

Lecture Notes in Computer Science 7535
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Dimitrios M. Thilikos
Gerhard J. Woeginger (Eds.)

Parameterized and
Exact Computation
7th International Symposium, IPEC 2012
Ljubljana, Slovenia, September 12-14, 2012
Proceedings

13

Volume Editors

Dimitrios M. Thilikos
National and Kapodistrian University of Athens
Department of Mathematics
Panepistimioupolis
15784 Athens, Greece
E-mail: sedthilk@thilikos.info

Gerhard J. Woeginger
Eindhoven University of Technology
Department of Mathematics and Computer Science
P.O. Box 513
5600 MB Eindhoven, The Netherlands
E-mail: gwoegi@win.tue.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33292-0 e-ISBN 978-3-642-33293-7
DOI 10.1007/978-3-642-33293-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012946191

CR Subject Classification (1998): F.2.1-3, G.1-2, G.2.3, I.3.5, G.4, E.1, I.2.8

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the 23 papers presented at the 7th Interna-
tional Symposium on Parameterized and Exact Computation, IPEC 2012
(ipec2012.isoftcloud.gr), held on September 12–14, 2012 as part of the ALGO
2012 (algo12.fri.uni-lj.si) conference in Ljubljana (Slovenia). IPEC is an interna-
tional symposium series that covers research on all aspects of parameterized and
exact algorithms and complexity. The workshop series started in 2004 in Bergen
(Norway) as a biennial event, and in 2008 became an annual event. The first four
workshops in the series used the five-letter acronym IWPEC (which was bulky
and hard to pronounce), whereas from the fifth workshop onwards the catchy
four-letter acronym IPEC has been used. Over the years IPEC has become very
visible and it has grown into one of the main events for the algorithmics and
complexity community.

The IPEC 2012 plenary keynote talks were given by Andreas Björklund
(Lund University) on “The Path Taken for k-Path” and by Dániel Marx (MTA
SZTAKI) on “Randomized Techniques for Parameterized Algorithms”. We had
two additional invited tutorial speakers: Micha�l Pilipczuk (University of Bergen)
speaking on lower bounds for polynomial kernelization, and Saket Saurabh (Chen-
nai) speaking on subexponential parameterized algorithms.

Altogether IPEC 2012 received 37 extended abstracts. Each submission was
reviewed by at least three reviewers. The Program Committee thoroughly dis-
cussed the submissions in electronic meetings using the EasyChair system, and
selected 23 papers for presentation. We expect the full versions of the papers
contained in this volume to be submitted for publication in refereed journals.

Many people contributed to the smooth running and the success of IPEC
2012. In particular our thanks go

– to all authors who submitted their current research to IPEC
– to all our reviewers and subreferees whose expertise flowed into the decision

process
– to the members of the Program Committee who graciously gave their time

and energy
– to the members of the Local Organizing Committee who made the conference

possible
– to Charalampos Tampakopoulos for his web-hosting services via isoftcloud.gr
– to the EasyChair conference management system for hosting the evaluation

process.

July 2012 Dimitrios M. Thilikos
Gerhard J. Woeginger

Organization

Program Committee

Jianer Chen Texas A&M University, USA
Marek Cygan University of Warsaw, Poland
Henning Fernau University of Trier, Germany
Fedor V. Fomin University of Bergen, Norway
Martin Grohe Humboldt University Berlin, Germany
Daniel Král’ Charles University Prague, Czech Republic
Stefan Kratsch Max-Planck-Institut für Informatik, Saarbrücken,

Germany
Mikko Koivisto University of Helsinki, Finland
Igor Razgon University of Leicester, UK
Saket Saurabh Institute of Mathematical Sciences, Chennai, India
Dimitrios M. Thilikos National and Kapodistrian University of Athens,

Greece
Erik Jan van Leeuwen Sapienza University of Rome, Italy
Magnus Wahlström Max-Planck-Institut für Informatik, Saarbrücken,

Germany
Gerhard Woeginger Eindhoven University of Technology,

The Netherlands

Organization Committee

Andrej Brodnik
Uroš Čibej
Gašper Fele-Žorž
Matevž Jekovec
Jurij Mihelič
Borut Robič
Andrej Tolić

External Reviewers

Faisal Abu-Khzam
Mohammadhossein

Bateni
Sergio Bermudo
René Van Bevern
Ljiljana Brankovic
Peter Damaschke

Samir Datta
Anuj Dawar
Holger Dell
P̊al Drange
Andrew Drucker
Serge Gaspers
Petr Golovach

Fabrizio Grandoni
Sylvain Guillemot
Jiong Guo
Danny Hermelin
Petr Hliněný
Bart Jansen
Iyad Kanj

VIII Organization

Petteri Kaski
Pavel Klav́ık
�Lukasz Kowalik
Daniel Lokshtanov
Daniel Marx
Daniel Meister
Matthias Mnich

Jan Obdržálek
Marcin Pilipczuk
Micha�l Pilipczuk
Marcus Ritt
Noy Rotbart
Ignasi Sau
Pascal Schweitzer

Narges Simjour
Karolina Soltys
Ondřej Suchý
Till Tantau
Yngve Villanger
Ryan Williams

Table of Contents

The Path Taken for k-Path . 1
Andreas Björklund

Randomized Techniques for Parameterized Algorithms 2
Dániel Marx

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 3
Marcin Pilipczuk and Micha�l Pilipczuk

The Exponential Time Hypothesis and the Parameterized Clique
Problem . 13

Yijia Chen, Kord Eickmeyer, and Jörg Flum

New Results on Polynomial Inapproximability and Fixed Parameter
Approximability of edge dominating set . 25

Bruno Escoffier, Jérôme Monnot, Vangelis Th. Paschos, and
Mingyu Xiao

A New Algorithm for Parameterized MAX-SAT . 37
Ivan Bliznets and Alexander Golovnev

Restricted and Swap Common Superstring: A Parameterized View 49
Paola Bonizzoni, Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis

Nonblocker in H-Minor Free Graphs: Kernelization Meets
Discharging . 61

�Lukasz Kowalik

Some Definitorial Suggestions for Parameterized Proof Complexity 73
Jörg Flum and Moritz Müller

An Exact Algorithm for Subset Feedback Vertex Set on Chordal
Graphs . 85

Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Reza Saei

Preprocessing Subgraph and Minor Problems: When Does a Small
Vertex Cover Help? . 97

Fedor V. Fomin, Bart M.P. Jansen, and Micha�l Pilipczuk

A Polynomial-Time Algorithm for Planar Multicuts with Few
Source-Sink Pairs . 109

Cédric Bentz

X Table of Contents

Instance Compression for the Polynomial Hierarchy and beyond 120
Chiranjit Chakraborty and Rahul Santhanam

Polynomial Time and Parameterized Approximation Algorithms for
Boxicity . 135

Abhijin Adiga, Jasine Babu, and L. Sunil Chandran

Homomorphic Hashing for Sparse Coefficient Extraction 147
Petteri Kaski, Mikko Koivisto, and Jesper Nederlof

Fast Monotone Summation over Disjoint Sets . 159
Petteri Kaski, Mikko Koivisto, and Janne H. Korhonen

Weighted Counting of k-matchings Is #W[1]-Hard 171
Markus Bläser and Radu Curticapean

Computing Directed Pathwidth in O(1.89n) Time . 182
Kenta Kitsunai, Yasuaki Kobayashi, Keita Komuro,
Hisao Tamaki, and Toshihiro Tano

MSOL Restricted Contractibility to Planar Graphs 194
James Abello, Pavel Klav́ık, Jan Kratochv́ıl, and Tomáš Vyskočil

On the Space Complexity of Parameterized Problems 206
Michael Elberfeld, Christoph Stockhusen, and Till Tantau

On Tractable Parameterizations of Graph Isomorphism 218
Adam Bouland, Anuj Dawar, and Eryk Kopczyński

Parameterized Algorithmics and Computational Experiments for
Finding 2-Clubs . 231

Sepp Hartung, Christian Komusiewicz, and André Nichterlein

Finding Dense Subgraphs of Sparse Graphs . 242
Christian Komusiewicz and Manuel Sorge

Enumerating Neighbour and Closest Strings . 252
Naomi Nishimura and Narges Simjour

An Improved Kernel for the Undirected Planar Feedback Vertex Set
Problem . 264

Faisal N. Abu-Khzam and Mazen Bou Khuzam

Author Index . 275

The Path Taken for k-Path

Andreas Björklund

Department of Computer Science, Lund University, Sweden
andreas.bjorklund@yahoo.se

Abstract. We give a historical account of the parametrized results for
the k-Path problem: given a graph G and a positive integer k, is there a
simple path in G of length k. Throughout the years several ingenious ap-
proaches have been used, steadily decreasing the run time bound. More-
over, the techniques used have often found lots of other applications. We
will revisit some of the old results, as well as cover the state-of-the-art
techniques based on algebraic sieves. We will also briefly talk about what
is known about counting k-paths.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Randomized Techniques

for Parameterized Algorithms�

Dániel Marx

Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI),

Budapest, Hungary
dmarx@cs.bme.hu

Abstract. Since the introduction of the Color Coding technique in 1994
by Alon, Yuster, and Zwick, randomization has been part of the toolkit
for proving fixed-parameter tractability results. It seems that random-
ization is very well suited to parameterized algorithms: if the task is to
find a solution of size k and only those random choices need to be correct
that are directly related to the solution, then typically we can bound the
error probability by a function of k. The talk will overview through var-
ious concrete examples how randomization appears in fixed-parameter
tractability results. We argue that in many cases randomization appears
in form of a reduction: it allows us to reduce the problem we are trying
to solve to an easier and more structured problem.

� Research supported by the European Research Council (ERC) grant
“PARAMTIGHT: Parameterized complexity and the search for tight complexity
results,” reference 280152.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, p. 2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Finding a Maximum Induced Degenerate

Subgraph Faster Than 2n

Marcin Pilipczuk1,� and Micha�l Pilipczuk2,��

1 Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl

2 Department of Informatics, University of Bergen, Norway
michal.pilipczuk@ii.uib.no

Abstract. In this paper we study the problem of finding a maximum
induced d-degenerate subgraph in a given n-vertex graph from the point
of view of exact algorithms. We show that for any fixed d one can find a
maximum induced d-degenerate subgraph in randomized (2− εd)

nnO(1)

time, for some constant εd > 0 depending only on d. Moreover, our
algorithm can be used to sample inclusion-wise maximal induced d-
degenerate subgraphs in such a manner that every such subgraph is
output with probability at least (2 − εd)

−n; hence, we prove that their
number is bounded by (2− εd)

n.

1 Introduction

The theory of exact computations studies the design of algorithms for NP-hard
problems that compute the answer optimally, however using possibly exponential
time. The goal is to limit the exponential blow-up in the best possible running-
time guarantee. For some problems, like Independent Set [1], Dominating

Set [1, 2], and Bandwidth [3] the research concentrates on achieving better and
better constants in the bases of exponents. However, for many important compu-
tational tasks designing even a routine faster than trivial brute-force solution or
straightforward dynamic program is a challenging combinatorial question; the
answer to this question can provide valuable insight into the structure of the
problem. Perhaps the most prominent among recent developments in breaking
trivial barriers is the algorithm for Hamiltonian Cycle of Björklund [4], but
a lot of effort is put also into less fundamental problems, like Maximum In-

duced Planar Graph [5] or a scheduling problem 1|prec|
∑

Ci [6], among
many others [7–12]. However, many natural and well-studied problems still lack
exact algorithms faster than the trivial ones; the most important examples are
TSP, Permanent, Set Cover, #Hamiltonian Cycles and SAT. In par-
ticular, hardness of SAT is the starting point for the Strong Exponential Time
Hypothesis of Impagliazzo and Paturi [13, 14], which is used as an argument that
other problems are hard as well [15–18].

� Partially supported by NCN grant N206567140 and Foundation for Polish Science.
�� Partially supported by European Research Council (ERC) Grant “Rigorous Theory

of Preprocessing”, reference 267959.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 3–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 M. Pilipczuk and M. Pilipczuk

A group of tasks we are particularly interested in in this paper are the prob-
lems that ask for a maximum size induced subgraph belonging to some class Π .
If belonging to Π can be recognized in polynomial time, then we have an ob-
vious brute-force solution working in 2nnO(1) time that iterates through all the
subsets of vertices checking which of them induce subgraphs belonging to Π .
Note that the classical Independent Set problem can be formulated in this
manner for Π being the class of edgeless graphs, while if Π is the class of forests
then we arrive at the Maximum Induced Forest, which is dual to Feedback

Vertex Set. For both these problems algorithms with running time of form
(2 − ε)n for some ε > 0 are known [1, 11, 12]. The list of problems admitting
algorithms with similar complexities includes also Π being the classes of regular
graphs [19], graphs of small treewidth [20], planar graphs [5], 2- or 3-colourable
graphs [21], bicliques [22] or graphs excluding a forbidden subgraph [23].

The starting point of our work is the question raised by Fomin et al. in [5].
Having obtained an algorithm finding a maximum induced planar graph in time
O(1.7347n), they ask whether their result can be extended to graphs of bounded
genus or even to H-minor-free graphs for fixed H . Note that all these graph
classes are hereditary and consist of sparse graphs, i.e., graphs with the num-
ber of edges bounded linearly in the number of vertices. Moreover, for other
hereditary sparse classes, such as graphs of bounded treewidth, algorithms with
running time (2− ε)n for some ε > 0 are also known [20]. Therefore, it is tempt-
ing to ask whether the sparseness of the graph class can be used to break the 2n

barrier in a more general manner.
In order to formalize this question we study the problem of finding a maximum

induced d-degenerate graph. Recall that a graph is called d-degenerate if each
of its subgraphs contains a vertex of degree at most d. Every hereditary class
of graphs with a number of edges bounded linearly in the number of vertices
is d-degenerate for some d; for example, planar graphs are 5-degenerate, graphs
excluding Kr as a minor are O(r

√
log r)-degenerate, while the class of forests

is equivalent to the class of 1-degenerate graphs. However, d-degeneracy does
not impose any topological constraints; to see this, note that one can turn any
graph into a 2-degenerate graph by subdividing every edge. Hence, considering
a problem on the class of d-degenerate graphs can be useful to examine whether
it is just sparseness that makes it more tractable, or one has to add additional
restrictions of topological nature [24].

OurResults and Techniques. Wemake a step towards understanding the complex-
ity of finding a maximum induced subgraph from a sparse graph class by break-
ing the 2n-barrier for the problem of finding maximum induced d-degenerate sub-
graph. The main result of this paper is the following algorithmic theorem.

Theorem 1. For any integer d ≥ 1 there exists a constant εd > 0 and a
polynomial-time randomized algorithm Ad, which given an n-vertex graph G ei-
ther reports an error, or outputs a subset of vertices inducing a d-degenerate
subgraph. Moreover, for every inclusion-wise maximal induced d-degenerate sub-
graph, let X be its vertex set, the probability that Ad outputs X is at least
(2 − εd)

−n.

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 5

Let X0 be a set of vertices inducing a maximum d-degenerate subgraph. If we
run the algorithm (2− εd)

n times, we know that with probability at least 1/2 in
one of the runs the set X0 will be found. Hence, outputting the maximum size
set among those found by the runs gives the following corollary.

Corollary 2. There exists a randomized algorithm which, given an n-vertex
graph G, in (2−εd)

nnO(1) time outputs a set X ⊆ V (G) inducing a d-degenerate
graph. Moreover, X is maximum with probability at least 1

2 .

As the total probability that Ad outputs some set of vertices is bounded by 1,
we obtain also the following corollary.

Corollary 3. For any integer d ≥ 1 there exists a constant εd > 0 such that
any n-vertex graph contains at most (2 − εd)

n inclusion-wise maximal induced
d-degenerate subgraphs.

Let us elaborate briefly on the idea behind the algorithm of Theorem 1. Assume
first that G has large average degree, i.e., |E(G)| > λd|V (G)| for some large
constant λ. As d-degenerate graphs are sparse, i.e., the number of edges is less
than d times the number of vertices, it follows that for any set X inducing a
d-degenerate graph G[X], only a tiny fraction of edges inside G are in fact inside
G[X]. Hence, an edge uv chosen uniformly at random can be assumed with high
probability to have at least one endpoint outside X . We can further choose at
random, with probabilities 1/3 each, one of the following decisions: u ∈ X , v /∈ X
or u /∈ X , v ∈ X , or u, v /∈ X . In this manner we fix the status of two vertices
of G and, if λ > 4, the probability that the guess is correct is larger than 1/4. If
this randomized step cannot be applied, we know that the average degree in G
is at most λd and we can apply more standard branching arguments on vertices
of low degrees.

Our algorithm is a polynomial-time routine that outputs an induced d-
degenerate graph by guessing assignment of consecutive vertices with proba-
bilities slightly better than 1/2. We would like to remark that all but one of the
ingredients of the algorithm can be turned into standard, deterministic branch-
ing steps. The only truly randomized part is the aforementioned random choice
of an edge to perform a guess with enhanced success probability. However, to
ease the presentation we choose to present the whole algorithm in a randomized
fashion by expressing classical branchings as random choices of the branch.

Organization. In Section 2 we settle notation and give preliminary results on de-
generate graphs. Section 3 contains the proof of Theorem 1. Section 4 concludes
the paper.

2 Preliminaries
Notation. We use standard graph notation. For a graph G, by V (G) and E(G)
we denote its vertex and edge sets, respectively. For v ∈ V (G), its neighbor-
hood NG(v) is defined as NG(v) = {u : uv ∈ E(G)}. For a set X ⊆ V (G)
by G[X] we denote the subgraph of G induced by X . For a set X of vertices
or edges of G, by G \ X we denote the graph with the vertices or edges of X
removed; in case of vertex removal, we remove also all the incident edges.

6 M. Pilipczuk and M. Pilipczuk

Degenerate Graphs. For an integer d ≥ 0, we say that a graph G is d-degenerate
if every subgraph (equivalently, every induced subgraph) of G contains a vertex
of degree at most d. Clearly, the class of d-degenerate graphs is closed under
taking both subgraphs and induced subgraphs. Note that 0-degenerate graphs
are independent sets, and the class of 1-degenerate graphs is exactly the class of
forests. All planar graphs are 5-degenerate; moreover, every Kr-minor-free graph
(in particular, any H-minor-free graph for |V (H)| = r) is O(r

√
log r)-degenerate

[25–27].
The following simple proposition shows that the notion of d-degeneracy admits

greedy arguments.

Proposition 4. Let G be a graph and v be a vertex of degree at most d in G.
Then G is d-degenerate if and only if G \ v is.

Proof. As G\v is a subgraph of G, then d-degeneracy of G implies d-degeneracy
of G\v. Hence, we only need to justify that if G\v is d-degenerate, then so does
G. Take any X ⊆ V (G). If v ∈ X , then the degree of v in G[X] is at most its
degree in G, hence it is at most d. However, if v /∈ X then G[X] is a subgraph of
G \ v and G[X] contains a vertex of degree at most d as well. As X was chosen
arbitrarily, the claim follows. ��

Proposition 4 ensures that one can test d-degeneracy of a graph by in turn
finding a vertex of degree at most d, which needs to exist due to the definition,
and deleting it. If in this manner we can remove all the vertices of the graph,
it is clearly d-degenerate. Otherwise we end up with an induced subgraph with
minimum degree at least d+ 1, which is a sufficient proof that the graph is not
d-degenerate. Note that this procedure can be implemented in polynomial time.
As during each deletion we remove at most d edges from the graph, the following
proposition is straightforward.

Proposition 5. Any n-vertex d-degenerate graph has at most dn edges.

3 The Algorithm

In this section we prove Theorem 1. Let us fix d ≥ 1, an n-vertex graph G and
an inclusion-wise maximal set X ⊆ V (G) inducing a d-degenerate graph.

The behaviour of the algorithm depends on a few constants that may depend
on d and whose values influence the final success probability. At the end of this
section we propose precise values of these constants and respective values of εd
for 1 ≤ d ≤ 6. However, as the values of εd are really tiny even for small d, when
describing the algorithm we prefer to introduce these constants symbolically,
and only argue that there exists their evaluation that leads to a (2−εd)

−n lower
bound on the probability of successfully sampling X .

The algorithm maintains two disjoint sets A,Z ⊆ V (G), consisting of vertices
about which we have already made some assumptions: we seek for the set X
that contains A and is disjoint from Z. Let Q = V (G) \ (A ∪ Z) be the set of
the remaining vertices, whose assignment is not yet decided.

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 7

We start with A = Z = ∅. The description of the algorithm consists of a
sequence of rules; at each point, the lowest-numbered applicable rule is used.
When applying a rule we assign some vertices of Q to the set A or Z, depending
on some random decision. We say that an application of a rule is correct if,
assuming that before the application we have A ⊆ X and Z ∩ X = ∅, the
vertices assigned to A belong to X , and the vertices assigned to Z belong to
V (G) \X . In other words, a correct application assigns the vertices consistently
with the fixed solution X .

We start with the randomized rule that is triggered when the graph is dense.
Observe that, since G[X] is d-degenerate, G[X ∩Q] is d-degenerate as well and,
by Proposition 5, contains less than d|X ∩ Q| edges. Thus, if |E(G[Q])|/|Q| is
significantly larger than d, then only a tiny fraction of the edges of G[Q] are
present in G[X]. Hence, an overwhelming fraction of edges of G[Q] has at least
one of the endpoints outside X , so having sampled an edge of G[Q] uniformly at
random with high probability we may assume that there are only three possibil-
ities of the behaviour of its endpoints, instead of four. This observation leads to
the following rule. Let λ > 4 be a constant.

Rule 1. If |E(G[Q])| ≥ λd|Q|, then:

1. choose an edge uv ∈ E(G[Q]) uniformly at random;
2. with probability 1/3 each, make one of the following decisions: either assign

u to A and v to Z, or assign u to Z and v to A, or assign both u and v to Z.

Lemma 6. Assume that A ⊆ X and Z ∩ X = ∅ before Rule 1 is applied. Then
the application of Rule 1 is correct with probability at least λ−1

3λ .

Proof. As |E(G[Q])| ≥ λd|Q|, but |E(G[X ∩ Q])| ≤ d|X ∩ Q| ≤ d|Q| by Propo-
sition 5, the probability that uv /∈ E(G[X]) is at least λ−1

λ . Conditional on the
assumption uv /∈ E(G[X]), in the second step of Rule 1 we make a correct deci-
sion with probability 1/3. This concludes the proof. ��

Note that the bound λ−1
3λ is larger than 1/4 for λ > 4.

Equipped with Rule 1, we may focus on the case when G[Q] has small average
degree. Let us introduce a constant κ > 2λ and let S ⊆ Q be the set of vertices
having degree less than κd in G[Q]. If Rule 1 is not applicable, then |E(G[Q])| <
λd|Q|. Hence we can infer that |S| ≥ κ−2λ

κ |Q|, as otherwise by just counting the

degrees of vertices in Q \ S we could find at least 1
2 · 2λ

κ |Q| · κd = λd|Q| edges
in G[Q]. Consider any v ∈ S. Such a vertex v may be of two types: it either
has at most d neighbours in A, or at least d + 1 of them. In the first case, we
argue that we may perform a good guessing step in the closed neighbourhood
of v, because the degree of v is bounded and when all the neighbours of v are
deleted (assigned to Z), then one may greedily assign v to A. In the second case,
we observe that we cannot assign too many such vertices v to A, as otherwise
we would obtain a subgraph of G[A] with too high average degree. Let us now
proceed to the formal arguments.

8 M. Pilipczuk and M. Pilipczuk

Rule 2. Assume there exists a vertex v ∈ Q such that |NG(v) ∩ Q| < κd and
|NG(v)∩A| ≤ d. Let r = |NG(v)∩Q| and v1, v2, . . . , vr be an arbitrary ordering
of the neighbours of v in Q. Let γ = γ(r) ≥ 1 be such that

γ−1 + γ−2 + . . .+ γ−r−1 = 1.

Randomly, make one of the following decisions:

1. for 1 ≤ i ≤ r, with probability γ−i assign v1, v2, . . . , vi−1 to Z and vi to A;

2. with probability γ−r−1 assign all vertices v1, v2, . . . , vr to Z and v to A.

Note that the choice of γ not only ensures that the probabilities of the options
in Rule 2 sum up to one, but also that γ(r) ≤ γ(�κd
 − 1) < 2. We now show a
bound on the probability that an application of Rule 2 is correct.

Lemma 7. Assume that A ⊆ X and Z ∩ X = ∅ before Rule 2 is applied. Then
exactly one of the decisions considered in Rule 2 leads to a correct application.
Moreover, if in the correct decision exactly i0 vertices are assigned to A∪Z, then
the probability of choosing the correct one is equal to γ−i0 .

Proof. Firstly observe that the decisions in Rule 2 contradict each other, so at
most one of them can lead to a correct application.

Assume that (NG(v)∩Q)∩X �= ∅ and let vi0 be the vertex from (NG(v)∩Q)∩X
with the smallest index. Then the decision, which assigns all the vertices of
NG(v)∩Q with smaller indices to Z and vi0 to A leads to a correct application.
Moreover, it assigns exactly i0 vertices to A∪Z and the probability of choosing
it is equal to γ−i0 .

Assume now that (NG(v) ∩ Q) ∩ X = ∅. We claim that v ∈ X . Assume
otherwise; then v has at most d neighbours in X , so by Proposition 4 after
greedily incorporating it to X we would still have G[X] being a d-degenerate
graph. This contradicts maximality ofX . Hence, we infer that the decision which
assigns all the neighbours of v from Q to Z and v itself to A leads to a correct
application, it assigns exactly r+1 vertices to A∪Z and has probability γ−r−1.

��

We now handle vertices with more than d neighbours in A. Intuitively, there
can be at most d|A| such vertices assigned to A, as otherwise A would have an
induced subgraph with too high average degree. Hence, if there is significantly
more than 2d|A| such vertices in total, then picking one of them at random with
probability higher than 1/2 gives a vertex that needs to be assigned to Z. Let
us introduce a constant c > 2.

Rule 3. If there are at least cd|A| vertices in Q that have more than d neigh-
bours in A, choose one such vertex uniformly at random and assign it to Z.

Lemma 8. Assume that A ⊆ X and Z ∩ X = ∅ before Rule 3 is applied. Then
the application of Rule 3 is correct with probability at least 1 − 1/c.

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 9

Proof. Let P = {v ∈ Q : |NG(v) ∩ A| > d}. As |P | ≥ cd|A|, to prove the lemma
it suffices to show that |P ∩ X | < d|A|. Assume otherwise, and consider the set
((P ∩ X) ∪ A) ⊆ X . The number of edges of the subgraph of G[X] induced by
(P ∩ X) ∪ A is at least

(d+ 1)|P ∩ X | = d|P ∩ X |+ |P ∩ X | ≥ d(|P ∩ X |+ |A|) = d|(P ∩ X) ∪ A|.

This contradicts the assumption that G[X] is d-degenerate, due to Proposition 5.
��

Note that 1 − 1/c > 1/2 for c > 2.
We now show that if Rules 1, 2 and 3 are not applicable, then |A∪Z| is large,

which means that the algorithm has already made decisions about a significant
fraction of the vertices of the graph.

Lemma 9. If Rules 1, 2 and 3 are not applicable, then |A ∪ Z| > αn for some
constant α > 0 that depends only on the constants d, λ, κ and c.

Proof. As Rule 1 is not applicable, Q contains at most 2λ
κ |Q| vertices of degree

at least κd in G[Q]. As Rule 2 is not applicable, the remaining vertices have
more than d neighbours in A. As Rule 3 is not applicable, we have that

κ− 2λ

κ
|Q| < cd|A| ≤ cd|A ∪ Z|.

As Q = V (G) \ (A ∪ Z), simple computations show that this is equivalent to

|A ∪ Z|
|V (G)| >

(
cdκ

κ− 2λ
+ 1

)−1

,

and the proof is finished. ��

Lemma 9 ensures that at this point the algorithm has already performed enough
steps to achieve the desired success probability. Therefore, we may finish by
brute-force.

Rule 4. If |A ∪ Z| > αn for the constant α given by Lemma 9, for each v ∈ Q
independently, assign v to A or Z with probability 1/2 each, and finish the
algorithm by outputting the set A if it induces a d-degenerate graph, or reporting
an error otherwise.

We now summarize the bound on the success probability.

Lemma 10. The algorithm outputs the set X with probability at least

max

(√
3λ

λ− 1
, γ(�κd
 − 1),

c

c− 1

)−αn

2−(1−α)n,

which is equal to (2 − εd)
n for some εd > 0.

10 M. Pilipczuk and M. Pilipczuk

Proof. Recall that 3λ
λ−1 < 4, γ(�κd
 − 1) < 2, c

c−1 < 2 and α > 0, by the choice
of the constants and by Lemma 9. Therefore, it suffices to prove that, before
Rule 4 is applied, the probability that A ⊆ X and Z ∩ X = ∅ is at least

max

(√
3λ

λ − 1
, γ(�κd
 − 1),

c

c − 1

)−|A∪Z|

.

However, this is a straightforward corollary of Lemmata 6, 7 and 8. ��

This concludes the proof of Theorem 1. In Table 1 we provide a choice of values
of the constants for small values of d, together with corresponding value of 2−εd.

Table 1. Example values of the constants together with the corresponding success
probability

d 1
λ 4.0238224
κ 9
c 2.00197442
α 0.050203

2− εd 1.99991

d 2
λ 4.00009156
κ 17/2
c 2.00000763
α 0.01449

2− εd 1.9999999

d 3
λ 4.000000357628
κ 25/3
c 2.0000000298
α 0.0066225

2− εd 1.9999999999

d 4
λ 4.000000001397
κ 33/4
c 2.0000000001164
α 0.0037736

2− εd 1.9999999999996

d 5
λ 4.000000000005457
κ 41/5
c 2.0000000000004548
α 0.0024331

2− εd 1.999999999999999

d 6
λ 4.000000000000021316
κ 49/6
c 2.0000000000000017833
α 0.0016978

2− εd 1.999999999999999997

4 Conclusions

We have shown that the Maximum d-degenerate Induced Subgraph prob-
lem can be solved in time (2 − εd)

nnO(1) for any fixed d ≥ 1. There are two
natural questions arising from our work. First, can the algorithm be derandom-
ized? Rules 2 and 3 can be easily transformed into appropriate branching rules,
but we do not know how to handle Rule 1 without randomization.

Second, our constants εd are really tiny even for small values of d. This is
mainly caused by two facts: the gain over a straightforward brute-force algo-
rithm in Rule 2 is very small (i.e., γ(�κd�) is very close to 2) and the algorithm
falls back to Rule 4 after processing only a tiny fraction α of the entire graph.
Can the running time of the algorithm be significantly improved? Another inter-
esting question would be to investigate, whether the Maximum d-degenerate

Finding a Maximum Induced Degenerate Subgraph Faster Than 2n 11

Induced Subgraph problem can be solved in time (2 − ε)nnO(1) for some
universal constant ε that is independent of d.

Apart from the above questions, we would like to state here a significantly
more challenging goal. Let G be a polynomially recognizable graph class of
bounded degeneracy (i.e., there exists a constant d such that each G ∈ G is
d-degenerate). Can the corresponding Maximum Induced G-Subgraph prob-
lem be solved in (2 − εG)

n time for some constant εG > 0 that depends only on
the class G? Can we prove some meta-result for such type of problems?

Our Rules 1 and 3 are valid for any such class G; however, this is not true
for the greedy step in Rule 2. In particular, we do not know how to handle the
Maximum Induced G-Subgraph problem faster than 2n even if the input is
assumed to be d-degenerate.

Acknowledgements. We would like to thank Marek Cygan, Fedor V. Fomin
and Pim van ’t Hof for helpful discussions.

References

1. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 1–32 (2009)

2. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/Exclusion Meets Measure
and Conquer. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 554–
565. Springer, Heidelberg (2009)

3. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput.
Sci. 411(40-42), 3701–3713 (2010)

4. Björklund, A.: Determinant sums for undirected hamiltonicity. In: 51th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 173–182.
IEEE Computer Society (2010)

5. Fomin, F.V., Todinca, I., Villanger, Y.: Exact Algorithm for the Maximum Induced
Planar Subgraph Problem. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 287–298. Springer, Heidelberg (2011)

6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Scheduling Partially
Ordered Jobs Faster Than 2n. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA
2011. LNCS, vol. 6942, pp. 299–310. Springer, Heidelberg (2011)

7. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated Domination Faster Than
O(2n). In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 74–80. Springer,
Heidelberg (2010)

8. Binkele-Raible, D., Brankovic, L., Cygan, M., Fernau, H., Kneis, J., Kratsch,
D., Langer, A., Liedloff, M., Pilipczuk, M., Rossmanith, P., Wojtaszczyk, J.O.:
Breaking the 2n-barrier for irredundance: Two lines of attack. J. Discrete Algo-
rithms 9(3), 214–230 (2011)

9. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Solving the 2-Disjoint
Connected Subgraphs Problem Faster Than 2n. In: Fernández-Baca, D. (ed.)
LATIN 2012. LNCS, vol. 7256, pp. 195–206. Springer, Heidelberg (2012)

10. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumer-
ating Minimal Subset Feedback Vertex Sets. In: Dehne, F., Iacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 399–410. Springer, Heidelberg (2011)

12 M. Pilipczuk and M. Pilipczuk

11. Razgon, I.: Exact Computation of Maximum Induced Forest. In: Arge, L.,
Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Hei-
delberg (2006)

12. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

13. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.
Sci. 62(2), 367–375 (2001)

14. Calabro, C., Impagliazzo, R., Paturi, R.: The Complexity of Satisfiability of Small
Depth Circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917,
pp. 75–85. Springer, Heidelberg (2009)

15. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: Ostrovsky, R. (ed.) FOCS, pp. 150–159. IEEE (2011)

16. Lokshtanov, D., Marx, D., Saurabh, S.: Known Algorithms on Graphs of Bounded
Treewidth are Probably Optimal. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 777–789 (2011)

17. Pătraşcu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 1065–1075 (2010)

18. Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Pa-
turi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNFSAT. CoRR
abs/1112.2275 (2011)

19. Gupta, S., Raman, V., Saurabh, S.: Fast Exponential Algorithms for Maximum
r-Regular Induced Subgraph Problems. In: Arun-Kumar, S., Garg, N. (eds.)
FSTTCS 2006. LNCS, vol. 4337, pp. 139–151. Springer, Heidelberg (2006)

20. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Marion, J.Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383–394. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

21. Angelsmark, O., Thapper, J.: Partitioning Based Algorithms for Some Colouring
Problems. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005.
LNCS (LNAI), vol. 3978, pp. 44–58. Springer, Heidelberg (2006)

22. Gaspers, S., Kratsch, D., Liedloff, M.: On Independent Sets and Bicliques in
Graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 171–182. Springer, Heidelberg (2008)

23. Gaspers, S.: Exponential Time Algorithms: Structures, Measures, and Bounds.
PhD Thesis, University of Bergen (2008)

24. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization Hard-
ness of Connectivity Problems in d-Degenerate Graphs. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 147–158. Springer, Heidelberg (2010)

25. Kostochka, A.V.: Lower bound of the hadwiger number of graphs by their average
degree. Combinatorica 4(4), 307–316 (1984)

26. Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cam-
bridge Philos. Soc. 95(2), 261–265 (1984)

27. Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser.
B 81(2), 318–338 (2001)

The Exponential Time Hypothesis

and the Parameterized Clique Problem

Yijia Chen1, Kord Eickmeyer2,�, and Jörg Flum3

1 Department of Computer Science, Shanghai Jiaotong University
yijia.chen@cs.sjtu.edu.cn

2 National Institute of Informatics, Tokyo
eickmeye@nii.ac.jp

3 Mathematisches Institut, Albert-Ludwigs-Universität Freiburg
joerg.flum@math.uni-freiburg.de

Abstract. In parameterized complexity there are three natural defi-
nitions of fixed-parameter tractability called strongly uniform, weakly
uniform and nonuniform fpt. Similarly, there are three notions of subex-
ponential time, yielding three flavours of the exponential time hypoth-
esis (ETH) stating that 3Sat is not solvable in subexponential time.
It is known that ETH implies that p-Clique is not fixed-parameter
tractable if both are taken to be strongly uniform or both are taken
to be uniform, and we extend this to the nonuniform case. We also show
that even the containment of weakly uniform subexponential time in
nonuniform subexponential time is strict. Furthermore, we deduce from
nonuniform ETH that no single exponent d allows for arbitrarily good
fpt-approximations of clique.

1 Introduction

In parameterized complexity, FPT most commonly denotes the class of strong-
ly uniformly fixed-parameter tractable problems, i.e., parameterized problems
solvable in time f(k)·nO(1) for some computable function f . Downey and Fellows
also introduced the classes FPTuni and FPTnu of uniformly and nonuniformly
fixed-parameter tractable problems, where one drops the condition that f be
computable or allows for different algorithms for each k, respectively. (We give
detailed definitions in Section 2.) For example, p-Clique /∈ FPTnu, where p-
Clique denotes the parameterized clique problem, means that for all d ∈ N
and sufficiently large fixed k determining whether a graph G contains a clique of
size k is not in DTIME

(
nd
)
. The obvious inclusions between the classes FPT,

FPTuni, and FPTnu can be shown to be strict [1].
In classical complexity, the subexponential time classes

DTIME
(
2o

eff(n)
)
, DTIME

(
2o(n)

)
, and

⋂
ε>0DTIME(2ε·n) , (1)

� This work was supported by a fellowship of the second author within the FIT-
Programme of the German Academic Exchange Service (DAAD).

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 Y. Chen, K. Eickmeyer, and J. Flum

have been considered. In particular, there are the corresponding versions of the
exponential time hypothesis, namely the strongly uniform exponential time hy-
pothesis ETH, the uniform exponential time hypothesis ETHuni, and the nonuni-
form exponential time hypothesis ETHnu, which are the statements that 3Sat is
not in these respective classes, where n denotes the number of variables of the
input formula.1 By results due to Impagliazzo et al. [3] we know that these three
statements are equivalent to the ones obtained by replacing 3Sat by the clique
problem Clique; then, n denotes the number of vertices of the corresponding
graph.

Furthermore, it is known [4] that ETH implies p-Clique /∈ FPT, where p-
Clique denotes the parameterized clique problem. As pointed out, for example
in [5], there is a correspondence between subexponential algorithms having a

running time 2o(n) and FPTuni similar to that between running time 2o
eff(n) and

FPT. Therefore, it is not surprising that ETHuni implies p-Clique /∈ FPTuni

(we include a proof in Section 4).
The first main result of this paper shows that ETHnu implies that p-Clique /∈

FPTnu. So, putting the three results together, we see that:

(i) if ETH holds, then p-Clique /∈ FPT;
(ii) if ETHuni holds, then p-Clique /∈ FPTuni;
(iii) if ETHnu holds, then p-Clique /∈ FPTnu.

One of the most important complexity classes of (apparently) intractable param-
eterized problems is the class W[1], the class of problems (strongly uniformly)
fpt-reducible to p-Clique. By replacing (strongly uniformly) fpt-reducible by
uniformly fpt-reducible and nonuniformly fpt-reducible, we get the classesW[1]uni
and W[1]nu, respectively. So, the previous results can be seen as providing some
evidence that FPT �= W[1], FPTuni �= W[1]uni, and FPTnu �= W[1]nu. Note that
the strongest separation, FPTnu �= W[1]nu, obtained in this paper under ETHnu,
plays a role in [6] (see the comment following Theorem 1.1 of that paper). In
a recent paper [7] on the history of Parameterized Complexity Theory, Downey
remarks that the question FPTnu �= W[1]nu is a central issue of the theory.

We get the implication (iii) by using a family of algorithms witnessing p-Cli-
que ∈ FPTnu to obtain an algorithm showing p-Clique is in “FPTuni for posi-
tive instances.” Once we have this single algorithm for p-Clique, we adapt the
techniques we used in [8] to show (i), to get that the clique problem Clique is
in
⋂

ε>0 DTIME (2ε·n), that is, the failure of ETHnu.

The basic idea of parameterized approximability is explained in [9] as fol-
lows: “Suppose we have a problem that is hard to approximate. Can we at least
approximate it efficiently for instances for which the optimum is small? The clas-
sical theory of inapproximability does not seem to help answering this question,
because usually the hardness proofs require fairly large solutions.” In [9] and [10]
the framework of parameterized approximability was introduced. In particular,
the concept of an fpt approximation algorithm with a given approximation ratio
was coined and some (in)approximability results were proven.

1 We should mention that in [2] a different statement is called nonuniform ETH.

ETH and the Parameterized Clique Problem 15

Our second main result is a nonapproximability result for p-Clique: under
the assumption ETHnu, we show that for every d ∈ N there is a ρ > 1 such that
p-Clique has no parameterized approximation algorithm with approximation
ratio ρ and running time f(k) · nd for some function f : N → N.

The content of the different sections is the following. We recall concepts and
fix notation in Section 2. In Section 3, we derive a result on the clique problem
used to obtain both main results (in Section 4 and Section 5). Then, in Section 6,
we show that the results relating the complexity of p-Clique and the different
variants of ETH are of a more general nature. Finally, in Section 7, we show
that the second and third time class in (1) are distinct.

2 Some Preliminaries

Let N denote the positive natural numbers. If a function f : N → N is nonde-
creasing and unbounded, then f−1 denotes the function f−1 : N → N with

f−1(n) :=

{
max{i ∈ N | f(i) ≤ n}, if n ≥ f(1)

1, otherwise.

Then, f(f−1(n)) ≤ n for all n ≥ f(1) and the function f−1 is nondecreasing and
unbounded.

Let f, g : N → N be functions. Then f ∈ oeff(g) (often written as f(n) ∈
oeff(g(n))) if there is a computable function h : N → N such that for all 	 ≥ 1
and n ≥ h(), we have f(n) ≤ g(n)/	.

We denote the alphabet {0, 1} by Σ. The length of a string x ∈ Σ∗ is denoted
by |x|. We identify problems with subsets Q of Σ∗. If x ∈ Q we say that x is a
positive instance of the problem Q. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form. For example, we introduce the
problem Clique in the form:

Clique

Instance: A graph G and k ∈ N.
Problem: Does G have a clique of size k?

A graph G is given by its vertex set V (G) and its edge set E(G). By |G| we
denote the length of a string naturally encoding G. The cardinality or size of a
set S is also denoted by |S|.

If A is an algorithm and A halts on input x, then we denote by tA(x) the
number of steps of A on input x; if A does not halt on x, then tA(x) := ∞.

We view parameterized problems as pairs (Q, κ) consisting of a classical prob-
lem Q ⊆ Σ∗ and a parameterization κ : Σ∗ → N, which is required to be
polynomial time computable. We will present parameterized problems in the
form we do for p-Clique:

16 Y. Chen, K. Eickmeyer, and J. Flum

p-Clique

Instance: A graph G and k ∈ N.
Parameter: k.

Problem: Does G have a clique of size k?

A parameterized problem (Q, κ) is (strongly uniformly) fixed-parameter tractable
or, in FPT, if there is an algorithm A deciding Q, a natural number d, and a
computable function f : N → N such that tA(x) ≤ f(κ(x)) · |x|d for all x ∈ Σ∗.

If in this definition we do not require the computability of f , then (Q, κ) is
uniformly fixed-parameter tractable or, in FPTuni. Finally, (Q, κ) is nonuniformly
fixed-parameter tractable or, in FPTnu, if there is a natural number d and a
function f : N → N such that for every k ∈ N there is an algorithm Ak deciding
the set {x ∈ Q | κ(x) = k} with tAk

(x) ≤ f(κ(x)) · |x|d for all x ∈ Σ∗.
In Section 6 we assume that the reader is familiar with the notion of (strongly

uniform) fpt-reduction, with the classes of the W-hierarchy, and for t, d ∈ N
with the weighted satisfiability problem p-WSat(Γt,d) (e.g., see [11]). We write
(Q, κ) ≤fpt (Q′, κ′) if there is an fpt-reduction from (Q, κ) to (Q′, κ′).

3 Going from Nonuniform to Uniform on Positive
Instances

In this section we show how to get a single algorithm detecting cliques of size k

in time f(k) · |G|o(k) on positive instances from the existence of such algorithms

of running time O(|G|e�+k/�) for each pair of natural numbers k, 	. We now state
this assumption formally; and we will later show it to be unlikely because it
implies that ETHnu is not true.

Definition 1. We say that Clique satisfies (∗) if

for every 	 ∈ N there is an e� ∈ N such that for every k ∈ N there is a
constant a�,k ∈ N and an algorithm A�,k which on every graph G which
contains a clique of size k outputs such a clique in time

a�,k · |G|e�+k/�.

The behaviour of A�,k on graphs without a clique of size k or on inputs
not encoding graphs may be arbitrary.

By a standard self-reduction argument we have:

Lemma 2. If p-Clique ∈ FPTnu, then Clique satisfies (∗).

We now use the algorithms in (∗) to obtain a single algorithm with a guaranteed
running time on positive instances.

ETH and the Parameterized Clique Problem 17

Lemma 3. If Clique satisfies (∗), then there is an algorithm A deciding Clique

and there is a function f : N → N such that

tA(G, k) ≤ f(k) · |G|o(k)

for every positive instance (G, k) of Clique.

Proof. We let C be any algorithm which on input (G, k) decides in time |G|O(k)

whether G contains a clique of size k, e.g., by brute force. Let {M1,M2, . . .} be
any recursive enumeration of all Turing machines. By standard arguments we
may assume that, given inputs t, i, and x, we can simulate t steps of machine
Mi on input x in time polynomial in i, t and |x|.

We define the algorithm A as follows:

A // G = (V (G), E(G)) a graph and k ∈ N

1. do the following in parallel:
2. simulate C on (G, k) and
3. simulate Mi on G for i = 1, . . . , |G|.
4. if the simulation of C accepts then accept
5. if the simulation of C rejects then never halt
6. if one of the machines Mi finds a clique of size k then accept.

Obviously, this algorithm will accept an input (G, k) if and only if G contains
a clique of size k. We now turn to the claimed running time. Let 	 ≥ 1, and let
e� be the corresponding constant from assumption (∗). For k > 	(+ 1)e�, the
running time of A�,k is bounded by

a�,k · |G|
k

�−1 ,

and for all but finitely many instances G, the algorithm A�,k will be among the
ones simulated by A. For such instances G, the running time of A is bounded by

((# machines to be simulated in parallel) · (# of steps) · |G|)O(1)
,

≤
(
|G| · a�,k · |G|

k
�−1 · |G|

)O(1)

≤ck · |G|
d·(k+1)

�−1

for suitable constants ck and d, the latter one not depending on 	, k or G.

4 ETHnu and the Complexity of p-Clique

In this section we show our first main result, namely:

Theorem 4. If ETHnu holds, then p-Clique /∈ FPTnu.

18 Y. Chen, K. Eickmeyer, and J. Flum

To obtain this result we prove the following chain of implications

(a) ⇒ (b)pos ⇒ (c)pos ⇒ (d),

where

(a) p-Clique ∈ FPTnu;
(b)pos There is an algorithm A deciding Clique such that for all positive in-

stances (G, k) of Clique and some function f : N → N we have

tA(G, k) ≤ f(k) ·
∣∣G∣∣o(k).

(c)pos There is an algorithm A deciding Clique such that for all positive in-
stances (G, k) of Clique, where G has vertex set V (G), we have

tA(G, k) ≤ 2o(|V (G)|).

(d) ETHnu does not hold.

Note that ¬(d) ⇒ ¬(a) is the claim of Theorem 4.
The implication (a) ⇒ (b)pos was shown in the previous section (Lemma 2

and Lemma 3). We turn to the implication (b)pos ⇒ (c)pos. Let (b) and (c)
be the statements obtained from (b)pos and (c)pos, respectively, by deleting the
restriction to positive instances. Note that (c) is equivalent to the failure of
ETHuni. Furthermore, we let (b)eff be the statement (b) with the additional
requirement that the function f is computable and let (c)eff be the statement

obtained from (c) by replacing 2o(|V (G)|) by 2o
eff(|V (G)|). Again note that (c)eff is

equivalent to the failure of ETH.

Lemma 5. (1) (b)eff implies (c)eff;
(2) (b) implies (c);
(3) (b)pos implies (c)pos.

Part (1) was shown as Theorem 27 in [8] (and previously in [4]). We argue
similarly to get parts (2) and (3). In particular, we use the following lemma
stated and proved in [8] as Lemma 28. Its proof uses the fact that a clique in a
graph G can be viewed as an “amalgamation of local cliques” of subgraphs of G.

Lemma 6. There is an algorithm D that assigns to every graph G = (V,E)
and k,m ≤ |V | in time polynomial in |V | · 2m a graph G′ = (V ′, E′) with
|V ′| ≤ |V |2 · 2m such that

G has a clique of size k ⇐⇒ G′ has a clique of size �|V |/m
. (2)

Proof (of Lemma 5 (3)). The proof of Lemma 5 (2) is obtained by the obvious
modification and is left to the reader.

Let the algorithm D be as in Lemma 6. Assuming (b)pos there is an algorithm
A deciding Clique such that for all positive instances (G, k) of Clique we have
tA(G, k) ≤ f(k) · |G|o(k) and hence,

tA(G, k) ≤ f(k) ·
∣∣V (G)

∣∣o(k) (3)

for some f : N → N. We consider the following algorithm deciding Clique:

ETH and the Parameterized Clique Problem 19

B // G a graph and k ∈ N

1. Do in parallel for every m ≤ |V (G)| the following
2. simulate D on (G, k,m) and let G′ be its output
3. simulate A on (G′, �|V (G)|/m
)
4. if A accepts for some m then accept
5. else reject.

Let (G, k) be a positive instance of Clique and n := |V (G)|. Without loss of
generality, we can assume that f is nondecreasing and unbounded. For

m := max

{⌈
n

f−1(n)

⌉
, �log n

}
we have m ≥ log n and m ∈ o(n) and, by (3),

tA(G
′, �|V (G)|/m
) ≤ f(�n/m
) · (n2 · 2m)o(n/m) = 2o(n).

Thus, the running time for Line 2 to Line 5 is bounded by 2o(n). Therefore

tB(G, k) ≤ O(n · 2o(n)) ≤ 2o(n). �

We already remarked that (c) is equivalent to the failure of ETHuni. Thus, part
(2) of the previous lemma yields:

Corollary 7. If ETHuni, then p-Clique /∈ FPTuni.

Proof of (c)pos ⇒ (d): For every ε > 0 there is an n0 such that for graphs with
|V (G)| > n0 the running time of the algorithm asserted by (c)pos is bounded
by 2ε|V (G)| on positive instances. For graphs with at least n0 vertices we let the
algorithm run for at most this many steps and reject if it does not hold within
this time bound. For smaller graphs we use brute force.

For later purposes we remark:

Corollary 8. If Clique satisfies (∗), then ETHnu does not hold.

Proof. If Clique satisfies (∗), then (b)pos holds by Lemma 3. We have shown
that (b)pos implies (d), thus, ETHnu does not hold.

5 ETHnu and the Parameterized Approximability of
p-Clique

Let ρ > 1 be a real number. As in [9], we say that an algorithm A is an fptuni
parameterized approximation algorithm for p-Clique with approximation ratio
ρ if

(i) tA(G, k) ≤ f(k) · |V (G)|O(1) for all instances (G, k) of p-Clique and some
function f : N → N;

20 Y. Chen, K. Eickmeyer, and J. Flum

(ii) for all positive instances (G, k) of p-Clique the algorithm A outputs a clique
of size at least k/ρ; otherwise, the output of A can be arbitrary.

If d ∈ N and we get tA(G, k) ≤ f(k) · |V (G)|d in (i), then we say that A is an
fptuni parameterized approximation algorithm for p-Clique with approximation
ratio ρ and exponent d.

Now we can state the main result of this section:

Theorem 9. If ETHnu holds, then for every d ∈ N there is a ρ > 1 such that
p-Clique has no fptuni parameterized approximation algorithm with approxima-
tion ratio ρ and exponent d.

The key observation which, together with Corollary 8, will yield this theorem is
contained in the following lemma.

Lemma 10. Assume that p-Clique has an fptuni parameterized approximation
algorithm with approximation ratio ρ > 1 and exponent d ≥ 2. Then, for every
rational number r with 0 < r ≤ 1

log ρ , there is an algorithm B deciding Clique

such that for some function g : N → N and every instance (G, k) of Clique

tB(G, k) ≤ g(k) · |V (G)|r+2+d·�k/r�.

Proof. The main idea is as follows: we assume the existence of an fptuni param-
eterized approximation algorithm A for p-Clique. Given an instance (G, k) of
Clique we stretch it by passing to an equivalent “product instance” (G′, k′).
By applying A to (G′, k′) we can decide whether (G, k) ∈ Clique.

For a graph G = (V,E) we let ω(G) be the size of a maximum clique in
G. Furthermore, for every m ∈ N with m ≥ 1 we denote by Gm the graph
(V (Gm), E(Gm)), where

V (Gm) := V m =
{
(v1, . . . , vm)

∣∣ v1, . . . , vm ∈ V
}

E(Gm) :=
{{

(u1, . . . , um), (v1, . . . , vm)
} ∣∣∣ {u1, . . . , um, v1, . . . , vm}

is a clique in G and (u1, . . . , um) �= (v1, . . . , vm)
}
.

One easily verifies that

ω(Gm) = ω(G)m. (4)

Now we let A be an fptuni parameterized approximation algorithm for p-Clique

with approximation ratio ρ > 1 and exponent d ≥ 2, say, with running time
bounded by f(k) · |V (G)|d. Let r be a rational number with 0 < r ≤ 1

log ρ . Then,

ρ ≤ r
√
2 and for every k ∈ N with k ≥ 2 we get(

k

k − 1

)�k/r�
> ρ. (5)

We let B be the following algorithm:

ETH and the Parameterized Clique Problem 21

B // G a graph and k ∈ N

1. if k = 1 or k < r then decide whether G has a clique of size k by
brute force

2. else simulate A on (G�k/r�, k�k/r�)
3. if A outputs a clique of G�k/r� of size k�k/r�/ρ
4. then accept else reject.

The algorithm B decides Clique: Clearly, the answer is correct if k = 1 or
k < r. So assume that k ≥ 2 and k ≥ r. If G has no clique of size k, that is,
ω(G) ≤ k − 1, then, by (4), ω(G�k/r�) ≤ (k − 1)�k/r�. By (5),

k�k/r�

ρ
> (k − 1)�k/r�;

thus, compare Line 3 and Line 4, the algorithm B rejects (G, k). If ω(G) ≥ k
and hence, ω(G�k/r�) ≥ k�k/r�, then the approximation algorithm A outputs a
clique of G�k/r� of size k�k/r�/ρ; thus B accepts (G, k).

Moreover, on every instance (G, k) with G = (V,E) the running time of B is
bounded by

|V |r+2 + |V |2·�k/r�+2 + f
(
k�k/r�

)
·
∣∣∣V (G�k/r�)∣∣∣d ≤ g(k) · |V |r+2+d·�k/r�,

for a suitable g : N → N.

Setting r := 1/log ρ in the previous lemma, we get:

Corollary 11. If there is an fptuni parameterized approximation algorithm for
p-Clique with approximation ratio ρ ≥ 1 and exponent d ≥ 2, then there exists
e ∈ N and an algorithm B deciding Clique with tB(G, k) ≤ g(k)·|V (G)|e+d·k·log ρ

Proof of Theorem 9: By contradiction, assume that for some d ≥ 2 and all ρ > 1
the problem p-Clique has an fptuni parameterized approximation algorithm
with approximation ratio ρ and exponent d.

If 	 ∈ N, then d · 	 ≤ 1
log ρ for suitable ρ > 1. Thus, by Lemma 10, there is

an algorithm A� deciding Clique such that for some e� ∈ N and some function
g : N → N and every instance (G, k)

tA�
(G, k) ≤ g(k) · |V (G)|e�+k/�.

Fix k ∈ N. Then, again using the self-reducibility of Clique, there is an algo-
rithm A�,k which on every graph G outputs a clique of size k, if one exists, in
time

O
(
|G|e�+1+k/�

)
.

Thus, Clique satisfies (∗) (the property introduced in Definition 1). Therefore,
ETHnu does not hold by Corollary 8.

22 Y. Chen, K. Eickmeyer, and J. Flum

6 Some Extensions and Generalisations

Some results of Section 3 and of Section 4 can be stated more succinctly and in
a more general form in the framework of parameterized complexity theory. We
do this in this section, at the same time getting some open questions.

The class FPTnu is closed under fpt-reductions, that is,

if (Q, κ) ≤fpt (Q′, κ′) and (Q′, κ′) ∈ FPTnu, then (Q, κ) ∈ FPTnu. (6)

Thus, for every W[1]-complete problem (Q, κ) (complete under fpt-reductions),
we have

(Q, κ) ∈ FPTnu ⇐⇒ W[1] ⊆ FPTnu. (7)

Denote by FPT+
uni the class of problems (Q, κ) such that there is an algorithm

deciding Q and with running time h(κ(x)) · |x|O(1) for x ∈ Q, that is, for positive
instances x of Q. The class FPT+

uni is closed under fpt-reductions, too. So, again
we have for every W[1]-complete problem (Q, κ),

(Q, κ) ∈ FPT+
uni ⇐⇒ W[1] ⊆ FPT+

uni. (8)

Corollary 12. For every W[1]-complete problem (Q, κ),

(Q, κ) ∈ FPTnu implies (Q, κ) ∈ FPT+
uni.

Proof. By Lemma 2 and Lemma 3, we know that the implication holds for the
W[1]-complete problem p-Clique. Now, the claim follows by (7) and (8).

It is not clear whether the previous implication holds for all problems (Q, κ) ∈
W[1] (and not only for the complete ones). Of course, it does if FPT = W[1].
The proof of Lemma 3 makes essential use of a self-reducibility property of p-
Clique. For t, d ∈ N the weighted satisfiability problem p-WSat(Γt,d) has this
self-reducibility property, too. So, along the lines of Lemma 3, one gets (we leave
the details to the reader):

Lemma 13. Let t, d ∈ N. Then

p-WSat(Γt,d) ∈ FPTnu implies p-WSat(Γt,d) ∈ FPT+
uni.

And thus, we get the extension of Corollary 12 to all levels of the W-hierarchy:

Proposition 14. Let t ∈ N. For every W[t]-complete problem (Q, κ),

(Q, κ) ∈ FPTnu implies (Q, κ) ∈ FPT+
uni.

After Theorem 4, we have considered two further properties of the clique problem
there denoted by (b)pos and (c)pos. One could also define these properties for
arbitrary parameterized problems (even though, there are some subtle points
as the terms 2o(|V (G)|) and 2o(|G|) may be distinct). More importantly, these
properties are not closed under fpt-reductions. So somehow one has to check
whether other implications of Section 4 survive problem by problem. We do
that here for the most prominent W[2]-complete problem, the parameterized
dominating set problem p-DS:

ETH and the Parameterized Clique Problem 23

p-DS

Instance: A graph G and k ∈ N.
Parameter: k.

Problem: Does G have a dominating set of
size k?

We denote by DS the underlying classical problem. In [8, Theorem 29] we have
shown:

If DS can be decided in time f(k) · |V (G)|oeff(k) for some computable

f : N → N, then DS can be decided in time 2o
eff(|V (G)|).

The reader should compare this result with the following one in the spirit of this
paper.

Theorem 15. If there is an algorithm A deciding DS such that for all positive
instances (G, k) of DS we have

tA(G, k) ≤ f(k) ·
∣∣G∣∣o(k)

for some function f : N → N, then there is an algorithm B deciding DS such
that for all positive instances (G, k) of DS we have

tB(G, k) ≤ 2o(|V (G)|).

The proof of the corresponding result for Clique, namely the implication (b)pos
⇒ (c)pos, was based on Lemma 6 which used the fact that a clique in a graph can
be viewed as an “amalgamation of local cliques” of subgraphs. As dominating
sets are not necessarily an “amalgamation of local dominating sets,” in [8] we
took a detour via the weighted satisfiability problem for propositional formulas
in CNF. As an inspection of the exposition in [8] shows, it can be adapted to a
proof of Theorem 15.

7 An Example

We believe that the three statements ETH, ETHuni, and ETHnu are true and
hence equivalent. Here we consider the “underlying” complexity classes (see (1)).
Clearly,

DTIME
(
2o

eff(n)
)

⊆ DTIME
(
2o(n)

)
⊆

⋂
ε>0DTIME(2ε·n) (9)

To the best of our knowledge it is open whether the first inclusion is strict. Here
we show the strictness of the second inclusion in (9). We remark that in [8,
Proposition 5] we proved that the first class, that is, the effective version of the
second one, coincides with an effective version of the third class.

For m ∈ N let 1m be the string in Σ∗ consisting of m ones. Recall that
Σ = {0, 1}. For a Turing machine M we denote by enc(M) a string in Σ∗

reasonably encoding the Turing machineM. Furthermore, |M| denotes the length
of enc(M), |M| = |enc(M)|.

24 Y. Chen, K. Eickmeyer, and J. Flum

Theorem 16. The problem

Exp-Halt

Instance: A Turing machine M, x ∈ Σ∗, and 1m with
m ∈ N.

Problem: DoesM accept x in time 2�m/(|M| + |x|)�?

is in
⋂

ε>0 DTIME (2ε·n) \ DTIME
(
2o(n)

)
.

Due to space limitations we cannot present a proof in this extended abstract.

References

1. Downey, R., Fellows, M.: Fixed-parameter tractability and completeness iii: some
structural aspects of the w hierarchy. In: Ambos-Spies, K., Homer, S., Schöning,
U. (eds.) Complexity Theory, New York, NY, USA, pp. 191–225. Cambridge Uni-
versity Press (1993)

2. Ganian, R., Hlinený, P., Langer, A., Obdrzálek, J., Rossmanith, P., Sikdar, S.:
Lower bounds on the complexity of MSO1 model-checking. In: Proc. STACS 2012,
pp. 326–337 (2012)

3. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63, 512–530 (2001)

4. Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear fpt reductions and computational
lower bounds. In: Proc. of STOC 2004, pp. 212–221 (2004)

5. Flum, J., Grohe, M.: Parametrized complexity and subexponential time (column:
Computational complexity). Bulletin of the EATCS 84, 71–100 (2004)

6. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1) (2007)

7. Downey, R.: The Birth and Early Years of Parameterized Complexity. In: Bod-
laender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012.
LNCS, vol. 7370, pp. 17–38. Springer, Heidelberg (2012)

8. Chen, Y., Flum, J.: On miniaturized problems in parameterized complexity theory.
Theoretical Computer Science 351(3), 314–336 (2006)

9. Chen, Y., Grohe, M., Grüber, M.: On Parameterized Approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109–120.
Springer, Heidelberg (2006)

10. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51, 60–78 (2008)

11. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

New Results on Polynomial Inapproximability
and Fixed Parameter Approximability

of edge dominating set�

Bruno Escoffier1, Jérôme Monnot1, Vangelis Th. Paschos1,2, and Mingyu Xiao3

1 PSL Research University, Université Paris-Dauphine, LAMSADE,
CNRS UMR 7243, France

{escoffier,monnot,paschos}@lamsade.dauphine.fr
2 Institut Universitaire de France

3 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China

myxiao@gmail.com

Abstract. An edge dominating set in a graph G = (V, E) is a subset S
of edges such that each edge in E − S is adjacent to at least one edge
in S. The edge dominating set problem, to find an edge dominating
set of minimum size, is a basic and important NP-hard problem that
has been extensively studied in approximation algorithms and parame-
terized complexity. In this paper, we present improved hardness results
and parameterized approximation algorithms for edge dominating set.
More precisely, we first show that it is NP-hard to approximate edge
dominating set in polynomial time within a factor better than 1.18.
Next, we give a parameterized approximation schema (with respect to
the standard parameter) for the problem and, finally, we develop an
O∗(1.821τ)-time exact algorithm where τ is the size of a minimum ver-
tex cover of G.

