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Abstract. We study classes of Dynamic Programming (DP) algorithms
which, due to their algebraic definitions, are closely related to coefficient
extraction methods. DP algorithms can easily be modified to exploit
sparseness in the DP table through memorization. Coefficient extraction
techniques on the other hand are both space-efficient and parallelisable,
but no tools have been available to exploit sparseness. We investigate the
systematic use of homomorphic hash functions to combine the best of
these methods and obtain improved space-efficient algorithms for prob-
lems including LINEAR SAT, SET PARTITION and SUBSET SUM.
Our algorithms run in time proportional to the number of nonzero entries
of the last segment of the DP table, which presents a strict improvement
over sparse DP. The last property also gives an improved algorithm for
CNF SAT and SET COVER with sparse projections.

1 Introduction

Coefficient extraction can be seen as a general method for designing algorithms,
recently in particular in the area of exact algorithms for various NP-hard prob-
lems [2,3,13,15,17,24] (cf. [7,26] for an introduction to exact algorithms). The
approach of the method is the following (see also [14]):

1. Define a variable (the so-called coefficient) whose value (almost) immediately
gives the solution of the problem to be solved,

2. Show that the variable can be expressed by a relatively small formula or
circuit over a (cleverly chosen) large algebraic object like a ring or field,

3. Show how to perform operations in the algebraic object relatively efficiently.

In a typical application of the method, the first two steps are derived from an
existing Dynamic Programming (DP) algorithm, and the third step deploys a
carefully selected algebraic isomorphism, such as the discrete Fourier transform
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to extract the desired solution/coefficient. Algorithms based on coefficient extrac-
tion have two key advantages over DP algorithms; namely, they are space-efficient
and they parallelise well (see, for example, [15]).

Yet, DP has an advantage if the problem instance is sparse. By this we mean
that the number of candidate/partial solutions that need to be considered dur-
ing DP is small, that is, most entries in the DP table are not used at all. In
such a case we can readily adjust the DP algorithm to take this into account
through memorization so that both the running time and space usage become
proportional to the number of partial solutions considered. Unfortunately, it is
difficult to parallelise or lower the space usage of memorization. Coefficient ex-
traction algorithms relying on interpolation of sparse polynomials [16] improve
over memorization by scaling proportionally only to the number of candidate
solutions, but their space usage is still not satisfactory (see also [26]).

This paper aims at obtaining what is essentially the best of both worlds, by
investigating the systematic use of homomorphisms to “hash down” circuit-based
coefficient extraction algorithms so that the domain of coefficient extraction –
and hence the running time – matches or improves that of memorization-based
DP algorithms, while providing space-efficiency and efficient parallelisation. The
key idea is to take an existing algebraic circuit for coefficient extraction (over a
sparsely populated algebraic domain such as a ring or field), and transform the
circuit into a circuit over a smaller domain by a homomorphic hash function,
and only then perform the actual coefficient extraction. Because the function
is homomorphic, by hashing the values at the input gates and evaluating the
circuit, the output evaluates to the hash of the original output value. Because
the function is a hash function, the coefficient to be extracted collides with other
coefficients only with negligible probability in the smaller domain, and coefficient
extraction can be successfully used on the new (hashed-down) circuit. We call
this approach homomorphic hashing.

Our and Previous Results

We study sparse DP/coefficient extraction in three domains: (a) the univariate
polynomial ring Z[x] in Section 3, (b) the group algebra F[Zn

2 ] where F is a field of
odd characteristic in Section 4 and (c) the Möbius algebra of the subset lattice in
Section 5. The subject of sparse DP or coefficient extraction is highly motivated
and well-studied [5,6,16,27]. In [16], a sparse polynomial interpolation algorithm
using exponential space was already given for (a) and (b); our algorithms improve
these to polynomial space. In [13] a polynomial-space algorithm for finding a small
multilinear monomial in F2[Z

n
2 ] was given. In [15] a study of settings (a) and (b)

was initiated, but sparsity was not addressed. Our main technical contribution
occurs with (c) and hashing down to the “Solomon algebra” of a poset.

