
A Polynomial-Time Algorithm for Planar

Multicuts with Few Source-Sink Pairs�

Cédric Bentz

LRI, Univ. Paris-Sud & CNRS, 91405 Orsay Cedex, France
cedric.bentz@lri.fr

Abstract. Given an edge-weighted undirected graph and a list of k
source-sink pairs of vertices, the well-known minimum multicut problem
consists in selecting a minimum-weight set of edges whose removal leaves
no path between every source and its corresponding sink. We give the
first polynomial-time algorithm to solve this problem in planar graphs,
when k is fixed. Previously, this problem was known to remain NP-hard
in general graphs with fixed k, and in trees with arbitrary k; the most
noticeable tractable case known so far was in planar graphs with fixed k
and sources and sinks lying on the outer face.

1 Introduction

In this paper, we are interested in the study of the minimum multicut problem in
undirected graphs (no directed version is considered). This fundamental problem
has been extensively studied, and is well-known to be NP-hard even in very
restricted classes of graphs.

Assume we are given a n-vertex m-edge undirected graph G = (V,E), a
weight function w : E → Z

+ and a list L of pairs (source si, sink s′i) of ter-
minal vertices. Each pair (si, s

′
i) defines a commodity. The minimum multicut

problem (MinMC) consists in selecting a minimum weight set of edges whose
removal separates si from s′i for each i. The minimum multiterminal cut prob-
lem (MinMTC) is a special case of MinMC in which, given a set of vertices
T = {t1, . . . , t|T |}, the source-sink pairs are (ti, tj) for i �= j.

For |L| = 1, the problem is the classical minimum cut problem. For |L| = 2,
the problem can be solved in polynomial time by solving two minimum cut prob-
lems [18]. However, Dahlhaus et al. showed that, for any fixed |L| ≥ 3, MinMTC
(and henceMinMC) becomesNP-hard (and even APX-hard) in general graphs
[9]. When |L| is not fixed, MinMC is APX-hard even in unweighted stars [11]
and NP-hard even in unweighted binary trees [6], while MinMTC is NP-hard
in planar graphs [9]. We also mention that, in bounded tree-width graphs, Min-
MTC (resp. MinMC) is polynomial-time solvable when |L| is arbitrary [12]
(resp. when |L| is fixed [3]). There have been recent results concerning FPT al-
gorithms for MinM(T)C: however, the parameter considered in these papers is
the size of the solution, and hence we shall not mention them here.

� This research work was supported by the French ANR project DOPAGE (ANR-09-
JCJC-0068).

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 109–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 C. Bentz

In their seminal paper, Dahlhaus et al. also showed that MinMTC can be
solved in polynomial time in planar graphs if |L| is fixed, but they left as open
three important questions: first, does MinMTC admit a polynomial-time ap-
proximation scheme (PTAS)? Second, is MinMTC FPT in planar graphs, if |L|
is viewed as the parameter [10]? Third, is MinMC also polynomial-time solvable
in planar graphs if |L| is fixed? The first open question was recently addressed
by Bateni et al. [1]. The second one was even more recently addressed by Marx
[15], and we answer the third question in this paper (while the case where all
the sources and sinks lie on the outer face was already solved in [4]).

It should be noticed that Hartvigsen [13] and Yeh [19] later provided other
algorithms to solve MinMTC in planar graphs when |L| is fixed (none of them
being FPT with respect to |L|). Moreover, it was observed in [2] and [5] that
unfortunately the proof of Yeh’s algorithm is not correct, and later it was proved
in [7] that the algorithm itself is not correct. The main mistake in the proof of this
algorithm was to assume that, when replacing the boundary of any connected
component by a minimum cut between some well-chosen vertices, we still obtain
a single connected component. More recently, Marx and Klein gave an even
faster algorithm to solve MinMTC in planar graphs when |L| is fixed [14], but
Marx also managed to prove that, assuming the Exponential Time Hypothesis,
this problem is not FPT with respect to |L| [15]. This latter result immediately
implies that MinMC in planar graphs is not FPT with respect to |L|.