1 Introduction

As one of the basic problems in Garey and Johnson’s work on NP-complete-
ness [17], edge dominating set has received high attention in history. It is
NP-hard even in planar or bipartite graphs of maximum degree 3 [26]. Due to its
theoretical and practical interests, many algorithms have been developed in order
to tackle it. There is a simple 2-approximation algorithm for edge dominating
set in unweighted graphs. It is not hard to verify that any maximal matching
in the graph is an edge dominating set of size at most double of the minimum
size. Carr et al. [7] proved a (2 + 1

10)-approximation algorithm for weighted
edge dominating set (the generalization of edge dominating set where
weights are assigned to the edges of the input graph and the objective becomes
� Research partially supported by the French Agency for Research under the DEFIS

program TODO, ANR-09-EMER-010 and the National Natural Science Foundation
of China under the Grant 60903007.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 25–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 B. Escoffier et al.

to determine a minimum total-weight edge dominating set), the ratio of which
was later improved to 2 by Fujito and Nagamochi [16]. Improved results have also
been obtained in sparse graphs [6] and in dense graphs [22]. However, providing
an approximation algorithm with ratio (strictly) smaller than 2, or proving that
such algorithm does not exist (under some likely complexity hypothesis) still
remains as an open problem. Chlebik and Chlebikova [9] proved that it is NP-
hard to approximate it within any factor better than 7

6 . Assuming the unique
game conjecture (UGC), [22] showed some inapproximability results on dense
instances, a corollary of which is that for every ε > 0 edge dominating set is
inapproximable within ratio 3/2 − ε (under UGC).

In terms of parameterized complexity, edge dominating set, with param-
eter k being the size of the solution, is fixed-parameter tractable (FPT). Fer-
nau [14] gave an O∗(2.6181k)-time algorithm that has been subsequently im-
proved by Fomin et al. [15] downto O∗(2.4181k) and by Binkele-Raible and Fer-
nau [1] downto O∗(2.3819k). Currently, the best result is the O∗(2.3147k)-time
algorithm by Xiao et al. [23]. When the graph is restricted to be of maximum
degree 3, the result can be further improved to O∗(2.1479k) [24]. There is also a
long list of contributions to exact algorithms for edge dominating set, such
as the O∗(1.4423|V |)-time algorithm by Raman et al. [20], the O∗(1.4082|V |)-
time algorithm by Fomin et al. [15], the O∗(1.3226|V |)-time algorithm by Rooij
and Bodlaender [21], and finally the O∗(1.3160|V |)-time algorithm by Xiao and
Nagamochi [25].

In this paper, we study parameterized approximation for edge dominating
set. A parameterized approximation algorithm is a technique combining param-
eterization and approximation for getting approximation algorithms with fixed-
parameter running time. In this way, we may be able to achieve approximation
ratios unachievable (or yet unachieved) in polynomial time via fixed-parameter
running times that are smaller than the running times of exact algorithms. We
may also be able to use this technique to handle W[1]-hard problems which un-
likely have fixed-parameter tractable algorithms. The interested reader can be
referred to [4,11,19] for more about this issue. Let the parameter k be the size of
the solution to our problem. In the FPT framework, we want to design algorithms
with running time f(k)|I|O(1) that decide whether there is a solution of size at
most k or not, where f is a computable function. In approximation algorithms,
we are interested in designing polynomial-time algorithms to find a solution of
size g(k), where g is a computable function. In parameterized approximation,
we wish to design algorithms with running time f(k)|I|O(1) that either find an
approximate solution of size g(k) or report that there is no solution of size k.
Clearly, any fixed-parameter tractable problem allows parameterized approxi-
mation algorithms for any computable function g. However, this may not hold
for W[1]-hard problems. For example, the dominating set problem (find a set S
of k vertices in graph G = (E, V) such that each vertex in V − S is adjacent to
at least one vertex in S) does not allow parameterized approximation algorithms
for g(k) of the form k+ c with fixed constant c [11]. For edge dominating set,
we are interested in designing parameterized approximation algorithms, which

Polynomial Inapproximability and FPT Approximability of EDS 27

produce edge dominating sets of size at most (1 + ε)k (or assert that there is
no solution of size k) in f(k, ε)|I|O(1) time for some computable function f . Of
course, the goal is to find such an algorithm for a function f which is smaller
than the O∗(2.3147k)-time (exact) FPT algorithm by Xiao et al. [23]. This issue
has already been considered for other FPT problems, in particular for the min
vertex cover problem. In [2,3,13] several parameterized approximation algo-
rithms running faster than (exact) FPT algorithms and achieving ratios better
than the ratio 2 (achievable in polynomial time) are given. Note that [3,13] ask
as open question if similar results can be achieved for edge dominating set.

The remaining parts of this paper are organized as follows. In Section 2, we
give an improved hardness result for edge dominating set by showing that it
is not 5

√
5 − 10 + ε < 1.18 approximable in polynomial time unless P=NP. In

Sections 3 and 4 we tackle parameterized approximation algorithms, answering
positively to the open question in [3]. More precisely, in Section 3, we first give
a simple algorithm to present the basic ideas, and then improve this algorithm
in Section 4. We conclude the article in Section 5 by devising a parameterized
algorithm for edge dominating set where the parameter is the vertex cover
number of the graph. Due to lengthe limits, results are presented here without
proofs that can be found in [12].

2 An Improved Polynomial-Time Lower Bound

In this section, we give some new hardness results for edge dominating set,
which are based on a reduction preserving approximation from the famous min
vertex cover problem (find a minimum subset S of vertices in a graph such
that each edge has at least one endpoint in S) to edge dominating set.

Before, recall some existing results between min vertex cover and edge
dominating set. The first two are rather folklore: there exist two simple ap-
proximation preserving reductions between min vertex cover and edge dom-
inating set transforming a polynomial-time ρ-approximation algorithm for one
of them into a polynomial-time 2ρ-approximation algorithm for the other one.
Let G = (V, E) be a simple graph and let M∗ ⊆ E and C∗ ⊆ V be a minimum
edge dominating set and a minimum vertex cover of G, respectively. We will use
τ = |C∗| to denote the size of a minimum vertex cover of G. Since, it is well known
that M∗ can be supposed to be a maximal matching, we get τ = |C∗| ≥ |M∗|.
Also V (M∗), the set of endpoints of M∗, forms a vertex cover of G and then
2|M∗| ≥ τ . Thus, τ ≥ |M∗| ≥ τ

2 . Now, from any ρ-approximation algorithm for
min vertex cover given by V ′, we can polynomially find an edge dominating
set E′ by taking at most one arbitrary edge incident to each vertex of V ′. Thus,
using the above expression for τ , we get |E′| ≤ |V ′| ≤ ρ×τ ≤ 2ρ|M∗|. Conversely,
from any ρ-approximation algorithm for edge dominating set given by M ′,
we can construct a vertex cover V ′ = V (M ′) of G by taking the endpoints of M∗.
Hence, using expression for τ , we deduce: |V ′| = 2|M ′| ≤ 2ρ|M∗| ≤ 2ρ × τ .

In Theorem 1 just below, we improve the expansion 2ρ of the reduction to
2ρ− 1. Dealing with weighted versions of these two problems, it is proved in [5]

28 B. Escoffier et al.

that weighted min vertex cover can be approximated as well as weighted
edge dominating set.

Theorem 1. For any ρ ≥ 1, if there is a polynomial-time ρ-approximation algo-
rithm for edge dominating set, then there exists a polynomial-time (2ρ− 1)-
approximation algorithm for min vertex cover.

In order to prove Theorem 1, we show that for each instance G = (V, E) of min
vertex cover, we can construct at most |V | instances Gi = (Vi, Ei) (where
|Vi| ≤ 3|V |) of edge dominating set such that a (2ρ − 1)-approximation
solution to G can be found in polynomial time based on a ρ-approximation
solution to each Gi. For each positive integer 1 ≤ i ≤ |V |, the graph Gi = (Vi, Ei)
is a graph constructed from G in the following way: Vi = V ∪ {aj, a

′
j : j ∈

{1, . . . , i}} and Ei = E ∪ Fi ∪ Hi, where Fi = {(aj , a
′
j) : j ∈ {1, . . . , i}} and

Hi = {(v, aj) : v ∈ V, j ∈ {1, . . . , i}}. Informally, Gi contains a copy of G, an
induced matching Fi and a complete bipartite graph between the vertices of G
and the left part of the induced matching Fi. It is NP-hard to approximate min
vertex cover within any factor smaller than 10

√
5 − 21 by a result of Dinur

and Safra [10]. By this result and Theorem 1, we get the following corollary.

Corollary 1. For any ε > 0, edge dominating set is not (5
√

5 − 10 + ε)-
approximable in polynomial time unless P = NP .

Note that under UGC, since min vertex cover cannot be approximated to
within 2 − ε for any ε > 0 [18], we get that for any ε > 0, edge dominating
set is not (3/2 − ε)-approximable in polynomial time, which is the same lower
bound recently achieved in [22].

3 A Simple Parameterized Approximation Schema

In this section, we design a simple parameterized approximation schema for
edge dominating set. As mentioned in Introduction, this algorithm contains
the basic idea upon which the improved algorithms in Section 4 is built.

3.1 constrained edge dominating set

First of all, we introduce a constrained edge dominating set problem and
present some properties for it. Given a graph G = (V, E) and a prescribed
subset V1 ⊆ V of non-isolated vertices, an edge dominating set M is called a
constrained edge dominating set of G, if V1 ⊆ V (M). In the constrained edge
dominating set problem, we are asked to find a constrained edge dominating
set of minimum size. constrained edge dominating set is a natural genera-
tion of edge dominating set where V1 = ∅. We show a simple approximation
algorithm for constrained edge dominating set.

Lemma 1. For an instance (G, V1) of constrained edge dominating set,
let M1 be a maximum matching in the induced graph G[V1], M2 be a maximum

Polynomial Inapproximability and FPT Approximability of EDS 29

matching in the induced graph G[V − V1], and M3 be a set of |V1 − V (M1)|
edges such that each edge in M3 is incident on a different vertex in V1 −V (M1).
Edge set M ′ = M1 ∪ M2 ∪ M3 is a constrained edge dominating set with size
|M ′| ≤ (2−ρ1)ν, where ν is the size of a minimum constrained edge dominating
set M∗ and ρ1ν is the number of edges in M∗ with both endpoints in V1, for
some ρ1.

Note that Lemma 1 is a special case of Lemma 3 in the next section (but we
prefer to give a proof of both lemmas for readability).

Lemma 1 implies a 2-approximation algorithm for constrained edge dom-
inating set and a possible way to design a parameterized approximation algo-
rithm for edge dominating set. Note that we can first find a vertex set V1

such that V1 ⊆ V (M∗) for some minimum edge dominating set M∗ of G and
then use the algorithm in Lemma 1 to get an approximation algorithm for edge
dominating set. The approximation ratio is related to the size of V1: the larger
the set V1, the better the ratio.

3.2 A Parameterized Approximation Schema for edge dominating
set

As already mentioned in introduction, deciding whether a graph contains an edge
dominating set of size k can be done in O∗(2.3147k) time by the parameterized
algorithm presented in [23]. Here we design a parameterized approximation al-
gorithm for it. It is based on the following fact:

Suppose that there are a set V1 and an edge dominating set M such that
V1 ⊆ V (M), |M | ≤ k and |V1| = k+ρ′k. Then the number of edges in M
that have both endpoints in V1 is at least ρ′k.

Indeed, if there were α < ρ′k edges in M with both endpoints in V1, then the
number of vertices in V1 would be at most 2α+(|M |−α) ≤ |M |+α < k+ρ′k =
|V1|, a contradiction. Putting together the above emphasized fact and Lemma 1
and taking M = M∗, one can see that the computed edge set M ′ is of size at
most (2 − ρ′)k.

Then, our goal is to find such a large set V1. As in several articles devising
FPT algorithms for edge dominating set, we can use the fact that V (M∗) for
a minimum edge dominating set M∗ is a vertex cover of G. For each edge in the
graph, at least one endpoint of it is in V (M∗). Then, we can use a branching
algorithm to construct a set V1 of size up to k + ρ′k such that V1 is part of the
vertex set of a minimum edge dominating set V (M∗) in G. We iteratively select
an edge (a, b) in the current graph and branch into two branches by including
either a or b into V1 and deleting it from the graph until the size of V1 becomes
k+ρ′k or the remaining graph has no edge. This process produces at most 2k+ρ′k

vertex sets V1 of size at most k+ρ′k in O∗(2k+ρ′k) time and at least one of them
is contained in V (M∗). For each of the vertex sets V1, we use the algorithm in
Lemma 1 to compute M ′ and return a smallest one. The returned edge set is an
edge dominating set of size at most (2 − ρ′)k if |M∗| ≤ k (note that if in a leaf

30 B. Escoffier et al.

of the search tree we have a set V1 ⊆ V (M∗) with |V1| < k + ρ′k, this means
that the remaining graph is empty and the output solution is then optimal by
Lemma 1). By taking ρ′ = 1 − ρ, we deduce the following result.

Lemma 2. For any ρ > 0, there exists a (1 + ρ)-approximation algorithm to
k-edge dominating set running in O∗(2(2−ρ)k) time for 0 ≤ ρ ≤ 1.

When ρ = 0, Lemma 2 implies that k-edge dominating set can be solved in
O∗(4k) time, which is far away from the current best parameterized algorithm
of running time O∗(2.3147k). To reduce the gap, we will improve the running
time bound of our parameterized approximation schema in the next section.

4 Improved Parameterized Approximation Schemata

In the algorithm presented in Section 3.2, in order to search V1 we may need
to branch on each edge. One way to reduce the running time is to reduce the
number of branchings in the algorithm. This approach has been used for (exact)
FPT algorithms to obtain improved running times. We will use some of these
improved branchings, but we need to combine them with approximability. We
first deal with these approximation properties in Section 4.1 and then present
the improved parameterized approximation algorithm in Section 4.2.

4.1 More Approximation Algorithms for constrained edge
dominating set

Given a graph G = (V, E). We consider a partition (V1, V2, V3) of the vertex
set V such that:

– Each connected component of the induced graph G[V2] is a clique.
– There is no edge between a vertex in V2 and a vertex in V3.

Once the set V1 is given, we can find in linear time the set of connected compo-
nents of G[V − V1] which are cliques and which constitute V2. Let us now give
more properties of our problems based on this partition.

We consider an instance (G = (V, E), V1) of constrained edge dominating
set. Let M∗ be a minimum constrained edge dominating set of (G = (V, E), V1)
and ν = |M∗|.

We denote by α1 (resp., α2, α3) the number of edges in M∗ with both end-
points in V1 ∪ V2 (resp., with one endpoint in V1 and one in V3, both endpoints
in V3). This partitions the edge set M∗ into three sets, hence, ν = α1 + α2 +α3.

Moreover, since the connected components of G[V2] are cliques and V (M∗) is a
vertex cover of G, we know that V (M∗) contains at least |Ci|−1 vertices in each
clique Ci of G[V2]. Assume that there are p cliques C1, · · · , Cp in G[V2] among
which q cliques Q1, · · · , Qq are such that V (Qi) ⊆ V (M∗). Then V (M∗)∩ V2 =
|V2| − p + q. In other words, we have:

2α1 + α2 = |V (M∗) ∩ (V1 ∩ V2)| = |V1| + |V2| − p + q (1)

Polynomial Inapproximability and FPT Approximability of EDS 31

We are ready now to specify an approximation algorithm for constrained edge
dominating set (Algorithm ApproxPoly1 in Figure 1), which is a generation
of the algorithm in Lemma 1.

Input: A graph G = (V = V1 ∪ V2 ∪ V3, E) with the above partition of V .
Output: An edge dominating set M such that V1 ⊆ V (M).

1. Add a vertex c′i to each clique Ci in G[V2], to create a clique of size |Ci|+1.
Let V ′

2 = {c′1, · · · , c′p} be the set of added vertices.
2. Compute a maximum matching M1 in G[V1 ∪ V2 ∪ V ′

2].
3. While there is an edge e = (u, c′i) in M1 with c′i ∈ V ′

2 and there exists a
neighbor w of u not saturated by M1, replace e with (u, w) in M1.

4. Let M ′
1 be the set of edges in M1 with an endpoint in V ′

2 .
5. Compute a maximum matching M2 in G[V3].
6. For each unsaturated vertex in V1, select an arbitrary edge incident on it.

Let M3 be the set of such edges.
7. Output M = M1 ∪ M2 ∪ M3 − M ′

1.

Fig. 1. Algorithm ApproxPoly1

Lemma 3. Edge set M =ApproxPoly1(G) is a constrained edge dominating
set of (G, V1) with size |M | ≤ (2 − ρ1)ν, where ρ1ν = α1 is the number of edges
in M∗ with both endpoints in V1 ∪ V2.

Note that Lemma 1 is a special case of Lemma 3 where the vertex set V2 is
an empty set. Lemma 3 shows that we do not need to branch on each clique
component in G[V − V1] in order to search the vertex set of a constrained edge
dominating set.

To improve the running time of our parameterized approximation schema,
we also need to consider a particular case of the graph where in the partition
(V1, V2, V3) each connected component of G[V3] is a path of length 2.

Let N be the number of these paths in G[V3]. Considering a minimum con-
strained edge dominating set M∗, we denote by:

– N1 the set of paths in G[V3] such that there is an edge in M∗ between a
vertex in V1 and the central vertex of the path; set n1 = |N1|;

– N2 the set of paths in G[V3] such that there is an edge of the path in M∗;
set n2 = |N2|;

– N3 the set of remaining paths in G[V3]; set n3 = |N3|.
Observe that some paths of G[V3] may be counted twice (once with N1 and
once with N2); so, N ≤ n1 + n2 + n3. Note that for each of the n3 remaining
paths, M∗ has to take two edges (between V1 and the endpoints of the path)
to cover the edges of the path. In other words, α2 ≥ 2n3 + n1. Moreover, by
definition, n2 = α3.

Consider Algorithm ApproxPoly2 (Figure 2) on an instance (G, V1) of con-
strained edge dominating set.

32 B. Escoffier et al.

Input: A graph G = (V = V1 ∪ V2 ∪ V3, E), where each component in G[V3]
is a path of length 2.
Output: An edge dominating set M such that V1 ⊆ V (M).

1. Add a vertex c′i to each clique Ci in G[V2], to create a clique of size |Ci|+1.
Let V ′

2 = {c′1, · · · , c′p} be the set of added vertices.
2. Compute a maximum matching M1 in G[V1 ∪ V2 ∪ V ′

2 ∪ V ′
3], where V ′

3 is
the set of central vertices of paths in G[V3].

3. While there is an edge e = (u, c′i) in M1 such that c′i ∈ V ′
2 and there exists

a neighbor w of u not saturated by M1, then replace e with (u, w) in M1.
4. Let M ′

1 be the set of edges in M1 with an endpoint in V ′
2 .

5. For each path where the central vertex is not saturated by M1, take one
edge in this path.
Let M2 be this set of edges.

6. For each unsaturated vertex in V1, select an arbitrary edge. Let M3 be the
set of such edges.

7. Output M = M1 ∪ M2 ∪ M3 − M ′
1.

Fig. 2. Algorithm ApproxPoly2

The following lemma holds.

Lemma 4. Edge set M =ApproxPoly2(G) is a constrained edge dominating set
of (G, V1) with size |M | ≤ ν + n3.

4.2 An Improved Parameterized Approximation Schema

Now we are able to give the improved parameterized approximation schema
ApproxFPT for k-edge dominating set as well as k-constrained edge dom-
inating set. As explained earlier, the principle is to search the vertex set V1

by using some ‘good’ branchings. Then, in each leaf of our search tree, we will
use the approximation algorithms devised in Section 4.1 (either directly, or after
some other steps).

We consider a k-constrained edge dominating set (G, V1) with partition I =
(V1, V2, V3) of the vertex set. Let t = |V1| + |V2| − p (where p is the number of
cliques in G[V2]). When t ≥ (2 − ρ)k (0 ≤ ρ ≤ 1), there are at least (1 − ρ)k
edges in any optimal solution M∗ with both endpoints in V1 ∪ V2. Therefore,
Lemma 3 implies that a (1+ρ)-approximation solution to k-constrained edge
dominating set can be found in polynomial time, if t ≥ (2−ρ)k. We will use a
branch-and-search method to move vertices from V3 to V1 ∪ V2 and therefore to
increase the parameter t. Note that for each vertex v ∈ V3, it is either in V (M∗)
or not. For the second case, all neighbors of v should be in V (M∗) since V (M∗)
is a vertex cover of the graph. Then, we can branch on v by either moving v
into V1 (this means v ∈ V (M∗)) or by moving the neighbor set N(v) of v in G[V3]
into V1 (this means v
∈ V (M∗)) and moving all newly created clique components

Polynomial Inapproximability and FPT Approximability of EDS 33

in G[V3] into V2. When v is a vertex of degree ≥ 3 in G[V3], we can branch with
recurrence:

C(t) ≤ C(t + 1) + C(t + 3) (2)

where C(t) is the worst size of the search tree in the algorithm when the current
value of |V1|+ |V2| − p is t. When the maximum degree of G[V3] is at most 2, we
may only get C(t) ≤ C(t + 1) + C(t + 2), by branching on a maximum degree
vertex. In fact, there are some techniques to branch on a component H in G[V3]
with a recurrence not worse than (2), if H is not a path of length 2 [21,25,23].

For a path p1p2p3p4 . . . of length at least 3, we can branch on p3 by including
it into V1 or including its neighbors p2 and p4 into V1. For the first branch, we
will also move a clique component p1p2 into V2. Then we can get:

C(t) ≤ C(t + 2) + C(t + 2) (3)

which is better than (2).
For a cycle of length at least 5, we branch on an arbitrary vertex in the cycle

and then branch on the generated paths in each branch and finally we can get
a recurrence not worse than (2). For a cycle c1c2c3c4 of length 4, we can also
branch with (3) by including either {c1, c3} or {c2, c4} into V1. For the details
about the proof of this fact, reader is referred to [21,25,23].

It turns out that only for a component of path of length 2 in G[V3] we cannot
branch with a recurrence as good as (2). We will call a branching with recurrence
at least as (2) a good branching.

The main steps of the improved parameterized approximation schema, called
ApproxFPT, are listed in Figure 3.

Let ρ� � 0.21 be the number such that 1.466 = 1.619(1−ρ�). Then the following
holds.

Theorem 2. For any ρ with 0 ≤ ρ ≤ 1, ApproxFPT is a (1 + ρ)-approximation
algorithm running in time O∗(2.374(1−ρ)k) if ρ ≤ ρ� and in time O∗(1.466(2−ρ)k)
if ρ ≥ ρ�.

5 Parametrization by the Vertex Cover Number

Since the size of any vertex cover in a graph is at least the size of any matching
in this graph, any parameterized algorithm for edge dominating set working
in O(f(k)|I|O(1)) time also works in O(f(τ)|I|O(1)) time, where τ is the size
of the minimum vertex cover of the graph. Hence, it is possible to solve edge
dominating set within time O∗(2.3147τ) by using the algorithm in [23]. In this
section we show that this result can be improved down to O∗ (1.821τ).

To this aim, let us consider the algorithm FPTτ presented in Figure 4, which
outputs a minimum edge dominating set in graph G. Let α � 0.2864 be such
that 2.3147(1−α) =

(
1

αα(1−α)1−α

)
.

Theorem 3. FPTτ(G) computes a minimum edge dominate set in O∗(1.821τ)
time.

34 B. Escoffier et al.

Input: A graph G = (V = V1∪V2∪V3, E), an integer k > 0 and a real number
0 ≤ ρ ≤ 1.
Output: A (1+ ρ)-approximation solution M to k-constrained edge dom-
inating set such that V1 ⊆ V (M).

1. While t < (2 − ρ)k and there is a connected component of V3 which is
not a 2-path, do a good branching.

2. If t ≥ (2 − ρ)k, compute ApproxPoly1(G).
3. Elseif ρ ≥ 1/2, compute ApproxPoly2(G).
4. Elseif t ≥ (1 − ρ)k, do

(a) While t ≤ 2(1 − ρ)k and V3 �= ∅, do branch on a 2-path in G[V3] by
including either its central vertex or its two endpoints into V1;

(b) Compute ApproxPoly2(G).
5. Elseif N ≥ (1 − ρ)k, then compute ApproxPoly2(G).
6. Elseif N ≤ 2(1 − ρ)k/3, branch into 2N branches by considering the 2N

subsets of paths. For each subset S, include the central vertex of paths
in S into V1, include the two endpoints of the paths not in S into V1, and
compute an optimal solution (now V3 = ∅).

7. Else consider any subset S of the set of the N paths in G[V3] with size |S|
at most (1− ρ)k−N . For each such subset S, include the two extremities
of the paths in S in V1, and compute ApproxPoly2(G).

8. If an optimal solution among all the leaves in the search tree is of size at
most (1 + ρ)k, then return it. Else report that there is no solution of size
at most k.

Fig. 3. Algorithm ApproxFPT

Input: A graph G = (V, E).
Output: A minimum edge dominate set.

1. Compute a minimum vertex cover V ∗ of G by using the algorithm in [8],
and let S∗ = V \ V ∗.

2. For k = 1 to (1− α)τ determine whether there exists an edge dominating
set of size at most k by using the algorithm in [23]. If any, output the
minimum edge dominating set and quit.

3. Otherwise, for each subset V1 of V ∗ of size at most ατ :
(a) Let V2 = V ∗ \ V1, S1 = N(V1) ∩ S∗, and S2 = S∗ \ S1;
(b) Compute a maximum matching M(V1) in G[V2 ∪ S1];
(c) For each vertex in V2 ∪ S1 unsaturated by M(V1), take one edge inci-

dent to this vertex. Together with M(V1), this gives a set M ′(V1) of
edges.

4. Output a minimum edge dominating set computed in Step 3 (note that
some of the edge sets M ′(V1) are not edge dominating sets).

Fig. 4. Algorithm FPTτ

Polynomial Inapproximability and FPT Approximability of EDS 35

6 Conclusion

We provide in this article new insights on the approximability of edge domi-
nating set. Our parameterized approximation algorithm first apply some steps
of a branching algorithm, and then exploit the specificity of obtained instances
to get an approximate solution on them. This is rather different from the notions
of fidelity preserving transformation recently introduced in [13] where informally
the instance is first reduced in an approximate way (and then an (exact) FPT
algorithm is applied). In particular, our approximation algorithm relies on the
branching steps; this is not the case in the approach of [13] and applying this
latter approach for edge dominating set is an interesting open question men-
tioned in [13]. Moreover, our algorithm has complexity O∗(γk

ρ) for a ratio ρ where
γ1 = 2.374 (exact algorithm) and γ2 = 1.466. Since achieving a ratio 2 is poly-
nomial, one could hope to find approximation algorithms where γρ → 1 when
ρ → 2, which we leave as open question.

References

1. Binkele-Raible, D., Fernau, H.: Enumerate and Measure: Improving Parame-
ter Budget Management. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS,
vol. 6478, pp. 38–49. Springer, Heidelberg (2010)

2. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of max independent
set, min vertex cover and related problems by moderately exponential algorithms.
Discrete Applied Mathematics 159(17), 1954–1970 (2011)

3. Brankovic, L., Fernau, H.: Combining Two Worlds: Parameterised Approximation
for Vertex Cover. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS,
vol. 6506, pp. 390–402. Springer, Heidelberg (2010)

4. Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and
Approximability Results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 96–108. Springer, Heidelberg (2006)

5. Carr, R.D., Fujito, T., Konjevod, G., Parekh, O.: A 2 1
10

-Approximation Algorithm
for a Generalization of the Weighted Edge-Dominating Set Problem. J. Comb.
Optim. 5(3), 317–326 (2001)

6. Cardinal, J., Langerman, S., Levy, E.: Improved approximation bounds for edge
dominating set in dense graphs. Theoretical Computer Science 410(8-10), 949–957
(2009)

7. Carr, R., Fujito, T., Konjevod, G., Parekh, O.: A 2 1
10

-approximation algorithm for
a generalization of the weighted edge-dominating set problem. Journal of Combi-
natorial Optimization 5, 317–326 (2001)

8. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40-42), 3736–3756 (2010)

9. Chlebik, M., Chlebikova, J.: Approximation hardness of edge dominating set prob-
lems. Journal of Combinatorial Optimization 11(3), 279–290 (2006)

10. Dinur, I., Safra, M.: The importance of being biased. In: Proc. STOC 2002, pp.
33–42 (2002)

11. Downey, R.G., Fellows, M.R., McCartin, C., Rosamond, F.A.: Parameterized ap-
proximation of dominating set problems. Inf. Process. Lett. 109(1), 68–70 (2008)

36 B. Escoffier et al.

12. Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial
inapproximability and fixed parameter approximability of edge dominating set
(manuscript, 2012)

13. Fellows, M.R., Kulik, A., Rosamond, F., Shachnai, H.: Parameterized Approxima-
tion via Fidelity Preserving Transformations. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 351–362.
Springer, Heidelberg (2012)

14. Fernau, H.: Edge Dominating Set: Efficient Enumeration-Based Exact Algorithms.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
142–153. Springer, Heidelberg (2006)

15. Fomin, F., Gaspers, S., Saurabh, S., Stepanov, A.: On two techniques of combining
branching and treewidth. Algorithmica 54(2), 181–207 (2009)

16. Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight
edge dominating set problem. Discrete Appl. Math. 118, 199–207 (2002)

17. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. Freeman, San Francisco (1979)

18. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3), 335–349 (2008)

19. Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60–78 (2008)

20. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerat-
ing maximal independent sets and other techniques. Theory of Computing Sys-
tems 42(3), 563–587 (2007)

21. van Rooij, J.M.M., Bodlaender, H.L.: Exact Algorithms for Edge Domination. In:
Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 214–225.
Springer, Heidelberg (2008)

22. Schmied, R., Viehmann, C.: Approximating edge dominating set in dense graphs.
Theoretical Computer Science 414(1), 92–99 (2012)

23. Xiao, M., Kloks, T., Poon, S.-H.: New Parameterized Algorithms for the Edge
Dominating Set Problem. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS,
vol. 6907, pp. 604–615. Springer, Heidelberg (2011)

24. Xiao, M., Nagamochi, H.: Parameterized Edge Dominating Set in Cubic Graphs
(Extended Abstract). In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011.
LNCS, vol. 6681, pp. 100–112. Springer, Heidelberg (2011)

25. Xiao, M., Nagamochi, H.: A Refined Exact Algorithm for Edge Dominating Set.
In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp.
360–372. Springer, Heidelberg (2012)

26. Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl.
Math. 38(3), 364–372 (1980)

A New Algorithm for Parameterized MAX-SAT�

Ivan Bliznets and Alexander Golovnev

St. Petersburg University of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract. We show how to check whether at least k clauses of an input
formula in CNF can be satisfied in time O∗(1.358k). This improves the
bound O∗(1.370k) proved by Chen and Kanj more than 10 years ago.
Though the presented algorithm is based on standard splitting techniques
its core are new simplification rules that often allow to reduce the size
of case analysis. Our improvement is based on a simple algorithm for a
special case of MAX-SAT where each variable appears at most 3 times.

Keywords: exact algorithms, maximum satisfiability, parameterized al-
gorithms, satisfiability.

1 Introduction

1.1 Problem Statement

Maximum Satisfiability (MAX-SAT) is a well known NP-hard problem where
for a given boolean formula in conjunctive normal form one is asked to find
the maximum number of clauses that can be simultaneously satisfied. In the
parameterized version of MAX-SAT the question is to check whether it is possible
to find an assignment that satisfies at least k clauses. The best known upper
bound O∗(1.370k) for this problem was given in 2002 by Chen and Kanj [1]. The
previously known bounds are listed in the following table.

Bound Authors Year

O∗(1.618k) Mahajan, Raman [2] 1999
O∗(1.3995k) Niedermeier, Rossmanith [3] 1999
O∗(1.3803k) Bansal, Raman [4] 1999
O∗(1.3695k) Chen, Kanj [1] 2002

In this paper, we present an algorithm with the running time O∗(1.358k) for
parameterized MAX-SAT and O∗(1.273k) for parameterized (n, 3)-MAX-SAT.
(n, 3)-MAX-SAT is a special case of MAX-SAT where each variable appears at
most three times.

An alternative way to parametrize MAX-SAT is to ask whether at least �m
2
+

k′ clauses can be satisfied ([2], [5], [6]). This is called parametrization above

� Research is partially supported by Federal Target Program “Scientific and scientific-
pedagogical personnel of the innovative Russia” 2009–2013 and Russian Foundation
for Basic Research.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 37–48, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

38 I. Bliznets and A. Golovnev

guaranteed values since one can always satisfy at least �m
2
 clauses (indeed,

the expected number of clauses satisfied by a random assignment is m
2). It is

shown in [2] that an upper bound φk for the parametrization considered in this
paper implies an upper bound φ6k′

for an alternative parametrization. We do
not known any better results for this parametrization.

1.2 General Setting

Literals and Formulas. Throughout the paper, n denotes the number of vari-
ables, m denotes the number of clauses, and k denotes the number of clauses
one is asked to satisfy. By MAX-SAT(F) we denote the maximum number of
clauses in F that can be satisfied simultaneously. MAX-SAT(F, k) = true iff
MAX-SAT(F) ≥ k. The constants true and false are denoted just by 1 and 0.
Let #F (l) be the number of occurrences of a literal l. By F [l] we denote a for-
mula obtained from F by removing all occurrences of l̄ and deleting all clauses
containing l. By F [x = ȳ] we denote a formula obtained by replacing x and x̄
by ȳ and y, respectively. We say that a variable has degree p if it occurs in the
formula exactly p times. Also we say that a variable x is of type (a, b) if the literal
x occurs a times and the literal x̄ occurs b times. We say that a variable x is a
(k, 1)-singleton ((k, 1)-non-singleton) if it is of type (k, 1) and the only negation
is contained (is not contained) in a unit clause. Unit clause is a clause of length
1. A literal l is called pure if the literal l̄ does not appear in the formula. A literal
y dominates a literal x if all clauses containing x contain also y. Two literals
are called inconsistent if one of them is a negation of the second. A literal y is
a neighbor of a literal x if they appear in a clause together. We use “. . . ” to
indicate the rest of a clause. E.g., (x∨ ȳ ∨ . . .) is a clause containing literals x, ȳ
and probably something else.

Branchings. Instance of a problem is a pair (F, k). The question is whether it is
possible to satisfy at least k clauses in a formula F . For q > 1, we say that there
exists a branching (a1, . . . , aq) if we can quickly construct formulas F1, F2, . . . , Fq

such that the answer for the original problem can be found from the answers
to the problems (F1, k − a1), (F2, k − a2), . . . , (Fq, k − aq). If l is a literal of F ,
then clearly there exists a branching (F [l], k − #F (l)), (F [l̄], k − #F (l̄)). It is
well-known that if an algorithm on each stage uses only branchings from the set

(a1,1, . . . , a1,q1), (a2,1, . . . , a2,q2), . . . , (at,1, . . . , at,qt),

where ai,1 ≤ ai,2 ≤ · · · ≤ ai,qi , for 1 ≤ i ≤ t, then its running time is O∗(ck)
where c is the largest positive root of a polynomial

p(X) =
t∏

j=1

(Xaj,qj −
qj∑
i=1

Xaj,qj
−aj,i).

For branching (a1, . . . , aq), where a1 ≤ a2 ≤ · · · ≤ aq, we denote by
τ(a1, a2, . . . , aq) the unique positive root of a polynomial Xaq − (Xaq−a1 +
Xaq−a2 + · · ·+Xaq−aq). τ(a1, a2, . . . , aq) is called a branching number.

A New Algorithm for Parameterized MAX-SAT 39

We say that a branching (b1, b2, . . . , bq) is dominated by branching a
(a1, a2, . . . , aq) iff for every i, ai ≥ bi.

1.3 The Main Idea of the Algorithm

A straightforward branching on a variable of high degree immediately gives a
good branching number. As it is common with branching algorithms, the main
bottleneck is when a formula consists of variables of low degree only. It is easy
to see that variables of degree at most 2 can be eliminated from the formula.
Consider a variable x of degree 3: (x ∨ A)(x ∨ B)(x̄ ∨ C), where A,B,C are
disjunctions of literals. If A or B consists of just one literal, then we can replace
(x ∨ A)(x ∨ B)(x̄ ∨ C) with (Ā ∨ B ∨ C)(A ∨ C). If A and B are long, then we
can branch according to the following “resolution-like” rule:

• replace (x ∨ A)(x ∨ B)(x̄ ∨ C) by (A ∨ C)(B ∨ C);
• set to 0 all literals from A,B,C.

More formally the correctness of these steps is shown in Simplification Rule 5
and Branching Rule 2.

For solving MAX-SAT restricted to instances consisting of (3, 1)- and (4, 1)-
singletons we use the algorithm for the Minimum Set Cover problem by van
Rooij and Bodlaender [7]. The running time of the algorithm is estimated in
Theorem 3.

1.4 Organization of the Paper

In Section 3 we present a very simple algorithm for (n, 3)-MAX-SAT. Its analysis
is based on tricks mentioned above and contains no case analysis at all. In
Section 4 we show that the presented rules can be used to simplify a case analysis
of branching on a variable of degree 3. In Section 5 we improve the upper bound
for Parameterized MAX-SAT.

2 Preliminaries: Simplification and Branching Rules

The following simplification rule is straightforward so we state it without a proof.

Simplification Rule 1. A literal l can be assigned the value 1 if l is a pure
literal or number of unit clauses (l) is not smaller than number of clauses con-
taining l̄.

Simplification Rule 2. A variable of degree ≤ 2 can be eliminated.

Correctness: If l is a pure literal, then we can set l = 1. Otherwise, F = G∧(l∨
A)∧(l̄∨B). It is easy to see that MAX-SAT(F, k) = MAX-SAT(F∧(A∨B), k−1).

��

Simplification Rule 3. Pairs of clauses (x) and (x̄) can be removed.

40 I. Bliznets and A. Golovnev

Correctness: Clearly, MAX-SAT(F ∨ (x) ∨ (x̄), k) = MAX-SAT(F, k − 1). It
does not matter whether the variable x appears in F or not. ��

Simplification Rule 4. If two variables x and y of degree 3 appear together in
3 clauses, then all these 3 clauses can be satisfied by assigning x and y.

Correctness: One can satisfy 2 clauses by assigning x the remaining clause can
be satisfied by assigning y. ��

Simplification Rule 5. Let x be a variable of degree 3: F = G∧ (x∨A)∧ (x∨
B) ∧ (x̄ ∨ C). If A or B has length < 2 then we can reduce the problem.

Correctness: Wlog, assume that A has length < 2. If the length of A equals to
1 then A is a single literal. It is easy to see that

MAX-SAT(F, k) = MAX-SAT(G ∧ (Ā ∨B ∨ C) ∧ (A ∨C), k − 1).

If A is empty we can set x = 1. The parameter is reduced by 2. ��

Remark 1. It is easy to see that all Simplification Rules can be applied in poly-
nomial time and decrease k at least by one. Note that some of the simplifications
rules make several clauses of a formula satisfied while others may replace existing
clauses with new clauses and reduce the parameter (like SR2 and SR5). Since as
a result of applying a rule the number of satisfied clauses increases we usually
say that applying a simplification rule satisfies some clauses.

Branching Rule 1. For any literal l, one can branch as (F [l], k −
#F (l)), (F [l̄], k − #F (l̄)).

Branching Rule 2. Let x be a variable of degree 3: F = G ∧ (x ∨ A) ∧ (x ∨
B) ∧ (x̄ ∨ C). Then there is a branching:

• (G ∧ (A ∨ C) ∧ (B ∨ C), k − 1)
• (G′, k−2), where G′ is obtained from G by assigning all literals from A,B,C

to 0.

Correctness: Let R = (A ∨ C) ∧ (B ∨ C). It is a simple observation that if
an optimal assignment satisfies s clauses from R, where s = 1, 2, then we can
satisfy s+1 clauses from F −G but cannot satisfy s+2. However, if an optimal
assignment does not satisfy any clause from R we can still satisfy two clauses
from F − G by setting x = 1. ��

Corollary 1. If A∪B ∪C contains inconsistent literals, then one can consider
only the first branch. It means that one can reduce (F, k) to (G∧ (A∨C)∧ (B ∨
C), k − 1).

Remark 2. We write BR2(x) if we apply Branching Rule 2 to a variable x.
Branching on a variable means applying Branching Rule 1. We write SRi(x) for
1 ≤ i ≤ 5, if we apply Simplification Rule i to a variable x.

A New Algorithm for Parameterized MAX-SAT 41

Lemma 1 (Kulikov, Kutzkov [8]). If a literal y dominates a literal x, then
one can branch as

• x = 1, y = 0;
• x = 0.

Proof. If in some assignment the literals x and y both have the value 1, then
flipping the value of x cannot decrease the number of satisfied clauses. Indeed,
all clauses that can be satisfied by x = 1 are also satisfied by y = 1. ��

Lemma 2. Let x be a (t, 1)-non-singleton variable. Then branching on x is a
(t, 2)-branching.

Proof. Let y be a neighbor of x̄. In the branch x = 1 we satisfy at least t clauses.
In the branch x = 0 we can set y = 0 and satisfy at least 2 clauses. The lemma
follows from Lemma 1, in this case we use literals y, x̄ instead of y, x. ��

Lemma 3. If F contains a variable x of degree ≥ 6, then branching number on
x is at most τ(1, 5).

Proof. This follows from the fact that τ(1, 5) > τ(2, 4) > τ(3, 3). ��

3 Solving (n, 3)-MAX-SAT in 1.2721k Time

By (n, 3)-MAX-SAT we denote MAX-SAT restricted to instances in which each
variable appears in at most 3 clauses. In this section we give a simple algorithm
for (n, 3)-MAX-SAT. The running time of the algorithm is 1.2721k. Note that
the previous known upper bound for (n, 3)-MAX-SAT w.r.t. k is 1.3247k and
it follows from proof of Chen and Kanj for the general MAX-SAT. Throughout
this section we assume that F is an (n, 3)-MAX-SAT formula.

Lemma 4. Let x be a variable of degree 3: F = G∧ (x∨A) ∧ (x ∨B)∧ (x̄∨C)
and rules SR1-4 are not applicable to F . If A has length < 2, then we have
(2, 4)-branching and the resulting formulas are (n, 3)-MAX-SAT formulas.

Proof. IfA has length 0, then we can set x = 1. Otherwise, by Simplification Rule
5 we eliminate one clause and get a new formula F ′ = G∧ (Ā∨B∨C)∧ (A∨C).
Variables of degree 4 in the formula F ′ can appear only in A and C. Branching
on the variable A gives (n, 3)-MAX-SAT formulas in both branches. A has degree
4, so the branching gives at least (1, 3)-branching (note that τ(2, 2) < τ(1, 3)).
As one clause is already satisfied, the resulting branching is at least (2, 4). ��

Lemma 5 (Bliznets [9]). If each variable of F appears once negatively and
twice positively and all negative literals occur in unit clauses, then MAX-SAT(F)
can be computed in polynomial time.

Proof. Construct a graph GF = (V,E) in the following way. Introduce a vertex
for each clause consisting of positive literals, introduce an edge between two
vertices if the corresponding two clauses share a variable. Then MAX-SAT(F) =
n+ ν(GF), where ν(GF) is the size of a maximum matching in GF . ��

42 I. Bliznets and A. Golovnev

Algorithm 1. (n, 3)-MAX-SAT-Alg — solving (n, 3)-MAX-SAT in time
1.2721k.

Input: F — instance of (n, 3)-MAX-SAT.
Parameter: k — number of clauses asked to satisfy.
Output: true, if k clauses can be satisfied simultaneously; false otherwise.

1: apply Simplification Rules 1–4
2: if all negations are singletons then
3: return answer (use Lemma 5).
4: choose x, s.t. x̄ is not a singleton: (x ∨ A)(x ∨ B)(x̄ ∨ C), |C| > 0, |A| ≤ |B|
5: if |A| ≤ 1 then
6: use Lemma 4 for branching
7: if |A| ≥ 2 then
8: branch BR 1(x)

Theorem 1. Algorithm (n, 3)-MAX-SAT-Alg solves (n, 3)-MAX-SAT in time
1.2721k.

Proof. By Lemma 5 the running time of step 3 is polynomial. Step 6 gives
(2, 4)-branching by Lemma 4. Branching at step 8 gives at least (4, 2)-branching.
Indeed, |C| > 0 and Lemma 1 implies that in case x = 0 we can satisfy at least
two clauses: one is (x̄ ∨ C) and one more with a literal t̄ where t is some literal
from C. By SR4, there are at least 4 clauses containing variables from A. In the
branch x = 1 two clauses are satisfied by x and there exist variables y, z that
appear one or two times in the new formula. There are at least 2 clauses that
contain variable y or z. Hence, SR2 applied to variables y, z from A satisfies two
new clauses. Thus, branching on x gives (4, 2)-branching. The running time of
the algorithm is max(τ(2, 4), τ(3, 3))k = τ(2, 4)k < 1.2721k. ��

4 Removing Variables of Degree 3

In this section we show that if a formula contains a variable of degree 3 then we
can either decrease k or find a good branching. Suppose that x occurs three times
in F and no simplification rules are applicable to F . Assume that F contains
clauses (x ∨ A), (x ∨ B), (x̄ ∨ C) where A,B,C are disjunctions of literals. We
consider only cases where |A|, |B| ≥ 2 because otherwise we can apply SR5(x)
or assign 1 to x.

Definition 1. Denote by LN(!A1, . . . , !Ak) the set of all clauses of F containing
a negation of some literal from A1 ∪ · · · ∪ Ak

Throughout this section we assume that A∪B∪C does not contain inconsistent
literals. Otherwise, by Corollary 1 the formula can be simplified.

Lemma 6. Let y, z be literals such that y, z ∈ A∪B ∪C, ȳ occurs two or more
times and dominates z̄ (call this situation a first special case of domination).
Then there is a (2, 4)-branching.

A New Algorithm for Parameterized MAX-SAT 43

Proof. Recall that ȳ, z̄ appear in some clauses from LN(!A, !B, !C). Consider
the branching F [y], F [ȳ]. In the second case two clauses are satisfied with ȳ and
z can be substituted by 1, because it becomes a pure literal. z = 1 satisfies at
least one of the following clauses: (x ∨ A), (x ∨ B), (x̄ ∨ C). After that we use
SR2(x) since x appears at most two times. This satisfies at least 4 clauses. In
the formula F [y] we use SR2(x) and that is why the parameter is decreased
by 2. ��

Lemma 7. Let y, z be literals from A ∪ B ∪ C such that ȳ occurs once and
dominates z̄ (call this situation a second special case of domination). Then there
is a (3, 3)-branching.

Proof. Like in the previous lemma in F [ȳ] we can assign 1 to z. A literal z
appears at least two times because z̄ occurs once in the formula. So z = 1
satisfies two more clauses(z and z̄ do not appear in one clause). This satisfies at
least 3 clauses. In F [y] — we satisfy 2 clauses containing y and one using SR2(x)
because after assigning y = 1 we have one or two clauses containing the variable
x. We get a (3, 3)−branching. ��

Lemma 8. If |LN(!A, !B, !C)| < 3 then we have a special case of domination
or A = B = y ∨ z. In the former case we have a good branching ((2, 4)-, (3, 3)-,
(1, 6)-branching or better), while in the latter case the parameter can be decreased.

Proof. We know that |A|, |B| ≥ 2. So A ∪ B contains more than two literals or
equals y∨ z. In the former case three literals should occur in two clauses, so this
is a domination. In the latter case we can replace clauses with the variable x by
the clause (y ∨ z ∨C) and decrease the parameter by two. ��

Now we can assume that we only work with formulas where |LN(!A, !B, !C)| > 2.
If |LN(!A, !B, !C)| > 3 using BR2(x) we immediately get (1, 6)-branching. So
for the rest of this section |LN(!A, !B, !C)| = 3.

Lemma 9. If |A ∪ B ∪ C| > 3 then we have a special case of domination
and hence one of the Lemmas 6,7 is applicable. So there is a (2, 4)- or (3, 3)-
branching.

Proof. At least 4 negations of the literals from |A ∪ B ∪ C| should be placed in
3 clauses and it is impossible without special case of domination. ��

From the previous lemma we conclude that it is enough to consider formulas
where |A ∪ B ∪ C| ≤ 3.

Lemma 10. If min{|A|, |B|} ≥ 3 then either there is a special case of domina-
tion or the parameter can be decreased.

Proof. If |A ∪ B ∪ C| > 3 we have a special case of domination because of
Lemma 9. Otherwise from |A ∪ B ∪ C| ≤ 3 and min{|A|, |B|} ≥ 3 it follows
that |A| = |B| = 3 and x ∨ A = x ∨ B = x ∨ y1 ∨ y2 ∨ y3. So, we can replace
x ∨ A, x ∨B, x̄ ∨ C by A ∨ C and decrease the parameter by 2. ��

Now wlog we can assume that x ∨ A = x ∨ y ∨ z.

44 I. Bliznets and A. Golovnev

Lemma 11. If we have an instance (F, k) and for all variables x that appear
three times the following holds:

• x occurs in clauses x ∨Ax, x ∨ Bx, x̄ ∨Cx

• LN(!Ax, !Bx, !Cx) = 3

then we can decrease the parameter or apply one of the following branchings:
(3, 3), (2, 4) or better.

Proof. Suppose that all previous lemmas are not applicable otherwise we are
done. So we can choose a variable x that occurs three times and Ax = y ∨ z.
Note that if ȳ occurs three times then we have a case of domination and in
this situation a good branching ((2, 4)-, (3, 3)-, (1, 6)-branching or better) exists.
Consider two cases: ȳ appears exactly once or twice.

Case 1: ȳ appears exactly once.

Case 1.1: ȳ has a neighbor.
F contains the following clauses:

(x ∨ y ∨ z), (x ∨ . . .), (x̄ ∨ . . .), (ȳ ∨ w ∨ . . .).

In F [ȳ] by Lemma 1 we can assign 0 to w and use SR5(x) or SR2(x).
So, we decrease the parameter by 3. In F [y] we satisfy at least two
clauses and using SR2(x) we decrease the parameter by 1. We obtain
(3, 3)-branching. So in all other cases we must have a clause (ȳ).

Case 1.2: y appears more than 2 times and there is an occurrence

outside a variable x.
After F [y] and SR2(x) we satisfy at least 4 clauses. In F [ȳ] using SR5(x)
we decrease the parameter by 2.

Case 1.3: a literal y appears in all clauses with a variable x.
We have the following clauses:

(x ∨ y ∨ z), (x ∨ y ∨ . . .), (x̄ ∨ y ∨ . . .), (ȳ).

The variable y does not occur in the rest of the formula, otherwise we
can treat it as a case 1.2. So, it is enough to consider y = 0. Because
an assignment with x = 1, y = 0 is not worse than the same assignment
with x = y = 1 and x = 0, y = 1. It means that we can satisfy one clause
and one variable without branching.

Case 1.4: y occurs exactly twice
Using symmetry we can conclude that the clause with x̄ does not contain
any other literals. Otherwise we have case 1.1. Again using symmetry
ideas we may conclude that either z̄ appears twice or z̄ appears once
and z appears exactly twice and there is a clause (z̄) . Consider these
two subcases separately.

A New Algorithm for Parameterized MAX-SAT 45

Case 1.4.1: z̄ appears once and z appears exactly twice

(x ∨ y ∨ z), (x ∨ . . .), (x̄), (ȳ), (z̄).

In F [x] using SR2(y), SR2(z) we decrease the parameter by 4. In
F [x̄] it is easy to see that we can assume y = z̄. So we obtain (4, 4)-
branching.

Case 1.4.2: z̄ appears twice.
In this case we have the following clauses:

(x ∨ y ∨ z), (x ∨ . . .), (x̄), (ȳ), (z̄ ∨ . . .), (z̄ ∨ . . .).

F [z] and then SR2(x), SR2(y) decrease the parameter by 3. In F [z̄]
we can assume that x = ȳ. We get a (3, 4)-branching.

Case 2: ȳ appears exactly twice.
Using symmetry we conclude that z̄ also appears twice otherwise we have
the situation described in case 1. So, we have the following family of clauses:

(x ∨ y ∨ z), (x ∨ B), (x̄ ∨ . . .), (ȳ ∨ . . .), (ȳ ∨ . . .).

Assume y ∈ B (the case z ∈ B is similar). F [y] and then x = 0 removes
3 clauses. In F [ȳ] we use SR5(x) and this removes 3 clauses. If y, z do not
appear in B we have |B| < 2 or |A∪B| ≥ 4 and we get a special domination
case, considered before.

��

Theorem 2. If x occurs exactly 3 times in F , then either the parameter can be
decreased or there is a (1, 6)-, (2, 4)- or (3, 3)-branching.

5 Solving MAX-SAT in 1.358k

In this section we present a simple algorithm that improves the upper bound for
Parameterized MAX-SAT (Algorithm MAX-SAT-Alg). The main bottleneck
of the analysis is when all variables are (1, 3)-singletons or (1, 4)-singletons. We
consider this case separately.

We reduce an instance of this restricted MAX-SAT to the instance of Mini-
mum Set Cover. The Minimum Set Cover is, given a universe U and a collection
S of subsets of U , to find the minimum cardinality of a subset S′ ⊂ S which
covers U :

⋃
Si∈S′ Si = U . For e ∈ U , f(e) (frequency of e) denotes the number

of subsets of S in which e is contained.
It can be shown that algorithm for the Minimum Dominating Set given by

van Rooij and Bodlaender [7] in fact solves also the Minimum Set Cover in
time 1.28759k(U,S), where k(U,S) =

∑
e∈U v(f(e))+

∑
Si∈S w(|Si|), and v, w are

weight functions. The maximum value of v is 0.595723 and the maximum value
of w is 1. We note that for sets of cardinality ≤ 4 the maximum value of w is
0.866888 (see the end of section 3 in [7]). Therefore, we can use the following
lemma due to van Rooij and Bodlaender [7].

46 I. Bliznets and A. Golovnev

Theorem 3. Algorithm msc solves the Minimum Set Cover prob-
lem where the cardinality of each set in S is at most 4 in time
O∗(1.287590.595723|U|+0.866888|S|) = O∗(1.290.6|U|+0.9|S|).

The following theorem was proved by Lieberherr and Specker [10]. Later Yan-
nakakis [11] gave a simple proof of this bound by the probabilistic method.

Theorem 4. If any three clauses in F are satisfiable, then at least 2m
3 clauses

are simultaneously satisfiable.

Theorem 3 is used for instances with m < 1.5k, while Theorem 4 is used for
instances with m ≥ 1.5k. We are now ready to prove an upper bound.

Theorem 5. Algorithm MAX-SAT-Alg solves MAX-SAT in time
O∗(1.3579k).

Proof. Below we show that in each case the algorithm branches with branching
number at most τ(5, 10, 1) < 1.3579, so the running time of the algorithm is
O∗(1.3579k).

• Step 3. If deg(x) ≥ 6 then by Lemma 3 we get (1, 5)-branching. τ(1, 5) ≈
1.3248 < 1.3579.

• Step 5. If deg(x) = 3 then by Theorem 2 we get (1, 6)-branching. τ(1, 6) ≈
1.2852 < 1.3579.

• Step 7. A (3, 2)-variable gives τ(3, 2) ≈ 1.3248 < 1.3579. By Corol-
lary 2, branching on (4, 1)-non-singleton or (3, 1)-non-singleton gives at least
τ(3, 2) ≈ 1.3248 < 1.3579.

• Step 10. x is a (2, 2)-variable, y is a (1, 4)-singleton, neighbor of x and literal
y does not dominate x, x̄ simultaneously. Branching on y gives τ(4, 1) and
the next iteration in branch y = 1 has a variable of degree 3 or smaller. The
overall branching number is smaller than τ(4 + 1, 4 + 6, 1) = τ(5, 10, 1) <
1.3579.

• Step 12. x is a (2, 2)-variable. Neighbors of x are variables of degree 4 or x, x̄
are dominated by y. So, both F [x] and F [x̄] contain a variable of degree 3.
By Theorem 2, a variable of degree 3 gives (1, 6),- (2, 4)- or (3, 3)-branching.
So the possible branchings are τ(2 + 1, 2 + 6, 2 + 1, 2+ 6), τ(2 + 2, 2+ 3, 2+
2, 2+3), τ(2+3, 2+3, 2+3, 2+3) the worst case among them is τ(3, 8, 3, 8) ≈
1.3480 < 1.3579.

In the following we assume that all variables are (3, 1)- or (4, 1)-singletons.

• Step 14. Now all variables are singletons. It means that we can satisfy n
clauses by setting all variables to 0. If k ≤ n this solves the problem.

• Step 16. We assume that each variable occurs 3 or 4 times positively and once
negatively in a unit clause. Note that all clauses are either negative singletons
or positive clauses (all variables in positive clauses occur only positively).
We claim that for such a formula there always exists an optimal assignment
satisfying all positive clauses. Indeed, if some positive clause is not satisfied
then by flipping any of its variables we can only increase the number of

A New Algorithm for Parameterized MAX-SAT 47

Algorithm 2. MAX-SAT-Alg — solving MAX-SAT in time 1.3579k.

Input: F — instance of MAX-SAT.
Parameter: k — number of clauses asked to satisfy.
Output: 1, if k clauses can be satisfied simultaneously; 0 otherwise.

1: apply Simplification Rules 1–5.
2: if there is x, s.t. deg(x) ≥ 6 then
3: branch on x
4: if there is x of degree 3 then
5: branch on x according to Theorem 2

{Now we have only variables of degree 4 and 5.}
6: if F contains a variable x of type (3, 2), (3, 1)-non-singleton or (4, 1)-non-singleton

then
7: branch on x

{Now we have only singletons and (2, 2)-variables.}
8: if F contains a variable x of type (2, 2) then
9: if x has a neighbor (4, 1)-singleton y and x, x̄ are not simultaneously dominated

by y then
10: branch on y
11: else
12: branch on x

{Now all variables are (3, 1)-singletons or (4, 1)-singletons.}
13: if k ≤ n then
14: return 1
15: if m < 1.5k then
16: return k ≤ msc(F)
17: if there is a clause of length 2: (x ∨ y) then
18: branch as F [x, y];F [x = ȳ].
19: else
20: return 1

satisfied clauses. It means that we want to assign 1 to the minimal number of
variables to satisfy all positive clauses. It is the Minimum Set Cover problem.
We construct an instance of the Minimum Set Cover problem in the following
way. U is the set of positive clauses (|U | = m−n). S contains n sets. Set Si ∈
S consists of positive clauses, which contains a variable xi. Now we would
like to cover U by the minimal number of sets from S. If t is the minimal
number of sets required to cover U , then the maximum number of satisfied
clauses is m− t. We can compare this number to k and return the result. By
Theorem 3, the algorithm for Minimum Set Cover for sets of cardinality ≤ 4
has running time T (F) = O∗(1.29(0.6|U|+0.9|S|)) = O∗(1.29(0.6(m−n)+0.9n)).
We know that k > n and m < 1.5k. Thus T (F) ≈ 1.3574k < 1.3579k.

• Step 18. We know that the formula contains clauses (x̄) and (ȳ). If there is
a clause (x ∨ y), then some optimal solution satisfies clause (x ∨ y). Indeed,
if it does not, we can just set x = 1 and the number of satisfied clauses does
not decrease. So, we can branch as x = y = 1 and x = ȳ. In the first branch
we satisfy at least 3 clauses, because x is a (3, 1)− or (4, 1)−variable. In

48 I. Bliznets and A. Golovnev

the second branch we satisfy clause (x ∨ y) and by Simplification Rule 3 we
satisfy one of the clauses (x) and (x̄). We obtain (2, 3)-branching.

• Step 20. Now we have a formula with m ≥ 1.5k clauses. F does not contain
clauses of length 2. Therefore, every triple of clauses is satisfiable. By The-
orem 4 there is an assignment, which satisfies at least 2m

3 ≥ k clauses. ��

Acknowledgments. We are greatful to Konstantin Kutzkov for fruitful discus-
sions and suggesting Branching Rule 2 . We would like to thank our supervisor
Alexander S. Kulikov for help in writing this paper and valuable comments. Also
we thank anonymous reviewers who helped improve the paper.

