
An Exact Algorithm for Subset Feedback Vertex

Set on Chordal Graphs�

Petr A. Golovach1, Pinar Heggernes1, Dieter Kratsch2, and Reza Saei1

1 Department of Informatics, University of Bergen, Norway
{petr.golovach,pinar.heggernes,reza.saeidinvar}@ii.uib.no

2 LITA, Université de Lorraine - Metz, France
kratsch@univ-metz.fr

Abstract. Given a graph G = (V,E) and a set S ⊆ V , a set U ⊆ V is a
subset feedback vertex set of (G,S) if no cycle inG[V \U] contains a vertex
of S. The Subset Feedback Vertex Set problem takes as input G, S,
and an integer k, and the question is whether (G,S) has a subset feedback
vertex set of cardinality or weight at most k. Both the weighted and the
unweighted versions of this problem are NP-complete on chordal graphs,
even on their subclass split graphs. We give an algorithm with running
time O(1.6708n) that enumerates all minimal subset feedback vertex sets
on chordal graphs with n vertices. As a consequence, Subset Feedback
Vertex Set can be solved in time O(1.6708n) on chordal graphs, both in
the weighted and in the unweighted case. On arbitrary graphs, the fastest
known algorithm for the problems has O(1.8638n) running time.

1 Introduction

Given a graph G = (V,E) and a set S ⊆ V , a set U ⊆ V is a subset feedback
vertex set of (G,S) if no cycle in G[V \ U] contains a vertex of S. A subset
feedback vertex set U is minimal if no subset feedback vertex set of (G,S) is
a proper subset of U . The Subset Feedback Vertex Set problem takes as
input G, S, and an integer k, and the question is whether (G,S) has a subset
feedback vertex set of cardinality at most k. In the weighted version of the
problem, every vertex of G has a weight, and the question is whether there is a
subset feedback vertex set of total weight at most k.

Subset Feedback Vertex Set was introduced by Even et al. [4], and it gen-
eralizes several well-studied problems. When S = V , it is equivalent to the clas-
sical Feedback Vertex Set problem [11], and when |S| = 1, it generalizes the
Multiway Cut problem [7]. Weighted Subset Feedback Vertex Set admits
a polynomial-time constant-factor approximation algorithm [4]. The unweighted
version of the problem is fixed parameter tractable [3]. The only exact algorithm
known for its weighted version is by Fomin et al. [7] and it runs inO(1.8638n) time
and solves the problem by enumerating all minimal subset feedback vertex sets.

As a comparison, the unweighted version of Feeback Vertex Set can be
solved in time O(1.7347n) [9], whereas the best algorithm for its weighted version

� This work has been supported by the European Research Council, the Research
Council of Norway, and the French National Research Agency.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 85–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 P.A. Golovach et al.

runs in time O(1.8638n) and enumerates all minimal feedback vertex sets [5].
Feeback Vertex Set has also been studied on many graph classes, like chordal
graphs and AT-free graphs [1,15], and several positive results exist. This is not
yet the case for Subset Feedback Vertex Set, and no algorithm with a
running time of O(cn) such that c < 1.8637 is known for any significant graph
class. Interestingly, whereas both the weighted and the unweighted versions of
Feeback Vertex Set are solvable in polynomial time on chordal graphs [1,19],
even the unweighted version of Subset Feedback Vertex Set is NP-complete
on chordal graphs; in fact on their restricted subclass split graphs, by a standard
reduction from Vertex Cover [7].

In this paper we give an algorithm with running time O(1.6708n) that enumer-
ates all minimal subset feedback vertex sets when the input graph is chordal. As a
consequence, Subset Feedback Vertex Set can be solved in time O(1.6708n)
on chordal graphs, both in the weighted and in the unweighted case. Our algo-
rithm differs completely from the O(1.8638n) time algorithm of [7] for the general
case, and it heavily uses the structure of chordal graphs. Chordal graphs form one
of the most studied graph classes; they have extensive practical applications in
several fields [10,12,18], and they are crucial in characterizing and understanding
fundamental algorithmic tools, like treewidth.

Enumeration algorithms are central in the field of Exact Exponential Algo-
rithms, as the running times of many exact exponential time algorithms rely on
the maximum number of various objects in graphs [8]. A classical example is the
widely used result of Moon and Moser [16], showing that the maximum number
of maximal cliques or maximal independent sets in an n-vertex graph is 3n/3.
More recently, the maximum numbers and enumeration of objects like minimal
dominating sets, minimal feedback vertex sets, minimal subset feedback ver-
tex sets, minimal separators, and potential maximal cliques, have been studied;
see e.g., [5,6,7,9,13,14,17]. The maximum number of such objects in graphs have
traditionally found independent interest also in graph theory and combinatorics.