In this paper, we give an algorithm based, on the one hand, on a revised and
generalized Yeh-like approach, and, on the other hand, on shortest homotopic
paths methods, and show that this algorithm can be used to solve MinMC
in polynomial time when the graph is planar and |L| is fixed. (Obviously, this
also provides an alternative polynomial-time algorithm to solve MinMTC in
planar graphs when |L| is fixed.) It is worth noticing that our major tool is a
new characterization of optimal solutions for this problem. Moreover, although
homotopic routing methods have already been used to solve planar disjoint paths
problems (see [16] and [17] for instance), to the best of our knowledge they have
never been used to solve (multi)cut problems so far. (Our algorithm is not FPT,
but the recent result of Marx [15] implies that unfortunately this is essentially
the best one can hope for.)

The paper is organized as follows. In Section 2, we describe the starting point
of our algorithm. Then, in Section 3, we give some preliminary definitions and
results, that will be useful in Section 4. Finally, in Section 4, we describe our
algorithm, and prove its correctness.

2 The Starting Point

The first step of our algorithm is a simple idea presented in [4]. Given a MinMC
instance I = (G = (V,E), w,L) and any of its optimal multicuts C, one can
define the clustering of the terminals associated with the connected components
of G′ = (V,E \ C) (we also say that this particular clustering induces these
connected components). The ith cluster of this clustering, denoted by Ti, contains

A Polynomial-Time Algorithm for Planar Multicuts 111

all the terminals lying in the ith connected component of G′. Once this clustering
has been defined (although, so far, we need to know C in order to do it), finding
an optimal solution to I is equivalent to removing a minimum-weight set of edges
C whose removal separates all the terminals in Ti from all the terminals in Tj
for each i �= j.

In this paper, we will refer to this problem as the minimum multi-cluster cut
problem (MinMCC). This problem has been defined as the Colored Multitermi-
nal Cut problem in [9], where it is shown to be NP-hard in planar graphs, even
with only four clusters (and it is claimed that this is also true for three clusters).
Note that, in general graphs, MinMCC and MinMTC are equivalent, since
from a MinMCC instance we can obtain an equivalent MinMTC instance by
adding one new terminal vertex for each cluster, and linking all the terminals in
this cluster (which will no longer be terminals in the MinMTC instance) to this
new vertex by sufficiently heavy edges. However, this reduction does not neces-
sarily preserve planarity. Given a MinMC instance, we can build an equivalent
MinMCC instance by enumerating all the possible clusterings of the terminals
(such a clustering can contain up to 2|L| clusters): when |L| is fixed, this can be
done in constant time, and so this yields the following lemma.

Lemma 1. When |L| is fixed, MinMC can be polynomially reduced to Min-
MCC, and this reduction preserves planarity.

Since we enumerate all the possible clusterings in order to guess the right one, we
can also assume without loss of generality that the one we chose has the property
that no clustering associated with an optimal solution induces more connected
components than this one does. In other words, in the (planar) MinMCC in-
stance we obtain, every cluster induces exactly one connected component in any
optimal solution. In the remainder of the paper, we design an efficient algorithm
to solve MinMCC in planar graphs when the sum of the sizes of the clusters
is fixed (otherwise, from [9], the problem is NP-hard); from the above enumer-
ation argument, we can assume that every cluster induces only one connected
component (note that this problem generalizes planar MinMTC with a fixed
number of terminals). To do this, we will make use of some notions and results
related to planarity, planar curves and planar duality, which we introduce in the
next section.