References

1. Chen, J., Kanj, I.A.: Improved Exact Algorithms for MAX-SAT. In: Rajsbaum, S.
(ed.) LATIN 2002. LNCS, vol. 2286, pp. 341–355. Springer, Heidelberg (2002)

2. Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335–354 (1999)

3. Niedermeier, R., Rossmanith, P.: New Upper Bounds for MaxSat. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 575–
584. Springer, Heidelberg (1999)

4. Bansal, N., Raman, V.: Upper Bounds for MaxSat: Further Improved. In: Aggar-
wal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 247–258.
Springer, Heidelberg (1999)

5. Alon, N., Gutin, G., Kim, E., Szeider, S., Yeo, A.: Solving MAX-r-SAT Above a
Tight Lower Bound. Algorithmica 61, 638–655 (2011)

6. Crowston, R., Gutin, G., Jones, M., Yeo, A.: A New Lower Bound on the Maxi-
mum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Applications.
Algorithmica 64(1), 56–68 (2012)

7. van Rooij, J.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discrete
Applied Mathematics 159(17), 2147–2164 (2011)

8. Kulikov, A., Kutzkov, K.: New Bounds for MAX-SAT by Clause Learning. In:
Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp.
194–204. Springer, Heidelberg (2007)

9. Bliznets: A New Upper Bound for (n, 3)-MAX-SAT. Zapiski Nauchnikh Seminarov
POMI, 5–14 (2012)

10. Lieberherr, K.J., Specker, E.: Complexity of Partial Satisfaction. J. ACM 28, 411–
421 (1981)

11. Yannakakis, M.: On the approximation of maximum satisfiability. In: SODA 1992,
pp. 1–9 (1992)

Restricted and Swap Common Superstring:

A Parameterized View

Paola Bonizzoni2, Riccardo Dondi1, Giancarlo Mauri2, and Italo Zoppis2

1 DSLCS, Università degli Studi di Bergamo, Bergamo, Italy
2 DISCo, Università degli Studi di Milano-Bicocca, Milano, Italy

{bonizzoni,mauri,zoppis}@disco.unimib.it, riccardo.dondi@unibg.it

Abstract. In several areas, in particular in bioinformatics and in AI
planning, Shortest Common Superstring problem (SCS) and variants
thereof have been successfully applied. In this paper we consider two
variants of SCS recently introduced (Restricted Common Superstring,
RCS) and (Swapped Common Superstring, SWCS). InRCSwe are given
a set S of strings and a multiset, and we look for an ordering Mo of M
such that the number of input strings which are substrings of Mo is
maximized. In SWCS we are given a set S of strings and a text T ,
and we look for a swap ordering To of T (an ordering of T obtained by
swapping only some pairs of adjacent characters) such that the number
of input strings which are substrings of To is maximized. In this paper we
investigate the parameterized complexity of the two problems. We give
two fixed-parameter algorithms, where the parameter is the size of the
solution, for SWCS and �-RCS (the RCS problem restricted to strings
of length bounded by a parameter �). Furthermore, we complement these
results by showing that SWCS and �-RCS do not admit a polynomial
kernel.

1 Introduction

In several areas, such as bioinformatics [11] and data compression [15], the Short-
est Common Superstring problem (SCS) has been successfully applied for strings
comparison. For example, in bioinformatics, SCS aims to reconstruct the original
string from a set of different fragments of that string. Recently, some variants
of the SCS problem have been proposed to deal with problems in bioinformatics
and AI planning [10,6]. In such variants, a set of strings is given and we are asked
to rearrange a given multiset of characters or a given text in order to maximize
the number of strings which are substrings of the resulting text. This can be the
case, when the strings represent proteins and only the (multi)-set of amino acids
is given (or an ordering which may be affected by some errors), and we want
to infer the right ordering of such amino-acids that contains the given strings,
or at least a fraction of them. Another application of the above problem is AI
planning, where a set of tasks which have to be accomplished is given, and we
want to compute a plan that achieves as many goals as possible. Usually, the
plan corresponds to compute a SCS of strings representing the tasks. However,

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 49–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

50 P. Bonizzoni et al.

in practice we may have some constraints on the given tasks, hence the plan we
want to compute is a SCS with some restrictions [10].

Two combinatorial problems recently introduced in this context are the Re-
stricted Common Superstring (RCS) problem and the Swapped Common Su-
perstring (SWCS) problem. RCS is the more general problem: we are given a
set S of n strings over an alphabet Σ and a multiset M over Σ, and we look for
an ordering Mo of M such that the number of input strings which are substrings
of Mo is maximized.

In the SWCS problem we are given a set S of n strings over an alphabet Σ
and a text T over Σ, and we look for a swap ordering To of T (an ordering of
T obtained by swapping only some pairs of adjacent characters) such that the
number of input strings which are substrings of To is maximized.

The complexity of the SCS problem has been extensively studied in the past
[2,14,16]: the problem is known to be APX-hard [2], even for equal length strings
over binary alphabet [17].

The RCS problem is known to be NP-hard, even in the restricted case that
the input strings are defined over a binary alphabet or have length bounded by 2
[6]. Furthermore, in [6] it is shown that the problem is not approximable within
factor O(n1−ε), with a reduction from Maximum Independent Set. It is easy to
see that the reduction is also a parameterized reduction [9,12], thus implying
the W[1]-hardness of RCS when parameterized by the size of the solution. The
SWCS is known to be NP-hard [10]. However, it is shown in [10] that a relaxed
version of the problem, where each occurrence of a string in the swap ordering
To is counted, is polynomial time solvable.

For both problems we investigate the parameterized complexity, under some
natural parameterizations (for more details on parameterized complexity see
[9,12]). The ultimate goal of our investigations is to provide a multivariate anal-
ysis of the complexity of the two problems [7,13]. We consider as natural pa-
rameters, the size of the solution, that is the number of input strings which
are substrings of the computed solution, and the maximum length of the input
strings.

In Section 2, we provide some preliminary definitions and we formally state
RCS and SWCS. In Section 3 we give two fixed-parameter algorithms for 	-RCS

(the RCS problem restricted to strings of length bounded by a parameter) and
SWCS, when the two problems are parameterized by the size of the solution.
We complement these two positive results with two negative results, that is we
show in Section 4 that 	-RCS and SWCS do not admit a polynomial kernel.
Kernelization is a well-known technique in parameterized complexity [9,12]. The
goal of kernelization is to preprocess (in polynomial time) an instance of a given
problem, so that the resulting instance, called kernel, has size depending only
on the considered parameter. Recently, the kernelization complexity has been
widely investigated [3,5,8,4], and different techniques have been introduced to
prove that a problem, although fixed-parameter tractable, does not admit a
polynomial size kernel.

Some of the proofs are omitted due to space limitation.

Restricted and Swap Common Superstring: A Parameterized View 51

2 Preliminaries

In this section, we introduce some basic definitions. Given a string s over an
alphabet Σ, denote by |s| the length of s. The i-th symbol of s is denoted by
s[i]. For two positions i, j in s, with 1 ≤ i ≤ j ≤ |s|, denote by s[i, j] the substring
of s that starts at position i and ends at position j. Given a set S of strings,
for each s ∈ S define incl(s) = {s′ ∈ S : s′ is a proper substring of s}. Given a
string s and a substring sx of s, we say that sx is covered by s. Furthermore, if
s[i, j] = sx, we say that s[i, j] is an occurrence of sx in s.

Given a multiset M over alphabet Σ and a symbol σ ∈ Σ, we denote by
occM(σ) the number of occurrences of σ in M. Given a multiset M over an
alphabet Σ, we define an ordering Mo of M, as a string over Σ containing
exactly occM(σ) occurrences for each σ ∈ Σ. Now, we are able to define the first
problem we are interested in.

Problem 1. [6] RCS

Input: a set S = {s1, . . . , sn} of strings over alphabet Σ, a multiset M over Σ.
Output: an ordering Mo of M that maximizes the number of strings in S that
are substrings of Mo.

We will consider the restriction of RCS, denoted by 	-RCS, where the strings
in S have length bounded by a parameter 	.

Before giving the formal definition of the second problem we are interested in,
we need to introduce the definition of swap ordering. Given a text T = t1t2 . . . tm,
where each ti, 1 ≤ i ≤ m, is a character in Σ, a text To = tπ(1)tπ(2) . . . tπ(m) is
called a swap ordering of T if it is induced by a permutation π : {1, . . . ,m} →
{1, . . . ,m} such that: (1) if π(i) = j, then π(j) = i, (2) for all i, π(i) ∈ {i −
1, i, i + 1}, (3) if π(i) �= i then tπ(i) �= ti. It follows that a swap ordering To of
T is obtained by swapping only some pairs of adjacent distinct characters of T .
Notice that the swaps must be consistent swaps, that is if To is a swap ordering of
T obtained by swapping characters in positions p1, p2 and characters in positions
p3, p4, with p1+1 = p2 ≤ p3 = p4−1, then these swaps are consistent, if p2 < p3
(see Example 1).

Example 1. Consider the text:

T = abxcyz

The text To = abcxyz is a swap ordering of T obtained by swapping the char-
acters x and c of T . The text T ′

o = axcbyz is not a swap ordering of T , since it
requires two non-consistent swaps: first a swap between characters in positions 2
and 3 of T , then a swap between characters in position 3 and 4 of the resulting
text.

Now, we are ready to define the SWCS problem.

Problem 2. [10] SWCS

Input: a set S = {s1, . . . , sn} of strings over alphabet Σ, a text T .
Output: a swap ordering To of the text T that maximizes the number of strings
in S that are substrings of To.

52 P. Bonizzoni et al.

Assume that S∗ ⊆ S is a set of input strings covered by a solution of RCS

or SWCS. Then a string s ∈ S∗ is called a maximal string of S∗ if there is no
string s′ ∈ S∗ such that s ∈ incl(s′).

Kernelization Complexity

In Section 4 we will prove some lower bounds on the kernelization complexity of
RCS and SWCS, so we introduce here some preliminary notions.

Let Δ be a finite alphabet and denote with Δ∗ the set of all finite length
strings over Δ. Let Π ⊆ Δ∗ × N be a parameterized problem, and let 1 �∈ Δ.
The derived classical problem ΠC associated with Π is {x1k : (x, k) ∈ Π}. In
[5], it is introduced the following definition of a class of reductions that can be
used to prove kernel lower bounds.

Definition 1. [5] Consider two parameterized problems Π1 and Π2. Then, Π1

is polynomial time and parameter reducible to Π2, when there exists a function
f : {0, 1}∗×N → {0, 1}∗×N computable in polynomial time and a polynomial p :
N → N such that for each x1 ∈ {0, 1}∗ and k1 ∈ N, denoted (x2, k2) = f(x1, k1),
then (x1, k1) ∈ Π1 holds iff (x2, k2) ∈ Π2, and k2 ≤ p(k1). Such a function f is
a Polynomial Parameter Transformation (PPT) from Π1 to Π2.

The fundamental result proved in [5] shows that a PPT can be applied to prove
kernel lower bounds:

Theorem 1. [5] Let Π1 and Π2 be two parameterized problems whose derived
classical problems Πc

1 and Πc
2 respectively, are NP-complete. If there exists a

PPT from Π1 to Π2, then, if Π2 has a polynomial kernel, it follows that Π1 has
a polynomial kernel.

3 Fixed-Parameter Algorithms for �-RCS and SWCS

In this section we give two fixed-parameter algorithms for 	-RCS and SWCS,
both based on the color-coding technique [1]. First, we recall the basic definition
of perfect hash functions.

Definition 2. Let I be a set, a family F of hash functions from I to {1, . . . , k}
is called perfect if for any subset I ′ ⊆ I consisting of k elements, there exists a
function f ∈ F which is injective on I ′.

A perfect family F of hash functions from I to {1, . . . , k}, having size
O(log |I|2O(k)) can be constructed in time O(2O(k)|I| log |I|) [1].

3.1 A Fixed-Parameter Algorithm for SWCS

First, we present a fixed-parameter algorithm for SWCS, where the parameter
k is the number of covered input strings. The algorithm is based on the color-
coding technique [1] and it is inspired by the polynomial time algorithm given

Restricted and Swap Common Superstring: A Parameterized View 53

in [10] for a variant of the SWCS problem, where each occurrence of an input
string in the solution To contributes to the solution (hence each covered input
string can contribute more than once to the value of a solution).

First, we introduce some notation. Given a string s, two positions i, j, 1 ≤
i ≤ j ≤ |T |, in the text T , with i = j − |s| + 1, and two values b1, b2 ∈ {0, 1},
define sw(s, i, j, b1, b2) = 1 if there is a swap ordering To[i, j] of T [i, j] such that:

1. To[i, j] is an occurrence of s;
2. if b1 = 1 (b1 = 0 respectively), To[i, j] is obtained by swapping (not swapping

respectively) the characters in positions i − 1 and i of T ;
3. if b2 = 1 (b2 = 0 respectively), To[i, j] is obtained by swapping (not swapping

respectively) characters in positions j and j + 1 of T .

In any other case sw(s, i, j, b1, b2) = 0. Notice that if i = 1 (j = |T | respectively),
then it must hold bi = 0 (bj = 0 respectively).

Let F : {s1, . . . , sn} → {l1, . . . , lk} be a family of perfect hash functions. Fix
a function f ∈ F such that each string of S covered by a solution of SWCS is
assigned a unique label in {l1, . . . , lk}.

Before giving the details, we present the high-level idea of the algorithm. We
design a dynamic programming algorithm that, given a position i, considers (if
it exists) the maximal substring sj that is a suffix of a swap ordering To[1, i]
of T [1, i]. Hence To[i − |sj | + 1, i] covers sj , and all the input strings that are
substrings of sj . Notice that a non-maximal input string may be covered in
different positions of To. In this case, we assume that each non-maximal input
string is covered by its leftmost occurrence in To. Any maximal substring sh ∈
S \ {sj} covered by To[1, i] either does not overlap with sj (Case 1, Case 2 and
Case 3 of the recurrence), or it overlaps with sj (Case 4 of the recurrence). In
the latter case sj and sh must be identical in the overlapping positions. In the
former case, we consider three possible cases (Case 1, Case 2 and Case 3 of the
recurrence), since, depending on the occurrence of string sh in To, we have to
check that swaps are possible (see Example 2).

Example 2. Let (T , S) be an instance of SWCS, defined as follows:
T = abxcyz S = {s1 = abx, s2 = xyz}

Notice that sw(s1, 1, 3, 0, 0) = 1, and sw(s1, i, j, b1, b2) = 0 in any other case;
sw(s2, 4, 6, 1, 0) = 1, and sw(s2, i, j, b1, b2) = 0 in any other case. Now, if s2 is
the rightmost input string that occurs in To, this implies a swap of the characters
x and c of T . Then, s1 cannot be covered by To (this condition is tested in Case
2 of the recurrence).

Let (T , S) be an instance of SWCS, defined as follows:

T = abxcyde S = {s1 = abc, s2 = cde}
Notice that sw(s1, 1, 3, 0, 1) = 1, and sw(s1, i, j, b1, b2) = 0 in any other case;
sw(s2, 5, 7, 1, 0) = 1, and sw(s2, i, j, b1, b2) = 0 in any other case. If s2 is the
rightmost input string that occurs in To, this implies a swap of the characters
c and y of T . Then, s1 cannot be covered by To, since it would require a swap
between characters x and c. Indeed the two swaps are not consistent, since c has

54 P. Bonizzoni et al.

already been swapped with y (the inconsistency of these swaps is tested in Case
3 of the recurrence).

Now, we give the formal description of the algorithm. Define D[i, j, L, b], where
L ⊆ {l1, . . . , lk}, 1 ≤ i ≤ |T |, 1 ≤ j ≤ |S|, and b ∈ {0, 1}, as follows:

– D[i, j, L, b] = 1 if there is a swap ordering To[1, i] of T [1, i] such that:
1. To[1, i] covers a set S∗ of strings uniquely labeled by the set L
2. sj is a maximal string in S∗ and it is a suffix of To[1, i]
3. if b = 1 (if b = 0 respectively) To is obtained by swapping (not swapping

respectively) the characters of T in positions i, i+ 1
– else D[i, j, L, b] = 0.

Now, we can define the recurrence to compute D[i, j, L, b]. We assume that each
entry D[i, j, L, b] is initialized to 0. D[i, j, L, b] is the maximum, with 1 ≤ y ≤ i,
1 ≤ h ≤ |S| and b′{0, 1}, of the following values:

Case 1. D[y, h, L′, b′]∧sw(sj , i−|sj |+1, i, bx, b), where y < i−|sj |−1, 1 ≤ h ≤ n,
L′ ⊆ L\{f(sj)}, L′ ⊇ L\({f(sj)}∪ {f(sp) : sp ∈ incl(sj)}), and bx ∈ {0, 1};

Case 2. D[y, h, L′, b′] ∧ sw(sj , y + 1, i, b′, b), where y = i − |sj |, 1 ≤ h ≤ n,
L′ ⊆ L \ {f(sj)}, L′ ⊇ L \ ({f(sj)}∪ {f(sp) : sp ∈ incl(sj)});

Case 3. D[y, h, L′, b′] ∧ sw(sj , y + 2, i, bx, b), where y = i − |sj | − 1, 1 ≤ h ≤ n,
L′ ⊆ L\{f(sj)}, L′ ⊇ L\({f(sj)}∪ {f(sp) : sp ∈ incl(sj)}), and b′+bx ≤ 1;

Case 4. D[y, h, L′, b′]∧ sw(sj [y− i+ |sj |+1, |sj |], y+1, i, b′, b), where i−|sj | <
y ≤ i − 1, 1 ≤ h ≤ n, the leftmost y − i + |sj | characters of sj are identical
to the rightmost y − i + |sj | characters of sj , L

′ ⊆ L \ {f(sj)}, and L′ ⊇
L \ ({f(sj)} ∪ {f(sp) : sp ∈ incl(sj[y − i+ |sj |+ 1, |sj |])}).

For the basic case, it holds: D[i, j, L′, b] = 1, for each position i in the text T ,
such that there is a swap ordering To[1, i] of T [1, i] where sj is covered by To[1, i],
L′ = {f(sj)} ∪ {f(sp) : sp ∈ incl(sj)}, and sw(sj , i − |sj | + 1, i, b1, b2) = 1, for
some b1, b2 ∈ {0, 1}. Now, we prove the correctness of the dynamic programming
recurrence.

Lemma 1. D[i, j, L, b] = 1 if and only if there exists a set S′ ⊆ S of strings
uniquely labeled by L and covered by a swap ordering To[1, i] of T [1, i], such that
sj is a maximal substring of S′ covered by To[i − |sj |+ 1, i], for some b{0, 1}.

A consequence of Lemma 1 is that there exists a solution To of SWCS over
instance (S, T), such that To covers k input strings of S if and only if there
exists an entry D[m, j, {l1, . . . , lk}, 1], for some j with 1 ≤ j ≤ n, such that
D[m, j, {l1, . . . , lk}, 1] = 1. The time complexity of the algorithm is
O(2O(k)m2n2 logn)), where |S| = n and |T | = m. Indeed, it is easy to see
that the recurrence can be computed in time O(2O(k)m2n2). Since a perfect
family F of hash functions from S to {1, . . . , k}, having size O(log n2O(k)) can
be constructed in time O(2O(k)n logn) [1], it follows that the time complexity of
the algorithm is O(2O(k)m2n2 logn).

Restricted and Swap Common Superstring: A Parameterized View 55

3.2 A Fixed-Parameter Algorithm for �-RCS

As discussed in the Introduction, the RCS problem is W[1]-hard when parame-
terized by the size k of the solution [6]. Since 2 − RCS is NP-hard [6], a natu-
ral question is whether 	-RCS parameterized by k and by 	 is fixed-parameter
tractable. Here we present a fixed-parameter algorithm for the 	-RCS problem,
when both k and 	 are parameters. As in Section 3.1, the algorithm is based
on the color-coding technique. However, in this case we combine two families of
perfect hash functions to design the algorithm.

Consider a solution Mo of 	-RCS over instance (M, S), such that there exists
a set Sk ⊆ S of k input strings that are covered by Mo. For each string s ∈ Sk,
define the positions is,l, is,r, 1 ≤ is,l ≤ is,r ≤ |Mo|, such that Mo[is,l, is,l] is the
leftmost occurrence of s in Mo (notice that there may exist many occurrences
of s in Mo). Define the set AP of applied positions of Mo as follows:

AP = {j : 1 ≤ j ≤ |Mo|, 1 ≤ is,l ≤ j ≤ is,r ≤ |Mo|, for some string si ∈
Sk}.

Then, the following property follows easily.

Proposition 1. Let Sk be a set of k input strings covered by a solution Mo of
	-RCS. Then, |AP | ≤ 	 · k.

The set AP of applied positions of Mo corresponds to a multiset AC of char-
acters in M (denoted as the multiset of applied characters of M) such that an
ordering of AC is sufficient to cover the input strings in Sk. A consequence of
Prop.1 is that |AC| ≤ 	k.

The fixed-parameter algorithm for 	-RCS is obtained by combining two dif-
ferent families of perfect hash functions. As in Section 3.1, the first family of
perfect hash functions, denoted by Fs, maps the input strings to the set of labels
{l1, . . . , lk}. The second family of perfect hash functions, denoted by Ft, maps
the characters in M to the set of labels {l′1, . . . , l′z}, for some 1 ≤ z ≤ 	k. Infor-
mally, the hash functions in Ft are used to associate a distinct label in {l′1, . . . , l′z}
with each character of the multiset AC of applied characters of M.

The high-level idea of the algorithm is to use dynamic programming to define
an ordering Mo of M that covers a set Sk ⊆ S of k input strings. Let fs ∈ Fs

be a function that associates a distinct label in {l1, . . . , lk} with each covered
input string, and let ft ∈ Ft be a function that associates a distinct label in
{l′1, . . . , l′z} with each applied character of Mo. The dynamic programming re-
currence considers the rightmost string sj , with 1 ≤ j ≤ n, covered by Mo[1, i],
with 1 ≤ i ≤ m. Since sj is covered by Mo[1, i], it follows that: (1) Mo[1, i]
covers sj (and eventually some input strings which are substrings of sj), and the
corresponding set of labels associated by fs; (2) some of the applied characters
of M are sorted in Mo[1, i] to cover sj , hence the dynamic programming recur-
rence stores the labels in {l′1, . . . , l′z} corresponding to those applied characters.
Moreover, the dynamic programming recurrence distinguishes two cases: the case
that any maximal covered string in S \ {sj} does not share any character with
sj (Case 1 of the recurrence), and the case that the rightmost covered string sh

56 P. Bonizzoni et al.

in S \{sj} overlaps with sj (Case 2 of the recurrence). In the latter case we have
to guarantee that sj and sh agree on the overlapping part.

Now, we give the formal description of the algorithm. First, let us define
some preliminary definitions (see Example 3). Fix a function fs ∈ Fs, such
that each input string covered by Mo is assigned a unique label in {l1, . . . , lk}.
Furthermore, fix a function ft ∈ Ft such that each applied character in AC is
assigned a unique label in {l′1, . . . , l′z}. For a character σ ∈ Σ, define the set Λ(σ)
of labels as follows:

Λ(σ) = {l′q ∈ {l′1, . . . , l′z} : ∃ an occurrence of σ in M associated by ft with label l′q}.
Let sj be an input string and L′

t ⊆ {l′1, . . . , l′z}. Define Feas(L′
t, sj[x, y]), with

1 ≤ x ≤ y ≤ |sj | and y − x ≤ |L′
t| − 1, as the collection of subsets L′′

t ⊆
L′
t, such that there is a bijection B between the characters of sj [x, y] and the

labels in L′′
t , where B(sj [z]) ∈ Λ(sj [z]), for each z with x ≤ z ≤ y. Informally,

Feas(L′
t, sj [x, y]) contains those subsets of L

′
t (of size y−x+1) that can be used

to uniquely label the characters in sj [x, y]. Next we prove that Feas(L′
t, sj[x, y])

is bounded by 2k� and that it can be computed in time O(2klpoly()).

Proposition 2. Given a string sj, two positions x, y of sj, with 1 ≤ x ≤ y ≤
|sj |, and a set L′

t ⊆ {l′1, . . . l′t}, Feas(L′
t, sj [x, y]), contains at most 2k� sets, and

it can be computed in time O(2klpoly()).

Given L′
s ⊆ {l1, . . . , lk}, two sets L′

t, L
′′
t ⊆ {l′1, . . . , l′z}, a string sj ∈ S and two

positions x, y in sj , with 1 ≤ x ≤ y ≤ |sj |, define sm(s[x, y], L′′
t , L

′
t) as fol-

lows: sm(sj [x, y], L
′′
t , L

′
t) = 1 if L′′

t belongs to Feas(L′
t, sj[x, y]), else sm(sj [x, y],

L′′
t , L

′
t) = 0.

Example 3. Let (M, S) be an instance of 	-RCS (with 	 = 3), defined as follows:

M = {a, a, b, b, c, c, d} S = {s1 = abc, s2 = aba, s3 = dcb}
Let Mo = ababccd be a solution of 	-RCS that covers the set of string Sk =
{s1, s2}. Notice that s1, s2 are covered by Mo[1, 5]. It follows that the set AP
of applied positions is AP = {1, 2, . . . , 5} and the multiset of applied characters
is AC = {a, a, b, b, c}.

Assume that, given an appropriate function ft ∈ Ft, Λ(σ), with σ ∈ {a, b, c, d},
is defined as follows:

Λ(a) = {l′1, l′2}
Λ(b) = {l′3, l′4}

Λ(c) = {l′2, l′5}
Λ(d) = {l′3}.

Given s1[2, 3] (s2[1, 3] respectively) and the set of labels {l′1, l′2, l′3,
l′4, l

′
5} ({l′1, l′2, l′3, l′4} respectively), Feas contains the following sets:

s1[2, 3] = bc
s2[1, 3] = aba

Feas({l′1, l′2, l′3, l′4, l′5}, s1[2, 3]) = {{l′2, l′3}}, {l′2, l′4}, {l′3, l′5}, {l′4, l′5}}
Feas({l′1, l′2, l′3, l′4}, s2[1, 3]) = {{l′1, l′2, l′3}}, {l′1, l′2, l′4}}.

Now, we present the dynamic programming recurrence. Define D[i, j, Ls, Lt],
with 1 ≤ i ≤ l′t, 1 ≤ j ≤ |S|, Ls ⊆ {l1, . . . , lk}, Lt ⊆ {l′1, . . . , l′z}, and 1 ≤ i ≤
|M|, as follows:

Restricted and Swap Common Superstring: A Parameterized View 57

– D[i, j, Ls, Lt] = 1 if there exists an ordering Mo[1, i] of a set of i characters
of M uniquely labeled by Lt such that:
1. Mo[1, i] covers a set S∗ of input strings uniquely labeled by Ls,
2. sj is a maximal substring of S∗ covered by Mo[i − |sj | + 1, i];

– else D[i, j, Ls, Lt] = 0.

We assume that each entry D[i, j, Ls, Lt] is initialized to 0. We can define
D[i, j, Ls, Lt] as the maximum, for each 1 ≤ y ≤ i, 1 ≤ h ≤ |S|, L′

t ⊆ Lt,
of the following values:

Case 1. D[y, h, L′
s, L

′
t] ∧ sm(sj [1, |sj |], L′′

t , Lt), where L′
s ⊆ Ls \ {f(sj)}, L′

s ⊇
Ls \ ({f(sj)} ∪ {f(sp) : sp ∈ incl(sj)}), L′

t = Lt \ L′′
t , for some L′′

t in
Feas(Lt, sj [1, |sj |]);

Case 2. D[y, h, L′
s, L

′
t]∧ sm(sj [y − i+ |sj |+1, |sj|], L′′

t , Lt), where the leftmost
y − i + |sj | characters of sj are identical to the the rightmost y − i + |sj |
characters of sh, L

′
s ⊆ Ls \ {f(sj)}, L′

s ⊇ Ls \ ({f(sj)} ∪ {f(sp) : sp ∈
incl(sj[y− i+ |sj |+1, |sj|])}), L′

t = Lt \L′′
t , for some L′′

t in Feas(Lt, sj [y−
i+ |sj | + 1, |sj|]).

For the basic case, given a string sj ∈ S, it holds D[i, j, L′
s, L

′
t] = 1, for each L′

t

such that sm(sj [1, |sj |], L′
t, L

′
t) = 1, where i = |sj |, and L′

s = {fs(sj)}∪{fs(sp) :
sp ∈ incl(sj)}. The correctness of the recurrence follows from Lemma 2.

Lemma 2. D[i, j, Ls, Lt] = 1 iff there exists an ordering M′
o[1, i] of a subset

of i characters of M uniquely labeled by Lt such that (1) M′
o covers a set S∗

of input strings uniquely labeled by Ls, and (2) sj is a maximal substring of S∗

covered by M′
o[i − |sj | + 1, i].

There exists a solution Mo of 	-RCS over instance (S,M) that covers k input
strings if there exists an entryD[|M|, j, {1, . . . , k}, {1, . . . , l′t}], for some j with 1 ≤
j ≤ n, and for some l′t with 1 ≤ l′t ≤ lk, such thatD[|M|, j, {1, . . . , k}, {1, . . . , l′t}] =
1. The time complexity of the algorithm is O(2O(kl)poly(np)), where p = |M| and
|S| = n. Indeed, it can be easily proved that the recurrence can be computed in
time O(2O(kl)kpoly(np)). Since a perfect family Fs of hash functions from S to
{l1, . . . , lk}, having size O(log n2O(k)) can be constructed in time O(2O(k)n logn)
[1], and since a perfect family Ft of hash functions from M to {l′1, . . . , l′z}, with
1 ≤ z ≤ lk, having size O(log p2O(lk)) can be constructed in time O(2O(lk)p log p)
[1], it follows that the time complexity of the algorithm is O(2O(kl)poly(np)).

4 Kernelization Complexity

In Section 3 we have given two fixed-parameter algorithms for SWCS and
	-RCS. We complement these results by showing that the two problems are
unlikely to admit a polynomial size kernel, by giving two Polynomial Param-
eter Transformations (PPTs) (see Section 2) from the Longest Path Problem
(Longest-Path), which has been proved to not have a polynomial kernel, un-
less NP ⊆ coNP/Poly [3].

58 P. Bonizzoni et al.

We recall that, given a graph G = (V,E), the Longest-Path problem asks
if there exists a simple path, that is a path with no repeated vertices, in G of
length at least k.

4.1 Kernelization Complexity of SWCS

In this section we give a PPT from Longest-Path to SWCS. Let G = (V,E)
be an instance of Longest-Path with V = {v1, . . . , vq}, we define the corre-
sponding instance (T , S) of SWCS. Define Σ = {wi,1, wi,2 : vi ∈ V, 1 ≤ i ≤
q} ∪ {w0,1, w0,2, wq+1,1, wq+1,2} ∪ {a}.

Define the string s+ over alphabet Σ as follows:

s+ = w0,1w0,2w1,1w1,2 . . . wq,1wq,2wq+1,1wq+1,2a

The text T is a string obtained by concatenating k copies of the string s+, that

is T =

k times︷ ︸︸ ︷
s+ · s+ · · · · s+.

Each copy of a string s+ in T is called a block of T . Now, define the set
of input strings: S = {si,j, sj,i : {vi, vj} ∈ E} ∪ {si : vi ∈ V }. Given an edge
{vi, vj} ∈ E, the input strings si,j , sj,i are defined as follows:

si,j = wi,2wi,1wi+1,1wi+1,2 . . . wq+1,1wq+1,2aw0,1w0,2 . . . wj,2wj,1

sj,i = wj,2wj,1wj+1,1wj+1,2 . . . wq+1,1wq+2,2aw0,1w0,2 . . . wi,2wi,1

Furthermore, given a vertex vi ∈ V , define the input string si as follows si =
w0,1w0,2 . . . wi,2wi,1 . . . wq+1,1wq+1,2. The PPT is based on the following result.

Lemma 3. Let G = (V,E) be an instance of Longest-Path and let (S, T) be
the corresponding instance of SWCS. Then: (1) starting from a simple path of
length k in G, we can compute in polynomial time a solution of SWCS over
instance (S, T) that covers 2k − 1 input strings; (2) starting from a solution of
SWCS over instance (S, T) that covers 2k− 1 input strings, we can compute in
polynomial time a simple path of length k in G.

Proof. Given a path P of length k in G, it is easy to compute in polynomial
time a solution of SWCS over instance (S, T) that covers 2k − 1 input strings.

Now, consider a solution To of SWCS that covers 2k− 1 strings. Notice that,
due to occurrences of character a in T , To must cover exactly k strings si, where
each si is associated with a vertex vi ∈ V . Furthermore, by construction a string
si,j associated with a vertex {vi, vj} ∈ E can be covered in two adjacent blocks
of To. Furthermore, since each block of To covers exactly one string si, it follows
that if blocks h− 1 and h of To cover a string si,j , with {vi, vj} ∈ E, and blocks
h, h + 1 of To cover a string sx,y, with {vx, vy} ∈ E, then |{i, j} ∩ {x, y}| = 1,
that is {vi, vj} and {vx, vy} are two edges incident on a common vertex. But,
then the vertices vi ∈ V associated with the covered strings si ∈ S induces a
simple path of length k. ��

As a consequence of Lemma 3 and Theorem 1, we have the following result.

Restricted and Swap Common Superstring: A Parameterized View 59

Theorem 2. The SWCS problem does not admit a polynomial kernel, unless
NP ⊆ coNP/Poly.

4.2 Kernelization Complexity of �-RCS

In this section we give a PPT from Longest-Path to 	-RCS, where 	 ≤ 5. Let
G = (V,E) be an instance of Longest-Path with V = {v1, . . . , vq}, we define
the corresponding instance (M, S) of 	-RCS.

Define the alphabet Σ as follows: Σ = {wi : vi ∈ V } ∪ {z}. The multiset M
on Σ contains one occurrence of wi, for each vi ∈ V , and k + 1 occurrences of
character z.

Now, define the set S of input strings: S = {si,j, sj,i : {vi, vj} ∈ E}, where
si,j = zwizwjz and sj,i = zwjzwiz. Notice that each input string in S has length
bounded by 5. The PPT is based on the following result.

Lemma 4. Let G = (V,E) be an instance of Longest-Path and let (S,M)
be the corresponding instance of 	-RCS. Then: (1) starting from a simple path
of length k in G, we can compute in polynomial time a solution of 	-RCS over
instance (S,M) that covers k − 1 input strings; (2) starting from a solution of
	-RCS over instance (S,M) that covers k − 1 input strings, we can compute in
polynomial time a simple path of length k in G.

As a consequence of Lemma 4 and Theorem 1, we have the following result.

Theorem 3. The 	-RCS problem does not admit a polynomial kernel, even if
	 ≤ 5, unless NP ⊆ coNP/Poly.

5 Conclusion and Open Problems

In this paper we have investigated the parameterized complexity of RCS and
SWCS under some natural parameterizations. We have shown that 	-RCS and
SWCS, when parameterized by the size of the solution, are in FPT. We have
complemented these two results, by showing that 	-RCS and SWCS are unlikely
to admit a polynomial kernel.

There are some interesting open problems in the perspective of a multivariate
analysis of 	-RCS and SWCS. It would be interesting to investigate the com-
putational complexity of SWCS when the input strings have bounded length
or are over a restricted alphabet. We are presently studying these restrictions.
Furthermore, it would be interesting to investigate the parameterized complexity
of RCS, when parameterized by the size of the solution and by the size of the
alphabet.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
2. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear Approximation of

Shortest Superstrings. J. ACM 41(4), 630–647 (1994)

60 P. Bonizzoni et al.

3. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On Problems With-
out Polynomial Kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

4. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-Composition: A New Tech-
nique for Kernelization Lower Bounds. In: Proceedings of STACS 2011, pp. 165–176
(2011)

5. Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel Bounds for Disjoint Cycles and
Disjoint Paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

6. Clifford, R., Gotthilf, Z., Lewenstein, M., Popa, A.: Restricted Common Super-
string and Restricted Common Supersequence. In: Giancarlo, R., Manzini, G. (eds.)
CPM 2011. LNCS, vol. 6661, pp. 467–478. Springer, Heidelberg (2011)

7. Fellows, M.R.: Towards Fully Multivariate Algorithmics: Some New Results and
Directions in Parameter Ecology. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.)
IWOCA 2009. LNCS, vol. 5874, pp. 2–10. Springer, Heidelberg (2009)

8. Fortnow, L., Santhanam, R.: Infeasibility of Instance Compression and Succinct
PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

9. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

10. Gotthilf, Z., Lewenstein, M., Popa, A.: On Shortest Common Superstring and Swap
Permutations. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp.
270–278. Springer, Heidelberg (2010)

11. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press, New York (1997)

12. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University
Press, Oxford (2006)

13. Niedermeier, R.: Reflections on Multivariate algorithmics and Problem Parameter-
ization. In: Proceedings of STACS 2010, pp. 17–32 (2010)

14. Ott, S.: Lower Bounds for Approximating Shortest Superstrings over an Alphabet
of Size 2. In: Widmayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS,
vol. 1665, pp. 55–64. Springer, Heidelberg (1999)

15. Storer, J.: Data Compression: Methods and Theory. Computer Science Press, New
York (1988)

16. Sweedyk, Z.: A 2 1
2
-Approximation Algorithm for Shortest Superstring. SIAM J.

Comput. 29(3), 954–986 (1999)
17. Vassilevska, V.: Explicit Inapproximability Bounds for the Shortest Superstring

Problem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618,
pp. 793–800. Springer, Heidelberg (2005)

Nonblocker in H-Minor Free Graphs:

Kernelization Meets Discharging�

�Lukasz Kowalik

Institute of Informatics, University of Warsaw, Poland
kowalik@mimuw.edu.pl

Abstract. Perhaps the best known kernelization result is the kernel of
size 335k for the Planar Dominating Set problem by Alber et al. [1],
later improved to 67k by Chen et al. [5]. This result means roughly, that
the problem of finding the smallest dominating set in a planar graph
is easy when the optimal solution is small. On the other hand, it is
known that Planar Dominating Set parameterized by k′ = |V | − k
(also known as Planar Nonblocker) has a kernel of size 2k′. This
means that Planar Dominating Set is easy when the optimal solution
is very large. We improve the kernel for Planar Nonblocker to 7

4
k′.

This also implies that Planar Dominating Set has no kernel of size
at most (7

3
− ε)k, for any ε > 0, unless P = NP. This improves the

previous lower bound of (2−ε)k of [5]. Both of these results immediately
generalize to H-minor free graphs (without changing the constants).

In our proof of the bound on the kernel size we use a variant of the
discharging method (used e.g. in the proof of the four color theorem).
We give some arguments that this method is natural in the context of
kernelization and we hope it will be applied to get improved kernel size
bounds for other problems as well.

As a by-product we show a result which might be of independent in-
terest: every n-vertex graph with no isolated vertices and such that every
pair of degree 1 vertices is at distance at least 5 and every pair of degree 2
vertices is at distance at least 2 has a dominating set of size at most 3

7
n.

1 Introduction

For many NP-complete problems there are kernelization algorithms, i.e. efficient
algorithms which replace the input instance with an equivalent, but often much
smaller one. More precisely, a kernelization algorithm takes an instance I of size
n and a parameter k ∈ N, and after time polynomial in n it outputs an instance
I ′ (called a kernel) with a parameter k′ such that I is a yes-instance iff I ′ is a yes
instance, k′ ≤ k, and |I ′| ≤ f(k) for some function f depending only on k. The
most desired case is when the function f is polynomial, or even linear (then we
say that the problem admits a polynomial or linear kernel). In such case, when
the parameter k is relatively small, the input instance, possibly very large, is
“reduced” to a small one (preferably of size polynomial, or even linear in k).

� Work supported by the National Science Centre (grant N206 567140).

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 61–72, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 �L. Kowalik

Kernelization and Discharging. A typical kernelization algorithm processes
an instance of an NP-complete graph problem in the following way: roughly, as
long as possible it finds a reducible configuration in the graph, i.e. a structure
which can be replaced by a smaller structure so that the original graph is a
yes-instance iff so is the new graph. Then it is shown that the kernel, i.e. a graph
which contains no reducible configuration is small.

Many results in graph theory, including the four colour theorem as the best
known example, are proven in the following way. Assume we are to show that
graphs in some family (e.g. planar graphs) have some property (e.g. are 4-
colorable). Then we specify a set of reducible configurations, i.e. structures which
can be replaced by smaller structures so that the original graph has the desired
property iff the new graph also has the property. Now, if a graph in our family
contains such a configuration, we can proceed by induction. Otherwise, i.e. if
a graph contains no reducible configuration we derive a contradiction. In the
known proofs of the four color theorem [2,15] (and many other results, e.g. [4,7])
this second part is realized by so-called discharging method.

Since the two situations described above are so similar it is natural to ask
whether the discharging method can be used to bound the size of a kernel. In
this paper we present a result of that kind. Discharging used in the cited works
for planar graphs is based on Euler’s formula. Here we do not use the Euler’s
formula but the common theme is the same: using discharging we show that the
graph under consideration cannot be “hard everywhere”, i.e. even if it has some
parts which are hard to dominate, then it has some parts which are easy, and on
the average we get the desired bound. A similar “amortized analysis” has been
recently used in the context of kernelization by Kanj and Zhang [10].

Small Kernels for Planar Graph Problems. Perhaps the best known ker-
nelization result is the kernel of size 335k for the Planar Dominating Set

problem by Alber et al. [1]. This result opened a new research direction, which
culminated in general results which show linear/polynomial kernels for large
classes of problems in various graph families that contain planar graphs, e.g.
bounded genus graphs or even H-minor free graphs [8,3]. There are several mo-
tivations for restricting the input to planar or H-minor free graphs. First, for
many problems (including Dominating Set) in general graphs no polynomial
kernels exist (under appropriate complexity assumptions). Second, even if for
some problem there is a polynomial kernel for general graphs, when executed
on a planar graph it usually outputs a non-planar kernel, and then we do not
want to use it because when we want to solve the kernel, we often prefer to
use specialized (and faster) algorithms for planar graphs. Finally, it is often the
case that for the special case of planar graphs there is a specialized kerneliza-
tion algorithm which outputs a smaller kernel than that for the general setting.
Indeed, as it was shown by Fomin et al. [8] many natural graph problems have
a linear kernel for planar graphs. Knowing this, further research is done to re-
duce the leading constant in the linear function describing the kernel size. For
example, the kernel of Alber et al. was later improved to 67k by Chen et al. [5];
the first linear kernel for Planar Connected Vertex Cover was that of size

Nonblocker in H-Minor Free Graphs 63

14k due to Guo and Niedermeier [9] and it was then reduced to 4k by Wang
et al. [16] and even to 11

3 k by Kowalik et al. [12]. Observe that these constants
may be crucial: since we deal with NP-complete problems, in order to find an
exact solution in the reduced instance, most likely we need exponential time (or

at least superpolynomial, because for planar graphs 2O(
√
k)-time algorithms are

often possible), and these constants appear in the exponents.

Our Results. In this paper we study kernelization of the following problem
restricted to planar graphs, or more generally to H-minor free graphs:

Nonblocker Parameter: k
Input: an n-vertex graph G = (V,E) and an integer k ∈ N
Question: Is there a dominating set of size n− k?

This problem can be also defined as Dominating Set parameterized by
n−k, in other words Nonblocker is the parametric dual of Dominating Set

(see [5] for the definition of the parametric dual). Nonblocker has a trivial 2k-
kernel for general graphs (and also for any reasonable graph class) since every
n-vertex graph with no isolated vertices has a dominating set of size at most n/2
(consider a spanning forest of G, 2-color it and choose the larger color class).
This was improved to a (53k + 3)-kernel by Dehne et al. [6]. Their kernelization
algorithm applies the so-called catalytic rule, which identifies the neighbors of
two degree 1 vertices, then removes one of the degree 1 vertices and decreases
k by 1 (when there is only one degree 1 vertex left, they use a classic result of
McCuaig and Shepard [13] which states that any n-vertex graph of minimum
degree 2 has a dominating set of size at most 2

5n, for n large enough). As we
see the catalytic rule preserves neither planarity nor excluded minors. It follows
that the best kernel for Planar Nonblocker to date is still the trivial 2k. A
natural question arises: can this bound be improved? In this work we answer
this question affirmatively: we present a 7

4k-kernel for Planar Nonblocker.
Since in our reduction rules we only remove edges/vertices or contract edges our
result immediately generalizes to H-minor-free graphs (with the same constant
in the kernel size, which is a rather rare phenomenon in the field).

An important motivation for studying parametric duals, discovered by Chen
et al. [5], is that if the dual problem admits a kernel of size at most αk, then the
original problem has no kernel of size at most (α/(α − 1) − ε)k, for any ε > 0,
unless P=NP. Hence, our kernel implies that Planar Dominating Set has no
kernel of size at most (73 −ε)k for any ε > 0 (and the same holds forDominating

Set restricted to any graph family closed under taking minors). This is the first
improvement over the (2 − ε)k lower bound of Chen et al. [5].

We note here that although using the approach of Dehne et al. [6] one can get
a (53k+3)-kernel for the annotated version of Planar Nonblocker (where the
instance is extended by a subset of vertices that do not need to be dominated),
it is unclear how to use this result to get an improved lower bound for the kernel
size of Planar Dominating Set.

To bound the size of a kernel means just to give a lower or upper bound for
the value of some graph invariant (e.g. the domination number) in a restricted

64 �L. Kowalik

class of graphs. Sometimes it is enough to apply a known combinatorial result,
like the lower bound for the domination number of McCuaig and Shepard [13]
for graphs of minimum degree 2, used by Dehne et al. [6]. There is also a better
bound of 3

8n for graphs of minimum degree 3 due to Reed [14] (later improved
to 4

11n by Kostochka and Stodolsky [11]). However in our kernel there still can
be an unbounded number of vertices of degree 1 and 2, though there are some
restrictions on them, so a tailor-made bound has to be shown. Applying the
approach of Reed we show that every n-vertex graph with no isolated vertices
and such that every pair of degree 1 vertices is at distance at least 5 and every
pair of degree 2 vertices is at distance at least 2 has a dominating set of size at
most 3

7n. We suppose that this result may be of independent interest.

Terminology and Notation. By NG(v) we denote the set of neighbors
of vertex v, and for a subset of vertices X ⊆ V (G), we denote NG(X) =⋃

x∈X NG(x) \ X . The subscripts are omitted when it is clear which graph we
refer to. G[S] denotes the subgraph of graph G induced by a set of vertices S.
By a d-vertex we mean a vertex of degree d. A d-neighbor is a neighbor of degree
d. We also use the Iverson bracket: [α] equals 1 if the condition α holds and 0
otherwise.

2 The Kernelization Algorithm

We say that a reduction rule for parameterized graph problem P is correct when
for every instance (G, k) of P it returns an instance (G′, k′) such that:

a) (G′, k′) is an instance of P ,
b) (G, k) is a yes-instance of P iff (G′, k′) is a yes-instance of P , and
c) k′ ≤ k.

We present six simple reduction rules below. It will be easier for us to formulate
and analyze the rules for Dominating Set. We will then convert them to rules
for Nonblocker.

Rule R1. If there is an isolated vertex v, then remove v and decrease k by 1.
Rule R2. If there is an isolated edge vw, then remove both v and w and decrease

k by 1.
Rule R3. If a vertex v has more than one 1-neighbors, then remove all these

neighbors except for one.
Rule R4. Assume there is a path P = abcd with deg(b) = deg(c) = 2. If a �= d,

then contract P into a single vertex v and decrease k by one. If a = d,
then contract the edge bc.

Rule R5. If there is a path abcd with deg(a) = deg(d) = 1, then contract edge
bc and decrease k by one.

Rule R6. If there is a path abcde with deg(a) = deg(e) = 1, then remove edge
bc.

Now, every Rule Ri is converted to Rule Ri′ as follows. Let (G,) be an instance
of Nonblocker. Put k = |V (G)| − 	, apply Ri to (G, k) and get (G′, k′). Put
	′ = |V (G′)| − k′ and return (G′, 	′).

Nonblocker in H-Minor Free Graphs 65

Lemma 1. Rules R1′-R6′ are correct for Nonblocker restricted to any minor-
closed graph class.

Due to the space limitations we skip the proof of the above lemma. We note
here that by the Graph Minor Theorem any minor-closed graph class can be
characterized by a finite set of forbidden minors, so in particular our rules are
correct for H-minor-free graphs.

Observation 1. If none of the reduction rules applies to an n-vertex graph G
then G has no isolated vertices, every pair of 1-vertices is at distance at least 5
and every pair of 2-vertices is at distance at least 2.

The next section is devoted to the proof of the following theorem, which is the
main technical contribution of this work.

Theorem 1. Every graph with no isolated vertices and such that every pair of
1-vertices is at distance at least 5 and every pair of 2-vertices is at distance at
least 2 has a dominating set of size at most 3

7n and it can be found in polynomial
time.

Let (G, k) be the input instance of Nonblocker. Our kernelization algorithm
applies rules R1-R6 as long as possible. It is clear that it can be checked in
polynomial time whether a particular rule applies, and each rule is applied in
linear time. Since in every rule |V (G)|+|E(G)| decreases, it follows that the whole
algorithm works in polynomial time (it can be even implemented in O(n log n)
time but we skip the details). Let (G′, k′) be the resulting instance. Since all
the rules are correct from c) it follows that k′ ≤ k. If k′ ≤ 4

7 |V (G′)| then by
Observation 1 and Theorem 1 we know that G′ has a dominating set of size
at most 3

7 |V (G′)| ≤ |V (G′)| − k′ and the algorithm returns the answer YES.
Otherwise |V (G′)| ≤ 7

4k
′ ≤ 7

4k so we get a 7
4k-kernel.

3 Proof of Theorem 1, Basic Setup

In our proof we extend the approach of Reed’s seminal paper [14]. Let us intro-
duce some basic notation (mostly coming from [14]).

Whenever it does not lead to ambiguity, if P is a path then P refers also to
the set of vertices of P . The order of a path P , denoted by |P | is the number
of its vertices (as opposed to the length of P which is the number of edges, i.e.
|P |− 1). For i ∈ {0, 1, 2}, a path P is an i-path, if |P | ≡ i (mod 3) (note that we
modify the standard definition here but we prefer to be consistent with [14]). A
dangling path in a graph G is a path of order two with exactly one endpoint of
degree 1 in G.

If x is a vertex of a path P and P − x consists of an i-path and a j -path,
then x is called an (i, j)-vertex of P . An endpoint x of a path P in graph G is
an out-endpoint if x has a neighbor outside of P .

A vdp-cover of a graph G is a set S of vertex-disjoint paths that contain all
vertices of G. By Si we denote the set of i-paths in S.

66 �L. Kowalik

The idea of Reed’s paper [14] is to find a carefully selected vdp-cover S and
then consider the paths of S one by one and for each such path choose some
of its vertices to be in the dominating set. In [14] it is shown that if G is of
minimum degree at least 3, then the dominating set is of size at most 3/8n.
Clearly, for any path P of S it is enough to choose �|P |/3
 vertices to dominate
the whole P . If P is a 0-path, or if P is long enough then this is at most 3

8 |P |.
Hence only short 1- and 2-paths remain. A careful analysis in [14] shows that
for each short 1-path (resp. 2-path) P , if G[P] does not contain a dominating
set of size �|P |/3� then one (resp. two) of its endpoints has a neighbor on some
path different from P and this neighbor can dominate the endpoint. In our case,
when vertices of degree 1 and 2 are allowed this is not always possible: G[P] has
fewer edges and it may happen that both endpoints are of degree 1. It turns out
that the most troublesome paths are the dangling paths and the paths of order
8. Our strategy is to find a cover that avoids such paths as much as possible.
Although we are not able to get rid of them completely, it turns out that it is
enough to exclude some configurations that contain these paths.

In the following lemma we describe the properties of the cover we use. It is
an extension of the construction in [14]. Our contribution here is the addition of
(B4)-(B7) and the explicit statement of the construction algorithm.

Lemma 2. For any graph G one can find in polynomial time a vdp-cover S of
G with the following properties. Let x be an out-endpoint of any 1-path or 2-path
Pi in S. Let y be a neighbor of x on a path Pj , j �= i and let Pj = P ′

jyP
′′
j . Then,

(B1) Pj is not a 1-path,
(B2) if Pj is a 0-path, then both P ′

j and P ′′
j are 1-paths,

(B3) if Pj is a 2-path, then both P ′
j and P ′′

j are 2-paths,
(B4) if |Pj | = 8, then Pi is a 1-path,
(B5) if Pj is a 2-path and Pi is a dangling path, then either one of P ′

j , P
′′
j is

dangling or |Pj | ∈ {11, 17} and |P ′
j | = |P ′′

j |,
(B6) if Pj is a 2-path and z is the common endpoint of Pj and P ′

j, then each
neighbor of z on P ′′

j is a (2, 2)-vertex.
(B7) every 0-path in S is of order 3.

Proof. A potential of a cover S is a tuple Φ(S) = (r1, r2, . . . , r7), where

– r1 = 2|S1| + |S2|,
– r2 = |S2|,
– r3 =

∑
P∈S0

|P |,
– r4 =

∑
P∈S1

|P |,
– r5 is the number of paths of order 8 in S,
– r6 is the number of dangling paths in S,
– r7 = n − |S0|.

For two covers S and S′ with potentials Φ(S) = (r1, . . . , r7) and Φ(S′) =
(r′1, . . . , r

′
7) we say that Φ(S′) < Φ(S) if Φ(S′) is smaller than Φ(S) in lexi-

cographic order, i.e. for some i = 1, . . . , 7 we have rj = r′j for j < i and ri < r′i.
We will show that if one of the conditions (B1)-(B7) does not hold then we can

Nonblocker in H-Minor Free Graphs 67

modify the vdp-cover S to get a new cover S′ with strictly smaller potential. It
will be clear from the proof that the modification can be done in linear time.
Since for every i = 1, . . . , 7 we have ri = O(n), it follows that if we start from
an arbitrary vdp-cover S then after O(n7) modifications we get a cover that
satisfies all of (B1)-(B7) and the claim of the lemma will follow.

Reed [14] showed that we can decrease the potential if one of (B1)-(B3) does
not hold (Observations 1–3 in [14], see also Lemma 1 in [11]).

Assume (B4) does not hold, i.e. |Pj | = 8 and Pi ∈ S2. Then by (B3) both P ′
j

and P ′′
j are 2-paths and hence w.l.o.g. |P ′

j | = 2 and |P ′′
j | = 5. If |Pi| �= 5, we

set S′ = S \ {Pi, Pj} ∪ {PiyP
′
j , P

′′
j }. Note that both PiyP

′
j and P ′′

j are 2-paths
so r1, . . . , r4 do not change. Also |P ′′

j | = 5 and |PiyP
′
j | �= 8 so r5 decreases. If

|Pi| = 5 we set S′ = S \ {Pi, Pj} ∪ {P ′
j , PiyP

′′
j }. Again, both PiyP

′
j and P ′′

j

are 2-paths so r1, . . . , r4 do not change. Also |P ′
j | = 2 and |PiyP

′
j | = 11 so r5

decreases.
Assume (B5) does not hold. Then by (B3) both P ′

j and P ′′
j are 2-paths. By

symmetry we can assume that |P ′
j | �= 5 since if |P ′

j | = |P ′′
j | = 5 then (B5) holds.

Also, we can assume that |P ′′
j | �= 8 since otherwise we know that |P ′

j | �= 8 and we
can swap the names of P ′

j and P ′′
j and get |P ′

j | = 8 �= 5 and |P ′′
j | �= 8. Then we

set S′ = S \{Pi, Pj}∪{PiyP
′
j , P

′′
j }. Note that both PiyP

′
j and P ′′

j are 2-paths so
r1, . . . , r4 do not change. Also |P ′′

j | �= 8 and |PiyP
′
j | �= 8 so r5 does not increase.

Since |P ′′
j | is not a dangling path (otherwise (B5) holds) and |PiyP

′
j | ≥ 5, r6

decreases by 1.
Assume (B6) does not hold. Let Pj = v1 . . . v3p+2 for some p ≥ 1 where v1 is

the common endpoint of Pj and P ′
j . By (B3) y = v3q, 1 ≤ q ≤ p. We assumed

that for some r ≥ q we have v1v3r+1 ∈ E or v1v3r+2 ∈ E. If v1v3r+1 ∈ E then we
consider the paths P = v3p+2v3p+1 . . . v3r+1v1v2 . . . v3qPi and R = v3q+1 . . . v3r
(if q = r then R is empty). If v1v3r+2 ∈ E then we consider the paths P =
v3q+1v3q+2 . . . v3r+2v1v2 . . . v3qPi and R = v3r+3 . . . v3p+2 (if r = p then R is
empty). We set S′ = S \ {Pi, Pj} ∪ {P,R}. Note that |R| ≡ 0 (mod 3) and
|P | ≡ |Pi|+ |Pj| (mod 3). Hence if Pi is a 1-path then both P and R are 0-paths
so r1 decreases and if Pi is a 2-path then P is a 1-path and R is a 0-path, so r1
stays the same and r2 decreases.

If (B7) does not hold, we pick any 0-path P of order at least 6 and replace it
by two 0-paths, one of order 3 and one of order |P | − 3. Clearly, the potential
decreases. ��

Let S be the cover from Lemma 2. Similarly as in [14], some of the out-endpoints
of the paths in S will be dominated by vertices of other paths which we call
accepting. Now we describe our method for finding these paths.

Accepting Procedure. First, for every path P ∈ S1 with at least one out-
endpoint we mark exactly one, arbitrarily chosen, out-endpoint. Second, for every
path P of order |P | ∈ {2, 5, 8} and with two out-endpoints we mark both of these
endpoints.

We say that vertex v is a neighbor of path P if v �∈ V (P) and v is a neighbor
of a vertex of P . Path P ∈ S is dangerous if

68 �L. Kowalik

(i) |P | = 8,
(ii) P has exactly one marked neighbor v,
(iii) v has exactly one neighbor on P ,
(iv) degG(v) > 1,
(v) the path in S that contains v is of order 1,
(vi) P has at most one out-endpoint.

As long as there is a non-dangerous path P with a marked neighbor, we pick such
a path P and for its every marked neighbor v we choose one vertex w ∈ N(v)∩P
and w accepts v. Then v becomes unmarked and we call w the acceptor of v. If
|P | ∈ {5, 8} and P has exactly one out-endpoint x we mark x, unless x is already
accepted. This finishes the description of the accepting procedure.

All vertices that are marked after the above procedure finishes are called
rejected. A path from S is rejected if it contains a rejected vertex. The following
observation follows from (iii), (iv) and (v).

Observation 2. Every rejected path is of order 1 and it has at least two neigh-
boring dangerous paths.

A weak path is a path P ∈ S such that |P | = 8, P accepts exactly one neighbor
v, v has two neighbors on P , the path in S that contains v is of order 1 and P
has no out-endpoints.

Consider a weak path P = v1 . . . v8. Then exactly one vertex of P is an
acceptor, and by (B3) it is either v3 or v6. By symmetry assume v3 is an acceptor.
Then v3 accepts exactly one vertex, say v, and vv6 ∈ E. However, if degG(v5) = 2
then we change the acceptor of v from v3 to v6. Note that then degG(v4) ≥ 3.
Thus the following invariant holds.

Invariant 1. If we number vertices of a weak path P = v1 . . . v8 so that v3 is
an acceptor then degG(v5) ≥ 3.

The intuition behind the notion of dangerous path is that it cannot afford ac-
cepting a vertex. As we see, a weak path is very close to being dangerous. A
weak path can afford accepting a vertex, but it needs additional help from other
paths. This “help” is realized by the following procedure.

Forcing Procedure. Now we define a certain set F ⊂ V . The elements of F are
called forced vertices. The set F is constructed by the following procedure. Begin
with empty F . Next consider weak paths of S, one by one. Let P be such a weak
path. If P ∩F �= ∅ we skip P . Otherwise, let us number vertices of P = v1 . . . v8
so that v3 is an acceptor. If v5 has a neighbor outside P then we choose exactly
one such neighbor x, we add x to F and x becomes forced by P . This finishes
the description of the forcing procedure.

The following observation follows easily from (B3).

Observation 3. If w is an endpoint of a path P ∈ S1 ∪ S2 then w �∈ F .

In what follows we construct a certain dominating set D. As we will see, for
some paths P of S the ratio |P ∩ D|/|P | is at most 3

7 , and for some of them

Nonblocker in H-Minor Free Graphs 69

it is larger than 3
7 . However, we show that the later ones are amortized by the

former. To this end we introduce the following discharging procedure (which is
not a part of the construction of D but it helps to bound |D|). We assume that
each vertex v ∈ V and path P ∈ S is assigned a rational number, called charge,
which is initially 0. By sending charge of value α from x ∈ V ∪ S to y ∈ V ∪ S
we mean that the charge of x decreases by α and the charge of y increases by α.
The charge is sent according to the following rules.

Rule D1 Let v be an endpoint of a path P ∈ S such that v is accepted by a
vertex w. If P ∈ S1 and |P | ≥ 4, then w sends 4

7 to P . Otherwise, i.e.
if |P | ∈ {1, 2, 5, 8}, then w sends 3

7 to P .
Rule D2 Every rejected path sends 2

7 to each neighboring dangerous path.
Rule D3 Every dangling path sends 1

7 to each neighboring path.
Rule D4 If a vertex x is forced by a weak path P , then x sends 6

7 to P .

After applying all the discharging rules above, each vertex v and each path P ∈ S
ends up with some amount of charge: the total charge it received minus the total
charge it sent. For x ∈ V ∪ S let ch(x) denote the final amount of charge at x.

For P ∈ S, let ĉh(P) = ch(P) +
∑

v∈P ch(v). Note that the initial total charge
in G is equal to 0 and it does not change by applying the discharging rules, so∑

P∈S ĉh(P) = 0.
Let A be the set of all acceptors. We say that a path P ∈ S is safe when there

exists a set DP ⊆ P such that

a) DP ∪ A ∪ F dominates P , i.e. P ⊂ N [DP ∪ A ∪ F],
b) P ∩ (A ∪ F) ⊆ DP ,

c) |DP | + ĉh(P) ≤ 3
7 |P |.

Lemma 3. If all paths in S are safe, then G has a dominating set of size at
most 3

7n.

Proof. Since all paths in S are safe, for each such path P there is a set DP that
satisfies conditions a)-c). Then we define D =

⋃
P∈S DP . By b), A∪F ⊆ D. This

together with a) implies that D is a dominating set of G. Since
∑

P∈S ĉh(P) = 0,
c) implies that |D| =

∑
P∈S |DP | ≤

∑
P∈S

3
7 |P | = 3

7n. ��

In section 4 we show that G satisfies the assumptions of Theorem 1 then all
paths in S are safe. Together with the above lemma that finishes the proof of
Theorem 1.

4 All Paths Are Safe

From now on we assume that G satisfies the assumptions of Theorem 1. The
following lemma follows easily from the discharging rules.

Lemma 4. Let v be a vertex of G. If v accepts a path from S1 of order at least
4, then ch(v) ≤ − 4

7 − 6
7 [v ∈ F]. If v accepts a path of order 1, 2, 5 or 8, then

ch(v) ≤ − 3
7 − 6

7 [v ∈ F]. Otherwise ch(v) ≤ − 6
7 [v ∈ F]. ��

70 �L. Kowalik

In what follows we will consider various kinds of paths in S and we will show that
they are safe. In many cases we will divide these paths into several subpaths,
which we call “bricks”. Then the safeness of paths from S will be derived from
the safeness of bricks, which is defined as follows. We say that a path P in a
graph G is α-safe when there exists a set DP ⊆ P such that

a) DP ∪ A ∪ F dominates P , i.e. P ⊂ N [DP ∪ A ∪ F],
b) P ∩ (A ∪ F) ⊆ DP , and
c) |DP | +

∑
v∈P ch(v) ≤ α.

