

g(A ∩ X, X) . (10)

Let us now observe that we can indeed recover the function h from the case
� = 0. Indeed, for the empty string ε, the empty set ∅ and every A ∈

(
{0,1}b

↓q

)
we

have by (6) and (7) that

h(A) = h0(A, {ε}) ⊕ h0(A, ∅) . (11)

It remains to derive the recursion that gives us h0. Here we require one more
technical observation, which enables us to narrow down the intermediate values
h�(A, W ) that need to be computed to obtain h0. In particular, we may dis-
card the part of the active set A that extends outside the “span” of W . This
observation is the crux in deriving a succinct circuit design.

For 0 ≤ � ≤ b and w ∈ {0, 1}�, we define the span of w by

〈w〉 =
{

x ∈ {0, 1}b : ∃z ∈ {0, 1}b−� such that wz = x
}

.

In the binary tree, 〈w〉 consists of the leaf nodes in the subtree rooted at w. Let us
extend this notation to subsets W ⊆ {0, 1}� by 〈W 〉 =

⋃
w∈W 〈w〉 . The following

lemma shows that it is sufficient to evaluate h�(A, W ) only for W ∈
(

{0,1}�

↓p

)
and

A ∈
(

{0,1}b

↓q

)
such that A ⊆ 〈W 〉. We omit the proof; please refer to the full

version of this paper for details.

Lemma 2. For all 0 ≤ � ≤ b, W ∈
(

{0,1}�

↓p

)
, and A ∈

(
{0,1}b

↓q

)
, we have

h�(A, W ) = h�(A ∩ 〈W 〉 , W ) . (12)

We are now ready to present the recursion for � = b, b−1, . . . , 1, 0. The base case
� = b is obtained directly based on the values of g, because we have by (8) for
all W ∈

(
{0,1}b

↓p

)
and A ∈

(
{0,1}b

↓q

)
with A ⊆ W that

hb(A, W ) = g(A, W ) . (13)

The following lemma gives the recursive step from � + 1 to � by combining
Lemma 1 and Lemma 2. Again, we defer the details of the proof to the full
version of this paper.
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Lemma 3. For 0 ≤ � ≤ b − 1, W ∈
(

{0,1}�

↓p

)
, and A ∈

(
{0,1}b

↓q

)
with A ⊆ 〈W 〉,

we have
h�(A, W ) =

⊕

Z∈
({0,1}�+1

↓p

)
W

h�+1(A ∩ 〈Z〉 , Z) . (14)

The recursion given by (13), (14), and (12) now defines an arithmetic circuit
that solves (p, q)-intersection summation.

Size of the circuit. By (13), the number of input gates in the circuit is equal
to the number of pairs (I, X) with I ⊆ X ∈

(
{0,1}b

↓p

)
and |X | ≤ q, which is

p∑

i=0

q∑

j=0

(
2b

i

)(
i

j

)
. (15)

To derive an expression for the number of ⊕-gates, we count for each 0 ≤ � ≤ b−1
the number of pairs (A, W ) with W ∈

(
{0,1}�

↓p

)
, A ∈

(
{0,1}b

↓q

)
, and A ⊆ 〈W 〉, and

for each such pair (A, W ) we count the number of ⊕-gates in the subcircuit that
computes the value h�(A, W ) from the values of h�+1 using (14).

First, we observe that for each W ∈
(

{0,1}�

↓p

)
we have |〈W 〉| = 2b−� |W |. Thus,

the number of pairs (A, W ) with W ∈
(

{0,1}�

↓p

)
, A ∈

(
{0,1}b

↓q

)
, and A ⊆ 〈W 〉 is

p∑

i=0

q∑

j=0

(
2�

i

)(
i2b−�

j

)
. (16)

For each such pair (A, W ), the number of ⊕-gates for (14) is
∣
∣
∣
(

{0,1}�+1

↓p

)

W

∣
∣
∣ − 1.