3 Preliminary Definitions and Results

Throughout the paper, each time we consider a MinMCC instance in a planar
graph G, we assume without loss of generality that G is simple, loopless, con-
nected (otherwise, we can consider each connected component independently),
and even 2-vertex-connected (from [4]), but also that some planar embedding of
G is given. Recall that to any planar graph G (embedded in the plane) we can
associate a dual (planar) graph G∗: each face (including the outer face) of the
initial (or primal) graph G is associated with one vertex in the dual graph G∗,
and there is an edge between two vertices in the dual graph iff the associated

112 C. Bentz

faces are adjacent (i.e., share an edge) in the primal graph. (If an edge belongs to
only one face, then it corresponds to a loop in the dual graph.) As a consequence,
there is a one-to-one correspondence between primal faces (resp. vertices) and
dual vertices (resp. faces).

Fig. 1. A multi-cluster cut in a planar graph with five clusters. The edges of the initial
(primal) graph are in plain lines, the non-terminal vertices are the white round vertices,
the terminals are the black round vertices, the dual vertices are the square vertices,
and the dual edges associated with the multi-cluster cut C are in dashed and dotted
lines. (The edges of C1 are in dashed lines, and the four grey square vertices are the
joint-vertices of C.)

Given a MinMCC instance I = (G = (V,E), w, T = {T1, . . . , Tp}) and an
optimal multi-cluster cut C for I, we denote by C∗ the edge set dual to C, and,
for each i, by Vi the vertices of the connected component of G′ = (V,E \ C)
containing the terminals in Ti, and by Ci the set of edges such that Ci ⊆ C and
Ci has exactly one endpoint in Vi. We define a joint-vertex as a dual vertex (a
vertex of the dual graph G∗ of G) of degree at least 3 in C∗. Note that each Ci

corresponds to a set of (not necessarily simple) cycles in G∗. Let us assume for
now that each Ci corresponds to only one cycle.

If the edges in the embedding of the dual graph are viewed as curves in the
plane (the dual vertices being intersections between curves), then the dual image
of each Ci will be a closed curve Ci (the union of all the Ci’s, i.e., the geometric
representation of C∗, will be denoted by C); if this closed curve is simple (this
may not be the case, see below), then, by the Jordan curve theorem, the faces
of G∗ associated with all the terminals in Ti are inside this curve, and the faces
of G∗ associated with all the terminals in

⋃
j �=i Tj are outside this curve (which

simply means that the edges associated with Ci isolate the terminals in Ti from

A Polynomial-Time Algorithm for Planar Multicuts 113

all the other terminals). When Ci ⊂ R
2 is not simple (as this is the case for C1

in Figure 1), i.e., when Ci self-intersects in one or more points of the plane, the
situation is a bit more complex: in this case, by a simple corollary of the Jordan
curve theorem, R2 \ Ci contains more than two connected regions (a connected
region of R2 \ Ci being a region of R2 such that any two points of this region can
be linked by a curve without crossing Ci), and one of these connected regions
is unbounded (it is called the unbounded region), while all the other ones are
bounded. The only bounded region of R2 \ Ci (and all the faces it contains) that
is adjacent to the unbounded region is called the inside of Ci (it is unique since
Vi is connected), and every other bounded region of R2 \ Ci is called an inner
region of Ci (although it does belong to the outside of Ci, and not to its inside).

Notice that, if some C∗
i contains more than one cycles (either simple or not),

then either this means that there is one cycle C̄∗
i contained in C∗

i , corresponding
to a closed curve C̄i in G∗, such that any other cycle contained in C∗

i lies inside
C̄i, or this means that Vi is the only component in contact with the infinite face.
(In the first case, note that there is at least one other C∗

j for some j �= i that

lies inside the closed curve corresponding to each cycle in C∗
i \ C̄∗

i .) So, we have:

Lemma 2. For each i, if Ci is a closed curve, then the faces associated with Ti
are inside Ci, while the faces associated with Tj are outside Ci, for each j �= i.