Note that if a path P ∈ S is 3
7 |P |-safe it does not mean that it is safe, because

in the definition of α-safeness we ignore the charge of P . However the following
claim is easy to verify.

Lemma 5. Let P ∈ S and assume that P = P1 . . . Pk. For i = 1, . . . , k assume
that path Pi is αi-safe. If

∑k
i=1 αi + ch(P) ≤ 3

7 |P | then P is safe. ��

Lemma 6 (3-brick Lemma). Any path P = v1v2v3 in G such that P ∩ A ⊆
{v2} is 8

7 -safe. Moreover, if v2 ∈ A, then P is 6
7 -safe.

Proof. By Lemma 4, for v ∈ {v1, v3}, ch(v) ≤ − 6
7 [v ∈ F].

First assume v2 is an acceptor. We put DP = P ∩ (A∪ F). Note that |DP | ≤
1+|F∩{v1, v3}| and ch(v2) ≤ − 3

7−
6
7 [v ∈ F]. Hence,

∑
v∈P ch(v) ≤ − 3

7−
6
7 |F∩P |.

It follows that |DP | +
∑

v∈P ch(v) ≤ 1 + |F ∩ {v1, v3}| − 3
7 − 6

7 |F ∩ P | = 4
7 +

1
7 |F ∩ {v1, v3}| ≤ 6

7 .
Now assume v2 is not an acceptor. By Lemma 4, for any v ∈ P we have

ch(v) ≤ − 6
7 [v ∈ F]. If |F ∩ P | ≥ 2, we put DP = F ∩ P and then |DP | +∑

v∈P ch(v) ≤ |F ∩P | − 6
7 |F ∩P | ≤ 3

7 . Otherwise, i.e. when |F ∩P | ≤ 1, we put
DP = {v2} ∪ (F ∩ P) and then |DP |+

∑
v∈P ch(v) ≤ 1 + |F ∩ P | − 6

7 |F ∩ P | =
1 + 1

7 |F ∩ P | ≤ 8
7 . ��

Lemma 7 (4-brick Lemma). Any path P = v1v2v3v4 in G such that P ∩A ⊆
{v3} is 2-safe. Moreover, if v3 ∈ A, then P is (117 + 1

7 |F ∩ {v1, v4}|)-safe (and
hence 13

7 -safe).

Proof. By Lemma 4, for v ∈ {v1, v2, v4}, ch(v) ≤ − 6
7 [v ∈ F].

First assume v3 is an acceptor. We put DP = {v2} ∪ P ∩ (A ∪ F). Note
that |DP | ≤ 2 + |F ∩ {v1, v4}| and ch(v3) ≤ − 3

7 − 6
7 [v ∈ F] by Lemma 4.

Hence,
∑

v∈P ch(v) ≤ − 3
7 − 6

7 |F ∩ P |. It follows that |DP | +
∑

v∈P ch(v) ≤
2 + |F ∩ {v1, v4}| − 3

7 − 6
7 |F ∩ P | ≤ 11

7 + 1
7 |F ∩ {v1, v4}| ≤ 13

7 .
Now assume v3 is not an acceptor. By Lemma 4, for v ∈ P we have ch(v) ≤

− 6
7 [v ∈ F] and hence

∑
v∈P ch(v) = − 6

7 |F ∩ P |. If F ∩ P = ∅, we put DP =
{v2, v3} and then |DP |+

∑
v∈P ch(v) = 2. Finally assume F ∩P �= ∅. If {v1, v2}∩

F �= ∅ we put DP = {v3}∪ (F ∩P) and otherwise we put DP = {v2} ∪ (F ∩P).
Then, |DP |+

∑
v∈P ch(v) ≤ 1 + |F ∩ P | − 6

7 |F ∩ P | = 1 + 1
7 |F ∩ P | ≤ 11

7 . ��

Nonblocker in H-Minor Free Graphs 71

Lemma 8. Every 0-path P is safe.

Proof. By (B8) |P | = 3. Clearly, P may get charge only by Rule D3. Moreover,
Rule D3 applies at most once to P because otherwise by (B2) there are two
dangling paths neighboring with the only (1, 1)-vertex of P and then there are
1-vertices at distance 4, a contradiction. It follows that ch(P) ≤ 1

7 . By Lemma 6
path P is 8

7 -safe. Since
8
7 +ch(P) ≤ 9

7 = 3
7 |P | so by Lemma 5 path P is safe. ��

Lemma 9. Every path P of order 1 is safe.

Proof. Let V (P) = {v}. Since there are no isolated vertices, v is an out-endpoint.
By (B1) P does not receive charge by Rule D3.

Note that P ∩ A = ∅ by (B1) and F ∩ P = ∅ by Observation 3. Hence, by
Lemma 4, ch(v) = 0.

First assume v is accepted. Then P gets exactly 3
7 by Rule D1, and Rule D2 does

not apply, so ch(P) = 3
7 .We putDP = ∅. It follows that |DP |+ĉh(P) = 3

7 = 3
7 |P |.

If v is not accepted, Rule D1 does not apply. Moreover, then P is rejected, so
by Observation 2 it sends 2 · 2

7 = 4
7 by Rule D2. Hence, ch(P) ≤ − 4

7 . We put

DP = {v}. It follows that |DP | + ĉh(P) ≤ 1 − 4
7 = 3

7 |P |. ��
Lemma 10. Every 1-path P , |P | ≥ 4, with an out-endpoint is safe.

Proof. Assume P = v0v1 . . . v3k for some k ≥ 1. By the accepting procedure,
since P has an out-endpoint, P has an accepted out-endpoint and P gets 4

7 by
D1. Assume w.l.o.g. v0 is the accepted out-endpoint of P . By (B1), D3 does not
apply to P . It follows that ch(P) = 4

7 . Note that P ∩A = ∅ by (B1). We partition
P into k + 1 paths: P = P0P1 . . . Pk, where P0 = v0 and Pi = v3i−2v3i−1v3i for
any i = 1, . . . , k. By Observation 3 and Lemma 4 we have ch(v0) = 0, so we see
that P0 is 0-safe (by choosing DP0 = ∅). By Lemma 6 for every i = 1, . . . , k the
path Pi is

8
7 -safe. Since 0 + k · 8

7 + ch(P) = 8k+4
7 ≤ 9k+3

7 = 3
7 |P |, by Lemma 5

path P is safe. ��
Lemma 11. If a path P ∈ S of order 4 has no out-endpoint then P = N [x] for
some x ∈ P .

Proof. Let P = v1v2v3v4. Since P has no out-endpoint, N(v1) ⊆ {v2, v3, v4}
and N(v4) ⊆ {v1, v2, v3}. If v1v3 ∈ E(G) then N(v3) = {v1, v2, v4}, so we
can take v3 as x. Hence v1v3 �∈ E(G) and by symmetry also v4v2 �∈ E(G). If
v1v4 ∈ E(G) then degG(v1) = degG(v4) = 2 and we have 2-vertices at distance 1,
a contradiction. It follows that degG(v1) = degG(v4) = 1, and we have 1-vertices
at distance 3, a contradiction. ��
Lemma 12. Every path P of order 4 is safe.

Proof. LetP = v1v2v3v4. By Lemma 10we can assume thatP has no out-endpoint.
Then ch(P) = 0, since D3 does not apply by (B1). Let x ∈ P be a vertex such
that P = N [x], as guaranteed by Lemma 11. Note that P ∩A = ∅ by (B1).

We put DP = {x} ∪ (F ∩ P). By Lemma 4 and Observation 3, ch(v1) =
ch(v4) = 0 and ch(v2), ch(v3) ≤ − 6

7 [v ∈ F]. By Observation 3, |F ∩ P | ≤ 2.

Hence, |DP |+ ĉh(P) ≤ 1 + |F ∩ P | − 6
7 |F ∩ P | = 1 + 1

7 |F ∩ P | ≤ 9
7 < 3

7 |P |. ��

72 �L. Kowalik

Because of the space limitations the safeness of the remaining paths is deferred
to the journal version.

Acknowledgement. I thank Micha�l Dȩbski and Marcin Mucha for helpful dis-
cussions. I am also very grateful to anonymous reviewers for careful reading and
many helpful remarks.

References

1. Alber, J., Fellows, M.R., Niedermeier, R.: Polynomial-time data reduction for dom-
inating set. J. ACM 51(3), 363–384 (2004)

2. Appel, K., Haken, W.: Every planar map is four colorable part I. Discharging.
Illinois J. of Math. 21, 429–490 (1977)

3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (meta) kernelization. In: Proc. FOCS 2009, pp. 629–638 (2009)

4. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: List edge and list total colourings
of multigraphs. J. Comb. Theory, Ser. B 71(2), 184–204 (1997)

5. Chen, J., Fernau, H., Kanj, I.A., Xia, G.: Parametric duality and kernelization:
Lower bounds and upper bounds on kernel size. SIAM J. Comput. 37(4), 1077–
1106 (2007)

6. Dehne, F., Fellows, M., Fernau, H., Prieto, E., Rosamond, F.: NONBLOCKER:
Parameterized Algorithmics for MINIMUM DOMINATING SET. In: Wieder-
mann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006.
LNCS, vol. 3831, pp. 237–245. Springer, Heidelberg (2006)

7. Dvorak, Z., Skrekovski, R., Valla, T.: Planar graphs of odd-girth at least 9 are
homomorphic to the petersen graph. SIAM J. Disc. Math. 22(2), 568–591 (2008)

8. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Charikar, M. (ed.) SODA, pp. 503–510. SIAM (2010)

9. Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar
Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
LNCS, vol. 4596, pp. 375–386. Springer, Heidelberg (2007)

10. Kanj, I.A., Zhang, F.: On the Independence Number of Graphs with Maximum
Degree 3. In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp.
238–249. Springer, Heidelberg (2011)

11. Kostochka, A.V., Stodolsky, B.Y.: An upper bound on the domination number of
n-vertex connected cubic graphs. Discrete Mathematics 309(5), 1142–1162 (2009)

12. Kowalik, L., Pilipczuk, M., Suchan, K.: Towards optimal kernel for connected ver-
tex cover in planar graphs. CoRR abs/1110.1964 (2011)

13. McCuaig, W., Shepherd, B.: Domination in graphs with minimum degree two. J.
Graph Th. 13(6), 749–762 (1989)

14. Reed, B.A.: Paths, stars and the number three. Combinatorics, Probability & Com-
puting 5, 277–295 (1996)

15. Robertson, N., Sanders, D.P., Seymour, P.D., Thomas, R.: The four-colour theo-
rem. J. Comb. Theory, Ser. B 70(1), 2–44 (1997)

16. Wang, J., Yang, Y., Guo, J., Chen, J.: Linear Problem Kernels for Planar Graph
Problems with Small Distance Property. In: Murlak, F., Sankowski, P. (eds.) MFCS
2011. LNCS, vol. 6907, pp. 592–603. Springer, Heidelberg (2011)

Some Definitorial Suggestions
for Parameterized Proof Complexity

Jörg Flum1 and Moritz Müller2

1 Universität Freiburg, Germany
joerg.flum@math.uni-freiburg.de

2 Kurt Gödel Research Center, Universität Wien, Austria
moritz.mueller@univie.ac.at

Abstract. We introduce a (new) notion of parameterized proof system. For
parameterized versions of standard proof systems such as Extended Frege and
Substitution Frege we compare their complexity with respect to parameterized
simulations.

1 Introduction

Consider the following problems for graphs: the vertex cover problem VC, the clique
problem CLIQUE, and the dominating set problem DS; they ask, given a graph G and
a natural number k, whether G contains a cardinality k vertex cover, clique, and domi-
nating set, respectively. All three problems are NP-complete and hence, from the point
of view of polynomial reductions any two of them have the same computational com-
plexity.

Taking in each case the natural number k as the parameter of an instance we get
the parameterized problems p-VC, p-CLIQUE, and p-DS. In parameterized complex-
ity there is not only a new notion of tractability, namely fixed-parameter tractability,
but also the notion of reducibility has been adapted so that it preserves fixed-parameter
tractability; the new notion being that of fpt-reduction. One knows that p-VC ≤fpt p-
CLIQUE (that is, p-VC is fpt-reducible to p-CLIQUE) and p-CLIQUE ≤fpt p-DS. How-
ever, accepting the hypotheses FPT �= W[1] and W[1] �= W[2] (which are fundamental
hypotheses of parameterized complexity and each of them implies P �= NP) neither p-
CLIQUE ≤fpt p-VC nor p-DS ≤fpt p-CLIQUE. As Downey and Fellows write in [7]:

Parameterized reductions tend to be much more structure preserving than clas-
sical reductions, and certainly most classical reductions . . . are definitely not
parameterized reductions. . . . Parameterized reductions are sufficientlly refined
that instead of one large class of naturally intractable problems all of the same
complexity, there seem to be many sets of natural combinatorial problems, all
intractable in the parameterized sense, and yet of differing parameterized com-
plexity

In proof theory among the proof systems best studied there are Frege systems, Ex-
tended Frege systems, and Substitution Frege systems. Classically, they are compared

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 73–84, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

74 J. Flum and M. Müller

via polynomial simulations. It is known that there are polynomial simulations between
any Extended Frege system and any Substitution Frege system, while it is not known
whether Extended Frege systems and Substitution Frege systems may be simulated by
Frege systems. The question arises whether also in this context parameterized complex-
ity yields new insights or even allows a more fine-grained analysis. In this note we want
to lay down the conceptual framework for such an analysis. Furthermore, we give some
positive and some negative answers and state some open problems.

What are natural parameterizations of proof systems? Recall that the definitions of
parameterized complexity are tailored to address complexity issues in situations where
we know that the parameter is relatively small. We believe that for Extended Frege sys-
tems the number of extension axioms used in a proof could be a natural parameter. At
least, if we start with an arbitrary, say, random tautology, it does not seem plausible that
many extension axioms can be used in a proof with advantage. We should emphasize the
word “random” here. For example, in a standard example often mentioned to motivate
the use of extension axioms, namely the formalization of the pigeon-principle in propo-
sitional logic, the number of extension axioms used to derive the n pigeonhole principle
by a straightforward induction on n is Ω(n3) and hence, certainly not small.1 Similarly
the number of applications of the substitution rule seems to be a natural parameter for
Substitution Frege Systems.

As proof systems are functions, simulations between them should be value-preser-
ving functions (as are the standard polynomial simulations). We believe that this fact
has not been taken into account appropriately in the approaches to proof theory us-
ing parameterized complexity. Taking this fact seriously, we define the notion of fpt-
simulation. When we realized that our notion coincides with the notion of parsimonious
reduction between parameterized counting functions, we were confirmed in our belief
that this is the appropriate definition.

We show that under fpt-simulations the parameterized versions of Extended Frege
and Substitution Frege are both equivalent to Frege. In this sense, the notion of fpt-
simulation does not offer a more fine-grained complexity analysis of these proof sys-
tems; or, expressing it in positive terms, we gain the insight that there is a simulation,
say, of an Extended Frege system in a Frege system whose superpolynomial running
time is confined to a factor depending only on the number of extension axioms used
in the original proof. Similarly, we see that there is a simulation of Substitution Frege
in Extended Frege where the number of extension axioms is bounded in terms of the
number of applications of the substitution rule.

Having in mind the goal of a more refined analysis, we propose to study the rela-
tionship between these proof systems under parameterized polynomial simulations, a
notion that in some sense refines both polynomial simulations and fpt-simulations: such
a simulation is a polynomial simulation with the additional property that it increases the
parameter at most polynomially. We do not see any way to simulate Substitution Frege
in Extended Frege in this sense (while the converse is easy). However, we construct a
parameterized polynomial simulation of treelike Substitution Frege in treelike Extended
Frege.

1 It is well-known that Buss [3] gave polynomial proofs of the pigeon-principle in Frege systems.

Some Definitorial Suggestions for Parameterized Proof Complexity 75

Related work. A different approach to introduce parameterizations into proof complex-
ity has been initiated by Dantchev et al. [6]. They introduced parameterized proof sys-
tems for parameterized problems. They considered the following parameterized prob-
lem: given a pair (α, k) of a CNF α and k ∈ N, where k is the parameter, decide whether
α has no satisfying assignment of Hamming weight at most k. The proof systems they
had in mind are classical refutation systems such as Resolution that may freely use
additional clauses expressing the constraint on the Hamming weight. The goal of this
approach is to strengthen lower bounds of classical refutation systems by showing that
their parameterized counterparts are not fpt bounded2. It can be understood as a pa-
rameterized analogue of Cook’s program, here trying to prove coW[2] �⊆ paraNP. For
this approach Beyersdorff et al. [1] lack an interpretation of the parameterization of the
proof system and argue that it can be dispensed with.

2 Preliminaries

In this section we fix some notations and recall some definitions and results, in the first
part of parameterized complexity theory and in the second part of proof theory.

2.1 Parameterized Complexity

Formally, a parameterized problem is a pair (Q, κ) consisting of a (classical) problem
Q ⊆ {0, 1}∗ and a polynomial time computable parameterization κ : {0, 1}∗ → N that
maps any input x ∈ {0, 1}∗ to its parameter κ(x) ∈ N. A parameterized problem (Q, κ)
is fixed-parameter tractable, that is, tractable from the point of view of parameterized
complexity, if there is an algorithm solving x ∈ Q in ≤ f (κ(x)) · |x|O(1) steps for some
computable f : N → N.

A function R : {0, 1}∗ → {0, 1}∗ is fpt-computable with respect to a parameteriza-
tion κ if R(x) can be computed in time f (κ(x)) · |x|O(1), where again f : N → N is
computable.

Also the notion of polynomial reduction, that is, the natural notion of reduction
preserving classical tractability, has to be adapted so that it preserves fixed-parameter
tractability. An fpt-reductionR from a parameterized problem (Q, κ) to another (Q′, κ′)
is an fpt-computable (with respect to κ) reduction from Q to Q′ such that κ′(R(x)) ≤
g(κ(x)) for some computable g : N → N and all x ∈ {0, 1}∗. We write (Q, κ) ≤fpt

(Q′, κ′) if there is an fpt-reduction from (Q, κ) to (Q′, κ′).

2.2 Proof Theory

A proof system for a problem Q ⊆ {0, 1}∗ is a polynomial time computable surjection
P from {0, 1}∗ onto Q. If P (w) = x, then w is a P -proof of x. In case Q = TAUT,
we call P propositional. A proof system P is p-bounded if any x ∈ Q has a P -proof
of size |x|O(1). Cook and Reckhow [5] observed that a p-bounded propositional proof
system exists if and only if NP = coNP. Cook’s program aims to prove that natural
propositional proof systems are not p-bounded.

2 As pointed out in [1] one should restrict attention to instances (α, k) with contradictory α.

76 J. Flum and M. Müller

Proof systems for a problem Q are compared in strength via p-simulations: a p-
simulation of a proof system P ′ in a proof system P is a polynomial time computable
function R such that P (R(w′)) = P ′(w′) for all w′ ∈ {0, 1}∗; in case such an R exists,
we say P p-simulates P ′ and write P ′ ≤pol P ; if additionally, P ′ p-simulates P , we
call P and P ′ p-equivalent.

A Frege system F is a propositional proof system given by finitely many axiom
schemes (in the de Morgan language) and finitely many rules including, for simplicity,
modus ponens. An F -proof of a (propositional) formula α from a set of formulas Γ is
a sequence of formulas such that each of them is either a member of Γ or a substitution
instance of an axiom scheme or follows from earlier formulas in the sequence by one
of the rules of F ; furthermore, the last formula of the sequence is α. An F -proof of α
is an F -proof of α from the empty set of formulas. Frege systems are assumed to be
implicationally complete, that is, whenever a set of formulas Γ logically implies α, then
there exists an F -proof of α from Γ.

For a Frege system F we denote by F ∗ the proof system treelike F : an F -proof π is
treelike if every occurrence of a formula in π is used as an hypothesis in an application
of a rule at most once; equivalently, π is treelike if it can be written as a tree labeled
by the formulas in π such that the leaves are labeled by the substitution instances of the
axiom schemes and the labels of inner nodes are obtained by one of the rules from their
immediate predecessors.

The following are well-known [10,5].

Theorem 1. (1) (Cook, Reckhoff) Any two Frege systems are p-equivalent.
(2) (Krajı́c̆ek) F and F ∗ are p-equivalent for every Frege system F .

By part (1) of this theorem we get that, instead of (2), we could claim

F1 and F ∗
2 are p-equivalent for Frege systems F1 and F2.

The same observation applies to all equivalences mentioned in this paper (not only to
p-equivalences but also to fpt-equivalences and pp-equivalences introduced later).

There are two well-studied extensions of a Frege system F :

Extension Frege. Let F be a Frege system. The Extension Frege system EF adds to F
the extension rule: It allows to add in a proof of α (without any hypotheses) an extension
axiom (r ↔ σ) where σ is a propositional formula and the extension variable r neither
occurs in σ nor in α nor in any earlier line of the proof.

Equivalently, an EF-proof of α is an F -proof of α from an extension sequence whose
extension variables do not occur in α. Here, an extension sequence (for α) of length k
is a sequence of the form

(r1 ↔ σ1), . . . , (rk ↔ σk)

with pairwise distinct extension variables r1, . . . , rk such that ri does not occur in σj

for 1 ≤ j ≤ i.
By EF∗ we denote the treelike version of EF.

Substitution Frege. Let F be a Frege system. The Substitution Frege system SF adds to
F the substitution rule that allows to derive from the formula α the formula α[x/σ]

Some Definitorial Suggestions for Parameterized Proof Complexity 77

where α[x/σ] is obtained from α by substituting the variable x by the formula σ. By
SF∗ we denote the treelike version of SF.

In [2] Buss introduces two restrictions of SF:

– Boolean Substitution Frege BSF requires that in any application of the substitution
rule the formula σ is the Boolean constant � (TRUE) or ⊥ (FALSE);

– Renaming Frege RF requires σ to be a variable.

Again, BSF∗ and RF∗ denote the treelike versions of these systems.

Natural simulations of EF and SF in F roughly proceed as follows:

– Let π be an EF-proof. To delete the first extension axiom (r ↔ σ) substitute ev-
erywhere in π the formula σ for r; this transforms the extension axiom into the
tautology (σ ↔ σ) for which we add a linear size F -proof. Proceed like this with
the second extension axiom and so on. If π contains k extension axioms, the result-
ing F -proof has size |π|O(k) .

– Let π be an SF-proof. Let the first application in π of the substitution rule yield
α[x/σ] from α. Replace it by a proof of α[x/σ] obtained by applying the substitu-
tion x/σ to the initial segment of π up to α. If π contains k substitution inferences,
the resulting F -proof has size |π|O(k).

Hence, both simulations are not polynomial ones. In fact, it is open whether EF ≤pol F
and whether SF ≤pol F . However, the following is known [12,2]:

Theorem 2. (1) EF, EF∗, SF, SF∗, RF, BSF are p-equivalent for every Frege system F .
(2) RF∗, BSF∗ and F are p-equivalent for every Frege system F .

Comparing their status with that of RF∗ and of BSF∗ we see that perhaps RF and BSF
are proof systems where the ability to reuse already derived lines adds power. We shall
see a similar phenomenon for SF in the parameterized setting.

3 Parameterized Proof Systems and fpt-Simulations

In this section we introduce the main new concepts of this paper, parameterized proof
systems and simulations between them.

Definition 3. A parameterized proof system for Q is a pair (P, κ) such that P is a proof
system for Q and κ a parameterization.

Having in mind, as we do, to compare Frege systems, Extended Frege systems, and
Substitution Frege systems, it does not seem natural to consider a more general notion
of parameterized proof systems where P is only required to be an fpt-computable (with
respect to κ) function from {0, 1}∗ onto Q instead of a polynomial time computable
one.

We identify a (classical) proof system P for Q with the parameterized proof system
(P, 0), i.e., P with the parameterization that is constantly 0.

78 J. Flum and M. Müller

For an Extended Frege system EF we denote by κEF the parameterization

κEF(w) := number of extension axioms in w.

Similarly, for a Substitution Frege system SF we denote by κSF the parameterization

κSF(w) := number of applications of the substitution rule in w.

We consider the restriction EF∗ of EF with the parameterization κEF and the restrictions
SF∗, BSF(∗), and RF(∗) of SF with the parameterization κSF. We denote the resulting
parameterized proof systems by p-EF, p-EF∗, p-SF, p-RF, p-BSF, p-SF∗, p-RF∗ and
p-BSF∗.

In order to compare parameterized proof systems in strength we use the following
notion of simulation. We already mentioned that for parameterized counting problems
the notion coincides with that of fpt parsimonious reduction introduced in [8, Defini-
tion 14.10].

Definition 4. Let (P, κ) and (P ′, κ′) be parameterized proof systems for Q ⊆ {0, 1}∗.
An fpt-simulation of (P ′, κ′) in (P, κ) is a function R : {0, 1}∗ → {0, 1}∗ such that
(a) R is fpt-computable with repect to κ′;
(b) P ′(w′) = P (R(w′)) for all w′ ∈ {0, 1}∗;
(c) κ(R(w′)) ≤ g(κ′(w′)) for some computable g : N → N and all w′ ∈ {0, 1}∗.
In case such an R exists, we say that (P, κ) fpt-simulates (P ′, κ′) and write (P ′, κ′) ≤fpt

(P, κ). The problems (P, κ) and (P ′, κ′) are fpt-equivalent, written (P, κ) ≡fpt (P, κ), if
(P, κ) ≤fpt (P ′, κ′) and (P ′, κ′) ≤fpt (P, κ).

Note that if P and P ′ are classical proof systems for a problem Q, then P fpt-simulates
P ′ if and only if P p-simulates P ′. However, in general, neither (P, κ) ≤fpt (P ′, κ′)
implies P ≤pol P

′ nor P ≤pol P
′ implies (P, κ) ≤fpt (P ′, κ′).

Lemma 5. If (P, κ) ≤fpt (P ′, κ′) and (P ′, κ′) ≤fpt (P ′′, κ′′), then (P, κ) ≤fpt (P ′′, κ′′).

4 Comparing Proof Systems via fpt-Simulations

By the following result all parameterized proof systems introduced so far are fpt-equiv-
alent.

Theorem 6. p-EF, p-SF, and F are pairwise fpt-equivalent. 3

As F ≤fpt p-EF, the theorem follows from the following three propositions showing
(among others):

p-EF ≤fpt p-SF ≤fpt p-BSF ≤fpt F.

In Proposition 7 and Proposition 8 we obtain the first two ‘inequalities’ by merely ob-
serving that known p-simulations already are fpt-simulations.

3 The second author gave a talk at the workshop Proof complexity (11w5103, Banff Interna-
tional Research Station) on this subject mentioning that at that time we didn’t know whether
p-EF ≤fpt F . Kaveh Ghasemloo pointed out that he was convinced that such a simulation
could be constructed via the system G∗

1 (cf. [4, p.179]).

Some Definitorial Suggestions for Parameterized Proof Complexity 79

Proposition 7. p-EF ≤fpt p-SF and p-EF∗ ≤fpt p-SF∗.

Proof. Cook and Reckhow’s original p-simulation [5] of EF in SF is an fpt-simulation
of p-EF in p-SF; this yields the first assertion.

We turn to the second claim. An EF∗-proof π of α is an F ∗-proof of α from an
extension sequence (r1 ↔ σ1), . . . , (rk ↔ σk) (recall that the ri have to be paiwise
distinct and that ri neither occurs in σj for 1 ≤ j ≤ i nor in α). By the Deduction
Theorem for F (see [11, Lemma 4.4.10]) there is an F -proof π′ of

(rk ↔ σk) → (rk−1 ↔ σk−1) → · · · → (r1 ↔ σ1) → α (1)

(where the iterated implications are associated to the right) of size |π|O(1). By part (2)
of Theorem 1 we can assume that π′ is treelike.

By our assumption on the extension variables, the variable rk occurs exactly once
in (1). We apply the substitution rule and substitute σk for rk in (1); hence we get the
formula obtained from (1) by replacing the equivalence (rk ↔ σk) by (σk ↔ σk).
We add a short F ∗-proof of (σk ↔ σk) and apply modus ponens to arrive at formula
(1) with k − 1 instead of k. Repeating this process gives an SF∗-proof of α of size
O(k · |π′|). We observe that in this simulation k extension axioms are simulated in SF∗

by k applications of the substitution rule. Therefore, this is an fpt-simulation. �

Proposition 8. p-SF ≤fpt p-BSF.

Proof. Buss [2] simulates an application of the substitution rule α
α[x/σ] as follows: first,

he applies twice the BSF-substitution rule to get

α[x/�] and α[x/⊥]

from α; then he adds short proofs of

((σ ∧ α[x/�]) → α[x/σ]) and ((¬σ ∧ α[x/⊥]) → α[x/σ]).

Finally, he derives α[x/σ] from these four formulas.
In this way, an SF-proof with k applications of the substitution rule is transformed in

polynomial time into an BSF-proof with 2k applications of the BSF-substitution rule.
Hence, this is an fpt-simulation. �

Proposition 9. p-BSF ≤fpt F.

Proof. Let π be an BSF-proof of β with k applications of the BSF-substitution rule.
Let π1 be the initial segment of π that ends in the premise α of the first application

α
α[x/σ] with σ ∈ {�,⊥} of this rule. We obtain the F -proof π′

1 of α[x/σ] by applying
the substitution x/σ to every line of π1. Furthermore, delete all occurrences of α[x/σ]in
π, thus getting π′. Then π′

1, π
′ is a BSF-proof of β with (k−1) applications of the BSF-

substitution rule and of size at most 2|π|. Repeating this process we finally obtain an
F -proof of β of size 2k · |π|. �

80 J. Flum and M. Müller

Remark 10. As an analysis of the previous proofs shows, for every EF-proof of size
n with k extension axioms there exists an F -proof π of the same formula with |π| ≤
22k · nO(1).

Standard p-simulations of SF in EF (e.g., see [12]) map an SF-proofπ of a formulaα(x̄)
(where x̄ are the propositional variables in α) with k applications of the substitution rule
and 	 lines to an EF-proof with 	 · |x̄| extension axioms. They are not fpt-simulations.
By the previous theorem there is an fpt-simulation of p-SF in p-EF. We encourage the
reader to give a ‘direct’ one.

5 Comparing Proof Systems via Parameterized Polynomial
Simulations

In the previous section we have seen that fpt-simulations are too coarse in the sense
that they do not distinguish any two of the parameterized proof system considered so
far. In this section therefore we analyze these proof systems under a notion of simula-
tion which strengthens both the notion of p-simulation and that of fpt-simulation. For
parameterized decision problems this concept was introduced in [9].

Definition 11. Let (P, κ) and (P ′, κ′) be parameterized proof systems for Q ⊆ {0, 1}∗.
A pp-simulation (or, parameterized polynomial simulation) of (P ′, κ′) in (P, κ) is a p-
simulation R of P ′ in P such that

κ(R(w′)) ≤ q(κ′(w′)) for some polynomial q and all w′ ∈ {0, 1}∗.

In case such an R exists, we say that (P, κ) pp-simulates (P ′, κ′) and write (P ′, κ′) ≤pp

(P, κ). The problems (P, κ) and (P ′, κ′) are pp-equivalent, written (P, κ) ≡pp (P, κ), if
(P, κ) ≤pp (P ′, κ′) and (P ′, κ′) ≤pp (P, κ).

Clearly, if (P ′, κ′) ≤pp (P, κ), then P ′ ≤pol P and (P ′, κ′) ≤fpt (P, κ).

As the proofs of Proposition 7 and of Proposition 8 show, we get:

Proposition 12. p-EF ≤pp p-SF, p-EF∗ ≤pp p-SF∗, and p-SF ≤pp p-BSF.

Example 13. The p-simulation of BSF in RF from [2] maps a BSF-proof with k sub-
stitution inferences of a formula with m variables to an RF-proof with k · (m − 1)
substitution inferences. This is not a pp-simulation (not even an fpt-simulation).

By the results of the previous section there is an fpt-simulation of p-SF in p-EF even
though (as mentioned at the end of that section) standard p-simulations of SF in EF are
not fpt-simulations. We do not know whether p-SF ≤pp p-EF. However, this holds for
the tree-like versions of these proof systems:

Theorem 14. p-SF∗ ≤pp p-EF∗.

Some Definitorial Suggestions for Parameterized Proof Complexity 81

Proof. We say that an SF∗-proof of β from an extension sequence (for β) is an ESF∗-
proof of β if every application of the substitution rule has the form

α

α[x/σ]

where the formula x ∧ σ does not contain any extension variable.
Clearly, an EF∗-proof of β is an ESF∗-proof of β without applications of the substi-

tution rules.
We now describe how to stepwise eliminate applications of the substitution rule in

ESF∗-proofs. So, let π be an ESF∗-proof of β with k applications of the substitution
rule. We depict π as a labeled tree T with β at the root; for any node t of T labeled by
γ the subtree Tt rooted at this node (and consisting of the predecessors of this node)
constitutes an ESF∗-proof of γ. Consider a node t such that

– t is labeled by a formula α[x/σ] obtained from its predecessor t− labeled by α by
an application of the substitution rule (via the substitution x/σ);

– no further applications of the substitution rule occur in Tt.

Let r be a variable not occuring in π and obtain Tt−(x/r) by substituting x by r in
all formulas of Tt− . By the proviso on the applications of the substitution rule in an
ESF∗-proof, the variable x is not a substitution variable and hence extension axioms of
T are transformed into extension axioms in Tt−(x/r). Hence, Tt−(x/r) is an F ∗-proof
of α[x/r] from a set of extension axioms.

Let π′ be a short F ∗-proof of

(α[x/r] → ((r ↔ σ) → α[x/r][r/σ]︸ ︷︷ ︸
=α[x/σ]

))

Using the new extension axiom (r ↔ σ) (and adding some applications of modus
ponens) we merge this F ∗-proof with Tt−(x/r) to get a F ∗-proof of α[x/σ] from an
extension sequence.

... Tt−(x/r)
... π′

α[x/r] (α[x/r] → ((r ↔ σ) → α[x/σ])
((r ↔ σ) → α[x/σ]) (r ↔ σ)

α[x/σ]

Replace in the original proof π the subtree Tt(x/r) by this new proof, thus obtaining a
proof π′′. It should be clear that π′′ is an ESF∗-proof of β with k − 1 applications of
the substitution rule.

Iterating this process k times we finally get an F ∗-proof π∗ of β from an extension
sequence (for β) consisting of k extension axioms. As π∗ is obtained from π in polyno-
mial time the mapping π �→ π∗ is the desired pp-simulation of p-SF∗

in p-EF∗. �

Note that in the previous proof we have used that the SF-proof we start with is treelike:
the simulation replaces all predecessors of a formula obtained by a substitution rule. In

82 J. Flum and M. Müller

an arbitrary SF-proof some later inferences may be based on some formulas not further
available.

We prove the following result by standard means:

Proposition 15. p-EF ≤pp p-EF∗.

Proof. Let π = α1, . . . , αs be an EF-proof with k extension axioms. For 1 ≤ i ≤ s we
set γi :=

∧i
j=1 αj . We construct for i = 1, . . . , s successively EF∗-proofs πi of γi such

that the variables in πi are precisely those in α1, . . . , αi and the extension axioms in πi

are the same as in α1, . . . , αi.
The tree π1 just consists of the root labeled by α1. Assume that we have already

constructed the EF∗-proof πi of γi. To construct πi+1 we first consider the case where
αi+1 is an extension axiom or a substitution instance of an axiom of F . Let π1 be a
short F ∗-proof of (u → (v → (u ∧ v))). Then π1[u/γi, v/αi+1] is an F ∗-proof of
(γi → (αi+1 → γi+1)) of size O(|γi+1|). As an intermediate step we get an F ∗-proof
π2 of (αi+1 → γi+1) from the F ∗-proofs πi and π1[u/γi, v/αi+1] by an application of
modus ponens. A further modus ponens inference yields from π2 and the ‘leaf’ αi+1 the
desired F ∗-proof πi+1 of γi+1.

... π1[u/γi, v/αi+1]
... πi

(γi → (αi+1 → γi+1)) γi
(αi+1 → γi+1) αi+1

γi+1

Now assume that αi+1 is obtained by one of the rules of F . The general case being anal-
ogous, we treat the case where this rule is modus ponens. So assume αi+1 is obtained
from αk and α� (where 1 ≤ k, 	 ≤ i) by modus ponens. Let π1 be an F ∗-proof of
(
∧i

j=1 uj → (uk ∧ u�)) of size polynomial in i. Substituting in π1 the ujs by the αjs
yields an F ∗-proof π2 of (γi → (αk ∧ α�)) of size polynomial in |γi|.

To a short F ∗-proof of ((u → v) → ((v → w) → (u → (u ∧ w)))) we apply the
substitution [u/γi, v/(αk ∧ α�), w/αi+1] obtaining an F ∗-proof π3 of size O(|γi+1|) of

((γi → (αk ∧ α�)) → ((αk ∧ α�) → αi+1) → (γi → γi+1))).

Finally, let π4 be an F ∗-proof of ((αk∧α�) → αi+1) of size O(|αk|+|α�|+|αi+1|) (recall
that αi+1 was obtained from αk and α� by modus ponens). Now it is easy to merge πi,
π1, π2, π3, and π4 to an F ∗-proof πi+1 of γi+1.

It is easy to construct a treelike proof π∗ of αs from πs. It is clear that π∗ can be
computed from π in polynomial time. �

Theorem 16. F ≡pp p-BSF∗ ≡pp p-RF∗ ≤pp p-EF ≡pp p-EF∗ ≡pp SF∗ ≤pp p-SF ≡pp

p-BSF.

Proof. The first two equivalences are easy to see. The third equivalence follows from
the preceding proposition. The equivalence p-EF∗ ≡pp p-SF∗ follows from Proposi-
tion 12 and Theorem 14. The last equivalence also follows from Proposition 12. �

Some Definitorial Suggestions for Parameterized Proof Complexity 83

Hence, the proof systems mentioned in the previous theorem belong to at most three
distinct pp-degrees. Are these degrees distinct? Note that this theorem does not mention
p-RF. Does it belong to any of these degrees? Of course, F ≤pp p-RF ≤pp p-SF.
Furthermore, we can show the following:

Proposition 17. If p-RF ≤pp p-EF, then p-SF ≤pp p-EF.

Proof. Assume p-RF ≤pp p-EF. By Proposition 12 it suffices to show p-BSF ≤pp p-EF.
So let π = α1, . . . , αs be a BSF-proof with k substitution inferences (substituting a
variable by ⊥ or by �). Let y1, . . . , yk and z1, . . . , zk be new variables (not occurring
in π) and let

δ :=
∧k

i=1 ¬yi ∧
∧k

i=1 zi.

Consider the sequence
(δ → α1), . . . , (δ → αs).

This sequence can be “filled up” to an RF-proof with k substitution inferences (substi-
tuting a variable by another variable): if αi in π is a substitution instance of an axiom,
replace (δ → αi) by a short F -proof of (δ → αi). If αi is obtained by modus ponens
from αj , αj′ with j, j′ < i, then replace (δ → αi) by a short F -proof of (δ → αi) from
(δ → αj) and (δ → αj′). Finally, if αi is obtained by a substitution inference, then there
is j < i such that αi = αj[x/⊥] or αi = αj[x/�] for some variable x. Assume this is
the 	th substitution inference (1 ≤ 	 ≤ k) in π and that αi = αj[x/⊥] (the other case
αi = αj[x/�] is similar). Replace (δ → αi) by the following RF-proof: give a short
F -proof of (δ ∧ αj[x/y�] → αi) (note that ¬y� is a conjunct of δ) and derive αj[x/y�]
from αj by an RF substitution inference; from these two formulas it is easy to derive
(δ → αi).

Clearly, this RF-proof can be computed from π in polynomial time. By assumption
we can in polynomial time compute from this RF-proof an EF-proof π′ of (δ → αs)
with kO(1) extension axioms. Since the yi’s and the zi’s occur in δ, they are not used
as extension variables in π′. Let π′′ result from π′ by substituting ⊥ for all occurrences
of the yi’s and � for all occurrences of the zi’s. Then (note the yi’s and the zi’s do not
occur in αs) π′′ is an EF-proof of (δ′ → αs) where δ′ is a true Boolean sentence (a
true formula without variables). Adding a short proof of δ′ and an application of modus
ponens gives an EF-proof of αs. �

Acknowledgements. The authors thank the John Templeton Foundation for its support
through Grant #13152, The Myriad Aspects of Infinity. The second author thanks the
FWF (Austrian Research Fund) for its support through Grant P 23989 - N13.

References

1. Beyersdorff, O., Galesi, N., Lauria, M., Razborov, A.: Parameterized Bounded-Depth Frege
Is Not Optimal. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755,
pp. 630–641. Springer, Heidelberg (2011)

2. Buss, S.: Some remarks on the lengths of propositional proofs. Archive for Mathematical
Logic 34, 377–394 (1995)

84 J. Flum and M. Müller

3. Buss, S.: Polynomial size proofs of the propositional pigeon principle. Journal of Symbolic
Logic 52, 916–927 (1987)

4. Cook, S., Nguyen, P.: Logical Foundations of Proof Complexity. Cambridge University Press
(2010)

5. Cook, S., Reckhow, R.: The relative efficiency of propositional proof systems. The Journal
of Symbolic Logic 44, 36–50 (1979)

6. Dantchev, S.S., Martin, B., Szeider, S.: Parameterized proof complexity. Computational
Complexity 20(1), 51–85 (2011)

7. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
9. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP.

Journal of Computer and System Sciences 77(1), 91–106 (2011)
10. Krajı́ček, J.: On the number of steps in proofs. Annals of Pure and Applied Logic 41, 153–

178 (1989)
11. Krajı́ček, J.: Bounded arithmetic, propositional logic, and complexity theory. Cambridge

University Press (1995)
12. Krajı́ček, J., Pudlák, P.: Propositional proof systems, the consistency of first order theories

and the complexity of computations. The Journal of Symbolic Logic 54, 1063–1088 (1989)

An Exact Algorithm for Subset Feedback Vertex

Set on Chordal Graphs�

Petr A. Golovach1, Pinar Heggernes1, Dieter Kratsch2, and Reza Saei1

1 Department of Informatics, University of Bergen, Norway
{petr.golovach,pinar.heggernes,reza.saeidinvar}@ii.uib.no

2 LITA, Université de Lorraine - Metz, France
kratsch@univ-metz.fr

Abstract. Given a graph G = (V,E) and a set S ⊆ V , a set U ⊆ V is a
subset feedback vertex set of (G,S) if no cycle inG[V \U] contains a vertex
of S. The Subset Feedback Vertex Set problem takes as input G, S,
and an integer k, and the question is whether (G,S) has a subset feedback
vertex set of cardinality or weight at most k. Both the weighted and the
unweighted versions of this problem are NP-complete on chordal graphs,
even on their subclass split graphs. We give an algorithm with running
time O(1.6708n) that enumerates all minimal subset feedback vertex sets
on chordal graphs with n vertices. As a consequence, Subset Feedback

Vertex Set can be solved in time O(1.6708n) on chordal graphs, both in
the weighted and in the unweighted case. On arbitrary graphs, the fastest
known algorithm for the problems has O(1.8638n) running time.

1 Introduction

Given a graph G = (V,E) and a set S ⊆ V , a set U ⊆ V is a subset feedback
vertex set of (G,S) if no cycle in G[V \ U] contains a vertex of S. A subset
feedback vertex set U is minimal if no subset feedback vertex set of (G,S) is
a proper subset of U . The Subset Feedback Vertex Set problem takes as
input G, S, and an integer k, and the question is whether (G,S) has a subset
feedback vertex set of cardinality at most k. In the weighted version of the
problem, every vertex of G has a weight, and the question is whether there is a
subset feedback vertex set of total weight at most k.

Subset Feedback Vertex Set was introduced by Even et al. [4], and it gen-
eralizes several well-studied problems. When S = V , it is equivalent to the clas-
sical Feedback Vertex Set problem [11], and when |S| = 1, it generalizes the
Multiway Cut problem [7]. Weighted Subset Feedback Vertex Set admits
a polynomial-time constant-factor approximation algorithm [4]. The unweighted
version of the problem is fixed parameter tractable [3]. The only exact algorithm
known for its weighted version is by Fomin et al. [7] and it runs inO(1.8638n) time
and solves the problem by enumerating all minimal subset feedback vertex sets.

As a comparison, the unweighted version of Feeback Vertex Set can be
solved in time O(1.7347n) [9], whereas the best algorithm for its weighted version

� This work has been supported by the European Research Council, the Research
Council of Norway, and the French National Research Agency.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 85–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

86 P.A. Golovach et al.

runs in time O(1.8638n) and enumerates all minimal feedback vertex sets [5].
Feeback Vertex Set has also been studied on many graph classes, like chordal
graphs and AT-free graphs [1,15], and several positive results exist. This is not
yet the case for Subset Feedback Vertex Set, and no algorithm with a
running time of O(cn) such that c < 1.8637 is known for any significant graph
class. Interestingly, whereas both the weighted and the unweighted versions of
Feeback Vertex Set are solvable in polynomial time on chordal graphs [1,19],
even the unweighted version of Subset Feedback Vertex Set is NP-complete
on chordal graphs; in fact on their restricted subclass split graphs, by a standard
reduction from Vertex Cover [7].

In this paper we give an algorithm with running time O(1.6708n) that enumer-
ates all minimal subset feedback vertex sets when the input graph is chordal. As a
consequence, Subset Feedback Vertex Set can be solved in time O(1.6708n)
on chordal graphs, both in the weighted and in the unweighted case. Our algo-
rithm differs completely from the O(1.8638n) time algorithm of [7] for the general
case, and it heavily uses the structure of chordal graphs. Chordal graphs form one
of the most studied graph classes; they have extensive practical applications in
several fields [10,12,18], and they are crucial in characterizing and understanding
fundamental algorithmic tools, like treewidth.

Enumeration algorithms are central in the field of Exact Exponential Algo-
rithms, as the running times of many exact exponential time algorithms rely on
the maximum number of various objects in graphs [8]. A classical example is the
widely used result of Moon and Moser [16], showing that the maximum number
of maximal cliques or maximal independent sets in an n-vertex graph is 3n/3.
More recently, the maximum numbers and enumeration of objects like minimal
dominating sets, minimal feedback vertex sets, minimal subset feedback ver-
tex sets, minimal separators, and potential maximal cliques, have been studied;
see e.g., [5,6,7,9,13,14,17]. The maximum number of such objects in graphs have
traditionally found independent interest also in graph theory and combinatorics.

The results we present in this paper give an upper bound of O(1.6708n) on the
maximum number of minimal subset feedback vertex sets a chordal graph can
have. A tight bound on the maximum number of minimal feedback vertex sets on
chordal graphs is known to be 1.5848n [2], and this thus gives a lower bound on
the maximum number of minimal subset feedback vertex sets on chordal graphs.
Consequently, our results tighten the gap between the upper and lower bounds on
the maximum number of subset feedback vertex sets on chordal graphs. The cor-
responding gap is much larger on general graphs. There, the maximum numbers
of minimal feedback and subset feedback vertex sets are both O(1.8638n) [5,7],
but no examples of graphs having 1.5927n or more minimal feedback or subset
feedback vertex sets are known [5]. Note that the maximum number of minimal
subset feedback vertex sets can be dramatically different from the maximum
number of minimal feedback vertex sets. Split graphs, which form a subclass of
chordal graphs, have at most n2 minimal feedback vertex sets, whereas they can
have 3n/3 minimal subset feedback vertex sets [7].

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 87

2 Preliminaries

We work with simple undirected graphs. We denote such a graph by G = (V,E),
where V is the set of vertices and E is the set of edges of G. We adhere to the
convention that n = |V |. The set of neighbors of a vertex v ∈ V is denoted by
NG(v). The degree of v, |NG(v)|, is denoted by dG(v). The closed neighborhood
of v is NG[v] = N(v) ∪ {v}. For a vertex subset X ⊆ V , the subgraph of G
induced by X is denoted by G[X]. For ease of notation, we use G− v to denote
the graph G[V \ {v}], and G − X to denote the graph G[V \ X].

A path in G is a sequence of distinct vertices such that the next vertex in the
sequence is adjacent to the previous vertex. A cycle is a path with at least three
vertices such that the last vertex is in addition adjacent to the first. Given a
subset S ⊆ V , we call a cycle an S-cycle if it contains a vertex of S. For a cycle
or an S-cycle C, we use V (C) to denote the set of vertices in C. A subset F ⊆ V
will be called a forest if G[F] contains no cycle. Similarly, F is an S-forest if
no cycle in G[F] contains a vertex of S. A graph is connected if there is a path
between every pair of its vertices. A maximal connected subgraph of G is called
a connected component of G. A set X ⊆ V is a clique if uv ∈ E for every pair
of vertices u, v ∈ X ; and X is an independent set if uv /∈ E for every pair of
vertices u, v ∈ X .

A chord of a cycle is an edge between two non consecutive vertices of the cycle.
A graph is chordal if every cycle of length at least 4 contains a chord. Induced
subgraphs of chordal graphs are also chordal [12]. A vertex v is called simplicial
if N(v) is a clique. Every chordal has a simplicial vertex [12]. A graph is a split
graph if its vertex set can be partitioned into a clique and an independent set.
Split graphs are chordal.

Given a set S ⊆ V , a set U ⊆ V is a subset feedback vertex set (sfvs) of (G,S)
if no cycle in G−U contains a vertex of S. Observe that U is a sfvs of (G,S) if
and only if V \ U is an S-forest. If S = V then U is a feedback vertex set (fvs)
of G, and V \ U is a forest. A sfvs U is minimal if no proper subset of U is a
sfvs of (G,S), and an S-forest is maximal if it cannot be extended to a larger
S-forest by including more vertices of G. Clearly, U is a minimal sfvs of (G,S)
if and only if V \ U is a maximal S-forest of G. Consequently, the number of
minimal sfvs of (G,S) is equal to the number of maximal S-forests of G.

Let μ(G,S) denote the number of minimal svfs of (G,S), equivalently the num-
ber of maximal S-forests of G. Observe that μ(G,S) =

∏t
i=1 μ(Gi, S), where

G1, G2, . . . , Gt are the connected components of G. This is because every maxi-
mal S-forest of G is the union of maximal S-forests of the connected components
of G.

Let μ(G) = max{μ(G,S) | S ⊆ V }. Note that μ(G) is lower bounded by
the number of minimal fvs of G. Let H be the complete graph on 5 vertices.
This graph has 10 minimal fvs [2]. Let H� be the graph obtained by taking 	
disjoint copies of H , for 	 ≥ 1. The number of minimal feedback vertex sets of
H� is thus 10� = 10n/5 ≈ 1.5848n. Any graph H� is chordal and hence 10n/5 is
a lower bound on the number of minimal sfvs of chordal graphs, i.e., there is a
chordal graph G = (V,E) and a set S ⊆ V such that (G,S) has 10n/5 minimal

88 P.A. Golovach et al.

sfvs. When it comes to the maximum number of minimal fvs in chordal graphs,
Couturier et al. showed that the above lower bound is also the upper bound [2].
An upper bound on the number of minimal sfvs of chordal graphs better than
the one for general graphs has not been known until the result we present below.

3 Enumerating Minimal Subset Feedback Vertex Sets in
Chordal Graphs

This section is devoted to proving the following theorem.

Theorem 1. All minimal subset feedback vertex sets of a chordal graph on n
vertices can be listed in O(1.6708n) time.

Two corollaries follow from the above result. Corollary 1 follows immediately,
whereas Corollary 2 follows by noting that any sfvs of minimum cardinality or
minimum weight is a minimal sfvs. Hence we can check the cardinality or weight
of each generated minimal sfvs, and compare the smallest one with the given
bound k of the input.

Corollary 1. A chordal graph on n vertices has at most O(1.6708n) minimal
subset feedback vertex sets.

Corollary 2. Both weighted and unweighted versions of Subset Feedback

Vertex Set can be solved in O(1.6708n) time on chordal graphs.

To prove Theorem 1, we will describe an algorithm that takes as input a chordal
graph G = (V,E) and a vertex subset S ⊆ V , and lists all maximal S-forests
of G. Our algorithm is a recursive branching algorithm; every maximal S-forest
of G will be present at some leaf of the corresponding branching tree, whereas
some of the leaves might not correspond to maximal S-forests. Every recursive
call has input (G′, F, U,R), where F is the set of vertices of G placed so far in
an S-forest of G, U is the set of vertices so far deleted from G and hence placed
in the corresponding sfvs, R ⊆ F is the set of vertices that are placed in F and
that are no longer relevant for making further decisions, and G′ = G− (U ∪R).
We call the vertices in R hidden. The vertices in V \ (U ∪F) are called undecided
vertices. As G and S do not change throughout the algorithm, they are not parts
of the input to the recursive calls. Given G and S, the main program runs the
recursive branching algorithm on (G, ∅, ∅, ∅).

If at some call (G′, F, U,R), the graph G′ has no undecided vertices, then
we are at a leaf of the branching tree, and the algorithm stops after checking
whether F is a maximal S-forest of G. If F is a maximal S-forest, it is added
to the list of S-forests that will be output. If G′ has undecided vertices, the
algorithm continues, but first it checks whether F is an S-forest. If not, then the
algorithm stops, discards F since it can never lead to a maximal S-forest, and no
new subproblems are generated from this instance. If the algorithm continues,
then since G′ is chordal, we know that it has a simplicial vertex. The algorithm

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 89

chooses an arbitrary simplicial vertex v of G′ and makes choices depending on
v. Vertex v might already be placed in F or not; these two cases will be handled
separately in the first two subsections below. The following operations will be
used in our algorithm:

– Deleting a vertex x: deletes x from G′ and adds it to U . Vertex x will be
permanently deleted from G′ and it will be a part of the suggested sfvs U in
all subsequent subproblems.

– Adding a vertex x to F : adds x to F . Vertex x will be a part of F in all
subsequent subproblems, and will never be considered for deletion.

– Hiding a vertex x of F : this operation is only applicable on some simplicial
vertices of G′ that are already placed in F . We apply it when x is no longer
relevant for making further decisions on the remaining vertices of G′ − F .
When x is hidden, it is added to R and removed from G′ but it remains
a part of F in all subsequent subproblems, and in particular it remains in
G − U .

Throughout the algorithm we will keep the following invariant.

Invariant 1. Let (G′, F, U,R) be an instance. For any S-cycle C in G−U that
contains a vertex of R, there is an S-cycle C′ in G′ such V (C′) = V (C) \ R.

Invariant 1 is clearly true when R is empty. Whenever we hide a vertex v, we
will argue that the invariant is still true after v is hidden. The next lemma shows
that we can safely ignore the vertices in R when we make further decisions on
G − U , and hence it is safe to work on G′ = G − (U ∪ R) instead of G− U .

Lemma 1. Let (G′, F, U,R) be an instance. Under Invariant 1, F ′ is a maximal
S-forest of G − U such that F ⊆ F ′ if and only if F ′ \ R is a maximal S-forest
of G′.

Proof. Let F ′ be a maximal S-forest of G − U such that F ⊆ F ′. Then clearly
F ′ \ R is an S-forest in G′. Let us argue for maximality. Since F ′ is maximal,
for any vertex x of G − (U ∪ F ′), x is involved in an S-cycle C in G − U such
that V (C) ⊆ F ′ ∪{x}. Observe that since R ⊆ F ⊆ F ′, any such vertex x is also
a vertex in G′. By Invariant 1, x is involved in an S-cycle C′ in G′ such that
V (C′) = V (C)\R. Since G′ = G−(U∪R), it follows that V (C′) ⊆ (F ′\R)∪{x}.
Hence x cannot be added to F ′ \ R, which is thus a maximal S-forest of G′.

For the other direction, assume that F ′ \R is a maximal S-forest of G′. Hence
every vertex x in G′ outside of F ′ \R is involved in an S-cycle C in G′ such that
V (C) ⊆ (F ′ \R)∪{x}. Since G−U is a supergraph of G′, C is also an S-cycle in
G− U . Hence no more vertices can be added to F ′, which is thus maximal. Let
us argue that F ′ is an S-forest. Assume for contradiction that it is not. Then a
vertex y of R is involved in an S-cycle C in G − U such that V (C) ⊆ F ′. Then
by Invariant 1, there is an S-cycle C′ in G′ such that V (C′) ⊆ F ′ \ R, which
contradicts the assumption that F ′ \ R is an S-forest of G′. ��

The measure of an instance (G′, F, U,R) is the number of undecided vertices, i.e.,
the vertices in G′−F . In the beginning of the algorithm all vertices are undecided

90 P.A. Golovach et al.

and hence the measure of (G, ∅, ∅, ∅) is n. The measure drops by the number of
vertices deleted from G′ plus the number of vertices added to F . Hiding a vertex
does not affect the measure of an instance. In the call with input (G′, F, U,R),
the algorithm will further branch into subproblems in which some vertices will be
deleted from G′ and some vertices will be placed in F , and the measure will drop
accordingly. If at a step, we branch into t new subproblems, where the measure
decreases by c1, c2, . . . , ct in each subproblem, respectively, we get the branching
vector (c1, c2, . . . , ct). At each branching point, we will give the corresponding
branching vector to prepare for the running time analysis, which will be given
in the last subsection of this section.

We now describe the reduction and the branching rules of the algorithm when
G′ has undecided vertices and F is an S-forest. Let (G′, F, U,R) be a call of the
algorithm satisfying this. In the below, we let N(v) = NG′(v), N [v] = NG′ [v],
and d(v) = dG′(v). First, we state three reduction rules. These rules are applied
recursively on the considered instance as long as it is possible to apply at least
one of them. It is easy to see that the first reduction rule is safe:

Rule A. If in G′ an undecided vertex v is adjacent to vertices u,w ∈ F such
that uw ∈ E and {u, v, w} ∩ S �= ∅, then delete v, i.e., reduce to the subproblem
(G′ − v, F, U ∪ {v}, R).

The following observation immediately results in the next reduction rule: Rule B.

Observation 1 Let v be a vertex of G′ such that no S-cycle of G′ contains v.
Then v must be added to F if it is not in F , and it is then safe to hide v.

Rule B. If G′ has a vertex v with d(v) ≤ 1, then add v to F if v is undecided, and
when v ∈ F then hide v, i.e., reduce to the subproblem (G′−v, F∪{v}, U,R∪{v}).
Since G′ is not empty and it is chordal, it has a simplicial vertex. With the
following observation we obtain the next reduction rule: Rule C.

Observation 2 Let v be a simplicial vertex of G′. If N [v]∩S = ∅, then v must
be added to F if it is not already in F , and it is then safe to hide v.

Rule C. If there is a simplicial vertex v such that N [v] ∩ S = ∅, then add v to
F if v is undecided, and when v ∈ F then hide v, i.e., reduce to the subproblem
(G′ − v, F ∪ {v}, U,R ∪ {v}).
If we cannot apply Rules A–C, then we start branching. To do it, we pick a
simplicial vertex v, hence N(v) is a clique. If vertex v is undecided then we
proceed as described in the first subsection below. If v ∈ F then we proceed as
described in the second subsection below. Notice that by Rule B, d(v) ≥ 2.

3.1 The Chosen Simplicial Vertex v Is Undecided

Case 3.1.1: v /∈ F , v ∈ S, and N(v) ∩ F = ∅.

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 91

If d(v) = 2 then let u1 and u2 be the two neighbors of v. Since v ∈ S, at most
two vertices from {v, u1, u2} can be added to F . Note however that, if exactly
one of u1, u2 is added to F and the other one is deleted, then v must also be
added to F by Observation 1. This implies that if v is deleted then both u1 and
u2 must be added to F . Consequently, we branch into the following subproblems,
which cover all possibilities, and we obtain (3, 3, 3, 3) as the branching vector:

– Vertex v is deleted from G′ and added to U ; vertices u1 and u2 are added
to F : the decrease in the measure is 3.

– Vertex u1 is deleted from G′ and added to U ; vertices v and u2 are added
to F : the decrease is 3.

– Vertex u2 is deleted from G′ and added to U ; vertices v and u1 are added
to F : the decrease is 3.

– Vertices u1 and u2 are deleted from G′ and added to U ; vertex v is added
to F : the decrease is 3.

If d(v) = 3 then let u1, u2, u3 be the three neighbors of v. Again, at most two
vertices from {v, u1, u2, u3} can be added to F . As above, we will branch on the
possibilities of adding v and at most one of its neighbors into F and deleting
the other neighbors, or deleting v. For the choice of deleting v, we observe the
following: either u1 is added to F or u1 is also deleted. If both v and u1 are
deleted, then both u2 and u3 must be added to F , by Observation 1. Conse-
quently, we branch into the following subproblems, which cover all possibilities,
and we obtain (4, 4, 4, 4, 2, 4) as the branching vector:

– Vertices u2 and u3 are deleted from G′ and added to U ; vertices v and u1

are added to F : the decrease is 4.
– Vertices u1 and u3 are deleted from G′ and added to U ; vertices v and u2

are added to F : the decrease is 4.
– Vertices u1 and u2 are deleted from G′ and added to U ; vertices v and u3

are added to F : the decrease is 4.
– Vertices u1, u2, and u3 are deleted from G′ and added to U ; vertex v is

added to F : the decrease is 4.
– Vertex v is deleted from G′ and added to U ; vertex u1 is added to F : the

decrease is 2.
– Vertices v and u1 are deleted from G′ and added to U ; vertices u2 and u3

are added to F : the decrease is 4.

In the rest we assume that t = d(v) ≥ 4. By the same arguments as above, either
v is deleted or it is added to F with at most one of its neighbors. Consequently,
we branch into the following subproblems, where u1, u2, . . . , ut are the neighbors
of v in G′:

– Vertex v is deleted from G′ and added to U ; nothing else changes: the de-
crease in the measure is 1.

– Vertex v is added to F ; all of its neighbors are deleted from G′ and added
to U : the decrease in the measure is t+ 1.

92 P.A. Golovach et al.

– Vertices v and u1 are added to F ; all other neighbors of v are deleted from
G′ and added to U : the decrease is t+ 1.

– The last step above is repeated with each of the other neighbors of v instead
of u1: the decrease is t+ 1 in each of these t − 1 additional cases.

The branching vector is (1, t+ 1, t+ 1, . . . , t+ 1), where the term t+ 1 appears
t+ 1 times, and t ≥ 4.