The results we present in this paper give an upper bound of O(1.6708n) on the
maximum number of minimal subset feedback vertex sets a chordal graph can
have. A tight bound on the maximum number of minimal feedback vertex sets on
chordal graphs is known to be 1.5848n [2], and this thus gives a lower bound on
the maximum number of minimal subset feedback vertex sets on chordal graphs.
Consequently, our results tighten the gap between the upper and lower bounds on
the maximum number of subset feedback vertex sets on chordal graphs. The cor-
responding gap is much larger on general graphs. There, the maximum numbers
of minimal feedback and subset feedback vertex sets are both O(1.8638n) [5,7],
but no examples of graphs having 1.5927n or more minimal feedback or subset
feedback vertex sets are known [5]. Note that the maximum number of minimal
subset feedback vertex sets can be dramatically different from the maximum
number of minimal feedback vertex sets. Split graphs, which form a subclass of
chordal graphs, have at most n2 minimal feedback vertex sets, whereas they can
have 3n/3 minimal subset feedback vertex sets [7].

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 87

2 Preliminaries

We work with simple undirected graphs. We denote such a graph by G = (V,E),
where V is the set of vertices and E is the set of edges of G. We adhere to the
convention that n = |V |. The set of neighbors of a vertex v ∈ V is denoted by
NG(v). The degree of v, |NG(v)|, is denoted by dG(v). The closed neighborhood
of v is NG[v] = N(v) ∪ {v}. For a vertex subset X ⊆ V , the subgraph of G
induced by X is denoted by G[X]. For ease of notation, we use G− v to denote
the graph G[V \ {v}], and G−X to denote the graph G[V \X].

A path in G is a sequence of distinct vertices such that the next vertex in the
sequence is adjacent to the previous vertex. A cycle is a path with at least three
vertices such that the last vertex is in addition adjacent to the first. Given a
subset S ⊆ V , we call a cycle an S-cycle if it contains a vertex of S. For a cycle
or an S-cycle C, we use V (C) to denote the set of vertices in C. A subset F ⊆ V
will be called a forest if G[F] contains no cycle. Similarly, F is an S-forest if
no cycle in G[F] contains a vertex of S. A graph is connected if there is a path
between every pair of its vertices. A maximal connected subgraph of G is called
a connected component of G. A set X ⊆ V is a clique if uv ∈ E for every pair
of vertices u, v ∈ X ; and X is an independent set if uv /∈ E for every pair of
vertices u, v ∈ X .

A chord of a cycle is an edge between two non consecutive vertices of the cycle.
A graph is chordal if every cycle of length at least 4 contains a chord. Induced
subgraphs of chordal graphs are also chordal [12]. A vertex v is called simplicial
if N(v) is a clique. Every chordal has a simplicial vertex [12]. A graph is a split
graph if its vertex set can be partitioned into a clique and an independent set.
Split graphs are chordal.

Given a set S ⊆ V , a set U ⊆ V is a subset feedback vertex set (sfvs) of (G,S)
if no cycle in G−U contains a vertex of S. Observe that U is a sfvs of (G,S) if
and only if V \ U is an S-forest. If S = V then U is a feedback vertex set (fvs)
of G, and V \ U is a forest. A sfvs U is minimal if no proper subset of U is a
sfvs of (G,S), and an S-forest is maximal if it cannot be extended to a larger
S-forest by including more vertices of G. Clearly, U is a minimal sfvs of (G,S)
if and only if V \ U is a maximal S-forest of G. Consequently, the number of
minimal sfvs of (G,S) is equal to the number of maximal S-forests of G.

Let μ(G,S) denote the number of minimal svfs of (G,S), equivalently the num-
ber of maximal S-forests of G. Observe that μ(G,S) =

∏t
i=1 μ(Gi, S), where

G1, G2, . . . , Gt are the connected components of G. This is because every maxi-
mal S-forest of G is the union of maximal S-forests of the connected components
of G.