We also need to define homotopic curves. Roughly speaking, given a set O of μ
obstacles (typically, faces) O1, . . . ,Oµ in the plane, two simple curves C1, C2 in
R

2\O sharing the same endpoints (or two closed curves) are said to be homotopic
with respect to O if C1 can be continuously deformed into C2 in R

2 \ O. We can
also say that C1 is homotopic to C2 with respect to O, or alternatively that C1
and C2 belong to the same homotopy class. In the present setting, the curves we
will consider are the ones that are associated with (i.e., that are the dual images
of) the Ci’s (or parts of them); the set of obstacles O we will consider is the set
of faces associated with the terminals. Then, the following lemma is easy to see:

Lemma 3. Two simple closed curves having the same faces of O in their insides
and the same faces of O in their outsides are homotopic with respect to O.

Finally, let us notice that the number of vertices in G∗ is bounded by 2|V | − 4,
since it is equal to the number of faces fG of G. Indeed, G is a simple, loopless
and connected planar graph, and hence each of its faces contains at least three
vertices and edges: this implies that 2|E| ≥ 3fG, which, combined with Euler’s
formula |V | + fG − |E| = 2, yields fG ≤ 2|V | − 4. However, we still have to
bound the number of joint-vertices in C∗. To this end, the following lemma will
be useful in the next section:

Lemma 4. The number of joint-vertices in C∗ is at most 2p− 4.

Proof. This can be shown by a simple application of Euler’s formula. Consider
the subgraph of G∗ induced by C∗. In this subgraph, there is no vertex of degree
1, and we contract any vertex of degree 2 in this subgraph (this does not modify

114 C. Bentz

the number of vertices of degree at least 3) in order to obtain the graph G∗
C .

The number of faces in G∗
C is p, since each cluster in {T1, . . . , Tp} induces exactly

one connected component in G. We remove loops (and associated faces) as well
as multiple edges (and associated faces) from G∗

C : each time we remove such
an edge, we remove one face. If we denote by mC and fC the number of edges
and faces in G∗

C , and by nC ,m
′
C , f

′
C , κC the number of vertices, edges, faces,

and connected components in this updated (simple) graph, respectively, then by
Euler’s formula we have nC + f ′

C −m′
C = 1+ κC , i.e., nC + fC −mC = 1+ κC .

(Note that nC is the number of joint-vertices we have to consider.) Any vertex
in G∗

C has degree at least 3, and hence 2mC ≥ 3nC . Since κC ≥ 1, we have
nC + fC −mC ≥ 2, i.e., nC ≥ mC − fC + 2 ≥ 3nC/2 − fC + 2, and this yields
nC/2 ≤ fC − 2, i.e., nC ≤ 2fC − 4 = 2p− 4. �	

A similar result was presented in [19, Theorem 5], using the notion of component
graph (in which there is a vertex for each component Vi and a single edge be-
tween any two vertices if the corresponding components share at least one edge);
however, a joint-vertex may actually not induce a face in the component graph
(see the joint-vertex belonging to C∗

2 in Figure 1 for instance), since this graph
is simple by definition, and hence this proof was incomplete.

4 Description and Proof of the Algorithm

4.1 A Structural Description of Optimal Solutions

Dahlhaus et al. [9], and later Hartvigsen [13], gave structural descriptions of
optimal planar multiterminal cuts (one is based on the notion of topology and on
minimum spanning trees computation, and the other is based on links between
optimal planar multiterminal cuts and Gomory-Hu cut collections). However,
it is not clear whether these structural results could be extended to optimal
planar multi-cluster cuts; in fact, it seems that they cannot. Here, we give a new
and somewhat simpler structural description of optimal planar multiterminal
cuts (although it may imply enumerating more elements than in the approaches
described by Dahlhaus et al. and Hartvigsen), that is also valid for optimal
planar multi-cluster cuts.

We use the definitions and notations from the previous section. Let F (resp.
Fi) be the faces of G

∗ associated with the terminals in T (resp. in Ti), and let C
be any multi-cluster cut that partitions the plane into p connected regions (each
one containing one cluster), such as a minimum multi-cluster cut (for instance).
Let us now consider Ci for some i, and assume that the dual image Ci of Ci

consists of only one closed curve. This curve goes through a certain number of
joint-vertices: let us call them ω1, . . . , ωqi , in clockwise order (with ω1 = ωqi).
Recall that, by definition, the curve Ci intersects other Cj ’s only at joint-vertices.
Assume that qi ≥ 2. Then, we have:

Lemma 5. Let Vi be a connected component of G′ = (V,E \ C), let Ci be the
associated curve in G∗, and let ω1, . . . , ωqi be the joint-vertices Ci goes through.