Our methods work for general arithmetic circuits similarly as in [13,15,16], and
most of our algorithms work for counting variants as well. But, for concreteness,
we will work here with specific decision problems. Although we mainly give
improvements for sparse variants of these problems, we feel the results will be
useful to deal with the general case as well (as we will see in Section 4).
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Subset Sum. The Subset Sum problem is the following: given a vector a =
(a1, . . . , an) and integer t, determine whether there exists a subset X ⊆ [n]
such that

∑
e∈X ae = t. It is known to be solvable O�(2n/2) time and O�(2n/4)

space [11,21], and solving it faster, or even in O�(1.99n) time and polynomial
space are interesting open questions [26]. Recently, a polynomial space algorithm
using O�(t) time was given in [15]. Standard sparse DP gives an O�(S) time and
O�(S) space algorithm. As a first ”warm-up” application of our technique, we
improve this to polynomial space as follows. The proofs of claims marked with
a “†” are relegated to the full version in order to meet the page limit.

Theorem 1 (†). Any instance (a, t) of the Subset Sum problem can be solved
(a) in O�(S) expected time and polynomial space, and (b) in O�(S2) time and
polynomial space, where S = |{∑e∈X ae : X ⊆ [n]}| is the number of distinct
sums.

Informally stated, our algorithms hash the instances by working modulo ran-
domly chosen prime numbers and apply the algorithm of [15]. While interesting
on their own, these results may be useful in resolving the above open questions
when combined with other techniques.

Linear Sat. The Linear Sat problem is defined as follows: given a matrix A ∈
Z
n×m
2 , vectors b ∈ Z

m
2 and ω ∈ N

n, and an integer t = nO(1), determine whether
there is a vector x ∈ Z

n
2 such that xA = b and ωxT ≤ t. Variants of Linear

Sat have been studied, perhaps most notably in [10], where approximability
was studied; Fixed Parameter Tractability was studied in [1,4]. Here, it was also
quoted from [10] that (a variant of) Linear Sat is “as basic as satisfiability”.

It can be observed that using the approach from [11], Linear Sat can be
solved in O(2n/2m) time and O(2n/2m) space. Also, using standard “sparse
dynamic programming”, it can be solved in O�(2rk(A)) time and O�(2rk(A))
space, where rk(A) is the rank of A. We give algorithms using about the same
amount of time but only polynomial space:

Theorem 2. Every instance (A, b,ω, t) of Linear Sat can be solved by al-
gorithms with constant one-sided error probability in (a) O�(2rk(A)) time and
polynomial space, and (b) O�(2n/2) time and polynomial space.

The first algorithm hashes the input down using a random linear map and after-
wards determines the answer using the Walsh-Hadamard transform. The second
algorithm uses a Win/Win approach, combining the first algorithm with the fact
that an A with high rank can be solved with a complementary algorithm.

Satisfiability. The CNF-Sat problem is defined as follows: given a CNF-formula
φ = C1∧C2∧ . . .∧Cm over n variables, determine whether φ is satisfiable. There
are many interesting open questions related to this problem, a major one being
whether it can be solved in time O�((2 − ε)n) (the ‘Strong Exponential Time
Hypothesis’ [12] states this is not possible), and another being whether satisfying
assignments can be counted in time O�((2 − ε)n) for some ε > 0 (e.g. [23]).
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A prefix assignment is an assignment of 0/1 values to the variables v1, . . . , vi
for some 1 ≤ i ≤ n. A projection (prefix projection) of a CNF-formula is a subset
π ⊆ [m] such that there exists an assignment (prefix assignment) of the variables
such that for every 1 ≤ j ≤ m it satisfies Cj if and only if j ∈ π. An algorithm
for CNF-Sat running in time linear in the number of prefix projections can be
obtained by standard sparse DP. However, it is sensible to ask about complexity
of CNF-Sat if the number of projections is small. We give a positive answer:

Theorem 3. Satisfiability of a formula φ = C1 ∧ . . .∧Cm can be determined in
O�(P 2) time and O�(P ) space, where P = |{π ⊆ [m] : π is a projection of φ}|.
We are not aware of previous work that studies instances with few projections,
but find it a natural parameter. For example, it is easy to see that hitting
formulas1 have onlym (and hence the minimum number of) projections, and that
formulas having a strong backdoor set2 of size k have at most 2km projections.
The formula with 2n (and hence the maximum number of) projections is the one
with a singleton clause for every variable. Naturally, there are more interesting
cases and upper bounds for special classes of formula’s, but to not lose focus
from our main contribution we shall not discuss more structural properties of
projections.