Let μ(G) = max{μ(G,S) | S ⊆ V }. Note that μ(G) is lower bounded by
the number of minimal fvs of G. Let H be the complete graph on 5 vertices.
This graph has 10 minimal fvs [2]. Let H� be the graph obtained by taking �
disjoint copies of H , for � ≥ 1. The number of minimal feedback vertex sets of
H� is thus 10� = 10n/5 ≈ 1.5848n. Any graph H� is chordal and hence 10n/5 is
a lower bound on the number of minimal sfvs of chordal graphs, i.e., there is a
chordal graph G = (V,E) and a set S ⊆ V such that (G,S) has 10n/5 minimal

88 P.A. Golovach et al.

sfvs. When it comes to the maximum number of minimal fvs in chordal graphs,
Couturier et al. showed that the above lower bound is also the upper bound [2].
An upper bound on the number of minimal sfvs of chordal graphs better than
the one for general graphs has not been known until the result we present below.

3 Enumerating Minimal Subset Feedback Vertex Sets in
Chordal Graphs

This section is devoted to proving the following theorem.

Theorem 1. All minimal subset feedback vertex sets of a chordal graph on n
vertices can be listed in O(1.6708n) time.

Two corollaries follow from the above result. Corollary 1 follows immediately,
whereas Corollary 2 follows by noting that any sfvs of minimum cardinality or
minimum weight is a minimal sfvs. Hence we can check the cardinality or weight
of each generated minimal sfvs, and compare the smallest one with the given
bound k of the input.

Corollary 1. A chordal graph on n vertices has at most O(1.6708n) minimal
subset feedback vertex sets.

Corollary 2. Both weighted and unweighted versions of Subset Feedback
Vertex Set can be solved in O(1.6708n) time on chordal graphs.

To prove Theorem 1, we will describe an algorithm that takes as input a chordal
graph G = (V,E) and a vertex subset S ⊆ V , and lists all maximal S-forests
of G. Our algorithm is a recursive branching algorithm; every maximal S-forest
of G will be present at some leaf of the corresponding branching tree, whereas
some of the leaves might not correspond to maximal S-forests. Every recursive
call has input (G′, F, U,R), where F is the set of vertices of G placed so far in
an S-forest of G, U is the set of vertices so far deleted from G and hence placed
in the corresponding sfvs, R ⊆ F is the set of vertices that are placed in F and
that are no longer relevant for making further decisions, and G′ = G− (U ∪R).
We call the vertices in R hidden. The vertices in V \ (U ∪F) are called undecided
vertices. As G and S do not change throughout the algorithm, they are not parts
of the input to the recursive calls. Given G and S, the main program runs the
recursive branching algorithm on (G, ∅, ∅, ∅).

If at some call (G′, F, U,R), the graph G′ has no undecided vertices, then
we are at a leaf of the branching tree, and the algorithm stops after checking
whether F is a maximal S-forest of G. If F is a maximal S-forest, it is added
to the list of S-forests that will be output. If G′ has undecided vertices, the
algorithm continues, but first it checks whether F is an S-forest. If not, then the
algorithm stops, discards F since it can never lead to a maximal S-forest, and no
new subproblems are generated from this instance. If the algorithm continues,
then since G′ is chordal, we know that it has a simplicial vertex. The algorithm

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 89

chooses an arbitrary simplicial vertex v of G′ and makes choices depending on
v. Vertex v might already be placed in F or not; these two cases will be handled
separately in the first two subsections below. The following operations will be
used in our algorithm:

– Deleting a vertex x: deletes x from G′ and adds it to U . Vertex x will be
permanently deleted from G′ and it will be a part of the suggested sfvs U in
all subsequent subproblems.

– Adding a vertex x to F : adds x to F . Vertex x will be a part of F in all
subsequent subproblems, and will never be considered for deletion.

– Hiding a vertex x of F : this operation is only applicable on some simplicial
vertices of G′ that are already placed in F . We apply it when x is no longer
relevant for making further decisions on the remaining vertices of G′ − F .
When x is hidden, it is added to R and removed from G′ but it remains
a part of F in all subsequent subproblems, and in particular it remains in
G− U .

Throughout the algorithm we will keep the following invariant.

Invariant 1. Let (G′, F, U,R) be an instance. For any S-cycle C in G−U that
contains a vertex of R, there is an S-cycle C′ in G′ such V (C′) = V (C) \R.

Invariant 1 is clearly true when R is empty. Whenever we hide a vertex v, we
will argue that the invariant is still true after v is hidden. The next lemma shows
that we can safely ignore the vertices in R when we make further decisions on
G− U , and hence it is safe to work on G′ = G− (U ∪R) instead of G− U .