A Polynomial-Time Algorithm for Planar Multicuts 115

Then, C′ = (C \ Ci) ∪ C′
i is also a valid multi-cluster cut for I, where C′

i is any
cycle in G∗ going through ω1, . . . , ωqi , and such that the faces associated with Ti
are inside C′, while the faces associated with Tj are outside C′ for each j �= i.

Proof. Assume that one such C′ is not a multi-cluster cut. Consider any path
μa,b in G′ = (V,E \ C′) between two terminal vertices ta ∈ Tj and tb ∈ Tj′ for
some j �= j′. We cannot have j = i or j′ = i, by the definition of C′

i. Moreover,
since C is a multi-cluster cut, we know that μa,b contains at least one edge in Ci,
say uv. Choose an edge dual to such an edge in Ci, and assume without loss of
generality that this dual edge belongs to the curve Ci[ω1, ω2], defined as the part
of Ci linking ω1 and ω2. From Lemma 3, C′

i is homotopic to Ci with respect to F .
Hence, Ci can be continuously deformed into C′

i in R
2 \F . In particular, since C′

i

goes through ω1 and ω2, it contains some curve C′
i[ω1, ω2] homotopic to Ci[ω1, ω2]

with respect to F . Hence, the inside of the closed curve Ci[ω1, ω2] ∪ C′
i[ω1, ω2]

contains neither ta nor tb (since i, j, j′ are all distinct). We claim the following :

Claim 1. μa,b must “intersect” (i.e. have an edge in common with) C′
i[ω1, ω2]

at least once.

Proof. Since Ci[ω1, ω2]∪C′
i[ω1, ω2] is a closed (but not necessarily simple) curve,

the edge dual to any edge on its boundary either belongs to both Ci[ω1, ω2] and
C′
i[ω1, ω2] (which is clearly not the case for uv, otherwise we are done), or has

one endpoint inside Ci[ω1, ω2] ∪ C′
i[ω1, ω2] and one endpoint outside Ci[ω1, ω2] ∪

C′
i[ω1, ω2] (so, this is the case for uv).
Now, assume that μa,b has t ≥ 1 (for some t) edges in common with Ci[ω1, ω2]

(none of them is of the first type described above, otherwise we are done). If μa,b

crosses C′
i[ω1, ω2], then we are done. Assume otherwise. ω1 and ω2 being two

consecutive joint-vertices in Ci, then by definition each of these t edges has one
endpoint in Vi and the other one in Vl for some l (the same l for all these edges).
In particular, the vertices inside Ci[ω1, ω2]∪C′

i[ω1, ω2] that are incident to edges
in Ci[ω1, ω2] all belong to the same connected component of (V,E \ C) (either
Vi or Vl). Hence, each time μa,b “crosses” Ci[ω1, ω2], it “changes side” (going for
instance from Vi to Vl, then from Vl to Vi, then again from Vi to Vl, etc.). If it
crosses Ci[ω1, ω2] an even number of times (the first edge crossed being uv and
the last one u′v′ for instance), then u and v′ either both belong to Vi or both
belong to Vl (i.e., belong to the same connected component of (V,E \ C)). So,
instead, we can find a new path μ′

a,b from ta to tb that does not cross Ci[ω1, ω2] at
all, by replacing the part of μa,b going from u to v′ by a path from u to v′ using
vertices of Vi (or Vl) only; this yields a contradiction. By the same argument, we
can show that if μa,b crosses Ci[ω1, ω2] an odd number of times (the first edge
crossed being uv and the last one u′v′ for instance; note that u′v′ may be uv),
then v′ is inside Ci[ω1, ω2] ∪ C′