Lemma 4. For all 0 ≤ � ≤ b − 1, W ∈
(

{0,1}�

↓p

)
, and |W | = i, we have

∣
∣∣
∣

({0, 1}�+1

↓p

)

W

∣
∣∣
∣ =

p−i∑

k=0

(
i

k

)
2i−k . (17)

Proof. A set Z ∈
(

{0,1}�+1

↓p

)

W
can contain either one or both of the strings w0

and w1 for each w ∈ W . The set Z may contain both elements for at most p − i
elements w ∈ W because otherwise |Z| > p. Finally, for each 0 ≤ k ≤ p− i, there
are

(
i
k

)
2i−k ways to select a set Z ∈

(
{0,1}�+1

↓p

)

W
such that Z contains w0 and

w1 for exactly k elements w ∈ W .

Finally, for each A ∈
(

{0,1}b

↓q

)
we require an ⊕-gate that is also designated as an

output gate to implement (11). The number of these gates is
q∑

j=0

(
2b

j

)
. (18)
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The total number of ⊕-gates in the circuit is obtained by combining (15), (16),
(17), and (18). The number of ⊕-gates is thus

p∑

i=0

q∑

j=0

(
2b

i

)(
i

j

)
+

b−1∑

�=0

p∑

i=0

q∑

j=0

(
2�

i

)(
i2b−�

j

) (
p−i∑

k=0

(
i

k

)
2i−k − 1

)

+
q∑

j=0

(
2b

j

)

≤
b∑

�=0

p∑

i=0

q∑

j=0

(
2�

i

)(
i2b−�

j

)
3i ≤

b∑

�=0

p∑

i=0

q∑

j=0

(2�)i

i!
ij(2b−�)j

j!
3i

≤
b∑

�=0

p∑

i=0

q∑

j=0

(2�)max(p,q)

i!
ij(2m−�)max(p,q)

j!
3i

= nmax(p,q)(1 + log2 n)
p∑

i=0

q∑

j=0

ij3i

i!j!
.

The remaining double sum is bounded from above by a constant, and thus the
circuit defined by (13), (14), and (12) has size O((np + nq) log n), where the
constant hidden by the O-notation does not depend on p and q.

The circuit can be constructed in time O
(
(p2 + q2)(np + nq) log3 n

)
. We omit

the details.

3 Concluding Remarks and Applications

We have generalised Valiant’s [22] observation that negation is powerless for
computing simultaneously the n different disjunctions of all but one of the given
n variables: now we know that, in our terminology, subtraction is powerless
for (p, q)-disjoint summation for any constant p and q. (Valiant proved this for
p = q = 1.) Interestingly, requiring p and q be constants turns out to be essential,
namely, when subtraction is available, an inclusion–exclusion technique is known
[5] to yield a circuit of size O

(
p
(

n
↓p

)
+ q

(
n
↓q

))
, which, in terms of p and q, is

exponentially smaller than our bound O
(
(np + nq) log n

)
. This gap highlights

the difference of the algorithmic ideas behind the two results. Whether the gap
can be improved to polynomial in p and q is an open question.

While we have dealed with the abstract notions of “monotone sums” or semi-
group sums, in applications they most often materialise as maximisation or min-
imisation, as described in the next paragraphs. Also, in applications local terms
are usually combined not only by one (monotone) operation but two different
operations, such as “min” and “+”. To facilitate the treatment of such applica-
tions, we extend the semigroup to a semiring (S, ⊕, �) by introducing a product
operation “�”. Now the task is to evaluate

⊕

X,Y :X∩Y =∅
f(X) � g(Y ) , (19)

where X and Y run through all p-subsets and q-subsets of [n], respectively, and
f and g are given mappings to S. We immediately observe that the expression
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(19) is equal to
⊕

Y e(Y ) � g(Y ), where the sum is over all q-subsets of [n] and
e is as in (1). Thus, by our main result, it can be evaluated using a circuit with
O((np + nq) log n) gates.