Lemma 1. Let (G′, F, U,R) be an instance. Under Invariant 1, F ′ is a maximal
S-forest of G− U such that F ⊆ F ′ if and only if F ′ \R is a maximal S-forest
of G′.

Proof. Let F ′ be a maximal S-forest of G − U such that F ⊆ F ′. Then clearly
F ′ \ R is an S-forest in G′. Let us argue for maximality. Since F ′ is maximal,
for any vertex x of G − (U ∪ F ′), x is involved in an S-cycle C in G − U such
that V (C) ⊆ F ′∪{x}. Observe that since R ⊆ F ⊆ F ′, any such vertex x is also
a vertex in G′. By Invariant 1, x is involved in an S-cycle C′ in G′ such that
V (C′) = V (C)\R. Since G′ = G−(U∪R), it follows that V (C′) ⊆ (F ′\R)∪{x}.
Hence x cannot be added to F ′ \R, which is thus a maximal S-forest of G′.

For the other direction, assume that F ′ \R is a maximal S-forest of G′. Hence
every vertex x in G′ outside of F ′ \R is involved in an S-cycle C in G′ such that
V (C) ⊆ (F ′ \R)∪{x}. Since G−U is a supergraph of G′, C is also an S-cycle in
G− U . Hence no more vertices can be added to F ′, which is thus maximal. Let
us argue that F ′ is an S-forest. Assume for contradiction that it is not. Then a
vertex y of R is involved in an S-cycle C in G− U such that V (C) ⊆ F ′. Then
by Invariant 1, there is an S-cycle C′ in G′ such that V (C′) ⊆ F ′ \ R, which
contradicts the assumption that F ′ \R is an S-forest of G′. �	
The measure of an instance (G′, F, U,R) is the number of undecided vertices, i.e.,
the vertices in G′−F . In the beginning of the algorithm all vertices are undecided

90 P.A. Golovach et al.

and hence the measure of (G, ∅, ∅, ∅) is n. The measure drops by the number of
vertices deleted from G′ plus the number of vertices added to F . Hiding a vertex
does not affect the measure of an instance. In the call with input (G′, F, U,R),
the algorithm will further branch into subproblems in which some vertices will be
deleted from G′ and some vertices will be placed in F , and the measure will drop
accordingly. If at a step, we branch into t new subproblems, where the measure
decreases by c1, c2, . . . , ct in each subproblem, respectively, we get the branching
vector (c1, c2, . . . , ct). At each branching point, we will give the corresponding
branching vector to prepare for the running time analysis, which will be given
in the last subsection of this section.

We now describe the reduction and the branching rules of the algorithm when
G′ has undecided vertices and F is an S-forest. Let (G′, F, U,R) be a call of the
algorithm satisfying this. In the below, we let N(v) = NG′(v), N [v] = NG′ [v],
and d(v) = dG′(v). First, we state three reduction rules. These rules are applied
recursively on the considered instance as long as it is possible to apply at least
one of them. It is easy to see that the first reduction rule is safe:

Rule A. If in G′ an undecided vertex v is adjacent to vertices u,w ∈ F such
that uw ∈ E and {u, v, w} ∩ S �= ∅, then delete v, i.e., reduce to the subproblem
(G′ − v, F, U ∪ {v}, R).

The following observation immediately results in the next reduction rule: Rule B.

Observation 1 Let v be a vertex of G′ such that no S-cycle of G′ contains v.
Then v must be added to F if it is not in F , and it is then safe to hide v.

Rule B. If G′ has a vertex v with d(v) ≤ 1, then add v to F if v is undecided, and
when v ∈ F then hide v, i.e., reduce to the subproblem (G′−v, F∪{v}, U,R∪{v}).
Since G′ is not empty and it is chordal, it has a simplicial vertex. With the
following observation we obtain the next reduction rule: Rule C.

Observation 2 Let v be a simplicial vertex of G′. If N [v]∩S = ∅, then v must
be added to F if it is not already in F , and it is then safe to hide v.

Rule C. If there is a simplicial vertex v such that N [v] ∩ S = ∅, then add v to
F if v is undecided, and when v ∈ F then hide v, i.e., reduce to the subproblem
(G′ − v, F ∪ {v}, U,R ∪ {v}).
If we cannot apply Rules A–C, then we start branching. To do it, we pick a
simplicial vertex v, hence N(v) is a clique. If vertex v is undecided then we
proceed as described in the first subsection below. If v ∈ F then we proceed as
described in the second subsection below. Notice that by Rule B, d(v) ≥ 2.