i[ω1, ω2]. Since the part of μa,b going from v′ to
tb crosses neither Ci[ω1, ω2] (by definition) nor C′

i[ω1, ω2] (by assumption), and
since neither ta nor tb are inside Ci[ω1, ω2]∪C′

i[ω1, ω2], this yields a contradiction.
Thus, μa,b must cross C′

i[ω1, ω2]. �	
From this claim, C′ intersects any path between two terminals lying in different
clusters: it contradicts the fact that C′ is not a multi-cluster cut. �	

116 C. Bentz

We can then use this lemma to show that, if qi ≥ 2:

Corollary 1. Let C be a minimum multi-cluster cut in a graph G = (V,E),
let Vi be a connected component of G′ = (V,E \ C), let Ci be the associated
curve in G∗, and let ω1, . . . , ωqi be the joint-vertices Ci goes through. Then, Ci
is a shortest cycle in G∗, that is homotopic to any cycle Γ in G∗ going through
ω1, . . . , ωqi and being such that the faces in Fi are inside Γ , while the faces in
Fj are outside Γ for each j �= i.

Proof. Assume that Ci is not such a shortest cycle. Then, we can replace Ci by a
shortest cycle Γ ∗ in G∗ going through ω1, . . . , ωqi , and such that the faces in Fi

are inside Γ ∗, while the faces in Fj are outside Γ ∗ for each j �= i. From Lemma
5, C′ = (C \Ci)∪Γ ∗ is also a valid multi-cluster cut for I. Moreover, Γ ∗ is strictly
shorter than Ci (since from Lemmas 2 and 3 they are homotopic with respect to
F), and hence C′ is a strictly better solution than C: a contradiction. �	

4.2 Algorithmic Aspects

From Subsection 4.1, we can construct C in an iterative way, by first “guessing”
(i.e., enumerating) all the joint-vertices, then computing each Ci corresponding
to a single closed curve one after the other, and finally removing the vertices
inside it, and go on. (We assume without loss of generality that we look for an
optimal solution having the maximum number of joint-vertices among the ones
with p clusters, and this implies that we cannot create “new” joint-vertices when
computing each Ci.) Hence, we have to guess an i for which Ci corresponds to
a single closed curve, compute Ci and remove it, and then go on by identifying
another i for which the part of Ci lying in the remaining graph (i.e., after remov-
ing the previous component) corresponds to a single closed curve, until there
remains only one component. We can do this by enumerating all the possible
sets of inclusions between the Ci’s (i.e., for each i and j �= i, whether there is
one cycle C̄i contained in Ci, that corresponds to a closed curve C̄i in the dual
graph, and such that Cj lies inside C̄i; or whether there is one cycle C̄j contained
in Cj , that corresponds to a closed curve C̄j in the dual graph, and such that Ci

lies inside C̄j ; or finally whether none lies inside the other). Since the number of
Ci’s is p and since p is fixed, this can be done in constant time.

In order to compute Ci for each i, we must first “guess” which joint-vertices Ci
goes through (from Lemma 4, the maximum number of joint-vertices is 2p− 4,
so guessing them requires to try all the possible ways of choosing at most 2p− 4
vertices among 2|V | − 4, which implies that the running time will depend on p),
and then we can apply Corollary 1 and find a shortest cycle homotopic to some
predefined curve in G∗ (keeping in mind that Ci may go through no joint-vertex;
in this case, we only need to compute a minimum cut separating Ti from Tj ,
for all j �= i). (If needed, we can reduce the computation of a shortest cycle to
the computation of a shortest path, by “guessing” the first edge of this path.)
Finding a shortest homotopic path or cycle can be hard, if we require that it
must be elementary; however, this property is not needed in our case. (And,

A Polynomial-Time Algorithm for Planar Multicuts 117

indeed, some Ci’s may be non simple cycles, such as C1 in Figure 1.) We can
compute a shortest homotopic path or cycle using for instance the algorithms
given in [17, Proposition 1] or in [8].