Application to k-paths. We apply the semiring formulation to the problem
of counting the maximum-weight k-edge paths from vertex s to vertex t in a
given edge-weighted graph with real weights, where we assume that we are only
allowed to add and compare real numbers and these operations take constant
time (cf. [24]). By straightforward Bellman–Held–Karp type dynamic program-
ming [2,3,16] (or, even by brute force) we can solve the problem in

(
n
↓k

)
nO(1)

time. However, our main result gives an algorithm that runs in nk/2+O(1) time
by solving the problem in halves: Guess a middle vertex v and define f1(X) as
the number of maximum-weight k/2-edge paths from s to v in the graph induced
by the vertex set X ∪ {v}; similarly define g1(X) for the k/2-edge paths from v
to t. Furthermore, define f2(X) and g2(X) as the respective maximum weights
and put f(X) = (f1(X), f2(X)) and g(X) = (g1(X), g2(X)). These values can
be computed for all vertex subsets X of size k/2 in

(
n

k/2
)
nO(1) time. It remains

to define the semiring operations in such a way that the expression (19) equals
the desired number of k-edge paths; one can verify that the following definitions
work correctly: (c, w) � (c′, w′) = (c · c′, w + w′) and

(c, w) ⊕ (c′, w′) =

⎧
⎪⎨

⎪⎩

(c, w) if w > w′,
(c′, w′) if w < w′,
(c + c′, w) if w = w′.

Thus, the techniques of the present paper enable solving the problem essentially
as fast as the fastest known algorithms for the special case of counting all the k-
paths, for which quite different techniques relying on subtraction yield

(
n

k/2
)
nO(1)

time bound [7]. On the other, for the more general problem of counting weighted
subgraphs Vassilevska and Williams [23] give an algorithm whose running time,
when applied to k-paths, is O(nωk/3+n2k/3+c), where ω < 2.3727 is the exponent
of matrix multiplication and c is a constant; this of course would remain worse
than our bound even if ω = 2.
Application to Matrix Permanent. Consider the problem of computing the
permanent of a k × n matrix (aij) over a noncommutative semiring, with k ≤ n
and even for simplicity, given by

∑
σ a1σ(1)a2σ(2) · · · akσ(k), where the sum is

over all injective mappings σ from [k] to [n]. We observe that the expression
(19) equals the permanent if we let p = q = k/2 = � and define f(X) as the
sum of a1σ(1)a2σ(2) · · · a�σ(�) over all injective mappings σ from {1, 2, . . . , �} to X
and, similarly, g(Y ) as the sum of a�+1σ(�+1)a�+2σ(�+2) · · · akσ(k) over all injective
mappings σ from {�+1, �+2, . . . , k} to Y . Since the values f(X) and g(Y ) for all
relevant X and Y can be computed by dynamic programming in

(
n

k/2
)
nO(1) time,

our main result yields the time bound nk/2+O(1) for computing the permanent.
Thus we improve significantly upon a Bellman–Held–Karp type dynamic pro-

gramming algorithm that computes the permanent in
(

n
↓k

)
nO(1) time, the best
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previous upper bound we are aware of for noncommutative semirings [8]. It
should be noted, however, that essentally as fast algorithms are already known for
noncommutative rings [8], and that faster, 2knO(1) time, algorithms are known
for commutative semirings [8,20].
Application to Feature Selection. The extensively studied feature selection
problem in machine learning asks for a subset X of a given set of available
features A so as to maximise some objective function f(X). Often the size of X
can be bounded from above by some constant k, and sometimes the selection
task needs to be solved repeatedly with the set of available features A changing
dynamically across, say, the set [n] of all features. Such constraints take place
in a recent work [10] on Bayesian network structure learning by branch and
bound: the algorithm proceeds by forcing some features, I, to be included in X
and some other, E, to be excluded from X . Thus the key computational step
becomes that of maximising f(X) subject to I ⊆ X ⊆ [n] \ E and |X | ≤ k,
which is repeated for varying I and E. We observe that instead of computing
the maximum every time from scratch, it pays off precompute a solution to (p, q)-
disjoint summation for all 0 ≤ p, q ≤ k, since this takes about the same time
as a single step for I = ∅ and any fixed E. Indeed, in the scenario where the
branch and bound search proceeds to exclude each and every subset of k features
in turn, but no larger subsets, such precomputation decreases the running time
bound quite dramatically, from O(n2k) to O(nk); typically, n ranges from tens
to some hundreds and k from 2 to 7. Admitted, in practice, one can expect the
search procedure match the said scenario only partially, and so the savings will
be more modest yet significant.
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