3.1 The Chosen Simplicial Vertex v Is Undecided

Case 3.1.1: v /∈ F , v ∈ S, and N(v) ∩ F = ∅.

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 91

If d(v) = 2 then let u1 and u2 be the two neighbors of v. Since v ∈ S, at most
two vertices from {v, u1, u2} can be added to F . Note however that, if exactly
one of u1, u2 is added to F and the other one is deleted, then v must also be
added to F by Observation 1. This implies that if v is deleted then both u1 and
u2 must be added to F . Consequently, we branch into the following subproblems,
which cover all possibilities, and we obtain (3, 3, 3, 3) as the branching vector:

– Vertex v is deleted from G′ and added to U ; vertices u1 and u2 are added
to F : the decrease in the measure is 3.

– Vertex u1 is deleted from G′ and added to U ; vertices v and u2 are added
to F : the decrease is 3.

– Vertex u2 is deleted from G′ and added to U ; vertices v and u1 are added
to F : the decrease is 3.

– Vertices u1 and u2 are deleted from G′ and added to U ; vertex v is added
to F : the decrease is 3.

If d(v) = 3 then let u1, u2, u3 be the three neighbors of v. Again, at most two
vertices from {v, u1, u2, u3} can be added to F . As above, we will branch on the
possibilities of adding v and at most one of its neighbors into F and deleting
the other neighbors, or deleting v. For the choice of deleting v, we observe the
following: either u1 is added to F or u1 is also deleted. If both v and u1 are
deleted, then both u2 and u3 must be added to F , by Observation 1. Conse-
quently, we branch into the following subproblems, which cover all possibilities,
and we obtain (4, 4, 4, 4, 2, 4) as the branching vector:

– Vertices u2 and u3 are deleted from G′ and added to U ; vertices v and u1

are added to F : the decrease is 4.
– Vertices u1 and u3 are deleted from G′ and added to U ; vertices v and u2

are added to F : the decrease is 4.
– Vertices u1 and u2 are deleted from G′ and added to U ; vertices v and u3

are added to F : the decrease is 4.
– Vertices u1, u2, and u3 are deleted from G′ and added to U ; vertex v is

added to F : the decrease is 4.
– Vertex v is deleted from G′ and added to U ; vertex u1 is added to F : the

decrease is 2.
– Vertices v and u1 are deleted from G′ and added to U ; vertices u2 and u3

are added to F : the decrease is 4.

In the rest we assume that t = d(v) ≥ 4. By the same arguments as above, either
v is deleted or it is added to F with at most one of its neighbors. Consequently,
we branch into the following subproblems, where u1, u2, . . . , ut are the neighbors
of v in G′:

– Vertex v is deleted from G′ and added to U ; nothing else changes: the de-
crease in the measure is 1.

– Vertex v is added to F ; all of its neighbors are deleted from G′ and added
to U : the decrease in the measure is t+ 1.

92 P.A. Golovach et al.

– Vertices v and u1 are added to F ; all other neighbors of v are deleted from
G′ and added to U : the decrease is t+ 1.

– The last step above is repeated with each of the other neighbors of v instead
of u1: the decrease is t+ 1 in each of these t− 1 additional cases.

The branching vector is (1, t+ 1, t+ 1, . . . , t+ 1), where the term t+ 1 appears
t+ 1 times, and t ≥ 4.

Case 3.1.2: v /∈ F , v ∈ S, and N(v) ∩ F �= ∅.
As we cannot apply Rule A for the considered instance, |N(v)∩F | = 1. Since

t = d(v) ≥ 2, we know that v has exactly one neighbor in F , say u1 ∈ F ,
whereas the rest of its neighbors u2, . . . , ut are undecided. We branch into the
two possibilities of adding v to F or deleting v. If we add v to F , since one
neighbor is already in F then none of the t − 1 undecided neighbors can be
added, and therefore we delete them from G′ and add them to U . We get the
following two subproblems: (G′ − v, U ∪ {v}, F,R) and (G′ − {u2, . . . , ut}, U ∪
{u2, . . . , ut}, F ∪{v}, R). In the first subproblem the measure decreases by 1, and
in the second it decreases by t. We get the branching vector (1, t) with t ≥ 2.