Finally, we have two last points to address. First, we must ensure that the
shortest cycles or paths we compute go through predetermined joint-vertices.
Second, we need to be able to generate all the possible predefined curves that the
shortest paths we compute can be homotopic to. We now describe the strategy
we use to deal with both points at the same time. Each time a given Ci goes
through a given joint-vertex, this means that some vertices of the primal face
associated with this joint-vertex belong to Vi. Actually, we even know that, on
each face associated with a joint-vertex Ci goes through, there are at most hi+1
sets of consecutive vertices (called intervals) that belong to Vi, where hi ≤ p
is the number of inner regions of Ci. Therefore, to the joint-vertices associated
with a given Ci corresponds a set Bi of distinct vertices of Vi lying on the primal
faces associated with these joint-vertices. The best way to encode this set Bi is
to include two vertices of each interval. For a given interval lying on the face
associated with a given joint-vertex, call a and b the two vertices of this interval.
Then, the vertices in Bi associated with that interval are all the vertices of this
face encountered while traveling clockwise from a to b on this face. Let us denote
by Bi the set of dual faces associated with the vertices in Bi. By definition, each
face associated with a joint-vertex contains at least two vertices belonging to
two different Bi’s, thus from Lemma 3, for each i, Ci is homotopic, with respect
to the faces in F and

⋃
j Bj , to any closed curve being such that the faces in

Fi ∪ Bi are inside it, and the faces in Fj ∪ Bj, for each j �= i, are outside it.
More generally, any closed curve goes through the same joint-vertices as Ci, if
this curve is such that the faces in Bi belong to its inside, and the faces in Bj

belong to its outside, for each j �= i.
Since for each i the inside of Ci is a connected region, i.e., the subgraph of G

induced by Vi is connected, we also know that in G′ = (V,E \C) all the vertices
in Bi, as well as all the terminals in Ti, are connected together. This implies that,
for each i, we can construct a closed curve C′

i homotopic to Ci by choosing some
tree spanning both Ti and Bi, and then removing the edges having exactly one
endpoint in the ith of these spanning trees (these trees span vertices in distinct
connected components of G′, and hence have to be vertex-disjoint). (For each i,
C′
i goes through the same joint-vertices as Ci, and C′

i and Ci are indeed homotopic
with respect to the faces in F , since Ti is the only cluster that belongs to the
inside of C′

i, i.e., C
′
i isolates Ti from Tj , for all j �= i.) In practice, we have to

“guess” Bi for each i (which, as mentioned above, can be done by enumerating
at most two vertices of G for each interval), making sure that the Bi’s define
a partition of the vertex set of the faces associated with all the joint-vertices,
and then construct p vertex-disjoint trees (each one spanning Ti and Bi for some
i), and finally remove the edges isolating each tree from the rest of the graph.
For each combination of Bi’s, finding such vertex-disjoint trees can be done in
polynomial time (since the graph is planar,

∑p
i=1 |Ti| is fixed, and the number of

118 C. Bentz

mandatory vertices that the p trees must span lie on at most
∑p

i=1 |Ti|+(2p−4)
faces), using for instance the algorithm given in [17, Theorem 4].

So, our algorithm for planar MinMCC is as follows:

1. For each possible clustering of the terminals, for each possible set of inclu-
sions between the Ci’s, for each possible combination of joint-vertices, and
for each possible choice of the Bi’s do:
(a) Compute p vertex-disjoint trees, each spanning Ti and Bi for some i,

and construct the curves C′
i by removing, for each i, each edge incident

to exactly one vertex of the ith tree;
(b) For each i except the last one (in the order given by the current set of

inclusions, starting from a Ci including no other Cj for j �= i), compute a
shortest cycle homotopic to C′

i with respect to F and
⋃

j Bj ; then, remove
the vertices of the connected component of G lying inside this cycle.