Underlying Theorem 3 is our main technical contribution (Theorem 15) that
enables us to circumvent partial projections and access projections directly,
namely homomorphic hashing from the Möbius algebra of the lattice of subsets
of [m] to the Solomon algebra of a poset. We think our result opens up a fresh
technical perspective that may contribute towards solving the above mentioned
and related questions. A full proof of Theorem 15 is given in the full version; we
give a specialized, more direct proof of Theorem 3 and another application to
Set Cover in Section 5.

2 Notation and Preliminaries

Lower-case boldface characters refer to vectors, while capital boldface letters
refer to matrices, I being the identity matrix. The rank of a matrix A is denoted
by rk(A). If R and S are sets, and S is finite, denote by RS the set of all |S|-
dimensional vectors with values in R, indexed by elements of S, that is, if v ∈ RS ,
then for every e ∈ S we have ve ∈ R. We denote by Z and N the set of integers
and non-negative integers, respectively, and by Zp the field of integers modulo a
prime p. An arbitrary field is denoted by F.

For a logical proposition P , we use Iverson’s bracket notation [P ] to denote
a 1 if P is true and a 0 if P is false. For a function h : A → B and b ∈ B, the
preimage h−1(b) is defined as the set {a ∈ A : h(a) = b}. For an integer n and
A ⊆ {1, . . . , n}, denote by χ(A) ∈ Z

n
2 the characteristic vector of A. Sometimes

1 Every pair of clauses have a conflicting literal [18], also called ”semi-complete” [1].
2 k variables such that each assignment of them leaves a hitting formula (from [25],
see also e.g. [8]).
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we will state running times of algorithms with the O� notation, which suppresses
any factor polynomial in the input size.

For a ring R and a finite set S, we write RS for the ring consisting of the set RS

(the set of all vectors overR with coordinates indexed by elements of S) equipped
with coordinate-wise addition + and multiplication ◦ (the Hadamard product),
that is, for a, b ∈ RS and a+ b = c, a ◦ b = d we set az + bz = cz and azbz = dz
for each z ∈ S, where + and the juxtaposition denote addition and multiplication
in R, respectively. The inner-product a, b ∈ RS is denoted by aT ·b. For v ∈ RS

denote by supp(v) ⊆ S the support of v, that is, supp(v) = {z ∈ S : vz �= 0},
where 0 is the additive identity element of R. A vector v is called a singleton
if |supp(v)| = 1. We denote by 〈z → w〉 the singleton with value w on index z,
that is, 〈z → w〉y = w[y = z] for all y ∈ S.

If R is a ring and (S, ·) is a finite semigroup, denote by R[S] the ring consisting
of the set RS equipped with coordinate-wise addition and multiplication defined
by the convolution operator ∗, where for a, b ∈ RS , a ∗ b = c we set cz =∑

x·y=z axby for every z ∈ S.
If R,S are rings with operations (+, ∗) and (⊕,�) respectively, a homomor-

phism from R to S is a function h : R → S such that h(e1 + e2) = h(e1)⊕ h(e2)
and h(e1 ∗ e2) = h(e1)� h(e2) for every e1, e2 ∈ R.

Observation 4. Let R be a ring, and let (S, ·) and (T,
) be finite semigroups.
Suppose ϕ : S → T such that for every x, y ∈ S we have ϕ(x · y) = ϕ(x) 
 ϕ(y).
Then the function h : R[S] → R[T ] defined by h : a �→ b where bz =

∑
y∈ϕ−1(z) ay

for all z ∈ T is a homomorphism.

A circuit C over a ring R is a labeled directed acyclic graph D = (V,A) where
the elements of V are called gates and D has a unique sink called the output
gate of C. All sources of C are called input gates and are labeled with elements
from R. All gates with non-zero in-degree are labeled as either an addition or a
multiplication gate. (If multiplication in R is not commutative, the in-arcs of each
multiplication gate are also ordered.) Every gate g of C can be associated with a
ring element in the following natural way: If g is an input gate, we associate the
label of g with g. If g is an addition gate we associate the ring element e1+. . .+ed
with g, and if g is a multiplication gate we associate the ring element e1 ∗ . . .∗ ed
with g where e1, . . . , ed are the ring elements associated with the d in-neighbors
of g, and + and ∗ are the operations of the ring R.