Case 3.1.2: v /∈ F , v ∈ S, and N(v) ∩ F �= ∅.
As we cannot apply Rule A for the considered instance, |N(v)∩F | = 1. Since

t = d(v) ≥ 2, we know that v has exactly one neighbor in F , say u1 ∈ F ,
whereas the rest of its neighbors u2, . . . , ut are undecided. We branch into the
two possibilities of adding v to F or deleting v. If we add v to F , since one
neighbor is already in F then none of the t − 1 undecided neighbors can be
added, and therefore we delete them from G′ and add them to U . We get the
following two subproblems: (G′ − v, U ∪ {v}, F,R) and (G′ − {u2, . . . , ut}, U ∪
{u2, . . . , ut}, F ∪{v}, R). In the first subproblem the measure decreases by 1, and
in the second it decreases by t. We get the branching vector (1, t) with t ≥ 2.

Case 3.1.3: v /∈ F , v /∈ S, and N(v) ∩ F = ∅.
Since we cannot apply Rule C, v has at least one neighbor belonging to S.
If d(v) = 2, let u1 and u2 be the neighbors of v. Since u1 or u2 belongs to S, we

know that at most two vertices from {v, u1, u2} can be added to F . Consequently,
this case is identical to the subcase of Case 3.1.1 handling d(v) = 2. We branch
into the same subproblems and we obtain (3, 3, 3, 3) as the branching vector.

If d(v) = 3, let u1, u2, u3 be the neighbors of v. Assume without loss of gen-
erality that u1 ∈ S. This case is very similar to the subcase of Case 1 handling
d(v) = 3, but now we branch on u1 instead of v. If u1 is added to F then at most
one of v, u2, u3 can be added to F . If u1 is deleted then either v is added to F or
v is also deleted. If v is also deleted then both u2 and u3 must be added to F , by
Observation 1. Consequently, we branch into the following subproblems, which
cover all possibilities, and we obtain (4, 4, 4, 4, 2, 4) as the branching vector:

– Vertices u2 and u3 are deleted from G′ and added to U ; vertices u1 and v
are added to F : the decrease is 4.

– Vertices v and u3 are deleted from G′ and added to U ; vertices u1 and u2

are added to F : the decrease is 4.
– Vertices v and u2 are deleted from G′ and added to U ; vertices u1 and u3

are added to F : the decrease is 4.
– Vertices v, u2, and u3 are deleted from G′ and added to U ; vertex u1 is

added to F : the decrease is 4.
– Vertex u1 is deleted from G′ and added to U ; vertex v is added to F : the

decrease is 2.
– Vertices u1 and v are deleted from G′ and added to U ; vertices u2 and u3

are added to F : the decrease is 4.

If t = d(v) ≥ 4, then let u1, u2, . . . , ut be the neighbors of v in G′, and assume
without loss of generality that u1 ∈ S. We will branch on the two possibilities

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 93

of adding u1 to F and deleting u1. If we add u1 to F then we can add at most
one other vertex of N [v] to F and all others must be deleted. Consequently, we
branch into the following subproblems:

– Vertex u1 is deleted from G′ and added to U ; nothing else changes: the
decrease in the measure is 1.

– Vertex u1 is added to F ; vertices v, u2, . . . , ut are deleted from G′ and added
to U : the decrease in the measure is t+ 1.

– Vertices u1 and v are added to F ; all other neighbors of v are deleted from
G′ and added to U : the decrease is t+ 1.

– Vertices u1 and u2 are added to F ; v and all other neighbors of v are deleted
from G′ and added to U : the decrease is t+ 1.

– The last step above is repeated with each of the neighbors u3, . . . , ut of v
instead of u2: the decrease is t+ 1 in each of these t− 2 additional cases.

The branching vector is (1, t+ 1, t+ 1, . . . , t+ 1), where the term t+ 1 appears
t+ 1 times, with t ≥ 4.

Case 3.1.4: v /∈ F , v /∈ S, and N(v) ∩ F �= ∅.
As we cannot apply Rule C, N(v) ∩ S �= ∅. Suppose that |N(v) ∩ F | ≥ 2.

If there is a vertex u ∈ (N(v) \ F) ∩ S, then Rule A can be applied for u.
Consequently, there is a vertex u ∈ N(v) ∩ F ∩ S, but then Rule A can be
applied for v. It means that v has exactly one neighbor u in F . We take action
depending on whether or not u belongs to S:

If u ∈ S, then at most one more vertex from N [v] can be added to F , and all
others must be deleted from G′ and added to U . We get t = d(v) subproblems in
each of which a vertex of N [v]\{u} is added to F and all others are deleted from
G′ and added to U . Observe that we do not get a subproblem where all vertices
of N [v] \ {u} are deleted from G′, due to Observation 1. Thus we get (t, . . . , t)
as the branching vector, where the term t is repeated t times, and t ≥ 2.

If u /∈ S, then we know that v has another neighbor w ∈ S. We branch into
two subproblems resulting from adding w to F or deleting w from G′. If we add w
to F , then since u is also in F , no other vertex from N [v] can be added to F and
hence they must all be deleted from G′ and added to U . We get a subproblem
in which the measure decreases by t = d(v). In the other subproblem we simply
delete w from G′ and add it to U ; the decrease is 1. Hence we get (1, t) as the
branching vector for this case, where t ≥ 2.

3.2 The Chosen Simplicial Vertex v Belongs to F

Case 3.2.1: v ∈ F and v ∈ S.
Because G[F] has no S-cycles, |N(v) ∩ F | ≤ 1. If N(v) ∩ F �= ∅, then Rule

A can be applied for the vertices N(v) \ F . It follows that N(v) ∩ F = ∅. Since
v ∈ S and v ∈ F , at most one vertex of N(v) can be added to F , regardless of
how many of these are in S.

If d(v) = 2 then let u and w be the two neighbors of v. We branch on the
two possibilities of either adding u to the S-forest F or adding u to the subset

94 P.A. Golovach et al.

feedback vertex set U . In the latter subproblem we delete u from G′ and add it
to U ; the decrease is 1. In the first subproblem, we add u to F , and consequently
we must delete w from G′ and add it to U ; the decrease is 2. We get (1, 2) as
the branching vector.

If t = d(v) ≥ 3 then we branch into the possibilities of adding exactly one
vertex of N(v) to F and deleting all others from G′, or deleting all vertices of
N(v) from G′. We get t subproblems in which one vertex is added to F and all
other vertices of N(v) are deleted from G′ and added to U , and one subproblem
in which all vertices of N(v) are deleted from G′ and added to U . In each of these
t+ 1 subproblems the decrease is t. Hence we get (t, t, t, . . . , t) as the branching
vector, where the term t is repeated t+ 1 times, and t ≥ 3.

Case 3.2.2: v ∈ F and v /∈ S.
Suppose that N(v) ∩ F �= ∅. If a neighbor u of v is both in F and in S, then

all other neighbors of v are undecided, since G[F] has no S-cycles. Then we can
apply Rule A for these neighbors of v. If there is u ∈ (N(v) ∩ F) \ S, then Rule
A can be applied for all w ∈ N(v) ∩ S. It means that N(v) ∩ S = ∅, but in this
case we can apply Rule C. Therefore, N(v) ∩ F = ∅. Because we cannot apply
Rule C, v has at least one neighbor that is undecided and belongs to S.

Recall that t = d(v) ≥ 2, and let u1, u2, . . . , ut be the neighbors of v, and as-
sume without loss of generality that u1 ∈ S. We branch into the two possibilities
of either deleting u1 from G′ and adding it to U , or adding u1 to F . In the latter
case, no other neighbor of N(v) can be added to F , since they all form S-cycles
with v and u1, and hence they must all be deleted from G′ and added to U .
We get one subproblem where the decrease is 1, and one subproblem where the
decrease is t. This gives us the branching vector (1, t) with t ≥ 2.

The description of the algorithm is now complete. The correctness of the algo-
rithm follows from Invariant 1, Lemma 1, Observations 1, 2, and the arguments
given for each case, observing that we have taken care of all possible cases. In
the next section, we analyze the running time.

3.3 Running Time Analysis

In each of the branching rules, the measure decreases as described, and in each
of the reduction rules, either the measure decreases or at least one vertex of
F is deleted from G′. When all vertices of G′ are either in U or in F , then the
recurrence stops. At this point we need to check whether F is a maximal S-forest
of G. This can easily be done in polynomial time; F is an S-forest if and only if
every vertex of S ∩ F is incident in G to edges that are bridges. Maximality is
also easy to check since if a subset X of V \ F can be added to F to obtain a
larger S-forest, then also a single vertex of X can be added, so we can repeatedly
check possible extensions by single vertices. Consequently, the running time will
be upper bounded by the number of leaves in the search tree.

For the analysis of the number of leaves T (n) in the search tree, we use
standard terminology [8]. In particular, a branching vector (c1, c2, . . . , ct) results
in the recurrence T (n) ≤ T (n−c1)+T (n−c2)+. . .+T (n−ct). In this case T (n) =

An Exact Algorithm for Subset Feedback Vertex Set on Chordal Graphs 95

O∗(αn), where α is the unique positive real root of xn−xn−c1−. . .−xn−ct = 0 [8],
and the O∗-notation suppresses polynomial factors. The number α is called the
branching number of this branching vector. It is common to round α to the fourth
digit after the decimal point. By rounding the last digit up, we can useO-notation
instead of O∗-notation [8]. As different branching vectors are involved at different
steps of our algorithm, the branching vector with the highest branching number
gives an upper bound on T (n).

We now list the branching vectors that have appeared during the description
of the algorithm, in the order of first appearence. We give the branching number
for each of them; however we do not include here the explicit calculations.

– (3, 3, 3, 3): the branching number is ≈ 1.5875.
– (4, 4, 4, 4, 2, 4): the branching number is ≈ 1.6708.
– (1, t, t, t, t, . . . , t), where the term t appears t times, and t ≥ 5: (1, 5, 5, 5, 5, 5)

gives the maximum branching number for this vector, which is ≈ 1.6595.
– (1, t), t ≥ 2: (1, 2) gives the maximum branching number for this branching

vector, which is ≈ 1.6181.
– (t, . . . , t), where the term t is repeated t times, and t ≥ 2: (3, 3, 3) gives the

maximum branching number for this vector, which is ≈ 1.4423.
– (t, t, . . . , t), where the term t is repeated t + 1 times, and t ≥ 3: (3, 3, 3, 3)

gives the maximum branching number for this vector, which is ≈ 1.5875.
– (1, 2): the branching number is ≈ 1.6181.

The largest branching number is 1.6708, and it is obtained for (4, 4, 4, 4, 2, 4).
Thus the running time of our algorithm is O(1.6708n).

4 Concluding Remarks

As mentioned earlier, there are chordal graphs with 10n/5 ≈ 1.5848 minimal sfvs.
We have shown that the maximum number of minimal sfvs in chordal graphs
is O(1.6708n). Could it be that the lower bound is also an upper bound or are
there chordal graphs with more than 10n/5 minimal sfvs? Is there an algorithm
for Subset Feeback Vertex Set on chordal graphs with running time O(cn)
such that c < 1.6707n?

The lower bound on the maximum number of minimal sfvs of a split graph
is 3n/3 [7], and it is obtained when S is equal to the independent set. Is there
a better upper bound for split graphs than for chordal graphs? Does Subset

Feeback Vertex Set admit a faster solution on split graphs than on chordal
graphs?

We conclude by asking whether all minimal sfvs can be enumerated in time
that is polynomial in the number of minimal sfvs. Such an algorithm is known
for enumerating minimal fvs in general graphs [17]. It would be very interesting
to have such an algorithm for sfvs, even on chordal graphs or split graphs.

96 P.A. Golovach et al.

References

1. Corneil, D.G., Fonlupt, J.: The complexity of generalized clique covering. Disc.
Appl. Math. 22, 109–118 (1988/1989)

2. Couturier, J.-F., Heggernes, P., van’t Hof, P., Villanger, Y.: Maximum number of
minimal feedback vertex sets in chordal graphs and cographs. In: Proceedings. of
COCOON 2012. LNCS (to appear, 2012)

3. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset Feedback Ver-
tex Set Is Fixed-Parameter Tractable. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part I. LNCS, vol. 6755, pp. 449–461. Springer, Heidelberg (2011)

4. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback
vertex set problem. SIAM J. Comput. 30(4), 1231–1252 (2000)

5. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

6. Fomin, F.V., Grandoni, F., Pyatkin, A.V., Stepanov, A.A.: Combinatorial bounds
via measure and conquer: Bounding minimal dominating sets and applications.
ACM Trans. Algorithms 5(1) (2008)

7. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumer-
ating Minimal Subset Feedback Vertex Sets. In: Dehne, F., Iacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 399–410. Springer, Heidelberg (2011)

8. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Texts in Theoretical
Computer Science. Springer (2010)

9. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Proceedings of STACS 2010, pp. 383–394 (2010)

10. George, J.A., Liu, J.W.H.: Computer Solution of Large Sparse Positive Definite
Systems. Prentice-Hall Inc. (1981)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability. Freeman and Co. (1978)
12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Annals of

Disc. Math. 57 (2004)
13. Gaspers, S., Mnich, M.: Feedback Vertex Sets in Tournaments. In: de Berg, M.,

Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 267–277. Springer, Hei-
delberg (2010)

14. Kanté, M.M., Limouzy, V., Mary, A., Nourine, L.: Enumeration of Minimal Dom-
inating Sets and Variants. In: Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011.
LNCS, vol. 6914, pp. 298–309. Springer, Heidelberg (2011)

15. Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set on AT-free graphs. Disc.
Appl. Math. 156, 1936–1947 (2008)

16. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
17. Schwikowski, B., Speckenmeyer, E.: On enumerating all minimal solutions of feed-

back problems. Disc. Appl. Math. 117, 253–265 (2002)
18. Semple, C., Steel, M.: Phylogenetics. Oxford lecture series in mathematics and its

applications (2003)
19. Spinrad, J.P.: Efficient graph representations. Fields Institute Monograph Series,

vol. 19. AMS (2003)

Preprocessing Subgraph and Minor Problems:

When Does a Small Vertex Cover Help?�

Fedor V. Fomin1, Bart M.P. Jansen2, and Micha�l Pilipczuk1

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
{fomin,michal.pilipczuk}@ii.uib.no

2 Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
b.m.p.jansen@uu.nl

Abstract. We prove a number of results around kernelization of prob-
lems parameterized by a vertex cover of the input graph. We provide
two simple general conditions characterizing problems admitting kernels
of polynomial size. Our characterizations not only give generic explana-
tions for the existence of many known polynomial kernels for problems
like Odd Cycle Transversal, Chordal Deletion, η-Transversal,
Long Path, Long Cycle, or H-packing, parameterized by the size
of a vertex cover, they also imply new polynomial kernels for problems
like F-Minor-Free Deletion, which is to delete at most k vertices to
obtain a graph with no minor from a fixed finite set F .

While our characterization captures many interesting problems, the
kernelization complexity landscape of problems parameterized by ver-
tex cover is much more involved. We demonstrate this by several results
about induced subgraph and minor containment, which we find surpris-
ing. While it was known that testing for an induced complete subgraph
has no polynomial kernel unless NP ⊆ coNP/poly, we show that the
problem of testing if a graph contains a complete graph on t vertices as
a minor admits a polynomial kernel. On the other hand, it was known
that testing for a path on t vertices as a minor admits a polynomial ker-
nel, but we show that testing for containment of an induced path on t
vertices is unlikely to admit a polynomial kernel.

1 Introduction

Kernelization is an attempt at providing rigorous mathematical analysis of pre-
processing algorithms. While the initial interest in kernelization was driven
mainly by practical applications, it turns out that kernelization provides a deep
insight into the nature of fixed-parameter tractability. In the last few years,
kernelization has transformed into a major research domain of Parameterized
Complexity and many important advances in the area are on kernelization. These

� This work was supported by the Netherlands Organization for Scientific Research
(NWO), project “KERNELS: Combinatorial Analysis of Data Reduction”, and by
the European Research Council (ERC) grant “Rigorous Theory of Preprocessing”,
reference 267959.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 97–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 F.V. Fomin, B.M.P. Jansen, and M. Pilipczuk

advances include general algorithmic findings on problems admitting kernels of
polynomial size [1,2,3] and frameworks for ruling out polynomial kernels under
certain complexity-theoretic assumptions [4,5,6,7].

A recent trend in the development of Parameterized Complexity, and more
generally, Multivariate Analysis [8], is the study of the contribution of various
secondary measurements (i.e., different than just the total input size or solution
size) to problem complexity. Not surprisingly, the development of kernelization
followed this trend resulting in various kernelization algorithms and complexity
lower bounds for different kinds of parameterizations. In parameterized graph
algorithms, one of the most important and relevant complexity measures of the
graph is its treewidth. The algorithmic properties of problems parameterized by
treewidth are, by now, well-understood. However, from the perspective of ker-
nelization, this complexity measure is too general to obtain positive results: it is
known for a multitude of graph problems such as Vertex Cover, Dominating

Set, and 3-Coloring, that there are no polynomial kernels parameterized by
the treewidth of the input graphs unless NP ⊆ coNP/poly [4]. This is why pa-
rameterization by more restrictive complexity measures, like the minimum size
of a feedback vertex set or a vertex cover, is much more fruitful for kernelization.

In particular, kernelization of graph problems parameterized by the vertex
cover number, which is the size of the smallest vertex set meeting all edges, was
studied intensively [5,9,10,11,12]. For example, it has been shown that several
graph problems such as Vertex Cover, Treewidth, and 3-Coloring, admit
polynomial kernels parameterized by the size of a given vertex cover. On the
other hand, under certain complexity-theoretic assumptions it is possible to show
that a number of problems including Dominating Set [11], Clique [5], and
Chromatic Number [5], do not admit polynomial kernels for this parameter.
While different kernelization algorithms for various problems parameterized by
vertex cover are known, we lack general a characterization of such problems. The
main motivation of our work on this paper is the quest for meta-theorems on
kernelization algorithms for problems parameterized by vertex cover.

According to Grohe [13], meta-theorems expose the deep relations between
logic and combinatorial structures, which is a fundamental issue of computa-
tional complexity. Such theorems also yield a better understanding of the scope
of general algorithmic techniques and the limits of tractability. The canonical
example here is Courcelle’s Theorem which states that all problems expressible
in Monadic Second-Order Logic are linear-time solvable on graphs of bounded
treewidth (see also [14,15]). In kernelization there are meta-theorems showing
polynomial kernels for restricted graph families [1,2]. A systematic way to under-
stand the kernelization complexity of parameterizations by vertex cover would
therefore be to obtain a meta-theorem capturing a large class of problems admit-
ting polynomial kernels. But is there a logic capturing the known positive results
we are interested in? If such a logic exist, it would have to be able to express
Vertex Cover, which admits polynomial kernel, but not Clique, which does
not [16]; it should capture Odd Cycle Transversal and Long Cycle [16]
but not Dominating Set [11]; and Treewidth [9] but not Cutwidth [10]. As

Preprocessing Subgraph and Minor Problems 99

a consequence, if a logic capturing the phenomenon of polynomial kernelizability
for problems parameterized by vertex cover exists, it should be a very strange
logic and we therefore take a different approach.

In this paper, we provide two theorems with general conditions capturing a
wide variety of known kernelization results about vertex cover parameterization.
It has been observed before that reduction rules which identify irrelevant vertices
by marking a polynomial number of vertices for each constant-sized subset of
the vertex cover, lead to a polynomial kernel for several problems [17,12]. Our
first contribution here is to uncover a characteristic of graph problems which
explains their amenability to such reduction strategies, and to provide theorems
using this characteristic. Roughly speaking, the problem of finding a minimum-
size set of vertices which hits all induced subgraphs belonging to some family Π
has a polynomial kernel parameterized by vertex cover, if membership in Π is
invariant under changing the presence of all but a constant number of (non)edges
incident to each vertex (and some technical conditions are met). The problem
of finding the largest induced subgraph belonging to Π has a polynomial kernel
parameterized by vertex cover under similar conditions. Our general theorems
not only capture a wide variety of known results, they also imply results which
were not known before. For example, as a corollary to our theorems we establish
that the F-Minor-Free Deletion deletion problem (i.e., for a fixed, finite
list F of graphs, can we delete k vertices from G to ensure that the remaining
graph does not contain a graph from F as a minor?) has a polynomial kernel for
every fixed F , when parameterized by the size of a vertex cover.

After studying the kernelization complexity of vertex-deletion and largest in-
duced subgraph problems, we turn to two basic cases of property Π : containing
some graph as an induced subgraph or minor. It is known that testing for a
clique as an induced subgraph (when the desired size of the subgraph is part of
the input) does not admit a polynomial kernel parameterized by vertex cover
unless NP ⊆ coNP/poly [5]. This is why we find the following result surprising:
testing for a clique as a minor admits a polynomial kernel under the chosen
parameterization. Driven by our desire to obtain a better understanding of the
kernelization complexity of problems parameterized by vertex cover, we investi-
gate induced subgraph testing and minor testing for other classes of graphs such
as cycles, paths, matchings and stars. The kernelization complexity of induced
subgraph testing and minor testing turns out to be exactly opposite for all these
classes. For example, testing for a star minor does not have a polynomial kernel
due to its equivalence to Connected Dominating Set [11], but we provide a
polynomial kernel for testing the existence of an induced star subgraph by using
a guessing step to reduce it to cases which are covered by our general theorems.

The paper is organized as follows. In Section 3 we describe a general reduction
scheme and use it to derive sufficient conditions for the existence of polynomial
kernels. In Section 4 we investigate the kernelization complexity of induced sub-
graph versus minor testing for various graph families. A succinct overview of our
results is given in Tables 1, 2, and 3. Several proofs had to be deferred to the
full version of this paper [18] due to space restrictions.

100 F.V. Fomin, B.M.P. Jansen, and M. Pilipczuk

2 Preliminaries

Parameterized Complexity and Kernels. A parameterized problem Q is a
subset of Σ∗ × N, the second component being the parameter which expresses
some structural measure of the input. A parameterized problem is (strongly uni-
formly) fixed-parameter tractable if there exists an algorithm to decide whether
(x, k) ∈ Q in time f(k)|x|O(1) where f is a computable function. We refer to the
textbooks by Downey and Fellows, Flum and Grohe, and Niedermeier, for more
background on parameterized complexity.

A kernelization algorithm (or kernel) for a parameterized problem Q is a
polynomial-time algorithm which transforms an instance (x, k) into an equivalent
instance (x′, k′) such that |x′|, k′ ≤ f(k) for some computable function f , which
is the size of the kernel. If f ∈ kO(1) then this is a polynomial kernel (cf. [19]).

Graphs. All graphs we consider are finite, simple, and undirected. An undi-
rected graph G consists of a vertex set V (G) and a set of edges E(G). A graph
property Π is a (possibly infinite) set of graphs. The maximum degree of a ver-
tex in G is denoted by Δ(G). A graph G is empty if E(G) = ∅. A vertex v is
simplicial in graph G if NG(v) is a clique. A minor model of a graph H in a
graphG is a mapping φ from V (H) to subsets of V (G) (called branch sets) which
satisfies the following conditions: (a) φ(u) ∩ φ(v) = ∅ for distinct u, v ∈ V (H),
(b) G[φ(v)] is connected for v ∈ V (H), and (c) there is an edge between a vertex
in φ(u) and a vertex in φ(v) for all uv ∈ E(H). An H-packing in G is a set of
vertex-disjoint subgraphs of G, each of which is isomorphic to H . An H-packing
is perfect if the subgraphs cover the entire vertex set. The minimum size of a ver-
tex cover in a graph G is denoted by vc(G). For a set of vertices X in a graph G
we use G − X to denote the graph which results after deleting all vertices of X
and their incident edges. We use the terms Kt and Pt to denote a clique or path
on t vertices, respectively, whereas Ks,t is a biclique (complete bipartite graph)
whose partite sets have sizes s and t. The disjoint union of t copies of a graph G
is represented by t ·G. The set {1, 2, . . . , n} is abbreviated as [n]. If X is a finite
set then

(
X
n

)
denotes the collection of all subsets of X which have size exactly n.

Similarly we use
(
X
≤n

)
for the subsets of size at most n (including ∅). The follow-

ing proposition will be useful in showing that F-Minor-Free Deletion can
be captured by our general theorems.

Proposition 1. If G contains H as a minor, then there is a subgraph G∗ ⊆ G
containing an H-minor such that Δ(G∗) ≤ Δ(H) and |V (G∗)| ≤ |V (H)| +
vc(G∗) · (Δ(H) + 1).

3 General Kernelization Theorems

3.1 Characterization by Few Adjacencies

In this section we introduce a general reduction rule for problems parameterized
by vertex cover, and show that the rule preserves the existence of certain kinds
of induced subgraphs. The central concept is the following.

Preprocessing Subgraph and Minor Problems 101

Algorithm 1. Reduce(Graph G,Vertex cover X ⊆ V (G), 	 ∈ N, cΠ ∈ N)

for each Y ∈
(

X
≤cΠ

)
and partition of Y into Y + ∪̇Y − do

let Z be the vertices in V (G) \X adjacent to all of Y + and to none of Y −

mark � arbitrary vertices from Z (if |Z| < � then mark all of them)
delete from G all unmarked vertices which are not contained in X

Definition 1. A graph property Π is characterized by cΠ ∈ N adjacencies if
for all graphs G ∈ Π, for every vertex v ∈ V (G), there is a set D ⊆ V (G) \ {v}
of size at most cΠ such that all graphs G′ which are obtained from G by adding
or removing edges between v and vertices in V (G) \D, are also contained in Π.

As an example of a property characterized by few adjacencies, consider the
Hamiltonian graphs, i.e., the graphs which have a Hamiltonian cycle. This prop-
erty is characterized by two adjacencies: given a graph G with a Hamiltonian
cycle C and a vertex v, it is easy to see that as long as we preserve the edges
between v and its predecessor and successor on C, changing the adjacency be-
tween v and other vertices preserves the Hamiltonicity of G. There are numerous
other graph properties which are characterized by few adjacencies.

Proposition 2. The following properties are characterized by constantly many
adjacencies: (for any fixed finite set F , graph H, or 	 ≥ 4, respectively)

1. Containing H ∈ F as a minor (cΠ = maxH∈F Δ(H)).
2. Having a perfect H-packing (cΠ = Δ(H)).
3. Having a chordless cycle of length at least 	 (cΠ = 	 − 1).
4. Having a Hamiltonian path (resp. cycle), or having an odd cycle (cΠ = 2).

As an illustrative non-example, note that the properties of being a cycle, of
having chromatic number at least four, or of not being a perfect graph, cannot
be characterized by a constant number of adjacencies.

The single reduction rule that we will use to derive our general kernelization
theorems, is the Reduce procedure presented as Algorithm 1. Its utility for
kernelization stems from the fact that it efficiently shrinks a graph to a size
bounded polynomially in the cardinality of the given vertex cover X .

Observation 1. For every fixed constant cΠ , Reduce(G,X, 	, cΠ) runs in poly-
nomial time and results in a graph on O(|X |+	·2cΠ ·|

(
X

≤cΠ

)
|) = O(|X |+	·|X |cΠ)

vertices.

The soundness of the Reduce procedure for many types of kernelization comes
from the following lemma. It shows that for graph properties Π which are char-
acterized by few adjacencies, an application of Reduce with parameter 	 = s+p
preserves the existence of induced Π subgraphs of size up to p that avoid any
set of size at most s.

Lemma 1. Let Π be characterized by cΠ adjacencies, and let G be a graph
with vertex cover X. If G[P] ∈ Π for some P ⊆ V (G) \ S and S ⊆ V (G),
then for any 	 ≥ |S| + |P | the graph G′ resulting from Reduce(G,X, 	, cΠ)
contains P ′ ⊆ V (G′) \ S such that G′[P ′] ∈ Π and |P ′| = |P |.

102 F.V. Fomin, B.M.P. Jansen, and M. Pilipczuk

Table 1. Problems which admit polynomial kernels when parameterized by the size of
a given vertex cover, by applying Theorem 1

Problem Π cΠ
Vertex Cover {K2} 1
Odd Cycle Transversal Graphs containing an odd cycle 2
Chordal Deletion Graphs with a chordless cycle 3
Planarization Graphs with a K5 or K3,3 minor 4
η-Transversal (cf. [20]) Graphs of treewidth > η f(η)
F-Minor-Free Deletion Graphs with an H ∈ F-minor maxH∈F Δ(H)

3.2 Kernelization for Vertex-Deletion Problems

We will present a general theorem which gives polynomial kernels for vertex-
deletion problems of the following form.

Deletion Distance To Π-free (vc)

Input: A graph G with vertex cover X ⊆ V (G), and an integer k ≥ 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set S ⊆ V (G) of size at most k such that G − S
does not contain a graph in Π as an induced subgraph?

Observe that Π need not be finite or decidable. The condition that a vertex
cover is given along with the input is present for technical reasons; to apply
the data reduction schemes presented in this paper, one may simply compute a
2-approximate vertex cover and use that as X .

Theorem 1. If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies,
(ii) every graph in Π contains at least one edge, and
(iii) there is a non-negative polynomial p : N → N such that all graphs G ∈ Π

contain an induced subgraph G′ ∈ Π such that V (G′) ≤ p(vc(G′)),

then Deletion Distance To Π-free (vc) has a kernel with O((x+p(x))xcΠ)
vertices, where x := |X |.

Before proving the theorem, let us briefly discuss its preconditions. We cannot
drop Property (ii), as otherwise the theorem would capture the Clique prob-
lem (taking Π := {2 · K1}), for which a lower bound exists [5]. If Property (i)
is dropped, then the theorem would capture problems such as Perfect Dele-

tion for which the kernelization complexity is still open. We require the third
condition to make the proof go through.

Proof (of Theorem 1). Consider some input instance (G,X, k). Firstly, observe
that if k ≥ |X |, then we clearly have a yes-instance: removal of X results in an
edgeless graph, which is guaranteed not to contain induced subgraphs from Π
due to Property (ii). Therefore, we may assume that k < |X | as otherwise we
output a trivial yes-instance.

Preprocessing Subgraph and Minor Problems 103

We let G′ be the result of Reduce(G,X, k + p(|X |), cΠ) and return the in-
stance (G′, X, k), which gives the right running time and size bound by Obser-
vation 1. We need to prove that the output instance (G′, X, k) is equivalent to
the input instance (G,X, k). As G′ is an induced subgraph of G, it follows that
if G − S does not contain any graph in Π , then neither does G′ − (S ∩ V (G′)).
Therefore, if (G,X, k) is a yes-instance, then so is (G′, X, k). Assume then,
that (G′, X, k) is a yes-instance and let S be a subset of vertices with |S| ≤ k
such that G′ − S does not contain any induced subgraph from Π . We claim
that G − S does not contain such induced subgraphs either, i.e., that S is also
a feasible solution for the instance (G,X, k).

Assume for the sake of contradiction that there is a set P ⊆ V (G) \ S such
that G[P] ∈ Π . Consider a minimal such set P , which ensures by Property (iii)
that |P | ≤ p(vc(G[P])). As P ∩ X is a vertex cover of G[P], it follows that
|P | ≤ p(|P ∩ X |) ≤ p(|X |). As we executed the reduction with parameter 	 =
k + p(|X |), Lemma 1 guarantees the existence of a set P ′ ⊆ V (G′) \ S such
that G′[P ′] ∈ Π . But this shows that the graph G′ − S contains an induced Π
subgraph, contradicting the assumption that S is a solution for G′ and thereby
concluding the proof. ��

Corollary 1. All problems in Table 1 fit into the framework of Theorem 1 and
admit polynomial kernels parameterized by the size of a given vertex cover.

Proof. We give the proof for F-Minor-Free Deletion; the proofs for the other
items can be found in the full version. If we let Π contain all graphs that con-
tain a member of F as a minor, then a graph is Π-induced-subgraph-free if and
only if it is F -minor-free. By Proposition 2 this class Π is characterized by cΠ :=
maxH∈F Δ(H) adjacencies, so we satisfy Property (i). If F contains an empty
graph, thenF -minor-free graphs have constant size and the problem is polynomial-
time solvable; hence in interesting cases the graphs containing a minor from F
have at least one edge (Property (ii)). Finally, consider a vertex-minimal graphG∗

which contains a graph H ∈ F as a minor. By Proposition 1 we have |V (G∗)| ≤
|V (H)| + vc(G∗) · (Δ(H) + 1). As F is fixed, the maximum degree and size of
graphs in F are constants which shows that Property (iii) is satisfied, resulting in
a kernel with O(|X |Δ+1) vertices for Δ := maxH∈F Δ(H). ��

3.3 Kernelization for Largest Induced Subgraph Problems

In this section we study the following class of problems, which is in some sense
dual to the class considered previously.

Largest Induced Π-subgraph (vc)

Input: A graph G with vertex cover X ⊆ V (G), and an integer k ≥ 1.
Parameter: The size |X | of the vertex cover.
Question: Is there a set P ⊆ V (G) of size at least k such that G[P] ∈ Π?

The following theorem gives sufficient conditions for the existence of polynomial
kernels for such problems.

104 F.V. Fomin, B.M.P. Jansen, and M. Pilipczuk

Table 2. Problems which admit polynomial kernels when parameterized by the size of
a given vertex cover, by applying Theorem 2

Problem Π cΠ
Long Cycle Graphs with a Hamiltonian cycle 2
Long Path Graphs with a Hamiltonian path 2
H-packing for nonempty H Graphs with a perfect H-packing Δ(H)

Theorem 2. If Π is a graph property such that:

(i) Π is characterized by cΠ adjacencies, and
(ii) there is a non-negative polynomial p : N → N such that for all graphs G ∈

Π, |V (G)| ≤ p(vc(G)),

then Largest Induced Π-subgraph (vc) has a kernel with O(p(|X |)|X |cΠ)
vertices.

The proof is in the full version [18], and is similar to the proof of Theorem 1.

4 Subgraph Testing versus Minor Testing

Several important graph problems such as Clique, Long Path, and Long In-

duced Path, can be stated in terms of testing for the existence of a certain
graph H as an induced subgraph, or as a minor. Note that for these problems,
the size of the graph whose containment in G is tested is part of the input as the
problem is polynomial-time solvable for each constant size. We compared the
kernelization complexity of induced subgraph- versus minor testing for various
types of graphs, parameterized by vertex cover, and found the surprising outcome
that the kernelization complexity is often opposite: one variant admits a poly-
nomial kernel while the other does not, assuming NP �⊆ coNP/poly. We discuss
our findings separately for each type of graph whose containment is tested.

4.1 Testing for Cliques

The Clique problem (i.e., testing for Kt as an induced subgraph) was one of
the first problems known not to admit a polynomial kernel parameterized by the
size of a given vertex cover [5, Theorem 11]. Our main result of this section is a
polynomial kernel for the related minor testing problem.

Clique Minor Test (vc)

Input: A graph G with vertex cover X ⊆ V (G), and an integer t ≥ 1.
Parameter: The size |X | of the vertex cover.
Question: Does G contain Kt as a minor?

All problems we study in Section 4 are defined similarly in the obvious way,
and we will not define them explicitly. Our polynomial kernel uses reduction
rules based on simplicial vertices, inspired by the recent work on kernels for
Treewidth [9].

Preprocessing Subgraph and Minor Problems 105

Table 3. Kernelization complexity of testing for induced H subgraphs versus testing
for H as a minor, when the graph H is given as part of the input by specifying t. The
problems are parameterized by the size of a given vertex cover. Kernel lower bounds
are under the assumption that NP 	⊆ coNP/poly.

Graph H Testing for induced H Testing for H-minor

Kt ¬ ∃|X|O(1) kernel [5] ∃|X|O(1) kernel (Thm. 3)

K1,t ∃|X|O(1) kernel (Sect. 4.2) ¬ ∃|X|O(1) kernel [11]

Ks,t ¬ ∃|X|O(1) kernel (Sect. 4.2) ¬ ∃|X|O(1) kernel [11]

Pt ¬ ∃|X|O(1) kernel (Sect. 4.3) ∃|X|O(1) kernel ([17] or Thm. 2)

t ·K2 ¬ ∃|X|O(1) kernel (Sect. 4.4) P-time solvable

Theorem 3. Clique Minor Test (vc) admits a kernel with O(|X |4) vertices.

Firstly, observe that if a graph has a clique Kt as a minor, then its vertex cover
number is at least t−1: taking a minor does not increase the vertex cover number,
and vc(Kt) = t−1. Therefore, we assume that t ≤ |X |+1, as otherwise we may
output a trivial no-instance. Our algorithm is based on three reduction rules.
In the following, we assume the reduction rules are exhaustively applied in their
given order.

Reduction Rule 1. For every distinct pair v, w ∈ X such that vw /∈ E(G), if
there are more than (|X | + 1)2 vertices in V (G) \ X adjacent both to v and w,
then add the edge vw. Output the resulting instance (G′, X, t).

Lemma 2. Rule 1 is safe.

Proof. As G is a subgraph of G′, any clique minor in G is also contained in G′.
Therefore we need to argue that if G′ admits a Kt minor, then so does G.

Assume that G′ has a Kt minor, and let G∗ be a subgraph of G′ containing
a Kt minor model φ such that |V (G∗)| ≤ |V (Kt)| + vc(G′) · (Δ(Kt) + 1) =
t+ vc(G′) · t, whose existence is guaranteed by Proposition 1. As vc(G′) ≤ |X |
it follows that |

⋃
v∈Kt

φ(v)| ≤ t + |X | · t, and since t ≤ |X | + 1 the number

of vertices involved in the minor model is at most (|X | + 1)2. Hence by the
precondition to the reduction rule, there is a vertex y adjacent to both v and w
which is not used in the minor model.

Observe that if φ avoids one of v and w, it is also a clique model in G. Assume
then that v ∈ φ(u1) and w ∈ φ(u2); it may happen that u1 = u2. Now we can
transform φ into a clique minor model φ′ in G, by adding y to φ(u1): contraction
of the edge vy in this branch set creates the edge vw that was missing in G. ��

Reduction Rule 2. If there exists a simplicial vertex s ∈ V (G) \ X such that
deg(s) ≥ t− 1, output a trivial yes-instance.

Reduction Rule 3. If there exists a simplicial vertex s ∈ V (G) \ X such that
deg(s) < t− 1, delete it. Output the resulting instance (G′, X, t).

106 F.V. Fomin, B.M.P. Jansen, and M. Pilipczuk

Correctness of Rule 2 is obvious, as s together with its neighborhood already
forms a Kt. The correctness proof for Rule 3 can be found in the full version.
The running time of the kernelization algorithm is polynomial, as the presented
reduction rules can only add edges inside X and remove vertices from V (G) \
X . Exhaustive application of the reduction rules results in an instance with at
most (|X |+ 1)4 vertices, which proves Theorem 3.

4.2 Testing for Bicliques

We now consider testing for a biclique as an induced subgraph or minor. Observe
first that if G is a connected graph on at least three vertices, then the following
conditions are equivalent: graph G has a (a) spanning tree with t or more leaves,
(b) K1,t minor, (c) connected dominating set of size at most |V (G)| − t. Hence
there is a trivial polynomial-parameter transformation [19] from Connected

Dominating Set (vc) to K1,t Minor Test (vc). Dom et al. [11, Theorem
5] showed1 that the former problem does not admit polynomial kernels unless
NP ⊆ coNP/poly, and hence the same lower bound holds for the latter.

The situation is more diverse when testing for a biclique as an induced sub-
graph. If we fix a constant c and wish to test for a biclique Kc,t as induced sub-
graph, where t is part of the input, then this problem admits a polynomial kernel
parameterized by vertex cover. Our main insight is a polynomial-size compression
which is obtained by guessing the model of the constant-size partite set within the
vertex cover, reducing the problem to the OR of

(|X|
c

)
instances of Independent

Set parameterized by vertex cover. As Independent Set parameterized by ver-
tex cover is equivalent to Vertex Cover parameterized by the size of a given
(suboptimal) vertex cover, each of these can be compressed to a size polynomial
in |X | using Theorem 1, and the NP-completeness transformation then results in
an instance of the original problem of size O(|X |O(1)) which forms the kernel.

If the sizes of both partite sets are part of the input, then we can no longer
obtain a polynomial kernel. We employ a cross-composition [5] from Balanced

Biclique in Bipartite Graphs to show that testing for an induced Ks,t sub-
graph, parameterized by vertex cover, does not admit a polynomial kernel unless
NP ⊆ coNP/poly.

4.3 Testing for Paths

Since a graph contains Pt as a minor if and only if it contains Pt as a subgraph,
testing for a Pt minor is equivalent to the Long Path problem and hence
has a polynomial kernel parameterized by vertex cover, through Theorem 2.
The related induced subgraph testing problem, however, is unlikely to admit a
polynomial kernel. We cross-compose t instances of Hamiltonian s − t Path

into a single instance of Long Induced Path (vc). The main idea behind
the construction is to create an instance containing three paths PA, PB, PC of
consecutive degree-two vertices, such that any sufficiently long induced path

1 The lower bound they give is for Dominating Set, but a trivial transformation
extends it to Connected Dominating Set.

Preprocessing Subgraph and Minor Problems 107

traverses all these paths. The only connections between PA and PB can be made
by visiting a vertex vi outside the vertex cover; there is one such vertex vi for each
input instance. To make a suitably long path, a solution must traverse PA, then
visit some vi, and then continue traversing PB . The inducedness requirement
ensures the path cannot visit neighbors of vi except for its predecessor on PA

and successor on PB. This allows us to encode the adjacency matrix of the input
graph corresponding to vi into the set of edges incident on vi. The proof in the
full version shows that Long Induced Path (vc) does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

4.4 Testing for Matchings

Matchings (i.e., disjoint unions of K2’s) are the last type of graphs whose con-
tainment testing we consider. It is not difficult to see that G has a t ·K2 minor if
and only if G has a matching of size t, and hence we can solve the minor-testing
variant of this containment problem in polynomial time by simply computing
a maximum matching. On the other hand, finding an induced matching is a
classic NP-complete problem and we give evidence that it does not admit a
polynomial kernel parameterized by vertex cover. We use a bit-selector strategy
to cross-compose Maximum Induced Matching in Bipartite Graphs into
our target problem, exploiting the inducedness requirement to allow the bitse-
lector to isolate a solution corresponding to a single input instance. Hence we
prove that Maximum Induced Matching (vc) does not admit a polynomial
kernel unless NP ⊆ coNP/poly.

5 Conclusion

We have studied the existence of polynomial kernels for graph problems parame-
terized by vertex cover. The general theorems we presented unify known positive
results for many problems, and the characterization in terms of forbidden or de-
sired induced subgraphs from a class characterized by few adjacencies gives a
common explanation for the results obtained earlier. Our comparison of induced
subgraph and minor testing problems shows that the kernelization complexity
landscape of problems parameterized by vertex cover is rich and difficult to cap-
ture with a single meta-theorem. The kernel lower bounds for induced subgraph
testing show that besides connectivity and domination requirements, an induced-
ness requirement can form an obstacle to kernelizability for parameterizations
by vertex cover.

An obvious direction for further work is to find even more general kerneliza-
tion theorems which can also encompass the known positive results for problems
like Treewidth (vc) [9] and Clique Minor Test (vc). There are also var-
ious problems for which the kernelization complexity parameterized by vertex
cover is still open; among these are Perfect Deletion, Interval Deletion,
Bandwidth and Genus. Finally, one may investigate whether Theorem 1 has
an analogue for edge-deletion problems, and whether our positive results can be
transferred to the smaller parameter twin cover [15].

108 F.V. Fomin, B.M.P. Jansen, and M. Pilipczuk

References

1. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (Meta) Kernelization. In: Proc. 50th FOCS, pp. 629–638 (2009)

2. Fomin, F., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and ker-
nels. In: Proc. 21st SODA, pp. 503–510 (2010)

3. Kratsch, S., Wahlström, M.: Compression via matroids: a randomized polynomial
kernel for odd cycle transversal. In: Proc. 23rd SODA, pp. 94–103 (2012)

4. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75, 423–434 (2009)

5. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique
for kernelization lower bounds. In: Proc. 28th STACS, pp. 165–176 (2011)

6. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless
the polynomial-time hierarchy collapses. In: Proc. 42nd STOC, pp. 251–260 (2010)

7. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct
PCPs for NP. J. Comput. Syst. Sci. 77, 91–106 (2011)

8. Niedermeier, R.: Reflections on multivariate algorithmics and problem parameter-
ization. In: Proc. 27th STACS, pp. 17–32 (2010)

9. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: ACom-
binatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall, J.
(eds.) ICALP2011, Part I. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)

10. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On Cutwidth
Parameterized by Vertex Cover. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011.
LNCS, vol. 7112, pp. 246–258. Springer, Heidelberg (2012)

11. Dom,M., Lokshtanov, D., Saurabh, S.: Incompressibility throughColors and IDs. In:
Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas,W. (eds.)
ICALP 2009, Part I. LNCS, vol. 5555, pp. 378–389. Springer, Heidelberg (2009)

12. Jansen, B.M.P., Kratsch, S.: Data Reduction for Graph Coloring Problems. In:
Owe, O., Steffen, M., Telle, J.A. (eds.) FCT 2011. LNCS, vol. 6914, pp. 90–101.
Springer, Heidelberg (2011)

13. Grohe, M.: Logic and Automata: History and Perspectives. In: Logic, Graphs, and
Algorithms, pp. 357–422. Amsterdam University Press (2007)

14. Lampis, M.: Algorithmic Meta-theorems for Restrictions of Treewidth. In: de Berg,
M., Meyer, U. (eds.) ESA 2010, Part I. LNCS, vol. 6346, pp. 549–560. Springer,
Heidelberg (2010)

15. Ganian, R.: Twin-Cover: Beyond Vertex Cover in Parameterized Algorithmics.
In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp. 259–271.
Springer, Heidelberg (2012)

16. Jansen, B.M.P., Kratsch, S.: On Polynomial Kernels for Structural Parameteriza-
tions of Odd Cycle Transversal. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011.
LNCS, vol. 7112, pp. 132–144. Springer, Heidelberg (2012)

17. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernel Bounds for Path and Cycle
Problems. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS, vol. 7112, pp.
145–158. Springer, Heidelberg (2012)

18. Fomin, F.V., Jansen, B.M.P., Pilipczuk, M.: Preprocessing subgraph and minor
problems: When does a small vertex cover help? CoRR abs/1206.4912 (2012)

19. Bodlaender, H.L.: Kernelization: New Upper and Lower Bound Techniques. In:
Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 17–37. Springer,
Heidelberg (2009)

20. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the
Hardness of Losing Width. In: Marx, D., Rossmanith, P. (eds.) IPEC 2011. LNCS,
vol. 7112, pp. 159–168. Springer, Heidelberg (2012)

A Polynomial-Time Algorithm for Planar

Multicuts with Few Source-Sink Pairs�

Cédric Bentz

LRI, Univ. Paris-Sud & CNRS, 91405 Orsay Cedex, France
cedric.bentz@lri.fr

Abstract. Given an edge-weighted undirected graph and a list of k
source-sink pairs of vertices, the well-known minimum multicut problem
consists in selecting a minimum-weight set of edges whose removal leaves
no path between every source and its corresponding sink. We give the
first polynomial-time algorithm to solve this problem in planar graphs,
when k is fixed. Previously, this problem was known to remain NP-hard
in general graphs with fixed k, and in trees with arbitrary k; the most
noticeable tractable case known so far was in planar graphs with fixed k
and sources and sinks lying on the outer face.

1 Introduction

In this paper, we are interested in the study of the minimum multicut problem in
undirected graphs (no directed version is considered). This fundamental problem
has been extensively studied, and is well-known to be NP-hard even in very
restricted classes of graphs.

Assume we are given a n-vertex m-edge undirected graph G = (V,E), a
weight function w : E → Z+ and a list L of pairs (source si, sink s′i) of ter-
minal vertices. Each pair (si, s

′
i) defines a commodity. The minimum multicut

problem (MinMC) consists in selecting a minimum weight set of edges whose
removal separates si from s′i for each i. The minimum multiterminal cut prob-
lem (MinMTC) is a special case of MinMC in which, given a set of vertices
T = {t1, . . . , t|T |}, the source-sink pairs are (ti, tj) for i �= j.

For |L| = 1, the problem is the classical minimum cut problem. For |L| = 2,
the problem can be solved in polynomial time by solving two minimum cut prob-
lems [18]. However, Dahlhaus et al. showed that, for any fixed |L| ≥ 3, MinMTC

(and henceMinMC) becomesNP-hard (and even APX-hard) in general graphs
[9]. When |L| is not fixed, MinMC is APX-hard even in unweighted stars [11]
and NP-hard even in unweighted binary trees [6], while MinMTC is NP-hard
in planar graphs [9]. We also mention that, in bounded tree-width graphs, Min-

MTC (resp. MinMC) is polynomial-time solvable when |L| is arbitrary [12]
(resp. when |L| is fixed [3]). There have been recent results concerning FPT al-
gorithms for MinM(T)C: however, the parameter considered in these papers is
the size of the solution, and hence we shall not mention them here.

� This research work was supported by the French ANR project DOPAGE (ANR-09-
JCJC-0068).

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 109–119, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

110 C. Bentz

In their seminal paper, Dahlhaus et al. also showed that MinMTC can be
solved in polynomial time in planar graphs if |L| is fixed, but they left as open
three important questions: first, does MinMTC admit a polynomial-time ap-
proximation scheme (PTAS)? Second, is MinMTC FPT in planar graphs, if |L|
is viewed as the parameter [10]? Third, is MinMC also polynomial-time solvable
in planar graphs if |L| is fixed? The first open question was recently addressed
by Bateni et al. [1]. The second one was even more recently addressed by Marx
[15], and we answer the third question in this paper (while the case where all
the sources and sinks lie on the outer face was already solved in [4]).

It should be noticed that Hartvigsen [13] and Yeh [19] later provided other
algorithms to solve MinMTC in planar graphs when |L| is fixed (none of them
being FPT with respect to |L|). Moreover, it was observed in [2] and [5] that
unfortunately the proof of Yeh’s algorithm is not correct, and later it was proved
in [7] that the algorithm itself is not correct. The main mistake in the proof of this
algorithm was to assume that, when replacing the boundary of any connected
component by a minimum cut between some well-chosen vertices, we still obtain
a single connected component. More recently, Marx and Klein gave an even
faster algorithm to solve MinMTC in planar graphs when |L| is fixed [14], but
Marx also managed to prove that, assuming the Exponential Time Hypothesis,
this problem is not FPT with respect to |L| [15]. This latter result immediately
implies that MinMC in planar graphs is not FPT with respect to |L|.

In this paper, we give an algorithm based, on the one hand, on a revised and
generalized Yeh-like approach, and, on the other hand, on shortest homotopic
paths methods, and show that this algorithm can be used to solve MinMC

in polynomial time when the graph is planar and |L| is fixed. (Obviously, this
also provides an alternative polynomial-time algorithm to solve MinMTC in
planar graphs when |L| is fixed.) It is worth noticing that our major tool is a
new characterization of optimal solutions for this problem. Moreover, although
homotopic routing methods have already been used to solve planar disjoint paths
problems (see [16] and [17] for instance), to the best of our knowledge they have
never been used to solve (multi)cut problems so far. (Our algorithm is not FPT,
but the recent result of Marx [15] implies that unfortunately this is essentially
the best one can hope for.)

The paper is organized as follows. In Section 2, we describe the starting point
of our algorithm. Then, in Section 3, we give some preliminary definitions and
results, that will be useful in Section 4. Finally, in Section 4, we describe our
algorithm, and prove its correctness.

2 The Starting Point

The first step of our algorithm is a simple idea presented in [4]. Given a MinMC

instance I = (G = (V,E), w,L) and any of its optimal multicuts C, one can
define the clustering of the terminals associated with the connected components
of G′ = (V,E \ C) (we also say that this particular clustering induces these
connected components). The ith cluster of this clustering, denoted by Ti, contains

A Polynomial-Time Algorithm for Planar Multicuts 111

all the terminals lying in the ith connected component of G′. Once this clustering
has been defined (although, so far, we need to know C in order to do it), finding
an optimal solution to I is equivalent to removing a minimum-weight set of edges
C whose removal separates all the terminals in Ti from all the terminals in Tj

for each i �= j.
In this paper, we will refer to this problem as the minimum multi-cluster cut

problem (MinMCC). This problem has been defined as the Colored Multitermi-
nal Cut problem in [9], where it is shown to be NP-hard in planar graphs, even
with only four clusters (and it is claimed that this is also true for three clusters).
Note that, in general graphs, MinMCC and MinMTC are equivalent, since
from a MinMCC instance we can obtain an equivalent MinMTC instance by
adding one new terminal vertex for each cluster, and linking all the terminals in
this cluster (which will no longer be terminals in the MinMTC instance) to this
new vertex by sufficiently heavy edges. However, this reduction does not neces-
sarily preserve planarity. Given a MinMC instance, we can build an equivalent
MinMCC instance by enumerating all the possible clusterings of the terminals
(such a clustering can contain up to 2|L| clusters): when |L| is fixed, this can be
done in constant time, and so this yields the following lemma.

Lemma 1. When |L| is fixed, MinMC can be polynomially reduced to Min-

MCC, and this reduction preserves planarity.

Since we enumerate all the possible clusterings in order to guess the right one, we
can also assume without loss of generality that the one we chose has the property
that no clustering associated with an optimal solution induces more connected
components than this one does. In other words, in the (planar) MinMCC in-
stance we obtain, every cluster induces exactly one connected component in any
optimal solution. In the remainder of the paper, we design an efficient algorithm
to solve MinMCC in planar graphs when the sum of the sizes of the clusters
is fixed (otherwise, from [9], the problem is NP-hard); from the above enumer-
ation argument, we can assume that every cluster induces only one connected
component (note that this problem generalizes planar MinMTC with a fixed
number of terminals). To do this, we will make use of some notions and results
related to planarity, planar curves and planar duality, which we introduce in the
next section.

3 Preliminary Definitions and Results

Throughout the paper, each time we consider a MinMCC instance in a planar
graph G, we assume without loss of generality that G is simple, loopless, con-
nected (otherwise, we can consider each connected component independently),
and even 2-vertex-connected (from [4]), but also that some planar embedding of
G is given. Recall that to any planar graph G (embedded in the plane) we can
associate a dual (planar) graph G∗: each face (including the outer face) of the
initial (or primal) graph G is associated with one vertex in the dual graph G∗,
and there is an edge between two vertices in the dual graph iff the associated

112 C. Bentz

faces are adjacent (i.e., share an edge) in the primal graph. (If an edge belongs to
only one face, then it corresponds to a loop in the dual graph.) As a consequence,
there is a one-to-one correspondence between primal faces (resp. vertices) and
dual vertices (resp. faces).

Fig. 1. A multi-cluster cut in a planar graph with five clusters. The edges of the initial
(primal) graph are in plain lines, the non-terminal vertices are the white round vertices,
the terminals are the black round vertices, the dual vertices are the square vertices,
and the dual edges associated with the multi-cluster cut C are in dashed and dotted
lines. (The edges of C1 are in dashed lines, and the four grey square vertices are the
joint-vertices of C.)

Given a MinMCC instance I = (G = (V,E), w, T = {T1, . . . , Tp}) and an
optimal multi-cluster cut C for I, we denote by C∗ the edge set dual to C, and,
for each i, by Vi the vertices of the connected component of G′ = (V,E \ C)
containing the terminals in Ti, and by Ci the set of edges such that Ci ⊆ C and
Ci has exactly one endpoint in Vi. We define a joint-vertex as a dual vertex (a
vertex of the dual graph G∗ of G) of degree at least 3 in C∗. Note that each Ci

corresponds to a set of (not necessarily simple) cycles in G∗. Let us assume for
now that each Ci corresponds to only one cycle.

If the edges in the embedding of the dual graph are viewed as curves in the
plane (the dual vertices being intersections between curves), then the dual image
of each Ci will be a closed curve Ci (the union of all the Ci’s, i.e., the geometric
representation of C∗, will be denoted by C); if this closed curve is simple (this
may not be the case, see below), then, by the Jordan curve theorem, the faces
of G∗ associated with all the terminals in Ti are inside this curve, and the faces
of G∗ associated with all the terminals in

⋃
j �=i Tj are outside this curve (which

simply means that the edges associated with Ci isolate the terminals in Ti from

A Polynomial-Time Algorithm for Planar Multicuts 113

all the other terminals). When Ci ⊂ R2 is not simple (as this is the case for C1
in Figure 1), i.e., when Ci self-intersects in one or more points of the plane, the
situation is a bit more complex: in this case, by a simple corollary of the Jordan
curve theorem, R2 \ Ci contains more than two connected regions (a connected
region of R2 \ Ci being a region of R2 such that any two points of this region can
be linked by a curve without crossing Ci), and one of these connected regions
is unbounded (it is called the unbounded region), while all the other ones are
bounded. The only bounded region of R2 \ Ci (and all the faces it contains) that
is adjacent to the unbounded region is called the inside of Ci (it is unique since
Vi is connected), and every other bounded region of R2 \ Ci is called an inner
region of Ci (although it does belong to the outside of Ci, and not to its inside).

Notice that, if some C∗
i contains more than one cycles (either simple or not),

then either this means that there is one cycle C̄∗
i contained in C∗

i , corresponding
to a closed curve C̄i in G∗, such that any other cycle contained in C∗

i lies inside
C̄i, or this means that Vi is the only component in contact with the infinite face.
(In the first case, note that there is at least one other C∗

j for some j �= i that

lies inside the closed curve corresponding to each cycle in C∗
i \ C̄∗

i .) So, we have:

Lemma 2. For each i, if Ci is a closed curve, then the faces associated with Ti

are inside Ci, while the faces associated with Tj are outside Ci, for each j �= i.

We also need to define homotopic curves. Roughly speaking, given a set O of μ
obstacles (typically, faces) O1, . . . ,Oμ in the plane, two simple curves C1, C2 in
R2\O sharing the same endpoints (or two closed curves) are said to be homotopic
with respect to O if C1 can be continuously deformed into C2 in R2 \ O. We can
also say that C1 is homotopic to C2 with respect to O, or alternatively that C1
and C2 belong to the same homotopy class. In the present setting, the curves we
will consider are the ones that are associated with (i.e., that are the dual images
of) the Ci’s (or parts of them); the set of obstacles O we will consider is the set
of faces associated with the terminals. Then, the following lemma is easy to see:

Lemma 3. Two simple closed curves having the same faces of O in their insides
and the same faces of O in their outsides are homotopic with respect to O.

Finally, let us notice that the number of vertices in G∗ is bounded by 2|V | − 4,
since it is equal to the number of faces fG of G. Indeed, G is a simple, loopless
and connected planar graph, and hence each of its faces contains at least three
vertices and edges: this implies that 2|E| ≥ 3fG, which, combined with Euler’s
formula |V | + fG − |E| = 2, yields fG ≤ 2|V | − 4. However, we still have to
bound the number of joint-vertices in C∗. To this end, the following lemma will
be useful in the next section:

Lemma 4. The number of joint-vertices in C∗ is at most 2p− 4.

Proof. This can be shown by a simple application of Euler’s formula. Consider
the subgraph of G∗ induced by C∗. In this subgraph, there is no vertex of degree
1, and we contract any vertex of degree 2 in this subgraph (this does not modify

114 C. Bentz

the number of vertices of degree at least 3) in order to obtain the graph G∗
C .

The number of faces in G∗
C is p, since each cluster in {T1, . . . , Tp} induces exactly

one connected component in G. We remove loops (and associated faces) as well
as multiple edges (and associated faces) from G∗

C : each time we remove such
an edge, we remove one face. If we denote by mC and fC the number of edges
and faces in G∗

C , and by nC ,m
′
C , f

′
C , κC the number of vertices, edges, faces,

and connected components in this updated (simple) graph, respectively, then by
Euler’s formula we have nC + f ′

C −m′
C = 1+ κC , i.e., nC + fC −mC = 1+ κC .

(Note that nC is the number of joint-vertices we have to consider.) Any vertex
in G∗

C has degree at least 3, and hence 2mC ≥ 3nC . Since κC ≥ 1, we have
nC + fC − mC ≥ 2, i.e., nC ≥ mC − fC + 2 ≥ 3nC/2 − fC + 2, and this yields
nC/2 ≤ fC − 2, i.e., nC ≤ 2fC − 4 = 2p− 4. ��

A similar result was presented in [19, Theorem 5], using the notion of component
graph (in which there is a vertex for each component Vi and a single edge be-
tween any two vertices if the corresponding components share at least one edge);
however, a joint-vertex may actually not induce a face in the component graph
(see the joint-vertex belonging to C∗

2 in Figure 1 for instance), since this graph
is simple by definition, and hence this proof was incomplete.

4 Description and Proof of the Algorithm

4.1 A Structural Description of Optimal Solutions

Dahlhaus et al. [9], and later Hartvigsen [13], gave structural descriptions of
optimal planar multiterminal cuts (one is based on the notion of topology and on
minimum spanning trees computation, and the other is based on links between
optimal planar multiterminal cuts and Gomory-Hu cut collections). However,
it is not clear whether these structural results could be extended to optimal
planar multi-cluster cuts; in fact, it seems that they cannot. Here, we give a new
and somewhat simpler structural description of optimal planar multiterminal
cuts (although it may imply enumerating more elements than in the approaches
described by Dahlhaus et al. and Hartvigsen), that is also valid for optimal
planar multi-cluster cuts.

We use the definitions and notations from the previous section. Let F (resp.
Fi) be the faces of G

∗ associated with the terminals in T (resp. in Ti), and let C
be any multi-cluster cut that partitions the plane into p connected regions (each
one containing one cluster), such as a minimum multi-cluster cut (for instance).
Let us now consider Ci for some i, and assume that the dual image Ci of Ci

consists of only one closed curve. This curve goes through a certain number of
joint-vertices: let us call them ω1, . . . , ωqi , in clockwise order (with ω1 = ωqi).
Recall that, by definition, the curve Ci intersects other Cj ’s only at joint-vertices.
Assume that qi ≥ 2. Then, we have:

Lemma 5. Let Vi be a connected component of G′ = (V,E \ C), let Ci be the
associated curve in G∗, and let ω1, . . . , ωqi be the joint-vertices Ci goes through.

A Polynomial-Time Algorithm for Planar Multicuts 115

Then, C′ = (C \ Ci) ∪ C′
i is also a valid multi-cluster cut for I, where C′

i is any
cycle in G∗ going through ω1, . . . , ωqi , and such that the faces associated with Ti

are inside C′, while the faces associated with Tj are outside C′ for each j �= i.