2. Output the best feasible solution found.

We already explained why all steps run in polynomial time, and it should be
clear from our above discussion that this algorithm is correct. This yields:

Theorem 1. MinMCC can be solved in polynomial time in planar graphs, if
the sum of the sizes of the clusters is fixed.

Therefore, we can finally state:

Corollary 2. MinMC can be solved in polynomial time in planar graphs, if the
number of source-sink pairs is fixed.

Acknowledgements. The author thanks Sylvie Poirier for her help, and Éric
Colin de Verdière for fruitful discussions on shortest homotopic paths.

References

1. Bateni, M., Hajiaghayi, M., Klein, P., Mathieu, C.: A polynomial-time approxima-
tion scheme for planar multiway cut. In: 23th SODA (2012)

2. Bentz, C.: Résolution exacte et approchée de problèmes de multiflot entier et
de multicoupe: algorithmes et complexité. PhD Thesis, CNAM, Paris (2006) (in
French)

3. Bentz, C.: On the complexity of the multicut problem in bounded tree-width graphs
and digraphs. Discrete Applied Mathematics 156, 1908–1917 (2008)

4. Bentz, C.: A simple algorithm for multicuts in planar graphs with outer terminals.
Discrete Applied Mathematics 157, 1959–1964 (2009)

5. Bentz, C.: New results on planar and directed multicuts. In: EUROCOMB 2009
(2009); Electronic Notes in Discrete Mathematics, vol. 34, pp. 207–211 (2009)

6. Cǎlinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs and
digraphs with bounded degree and bounded tree-width. Journal of Algorithms 48,
333–359 (2003)

7. Cheung, K., Harvey, K.: Revisiting a simple algorithm for the planar multiterminal
cut problem. Operations Research Letters 38, 334–336 (2010)

A Polynomial-Time Algorithm for Planar Multicuts 119

8. Colin de Verdière, E., Erickson, J.: Tightening non-simple paths and cycles on
surfaces. In: 17th SODA, pp. 192–201 (2006)

9. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. on Computing 23, 864–894 (1994)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

11. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

12. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and
exact algorithms for vertex multicut in interval and bounded treewidth graphs.
European Journal of Operational Research 186, 542–553 (2008)

13. Hartvigsen, D.: The planar multiterminal cut problem. Discrete Applied Mathe-
matics 85, 203–222 (1998)

14. Klein, P.N., Marx, D.: Solving Planar k-Terminal Cut in O(nc
√

k) Time. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I.
LNCS, vol. 7391, pp. 569–580. Springer, Heidelberg (2012)

15. Marx, D.: A Tight Lower Bound for Planar Multiway Cut with Fixed Number of
Terminals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012, Part I. LNCS, vol. 7391, pp. 677–688. Springer, Heidelberg (2012)

16. Schrijver, A.: Homotopic routing methods. In: Korte, B., Lovasz, L., Prömel, H.J.,
Schrijver, A. (eds.) Paths, Flows and VLSI-Layout. Algorithms and Combinatorics,
vol. 9, pp. 329–371. Springer, Berlin (1990)

17. Schrijver, A.: Disjoint Homotopic Paths and Trees in a Planar Graph. Discrete &
Computational Geometry 6, 527–574 (1991)

18. Yannakakis, M., Kanellakis, P., Cosmadakis, S., Papadimitriou, C.: Cutting and
Partitioning a Graph After a Fixed Pattern. In: Dı́az, J. (ed.) ICALP 1983. LNCS,
vol. 154, pp. 712–722. Springer, Heidelberg (1983)

19. Yeh, W.-C.: A simple algorithm for the planar multiway cut problem. Journal of
Algorithms 39, 68–77 (2001)

	A Polynomial-Time Algorithm for Planar
Multicuts with Few Source-Sink Pairs
	Introduction
	The Starting Point
	Preliminary Definitions and Results
	Description and Proof of the Algorithm
	A Structural Description of Optimal Solutions
	Algorithmic Aspects

	References