Suppose the ground set of R is of the type AB where A,B are sets. Then C is
said to have singleton inputs if the label of every input-gate of C is a singleton
vector of R.

Definition 5. Let R1 and R2 be rings, let h : R1 → R2 be a homomorphism,
and suppose that C is a circuit over R. Then, the circuit h(C) over R2 obtained
by applying h to C is defined as the circuit obtained from C by replacing for
every input gate the label l by h(l).

Note that the following is immediate from the definition of a homomorphism:
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Observation 6. Suppose C is a circuit over a ring R1 with output v ∈ R1.
Then the circuit over R2 obtained by applying a homomorphism h : R1 → R2 to
C outputs h(v) ∈ R2.

3 Homomorphic Hashing for Subset Sum

In this section we will study the Subset Sum problem and prove Theorem 1. As
mentioned in the introduction, it should be noted that this merely serves as an
illustration of how similar problems can be tackled as well since the same method
applies to the more general sparse polynomial interpolation problem. However,
to avoid a repeat of the analysis of [15], we have chosen to restrict ourselves
to the Subset Sum problem. Our central contribution over [15] is that we take
advantage of sparsity. Given an integer p ∈ N, let cp : Nn → N

p be defined by

cp(a)j =

∣
∣
∣
∣

{

X ⊆ [n] :
∑

e∈X

ae ≡ j (mod p)

}∣
∣
∣
∣ for every j ∈ Zp and a ∈ N

n.

We also use the shorthand c(a) = c∞(a). We use the following corollary from [15]
and two results on primes:

Corollary 7 (†, [15]). Given an instance (a, t) of Subset Sum and an integer
p, cp(a)t can be computed in O�(p) time and O�(1) space.

Theorem 8 ([20]). If 55 < u, the number of primes at most u is at least u
lnu+2 .

Lemma 9 (†, Folklore). There exists an algorithm pickprime(u) running in
polylog(u) time that, given integer u ≥ 2 as input, outputs either a prime chosen
uniformly at random from the set of primes at most u or notfound. Moreover,
the probability that the output is notfound is at most 1

e .

We will run a data reduction procedure similar to the one of Claim 2.7 in [9],
before applying the algorithm of Corollary 7. The idea of the data reduction
procedure is to work modulo a prime of size roughly |supp(c(a))| or larger:
Lemma 10. Let S ≥ |supp(c(a))| and let β be an upper bound on the number
of bits needed to represent the integers, i.e. 2β > max{t,maxi ai}. Then for
sufficiently large β and n, Probp[c(a)t = cp(a)t] ≥ 1

2 , where the probability is
taken uniformly over all primes p ≤ Sβn(log β)(log n).

Proof. Suppose c(a)t �= cp(a)t. Then there exists an integer u ∈ supp(c(a)) such
that u �= t and u ≡ t (mod p). This implies that p is a divisor of |t−u|, so let us
bound the probability of this event. Since |t− u| ≤ 2βn, it has at most β+ logn
distinct prime divisors. Let γ = Sβn(log β)(log n). By Theorem 8 we have that
Probp

[
p divides |t− u|] is at most

β + logn
γ

log γ+2

≤ β + logn
γ

3(n+log β)

≤ 3(n+ log β)(β + logn)

γ
≤ 1

2S
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for sufficiently high β and n, where we use that S ≤ 2n in the second inequality.
Applying the union bound over the at most S elements of supp(c(a)), the event
that there exists a u ∈ supp(c(a)) with u �= t and u ≡ t (mod p) occurs with
probability at most 1

2 . ��
Now we give an algorithm for the case where S is known. The proof of Theorem 1,
given in the full version, merely adds self-reduction arguments.

Theorem 11. There exists an algorithm that, given an instance (a, t) of the
Subset Sum problem and an integer S ≥ |supp(c(a))| as input, outputs a non-
negative integer x in O�(S) time and polynomial space such that (i) x = 0 implies
c(a)t = 0 and (ii) Prob[c(a)t = x] ≥ 1

4 .