Proof. Assume that one such C′ is not a multi-cluster cut. Consider any path
μa,b in G′ = (V,E \ C′) between two terminal vertices ta ∈ Tj and tb ∈ Tj′ for
some j �= j′. We cannot have j = i or j′ = i, by the definition of C′

i. Moreover,
since C is a multi-cluster cut, we know that μa,b contains at least one edge in Ci,
say uv. Choose an edge dual to such an edge in Ci, and assume without loss of
generality that this dual edge belongs to the curve Ci[ω1, ω2], defined as the part
of Ci linking ω1 and ω2. From Lemma 3, C′

i is homotopic to Ci with respect to F .
Hence, Ci can be continuously deformed into C′

i in R2 \F . In particular, since C′
i

goes through ω1 and ω2, it contains some curve C′
i[ω1, ω2] homotopic to Ci[ω1, ω2]

with respect to F . Hence, the inside of the closed curve Ci[ω1, ω2] ∪ C′
i[ω1, ω2]

contains neither ta nor tb (since i, j, j′ are all distinct). We claim the following :

Claim 1. μa,b must “intersect” (i.e. have an edge in common with) C′
i[ω1, ω2]

at least once.

Proof. Since Ci[ω1, ω2]∪C′
i[ω1, ω2] is a closed (but not necessarily simple) curve,

the edge dual to any edge on its boundary either belongs to both Ci[ω1, ω2] and
C′
i[ω1, ω2] (which is clearly not the case for uv, otherwise we are done), or has

one endpoint inside Ci[ω1, ω2] ∪ C′
i[ω1, ω2] and one endpoint outside Ci[ω1, ω2] ∪

C′
i[ω1, ω2] (so, this is the case for uv).
Now, assume that μa,b has t ≥ 1 (for some t) edges in common with Ci[ω1, ω2]

(none of them is of the first type described above, otherwise we are done). If μa,b

crosses C′
i[ω1, ω2], then we are done. Assume otherwise. ω1 and ω2 being two

consecutive joint-vertices in Ci, then by definition each of these t edges has one
endpoint in Vi and the other one in Vl for some l (the same l for all these edges).
In particular, the vertices inside Ci[ω1, ω2]∪C′

i[ω1, ω2] that are incident to edges
in Ci[ω1, ω2] all belong to the same connected component of (V,E \ C) (either
Vi or Vl). Hence, each time μa,b “crosses” Ci[ω1, ω2], it “changes side” (going for
instance from Vi to Vl, then from Vl to Vi, then again from Vi to Vl, etc.). If it
crosses Ci[ω1, ω2] an even number of times (the first edge crossed being uv and
the last one u′v′ for instance), then u and v′ either both belong to Vi or both
belong to Vl (i.e., belong to the same connected component of (V,E \ C)). So,
instead, we can find a new path μ′

a,b from ta to tb that does not cross Ci[ω1, ω2] at
all, by replacing the part of μa,b going from u to v′ by a path from u to v′ using
vertices of Vi (or Vl) only; this yields a contradiction. By the same argument, we
can show that if μa,b crosses Ci[ω1, ω2] an odd number of times (the first edge
crossed being uv and the last one u′v′ for instance; note that u′v′ may be uv),
then v′ is inside Ci[ω1, ω2] ∪ C′

i[ω1, ω2]. Since the part of μa,b going from v′ to
tb crosses neither Ci[ω1, ω2] (by definition) nor C′

i[ω1, ω2] (by assumption), and
since neither ta nor tb are inside Ci[ω1, ω2]∪C′

i[ω1, ω2], this yields a contradiction.
Thus, μa,b must cross C′

i[ω1, ω2]. ��
From this claim, C′ intersects any path between two terminals lying in different
clusters: it contradicts the fact that C′ is not a multi-cluster cut. ��

116 C. Bentz

We can then use this lemma to show that, if qi ≥ 2:

Corollary 1. Let C be a minimum multi-cluster cut in a graph G = (V,E),
let Vi be a connected component of G′ = (V,E \ C), let Ci be the associated
curve in G∗, and let ω1, . . . , ωqi be the joint-vertices Ci goes through. Then, Ci
is a shortest cycle in G∗, that is homotopic to any cycle Γ in G∗ going through
ω1, . . . , ωqi and being such that the faces in Fi are inside Γ , while the faces in
Fj are outside Γ for each j �= i.

Proof. Assume that Ci is not such a shortest cycle. Then, we can replace Ci by a
shortest cycle Γ ∗ in G∗ going through ω1, . . . , ωqi , and such that the faces in Fi

are inside Γ ∗, while the faces in Fj are outside Γ ∗ for each j �= i. From Lemma
5, C′ = (C \Ci)∪Γ ∗ is also a valid multi-cluster cut for I. Moreover, Γ ∗ is strictly
shorter than Ci (since from Lemmas 2 and 3 they are homotopic with respect to
F), and hence C′ is a strictly better solution than C: a contradiction. ��

4.2 Algorithmic Aspects

From Subsection 4.1, we can construct C in an iterative way, by first “guessing”
(i.e., enumerating) all the joint-vertices, then computing each Ci corresponding
to a single closed curve one after the other, and finally removing the vertices
inside it, and go on. (We assume without loss of generality that we look for an
optimal solution having the maximum number of joint-vertices among the ones
with p clusters, and this implies that we cannot create “new” joint-vertices when
computing each Ci.) Hence, we have to guess an i for which Ci corresponds to
a single closed curve, compute Ci and remove it, and then go on by identifying
another i for which the part of Ci lying in the remaining graph (i.e., after remov-
ing the previous component) corresponds to a single closed curve, until there
remains only one component. We can do this by enumerating all the possible
sets of inclusions between the Ci’s (i.e., for each i and j �= i, whether there is
one cycle C̄i contained in Ci, that corresponds to a closed curve C̄i in the dual
graph, and such that Cj lies inside C̄i; or whether there is one cycle C̄j contained
in Cj , that corresponds to a closed curve C̄j in the dual graph, and such that Ci

lies inside C̄j ; or finally whether none lies inside the other). Since the number of
Ci’s is p and since p is fixed, this can be done in constant time.

In order to compute Ci for each i, we must first “guess” which joint-vertices Ci
goes through (from Lemma 4, the maximum number of joint-vertices is 2p− 4,
so guessing them requires to try all the possible ways of choosing at most 2p− 4
vertices among 2|V | − 4, which implies that the running time will depend on p),
and then we can apply Corollary 1 and find a shortest cycle homotopic to some
predefined curve in G∗ (keeping in mind that Ci may go through no joint-vertex;
in this case, we only need to compute a minimum cut separating Ti from Tj ,
for all j �= i). (If needed, we can reduce the computation of a shortest cycle to
the computation of a shortest path, by “guessing” the first edge of this path.)
Finding a shortest homotopic path or cycle can be hard, if we require that it
must be elementary; however, this property is not needed in our case. (And,

A Polynomial-Time Algorithm for Planar Multicuts 117

indeed, some Ci’s may be non simple cycles, such as C1 in Figure 1.) We can
compute a shortest homotopic path or cycle using for instance the algorithms
given in [17, Proposition 1] or in [8].

Finally, we have two last points to address. First, we must ensure that the
shortest cycles or paths we compute go through predetermined joint-vertices.
Second, we need to be able to generate all the possible predefined curves that the
shortest paths we compute can be homotopic to. We now describe the strategy
we use to deal with both points at the same time. Each time a given Ci goes
through a given joint-vertex, this means that some vertices of the primal face
associated with this joint-vertex belong to Vi. Actually, we even know that, on
each face associated with a joint-vertex Ci goes through, there are at most hi+1
sets of consecutive vertices (called intervals) that belong to Vi, where hi ≤ p
is the number of inner regions of Ci. Therefore, to the joint-vertices associated
with a given Ci corresponds a set Bi of distinct vertices of Vi lying on the primal
faces associated with these joint-vertices. The best way to encode this set Bi is
to include two vertices of each interval. For a given interval lying on the face
associated with a given joint-vertex, call a and b the two vertices of this interval.
Then, the vertices in Bi associated with that interval are all the vertices of this
face encountered while traveling clockwise from a to b on this face. Let us denote
by Bi the set of dual faces associated with the vertices in Bi. By definition, each
face associated with a joint-vertex contains at least two vertices belonging to
two different Bi’s, thus from Lemma 3, for each i, Ci is homotopic, with respect
to the faces in F and

⋃
j Bj , to any closed curve being such that the faces in

Fi ∪ Bi are inside it, and the faces in Fj ∪ Bj, for each j �= i, are outside it.
More generally, any closed curve goes through the same joint-vertices as Ci, if
this curve is such that the faces in Bi belong to its inside, and the faces in Bj

belong to its outside, for each j �= i.
Since for each i the inside of Ci is a connected region, i.e., the subgraph of G

induced by Vi is connected, we also know that in G′ = (V,E \C) all the vertices
in Bi, as well as all the terminals in Ti, are connected together. This implies that,
for each i, we can construct a closed curve C′

i homotopic to Ci by choosing some
tree spanning both Ti and Bi, and then removing the edges having exactly one
endpoint in the ith of these spanning trees (these trees span vertices in distinct
connected components of G′, and hence have to be vertex-disjoint). (For each i,
C′
i goes through the same joint-vertices as Ci, and C′

i and Ci are indeed homotopic
with respect to the faces in F , since Ti is the only cluster that belongs to the
inside of C′

i, i.e., C
′
i isolates Ti from Tj , for all j �= i.) In practice, we have to

“guess” Bi for each i (which, as mentioned above, can be done by enumerating
at most two vertices of G for each interval), making sure that the Bi’s define
a partition of the vertex set of the faces associated with all the joint-vertices,
and then construct p vertex-disjoint trees (each one spanning Ti and Bi for some
i), and finally remove the edges isolating each tree from the rest of the graph.
For each combination of Bi’s, finding such vertex-disjoint trees can be done in
polynomial time (since the graph is planar,

∑p
i=1 |Ti| is fixed, and the number of

118 C. Bentz

mandatory vertices that the p trees must span lie on at most
∑p

i=1 |Ti|+(2p−4)
faces), using for instance the algorithm given in [17, Theorem 4].

So, our algorithm for planar MinMCC is as follows:

1. For each possible clustering of the terminals, for each possible set of inclu-
sions between the Ci’s, for each possible combination of joint-vertices, and
for each possible choice of the Bi’s do:
(a) Compute p vertex-disjoint trees, each spanning Ti and Bi for some i,

and construct the curves C′
i by removing, for each i, each edge incident

to exactly one vertex of the ith tree;
(b) For each i except the last one (in the order given by the current set of

inclusions, starting from a Ci including no other Cj for j �= i), compute a
shortest cycle homotopic to C′

i with respect to F and
⋃

j Bj ; then, remove
the vertices of the connected component of G lying inside this cycle.

2. Output the best feasible solution found.

We already explained why all steps run in polynomial time, and it should be
clear from our above discussion that this algorithm is correct. This yields:

Theorem 1. MinMCC can be solved in polynomial time in planar graphs, if
the sum of the sizes of the clusters is fixed.

Therefore, we can finally state:

Corollary 2. MinMC can be solved in polynomial time in planar graphs, if the
number of source-sink pairs is fixed.

Acknowledgements. The author thanks Sylvie Poirier for her help, and Éric
Colin de Verdière for fruitful discussions on shortest homotopic paths.

References

1. Bateni, M., Hajiaghayi, M., Klein, P., Mathieu, C.: A polynomial-time approxima-
tion scheme for planar multiway cut. In: 23th SODA (2012)

2. Bentz, C.: Résolution exacte et approchée de problèmes de multiflot entier et
de multicoupe: algorithmes et complexité. PhD Thesis, CNAM, Paris (2006) (in
French)

3. Bentz, C.: On the complexity of the multicut problem in bounded tree-width graphs
and digraphs. Discrete Applied Mathematics 156, 1908–1917 (2008)

4. Bentz, C.: A simple algorithm for multicuts in planar graphs with outer terminals.
Discrete Applied Mathematics 157, 1959–1964 (2009)

5. Bentz, C.: New results on planar and directed multicuts. In: EUROCOMB 2009
(2009); Electronic Notes in Discrete Mathematics, vol. 34, pp. 207–211 (2009)

6. Cǎlinescu, G., Fernandes, C.G., Reed, B.: Multicuts in unweighted graphs and
digraphs with bounded degree and bounded tree-width. Journal of Algorithms 48,
333–359 (2003)

7. Cheung, K., Harvey, K.: Revisiting a simple algorithm for the planar multiterminal
cut problem. Operations Research Letters 38, 334–336 (2010)

A Polynomial-Time Algorithm for Planar Multicuts 119

8. Colin de Verdière, E., Erickson, J.: Tightening non-simple paths and cycles on
surfaces. In: 17th SODA, pp. 192–201 (2006)

9. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:
The complexity of multiterminal cuts. SIAM J. on Computing 23, 864–894 (1994)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York
(1999)

11. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms
for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

12. Guo, J., Hüffner, F., Kenar, E., Niedermeier, R., Uhlmann, J.: Complexity and
exact algorithms for vertex multicut in interval and bounded treewidth graphs.
European Journal of Operational Research 186, 542–553 (2008)

13. Hartvigsen, D.: The planar multiterminal cut problem. Discrete Applied Mathe-
matics 85, 203–222 (1998)

14. Klein, P.N., Marx, D.: Solving Planar k-Terminal Cut in O(nc
√

k) Time. In:
Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I.
LNCS, vol. 7391, pp. 569–580. Springer, Heidelberg (2012)

15. Marx, D.: A Tight Lower Bound for Planar Multiway Cut with Fixed Number of
Terminals. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012, Part I. LNCS, vol. 7391, pp. 677–688. Springer, Heidelberg (2012)

16. Schrijver, A.: Homotopic routing methods. In: Korte, B., Lovasz, L., Prömel, H.J.,
Schrijver, A. (eds.) Paths, Flows and VLSI-Layout. Algorithms and Combinatorics,
vol. 9, pp. 329–371. Springer, Berlin (1990)

17. Schrijver, A.: Disjoint Homotopic Paths and Trees in a Planar Graph. Discrete &
Computational Geometry 6, 527–574 (1991)

18. Yannakakis, M., Kanellakis, P., Cosmadakis, S., Papadimitriou, C.: Cutting and
Partitioning a Graph After a Fixed Pattern. In: Dı́az, J. (ed.) ICALP 1983. LNCS,
vol. 154, pp. 712–722. Springer, Heidelberg (1983)

19. Yeh, W.-C.: A simple algorithm for the planar multiway cut problem. Journal of
Algorithms 39, 68–77 (2001)

Instance Compression
for the Polynomial Hierarchy and beyond

Chiranjit Chakraborty and Rahul Santhanam

School of Informatics, University of Edinburgh, UK
C.Chakraborty@sms.ed.ac.uk, rsanthan@inf.ed.ac.uk

Abstract. We define instance compressibility ([5,7]) for parametric problems
in PH and PSPACE. We observe that the problem ΣiCIRCUITSAT of deciding
satisfiability of a quantified Boolean circuit with i− 1 alternations of quantifiers
starting with an existential quantifier is complete for parametric problems in the
class Σp

i with respect to W -reductions, and that analogously the problem QBC-
SAT (Quantified Boolean Circuit Satisfiability) is complete for parametric prob-
lems in PSPACE with respect to W -reductions. We show the following results
about these problems:

1. If CIRCUITSAT is non-uniformly compressible within NP, then
ΣiCIRCUITSAT is non-uniformly compressible within NP, for any i ≥ 1.

2. If QBCSAT is non-uniformly compressible (or even if satisfiability of quan-
tified Boolean CNF formulae is non-uniformly compressible), then
PSPACE ⊆ NP/poly and PH collapses to the third level.

Next, we define Succinct Interactive Proof (Succinct IP) and by adapting the
proof of IP = PSPACE ([4,2]), we show that QBFORMULASAT (Quantified
Boolean Formula Satisfiability) is in Succinct IP. On the contrary if QBFORMU-
LASAT has Succinct PCPs ([11]), Polynomial Hierarchy (PH) collapses.

1 Introduction

An NP problem is said to be instance compressible if there is a polynomial-time reduc-
tion mapping instances of size m and parameter n to instances of size poly(n) (pos-
sibly of a different problem). The notion of instance compressibility for NP problems
was defined by Harnik and Naor ([5]) motivated by applications in cryptography. This
notion of compression is basically same as the notion of polynomial kernelizability
in parametrized complexity ([7,14,8]), which is motivated by algorithmic applications.
Fortnow and Santhanam showed ([11], Theorem 3.1) that the compressibility of the
satisfiability problem for Boolean formulae (even non-uniformly) is unlikely, since it
would imply that the Polynomial Hierarchy (PH) collapses. Since then, there’s been
a very active stream of research extending this negative result to other problems in
NP ([7,17] etc.). Instance compressibility is a useful notion for complexity theory as
well - Buhrman and Hitchcock ([6]) use it to study the question of whether NP has
sub-exponentially-sparse complete sets.

Given different possibilities of application of this notion, it is a natural question
whether we can extend it to other complexity classes, such as PH and PSPACE. Our

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 120–134, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Instance Compression for the Polynomial Hierarchy and beyond 121

first contribution here is to define such an extension. The key to defining instance com-
pressibility for NP problems is that there is a notion of “witness” for instances of NP
problems, and in general the witness size can be much smaller than the instance size.
We observe that the characterization of PH and PSPACE using alternating time Turing
machines yields a natural notion of “guess size” - namely the total number of non-
deterministic or co-non-deterministic bits used during the computation. We use this
characterization to extend the definition of compressibility to parametric problems in
PH and PSPACE in a natural way.

Some proposals ([8,9]) have already been made in the parametrized complexity set-
ting for defining in general the parametrized complexity analogue of a classical com-
plexity class. Our definition (Section 2) seems similar in spirit, but all the problems we
consider are in fact fixed-parameter tractable. What we are interested in is whether they
are instance-compressible, or equivalently whether they have polynomial-size kernels.

One of our main motivations is to provide a structural theory of compressibility, anal-
ogous to the theory in the classical setting. Intuitively, instance compressibility provides
a different, more relaxed notion of “solvability” than the traditional notion. So it is inter-
esting to study what kinds of analogues to classical results hold for the new notion. The
result of Fortnow and Santhanam ([11]) can be thought of as an analogue of the Karp-
Lipton theorem ([13], Theorem 6.1), since non-uniform compressibility is a weakening
of the notion of non-uniform solvability. Other well-known theorems in the classical
setting are that NP has polynomial-size circuits iff all of PH does, as well as the Karp-
Lipton theorem for PSPACE ([13], Theorem 4.1). The main results we prove here are
analogues of these results for instance compressibility.

Our first main result is, if the language CIRCUITSAT is non-uniformly compressible
within NP (i.e., the reduction is to an NP problem), then so is the language
ΣiCIRCUITSAT, which is in some sense complete for parametric problems in the class
Σp

i . Note that we need a stronger assumption here compared to that in the Fortnow-
Santhanam result ([11]): they need only to assume that SAT is compressible. This re-
flects the fact that the proof is more involved - it relies on the Fortnow-Santhanam result
([11]) as well as on the techniques used in the classical case. In addition, the code used
by the hypothetical compression for CIRCUITSAT shows up not just in the resulting
compression algorithm for ΣiCIRCUITSAT, but also in the instance generated - this
is why we need to work with circuits, as they can simulate any polynomial-time com-
putation. This ability to interpret code as data is essential to our proof. We give more
intuition about the proof in Section 3, where the detailed proof can also be found. We
also observe that under the assumption of Σ3CIRCUITSAT being compressible (we
make no assumption about the complexity of the set we are reducing to), all of the PH
is compressible as well.

Our second main result is that if QBCNFSAT is non-uniformly compressible, the
Polynomial Hierarchy collapses to the third level. The proof of this is easier and an
adaptation of the Fortnow-Santhanam technique ([11]) to PSPACE. Here we consider
an “OR” version of the problem as they do, and derive the collapse of the hierarchy
from the assumption that the OR version is compressible. In the case of NP, showing
that compressing the OR version is at least as easy as compressing SAT is easier as

122 C. Chakraborty and R. Santhanam

there are no quantifiers; however, this is not the case for PSPACE and this is where we
need to work a little harder.

Our third result is an analogue of the IP = PSPACE ([4,2]) result in the parametric
world. We define the class Succinct IP, which consists of parametric problems with
interactive protocols where the total amount of communication is polynomial in the
size of the parameter. We observe that the traditional proof of IP = PSPACE ([4,2])
can be adapted to show that the problem of determining whether a quantified Boolean
formula is valid, has succinct interactive proofs. This demonstrates a difference between
succinctness in an interactive setting and succinctness in a non-interactive setting - it is
shown in [11] that if SAT has succinct probabilistically checkable proofs, then PH
collapses.

There are many open problems in the compressibility theory for NP, such as, whether
there are any unlikely consequences of SAT being probabilistically compressible, and
whether the problem AND-SAT is deterministically compressible. Our hope is that
extending the theory to larger classes such as PH and PSPACE will give us more
“room” to work with. Besides, if we manage to settle these questions for the larger
classes, the techniques can be translated back to NP.

2 Some Complexity Theory Notions

Definition 1. Parametric problem: A parametric problem is a subset of { 〈 x, 1n 〉
| x ∈ {0, 1}∗, n ∈ N }. The term n is known as the parameter of the problem.

NP problems in parametric form: Now consider some popular NP languages in para-
metric form.
SAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable formula in CNF , and n is the number of variables
in ϕ}.
VC = {〈 G, 1k log(m) 〉 | G has a vertex cover of size at most k, where m = |G|}.
CLIQUE = {〈 G, 1k log(m) 〉 | G has a clique of size at least k, where m = |G|}.
DOMINATINGSET = {〈G, 1k log(m) 〉 |G has a dominating set of size at most k, where
m = |G|}.
OR-SAT = {〈 {ϕi }, 1n 〉 | At least one ϕi is satisfiable, and each ϕi is of bit-length at
most n}.

For the parametric problems above in NP, the parameter can be interpreted as the wit-
ness size for some natural NTM deciding the language. For example in SAT, the num-
ber of variables, which captures the witness of satisfiability problem, is taken as the
parameter. Note that in the definitions of the CLIQUE, VC and DOMINATINGSET prob-
lems, the parameter is k log(m) rather than k as in the typical parametrized setting. This
is because, here k log(m) bits will be required to represent the witness. We say that a
parametric problem is in NP if there is a polynomial-time NTM solving it.

Definition 2. Compression of parametric problem: Suppose here L is a parametric
problem. L is said to be compressible within a complexity class A if there is a polyno-
mial p(.), and a polynomial-time computable function f : {0, 1}∗ → {0, 1}∗, such that
for each x ∈ {0, 1}∗ and n ∈ N, |f(〈x, 1n〉)| ≤ p(n) and 〈x, 1n〉 ∈ L iff f(〈x, 1n〉) ∈
LA for some problem LA in the complexity class A.

Instance Compression for the Polynomial Hierarchy and beyond 123

We say the parametric problem L is compressible in general, if there exists any such
complexity class A as mentioned above, for the problem L to be compressed within.

Definition 3. Non-uniform Compression: A parametric problem L is said to be com-
pressible with advice s(., .) if the compression function is computable in deterministic
polynomial time when given access to an advice string of size s(m, n) which depends
only on m and n but not on the actual instance. Here m is the length of the paramet-
ric problem instance and n is the parameter. L is non-uniformly compressible if s is
polynomially bounded in m and n.

In other words, we can say that the machine compressing the parametric problem in the
preceding definition takes advice in case of Non-uniform Compression.

Definition 4. W-Reduction: [5] Given parametric problemsL1 andL2 , L1 W -reduces
to L2 (denoted L1 ≤w L2) if there is a polynomial-time computable function f and
polynomials p1 and p2 such that:

1.f (〈 x, 1n1 〉) is of the form 〈 y, 1n2 〉 where n2 ≤ p2(n1).
2.f (〈 x, 1n1 〉) ∈ L2 iff 〈 x, 1n1 〉 ∈ L1.

The semantics of a W -reduction is that if L1 W -reduces to L2 , it is at least as hard to
compress L2 as it is to compress L1 . If L1 ≤w L2 and L2 is compressible, then L1 is
compressible. One can prove that OR-SAT ≤w SAT ([18]).

As we have already mentioned, our primary objective is to extend the idea of com-
pression to higher classes, namely Polynomial Hierarchy (PH) and PSPACE [15]. In
our work, by a quantified Boolean formula, we mean a Boolean formula in prenex nor-
mal form where the quantifiers are in the beginning as follows, ψ = Q1 x1 Q2 x2 . . . Qn

xn φ, for any Boolean formula φ. Similarly we can consider quantified Boolean circuits.
Let us now consider some standard PH and PSPACE languages but in parametric form.

CIRCUITSAT = {〈 C, 1n 〉 | C is a satisfiable circuit, and n is the number of variables
in C}

ΣiSAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula in CNF with
i−1 alternations where odd position quantifiers are ∃ and even position quantifiers
are ∀, and n = (n1 + n2 + . . . + ni) where ni is the number of the variables
corresponding to ith quantifier}

ΣiCIRCUITSAT = {〈 C, 1n 〉 | C is a satisfiable quantified circuit with i − 1 alterna-
tions where odd position quantifiers are ∃ and even position quantifiers are ∀, and
n = (n1 +n2 + . . .+ni) where ni is the number of the variables corresponding to
ith quantifier}
Similarly we can define ΠiSAT and ΠiCIRCUITSAT in parametric form.

QBCNFSAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula in CNF ,
and n is the number of variables}

QBFORMULASAT = {〈 ϕ, 1n 〉 | ϕ is a satisfiable quantified Boolean formula (not
necessarily in CNF), and n is the number of variables}
If ϕ is replaced by the circuit C, then similarly we can define QBCSAT.

OR-QBCNFSAT = {〈 {ϕi }, 1n 〉 | Each ϕi is a quantified Boolean formula in CNF
and at least one ϕi is satisfiable, and each ϕi is of bit-length at most n}.

124 C. Chakraborty and R. Santhanam

Now we can generalize. For any language L we can define, OR-L = {〈 {xi }, 1n 〉 | At
least one xi ∈ L, and each xi is of bit-length at most n}.

Here we would like to mention that the non-parametric versions of ΣiCIRCUITSAT
and ΣiSAT are complete for the class Σp

i according to Cook-Levin reduction, and sim-
ilarly the non-parametric versions of QBCNFSAT, QBFORMULASAT and QBCSAT
are complete for PSPACE.

We can define a parametric problem corresponding to any language L in the class
Σp

i , or more precisely to the (i+1)-ary polynomial-time computable relationR defining
L, as follows.

Definition 5. For any (i+1)-ary polynomial-time computable relation R, we can define
a parametric problem in Σp

i , LR = {〈 x, 1n 〉 | ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi

ui ∈ {0, 1}ni R (x, u1 , . . . , ui) = 1 and n = (n1 + n2 + . . . + ni) where ni is the
parameter corresponding to ith quantifier}

We can do essentially the similar thing for any language L ∈ PSPACE using the char-
acterization of PSPACE as alternating polynomial time ([1], Corollary 3.6) as follows:

Proposition 1. Any language L is in PSPACE if and only if it is decidable by an
Alternating Turing machine in polynomial time.

Now we can define,

Definition 6. For any binary polynomial-time computable relation R, we can define a
parametric problem in PSPACE, LR = {〈 x, 1n 〉 | Q1 u1 ∈ {0, 1}n1 Q2 u2 ∈ {0, 1}n2

. . . Qi ui ∈ {0, 1}ni R (x, 〈 u1 , . . . , ui 〉) = 1 and n = (n1 + n2 + . . . + ni) where
all the Q variables denote ∃ or ∀ alternately, depending on whether its suffix is odd or
even, i is polynomially bounded with respect to the size of x and ni is the parameter
corresponding to ith quantifier}

So using the general definition of compression of any language in parametric form given
above, we can define the compression for all the PH and PSPACE parametric problems
where the “witness length” or “guess length” is the parameter of the problem.

Proposition 2. ΣiCIRCUITSAT is a complete parametric problem with respect to W -
reduction for the class of parametric problems in Σp

i .

Proof. Firstly we can observe that ΣiCIRCUITSAT is among the parametric problems
in the class Σp

i as there is an Alternating Turing Machine accepting this language with
i − 1 alternations, starting with existential guesses. Let us now consider the parametric
problem LR ∈ Σp

i . So there exists a polynomial-time computable relation R such that,
〈 x, 1n 〉 ∈ LR ⇔ ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni R (x, u1 , . . .
, ui) = 1, where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively.
Here n = (n1 + n2 + . . .+ ni).

Now for the parametric problem LR the parameter is the number of guess bits used
by R which is n in this case. We know that any polynomial time computable relation
has uniform polynomial size circuits ([15], Theorem 6.7). Let Cm be the circuit on
inputs of length m - we can generate Cm from 1m in polynomial time. Hence, 〈x, 1n〉
∈ LR ⇔ ∃ u1 ∈ {0, 1}n1 ∀ u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni Cm (x, u1 , . . . , ui) = 1,

Instance Compression for the Polynomial Hierarchy and beyond 125

where Qi denotes ∃ or ∀ depending on whether i is odd or even respectively. This gives
a W -reduction from the parametric problem LR to ΣiCIRCUITSAT, since the length
of the parameter is preserved. ��

A similar proposition holds for ΠiCIRCUITSAT as well. We can also show, using a
similar proof, a completeness result for PSPACE as follows.

Proposition 3. QBCSAT is a complete parametric problem for the class of parametric
problems in PSPACE with respect to W -reduction.

Proof. Firstly we can observe that QBCSAT is among the parametric problems in the
class PSPACE as there is an Alternating Turing Machine accepting this language with
at most n alternations, where n is the number of variables of the QBCSAT instance. Let
us now consider the parametric problem LR ∈ PSPACE. So there exists a polynomial-
time computable relation R such that,
〈 x, 1n 〉 ∈ LR ⇔ Q1 u1 ∈ {0, 1}n1 Q2 u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni R (x, 〈 u1 ,
. . . , ui 〉) = 1, where all the Q variables denote ∃ or ∀ alternately, depending on whether
its suffix is odd or even. i is polynomially bounded with respect to the size of x. Here n
= (n1 + n2 + . . .+ ni).

Now for the parametric problem LR the parameter is the number of guess bits used
by R which is n in this case. We know that any polynomial time computable relation has
uniform polynomial size circuits ([15], Theorem 6.7). Let Cm be the circuit on inputs
of length m - we can generate Cm from 1m in polynomial time. Hence, 〈x, 1n〉 ∈ LR

⇔ Q1 u1 ∈ {0, 1}n1 Q2 u2 ∈ {0, 1}n2 . . . Qi ui ∈ {0, 1}ni Cm (x, 〈 u1 , . . . , ui 〉) =
1, where all the Q variables denote ∃ or ∀ alternately, depending on whether its suffix is
odd or even. This gives a W -reduction from the parametric problem LR to QBCSAT,
since the length of the parameter is preserved. ��

We note that all the parametric problems we have defined so far are in fact fixed-
parameter tractable, simply by using brute force search.

Proposition 4. QBCSAT is solvable in time O(2npoly(m)) by brute force enumera-
tion.

3 Instance Compression for Polynomial Hierarchy

3.1 Instance Compression in Second Level

In this section, we are going to show that non-uniform compression of CIRCUITSAT
within NP implies the non-uniform compression of Σ2CIRCUITSAT within NP as well.
In the next subsection, essentially by using induction we show how to extend this to
the entire Polynomial Hierarchy. We have used the following result by Fortnow and
Santhanam ([11], Theorem 3.1):

Theorem 1. If OR-SAT is compressible, then CONP ⊆ NP/poly, and hence PH col-
lapses.

The same technique actually shows that, any language L for which OR-L (section 2) is
compressible, lies within CoNP/poly.

126 C. Chakraborty and R. Santhanam

Theorem 2. If CIRCUITSAT is non-uniformly compressible within NP, then
Σ2CIRCUITSAT is non-uniformly compressible within NP.

Proof. Let us consider the parametric problem Σ2CIRCUITSAT first. For the sake of
convenience, we often omit the parameter when talking about an instance of this prob-
lem. According to the definition,

C ∈ Σ2CIRCUITSAT ⇔ ∃u ∈ {0, 1}n1∀v ∈ {0, 1}n2C(u, v) = 1 (1)

Let m be the length of the description of the circuit C and n = (n1 + n2) to be the
number of variables of C.

Let us now fix a specific u = u1. Now, we can define a new parametric problem L
′

as follows,
〈C, u1, 1

n2〉 ∈ L
′ ⇔ ∀v ∈ {0, 1}n2C(u1, v) = 1 (2)

It is clear from the above definition that L
′

is a parametric problem in CoNP (of in-
stance size ≤ O(m + n1)) and any instance of L

′
can be polynomial-time reduced to

an instance of CIRCUIT-UNSAT, say C
′

(because CIRCUIT-UNSAT, the parametric
problem of all unsatisfiable circuits, is CoNP-Complete with respect to W -reduction).
As shown in Proposition 2, the size of the witness will be preserved in this reduction.

C ∈ Σ2CIRCUITSAT ⇔ ∃u1〈C, u1〉 ∈ L
′

and 〈C, u1〉 ∈ L
′ ⇔ C

′ ∈ CIRCUIT-
UNSAT. Here the instance length |C| = m and |C ′ | = poly(m). poly(.) is denoting just
an arbitrary polynomial function.

Let g be the polynomial-time reduction used to obtain C
′

from C and u1. Namely,
C

′
= g(C, u1). If CIRCUITSAT is non-uniformly compressible within NP, using the

same reduction we can non-uniformly compress CIRCUIT-UNSAT within CoNP. That
means we can reduce a CIRCUIT-UNSAT instance into another CIRCUIT-UNSAT in-
stance in polynomial time, as CIRCUIT-UNSAT is CoNP-complete with respect to W -
reduction. Assume this polynomial time compression function be f1 with polynomial
size advice. So we will use f1 to compress CIRCUIT-UNSAT instance C

′
to another

CIRCUIT-UNSAT instance, say C
′′

, of size poly(n2).
Therefore, C

′ ∈ CIRCUIT-UNSAT ⇔ C
′′

= f1(C
′
, w1) = f1(g(C, u1), w1) ∈

CIRCUIT-UNSAT, where |C ′′ | = poly(n2) and the string w1 (of size at most poly(m))
is capturing the notion of polynomial size advice. Here the compression function f1 is
computable in polynomial (in m) time.

Now, if CIRCUITSAT is non-uniformly compressible within NP so is SAT as SAT
is W -reducible to CIRCUITSAT. Now, OR-SAT is also non-uniformly compressible
as OR-SAT W -reduces to SAT. It can be proved from Theorem 1 that if OR-SAT is
non-uniformly compressible then CoNP ⊆ NP/poly, as mentioned in the beginning of
this section.

Now combining the statements in the above paragraph we can say that if CIRCUIT-
SAT is non-uniformly compressible within NP then CoNP ⊆ NP/poly. So we can now
reduce our parametric problem in CoNP (here CIRCUIT-UNSAT) instance C

′′
to a NP-

complete parametric problem instance using polynomial size advice. As CIRCUITSAT
is a NP-complete with respect to W -reduction, we can reduce C

′′
to a CIRCUITSAT

instance, say C
′′′

, using a polynomial time computable function f2 with advice w2. In
the above procedure, the length of the instance definitely will not increase by more than
a polynomial factor. So clearly |C ′′′ | = poly(n2).

Instance Compression for the Polynomial Hierarchy and beyond 127

So from the above arguments we can say that,
C

′ ∈ CIRCUIT-UNSAT ⇔C
′′′

= f2(C
′′

,w2) = f2(f1(g(C, u1), w1),w2) ∈ CIRCUIT-
SAT, where |C ′′′ | = poly(n2) and the string w2 (of size at most poly(n2)) is capturing
the notion of polynomial size advice which arises in the proof of Theorem 1. Here the
function f2 is computable in polynomial (in n2) time.

Now we define a new circuit C1 as follows. C1 is a non-deterministic circuit whose
non-deterministic input is divided into two strings: u of length n1 and v of length
poly(n2). Given its non-deterministic input, C1 first computes C

′′′
= f2((f1(g(C, u),

w1), w2). This can be done in polynomial size in m since the functions f2, f1 and g are
all polynomial-time computable and C, w1 and w2 are all fixed strings of size polyno-
mial in m. It then uses its input v as non-deterministic input to C′′′ and checks if v sat-
isfies C′′′. This can be done in polynomial-size since the computation of a polynomial-
size circuit can be simulated in polynomial time. If so, it outputs 1, else it outputs 0.
Now we have

C ∈ Σ2CIRCUITSAT ⇔ ∃u ∈ {0, 1}n1∃v ∈ {0, 1}n2C1(u, v) = 1 (3)

The key point is that we have reduced our original Σ2CIRCUITSAT question to a CIR-
CUITSAT question, without a super-polynomial blow-up in the witness size. This allows
us to apply the compressibility hypothesis again. Also, note that C1 is computable from
C in polynomial size.

After that, using the compressibility assumption for CIRCUITSAT, we can non-
uniformly compress C1 to an instance C2 of size poly(n1 + n2) of a parametric prob-
lem in NP. Our final compression procedure just composes the procedures deriving C1

from C and C2 from C1, and since each of these can be implemented in polynomial
size, our compression of the original Σ2CIRCUITSAT instance is a valid non-uniform
instance compression. Thus it is shown that if CIRCUITSAT is non-uniformly compress-
ible within NP, Σ2CIRCUITSAT is also non-uniformly compressible within NP. ��

3.2 Instance Compression for Higher Levels

Now we are going to extend the idea for higher classes. It is not that difficult to see, if
Σ2CIRCUITSAT is non-uniformly compressible within NP, Π2CIRCUITSAT is non-
uniformly compressible within CoNP. We will use this in the following theorem.

Theorem 3. If CIRCUITSAT is non-uniformly compressible within NP, then
ΣiCIRCUITSAT is non-uniformly compressible within NP for all i > 1.

Proof Outline. We are going use induction here. Let us assume CIRCUITSAT is non-
uniformly compressible within NP. To prove ΣiCIRCUITSAT is compressible for all i
> 1, the base case i = 2, directly follows from Theorem 2. Now suppose the statement
is true for all i ≤ k. We have to prove that the statement is true for i = k + 1 as well.
So we are now assuming that ΣiCIRCUITSAT is non-uniformly compressible within
NP for all i ≤ k and going to prove that Σk+1CIRCUITSAT is also non-uniformly
compressible within NP.

Now, fixing the first variable, u1 to u
′

of Σk+1CIRCUITSAT instance C as before,
we can define a new language similarly as we did in the proof of Theorem 2. Using sim-
ilar argument we can introduce a circuit C1 as well. The key point is, we can reduced

128 C. Chakraborty and R. Santhanam

our original Σk+1CIRCUITSAT instance to an instance of ΣkCIRCUITSAT. Hence
using the induction step, we can reduce it to a CIRCUITSAT instance, without a super-
polynomial blow-up in the witness size. This allows us to apply the compressibility
hypothesis again. Also, note that C1 is computable from C in polynomial size. Next,
using the compressibility assumption for CIRCUITSAT, we can non-uniformly com-
press C1 to an NP language instance C2 of size poly(n1 + n

′
) i.e. poly(n1 + . . . +

nk+1). So using mathematical induction we can say if CIRCUITSAT is non-uniformly
compressible within NP, ΣiCIRCUITSAT is also non-uniformly compressible within
NP for all i > 1. ��

Corollary 1. If CIRCUITSAT is compressible within NP, ΠiCIRCUITSAT is also non-
uniformly compressible within NP for all i ≥ 1.

As ΠiCIRCUITSAT W -reduces to Σi+1CIRCUITSAT, the above Corollary is trivial.
Theorems 2 and 3 require an assumption on non-uniform compressibility in NP. But
we don’t need this for compressibility of a problem higher in the hierarchy.

Proposition 5. If Σ3CIRCUITSAT is compressible, then ΣiCIRCUITSAT is compress-
ible for any i > 3.

Proof. This proposition follows from the fact that Σ3CIRCUITSAT being compressible
implies that SAT is compressible. So, by the result of Fortnow and Santhanam (Theo-
rem 1), PH collapses to Σp

3 . As a result, every parametric problem in the class Σp
i

W -reduces to Σ3CIRCUITSAT, as Σ3CIRCUITSAT is complete for the class Σp
3 with

respect to W -reduction. Hence, Σ3CIRCUITSAT being compressible, ΣiCIRCUITSAT
is compressible for any i > 3. ��

4 Instance Compression for PSPACE

In this section, we show that QBCNFSAT is unlikely to be compressible, even non-
uniformly - compressibility of QBCNFSAT implies that PSPACE collapses to the
third level of the Polynomial Hierarchy. The strategy we adopt is similar to that in
Theorem 1 where it is shown that compressibility of SAT implies NP ⊆ CoNP/poly.
To show their result, they used the OR-SAT problem, which is W -reducible to SAT
([18]). Thus an incompressibility result for the OR-SAT problem translates directly to
a corresponding result for SAT.

We similarly defined OR-QBCNFSAT problem in Section 2. But it is not that easy
to show that OR-QBCNFSAT W -reduces to QBCNFSAT. There are a couple of dif-
ferent issues. First the quantifier patterns for the formulae {φi}, i = 1 . . .m might all
be different. This is easily taken care of, because we can assume quantifiers alternate
between existential and universal - this just blows up the number of variables for any
formula by a factor of at most 2. The more critical issue is that nothing as simple as
the OR works for combining formulae. ∃x∀yφ1(x, y)∨∃x∀yφ2(x, y) is not equivalent
to ∃x∀y(φ1(x, y) ∨ φ2(x, y)). We are forced to adopt a different strategy as explained
below. Later we have found similar strategy is used in [18], though it was in the context
of OR-SAT, not OR-QBCNFSAT.

Instance Compression for the Polynomial Hierarchy and beyond 129

Lemma 1. OR-QBCNFSAT is W-reducible to QBCNFSAT

Proof. Let 〈{φi}, 1n〉 be an OR-QBCNFSAT instance of length m. Assume with-
out loss of generality that each φi has exactly n variables and that the quantifiers al-
ternate starting with existential quantification over x1, continuing with quantification
over x2, x3 etc. We construct in polynomial time in m an equivalent instance of QBC-
NFSAT with at most poly(n) variables and of size poly(m). We first take care of
quantifications. The quantifier patterns for the formulae {φi}, i = 1 . . .m might all be
different. But we can assume quantifiers alternate between existential and universal -
this just blows up the number of variables for any formula by a factor of at most 2.
Then we check if the number of input formulae is greater than 2n or not. If yes, we
solve the original instance by brute force search and output either a trivial true formula
or a trivial false formula depending on the result of the search. If not, then we define a
new formula with �log(m)
 additional variables y1, y2 . . . yk. We identify each number
between 1 and m uniquely with a string in {0, 1}k. Now we define the formula ψi corre-
sponding to φi as follows. Let the string wi ∈ {0, 1}k correspond to the number i. Then
ψi = z1∧z2 . . .∧zk∧φi, where zr = yr if wr = 1 and the complement of yr otherwise.
The output formula ψ starts with existential quantification over the y variables followed
by the standard pattern of quantification over the x variables followed by the formula
which is the OR of all ψi’s, i = 1 . . .m. So ψ will be as follows:
ψ = ∃ y1 ∃ y2 . . . ∃ yk Q1 x1 Q2 x2 . . . Qn xn (ψ1 ∨ ψ2 ∨ . . . ∨ ψm).
Where Qi’s are the quantifications of the xi’s as before. It is not that hard to check that
ψ is valid iff one of the φi’s is. ��

Theorem 4. If QBCNFSAT is compressible, then PSPACE ⊆ NP/poly, and hence
PSPACE = Σp

3 .

Proof. Using Lemma 1, if QBCNFSAT is compressible, OR-QBCNFSAT is also
compressible. From the proof of Theorem 1 we can say for any parametric problem
L for which OR-L (section 2) is compressible, lies in CoNP/poly. Thus, since the
parametric problem QBCNFSAT is PSPACE-complete and PSPACE is closed under
complementation, a compression for OR-QBCNFSAT implies PSPACE is in NP/poly.
Hence by the result of Yap [3], it follows that PH collapses to the third level. Combining
this with the Karp-Lipton theorem for PSPACE ([13], Theorem 4.1), we have that
PSPACE = Σp

3 . ��

5 Succinct IP and PSPACE

IP ([16,10]) is the class of problems solvable by an interactive proof system. An interac-
tive proof system consists of two machines, a Prover, P , which presents a proof that a
input string is a member of some language, and a V erifier, V , that checks that the pre-
sented proof is correct. Now we are extending this idea of IP to Succinct IP, where the
total number of bits communicated between prover and the verifier is polynomially
bounded in parameter length.

We define V erifier to be a function V that computes its next transmission to the
Prover from the message history sent so far. The function V has three inputs:

130 C. Chakraborty and R. Santhanam

(1) Input String, (2) Random input and (3) Partial message history
m1#m2# . . .#mi is used to represent the exchange of messagesm1 throughmi be-

tween P and V . The Verifier’s output is either the next message mi+1 in the sequence or
accept or reject, designating the conclusion of the interaction. Thus V has the function
from V : Σ∗ × Σ∗ × Σ∗ → Σ∗ ∪ { accept, reject }.

The Prover is a party with unlimited computational ability. We define it to be a
function P with two inputs:

(1) Input String and (2) Partial message history
The Prover’s output is the next message to the Verifier. Formally, P : Σ∗ × Σ∗ → Σ∗.
Next we define the interaction between Prover and the Verifier. For particular input
string w and random string r, we write (V ↔ P)(w, r) = accept if a message sequence
m1 to mk exists for some k whereby

1. for 0 ≤ i < k, where i is an even number, V (w, r, m1#m2# . . .#mi) = mi+1;
2. 0 < i < k, where i is an odd number, P (w, m1#m2# . . .#mi) = mi+1; and
3. the final message mk in the message history is accept.

In the definition of the class Succinct IP, the lengths of the Verifier’s random input
and each of the messages exchanged are p(n) for some polynomial p that depends only
on the Verifier. Here n is the parameter length of input instance. Besides, total bits of
messages exchanged is at most p(n) as well.

Succinct IP: A parametric problem L (⊆ {〈x, 1n〉|x ∈ {0, 1}∗, n ∈ N}) is in Suc-
cinct IP if there exist some polynomial time function V and arbitrary function P ,
with total poly(n) many bits of messages communicated between them and for
every function P̃ and string w,
1. w ∈ L implies Pr[V ↔ P] ≥ 2/3, and
2. w /∈ L implies Pr[V ↔ P̃] ≤ 1/3.

Here poly(n) denotes some polynomial that depends only on the Verifier and n is
the parameter length of input instance w.

We know that QBFORMULASAT is in IP, as IP = PSPACE ([4,2]). But we can even
prove something more. Not only for QBCNFSAT, we can construct Succinct IP pro-
tocol for QBFORMULASAT as well. To prove that we are basically going to adapt the
formal proof of the part, PSPACE ⊆ IP ([4,2,12]).

Proposition 6. QBFORMULASAT ∈ SUCCINCT IP

Proof. The key idea is to take an algebraic view of Boolean formulae by representing
them as polynomials. We are considering the inputs are from some finite field F. We can
see that 0, 1 can be thought of both as truth values and as elements of F. Thus we have
the following correspondence between formulas and polynomials when the variables
take 0/1 values:
x ∧ y ↔ X . Y
x̄ ↔ 1 - X
x ∨ y ↔ X*Y = 1 - (1 - X)(1 - Y)

So, if there is a Boolean formula φ(x1, x2, . . . , xn) of length m, we can easily convert
that into a polynomial p of degree at most m following the rules described above.

Instance Compression for the Polynomial Hierarchy and beyond 131

Let the given formula be,
Ψ = Q1 x1 Q2 x2 Q3 x3 . . . Qn xn φ(x1, . . . , xn),
where the size of Ψ is m. φ is any Boolean formula over n variables.
To arithmetize Ψ we introduce some new terms in quantification and rewrite the

expression in the following manner:

Ψ
′

= Q1 x1 R x1 Q2 x2 R x1 R x2 Q3 x3 R x1 R x2 R x3 . . . Qn xn R x1 R x2

. . . R xn φ(x1, . . . , xn),

Here R is introduced to enable linearize operation on the polynomial as explained later.
We now rewrite this Ψ

′
as follows : Ψ

′
= S1 x1 S2 x2 S3 x3 . . . Sk xk [φ], where each

Si ∈ { ∃, ∀, R }. We are going to define R very soon. We can see that value of k can be
at most O(n2).

For each i ≤ k we define the function fi. We define fk(x1, x2,. . . , xn) to be the
polynomial p [i.e. p(x1, x2, . . . , xn)] obtained by arithmetization of φ. For i < k we
define fi in terms of fi+1:

Si+1 =∀: fi(. . .) = fi+1(. . . , 0).fi+1(. . . , 1);
Si+1 =∃: fi(. . .) = fi+1(. . . , 0)*fi+1(. . . , 1);
Si+1 =R: fi(. . . , a) = (1-a)fi+1(. . . , 0) + afi+1(. . . , 1).

Here we reorder the inputs of the functions in such a way that variable yi+1 is always
the last argument. If S is ∃ or ∀, fi has one fewer input variable than fi+1 does. But if
S is R, both of them have same number of arguments. To avoid complicated subscripts,
we use “. . .” which can be replaced by a1 through aj for appropriate values of j after
the reordering of the inputs.

We can observe that operation R on polynomial doesn’t change their values for
Boolean inputs. So f0() is still the truth value of Ψ . Now we can observe that these
Rx operation produces a result that is linear in x. We added Rx1 Rx2 . . . Rxi after
Qixi in Ψ

′
in order to reduce the degree of each variable to 1 prior to the squaring due

to arithmetization of Qi.
We are now ready to describe the protocol. Here P is denoted to be the prover and

V to be the verifier as we always use.

Phase 0: [P sends f0()]
P → V : P sends f0() to V . V checks that f0() = 1 and rejects if not.

Progressing similarly,

Phase i: [P persuades V that fi−1(r1, . . .) is correct if fi(r1, . . . , r) is correct]
P → V : P sends the coefficients of fi(r1, . . . , z) as a polynomial in z. (Here r1 . . .
denotes a setting of the variables to the previously selected random values r1, r2, . . .)
V uses these coefficients to evaluate fi(r1, . . . , 0) and fi(r1, . . . , 1). Then it checks that
the polynomial degree is at most 2 and that these identities hold:

fi−1(r1, . . .) =

{
fi(r1, . . . , 0).fi(r1, . . . , 1) if Si = ∀
fi(r1, . . . , 0) ∗ fi(r1, . . . , 1) if Si = ∃

and

132 C. Chakraborty and R. Santhanam

fi−1(r1, . . . , r) = (1 − r)fi(r1, . . . , 0) + rfi(r1, . . . , 1) if Si = R

If either fails, V rejects.
V → P : V picks a random Boolean value r from F and sends it to P . If Si = R, this

r replaces the previous r
Then it goes to phase i+1, where P must persuade V that fi(r1, . . . , r) is correct.
Progressing similarly,

Phase k+1: [V checks directly that fk(r1, . . . , rn) is correct]
V evaluates p(r1,. . .,rn) to compare with the value V has for fk(r1, . . . , rn). If they are
equal, V accepts, otherwise V rejects. That completes the description of the protocol.

Here polynomial p is nothing but the arithmetization of the formula φ, as we have
already seen. It can be shown that the evaluation of this polynomial can be done in
polynomial time.

For the evaluation of the polynomial p for r1, . . . , rn, we will consider φ and apply
the arithmetization for the nodes individually. We will evaluate the nodes from lower
level. Before we evaluate for any node, corresponding inputs are already evaluated and
ready to use. Evaluation for each node will take constant amount of time. So total eval-
uation of p for r1, . . . , rn through modified φ will take poly(m) time.

Now we can try to prove that the probability of error is bounded within the limit. If
the prover P always returns the correct polynomial, it will always convince V . If P is
not honest then we are going to prove that V rejects with high probability:

Pr[V rejects] ≥ (1 − d/|F|)k (4)

where d is the highest degree of the polynomial sent in each stage. We can see that value
of k can be at most O(n2). As the value of d is 2 in our case, the right hand side of the
above expression is at least (1 - 2k/|F|), which is very close to 1 for sufficiently large
values of |F|. It will be sufficient for us if |F| is bounded by a large enough polynomial
in n.

Now we are going to see how the proof works when the proves is trying to cheat
for “no” instance. In the first round, the prover P should send f0() which must be 1.
Then P is supposed to return the polynomial f1. If it indeed returns f1 then since f1(0)
+ f1(1) �= f0() by assumption, V will immediately reject (i.e., with probability 1). So
assume that the prover returns some s(X1), different from f1(X1). Since the degree d
non-zero polynomial s(X1) - f1(X1) has at most d roots, there are at most d values r
such that s(r) = f1(r). Thus when V picks a random r,

Prr[s(r) �= f1(r)] ≥ (1 − d/|F|) (5)

Then the prover is left with an incorrect claim to prove in all the phases. So prover
should lie continuously. If P is lucky, V will not understand the lie. To prove equation
(4), we will use induction here. We assume the induction hypothesis to be true for
k − 1 steps, that is, the prover fails to prove this false claim with probability at least ≥
(1 − d/|F|)k−1. Base case is easy to see from equation (5). Thus we have,

Pr[V rejects] ≥ (1 − d/|F|).(1 − d/|F|)k−1 = (1 − d/|F|)k (6)

Instance Compression for the Polynomial Hierarchy and beyond 133

If P is not lucky, as the verifier is evaluating p() explicitly in the last stage, V will
anyway detect the lie.

Here in the description of the protocol, we can see that the degree of the polynomial
at each stage is at most 2. So we need just constant number of coefficients for encod-
ing such polynomials. coefficients are from the field F which is of size poly(m). So
O(log(poly(m))) i.e. O(poly(n)) size messages are sent in any phase. Even, it will be
sufficient for us if |F| is bounded by a large enough polynomial in n. Number of such
phases are bounded by (k+1) which is O(n2). So we have constructed a Succinct Inter-
active proof protocol for QBFORMULASAT. ��

Issue in finding Succinct IP protocol for QBCSAT: In case of QBCSAT, similar
arithmetization technique will give polynomial of degree much larger size, actually ex-
ponential in m. Now, to reduce the error, we have to use Field F of larger size, basically
exponential in m. This will give us each coefficients of the polynomials exchanged be-
tween prover and verifier to be of size log(epoly(m)), i.e. poly(m), which means the
protocol is not succinct.

6 Future Directions

There are various possible directions. Suppose CIRCUITSAT is compressible within a
class C. Here we have considered C to be the class NP and got some interesting results.
For any general class C we know from Theorem 1 that the immediate consequence is the
collapse of PH at third level. But it is still not known how our results for compression at
second level of Polynomial Hierarchy will be affected for compression into an arbitrary
class C. Besides, one could try to work under the weaker assumption that SAT or OR-
SAT or OR-CIRCUITSAT is compressible instead of CIRCUITSAT. We also don’t
know whether there are similar implications for probabilistic compression where we
allow certain amount of error in compression. One could also try to find a Succinct IP
protocol for QBCSAT to show Succinct IP = PSPACE or try to find some negative
implications of such a protocol existing for QBCSAT.

References

1. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–
133 (1981)

2. Shamir, A.: IP = PSPACE. Journal of the ACM 39(4), 869–877 (1992)
3. Yap, C.K.: Some consequences of non-uniform conditions on uniform classes. Theoretical

Computer Science 26, 287–300 (1983)
4. Lund, C., Fortnow, L., Karloff, H., Nisan, N.: Algebraic methods for interactive proof sys-

tems. Journal of the ACM 39(4), 859–868 (1992)
5. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic applications.

In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science,
pp. 719–728 (2006)

6. Buhrman, H., Hitchcock, J.M.: NP-Hard Sets are Exponentially Dense Unless NP is con-
tained in coNP/poly. Elect. Colloq. Comput. Complex (ECCC) 15(022) (2008)

7. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without poly-
nomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

134 C. Chakraborty and R. Santhanam

8. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
9. Abrahamson, K.A., Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and com-

pleteness IV: On completeness for W[P] and PSPACE analogs. Annals of pure and applied
logic 73, 235–276 (1995)

10. Babai, L., Moran, S.: Arthur-Merlin games: a randomized proof system, and a hierarchy of
complexity classes. Journal of Computer and System Sciences 36, 254–276 (1988)

11. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP.
Journal of Computer and System Sciences 77(1), 91–106 (2011); special issues celebrating
Karp’s Kyoto Prize

12. Sipser, M.: Introduction to the Theory of Computation. Course Technology, 2nd edn. (2005)
13. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity

classes. In: Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing,
pp. 302–309 (1980), doi:10.1145/800141.804678

14. Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford University Press (2006)
15. Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge Univer-

sity Press (2009)
16. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge complexity of interactive proof-

systems. In: Proceedings of 17th ACM Symposium on the Theory of Computation, Provi-
dence, Rhode Island, pp. 291–304 (1985)

17. Kratsch, S., Wahlström, M.: Preprocessing of Min Ones Problems: A Dichotomy. In: Abram-
sky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010,
Part I. LNCS, vol. 6198, pp. 653–665. Springer, Heidelberg (2010)

18. Chen, Y., Flum, J., Muller, M.: Lower bounds for kernelizations. CRM Publications (Novem-
ber 2008)

Polynomial Time and Parameterized

Approximation Algorithms for Boxicity

Abhijin Adiga1, Jasine Babu2, and L. Sunil Chandran2

1 Network Dynamics and Simulation Science Laboratory,
Virginia Bioinformatics Institute, Virginia Tech Blacksburg, VA 24061, USA

2 Department of Computer Science and Automation,
Indian Institute of Science, Bangalore 560012, India

abhijin@vbi.vt.edu, {jasine,sunil}@csa.iisc.ernet.in

Abstract. The boxicity (cubicity) of a graph G, denoted by box(G)
(respectively cub(G)), is the minimum integer k such that G can be
represented as the intersection graph of axis parallel boxes (cubes) in
R

k. The problem of computing boxicity (cubicity) is known to be in-
approximable in polynomial time even for graph classes like bipartite,
co-bipartite and split graphs, within an O(n0.5−ε) factor for any ε > 0,
unless NP = ZPP .

We prove that if a graph G on n vertices has a clique on n − k ver-

tices, then box(G) can be computed in time n22O(k2 log k). Using this fact,
various FPT approximation algorithms for boxicity are derived. The pa-
rameter used is the vertex (or edge) edit distance of the input graph from
certain graph families of bounded boxicity - like interval graphs and pla-

nar graphs. Using the same fact, we also derive an O
(

n
√

log logn√
log n

)
factor

approximation algorithm for computing boxicity, which, to our knowl-
edge, is the first o(n) factor approximation algorithm for the problem.
We also present an FPT approximation algorithm for computing the
cubicity of graphs, with vertex cover number as the parameter.

Keywords: Boxicity, Parameterized Algorithm, Approximation Algo-
rithm.

1 Introduction

Let G(V , E) be a graph. If I1, I2, . . ., Ik are (unit) interval graphs on the vertex
set V such that E(G) = E(I1)∩E(I2)∩· · ·∩E(Ik), then {I1, I2, . . ., Ik} is called
a box (cube) representation of G of dimension k. The boxicity (cubicity) of an
incomplete graph G, box(G) (respectively cub(G)), is defined as the minimum
integer k such that G has a box (cube) representation of dimension k. For a
complete graph, it is defined to be zero. Equivalently, boxicity (cubicity) of G is
the minimum integer k such that G can be represented as the intersection graph
of axis parallel boxes (cubes) in Rk. Boxicity was introduced by Roberts [15] in
1969 for modeling problems in the social sciences and ecology. Box representa-
tions of low dimension are memory efficient for representing dense graphs. Some

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 135–146, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

136 A. Adiga, J. Babu, and L.S. Chandran

well known NP-hard problems like the max-clique problem are polynomial time
solvable, if low dimensional box representations are known [16].

Boxicity is a combinatorially well studied parameter and its bounds in terms of
parameters like maximum degree [2] and tree-width [7] are known. Roberts [15]
showed that for any graph G on n vertices, box(G) ≤

⌊
n
2

⌋
and cub(G) ≤

⌊
2n
3

⌋
.

In 1986, Thomassen [17] proved that the boxicity of planar graphs is at most
3. Boxicity is also closely related to other dimensional parameters of graphs like
partial order dimension and threshold dimension [2,1,19].

Cozzens [8] proved that computing boxicity is NP-hard. In fact, determin-
ing whether a graph has boxicity 2 is itself NP-hard (see Yannakakis [19] and
Kratochv́ıl [11]). Recently, Adiga et al. [1] proved that it is not possible to ap-
proximate boxicity within a factor of O(n0.5−ε) for any ε > 0 in polynomial
time, even for bipartite, co-bipartite and split graphs, unless NP = ZPP . In
this work, we present o(n) factor approximation algorithms for computing box-
icity and cubicity - the first of their kind, to our knowledge.

Since NP-hard problems are often impractical to solve, it is natural to in-
troduce parameters along with the input, and design algorithms which run in
polynomial time for small values of the parameter. We say that a decision prob-
lem with input size n and a parameter k is Fixed Parameter Tractable (FPT) if
the problem can be decided in time f(k) · nO(1), for some computable function
f . Often, a similar terminology is used in the case of optimization problems too.
An FPT approximation algorithm is an approximation algorithm that runs in
f(k) · nO(1) time. For an introduction to parameterized complexity, please refer
to [14].

The decision problem Boxicity takes a graph on n vertices and an integer b
as inputs and asks whether box(G) ≤ b. The standard parameterization of this
problem using boxicity itself as the parameter k is meaningless since the problem
is NP-hard even for k = 2. Parameterizations with vertex cover number (MVC),
minimum feedback vertex set size (FVS) and max leaf number as parameters
were studied by Adiga et al. [3]. With vertex cover number as the parameter

k, they gave an algorithm which computes boxicity exactly in 2O(2kk2)n time,
and another algorithm which gives an additive one approximation for boxicity
in 2O(k2 log k)n time, where n is the number of vertices in the graph. Using FVS
as the parameter k, they gave a 2 + 2

box(G) factor approximation algorithm to

compute boxicity that runs in 2O(2kk2)nO(1) time. With max leaf number as the
parameter k, they gave an additive two approximation algorithm for boxicity
that runs in 2O(k3 log k)nO(1) time.

In this work, we consider vertex and edge edit distance from families of graphs
of bounded boxicity as parameters. The notion of edit distance refers, in gen-
eral, to the smallest number of some well-defined modifications to be applied
to the input graph so that the resultant graph possesses some desired proper-
ties. Edit distance from graph classes is a well-studied problem in parameterized
complexity [5,10,13,18].

Cai [6] introduced a framework for parameterizing problems with edit distance
as the parameter. For a family F of graphs, and k ≥ 0 an integer, the author

Approximation Algorithms for Boxicity 137

used F + ke (respectively, F − ke) to denote the family of graphs that can be
converted to a graph in F by deleting (respectively, adding) at most k edges,
and F+kv to denote the family of graphs that can be converted to a graph in F
by deleting at most k vertices. Cai [6] considered the parameterized complexity
of the vertex coloring problem on F −ke, F +ke and F +kv for various families
F of graphs, with k as the parameter. This was further studied by Marx [12].