Case 3.1.3: v /∈ F , v /∈ S, and N(v) ∩ F = ∅.
Since we cannot apply Rule C, v has at least one neighbor belonging to S.
If d(v) = 2, let u1 and u2 be the neighbors of v. Since u1 or u2 belongs to S, we

know that at most two vertices from {v, u1, u2} can be added to F . Consequently,
this case is identical to the subcase of Case 3.1.1 handling d(v) = 2. We branch
into the same subproblems and we obtain (3, 3, 3, 3) as the branching vector.

If d(v) = 3, let u1, u2, u3 be the neighbors of v. Assume without loss of gen-
erality that u1 ∈ S. This case is very similar to the subcase of Case 1 handling
d(v) = 3, but now we branch on u1 instead of v. If u1 is added to F then at most
one of v, u2, u3 can be added to F . If u1 is deleted then either v is added to F or
v is also deleted. If v is also deleted then both u2 and u3 must be added to F , by
Observation 1. Consequently, we branch into the following subproblems, which
cover all possibilities, and we obtain (4, 4, 4, 4, 2, 4) as the branching vector:

– Vertices u2 and u3 are deleted from G′ and added to U ; vertices u1 and v
are added to F : the decrease is 4.

– Vertices v and u3 are deleted from G′ and added to U ; vertices u1 and u2

are added to F : the decrease is 4.
– Vertices v and u2 are deleted from G′ and added to U ; vertices u1 and u3

are added to F : the decrease is 4.
– Vertices v, u2, and u3 are deleted from G′ and added to U ; vertex u1 is

added to F : the decrease is 4.
– Vertex u1 is deleted from G′ and added to U ; vertex v is added to F : the

decrease is 2.
– Vertices u1 and v are deleted from G′ and added to U ; vertices u2 and u3

are added to F : the decrease is 4.

If t = d(v) ≥ 4, then let u1, u2, . . . , ut be the neighbors of v in G′, and assume
without loss of generality that u1 ∈ S. We will branch on the two possibilities

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 93

of adding u1 to F and deleting u1. If we add u1 to F then we can add at most
one other vertex of N [v] to F and all others must be deleted. Consequently, we
branch into the following subproblems:

– Vertex u1 is deleted from G′ and added to U ; nothing else changes: the
decrease in the measure is 1.

– Vertex u1 is added to F ; vertices v, u2, . . . , ut are deleted from G′ and added
to U : the decrease in the measure is t+ 1.

– Vertices u1 and v are added to F ; all other neighbors of v are deleted from
G′ and added to U : the decrease is t+ 1.

– Vertices u1 and u2 are added to F ; v and all other neighbors of v are deleted
from G′ and added to U : the decrease is t+ 1.

– The last step above is repeated with each of the neighbors u3, . . . , ut of v
instead of u2: the decrease is t+ 1 in each of these t− 2 additional cases.

The branching vector is (1, t+ 1, t+ 1, . . . , t+ 1), where the term t+ 1 appears
t+ 1 times, with t ≥ 4.

Case 3.1.4: v /∈ F , v /∈ S, and N(v) ∩ F �= ∅.
As we cannot apply Rule C, N(v) ∩ S �= ∅. Suppose that |N(v) ∩ F | ≥ 2.

If there is a vertex u ∈ (N(v) \ F) ∩ S, then Rule A can be applied for u.
Consequently, there is a vertex u ∈ N(v) ∩ F ∩ S, but then Rule A can be
applied for v. It means that v has exactly one neighbor u in F . We take action
depending on whether or not u belongs to S:

If u ∈ S, then at most one more vertex from N [v] can be added to F , and all
others must be deleted from G′ and added to U . We get t = d(v) subproblems in
each of which a vertex of N [v]\{u} is added to F and all others are deleted from
G′ and added to U . Observe that we do not get a subproblem where all vertices
of N [v] \ {u} are deleted from G′, due to Observation 1. Thus we get (t, . . . , t)
as the branching vector, where the term t is repeated t times, and t ≥ 2.

If u /∈ S, then we know that v has another neighbor w ∈ S. We branch into
two subproblems resulting from adding w to F or deleting w from G′. If we add w
to F , then since u is also in F , no other vertex from N [v] can be added to F and
hence they must all be deleted from G′ and added to U . We get a subproblem
in which the measure decreases by t = d(v). In the other subproblem we simply
delete w from G′ and add it to U ; the decrease is 1. Hence we get (1, t) as the
branching vector for this case, where t ≥ 2.