Proof. The algorithm is: First, obtain prime p = pickprime(Sβn(log β)(log n))
using Lemma 9. Second, compute and output cp(a)t using Corollary 7. Condition
(i) holds since cp(a)t = 0 implies c(a)t = 0 for any p, t. Moreover, condition (ii)
follows from Lemma 10 and Lemma 9 since 1

2 (1 − 1
e ) ≥ 1

4 . The time and space
bounds are met by Corollary 7 because p = O�(S). ��

4 Homomorphic Hashing for Linear Satisfiability

In this section we assume that F is a field of non-even characteristic and that
addition and multiplication refer to operations in F. We prove the following
general result, having Theorem 2(a) as a special case.

Theorem 12. There exists a randomized algorithm that, given as input (i) a
circuit C with singleton inputs over F[Zn

2 ], (ii) an integer S ≥ |supp(v)|, and
(iii) an element t ∈ Z

n
2 , outputs the coefficient vt ∈ F with probability at least

1
2 , where v ∈ F[Zn

2 ] is the output of C. The algorithm uses O�(S) time, O�(S)
arithmetic operations in F, and storage for O�(1) bits and elements of F.

Proof. Consider Algorithm 1. Let us first analyse the complexity of this algo-
rithm: Steps 1 and 2 can be performed in time polynomial in the input. Step 3
also be done in polynomial time since it amounts to relabeling all input gates
with h(e) where e was the old label. Indeed, we know that e ∈ F[Zn

2 ] is a sin-
gleton 〈y → v〉, so h(e) is the singleton 〈yH → v〉 and this can be computed
in polynomial time. Step 4 takes O�(S) operations and calls to sub, so for the
complexity bound it remains to show that a call to sub runs in polynomial time.
Step 5 can be implemented in polynomial time similar to Step 3 since the sin-

gleton e = 〈y → v〉 is mapped to (−1)xy
T

v. Finally, the direct evaluation of C2

uses |C2| operations in F. Hence the algorithm meets the time bound, and also
the space bound is immediate. The fact that hashZ2 returns vt with probability
at least 1

2 is a direct consequence of the following two claims, where w denotes
the output of C1.

Claim 1 (†). ProbH [vt = wtH ] ≥ 1
2 .

Claim 2 (†). Algorithm hashZ2 returns wtH .

��
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Algorithm hashZ2

1: Let s = �log S�+1.
2: Choose a matrix H ∈ Z

s×n
2 uniformly at random from the set of all s×n matrices

with binary entries.
3: Let h : F[Zn

2 ] → F[Zs
2] be the homomorphism defined by h(a) = b where bx =∑

y∈Zn
2 :yH=x ay for all x ∈ Z

s
2. Apply h to C to obtain the circuit C1.

4: return
1

2s

∑

x∈Z
s
2

(−1)(tH)xT

sub(C1,x).

Algorithm sub(C1,x)

5: Let ϕ : F[Zs
2] → F be the homomorphism defined by ϕ(w) =

∑
y∈Zs

2
(−1)xyT

wy

for all w ∈ F[Zs
2]. Apply ϕ to C1 to obtain the circuit C2.

6: Evaluate C2 and return the output.

Algorithm 1: Homomorphic hashing for Theorem 12

Proof (of Theorem 2(a)). For 1 ≤ i ≤ n and 0 ≤ w ≤ t denote by A(i) the ith
row of A and define f [i, w] ∈ Q[Zm

2 ] by

f [i, w] =

⎧
⎪⎪⎨

⎪⎪⎩

〈0 → 1〉 if i = w = 0,

0 if i = 0 ∧w �= 0,

f [i− 1, w] + f [i− 1, w − ωi] ∗
〈
A(i) → 1

〉
otherwise.

(1)

It is easy to see that for every 1 ≤ i ≤ n, 0 ≤ w ≤ t, and y ∈ Z
m
2 , the value

f [i, w]y is the number of x ∈ Z
i
2 such that ω̃xT = w and xÃ = y where ω̃ and

Ã are obtained by truncating ω and A to the first i rows. Hence, we let C be
the circuit implementing (1) and let its output be v =

∑t
w=0 f [n,w]. Thus, vb

is the number of x ∈ Z
n
2 with xA = b and xωT ≤ t.