In the same framework, we consider the parameterized complexity of comput-
ing the boxicity of F + k1e− k2e and F + kv graphs for families F of bounded
boxicity graphs, using k1 + k2 and k as parameters. We will see that many rele-
vant parameters for the boxicity problem, including MVC and FVS considered
by Adiga et al. [3], are special cases of our parameters. We provide an improved
FPT algorithm with the parameter FVS and give FPT approximation algorithms
with some parameters smaller than MVC. With the parameter max leaf num-
ber, our method achieves the same result as obtained in Adiga et al. [3]. (See
corollaries 1-7 for more details.)

We also give a factor-2 FPT approximation algorithm for cubicity, using vertex
cover number as the parameter. This can be improved to a (1+ε) factor algorithm
for any ε > 0, by sacrificing more on the running time.

2 Prerequisites

In this section, we give some basic facts necessary for the later part of the paper.
For a vertex v ∈ V of a graph G, we use NG(v) to denote the set of neighbors of
v in G. We use G[S] to denote the induced subgraph of G(V,E) on the vertex
set S ⊆ V . Let I be an interval representation of an interval graph G(V,E). We
use lv(I) and rv(I) respectively to denote the left and right end points of the
interval corresponding to v ∈ V in I. The interval is denoted as

[
lv(I), rv(I)

]
.

Lemma 1 (Roberts [15]). Let G(V, E) be any graph. For any x ∈ V , box(G) ≤
1 + box(G \ {x}).
The following lemmas are easy to prove.

Lemma 2. Let G(V,E) be a graph. Let S ⊆ V be such that ∀v ∈ V \ S and
u ∈ V , (u, v) ∈ E. If a box representation BS of G[S] is known, then, in O(n2)
time we can construct a box representation B of G of dimension |BS |. Moreover,
box(G) = box(G[S]).

Lemma 3. Let G(V,E) be a graph and let A ⊆ V . Let G1(V,E1) be a supergraph
of G with E1 = E ∪ {(x, y) | x, y ∈ A, x �= y}. If a box representation B of G
is known, then in O(n2) time we can construct a box representation B1of G1 of
dimension 2 · |B|. In particular, box(G1) ≤ 2 · box(G).

We know that there are at most 2O(nb logn) distinct b-dimensional box repre-
sentations of a graph G on n vertices and all these can be enumerated in time
2O(nb logn) [3, Proposition 1]. In linear time, it is also possible to check whether
a given graph is a unit interval graph and if so, generate a unit interval repre-
sentation of it [4]. Hence, a similar result holds for cubicity as well.

138 A. Adiga, J. Babu, and L.S. Chandran

Proposition 1. Let G(V,E) be a graph on n vertices of boxicity (cubicity) b.
Then an optimal box (cube) representation of G can be computed in 2O(nb log n)

time.

If S ⊆ V induces a clique in G, then it is easy to see that the intersection of all
the intervals in I corresponding to vertices of S is nonempty. This property is
referred to as the Helly property of intervals and we refer to this common region
of intervals as the Helly region of the clique S.

Definition 1. Let G(V,E) be a graph in which S ⊆ V induces a clique in G.
Let H(V,E′) be an interval supergraph of G. Let p be a point on the real line. If
H has an interval representation I satisfying the following conditions:

(1) p belongs to the Helly region of S in I.
(2) The end points of intervals corresponding to vertices of V \S are all distinct

in I.
(3) For each v ∈ S,

lv(I) = min

(
p, min

u∈NG(v)∩(V \S)
ru(I)

)
and

rv(I) = max

(
p, max

u∈NG(v)∩(V \S)
lu(I)

)
then we call I a nice interval representation of H with respect to S and p. If
H has a nice interval representation with respect to clique S and some point p,
then H is called a nice interval supergraph of G with respect to clique S.

Lemma 4. Let G be a graph on n vertices, with its vertices arbitrarily labeled
as 1, 2, . . . , n. If G contains a clique of size n− k or more, then :

(a) A subset A ⊆ V such that |A| ≤ k and G[V \A] is a clique, can be computed
in O(n2k) time.

(b) There are at most 2O(k log k) nice interval supergraphs of G with respect to
the clique V \ A. These can be enumerated in n22O(k log k) time.

(c) If G has a box representation B of dimension b, then it has a box repre-
sentation B′ of the same dimension, in which ∀I ∈ B′, I is a nice interval
supergraph of G with respect to the clique V \ A.

(d) By construction, vertices of the nice interval supergraphs obtained in (b) and
(c) retain their original labels as in G.

Proof. (a) We know that, if G contains a clique of size n− k or more, then the
complement graph G has a vertex cover of size at most k. We can compute a
minimum vertex cover A of G in O(n2k) time [14]. We have |A| ≤ k and G[V \A]
is a clique because V \ A is an independent set in G.

(b) Let H be any nice interval supergraph of G with respect to V \A. Let I be
a nice interval representation of H with respect to V \ A and a point p. Let P
be the set of end points (both left and right) of the intervals corresponding to
vertices of A in H . Clearly |P | = 2|A| ≤ 2k. The order of end points of vertices
of A in I from left to right corresponds to a permutation of elements of P and

Approximation Algorithms for Boxicity 139

therefore, there are at most (2k)! possibilities for this ordering. Moreover, note
that the points of P divide the real line into |P |+1 regions and that p can belong
to any of these regions. From the definition of nice interval representation, it is
clear that, once the point p and the end points of vertices of A are fixed, the end
points of vertices in V \ A get automatically decided.

Thus, to enumerate every nice interval supergraph H of G with respect to
clique V \ A, it is enough to enumerate all the (2k)! = 2O(k log k) permutations
of elements of P and consider |P | + 1 ≤ 2k + 1 possible placements of p in
each of them. Some of these orderings may not produce an interval supergraph
of G though. In O(k2) time, we can check whether the resultant graph is an
interval supergraph of G and output the interval representation in O(n) time.
The number of supergraphs enumerated is only (2k + 1)2O(k log k) = 2O(k log k).

(c) Let B = {I1, I2, . . ., Ib} be a box representation of G. Without loss of
generality, we can assume that all 2|V | interval end points are distinct in Ii, for
1 ≤ i ≤ b. (Otherwise, we can always alter the end points locally and make them
distinct.) Let pi ∈ R be a point belonging to the Helly region corresponding to
V \ A in Ii. For 1 ≤ i ≤ b, let I ′i be the interval graph defined by the interval
assignments given below. Vertices of I ′i are assigned their original labels as in Ii.

[lv(I
′
i), rv(I

′
i)] =

{
[lv(Ii), rv(Ii)] if v ∈ A,

[l′v(i), r
′
v(i)] if v ∈ V \ A.

where l′v(i) = min

(
pi, min

u∈NG(v)∩A
ru(Ii)

)
and r′v(i) = max

(
pi, max

u∈NG(v)∩A
lu(Ii)

)
.

Claim. B′ = {I ′1, I ′2, . . ., I ′b} is a box representation of G such that ∀I ′i ∈ B′, I ′i
is a nice interval supergraph of G with respect to clique V \ A.

Proof. Consider any I ′i ∈ B′. For u, v ∈ A, intervals corresponding to u and v
are the same in both Ii and I ′i . If (u, v) ∈ E(G), with u, v ∈ A, then the intervals
corresponding to u and v intersect in I ′i because they were intersecting in Ii. For
any (u, v) ∈ E(G), with u ∈ A and v ∈ V \ A, the interval of v intersects the
interval of u in I ′i , by the definition of [l′v(i), r

′
v(i)]. Vertices of V \ A share the

common point pi. Thus, I
′
i is an interval supergraph of G. It is easy to see that

I ′i is a nice interval supergraph of G with respect to clique V \ A and point pi.
Since B is a valid box representation of G, for each (u, v) /∈ E(G), ∃Ii ∈ B

such that (u, v) /∈ E(Ii). Observe that for any vertex v ∈ V , the interval of v in
Ii contains the interval of v in I ′i. Therefore, if (u, v) /∈ E(Ii), then (u, v) /∈ E(I ′i)
too. Thus, B′ is also a valid box representation of G. ��

(d) Since vertices of G are labeled initially, we just need to retain the same
labeling during the definition and construction of nice interval supergraphs of
G. (We have included this obvious fact in the statement of the lemma, just to
give better clarity.) ��

140 A. Adiga, J. Babu, and L.S. Chandran

3 Boxicity of Graphs with Large Cliques

One of the central ideas in this work is the following theorem about comput-
ing the boxicity of graphs which contain very large cliques. Using this theorem,
in Section 4 we derive o(n) factor approximation algorithms for computing the
boxicity and cubicity of graphs. Further, it is used in Section 5 to derive pa-
rameterized approximation algorithm for the boxicity problem parameterized
by vertex edit distance from a family of graphs of bounded boxicity.

Theorem 1. Let G be a graph on n vertices, containing a clique of size n − k
or more. Then, box(G) ≤ k and an optimal box representation of G can be found

in time n22O(k2 log k).

Proof. Let G(V,E) be a graph on n vertices containing a clique of size n− k or
more. Arbitrarily label the vertices of G as 1, 2, . . . , n. Using part (a) of Lemma
4, we can compute in O(n2k) time, A ⊆ V such that |A| ≤ k and G[V \ A] is a
clique. It is easy to infer from Lemma 1 that box(G) ≤ box(G \ A) + |A| = k,
since box(G \ A) = 0 by definition.

From part (c) of Lemma 4, we get that, if box(G) = b, then there exists a
box representation B′ = {I ′1, I ′2, . . ., I ′b} of G in which each I ′i is a nice interval
supergraph of G with respect to clique V \ A. We call such a representation a
nice box representation of G with respect to clique V \ A. To construct a nice
box representation of G with respect to clique V \ A and of dimension d, we
choose d of the 2O(k log k) nice interval supergraphs of G with respect to clique
V \ A (guaranteed by part (b) of Lemma 4) and check if this gives a valid
box representation of G. This validation is straightforward because vertices in
supergraphs being considered retain their original labels as in G by part (d) of
Lemma 4. All possible nice box representations of dimension d can be computed
and validated in n22O(k·d log k) time. We might have to repeat this process for
1 ≤ d ≤ b in that order, to obtain an optimal box representation. Hence the total
time required to compute an optimal box representation of G is bn22O(k·b log k),
which is n22O(k2 log k), because b ≤ k by the first part of this theorem. ��

Remark 1. Theorem 1 gives an FPT algorithm for computing the boxicity of G,
with the parameter k = MVC(G), where G is the graph complement of G.

4 Approximation Algorithms for Boxicity and Cubicity

In this section, we use Theorem 1 and derive o(n) factor approximation algo-
rithms for boxicity and cubicity. Let G(V,E) be the given graph with |V | = n.

Without loss of generality, we can assume that G is connected. Let k =
√
logn√

log logn

and t = �n
k
. The algorithm proceeds by defining t supergraphs of G and

computing their optimal box representations. Let the vertex set V be parti-
tioned arbitrarily into t sets V1, V2, . . . , Vt where |Vi| ≤ k, for each 1 ≤ i ≤ t.
We define supergraphs G1, G2, . . . , Gt of G with Gi(V,Ei) defined by setting
Ei = E ∪ {(x, y)|x, y ∈ V \ Vi}, for 1 ≤ i ≤ t.

Approximation Algorithms for Boxicity 141

Lemma 5. Let Gi be as defined above, for 1 ≤ i ≤ t. An optimal box represen-
tation Bi of Gi can be computed in nO(1) time, where n = |V |.

Proof. Noting that G[V \Vi] is a clique and |Vi| ≤ k =
√
logn√

log logn
, by Theorem 1,

we can compute an optimal box representation Bi of Gi in n22O(k2 log k) = nO(1)

time, where n = |V |. ��

Lemma 6. Let Bi be as computed above, for 1 ≤ i ≤ t. Then, B =
⋃

1≤i≤t

Bi

is a valid box representation of G such that |B| ≤ t′ · box(G), where t′ is

O
(

n
√
log logn√
logn

)
. The box representation B is computable in nO(1) time.

Proof. We can compute optimal box representations Bi of Gi, for 1 ≤ i ≤
t =

⌈
n
√
log logn√
logn

⌉
as explained in Lemma 5 in total nO(1) time. Observe that

E(G) = E(G1) ∩E(G2) ∩ · · · ∩E(Gt). Therefore, it is a trivial observation that

the union B =
⋃

1≤i≤t

Bi gives us a valid box representation of G.

We will prove that this representation gives the approximation ratio as re-
quired. By Lemma 3 we have, |Bi| = box(Gi) ≤ 2 · box(G). Hence, |B| =∑t

i=1 |Bi| ≤ 2t · box(G). Substituting t =
⌈
n
√
log logn√
logn

⌉
in this inequality gives

the approximation ratio as required. ��

The box representation B obtained from Lemma 6 can be extended to a cube
representation C of G as stated in the following lemma. We omit its proof due
to space constraints.

Lemma 7. A cube representation C of G, such that |C| ≤ t′ · cub(G), where t′

is O

(
n(log logn)

3
2√

logn

)
, can be computed in nO(1) time.

Combining Lemma 6 and Lemma 7, we get the follwing theorem which gives
o(n) factor approximation algorithms for computing boxicity and cubicity.

Theorem 2. Let G(V,E) be a graph on n vertices. Then a box representation

B of G, such that |B| ≤ t · box(G), where t is O
(

n
√
log log n√
log n

)
, can be computed in

polynomial time. Further, a cube representation C of G, such that |C| ≤ t′·cub(G),

where t′ is O

(
n(log logn)

3
2√

log n

)
, can also be computed in polynomial time.

5 Computing the Boxicity of Graphs with Edit Distances
as the Parameter

In this section we give parameterized approximation algorithms for the boxicity
problem parameterized by various vertex(edit) distance parameters. A subset
S ⊆ V such that |S| ≤ k is called a modulator for an F + kv graph G(V,E)

142 A. Adiga, J. Babu, and L.S. Chandran

if G \ S ∈ F . Similarly, a set Ek of pairs of vertices such that |Ek| ≤ k is called
a modulator for an F − ke graph G(V,E) if G′(V,E ∪Ek) ∈ F . Modulators for
graphs in F+ke and F+k1e−k2e are defined in a similar manner. The following
theorem is gives us a parameterized algorithm for computing the boxicity of
F + kv graphs.

Theorem 3. Let F be a family of graphs such that ∀G′ ∈ F , box(G′) ≤ b. Let
T (n) denote the time required to compute a b-dimensional box representation of a
graph belonging to F on n vertices. Let G be an F+kv graph on n vertices. Given
a modulator of G, a box representation B of G, such that |B| ≤ 2 · box(G) + b

can be computed in time T (n− k) + n22O(k2 log k).

Proof. Let F be the family of graphs of boxicity at most b. Let G(V,E) be
an F + kv graph on n vertices, with a modulator Sk on k vertices such that
G′ = G \ Sk ∈ F . We define two supergraphs of G, namely H1(V,E1) and
H2(V,E2) such that E = E1 ∩ E2 with box(H1) ≤ 2 · box(G), box(H2) ≤ b and
their required valid box representations are computable within the time specified
in the theorem. It is easy to see that the union of valid box representations of
H1 and H2 will be a valid box representation B of G and hence |B| ≤ box(H1)+
box(H2) ≤ 2 · box(G) + b. This will complete our proof of Theorem 3.

We define H1 to be the graph obtained from G by making V \ Sk a clique on
n−k vertices, without altering other adjacencies inG. Formally,E1 = E∪{(x, y) |
x, y ∈ V \Sk, x �= y}. Using Theorem 1, we can get an optimal box representation

B1 of H1 in n22O(k2 log k) time. By Lemma 3, |B1| ≤ 2 · box(G).
We define H2 to be the graph obtained from G by making each vertex in Sk

adjacent to every other vertex in the graph and leaving other adjacencies in G
unaltered. Formally, E2 = E ∪ {(x, y) | x ∈ Sk, y ∈ V, x �= y}. Let B′ be a
box representation of G′ of dimension at most b (computed in time T (n − k)).
Then, B′ is a box representation of H2[V \Sk] as well, because H2[V \Sk] = G′.
By Lemma 2, box(H2) = box(H2[V \ Sk]) and a box representation B2 of H2 of
dimension at most |B′| ≤ b can be produced in O(n2) time.

Since G = H1 ∩ H2, B = B1 ∪ B2 is a valid box representation of G, of
dimension at most 2 · box(G) + b. All computations were done in T (n − k) +

n22O(k2 log k) time. ��

Using a similar method, we also get a parameterized approximation algorithm
for computing the boxicity of F + k1e− k2e graphs.

Theorem 4. Let F be a family of graphs such that ∀G′ ∈ F , box(G′) ≤ b. Let
T (n) denote the time required to compute a b-dimensional box representation of a
graph belonging to F on n vertices. Let G be an F+k1e−k2e graph on n vertices
and let k = k1 + k2. Given a modulator of G, a box representation B of G, such
that |B| ≤ box(G) + 2b, can be computed in time T (n) +O(n2) + 2O(k2 log k).

Proof. Let F be the family of graphs of boxicity at most b. Let G(V,E) be
an F + k1e − k2e graph on n vertices, where k1 + k2 = k. Let Ek1 ∪ Ek2 be a
modulator of G such that |Ek1 | = k1, |Ek2 | = k2 and G′(V, (E ∪ Ek2)\Ek1) ∈ F .
Let T ⊆ V (G) be the set of vertices incident with edges in Ek1 ∪ Ek2 .

Approximation Algorithms for Boxicity 143

As in the proof of Theorem 3, we define two supergraphs of G, namely
H1(V,E1) and H2(V,E2) such that E = E1 ∩E2 with box(H1) ≤ 2b, box(H2) ≤
box(G) and their required valid box representations are computable within the
time specified in the theorem. As earlier, the union of valid box representa-
tions of H1 and H2 will be a valid box representation of B of G and hence
|B| ≤ box(H1) + box(H2) ≤ 2b + box(G). This will complete our proof of Theo-
rem 4.

Let H1(V,E1) be the graph obtained from G′ by making T a clique, without
altering other adjacencies in G′. Formally, E1 = E′ ∪ {(x, y)|x, y ∈ T, x �= y}.
Let B′ be a box representation of G′ of dimension at most b computed in time
T (n). From the box representation B′ of G′, in O(n2) time we can construct (by
Lemma 3) a box representation B1 of H1 with dimension 2b.

Let H2(V,E2) be the graph obtained from G by making each vertex in V \ T
adjacent to every other vertex in the graph and leaving other adjacencies in
G unaltered. Formally, E2 = E ∪ {(x, y)|x ∈ V \ T, y ∈ V, x �= y}. Clearly,
|T | ≤ 2k and therefore, using the construction in Proposition 1, an optimal box

representation BT of H2[T] can be computed in 2O(k2 log k) time. By Lemma
2, box(H2) = box(H2[T]) and a box representation B2 of H2 of dimension
box(H2[T]) can be computed from the box representation BT of H2[T] in O(n2)
time. Observe that H2[T] = G[T]. Therefore, |B2| = box(G[T]) ≤ box(G), be-
cause G[T] is an induced subgraph of G.

Since G = H1 ∩ H2, B = B1 ∪ B2 is a valid box representation of G, of
dimension at most box(G) + 2b. All computations were done in T (n) +O(n2) +

2O(k2 log k) time. ��

Remark 2. Though in Theorem 3 and Theorem 4 we assumed that a modulator
of G for F is given, in several important special cases (as in the case of corollaries
discussed below), the modulator for F can be computed from G in FPT time.
Moreover, in those cases, T (n) is a polynomial in n. Thus, the algorithms given
by Theorem 3 and Theorem 4 turns out to be FPT approximation algorithms
for boxicity.

Corollaries of Theorem 3 : FPT approximation algorithms for computing box-
icity with various parameters of interest result as consequences of Theorem 3.
It is easy to see that these parameters are special cases of the vertex edit dis-
tance parameter. Detailed proofs of these corollaries are omitted due to space
constraints. The general procedure is :

(i) Use known FPT algorithms to compute the parameter of interest and obtain
the modulator Sk for the corresponding family F .

(ii) Compute a low dimensional box representation for the graph G′ = (G\Sk) ∈
F , in polynomial time.

(iii) Use our algorithm of Theorem 3 to get the FPT approximation algorithm
for computing boxicity with the parameter of interest.

144 A. Adiga, J. Babu, and L.S. Chandran

Corollary 1. FVS as the parameter : If FV S(G) ≤ k, we get a
(
2 + 2

box(G)

)
factor approximation for boxicity with FVS as the parameter k, which runs in
time 2O(k2 log k)nO(1).

Note that, for the boxicity problem parameterized by FVS, the algorithm in
Adiga et al. [3] gave the same approximation factor but with running time

2O(2kk2)nO(1). Our algorithm gives a better running time.

Corollary 2. Proper Interval Vertex Deletion number (PIVD) as the parameter
: The minimum number of vertices to be deleted from the graph G, so that the
resultant graph is a proper interval graph, is called PIV D(G). If PIV D(G) ≤ k,
we get a 2+ 1

box(G) factor approximation for boxicity with PIVD as the parameter

k, which runs in time 2O(k2 log k)nO(1).

It is easy to see that PIV D(G) ≤ MVC(G). Hence, PIV D(G) is a better
parameter than the parameter MV C(G) discussed in Adiga et al. [3]. Our algo-
rithm has the same running time as the additive one approximation algorithm
with MVC(G) as the parameter, discussed in Adiga et al. [3].

Corollary 3. Planar Vertex Deletion number (PVD) as the parameter : The
minimum number of vertices to be deleted from G to make it a planar graph, is
called the planar vertex deletion number of G. If PV D(G) ≤ k, we get an FPT

algorithm for boxicity, giving a
(
2 + 3

box(G)

)
factor approximation for boxicity

using planar vertex deletion number as the parameter.

Corollaries of Theorem 4 : Theorem 4 also gives us FPT approximation algo-
rithms for computing boxicity with various parameters of interest.

Corollary 4. Interval Completion number as the parameter : The minimum
number of edges to be added to a graph G, so that the resultant graph is an
interval graph, is called the interval completion number of G. If the interval
completion number G is at most k, we get an FPT algorithm that achieves an
additive 2 approximation for box(G) which runs in time 2O(k2 log k)nO(1).

Corollary 5. Proper Interval Edge Deletion number (PIED) as the parameter
: The minimum number of edges to be deleted from the graph G, so that the
resultant graph is a proper interval graph, is called PIED(G). If PIED(G) is at
most k, we get an FPT algorithm that achieves an additive 2 approximation for
box(G), with PIED(G) as the parameter k, which runs in time 2O(k2 log k)nO(1).

Corollary 6. Planar Edge Deletion number (PED) as the parameter : The min-
imum number of edges to be deleted from G so that the resultant graph is planar
is called PED(G). If PED(G) ≤ k, we get an FPT algorithm that gives an
additive 6 approximation for box(G) with PED(G) as the parameter.

Corollary 7. Max Leaf number (ML) as the parameter : The number of the
maximum possible leaves in any spanning tree of a graph G is called ML(G).
If ML(G) ≤ k, we get an FPT algorithm that achieves an additive 2 approx-

imation for box(G) which runs in time 2O(k3 log k)nO(1), the running time and
approximation ratio being the same as in Adiga et al. [3].

Approximation Algorithms for Boxicity 145

6 An FPT Approximation Algorithm for Cubicity

Fellows et al. [9, Corollary 5] proved an existential result that for every fixed
pair of integers k and b, there is an f(k) · n time algorithm which determines
whether a given graph G on n vertices and MVC(G) ≤ k has cubicity at most b.
In the theorem below, we derive a FPT approximation algorithm, for computing
the cubicity of graphs, using their vertex cover number as the parameter. Our
algorithm is constructive.

Theorem 5. Let G be a graph on n vertices. A cube representation of G which

is of dimension at most 2 · cub(G) can be computed in time 2O(2kk2)nO(1), where
k = MVC(G). By allowing a larger running time of 2O(g(k,ε))nO(1), we can

achieve a (1 + ε) approximation factor, for any ε > 0, where g(k, ε) = 1
εk

32
4k
ε .

Proof. Due to space constraints, we give only an outline of the proof of the 2
factor approximation algorithm here. Let G(V,E) be a graph on n vertices. As
in the previous sections, we define two supergraphs of G, namely H1(V,E1) and
H2(V,E2) such that E = E1∩E2 with cub(H1) ≤ cub(G) and cub(H2) ≤ cub(G).

Let S ⊆ V be a vertex cover ofG of cardinality k. First we define an equivalence
relation on the vertices of the independent set V \S such that vertices u and v are
in the same equivalence class if and only ifNG(u) = NG(v). Let A1, A2, . . . , At be
the equivalence classes. We defineH1 to be the graph obtained from G by making
each Ai into a clique and leaving other adjacencies as they are in G. Formally,
E1 = E ∪ {(u, v) | u �= v and u, v belong to the same Ai, for some 1 ≤ i ≤ t}.

For each Ai, let us consider the mapping nAi : Ai �→ {1, 2, · · · , |Ai|}, where
nAi(v) is the unique number representing v ∈ Ai. (Note that if u ∈ Ai and
v ∈ Aj , where i �= j, then, nAi(u) and nAj (v) could potentially be the same.) Let
s = max

1≤i≤t
|Ai|. We define one more partitioning of the independent set V \S into

equivalence classes B1, B2, . . . , Bs such that for 1 ≤ i ≤ s, Bi = {v | nAj (v) = i,
for some 1 ≤ j ≤ t}. We define H2 to be the graph obtained from G by making
each Bi into a clique, and making each vertex in S adjacent to every other vertex
in V . Formally, E2 = {(u, v) | u �= v and u ∈ S, v ∈ V } ∪ {(u, v) | u �= v and u, v
belong to the same Bi, for some 1 ≤ i ≤ s}.

The following observations complete the proof : We have E = E1 ∩ E2 with
cub(H1), cub(H2) ≤ cub(G). An optimal cube representation of H1 can be con-

structed in 2O(2kk2)nO(1) time and that of H2 can be constructed in nO(1)

time. ��

7 Conclusions and Open Problems

Among the several parameters giving FPT approximations for boxicity, we know
the existence of exact FPT algorithms with parameter MV C(G) only. The FPT
status of the problem with other parameters is still open. Our FPT approxima-
tion algorithms for boxicity are dependent on the fact that intervals can be of
different lengths. Hence, we do not know of a direct way of producing similar FPT

146 A. Adiga, J. Babu, and L.S. Chandran

approximation algorithms for cubicity. It will be interesting to investigate the
possibility of FPT algorithms or approximations for cubicity, with parameters
smaller than MVC(G). We have presented o(n) factor approximation algorithms
for computing the boxicity and cubicity of graphs. The known hardness results
only rule out the possibility of O(n0.5−ε)-factor, for any ε > 0. It is interesting
to see whether it is possible to improve this hardness result to O(n1−ε)-factor,
or to get better approximation algorithms.

References

1. Adiga, A., Bhowmick, D., Chandran, L.S.: The hardness of approximating the
boxicity, cubicity and threshold dimension of a graph. Discrete Appl. Math. 158,
1719–1726 (2010)

2. Adiga, A., Bhowmick, D., Chandran, L.S.: Boxicity and poset dimension. SIAM J.
Discrete Math. 25(4), 1687–1698 (2011)

3. Adiga, A., Chitnis, R., Saurabh, S.: Parameterized Algorithms for Boxicity. In:
Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part I. LNCS, vol. 6506,
pp. 366–377. Springer, Heidelberg (2010)

4. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. J. Comput. Syst. Sci. 13(3),
335–379 (1976)

5. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

6. Cai, L.: Parameterized complexity of vertex colouring. Discrete Applied Mathe-
matics 127(3), 415–429 (2003)

7. Chandran, L.S., Sivadasan, N.: Boxicity and treewidth. J. Comb. Theory Ser. B 97,
733–744 (2007)

8. Cozzens, M.B.: Higher and multi-dimensional analogues of interval graphs. Ph.D.
thesis, Department of Mathematics, Rutgers University, New Brunswick, NJ (1981)

9. Fellows, M.R., Hermelin, D., Rosamond, F.A.: Well-Quasi-Orders in Subclasses of
Bounded Treewidth Graphs. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS,
vol. 5917, pp. 149–160. Springer, Heidelberg (2009)

10. Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst.
Sci. 68, 285–302 (2004)

11. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Appl. Math. 52(3), 233–252 (1994)

12. Marx, D.: Parameterized coloring problems on chordal graphs. Theor. Comput.
Sci. 351(3), 407–424 (2006)

13. Marx, D., Schlotter, I.: Obtaining a planar graph by vertex deletion. Algorith-
mica 62(3-4), 807–822 (2012)

14. Niedermeier, R.: Invitation to fixed-parameter algorithms (2002)
15. Roberts, F.S.: On the boxicity and cubicity of a graph. In: Recent Progresses in

Combinatorics, pp. 301–310. Academic Press, New York (1969)
16. Rosgen, B., Stewart, L.: Complexity results on graphs with few cliques. Discrete

Mathematics and Theoretical Computer Science 9, 127–136 (2007)
17. Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory Ser.

B 40, 9–20 (1986)
18. Villanger, Y., Heggernes, P., Paul, C., Telle, J.A.: Interval completion is fixed

parameter tractable. SIAM J. Comput. 38(5), 2007–2020 (2008)
19. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.

Alg. Disc. Meth. 3(3), 351–358 (1982)

Homomorphic Hashing

for Sparse Coefficient Extraction

Petteri Kaski1, Mikko Koivisto2, and Jesper Nederlof3

1 Helsinki Institute for Information Technology HIIT,
Department of Information and Computer Science, Aalto University, Finland

petteri.kaski@aalto.fi
2 Helsinki Institute for Information Technology HIIT,

Department of Computer Science, University of Helsinki, Finland
mkhkoivi@cs.helsinki.fi

3 Utrecht University, Utrecht, The Netherlands
j.nederlof@uu.nl

Abstract. We study classes of Dynamic Programming (DP) algorithms
which, due to their algebraic definitions, are closely related to coefficient
extraction methods. DP algorithms can easily be modified to exploit
sparseness in the DP table through memorization. Coefficient extraction
techniques on the other hand are both space-efficient and parallelisable,
but no tools have been available to exploit sparseness. We investigate the
systematic use of homomorphic hash functions to combine the best of
these methods and obtain improved space-efficient algorithms for prob-
lems including LINEAR SAT, SET PARTITION and SUBSET SUM.
Our algorithms run in time proportional to the number of nonzero entries
of the last segment of the DP table, which presents a strict improvement
over sparse DP. The last property also gives an improved algorithm for
CNF SAT and SET COVER with sparse projections.

1 Introduction

Coefficient extraction can be seen as a general method for designing algorithms,
recently in particular in the area of exact algorithms for various NP-hard prob-
lems [2,3,13,15,17,24] (cf. [7,26] for an introduction to exact algorithms). The
approach of the method is the following (see also [14]):

1. Define a variable (the so-called coefficient) whose value (almost) immediately
gives the solution of the problem to be solved,

2. Show that the variable can be expressed by a relatively small formula or
circuit over a (cleverly chosen) large algebraic object like a ring or field,

3. Show how to perform operations in the algebraic object relatively efficiently.

In a typical application of the method, the first two steps are derived from an
existing Dynamic Programming (DP) algorithm, and the third step deploys a
carefully selected algebraic isomorphism, such as the discrete Fourier transform

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 147–158, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

148 P. Kaski, M. Koivisto, and J. Nederlof

to extract the desired solution/coefficient. Algorithms based on coefficient extrac-
tion have two key advantages over DP algorithms; namely, they are space-efficient
and they parallelise well (see, for example, [15]).

Yet, DP has an advantage if the problem instance is sparse. By this we mean
that the number of candidate/partial solutions that need to be considered dur-
ing DP is small, that is, most entries in the DP table are not used at all. In
such a case we can readily adjust the DP algorithm to take this into account
through memorization so that both the running time and space usage become
proportional to the number of partial solutions considered. Unfortunately, it is
difficult to parallelise or lower the space usage of memorization. Coefficient ex-
traction algorithms relying on interpolation of sparse polynomials [16] improve
over memorization by scaling proportionally only to the number of candidate
solutions, but their space usage is still not satisfactory (see also [26]).

This paper aims at obtaining what is essentially the best of both worlds, by
investigating the systematic use of homomorphisms to “hash down” circuit-based
coefficient extraction algorithms so that the domain of coefficient extraction –
and hence the running time – matches or improves that of memorization-based
DP algorithms, while providing space-efficiency and efficient parallelisation. The
key idea is to take an existing algebraic circuit for coefficient extraction (over a
sparsely populated algebraic domain such as a ring or field), and transform the
circuit into a circuit over a smaller domain by a homomorphic hash function,
and only then perform the actual coefficient extraction. Because the function
is homomorphic, by hashing the values at the input gates and evaluating the
circuit, the output evaluates to the hash of the original output value. Because
the function is a hash function, the coefficient to be extracted collides with other
coefficients only with negligible probability in the smaller domain, and coefficient
extraction can be successfully used on the new (hashed-down) circuit. We call
this approach homomorphic hashing.

Our and Previous Results

We study sparse DP/coefficient extraction in three domains: (a) the univariate
polynomial ring Z[x] in Section 3, (b) the group algebra F[Zn

2] where F is a field of
odd characteristic in Section 4 and (c) the Möbius algebra of the subset lattice in
Section 5. The subject of sparse DP or coefficient extraction is highly motivated
and well-studied [5,6,16,27]. In [16], a sparse polynomial interpolation algorithm
using exponential space was already given for (a) and (b); our algorithms improve
these to polynomial space. In [13] a polynomial-space algorithm for finding a small
multilinear monomial in F2[Zn

2] was given. In [15] a study of settings (a) and (b)
was initiated, but sparsity was not addressed. Our main technical contribution
occurs with (c) and hashing down to the “Solomon algebra” of a poset.

Our methods work for general arithmetic circuits similarly as in [13,15,16], and
most of our algorithms work for counting variants as well. But, for concreteness,
we will work here with specific decision problems. Although we mainly give
improvements for sparse variants of these problems, we feel the results will be
useful to deal with the general case as well (as we will see in Section 4).

Homomorphic Hashing for Sparse Coefficient Extraction 149

Subset Sum. The Subset Sum problem is the following: given a vector a =
(a1, . . . , an) and integer t, determine whether there exists a subset X ⊆ [n]
such that

∑
e∈X ae = t. It is known to be solvable O�(2n/2) time and O�(2n/4)

space [11,21], and solving it faster, or even in O�(1.99n) time and polynomial
space are interesting open questions [26]. Recently, a polynomial space algorithm
using O�(t) time was given in [15]. Standard sparse DP gives an O�(S) time and
O�(S) space algorithm. As a first ”warm-up” application of our technique, we
improve this to polynomial space as follows. The proofs of claims marked with
a “†” are relegated to the full version in order to meet the page limit.

Theorem 1 (†). Any instance (a, t) of the Subset Sum problem can be solved
(a) in O�(S) expected time and polynomial space, and (b) in O�(S2) time and
polynomial space, where S = |{

∑
e∈X ae : X ⊆ [n]}| is the number of distinct

sums.

Informally stated, our algorithms hash the instances by working modulo ran-
domly chosen prime numbers and apply the algorithm of [15]. While interesting
on their own, these results may be useful in resolving the above open questions
when combined with other techniques.

Linear Sat. The Linear Sat problem is defined as follows: given a matrix A ∈
Zn×m
2 , vectors b ∈ Zm

2 and ω ∈ Nn, and an integer t = nO(1), determine whether
there is a vector x ∈ Zn

2 such that xA = b and ωxT ≤ t. Variants of Linear

Sat have been studied, perhaps most notably in [10], where approximability
was studied; Fixed Parameter Tractability was studied in [1,4]. Here, it was also
quoted from [10] that (a variant of) Linear Sat is “as basic as satisfiability”.

It can be observed that using the approach from [11], Linear Sat can be
solved in O(2n/2m) time and O(2n/2m) space. Also, using standard “sparse
dynamic programming”, it can be solved in O�(2rk(A)) time and O�(2rk(A))
space, where rk(A) is the rank of A. We give algorithms using about the same
amount of time but only polynomial space:

Theorem 2. Every instance (A, b,ω, t) of Linear Sat can be solved by al-
gorithms with constant one-sided error probability in (a) O�(2rk(A)) time and
polynomial space, and (b) O�(2n/2) time and polynomial space.

The first algorithm hashes the input down using a random linear map and after-
wards determines the answer using the Walsh-Hadamard transform. The second
algorithm uses a Win/Win approach, combining the first algorithm with the fact
that an A with high rank can be solved with a complementary algorithm.

Satisfiability. The CNF-Sat problem is defined as follows: given a CNF-formula
φ = C1∧C2∧ . . .∧Cm over n variables, determine whether φ is satisfiable. There
are many interesting open questions related to this problem, a major one being
whether it can be solved in time O�((2 − ε)n) (the ‘Strong Exponential Time
Hypothesis’ [12] states this is not possible), and another being whether satisfying
assignments can be counted in time O�((2 − ε)n) for some ε > 0 (e.g. [23]).

150 P. Kaski, M. Koivisto, and J. Nederlof

A prefix assignment is an assignment of 0/1 values to the variables v1, . . . , vi
for some 1 ≤ i ≤ n. A projection (prefix projection) of a CNF-formula is a subset
π ⊆ [m] such that there exists an assignment (prefix assignment) of the variables
such that for every 1 ≤ j ≤ m it satisfies Cj if and only if j ∈ π. An algorithm
for CNF-Sat running in time linear in the number of prefix projections can be
obtained by standard sparse DP. However, it is sensible to ask about complexity
of CNF-Sat if the number of projections is small. We give a positive answer:

Theorem 3. Satisfiability of a formula φ = C1 ∧ . . .∧Cm can be determined in
O�(P 2) time and O�(P) space, where P = |{π ⊆ [m] : π is a projection of φ}|.

We are not aware of previous work that studies instances with few projections,
but find it a natural parameter. For example, it is easy to see that hitting
formulas1 have onlym (and hence the minimum number of) projections, and that
formulas having a strong backdoor set2 of size k have at most 2km projections.
The formula with 2n (and hence the maximum number of) projections is the one
with a singleton clause for every variable. Naturally, there are more interesting
cases and upper bounds for special classes of formula’s, but to not lose focus
from our main contribution we shall not discuss more structural properties of
projections.

Underlying Theorem 3 is our main technical contribution (Theorem 15) that
enables us to circumvent partial projections and access projections directly,
namely homomorphic hashing from the Möbius algebra of the lattice of subsets
of [m] to the Solomon algebra of a poset. We think our result opens up a fresh
technical perspective that may contribute towards solving the above mentioned
and related questions. A full proof of Theorem 15 is given in the full version; we
give a specialized, more direct proof of Theorem 3 and another application to
Set Cover in Section 5.

2 Notation and Preliminaries

Lower-case boldface characters refer to vectors, while capital boldface letters
refer to matrices, I being the identity matrix. The rank of a matrix A is denoted
by rk(A). If R and S are sets, and S is finite, denote by RS the set of all |S|-
dimensional vectors with values in R, indexed by elements of S, that is, if v ∈ RS ,
then for every e ∈ S we have ve ∈ R. We denote by Z and N the set of integers
and non-negative integers, respectively, and by Zp the field of integers modulo a
prime p. An arbitrary field is denoted by F.

For a logical proposition P , we use Iverson’s bracket notation [P] to denote
a 1 if P is true and a 0 if P is false. For a function h : A → B and b ∈ B, the
preimage h−1(b) is defined as the set {a ∈ A : h(a) = b}. For an integer n and
A ⊆ {1, . . . , n}, denote by χ(A) ∈ Zn

2 the characteristic vector of A. Sometimes

1 Every pair of clauses have a conflicting literal [18], also called ”semi-complete” [1].
2 k variables such that each assignment of them leaves a hitting formula (from [25],
see also e.g. [8]).

Homomorphic Hashing for Sparse Coefficient Extraction 151

we will state running times of algorithms with the O� notation, which suppresses
any factor polynomial in the input size.

For a ring R and a finite set S, we write RS for the ring consisting of the set RS

(the set of all vectors overR with coordinates indexed by elements of S) equipped
with coordinate-wise addition + and multiplication ◦ (the Hadamard product),
that is, for a, b ∈ RS and a+ b = c, a ◦ b = d we set az + bz = cz and azbz = dz
for each z ∈ S, where + and the juxtaposition denote addition and multiplication
in R, respectively. The inner-product a, b ∈ RS is denoted by aT ·b. For v ∈ RS

denote by supp(v) ⊆ S the support of v, that is, supp(v) = {z ∈ S : vz �= 0},
where 0 is the additive identity element of R. A vector v is called a singleton
if |supp(v)| = 1. We denote by 〈z → w〉 the singleton with value w on index z,
that is, 〈z → w〉y = w[y = z] for all y ∈ S.

If R is a ring and (S, ·) is a finite semigroup, denote by R[S] the ring consisting
of the set RS equipped with coordinate-wise addition and multiplication defined
by the convolution operator ∗, where for a, b ∈ RS , a ∗ b = c we set cz =∑

x·y=z axby for every z ∈ S.
If R,S are rings with operations (+, ∗) and (⊕,�) respectively, a homomor-

phism from R to S is a function h : R → S such that h(e1 + e2) = h(e1)⊕ h(e2)
and h(e1 ∗ e2) = h(e1)� h(e2) for every e1, e2 ∈ R.

Observation 4. Let R be a ring, and let (S, ·) and (T,') be finite semigroups.
Suppose ϕ : S → T such that for every x, y ∈ S we have ϕ(x · y) = ϕ(x) ' ϕ(y).
Then the function h : R[S] → R[T] defined by h : a �→ b where bz =

∑
y∈ϕ−1(z) ay

for all z ∈ T is a homomorphism.

A circuit C over a ring R is a labeled directed acyclic graph D = (V,A) where
the elements of V are called gates and D has a unique sink called the output
gate of C. All sources of C are called input gates and are labeled with elements
from R. All gates with non-zero in-degree are labeled as either an addition or a
multiplication gate. (If multiplication in R is not commutative, the in-arcs of each
multiplication gate are also ordered.) Every gate g of C can be associated with a
ring element in the following natural way: If g is an input gate, we associate the
label of g with g. If g is an addition gate we associate the ring element e1+. . .+ed
with g, and if g is a multiplication gate we associate the ring element e1 ∗ . . .∗ ed
with g where e1, . . . , ed are the ring elements associated with the d in-neighbors
of g, and + and ∗ are the operations of the ring R.

Suppose the ground set of R is of the type AB where A,B are sets. Then C is
said to have singleton inputs if the label of every input-gate of C is a singleton
vector of R.

Definition 5. Let R1 and R2 be rings, let h : R1 → R2 be a homomorphism,
and suppose that C is a circuit over R. Then, the circuit h(C) over R2 obtained
by applying h to C is defined as the circuit obtained from C by replacing for
every input gate the label l by h(l).

Note that the following is immediate from the definition of a homomorphism:

152 P. Kaski, M. Koivisto, and J. Nederlof

Observation 6. Suppose C is a circuit over a ring R1 with output v ∈ R1.
Then the circuit over R2 obtained by applying a homomorphism h : R1 → R2 to
C outputs h(v) ∈ R2.

3 Homomorphic Hashing for Subset Sum

In this section we will study the Subset Sum problem and prove Theorem 1. As
mentioned in the introduction, it should be noted that this merely serves as an
illustration of how similar problems can be tackled as well since the same method
applies to the more general sparse polynomial interpolation problem. However,
to avoid a repeat of the analysis of [15], we have chosen to restrict ourselves
to the Subset Sum problem. Our central contribution over [15] is that we take
advantage of sparsity. Given an integer p ∈ N, let cp : Nn → Np be defined by

cp(a)j =

∣∣∣∣{X ⊆ [n] :
∑
e∈X

ae ≡ j (mod p)

}∣∣∣∣ for every j ∈ Zp and a ∈ Nn.

We also use the shorthand c(a) = c∞(a). We use the following corollary from [15]
and two results on primes:

Corollary 7 (†, [15]). Given an instance (a, t) of Subset Sum and an integer
p, cp(a)t can be computed in O�(p) time and O�(1) space.

Theorem 8 ([20]). If 55 < u, the number of primes at most u is at least u
lnu+2 .

Lemma 9 (†, Folklore). There exists an algorithm pickprime(u) running in
polylog(u) time that, given integer u ≥ 2 as input, outputs either a prime chosen
uniformly at random from the set of primes at most u or notfound. Moreover,
the probability that the output is notfound is at most 1

e .

We will run a data reduction procedure similar to the one of Claim 2.7 in [9],
before applying the algorithm of Corollary 7. The idea of the data reduction
procedure is to work modulo a prime of size roughly |supp(c(a))| or larger:

Lemma 10. Let S ≥ |supp(c(a))| and let β be an upper bound on the number
of bits needed to represent the integers, i.e. 2β > max{t,maxi ai}. Then for
sufficiently large β and n, Probp[c(a)t = cp(a)t] ≥ 1

2 , where the probability is
taken uniformly over all primes p ≤ Sβn(log β)(log n).

Proof. Suppose c(a)t �= cp(a)t. Then there exists an integer u ∈ supp(c(a)) such
that u �= t and u ≡ t (mod p). This implies that p is a divisor of |t−u|, so let us
bound the probability of this event. Since |t− u| ≤ 2βn, it has at most β+ logn
distinct prime divisors. Let γ = Sβn(log β)(log n). By Theorem 8 we have that
Probp

[
p divides |t − u|

]
is at most

β + logn
γ

log γ+2

≤ β + logn
γ

3(n+log β)

≤ 3(n+ log β)(β + logn)

γ
≤ 1

2S

Homomorphic Hashing for Sparse Coefficient Extraction 153

for sufficiently high β and n, where we use that S ≤ 2n in the second inequality.
Applying the union bound over the at most S elements of supp(c(a)), the event
that there exists a u ∈ supp(c(a)) with u �= t and u ≡ t (mod p) occurs with
probability at most 1

2 . ��

Now we give an algorithm for the case where S is known. The proof of Theorem 1,
given in the full version, merely adds self-reduction arguments.

Theorem 11. There exists an algorithm that, given an instance (a, t) of the
Subset Sum problem and an integer S ≥ |supp(c(a))| as input, outputs a non-
negative integer x in O�(S) time and polynomial space such that (i) x = 0 implies
c(a)t = 0 and (ii) Prob[c(a)t = x] ≥ 1

4 .

Proof. The algorithm is: First, obtain prime p = pickprime(Sβn(log β)(log n))
using Lemma 9. Second, compute and output cp(a)t using Corollary 7. Condition
(i) holds since cp(a)t = 0 implies c(a)t = 0 for any p, t. Moreover, condition (ii)
follows from Lemma 10 and Lemma 9 since 1

2 (1 − 1
e) ≥ 1

4 . The time and space
bounds are met by Corollary 7 because p = O�(S). ��

4 Homomorphic Hashing for Linear Satisfiability

In this section we assume that F is a field of non-even characteristic and that
addition and multiplication refer to operations in F. We prove the following
general result, having Theorem 2(a) as a special case.

Theorem 12. There exists a randomized algorithm that, given as input (i) a
circuit C with singleton inputs over F[Zn

2], (ii) an integer S ≥ |supp(v)|, and
(iii) an element t ∈ Zn

2 , outputs the coefficient vt ∈ F with probability at least
1
2 , where v ∈ F[Zn

2] is the output of C. The algorithm uses O�(S) time, O�(S)
arithmetic operations in F, and storage for O�(1) bits and elements of F.

Proof. Consider Algorithm 1. Let us first analyse the complexity of this algo-
rithm: Steps 1 and 2 can be performed in time polynomial in the input. Step 3
also be done in polynomial time since it amounts to relabeling all input gates
with h(e) where e was the old label. Indeed, we know that e ∈ F[Zn

2] is a sin-
gleton 〈y → v〉, so h(e) is the singleton 〈yH → v〉 and this can be computed
in polynomial time. Step 4 takes O�(S) operations and calls to sub, so for the
complexity bound it remains to show that a call to sub runs in polynomial time.
Step 5 can be implemented in polynomial time similar to Step 3 since the sin-

gleton e = 〈y → v〉 is mapped to (−1)xy
T

v. Finally, the direct evaluation of C2

uses |C2| operations in F. Hence the algorithm meets the time bound, and also
the space bound is immediate. The fact that hashZ2 returns vt with probability
at least 1

2 is a direct consequence of the following two claims, where w denotes
the output of C1.

Claim 1 (†). ProbH [vt = wtH] ≥ 1
2 .

Claim 2 (†). Algorithm hashZ2 returns wtH .

��

154 P. Kaski, M. Koivisto, and J. Nederlof

Algorithm hashZ2

1: Let s =
log S�+1.
2: Choose a matrix H ∈ Z

s×n
2 uniformly at random from the set of all s×n matrices

with binary entries.
3: Let h : F[Zn

2] → F[Zs
2] be the homomorphism defined by h(a) = b where bx =∑

y∈Zn
2 :yH=x ay for all x ∈ Z

s
2. Apply h to C to obtain the circuit C1.

4: return
1

2s

∑
x∈Z

s
2

(−1)(tH)xT

sub(C1,x).

Algorithm sub(C1,x)

5: Let ϕ : F[Zs
2] → F be the homomorphism defined by ϕ(w) =

∑
y∈Zs

2
(−1)xyT

wy

for all w ∈ F[Zs
2]. Apply ϕ to C1 to obtain the circuit C2.

6: Evaluate C2 and return the output.

Algorithm 1: Homomorphic hashing for Theorem 12

Proof (of Theorem 2(a)). For 1 ≤ i ≤ n and 0 ≤ w ≤ t denote by A(i) the ith
row of A and define f [i, w] ∈ Q[Zm

2] by

f [i, w] =

⎧⎪⎪⎨⎪⎪⎩
〈0 → 1〉 if i = w = 0,

0 if i = 0 ∧w �= 0,

f [i − 1, w] + f [i − 1, w − ωi] ∗
〈
A(i) → 1

〉
otherwise.

(1)

It is easy to see that for every 1 ≤ i ≤ n, 0 ≤ w ≤ t, and y ∈ Zm
2 , the value

f [i, w]y is the number of x ∈ Zi
2 such that ω̃xT = w and xÃ = y where ω̃ and

Ã are obtained by truncating ω and A to the first i rows. Hence, we let C be
the circuit implementing (1) and let its output be v =

∑t
w=0 f [n,w]. Thus, vb

is the number of x ∈ Zn
2 with xA = b and xωT ≤ t.

Also, |supp(v)| ≤ 2rk(A) since any element of the support of v is a sum of
rows of A and hence in the row-space of A, which has size at most 2rk(A). To
apply Theorem 12, let F = Q and observe that the computations are in fact
carried out over integers bounded in absolute value poly-exponentially in n and
hence the operations in the base field can also be executed polynomial in n. The
theorem follows from Theorem 12. ��

To establish Theorem 2(b), let us first see how to exploit a high linear rank of
the matrix A in an instance of Linear Sat. By permuting the rows of A as
necessary, we can assume that the first rk(A) rows of A are linearly independent.
We can now partition x into x = (y, z), where y has length rk(A) and z has
length n − rk(A). There are 2n−rk(A) choices for z, each of which by linear
independence has at most one corresponding y such that xA = b. Given z,
we can determine the corresponding y (if any) in polynomial time by Gaussian
elimination. Thus, we have:

Observation 13. Linear Sat can be solved in O�(2n−rk(A)) time and polyno-
mial space.

Homomorphic Hashing for Sparse Coefficient Extraction 155

This enables a “Win/Win approach” where we distinguish between low and high
ranks, and use an appropriate algorithm in each case.

Proof (of Theorem 2(b)). Compute rk(A). If rk(A) ≥ n/2, run the algorithm of
Observation 13. Otherwise, run the algorithm implied by Theorem 2(a). ��

Set Partition. We now give a very similar application to the Set Partition

problem: given an integer t and a set family F ⊆ 2U where |F| = n, |U | = m,
determine whether there is a subfamily P ⊆ F with |P| ≤ t such that

⋃
S∈P S =

U and
∑

S∈P |S| = |U |.
The incidence matrix of a set system (U,F) is the |U | × |F| matrix A whose

entries Ae,S = [e ∈ S] are indexed by e ∈ U and S ∈ F .

Theorem 14 (†). There exist algorithms that given an instance (U,F , t) of
Set Partition output the number of set partitions of size at most t with prob-
ability at least 1

2 , and use (a) O�(2rk(A)) time and polynomial space, and (b)

(2rk(A) + n)mO(1) time and space, where A is the incidence matrix of (U,F).

5 Homomorphic Hashing for the Union Product

In this section our objective is to mimic the approach of the previous sec-
tion for N[(2U ,∪)], where (2U ,∪) is the semigroup defined by the set union
∪ operation on 2U , the power set of an n-element set U . The direct attempt
to apply a homomorphic hashing function, unfortunately, fails. Indeed, let h
be an arbitrary homomorphism from (2U ,∪) to (2V ,∪) with |V | < |U |. Let
U = {e1, e2, . . . , en} and consider the minimum value 1 ≤ j ≤ n − 1 with
h({e1, . . . , ej}) = ∪j

i=1h({ei}) = ∪j+1
i=1h({ei}) = h({e1, . . . , ej+1}); in particular,

for X = {e1, . . . , ej, ej+2, . . . , en} �= U we have h(X) = h(U), which signals
failure since we cannot isolate X from U .

Instead, we use hashing to an algebraic structure based on a poset (the
“Solomon algebra” of a poset due to [22]) that is obtained by the technique “It-
erative Compression”. This gives the following main result. For reasons of space
we relegate a detailed proof to the full version; here we will give a simplified
version of the proof in the special case of Theorem 3 in this section.

Theorem 15 (†). Let and |U | = n. There are algorithms that, given a circuit
C with singleton inputs in N[(2U ,∪)] outputting v, compute

(a) a list with vX for every X ∈ supp(v) in O�(|supp(v)|2nO(1)) time,
(b) vU in time O�(2(1−α/2)nnO(1)) if 0 < α ≤ 1/2 such that |supp(v)| ≤ 2(1−α)n.

The above result is stated for simplicity in the unit-cost model, that is, we assume
that arithmetic operations on integers take constant time. For the more realistic
log-cost model, where such operations are assumed to take time polynomial in
the number of bits of the binary representation, we only mention here that our
results also hold under some mild technical conditions. Let us first show that
Theorem 3(a) indeed is a special case of Theorem 15:

156 P. Kaski, M. Koivisto, and J. Nederlof

Proof (of Theorem 3). Use the circuit over N[(2[m],∪)] that implements

f = (〈V1 → 1〉+
〈
V̄1 → 1

〉
)∗(〈V2 → 1〉+

〈
V̄2 → 1

〉
)∗. . .∗(〈Vm → 1〉+

〈
V̄m → 1

〉
),

where Vi ⊆ [m] (respectively, V̄i ⊆ [m]) is the set of all indices of clauses that
contain a positive (respectively, negative) literal of the variable vi. Then use
Theorem 15 to determine f[m], the number of satisfying assignments of φ. ��

Now we proceed with a self-contained proof Theorem 3. Given poset (P,≤), the
Möbius function μ : P × P → N of P is defined for all x, y ∈ P by

μ(x, y) =

⎧⎪⎨⎪⎩
1 if x = y,

−
∑

x≤z<y μ(x, z) if x < y,

0 otherwise.

(2)

The zeta transform ζ and Möbius transform μ are the |P |× |P | matrices defined
by ζx,y = [x ≤ y] and μx,y = μ(x, y) for all x, y ∈ P . For a CNF-formula φ
denote supp(φ) for the set of all projections of φ. Recall in Theorem 3 we are
given a CNF-Formula φ = C1∧ . . .∧Cm over n variables. For i = 1, . . . ,m define
φi = C1 ∧ . . . ∧ Ci. Then we have the following easy observations:

1. supp(φ0) = {∅},
2. supp(φi) ⊆ supp(φi−1) ∪ {X ∪ {i} : X ∈ supp(φi−1)} for every i = 1, . . . ,m,
3. |supp(φi−1)| ≤ |supp(φi)| for every i = 1, . . . ,m.

Given the above lemma and observations, we will give an algoritm using a tech-
nique called iterative compression [19]. As we will see, by this technique it is
sufficient to solve the following “compression problem”:

Lemma 16. Given a CNF-formula φ = C1∧ . . .∧Cm and a set family F ⊆ 2[m]

with supp(φ) ⊆ F , the set supp(φ) can be constructed in O�(|F|2) time.

Proof. In what follows a ∈ {0, 1}n refers to an assignment of values to the n

variables in φ. Define f ∈ N2[m]

for all X ⊆ [m] by

fX = |{a ∈ {0, 1}n : ∀i ∈ [m] it holds that a satisfies Ci iff i ∈ X}|.

It is easy to see that supp(f) = supp(φ), so if we know fX for every X ∈ F we
can construct supp(φ) in |F| time. Towards this end, first note that for every
Y ⊆ [m], (fζ)Y equals∑
X∈supp(f)

X⊆Y

f(X) =
∑
X⊆Y

f(X) = |{a ∈ {0, 1}n | ∀i : a satisfies Ci only if i ∈ Y }|.

Second, note that the last quantity can be computed in polynomial time: since
every clause outside Y must not be satisfied, each such clause forces the vari-
ables that occur in it to unique values; any other variables may be assigned to

Homomorphic Hashing for Sparse Coefficient Extraction 157

arbitrary values. That is, the count is 0 if the clauses outside Y force at least one
variable to conflicting values, otherwise the count is 2a where a is the number of
variables that occur in none of the clauses outside Y .

Now the algorithm is the following: for every X ∈ F compute (fζ)X in poly-
nomial time as discussed above. Then we can use algorithm mobius as described
below to obtain fX for every X ∈ F since it follows that f = mobius((F ,⊆),fζ)
from the definition of μ and the fact that μζ = I. Algorithm mobius clearly
runs in O�(|P |2) time, so this procedure meets the claimed time bound.

Algorithm mobius((P,≤),w)
1: Let P = {v1, v2 . . . , v|P |} such that vj ≤ vi implies j ≤ i.
2: z ← w.
3: for i = 1, 2, . . . , |P | do
4: for every vj ≤ vi do
5: zi = zi − zj
6: return z.

��
Proof (of Theorem 3, self-contained). Recall that we already know that
supp(φ0) = {∅}. Now, for i = 1, . . . ,m we set F = supp(φi−1) ∪ {X ∪ {i} :
X ∈ supp(φi−1)} and use F to obtain supp(φi) using Lemma 16. In the end we
are given supp(φm) and since φm is exactly the original formula, the input is
a yes-instance if and only if [m] ∈ supp(φm). The claimed running time follows
from Observations 1 and 3 above and the running time of algorithm mobius.

��
Set Cover. We will now give an application of Theorem 15(b) to Set Cover:
Given a set family F ⊆ 2U where |U | = n and an integer k, find a subfamily
C ⊆ F such that |C| = k and

⋃
S∈C S = U .

Theorem 17 (†). Given an instance of Set Cover, let 0 < α ≤ 1/2 be the
largest real such that |{

⋃
S∈C S : C ⊆ F and |C| = k}| ≤ 2(1−α)n. Then the

instance can be solved in O�(2(1−α/2)nnO(1)) time.
Acknowledgements. P.K. is supported by the Academy of Finland, Grants
252083 and 256287. M.K. is supported by the Academy of Finland, Grant 125637.
J.N. is supported by the Nederlandse Organisatie voor Wetenschappelijk Onder-
zoek (NWO), project: ’Space and Time Efficient Structural Improvements of
Dynamic Programming Algorithms’.

References

1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a
tight lower bound. Algorithmica 61(3), 638–655 (2011)

2. Björklund, A.: Determinant sums for undirected Hamiltonicity. In: FOCS, pp. 173–
182. IEEE Computer Society (2010)

3. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM J. Comput. 39(2), 546–563 (2009)

4. Crowston, R., Gutin, G., Jones, M., Yeo, A.: Lower bound for Max-r-Lin2 and its
applications in algorithmics and graph theory. CoRR, abs/1104.1135 (2011)

5. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming
I: linear cost functions. J. ACM 39, 519–545 (1992)

158 P. Kaski, M. Koivisto, and J. Nederlof

6. Eppstein, D., Galil, Z., Giancarlo, R., Italiano, G.F.: Sparse dynamic programming
II: convex and concave cost functions. J. ACM 39(3), 546–567 (1992)

7. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms, 1st edn. Springer-Verlag
New York, Inc., New York (2010)

8. Gaspers, S., Szeider, S.: Strong backdoors to nested satisfiability. CoRR,
abs/1202.4331 (2012)

9. Harnik, D., Naor, M.: On the compressibility of NP instances and cryptographic
applications. SIAM Journal on Computing 39(5), 1667–1713 (2010)

10. H̊astad, J.: Some optimal inapproximability results. J. ACM 48, 798–859 (2001)
11. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack

problem. J. ACM 21, 277–292 (1974)
12. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.