3.2 The Chosen Simplicial Vertex v Belongs to F

Case 3.2.1: v ∈ F and v ∈ S.
Because G[F] has no S-cycles, |N(v) ∩ F | ≤ 1. If N(v) ∩ F �= ∅, then Rule

A can be applied for the vertices N(v) \ F . It follows that N(v) ∩ F = ∅. Since
v ∈ S and v ∈ F , at most one vertex of N(v) can be added to F , regardless of
how many of these are in S.

If d(v) = 2 then let u and w be the two neighbors of v. We branch on the
two possibilities of either adding u to the S-forest F or adding u to the subset

94 P.A. Golovach et al.

feedback vertex set U . In the latter subproblem we delete u from G′ and add it
to U ; the decrease is 1. In the first subproblem, we add u to F , and consequently
we must delete w from G′ and add it to U ; the decrease is 2. We get (1, 2) as
the branching vector.

If t = d(v) ≥ 3 then we branch into the possibilities of adding exactly one
vertex of N(v) to F and deleting all others from G′, or deleting all vertices of
N(v) from G′. We get t subproblems in which one vertex is added to F and all
other vertices of N(v) are deleted from G′ and added to U , and one subproblem
in which all vertices of N(v) are deleted from G′ and added to U . In each of these
t+ 1 subproblems the decrease is t. Hence we get (t, t, t, . . . , t) as the branching
vector, where the term t is repeated t+ 1 times, and t ≥ 3.

Case 3.2.2: v ∈ F and v /∈ S.
Suppose that N(v) ∩ F �= ∅. If a neighbor u of v is both in F and in S, then

all other neighbors of v are undecided, since G[F] has no S-cycles. Then we can
apply Rule A for these neighbors of v. If there is u ∈ (N(v) ∩ F) \ S, then Rule
A can be applied for all w ∈ N(v) ∩ S. It means that N(v) ∩ S = ∅, but in this
case we can apply Rule C. Therefore, N(v) ∩ F = ∅. Because we cannot apply
Rule C, v has at least one neighbor that is undecided and belongs to S.

Recall that t = d(v) ≥ 2, and let u1, u2, . . . , ut be the neighbors of v, and as-
sume without loss of generality that u1 ∈ S. We branch into the two possibilities
of either deleting u1 from G′ and adding it to U , or adding u1 to F . In the latter
case, no other neighbor of N(v) can be added to F , since they all form S-cycles
with v and u1, and hence they must all be deleted from G′ and added to U .
We get one subproblem where the decrease is 1, and one subproblem where the
decrease is t. This gives us the branching vector (1, t) with t ≥ 2.

The description of the algorithm is now complete. The correctness of the algo-
rithm follows from Invariant 1, Lemma 1, Observations 1, 2, and the arguments
given for each case, observing that we have taken care of all possible cases. In
the next section, we analyze the running time.

3.3 Running Time Analysis

In each of the branching rules, the measure decreases as described, and in each
of the reduction rules, either the measure decreases or at least one vertex of
F is deleted from G′. When all vertices of G′ are either in U or in F , then the
recurrence stops. At this point we need to check whether F is a maximal S-forest
of G. This can easily be done in polynomial time; F is an S-forest if and only if
every vertex of S ∩ F is incident in G to edges that are bridges. Maximality is
also easy to check since if a subset X of V \ F can be added to F to obtain a
larger S-forest, then also a single vertex of X can be added, so we can repeatedly
check possible extensions by single vertices. Consequently, the running time will
be upper bounded by the number of leaves in the search tree.

For the analysis of the number of leaves T (n) in the search tree, we use
standard terminology [8]. In particular, a branching vector (c1, c2, . . . , ct) results
in the recurrence T (n) ≤ T (n−c1)+T (n−c2)+. . .+T (n−ct). In this case T (n) =

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 95

O∗(αn), where α is the unique positive real root of xn−xn−c1−. . .−xn−ct = 0 [8],
and the O∗-notation suppresses polynomial factors. The number α is called the
branching number of this branching vector. It is common to round α to the fourth
digit after the decimal point. By rounding the last digit up, we can useO-notation
instead of O∗-notation [8]. As different branching vectors are involved at different
steps of our algorithm, the branching vector with the highest branching number
gives an upper bound on T (n).