Also, |supp(v)| ≤ 2rk(A) since any element of the support of v is a sum of
rows of A and hence in the row-space of A, which has size at most 2rk(A). To
apply Theorem 12, let F = Q and observe that the computations are in fact
carried out over integers bounded in absolute value poly-exponentially in n and
hence the operations in the base field can also be executed polynomial in n. The
theorem follows from Theorem 12. ��
To establish Theorem 2(b), let us first see how to exploit a high linear rank of
the matrix A in an instance of Linear Sat. By permuting the rows of A as
necessary, we can assume that the first rk(A) rows of A are linearly independent.
We can now partition x into x = (y, z), where y has length rk(A) and z has
length n − rk(A). There are 2n−rk(A) choices for z, each of which by linear
independence has at most one corresponding y such that xA = b. Given z,
we can determine the corresponding y (if any) in polynomial time by Gaussian
elimination. Thus, we have:

Observation 13. Linear Sat can be solved in O�(2n−rk(A)) time and polyno-
mial space.
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This enables a “Win/Win approach” where we distinguish between low and high
ranks, and use an appropriate algorithm in each case.

Proof (of Theorem 2(b)). Compute rk(A). If rk(A) ≥ n/2, run the algorithm of
Observation 13. Otherwise, run the algorithm implied by Theorem 2(a). ��
Set Partition. We now give a very similar application to the Set Partition
problem: given an integer t and a set family F ⊆ 2U where |F| = n, |U | = m,
determine whether there is a subfamily P ⊆ F with |P| ≤ t such that

⋃
S∈P S =

U and
∑

S∈P |S| = |U |.
The incidence matrix of a set system (U,F) is the |U | × |F| matrix A whose

entries Ae,S = [e ∈ S] are indexed by e ∈ U and S ∈ F .

Theorem 14 (†). There exist algorithms that given an instance (U,F , t) of
Set Partition output the number of set partitions of size at most t with prob-
ability at least 1

2 , and use (a) O�(2rk(A)) time and polynomial space, and (b)

(2rk(A) + n)mO(1) time and space, where A is the incidence matrix of (U,F).

5 Homomorphic Hashing for the Union Product

In this section our objective is to mimic the approach of the previous sec-
tion for N[(2U ,∪)], where (2U ,∪) is the semigroup defined by the set union
∪ operation on 2U , the power set of an n-element set U . The direct attempt
to apply a homomorphic hashing function, unfortunately, fails. Indeed, let h
be an arbitrary homomorphism from (2U ,∪) to (2V ,∪) with |V | < |U |. Let
U = {e1, e2, . . . , en} and consider the minimum value 1 ≤ j ≤ n − 1 with
h({e1, . . . , ej}) = ∪j

i=1h({ei}) = ∪j+1
i=1h({ei}) = h({e1, . . . , ej+1}); in particular,

for X = {e1, . . . , ej, ej+2, . . . , en} �= U we have h(X) = h(U), which signals
failure since we cannot isolate X from U .

Instead, we use hashing to an algebraic structure based on a poset (the
“Solomon algebra” of a poset due to [22]) that is obtained by the technique “It-
erative Compression”. This gives the following main result. For reasons of space
we relegate a detailed proof to the full version; here we will give a simplified
version of the proof in the special case of Theorem 3 in this section.

Theorem 15 (†). Let and |U | = n. There are algorithms that, given a circuit
C with singleton inputs in N[(2U ,∪)] outputting v, compute

(a) a list with vX for every X ∈ supp(v) in O�(|supp(v)|2nO(1)) time,
(b) vU in time O�(2(1−α/2)nnO(1)) if 0 < α ≤ 1/2 such that |supp(v)| ≤ 2(1−α)n.

The above result is stated for simplicity in the unit-cost model, that is, we assume
that arithmetic operations on integers take constant time. For the more realistic
log-cost model, where such operations are assumed to take time polynomial in
the number of bits of the binary representation, we only mention here that our
results also hold under some mild technical conditions. Let us first show that
Theorem 3(a) indeed is a special case of Theorem 15:



156 P. Kaski, M. Koivisto, and J. Nederlof

Proof (of Theorem 3). Use the circuit over N[(2[m],∪)] that implements

f = (〈V1 → 1〉+〈
V̄1 → 1

〉
)∗(〈V2 → 1〉+〈

V̄2 → 1
〉
)∗. . .∗(〈Vm → 1〉+〈

V̄m → 1
〉
),

where Vi ⊆ [m] (respectively, V̄i ⊆ [m]) is the set of all indices of clauses that
contain a positive (respectively, negative) literal of the variable vi. Then use
Theorem 15 to determine f[m], the number of satisfying assignments of φ. ��
Now we proceed with a self-contained proof Theorem 3. Given poset (P,≤), the
Möbius function μ : P × P → N of P is defined for all x, y ∈ P by

μ(x, y) =

⎧
⎪⎨

⎪⎩

1 if x = y,

−∑
x≤z<y μ(x, z) if x < y,

0 otherwise.

(2)

The zeta transform ζ and Möbius transform μ are the |P |× |P | matrices defined
by ζx,y = [x ≤ y] and μx,y = μ(x, y) for all x, y ∈ P . For a CNF-formula φ
denote supp(φ) for the set of all projections of φ. Recall in Theorem 3 we are
given a CNF-Formula φ = C1∧ . . .∧Cm over n variables. For i = 1, . . . ,m define
φi = C1 ∧ . . . ∧ Ci. Then we have the following easy observations:

1. supp(φ0) = {∅},
2. supp(φi) ⊆ supp(φi−1) ∪ {X ∪ {i} : X ∈ supp(φi−1)} for every i = 1, . . . ,m,
3. |supp(φi−1)| ≤ |supp(φi)| for every i = 1, . . . ,m.

Given the above lemma and observations, we will give an algoritm using a tech-
nique called iterative compression [19]. As we will see, by this technique it is
sufficient to solve the following “compression problem”:

Lemma 16. Given a CNF-formula φ = C1∧ . . .∧Cm and a set family F ⊆ 2[m]

with supp(φ) ⊆ F , the set supp(φ) can be constructed in O�(|F|2) time.

Proof. In what follows a ∈ {0, 1}n refers to an assignment of values to the n

variables in φ. Define f ∈ N
2[m]

for all X ⊆ [m] by

fX = |{a ∈ {0, 1}n : ∀i ∈ [m] it holds that a satisfies Ci iff i ∈ X}|.

It is easy to see that supp(f ) = supp(φ), so if we know fX for every X ∈ F we
can construct supp(φ) in |F| time. Towards this end, first note that for every
Y ⊆ [m], (fζ)Y equals

∑

X∈supp(f)
X⊆Y

f(X) =
∑

X⊆Y

f(X) = |{a ∈ {0, 1}n | ∀i : a satisfies Ci only if i ∈ Y }|.

Second, note that the last quantity can be computed in polynomial time: since
every clause outside Y must not be satisfied, each such clause forces the vari-
ables that occur in it to unique values; any other variables may be assigned to
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arbitrary values. That is, the count is 0 if the clauses outside Y force at least one
variable to conflicting values, otherwise the count is 2a where a is the number of
variables that occur in none of the clauses outside Y .

Now the algorithm is the following: for every X ∈ F compute (fζ)X in poly-
nomial time as discussed above. Then we can use algorithm mobius as described
below to obtain fX for every X ∈ F since it follows that f = mobius((F ,⊆),fζ)
from the definition of μ and the fact that μζ = I. Algorithm mobius clearly
runs in O�(|P |2) time, so this procedure meets the claimed time bound.

Algorithm mobius((P,≤),w)
1: Let P = {v1, v2 . . . , v|P |} such that vj ≤ vi implies j ≤ i.
2: z ← w.
3: for i = 1, 2, . . . , |P | do
4: for every vj ≤ vi do
5: zi = zi − zj
6: return z.

��
Proof (of Theorem 3, self-contained). Recall that we already know that
supp(φ0) = {∅}. Now, for i = 1, . . . ,m we set F = supp(φi−1) ∪ {X ∪ {i} :
X ∈ supp(φi−1)} and use F to obtain supp(φi) using Lemma 16. In the end we
are given supp(φm) and since φm is exactly the original formula, the input is
a yes-instance if and only if [m] ∈ supp(φm). The claimed running time follows
from Observations 1 and 3 above and the running time of algorithm mobius.

��
Set Cover. We will now give an application of Theorem 15(b) to Set Cover:
Given a set family F ⊆ 2U where |U | = n and an integer k, find a subfamily
C ⊆ F such that |C| = k and

⋃
S∈C S = U .

Theorem 17 (†). Given an instance of Set Cover, let 0 < α ≤ 1/2 be the
largest real such that |{⋃S∈C S : C ⊆ F and |C| = k}| ≤ 2(1−α)n. Then the

instance can be solved in O�(2(1−α/2)nnO(1)) time.
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