We now list the branching vectors that have appeared during the description
of the algorithm, in the order of first appearence. We give the branching number
for each of them; however we do not include here the explicit calculations.

– (3, 3, 3, 3): the branching number is ≈ 1.5875.
– (4, 4, 4, 4, 2, 4): the branching number is ≈ 1.6708.
– (1, t, t, t, t, . . . , t), where the term t appears t times, and t ≥ 5: (1, 5, 5, 5, 5, 5)

gives the maximum branching number for this vector, which is ≈ 1.6595.
– (1, t), t ≥ 2: (1, 2) gives the maximum branching number for this branching

vector, which is ≈ 1.6181.
– (t, . . . , t), where the term t is repeated t times, and t ≥ 2: (3, 3, 3) gives the

maximum branching number for this vector, which is ≈ 1.4423.
– (t, t, . . . , t), where the term t is repeated t + 1 times, and t ≥ 3: (3, 3, 3, 3)

gives the maximum branching number for this vector, which is ≈ 1.5875.
– (1, 2): the branching number is ≈ 1.6181.

The largest branching number is 1.6708, and it is obtained for (4, 4, 4, 4, 2, 4).
Thus the running time of our algorithm is O(1.6708n).

4 Concluding Remarks

As mentioned earlier, there are chordal graphs with 10n/5 ≈ 1.5848 minimal sfvs.
We have shown that the maximum number of minimal sfvs in chordal graphs
is O(1.6708n). Could it be that the lower bound is also an upper bound or are
there chordal graphs with more than 10n/5 minimal sfvs? Is there an algorithm
for Subset Feeback Vertex Set on chordal graphs with running time O(cn)
such that c < 1.6707n?

The lower bound on the maximum number of minimal sfvs of a split graph
is 3n/3 [7], and it is obtained when S is equal to the independent set. Is there
a better upper bound for split graphs than for chordal graphs? Does Subset
Feeback Vertex Set admit a faster solution on split graphs than on chordal
graphs?

We conclude by asking whether all minimal sfvs can be enumerated in time
that is polynomial in the number of minimal sfvs. Such an algorithm is known
for enumerating minimal fvs in general graphs [17]. It would be very interesting
to have such an algorithm for sfvs, even on chordal graphs or split graphs.

96 P.A. Golovach et al.

References

1. Corneil, D.G., Fonlupt, J.: The complexity of generalized clique covering. Disc.
Appl. Math. 22, 109–118 (1988/1989)

2. Couturier, J.-F., Heggernes, P., van’t Hof, P., Villanger, Y.: Maximum number of
minimal feedback vertex sets in chordal graphs and cographs. In: Proceedings. of
COCOON 2012. LNCS (to appear, 2012)

3. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback Ver-
tex Set Is Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part I. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)

4. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback
vertex set problem. SIAM J. Comput. 30(4), 1231–1252 (2000)

5. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

6. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds
via measure and conquer: Bounding minimal dominating sets and applications.
ACM Trans. Algorithms 5(1) (2008)

7. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumer-
ating Minimal Subset Feedback Vertex Sets. In: Dehne, F., Iacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 399–410. Springer, Heidelberg (2011)

8. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. Springer (2010)

9. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Proceedings of STACS 2010, pp. 383–394 (2010)

10. George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc. (1981)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman and Co. (1978)
12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of

Disc. Math. 57 (2004)
13. Gaspers, S., Mnich, M.: Feedback Vertex Sets in Tournaments. In: de Berg, M.,

Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 267–277. Springer, Hei-
delberg (2010)

14. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of Minimal Dom-
inating Sets and Variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011.
LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011)

15. Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set on AT-free graphs. Disc.
Appl. Math. 156, 1936–1947 (2008)

16. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
17. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feed-

back problems. Disc. Appl. Math. 117, 253–265 (2002)
18. Semple, C., Steel, M.: Phylogenetics. Oxford lecture series in mathematics and its

applications (2003)
19. Spinrad, J.P.: Efficient graph representations. Fields Institute Monograph Series,

vol. 19. AMS (2003)

	An Exact Algorithm for Subset Feedback Vertex
Set on Chordal Graphs
	Introduction
	Preliminaries
	Enumerating Minimal Subset Feedback Vertex Sets in Chordal Graphs
	The Chosen Simplicial Vertex v Is Undecided
	The Chosen Simplicial Vertex v Belongs to F
	Running Time Analysis

	Concluding Remarks