Sci. 62(2), 367–375 (2001)
13. Koutis, I., Williams, R.: Limits and Applications of Group Algebras for Parameter-

ized Problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer,
Heidelberg (2009)

14. Lipton, R.J.: Beating Bellman for the knapsack problem (2010), http://rjlipton.
wordpress.com/2010/03/03/beating-bellman-for-the-knapsack-problem/,
http://rjlipton.wordpress.com

15. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: Proceedings of
the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 321–330.
ACM, New York (2010)

16. Mansour, Y.: Randomized interpolation and approximation of sparse polynomials.
SIAM J. Comput. 24(2), 357–368 (1995)

17. Nederlof, J.: Fast Polynomial-Space Algorithms Using Möbius Inversion: Improv-
ing on Steiner Tree and Related Problems. In: Albers, S., Marchetti-Spaccamela,
A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS,
vol. 5555, pp. 713–725. Springer, Heidelberg (2009)

18. Nishimura, N., Ragde, P., Szeider, S.: Solving #sat using vertex covers. Acta
Inf. 44(7), 509–523 (2007)

19. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res.
Lett. 32(4), 299–301 (2004)

20. Rosser, B.: Explicit bounds for some functions of prime numbers. American Journal
of Mathematics 63(1), 211–232 (1941)

21. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

22. Solomon, L.: The burnside algebra of a finite group. Journal of Combinatorial
Theory 2(4), 603–615 (1967)

23. Traxler, P.: Exponential Time Complexity of SAT and Related Problems. PhD
thesis, ETH Zürich (2010)

24. Williams, R.: Finding paths of length k in O�(2k) time. Inf. Process. Lett. 109(6),
315–318 (2009)

25. Williams, R., Gomes, C.P., Selman, B.: Backdoors to typical case complexity. In:
IJCAI, pp. 1173–1178. Morgan Kaufmann (2003)

26. Woeginger, G.J.: Open problems around exact algorithms. Discrete Applied Math-
ematics 156(3), 397–405 (2008)

27. Zippel, R.: Probabilistic Algorithms for Sparse Polynomials. In: Ng, E.W. (ed.) EU-
ROSAM 1979 and ISSAC 1979. LNCS, vol. 72, pp. 216–226. Springer, Heidelberg
(1979)

http://rjlipton.wordpress.com/2010/03/03/beating-bellman-for-the-knapsack-problem/
http://rjlipton.wordpress.com/2010/03/03/beating-bellman-for-the-knapsack-problem/
http://rjlipton.wordpress.com

Fast Monotone Summation over Disjoint Sets�

Petteri Kaski1, Mikko Koivisto2, and Janne H. Korhonen2

1 Helsinki Institute for Information Technology HIIT & Department of Information
and Computer Science, Aalto University, Finland

2 Helsinki Institute for Information Technology HIIT & Department of Computer
Science, University of Helsinki, Finland

Abstract. We study the problem of computing an ensemble of multiple
sums where the summands in each sum are indexed by subsets of size p
of an n-element ground set. More precisely, the task is to compute, for
each subset of size q of the ground set, the sum over the values of all
subsets of size p that are disjoint from the subset of size q. We present
an arithmetic circuit that, without subtraction, solves the problem using
O((np +nq) log n) arithmetic gates, all monotone; for constant p, q this is
within the factor log n of the optimal. The circuit design is based on view-
ing the summation as a “set nucleation” task and using a tree-projection
approach to implement the nucleation. Applications include improved
algorithms for counting heaviest k-paths in a weighted graph, comput-
ing permanents of rectangular matrices, and dynamic feature selection
in machine learning.

1 Introduction

Weak Algebrisation. Many hard combinatorial problems benefit from algebri-
sation, where the problem to be solved is cast in algebraic terms as the task of
evaluating a particular expression or function over a suitably rich algebraic struc-
ture, such as a multivariate polynomial ring over a finite field. Recent advances
in this direction include improved algorithms for the k-path [25], Hamiltonian
path [4], k-coloring [9], Tutte polynomial [6], knapsack [21], and connectivity [14]
problems. A key ingredient in all of these advances is the exploitation of an alge-
braic catalyst, such as the existence of additive inverses for inclusion–exclusion,
or the existence of roots of unity for evaluation/interpolation, to obtain fast
evaluation algorithms.

Such advances withstanding, it is a basic question whether the catalyst is
necessary to obtain speedup. For example, fast algorithms for matrix multipli-
cation [11,13] (and combinatorially related tasks such as finding a triangle in a
graph [1,17]) rely on the assumption that the scalars have a ring structure, which
prompts the question whether a weaker structure, such as a semiring without

� This research was supported in part by the Academy of Finland, Grants 252083
(P.K.), 256287 (P.K.), and 125637 (M.K.), and by the Helsinki Doctoral Programme
in Computer Science - Advanced Computing and Intelligent Systems (J.K.).

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 159–170, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

160 P. Kaski, M. Koivisto, and J.H. Korhonen

additive inverses, would still enable fast multiplication. The answer to this par-
ticular question is known to be negative [18], but for many of the recent advances
such an analysis has not been carried out. In particular, many of the recent alge-
brisations have significant combinatorial structure, which gives hope for positive
results even if algebraic catalysts are lacking. The objective of this paper is to
present one such positive result by deploying combinatorial tools.
A Lemma of Valiant. Our present study stems from a technical lemma of
Valiant [22] encountered in the study of circuit complexity over a monotone
versus a universal basis. More specifically, starting from n variables f1, f2, . . . , fn,
the objective is to use as few arithmetic operations as possible to compute the
n sums of variables where the jth sum ej includes all the other variables except
the variable fj , where j = 1, 2, . . . , n.

If additive inverses are available, a solution using O(n) arithmetic operations
is immediate: first take the sum of all the n variables, and then for j = 1, 2, . . . , n
compute ej by subtracting the variable fj.

Valiant [22] showed that O(n) operations suffice also when additive inverses
are not available; we display Valiant’s elegant combinatorial solution for n = 8
below as an arithmetic circuit.

e₂ = f₁ ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₇ ⊕ f₈
e₃ = f₁ ⊕ f₂ ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₇ ⊕ f₈
e₄ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₅ ⊕ f₆ ⊕ f₇ ⊕ f₈
e₅ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₄ ⊕ f₆ ⊕ f₇ ⊕ f₈
e₆ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₇ ⊕ f₈
e₇ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₈
e₈ = f₁ ⊕ f₂ ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₇

e₁ = f₂ ⊕ f₃ ⊕ f₄ ⊕ f₅ ⊕ f₆ ⊕ f₇ ⊕ f₈
f₂
f₃
f₄
f₅
f₆
f₇

f₁

f₈
Generalising to Higher Dimensions. This paper generalises Valiant’s lemma
to higher dimensions using purely combinatorial tools. Accordingly, we assume
that only very limited algebraic structure is available in the form of a commu-
tative semigroup (S, ⊕). That is, ⊕ satisfies the associative law x ⊕ (y ⊕ z) =
(x⊕y)⊕z and the commutative law x⊕y = y ⊕x for all x, y, z ∈ S, but nothing
else is assumed.

By “higher dimensions” we refer to the input not consisting of n values (“vari-
ables” in the example above) in S, but rather

(
n
p

)
values f(X) ∈ S indexed by

the p-subsets X of [n] = {1, 2, . . . , n}. Accordingly, we also allow the output to
have higher dimension. That is, given as input a function f from the p-subsets
[n] to the set S, the task is to output the function e defined for each q-subset Y
of [n] by

e(Y) =
⊕

X:X∩Y =∅
f(X) , (1)

where the sum is over all p-subsets X of [n] satisfying the intersection constraint.
Let us call this problem (p, q)-disjoint summation.

Fast Monotone Summation over Disjoint Sets 161

In analogy with Valiant’s solution for the case p = q = 1 depicted above, an
algorithm that solves the (p, q)-disjoint summation problem can now be viewed
as a circuit consisting of two types of gates: input gates indexed by p-subsets X
and arithmetic gates that perform the operation ⊕, with certain arithmetic gates
designated as output gates indexed by q-subsets Y . We would like a circuit that
has as few gates as possible. In particular, does there exist a circuit whose size
for constant p, q is within a logarithmic factor of the lower bound Θ(np + nq)?

Main Result. In this paper we answer the question in the affirmative. Specifi-
cally, we show that a circuit of size O

(
(np + nq) log n

)
exists to compute e from

f over an arbitrary commutative semigroup (S, ⊕), and moreover, there is an
algorithm that constructs the circuit in time O

(
(p2 + q2)(np + nq) log3 n

)
. These

bounds hold uniformly for all p, q. That is, the coefficient hidden by O-notation
does not depend on p and q.

From a technical perspective our main contribution is combinatorial and can
be expressed as a solution to a specific set nucleation task. In such a task we start
with a collection of “atomic compounds” (a collection of singleton sets), and the
goal is to assemble a specified collection of “target compounds” (a collection
of sets that are unions of the singletons). The assembly is to be executed by a
straight-line program, where each operation in the program selects two disjoint
sets in the collection and inserts their union into the collection. (Once a set is in
the collection, it may be selected arbitrarily many times.) The assembly should
be done in as few operations as possible.

Our main contribution can be viewed as a straight-line program of length
O
(
(np + nq) log n

)
that assembles the collection {{X : X ∩ Y = ∅} : Y } starting

from the collection {{X} : X}, where X ranges over the p-subsets of [n] and Y
ranges over the q-subsets of [n]. Valiant’s lemma [22] in these terms provides an
optimal solution of length Θ(n) for the specific case p = q = 1.

Applications. Many classical optimisation problems and counting problems can
be algebrised over a commutative semigroup. A selection of applications will be
reviewed in Sect. 3.

Related Work. “Nucleation” is implicit in the design of many fast algebraic
algorithms, perhaps two of the most central are the fast Fourier transform of
Cooley and Tukey [12] (as is witnessed by the butterfly circuit representation)
and Yates’s 1937 algorithm [26] for computing the product of a vector with the
tensor product of n matrices of size 2 × 2. The latter can in fact be directly used
to obtain a nucleation process for (p, q)-disjoint summation, even if an inefficient
one. (For an exposition of Yates’s method we recommend Knuth [19, §4.6.4];
take mi = 2 and gi(si, ti) = [si = 0 or ti = 0] for i = 1, 2, . . . , n to extract the
following nucleation process implicit in the algorithm.) For all Z ⊆ [n] and
i ∈ {0, 1, . . . , n}, let

ai(Z) = {X ⊆ [n] : X ∩ [n − i] = Z ∩ [n − i], X ∩ Z \ [n − i] = ∅} . (2)

Put otherwise, ai(Z) consists of X that agree with Z in the first n − i elements of
[n] and are disjoint from Z in the last i elements of [n]. In particular, our objective

162 P. Kaski, M. Koivisto, and J.H. Korhonen

is to assemble the sets an(Y) = {X : X ∩ Y = ∅} for each Y ⊆ [n] starting from
the singletons a0(X) = {X} for each X ⊆ [n]. The nucleation process given by
Yates’ algorithm is, for all i = 1, 2, . . . , n and Z ⊆ [n], to set

ai(Z) =

{
ai−1(Z \ {n + 1 − i}) if n + 1 − i ∈ Z,

ai−1(Z ∪ {n + 1 − i}) ∪ ai−1(Z) if n + 1 − i /∈ Z.
(3)

This results in 2n−1n disjoint unions. If we restrict to the case |Y | ≤ q and
|X | ≤ p, then it suffices to consider only Z with |Z| ≤ p + q, which results in
O
(
(p + q)

∑p+q
j=0

(
n
j

))
disjoint unions. Compared with our main result, this is not

particularly efficient. In particular, our main result relies on “tree-projection”
partitioning that enables a significant speedup over the “prefix-suffix” partition-
ing in (2) and (3).

We observe that “set nucleation” can also be viewed as a computational prob-
lem, where the output collection is given and the task is to decide whether there
is a straight-line program of length at most � that assembles the output using
(disjoint) unions starting from singleton sets. This problem is known to be NP-
complete even in the case where output sets have size 3 [15, Problem PO9];
moreover, the problem remains NP-complete if the unions are not required to
be disjoint.

2 A Circuit for (p, q)-Disjoint Summation

Nucleation of p-Subsets with a Perfect Binary Tree. Looking at Valiant’s
circuit construction in the introduction, we observe that the left half of the
circuit accumulates sums of variables (i.e., sums of 1-subsets of [n]) along what
is a perfect binary tree. Our first objective is to develop a sufficient generalisation
of this strategy to cover the setting where each summand is indexed by a p-subset
of [n] with p ≥ 1.

Let us assume that n = 2b for a nonnegative integer b so that we can identify
the elements of [n] with binary strings of length b. We can view each binary
string of length b as traversing a unique path starting from the root node of
a perfect binary tree of height b and ending at a unique leaf node. Similarly,
we may identify any node at level � of the tree by a binary string of length �,
with 0 ≤ � ≤ b. See Fig. 1(a) for an illustration. For p = 1 this correspondence
suffices.

For p > 1, we are not studying individual binary strings of length b (that is,
individual elements of [n]), but rather p-subsets of such strings. In particular, we
can identify each p-subset of [n] with a p-subset of leaf nodes in the binary tree.
To nucleate such subsets it will be useful to be able to “project” sets upward in
the tree. This motivates the following definitions.

Let us write {0, 1}� for the set of all binary strings of length 0 ≤ � ≤ b. For
� = 0, we write ε for the empty string. For a subset X ⊆ {0, 1}b, we define the
projection of X to level � as

X |� =
{

x ∈ {0, 1}� : ∃y ∈ {0, 1}b−� such that xy ∈ X
}

. (4)

Fast Monotone Summation over Disjoint Sets 163

(a) (b)

X

W

1
1

111
01

1

0

00 0
0

0

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

1
1

111
01

1

0

00 0
0

0

0 1 1 1 1 1 1 1 10 0 0 0 0 0 0

Fig. 1. Representing {0, 1}-strings of length at most b as nodes in a perfect binary tree
of height b. Here b = 4. (a) Each string traces a unique path down from the root node,
with the empty string ε corresponding to the root node. The nodes at level 0 ≤ � ≤ b
correspond to the strings of length �. The red leaf node corresponds to 0110 and the
blue node corresponds to 101. (b) A set of strings corresponds to a set of nodes in the
tree. The set X is displayed in red, the set W in blue. The set W is the projection of
the set X to level � = 2. Equivalently, X|� = W .

That is, X |� is the set of length-� prefixes of strings in X . Equivalently, in the
binary tree we obtain X |� by lifting each element of X to its ancestor on level-�
in the tree. See Fig. 1(b) for an illustration. For the empty set we define ∅|� = ∅.

Let us now study a set family F ⊆ 2{0,1}b . The intuition here is that each
member of F is a summand, and F represents the sum of its members. A circuit
design must assemble (nucleate) F by taking disjoint unions of carefully selected
subfamilies. This motivates the following definitions.

For a level 0 ≤ � ≤ b and a string W ⊆ {0, 1}� let us define the subfamily of
F that projects to W by

FW = {X ∈ F : X |� = W } . (5)

That is, the family FW consists of precisely those members X ∈ F that project
to W . Again Fig. 1(b) provides an illustration: we select precisely those X whose
projection is W .

The following technical observations are now immediate. For each 0 ≤ � ≤ b,
if ∅ ∈ F, then we have

F∅ = {∅} . (6)

Similarly, for � = 0 we have

F{ε} = F \ {∅} . (7)

For � = b we have for every W ∈ F that

FW = {W } . (8)

Now let us restrict our study to the situation where the family F ⊆ 2{0,1}b con-
tains only sets of size at most p. In particular, this is the case in our applications.
For a set U and an integer p, let us write

(
U
p

)
for the family of all subsets of U of

size p, and
(

U
↓p

)
for the family of all subsets of U with size at most p. Accordingly,

for integers 0 ≤ k ≤ n, let us use the shorthand
(

n
↓k

)
=

∑k
i=0

(
n
i

)
.

164 P. Kaski, M. Koivisto, and J.H. Korhonen

1111111111111111

1 1

1

1 1

1
1

1 1

1

1 1

1

1
1

00

0

00

0
0

0

0

000

0
0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
X

W
Z

Fig. 2. Illustrating the proof of Lemma 1. Here b = 5. The set X (indicated with red
nodes) projects to level � = 2 to the set W (indicated with blue nodes) and to level
� + 1 = 3 to the set Z (indicated with yellow nodes). Furtermore, the projection of Z
to level � is W . Thus, each X ∈ F is included to FW exactly from FZ in Lemma 1.

The following lemma enables us to recursively nucleate any family F ⊆
(

{0,1}b

↓p

)
.

In particular, we can nucleate the family FW with W in level � using the families
FZ with Z in level � + 1. Applied recursively, we obtain F by proceeding from
the bottom up, that is, � = b, b − 1, . . . , 1, 0. The intuition underlying the lemma
is illustrated in Fig. 2. We refer to the full version of this paper for the proof.

Lemma 1. For all 0 ≤ � ≤ b − 1, F ⊆
(

{0,1}b

↓p

)
, and W ∈

(
{0,1}�

↓p

)
, we have that

the family FW is a disjoint union FW =
⋃{

FZ : Z ∈
(

{0,1}�+1

↓p

)
W

}
.

A Generalisation: (p, q)-Intersection Summation. It will be convenient to
study a minor generalisation of (p, q)-disjoint summation. Namely, instead of
insisting on disjointness, we allow nonempty intersections to occur with “active”
(or “avoided”) q-subsets A, but require that elements in the intersection of each
p-subset and each A are “individualized.” That is, our input is not given by
associating a value f(X) ∈ S to each set X ∈

(
[n]
↓p

)
, but is instead given by

associating a value g(I, X) ∈ S to each pair (I, X) with I ⊆ X ∈
(

[n]
↓p

)
, where I

indicates the elements of X that are “individualized.” In particular, we may insist
(by appending to S a formal identity element if such an element does not already
exist in S) that g(I, X) vanishes unless I is empty. This reduces (p, q)-disjoint
summation to the following problem:

Problem 1. ((p, q)-intersection summation) Given as input a function g that
maps each pair (I, X) with I ⊆ X ∈

(
[n]
↓p

)
and |I| ≤ q to an element g(I, X) ∈ S,

output the function h :
(

[n]
↓q

)
→ S defined for all A ∈

(
[n]
↓q

)
by

h(A) =
⊕

X∈([n]
↓p)

g(A ∩ X, X) . (9)

The Circuit Construction. We proceed to derive a recursion for the function
h using Lemma 1 to carry out nucleation of p-subsets. The recursion proceeds

Fast Monotone Summation over Disjoint Sets 165

from the bottom up, that is, � = b, b−1, . . . , 1, 0 in the binary tree representation.
(Recall that we identify the elements of [n] with the elements of {0, 1}b, where
n is a power of 2 with n = 2b.) The intermediate functions h� computed by the
recursion are “projections” of (9) using (5). In more precise terms, for � = b, b −
1, . . . , 1, 0, the function h� :

(
{0,1}b

↓q

)
×
(

{0,1}�

↓p

)
→ S is defined for all W ∈

(
{0,1}�

↓p

)

and A ∈
(

{0,1}b

↓q

)
by

h�(A, W) =
⊕

X∈
({0,1}b

↓p

)
W

g(A ∩ X, X) . (10)

Let us now observe that we can indeed recover the function h from the case
� = 0. Indeed, for the empty string ε, the empty set ∅ and every A ∈

(
{0,1}b

↓q

)
we

have by (6) and (7) that

h(A) = h0(A, {ε}) ⊕ h0(A, ∅) . (11)

It remains to derive the recursion that gives us h0. Here we require one more
technical observation, which enables us to narrow down the intermediate values
h�(A, W) that need to be computed to obtain h0. In particular, we may dis-
card the part of the active set A that extends outside the “span” of W . This
observation is the crux in deriving a succinct circuit design.

For 0 ≤ � ≤ b and w ∈ {0, 1}�, we define the span of w by

〈w〉 =
{

x ∈ {0, 1}b : ∃z ∈ {0, 1}b−� such that wz = x
}

.

In the binary tree, 〈w〉 consists of the leaf nodes in the subtree rooted at w. Let us
extend this notation to subsets W ⊆ {0, 1}� by 〈W 〉 =

⋃
w∈W 〈w〉 . The following

lemma shows that it is sufficient to evaluate h�(A, W) only for W ∈
(

{0,1}�

↓p

)
and

A ∈
(

{0,1}b

↓q

)
such that A ⊆ 〈W 〉. We omit the proof; please refer to the full

version of this paper for details.

Lemma 2. For all 0 ≤ � ≤ b, W ∈
(

{0,1}�

↓p

)
, and A ∈

(
{0,1}b

↓q

)
, we have

h�(A, W) = h�(A ∩ 〈W 〉 , W) . (12)

We are now ready to present the recursion for � = b, b−1, . . . , 1, 0. The base case
� = b is obtained directly based on the values of g, because we have by (8) for
all W ∈

(
{0,1}b

↓p

)
and A ∈

(
{0,1}b

↓q

)
with A ⊆ W that

hb(A, W) = g(A, W) . (13)

The following lemma gives the recursive step from � + 1 to � by combining
Lemma 1 and Lemma 2. Again, we defer the details of the proof to the full
version of this paper.

166 P. Kaski, M. Koivisto, and J.H. Korhonen

Lemma 3. For 0 ≤ � ≤ b − 1, W ∈
(

{0,1}�

↓p

)
, and A ∈

(
{0,1}b

↓q

)
with A ⊆ 〈W 〉,

we have
h�(A, W) =

⊕
Z∈

({0,1}�+1
↓p

)
W

h�+1(A ∩ 〈Z〉 , Z) . (14)

The recursion given by (13), (14), and (12) now defines an arithmetic circuit
that solves (p, q)-intersection summation.

Size of the circuit. By (13), the number of input gates in the circuit is equal
to the number of pairs (I, X) with I ⊆ X ∈

(
{0,1}b

↓p

)
and |X | ≤ q, which is

p∑
i=0

q∑
j=0

(
2b

i

)(
i

j

)
. (15)

To derive an expression for the number of ⊕-gates, we count for each 0 ≤ � ≤ b−1
the number of pairs (A, W) with W ∈

(
{0,1}�

↓p

)
, A ∈

(
{0,1}b

↓q

)
, and A ⊆ 〈W 〉, and

for each such pair (A, W) we count the number of ⊕-gates in the subcircuit that
computes the value h�(A, W) from the values of h�+1 using (14).

First, we observe that for each W ∈
(

{0,1}�

↓p

)
we have |〈W 〉| = 2b−� |W |. Thus,

the number of pairs (A, W) with W ∈
(

{0,1}�

↓p

)
, A ∈

(
{0,1}b

↓q

)
, and A ⊆ 〈W 〉 is

p∑
i=0

q∑
j=0

(
2�

i

)(
i2b−�

j

)
. (16)

For each such pair (A, W), the number of ⊕-gates for (14) is
∣∣∣
(

{0,1}�+1

↓p

)
W

∣∣∣ − 1.

Lemma 4. For all 0 ≤ � ≤ b − 1, W ∈
(

{0,1}�

↓p

)
, and |W | = i, we have

∣∣∣∣
({0, 1}�+1

↓p

)
W

∣∣∣∣ =
p−i∑
k=0

(
i

k

)
2i−k . (17)

Proof. A set Z ∈
(

{0,1}�+1

↓p

)
W

can contain either one or both of the strings w0
and w1 for each w ∈ W . The set Z may contain both elements for at most p − i
elements w ∈ W because otherwise |Z| > p. Finally, for each 0 ≤ k ≤ p− i, there
are

(
i
k

)
2i−k ways to select a set Z ∈

(
{0,1}�+1

↓p

)
W

such that Z contains w0 and
w1 for exactly k elements w ∈ W .

Finally, for each A ∈
(

{0,1}b

↓q

)
we require an ⊕-gate that is also designated as an

output gate to implement (11). The number of these gates is
q∑

j=0

(
2b

j

)
. (18)

Fast Monotone Summation over Disjoint Sets 167

The total number of ⊕-gates in the circuit is obtained by combining (15), (16),
(17), and (18). The number of ⊕-gates is thus

p∑
i=0

q∑
j=0

(
2b

i

)(
i

j

)
+

b−1∑
�=0

p∑
i=0

q∑
j=0

(
2�

i

)(
i2b−�

j

)(
p−i∑
k=0

(
i

k

)
2i−k − 1

)
+

q∑
j=0

(
2b

j

)

≤
b∑

�=0

p∑
i=0

q∑
j=0

(
2�

i

)(
i2b−�

j

)
3i ≤

b∑
�=0

p∑
i=0

q∑
j=0

(2�)i

i!
ij(2b−�)j

j!
3i

≤
b∑

�=0

p∑
i=0

q∑
j=0

(2�)max(p,q)

i!
ij(2m−�)max(p,q)

j!
3i

= nmax(p,q)(1 + log2 n)
p∑

i=0

q∑
j=0

ij3i

i!j!
.

The remaining double sum is bounded from above by a constant, and thus the
circuit defined by (13), (14), and (12) has size O((np + nq) log n), where the
constant hidden by the O-notation does not depend on p and q.

The circuit can be constructed in time O
(
(p2 + q2)(np + nq) log3 n

)
. We omit

the details.

3 Concluding Remarks and Applications

We have generalised Valiant’s [22] observation that negation is powerless for
computing simultaneously the n different disjunctions of all but one of the given
n variables: now we know that, in our terminology, subtraction is powerless
for (p, q)-disjoint summation for any constant p and q. (Valiant proved this for
p = q = 1.) Interestingly, requiring p and q be constants turns out to be essential,
namely, when subtraction is available, an inclusion–exclusion technique is known
[5] to yield a circuit of size O

(
p
(

n
↓p

)
+ q

(
n
↓q

))
, which, in terms of p and q, is

exponentially smaller than our bound O
(
(np + nq) log n

)
. This gap highlights

the difference of the algorithmic ideas behind the two results. Whether the gap
can be improved to polynomial in p and q is an open question.

While we have dealed with the abstract notions of “monotone sums” or semi-
group sums, in applications they most often materialise as maximisation or min-
imisation, as described in the next paragraphs. Also, in applications local terms
are usually combined not only by one (monotone) operation but two different
operations, such as “min” and “+”. To facilitate the treatment of such applica-
tions, we extend the semigroup to a semiring (S, ⊕, �) by introducing a product
operation “�”. Now the task is to evaluate

⊕
X,Y :X∩Y =∅

f(X) � g(Y) , (19)

where X and Y run through all p-subsets and q-subsets of [n], respectively, and
f and g are given mappings to S. We immediately observe that the expression

168 P. Kaski, M. Koivisto, and J.H. Korhonen

(19) is equal to
⊕

Y e(Y) � g(Y), where the sum is over all q-subsets of [n] and
e is as in (1). Thus, by our main result, it can be evaluated using a circuit with
O((np + nq) log n) gates.

Application to k-paths. We apply the semiring formulation to the problem
of counting the maximum-weight k-edge paths from vertex s to vertex t in a
given edge-weighted graph with real weights, where we assume that we are only
allowed to add and compare real numbers and these operations take constant
time (cf. [24]). By straightforward Bellman–Held–Karp type dynamic program-
ming [2,3,16] (or, even by brute force) we can solve the problem in

(
n
↓k

)
nO(1)

time. However, our main result gives an algorithm that runs in nk/2+O(1) time
by solving the problem in halves: Guess a middle vertex v and define f1(X) as
the number of maximum-weight k/2-edge paths from s to v in the graph induced
by the vertex set X ∪ {v}; similarly define g1(X) for the k/2-edge paths from v
to t. Furthermore, define f2(X) and g2(X) as the respective maximum weights
and put f(X) = (f1(X), f2(X)) and g(X) = (g1(X), g2(X)). These values can
be computed for all vertex subsets X of size k/2 in

(
n

k/2
)
nO(1) time. It remains

to define the semiring operations in such a way that the expression (19) equals
the desired number of k-edge paths; one can verify that the following definitions
work correctly: (c, w) � (c′, w′) = (c · c′, w + w′) and

(c, w) ⊕ (c′, w′) =

⎧⎪⎨
⎪⎩

(c, w) if w > w′,
(c′, w′) if w < w′,
(c + c′, w) if w = w′.

Thus, the techniques of the present paper enable solving the problem essentially
as fast as the fastest known algorithms for the special case of counting all the k-
paths, for which quite different techniques relying on subtraction yield

(
n

k/2
)
nO(1)

time bound [7]. On the other, for the more general problem of counting weighted
subgraphs Vassilevska and Williams [23] give an algorithm whose running time,
when applied to k-paths, is O(nωk/3+n2k/3+c), where ω < 2.3727 is the exponent
of matrix multiplication and c is a constant; this of course would remain worse
than our bound even if ω = 2.
Application to Matrix Permanent. Consider the problem of computing the
permanent of a k × n matrix (aij) over a noncommutative semiring, with k ≤ n
and even for simplicity, given by

∑
σ a1σ(1)a2σ(2) · · · akσ(k), where the sum is

over all injective mappings σ from [k] to [n]. We observe that the expression
(19) equals the permanent if we let p = q = k/2 = � and define f(X) as the
sum of a1σ(1)a2σ(2) · · · a�σ(�) over all injective mappings σ from {1, 2, . . . , �} to X
and, similarly, g(Y) as the sum of a�+1σ(�+1)a�+2σ(�+2) · · · akσ(k) over all injective
mappings σ from {�+1, �+2, . . . , k} to Y . Since the values f(X) and g(Y) for all
relevant X and Y can be computed by dynamic programming in

(
n

k/2
)
nO(1) time,

our main result yields the time bound nk/2+O(1) for computing the permanent.
Thus we improve significantly upon a Bellman–Held–Karp type dynamic pro-

gramming algorithm that computes the permanent in
(

n
↓k

)
nO(1) time, the best

Fast Monotone Summation over Disjoint Sets 169

previous upper bound we are aware of for noncommutative semirings [8]. It
should be noted, however, that essentally as fast algorithms are already known for
noncommutative rings [8], and that faster, 2knO(1) time, algorithms are known
for commutative semirings [8,20].
Application to Feature Selection. The extensively studied feature selection
problem in machine learning asks for a subset X of a given set of available
features A so as to maximise some objective function f(X). Often the size of X
can be bounded from above by some constant k, and sometimes the selection
task needs to be solved repeatedly with the set of available features A changing
dynamically across, say, the set [n] of all features. Such constraints take place
in a recent work [10] on Bayesian network structure learning by branch and
bound: the algorithm proceeds by forcing some features, I, to be included in X
and some other, E, to be excluded from X . Thus the key computational step
becomes that of maximising f(X) subject to I ⊆ X ⊆ [n] \ E and |X | ≤ k,
which is repeated for varying I and E. We observe that instead of computing
the maximum every time from scratch, it pays off precompute a solution to (p, q)-
disjoint summation for all 0 ≤ p, q ≤ k, since this takes about the same time
as a single step for I = ∅ and any fixed E. Indeed, in the scenario where the
branch and bound search proceeds to exclude each and every subset of k features
in turn, but no larger subsets, such precomputation decreases the running time
bound quite dramatically, from O(n2k) to O(nk); typically, n ranges from tens
to some hundreds and k from 2 to 7. Admitted, in practice, one can expect the
search procedure match the said scenario only partially, and so the savings will
be more modest yet significant.
Acknowledgment. We thank Jukka Suomela for useful discussions.

References
1. Alon, N., Yuster, R., Zwick, U.: Finding and counting given length cycles. Algo-

rithmica 17(3), 209–223 (1997)
2. Bellman, R.: Combinatorial processes and dynamic programming. In: Combinato-

rial Analysis. Proceedings of Symposia in Applied Mathematics, vol. 10, pp. 217–
249. ACM (1960)

3. Bellman, R.: Dynamic programming treatment of the travelling salesman problem.
J. ACM 9(1), 61–63 (1962)

4. Björklund, A.: Determinant sums for undirected Hamiltonicity. In: 51st Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 173–182.
IEEE Computer Society, Los Alamitos (2010)

5. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast
subset convolution (manuscript submitted for publication)

6. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Computing the Tutte poly-
nomial in vertex-exponential time. In: 49th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS 2008), pp. 677–686. IEEE Computer Society,
Los Alamitos (2008)

7. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting Paths and Packings
in Halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586.
Springer, Heidelberg (2009)

170 P. Kaski, M. Koivisto, and J.H. Korhonen

8. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Evaluation of permanents in
rings and semirings. Information Processing Letters 110(20), 867–870 (2010)

9. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion.
SIAM Journal on Computing 39(2), 546–563 (2009)

10. de Campos, C.P., Ji, Q.: Efficient structure learning of bayesian networks using
constraints. Journal of Machine Learning Research 12, 663–689 (2011)

11. Cohn, H., Kleinberg, R., Szegedy, B., Umans, C.: Group-theoretic algorithms for
matrix multiplication. In: 46th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS 2005), pp. 379–388. IEEE Computer Society, Los Alamitos
(2005)

12. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation 19, 297–301 (1965)

13. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation 9(3), 251–280 (1990)

14. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time (2011) (manuscript)

15. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company (1979)

16. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems.
Journal of the Society for Industrial and Applied Mathematics 10(1), 196–210
(1962)

17. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM Journal on
Computing 7(4), 413–423 (1978)

18. Kerr, L.R.: The effect of algebraic structure on the computational complexity of
matrix multiplications. Ph.D. thesis, Cornell University (1970)

19. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algo-
rithms, vol. 2. Addison–Wesley, Upper Saddle River (1998)

20. Koutis, I., Williams, R.: Limits and Applications of Group Algebras for Parameter-
ized Problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 653–664. Springer,
Heidelberg (2009)

21. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: 2010 ACM Inter-
national Symposium on Theory of Computing (STOC 2010), pp. 321–330. ACM,
New York (2010)

22. Valiant, L.G.: Negation is powerless for boolean slice functions. SIAM Journal on
Computing 15, 531–535 (1986)

23. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. In: 2009 ACM International Symposium on Theory of Computing (STOC
2009), pp. 455–464. ACM, New York (2009)

24. Vassilevska, V., Williams, R., Yuster, R.: Finding heaviest H-subgraphs in real
weighted graphs, with applications. ACM Transactions on Algorithms 6(3), Art.
44, 23 (2010)

25. Williams, R.: Finding paths of length k in O∗(2k) time. Information Processing
Letters 109(6), 315–318 (2009)

26. Yates, F.: The Design and Analysis of Factorial Experiments. Imperial Bureau of
Soil Science, Harpenden, England (1937)

Weighted Counting
of k-Matchings Is #W[1]-Hard

Markus Bläser and Radu Curticapean

Saarland University, Dept. of Computer Science
{mblaeser,curticapean}@cs.uni-saarland.de

Abstract. In the seminal paper for parameterized counting complexity
[1], the following problem is conjectured to be #W[1]-hard: Given a bi-
partite graph G and a number k ∈ N, which is considered as a parameter,
count the number of matchings of size k in G.

We prove hardness for a natural weighted generalization of this prob-
lem: Let G = (V, E, w) be an edge-weighted graph and define the weight
of a matching as the product of weights of all edges in the matching. We
show that exact evaluation of the sum over all such weighted matchings
of size k is #W[1]-hard for bipartite graphs G.

As an intermediate step in our reduction, we also prove #W[1]-
hardness of the problem of counting k-partial cycle covers, which are
vertex-disjoint unions of cycles including k edges in total. This hardness
result even holds for unweighted graphs.

1 Introduction

Counting problems are an important class of problems in theoretical computer
science and also appear in other areas, such as machine learning and statistical
physics. Within computer science, they were formally introduced in [2] together
with the complexity class #P. In the same paper, #P-hardness of the perma-
nent evaluation problem for 0-1-matrices was proven, which is equivalent to the
statement that counting perfect matchings on bipartite graphs is #P-hard.

Given this hardness result, the complexity of relaxed versions of the per-
manent evaluation and other hard counting problems was investigated. Typical
relaxations consist of restricting the input to tame graphs, such as planar graphs
or graphs of bounded degree. For instance, the number of perfect matchings is
polynomial-time computable on planar graphs, as shown in [3,4], but remains
hard on general graphs of maximum degree 3, cf. [5]. Other relaxations, such as
approximate counting [6], are also studied.

1.1 Parameterized Counting Problems

Among the most recent relaxations for hard counting problems are parameterized
counting problems, cf. [1]. Inputs x to such problems come with an additional
parameter k, and a parameterized counting problem is fixed-parameter tractable
if it can be solved in time f(k)|x|O(1) on inputs x with parameter k. In [1],

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 171–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

172 M. Bläser and R. Curticapean

the class #W[1] is defined analogously to the well-known class W[1], and #W[1]-
hardness under parameterized reductions is introduced.

In this paper, we consider only parameterized counting problems on graphs.
Here, k typically either measures some notion of intricacy of the input graph or
the intricacy of the structures to be counted.

Typical parameters associated with the input graph are, for instance, its
treewidth, cliquewidth or genus. A well-known result for parameterization by
treewidth is a counting analogue [7] of Courcelle’s Theorem [8]: If φ(X) is a
formula in monadic second-order logic over graphs with a free set variable X ,
then computing the number of sets X that satisfy φ is fpt in the treewidth of
G. This implies, among others, that counting perfect matchings of a graph G is
fpt in the treewidth of G. Furthermore, by [9], counting the perfect matchings
of a graph is fpt in its genus.

A commonly used parameter associated with the structures to be counted is
simply given by their size. Results based on this kind of parameterization include
that computing the number of k-vertex covers is fpt in k, while computing the
number of k-paths, k-cliques or k-cycles is #W[1]-hard, all proven in [1]. If G is a
graph of bounded local treewidth, such as a planar graph or a graph of bounded
degree, then many tractability results for counting structures of small size can
be derived from the following meta-theorem [10]: If φ(x1, . . . , xk) is a formula
of first-order logic with free individual variables x1, . . . , xk, then counting the
number of tuples (a1, . . . , ak) ∈ V k with G |= φ(a1, . . . , ak) is fpt in k.

1.2 Counting k-Matchings

As an open problem in [1], it is conjectured that counting k-matchings (match-
ings with k edges) in bipartite graphs is #W[1]-hard in the parameter k. This
conjecture is backed up by the fact that the best known algorithms for this
counting problem have time bounds of the type O∗(nΘ(k)). Among these is [11],
which runs in time O∗(2k+o(k)(n

k/2
)
) on general graphs. This was subsequently

improved by a slightly faster algorithm [12] that requires only polynomial space.
In this paper, we show that weighted counting of k-matchings is #W[1]-hard

in the parameter k, even for bipartite graphs. In our setting, we consider edge-
weighted bipartite graphs G = (V, E, w) and assign to every matching M ⊆ E
the weight

∏
e∈M w(e). This kind of weighting also appears often in the study

of graph polynomials, see [13,14] for examples.
While our hardness result holds only for a weighted, and as such, generalized

version of the problem of counting k-matchings, we still consider this to be
a valid step towards proving #W[1]-hardness of the unweighted problem. As
future work, we consider modifying our proof in such a way that all intermediate
reductions that require edge weights are replaced by unweighted reductions.

2 Definitions and Proof Outline

In this paper, several notions of graphs are distinguished: A graph is an undi-
rected simple graph, i.e., it has neither self-loops nor multiple edges. A digraph is a

Weighted Counting of k-Matchings Is #W[1]-Hard 173

directed graph with self-loops (v, v) allowed, but multiple edges forbidden. An
edge-weighted (di)graph is a triple (V, E, w) with (V, E) a (di)graph and w : E →
Z. For all graphs, paths and cycles are defined to be simple.1 By standard conven-
tion, we consider self-loops as cycles, but not as paths.

We denote the falling factorial by (x)n := x(x − 1) . . . (x − n + 1). If M is a
set, we define #M := |M | for convenience.

For an undirected graph G and k ∈ N, we write Mk[G] for the set of matchings
of size k in G. Our goal is to prove #W[1]-hardness of the parameterized match-
ing problem p#Match: Given a bipartite graph G and k ∈ N, compute #Mk[G].
While we do not obtain a proof for this statement, we can show #W[1]-hardness
for p#wMatch, a weighted version of this problem, where G = (V, E, w) is edge-
weighted and every matching M is weighted by

∏
e∈M w(e):

p#Match
Input: Digraph G, k ∈ N

Parameter: k

Output: #Mk[G]

p#wMatch
Input: Weighted digraph G, k ∈ N

Parameter: k

Output:
∑

M∈Mk[G]
∏

e∈M
w(e)

Our result is proven in a series of four reductions, starting from p#Clique,
whose #W[1]-hardness was established in [1]. First, we observe in Section 3 that
p#Match is equivalent to the problem of counting disjoint unions of paths and
cycles on digraphs. We call these structures k-partial path-cycle covers:

Definition 1. Let G = (V, E) be a digraph and k ∈ N. A k-partial path-cycle
cover C in G is a set C ⊆ E with |C| = k that consists of a vertex-disjoint union
of paths and cycles.2

The number of cycles in C is denoted by σ(C), that of paths by ρ(C), and that
of isolated vertices by ι(C). We call C a k-partial cycle cover if ρ(C) = 0.

The set of k-partial path-cycle covers in G is denoted by PCk[G], and that of
k-partial cycle covers by Ck[G].

We denote the parameterized problem of counting k-partial path-cycle covers by
p#PCC, and that of counting k-partial cycle covers by p#CC. As for matchings,
we can define the weight of a path-cycle cover C as the product of all weights of
edges in C, and obtain the problem p#wPCC:

p#CC
Input: Digraph G, k ∈ N

Parameter: k

Output: #Ck[G]

p#wPCC
Input: Weighted digraph G, k ∈ N

Parameter: k

Output:
∑

C∈PCk[G]
∏

e∈C
w(C)

In Section 4, we introduce a graph gadget that allows to reduce the
problem of counting partial cycle covers to that of counting weighted partial

1 “Non-simple cycles” will appear in this paper, but they will never be called cycles.
2 If k is not relevant in the context, we simply call C a partial path-cycle cover.

174 M. Bläser and R. Curticapean

path-cycle covers. The weights are essential in this reduction, as they are re-
quired to cancel out unwanted paths. We obtain:

p#CC ≤T
fpt p#wPCC.

It remains to prove #W[1]-hardness of p#CC. For our reduction, we introduce
a combinatorial structure that could be described as a “union of closed walks
without distinguished start vertices”. For notational simplicity, we call such a
structure a UCW:
Definition 2. Let G = (V, E) be a digraph. Let (v1, . . . , vk) ∈ V k such that
(vi, vi+1) ∈ E for all i < k and (vk, v1) ∈ E. Write [v1, . . . , vk] for the set of all
cyclic shifts of (v1, . . . , vk) and call W = [v1, . . . , vk] a CW of length l(W) := k.

A UCW is a multiset U = {W1, . . . , Wt} of CWs. We set l(U) :=
∑t

i=1 l(Wi).
To each UCW, we can associate a particular polynomial, its type. We define
types analogously to the types of homomorphisms from [1]:
Definition 3. Let W be a CW and v ∈ V . We write fW (v) for the number of
appearances of v in (an arbitrary element of) W . For U = {W1, . . . , Wt} a UCW,
we set fU (v) :=

∑t
i=1 fWi (v). The type θU of U is defined as the polynomial

θU (x) :=
∏
v∈V

(x)fU (v).

We write Uk[G, θ] for the set of UCWs of length k and type θ in G.
The type θU can be seen as an encoding of the multiset {fU (v) | v ∈ V }. Note
that the sum of this multiset is equal to l(U) and deg(θU).3

In analogy to the problem of counting typed directed cycles in a digraph,
which was proven to be #W[1]-hard in [1], we define the problem of counting
typed UCWs in digraphs:

p#typUCW
Input: Digraph G = (V, E), type θ, and k ∈ N

Parameter: k

Output: #Uk[G, θ]

In Section 5, we use a graph construction from [1] to obtain

p#typUCW ≤T
fpt p#CC.

Finally, in Section 6, we prove

p#Clique ≤T
fpt p#typUCW.

In summary, our final reduction consists of the following intermediate reductions,
starting from the #W[1]-hard problem p#Clique:

p#Clique ≤T
fpt p#typUCW ≤T

fpt p#CC ≤T
fpt p#wPCC ≤fpt p#wMatch.

In this chain, only the third reduction requires the introduction of weights.
3 Thus, Uk[G, θ] �= ∅ implies k = deg(θ). We add the subscript k only for clarity.

Weighted Counting of k-Matchings Is #W[1]-Hard 175

3 p#wPCC ≤fpt p#wMatch

This reduction follows from a well-known graph transformation, which has al-
ready been used for the study of the cover polynomial, see [15] and [13].

Definition 4. Given a digraph G = (V, E), replace each vertex v ∈ V by vertices
vin and vout, and replace each (u, v) ∈ E by the undirected edge {uout, vin}. We
call the resulting graph the split graph S(G) of G.
Every split graph is bipartite with bipartition of its vertices into in- and out-
vertices. Furthermore, the matchings of S(G) are related to the path-cycle covers
of G, as stated in the following lemma:

Lemma 1. Let G = (V, E) be a digraph and S(G) be its split graph. For all
k ∈ N, there is a bijection PCk[G] � Mk[S(G)].

Proof. Every k-partial cycle cover C ∈ PCk[G] is a subset C ⊆ E of size k such
that H = (V, C) has both indegree and outdegree upper-bounded by 1. Thus,
the graph S(H) is a matching of size k in S(G), and S is injective if considered
as S : PCk[G] → Mk[S(G)].

S is also surjective, since every M ∈ Mk[S(G)] can be transformed to some
C ∈ PCk[G] with S(C) = M by identifying vin and vout for every v ∈ V and
orienting edges correspondingly. ��
From this bijection, the reduction p#wPCC ≤fpt p#wMatch follows trivially.

4 p#CC ≤T
fpt p#wPCC

Let G = (V, E) be a digraph and k ∈ N. For e, p ∈ N, denote by cG(e, p) the num-
ber of e-partial path-cycle covers of G with p paths. We wish to compute cG(k, 0),
the number of k-partial cycle covers of G, using oracle access to p#wPCC.

By attaching to each vertex v ∈ V a self-loop of weight a and an edge of
weight b connected to a fresh vertex uv, we obtain a new graph G′. The effect
of this graph transformation on the partial path-cycle covers can be described
using a graph polynomial γ(G), which we define as follows:

Definition 5. Let G be a digraph. The edge-generating path-cycle polynomial
γ(G) is defined as

γ(G; x) :=
∑

C∈PC[G]

x|C|w(C) =
n∑

k=0

xk

⎛
⎝ ∑

C∈PCk[G]

w(C)

⎞
⎠ .

For any k ∈ N, the weighted sum over k-partial path-cycle covers in G is obvi-
ously equal to the k-th coefficient of γ(G). We now show:

Lemma 2. For any digraph G = (V, E), it holds that

γ(G′; x) =
∑

C∈PC[G]

x|C|(1 + xb)ρ(C)(1 + x(a + b))ι(C).

176 M. Bläser and R. Curticapean

Proof. For any path-cycle cover D ∈ PC[G′], there is a unique C ∈ PC[G] with
C = D ∩E. Defining AC := {D ∈ PC[G′] | C = D ∩E}, we can partition PC[G′]
into classes {AC}C∈PC[G] and obtain

γ(G′; x) =
∑

C∈PC[G]

∑
D∈AC

x|D|w(D)

︸ ︷︷ ︸
=:AC

.

Consider AC for some C ∈ PC[G]. Every D ∈ AC can be decomposed as D =
C∪̇F , where F consists of gadget edges that can be appended independently to
endpoints of paths or isolated vertices in C.

At each endpoint of a path, we can choose to extend the path using the edge
of weight b, or not to extend. In total, this yields the factor (1+xb)ρ(C). At each
isolated vertex, we can choose to include the self-loop of weight a, the edge of
weight b, or not to include a new edge. This yields the factor (1 + x(a + b))ι(C).

��
From now on, we will always choose a = −b. This ensures that extensions to
isolated vertices cancel out in γ(G′; x) and we thus obtain

γ(G′; x) =
∑

C∈C[G]

x|C|(1 + xb)ρ(C).

This expression can be rewritten as

γ(G′; x) =
n∑

e=0
xe

n∑
p=0

cG(e, p) · (1 + xb)p

=
n∑

e,p=0
cG(e, p) ·

(
xe

p∑
i=0

(
p

i

)
xibi

)
.

With this identity, we are ready to prove the wanted reduction:

Lemma 3. The problem p#CC admits an fpt Turing reduction to p#wPCC.

Proof. Define αj to be the j-th coefficient of γ(G′; x). For sake of clarity, we
decompose j = i + (j − i), with i denoting the number of “internal” edges, and
(j − i) denoting the number of “additional” edges, which come from gadgets.
Using this decomposition, we can write

αj =
j∑

i=0
bj−i

j∑
p=0

(
p

j − i

)
cG(i, p)

︸ ︷︷ ︸
=:αj,i

.

Observe that αj is in fact a polynomial αj(b) of degree ≤ j. Using oracle calls to
p#wPCC, we can evaluate αj(b) at j different values while keeping a = −b. This
allows us to interpolate αj and to recover all its coefficients αj,i, for 0 ≤ i ≤ j.

Weighted Counting of k-Matchings Is #W[1]-Hard 177

Using interpolation, compute αk,k, . . . , α2k+1,k. This requires ≤ (2k + 1)2 or-
acle calls and the parameter value of each oracle call is bounded by 2k + 1. By
the definition of αj,i, we obtain the following system of linear equations:

⎛
⎜⎝

(0
0
)

. . .
(

k
0
)

...
(

i
i

) ...(0
k

)
. . .

(
k
k

)

⎞
⎟⎠

⎛
⎜⎝

cG(k, 0)
...

cG(k, k)

⎞
⎟⎠ =

⎛
⎜⎝

αk,k

...
α2k+1,k

⎞
⎟⎠ .

This system is upper triangular, features only ones on its diagonal, and is thus
invertible and can be solved for cG(k, 0). ��
Remark 1. In this reduction, the edge of weight b at any vertex v could safely be
replaced by b edges between v and b fresh vertices. However, it is not clear how
to remove the weight a from self-loops without introducing multiple self-loops.

5 p#typUCW ≤T
fpt p#CC

Let G be a digraph, k ∈ N, and θ be a type. We wish to count the UCWs of type
θ and length k in G, given oracle access to p#CC. Our reduction is based on a
graph transformation from [1], which was used there to reduce the problem of
counting typed cyclic walks to the problem of counting directed cycles.

Definition 6. [1, Proof of Lemma 23] Let G = (V, E) be a digraph and l, m ∈ N.
Define the graph Gl,m as follows:

1. Replace each v ∈ V by Lv := {(v, i, j) | 1 ≤ i ≤ l, 1 ≤ j ≤ m} and add, for
all 1 ≤ i < l and 1 ≤ j, j′ ≤ m, the edge ((v, i, j), (v, i + 1, j′)). Call the
resulting graph fragment “ladder at v”.

2. Replace each e = (u, v) ∈ E by Pe := {((u, l, j), (v, 1, j′)) | 1 ≤ j, j′ ≤ m}.
Call the obtained edges “external edges at e”.

It follows from the construction that every cycle in Gl,m must pass through
ladders and external edges alternatingly. Thus, every cycle and every partial
cycle cover in Gl,m has length il for some i ∈ N. Given k ∈ N, we partition the
partial cycle covers C ∈ Ckl[Gl,m] into classes by associating with every such C
a particular UCW, its so-called projection π(C). Here, π is a function

π : Ckl[Gl,m] → Uk[G].

Definition 7. Let C ∈ C[Gl,m] with cycles C1 ∪ . . . ∪ Cσ(C) = C. For each Ci,
define the CW Wi by contracting, for each v ∈ V , the ladder at v to the vertex
v. Then define the projection of C as π(C) := {W1, . . . , Wσ(C)} ∈ Uk[G].

We observe that the number of partial cycle covers whose projection is U depends
only on the type θU :

Proposition 1. For any l, m ∈ N, type θ and U ∈ Uk[G, θ], the number of
C ∈ Ckl[Gl,m] with π(C) = U is equal to θ(m)l.

178 M. Bläser and R. Curticapean

Proof. Recall Def. 3 for the definition of fU (v). Since π(C) = U , for each v ∈ V ,
the cover C contains fU (v) vertex-disjoint paths passing through the ladder at
v. At each ladder, these paths can be chosen in (m)l

fU (v) different ways, and
paths can be chosen independently at different ladders. Once all ladder paths
are fixed, the choice of external edges is also fixed. In total, this yields

∏
v∈V

(m)l
fU (v) = θ(m)l

different partial cycle covers C ∈ Ckl[Gl,m] with projection π(C) = U . ��
This can be used to prove the wanted reduction:

Lemma 4. The problem p#typUCW admits an fpt Turing reduction to p#CC.

Proof. The proof follows [1, Lemma 23]. Let Θk be the set of types of degree k.
Then, for t := |Θk|, it clearly holds that t ≤ f(k) for some computable function
f . Thus, there is some m ≤ g(k), with g computable, such that θa(m) �= θb(m)
holds for all types θ, θ′ of degree k with θ �= θ′. Compute such an m and note
that oracle calls to p#CC can be used to compute

αl := #Ckl[Gl,m].

Let βθ be the number of UCWs of type θ in G. By Proposition 1, we can write

αl =
∑

θ∈Θk

βθ · θ(m)l.

We compute α1, . . . , αt with calls to p#CC and obtain the equation system
⎛
⎜⎝

θ1(m)1 . . . θt(m)1

...
...

θ1(m)t . . . θt(m)t

⎞
⎟⎠

⎛
⎜⎝

βθ1
...

βθt

⎞
⎟⎠ =

⎛
⎜⎝

α1
...

αt

⎞
⎟⎠ . (1)

This system has a Vandermonde matrix, allowing it to be solved for any βθ. ��

6 p#Clique ≤T
fpt p#typUCW

Let G = (V, E) be a graph and k ∈ N be fixed throughout this section. We
describe how to compute the number of k-cliques in G in fpt-time when given
an oracle for p#typUCW, adapting the reduction in [1, Lemma 25] in large parts
and reusing some of its notation where appropriate.

First, let G′ be the graph obtained from G by replacing each edge by a pair
of antiparallel edges, followed by adding a self-loop to each vertex. The number
of k-cliques in G is equal to the number of induced subgraphs in G′ which are
isomorphic to the complete digraph K = Kk := ([k], [k]2).

Let H = {H1, . . . , K} be the set of graphs on k vertices, where isomorphic
graphs are identified, and the complete digraph K is defined as above. Let h :=

Weighted Counting of k-Matchings Is #W[1]-Hard 179

|H| and H− := H \ {K}. For H ∈ H, let xH be the number of U ⊆ V such that
G[U] � H . Our goal is to determine xK , the number of k-cliques in G.

To this goal, let
γ(l) := #U [G′, (x)k

l]

be the number of UCWs of type (x)k
l in G′. This value can be computed with

an oracle call to p#typUCW, provided that l ≤ f(k). Writing

β
(l)
H := #U [H, (x)k

l],

we observe that
γ(l) =

∑
H∈H

xHβ
(l)
H .

We generate such equations for γ(1), . . . , γ(l), where l ≤ f(k) will be determined
later. This yields the system

⎛
⎜⎜⎝

β
(1)
A . . . β

(1)
K

...
. . .

...
β

(l)
A . . . β

(l)
K

⎞
⎟⎟⎠

⎛
⎜⎝

xA

...
xK

⎞
⎟⎠ =

⎛
⎜⎝

γ(1)

...
γ(l)

⎞
⎟⎠ . (2)

A solution to (2) can be found in time polynomial in l, h and n. While the system
(2) does not feature full rank, we can show as in as in [1, Lemma 25] that there
exists an l ∈ N such that the last column is linearly independent of all other
columns. This implies that all solutions to (2) agree on their values for xK .

To prove the existence of l, we first need a technical lemma. A similar state-
ment was shown in [1] for cycles instead of UCWs, but using a fundamentally
different proof approach:

Lemma 5. For all graphs H ∈ H−, it holds that

lim
�→∞

β
(�)
H

β
(�)
K

= 0. (3)

Proof. Let � ∈ N. Recall Definition 6 and consider K1,�, which is isomorphic to
the complete graph Kk�.4 Every k�-partial cycle cover in K1,� uses all vertices of
the graph. Thus, its projection is some U ∈ U [K, (x)k

�]. By Proposition 1, every
U ∈ U [K, (x)k

�] is the projection of exactly (�!)k cycle covers in K1,�.
Now let (u, v) /∈ E(H), let δ

(�)
unres denote the number of cycle covers in K1,�,

and let δ
(�)
res denote the number of cycle covers in K1,� that do not use any of

the external edges at (u, v). Since every U ∈ U [K, (x)k
�] has the same number of

cycle covers in K1,� projecting to it, we have

β
(�)
H

β
(�)
K

≤ δ
(�)
res

δ
(�)
unres

. (4)

4 Please note that, in this section, the notation K1,� will never refer to the complete
bipartite graph with 1 and � vertices on its sides.

180 M. Bläser and R. Curticapean

Let Ot be the t × t all-ones matrix. Then, δ
(�)
res is easily seen to be equal to

perm(B ⊗ O�), where ⊗ denotes the Kronecker product and B is defined to be
Ok, but with one entry, say B1,1, set to 0.

We number rows and columns of B ⊗ O� from 1 to k�. Any permutation that
contributes to perm(B ⊗ O�) maps every element from [�] to an element from
[k�] \ [�], which gives ((k − 1)�)� choices for these elements, as opposed to (k�)�

choices for an arbitrary permutation. Thus,

δ
(�)
res

δ
(�)
unres

=
((k − 1)�)�

(k�)�
,

which can be upper-bounded by

((k − 1)�)�

(k�)�
=

�−1∏
i=0

k − 1 − i/�

k − i/�
=

�−1∏
i=0

(
1 − 1

k − i/�

)
≤

(
1 − 1

k

)�

.

Since k is fixed, this value converges to 0 for � → ∞. ��
Remark 2. The correspondence between U [K, (x)k

�] and Ck�[Kk�] established in
the previous proof also shows that #U [K, (x)k

�] = (k�)!
(�!)k .

Lemma 6. There exists a computable function l = f(k) such that

(β(1)
K , . . . , β

(l)
K)T /∈ span{(β(1)

H , . . . , β
(l)
H)T | H ∈ H−}.

Proof. Having proved Lemma 5 for UCWs, the proof continues exactly as in [1,
Lemma 25]. ��

Acknowledgements. We are grateful to the anonymous referees, whose com-
ments improved the presentation of this paper.

References

1. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM
Journal on Computing, 538–547 (2002)

2. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer
Science 8(2), 189–201 (1979)

3. Temperley, H.N.V., Fisher, M.E.: Dimer problem in statistical mechanics - an exact
result. Philosophical Magazine 68(6), 1478–6435 (1961)

4. Kasteleyn, P.: The statistics of dimers on a lattice: I. The number of dimer ar-
rangements on a quadratic lattice. Physica 27(12), 1209–1225 (1961)

5. Vadhan, S.P.: The complexity of counting in sparse, regular, and planar graphs.
SIAM J. Comput. 31(2), 398–427 (2001)

6. Jerrum, M., Sinclair, A.: Approximating the permanent. SIAM J. Comput. 18(6),
1149–1178 (1989)

7. Makowsky, J.A.: Algorithmic uses of the Feferman-Vaught theorem. Annals of
Pure and Applied Logic 126(1-3), 159–213 (2004); Provinces of logic determined.
Essays in the memory of Alfred Tarski. Parts I, II and III

Weighted Counting of k-Matchings Is #W[1]-Hard 181

8. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Information and Computation 85(1), 12–75 (1990)

9. Galluccio, A., Loebl, M.: On the theory of Pfaffian orientations. I. Perfect match-
ings and permanents. Electronic Journal of Combinatorics 6 (1998)

10. Frick, M.: Generalized Model-Checking over Locally Tree-Decomposable Classes.
In: Alt, H., Ferreira, A. (eds.) STACS 2002. LNCS, vol. 2285, pp. 632–644. Springer,
Heidelberg (2002)

11. Vassilevska, V., Williams, R.: Finding, minimizing, and counting weighted sub-
graphs. In: Proceedings of the 41st Annual ACM Symposium on Theory of Com-
puting, STOC 2009, pp. 455–464. ACM, New York (2009)

12. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Counting Paths and Packings
in Halves. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 578–586.
Springer, Heidelberg (2009)

13. Bläser, M., Curticapean, R.: The Complexity of the Cover Polynomials for Pla-
nar Graphs of Bounded Degree. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011.
LNCS, vol. 6907, pp. 96–107. Springer, Heidelberg (2011)

14. Bläser, M., Dell, H.: Complexity of the Cover Polynomial. In: Arge, L., Cachin,
C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 801–812.
Springer, Heidelberg (2007)

15. Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. J. Combin.
Theory Ser. B 65, 273–290 (1995)

Computing Directed Pathwidth

in O(1.89n) Time

Kenta Kitsunai, Yasuaki Kobayashi, Keita Komuro,
Hisao Tamaki, and Toshihiro Tano

Department of Computer Science, Meiji University
Kawasaki, Japan 214-8571

Abstract. We give an algorithm for computing the directed pathwidth
of a digraph with n vertices in O(1.89n) time. This is the first algorithm
with running time better than the straightforward O∗(2n). As a special
case, it computes the pathwidth of an undirected graph in the same
amount of time, improving on the algorithm due to Suchan and Villanger
which runs in O(1.9657n) time.

1 Introduction

The pathwidth [2,15] of an undirected graph G is defined as follows. A path-
decomposition G is a sequence {Xi}, 1 ≤ i ≤ t, of vertex sets of G that satisfies
the following three conditions:

1.
⋃

1≤i≤t Xi = V (G),
2. for each edge {u, v} of G, there is some i, 1 ≤ i ≤ t such that u, v ∈ Xi, and
3. for each v ∈ V (G), the set of indices i such that v ∈ Xi is contiguous, i.e., is

of the form {i | a ≤ i ≤ b}.

The width of a path-decomposition {Xi}, 1 ≤ i ≤ t, is max1≤i≤t |Xi|− 1 and the
pathwidth of G is the smallest integer k such that there is a path-decomposition
of G whose width is k.

The directed path-decomposition of a digraph G is defined analogously. A se-
quence {Xi}, 1 ≤ i ≤ t, of vertex sets is a directed path-decomposition of G
if, together with conditions 1 and 3 above, the following condition 2’ instead of
condition 2 is satisfied:

2’. for each directed edge (u, v) of G, there is a pair i, j of indices such that
i ≤ j, u ∈ Xi, and v ∈ Xj .

The directed pathwidth of G is defined similarly to the pathwidth of an undi-
rected graph. According to Barát [1], the notion of directed pathwidth was in-
troduced by Reed, Thomas, and Seymour around 1995.

For an undirected graphG, let Ĝ denote the digraph obtained fromG by replac-
ing each edge {u, v} by a pair of directed edges (u, v) and (v, u). Then, condition
2 forG implies condition 2’ for Ĝ and, conversely, condition 2’ for Ĝ together with
condition 3 implies condition 2 for G. Therefore, a directed path-decomposition

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 182–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Computing Directed Pathwidth in O(1.89n) Time 183

of Ĝ is a path-decomposition ofG and vice versa. Thus, the problem of computing
the pathwidth of an undirected graph is a special case of the problem of comput-
ing the directed pathwidth of a digraph. On the other hand, directed pathwidth
is of interest since some problems, such as Directed Hamiltonicity, are polyno-
mial time solvable on digraphs with bounded directed pathwidth [10] although
not necessarily on those whose underlying graphs have bounded pathwidth. Di-
rected pathwidth is also studied in the context of search games [1,20].

Computing pathwidth is NP-hard [11] even for bounded degree planar graphs
[14], chordal graphs [8], cocomparability graphs [9] and bipartite distance hered-
itary graphs [13] (although it is polynomial time solvable for permutation graphs
[5], cographs [6], and circular-arc graphs [17]). Consequently, computing directed
pathwidth is NP-hard even for digraphs whose underlying graphs lie in these
classes. On the positive side, pathwidth is fixed parameter tractable [16] with
running time linear in n [3]. In contrast, it is open whether directed pathwidth is
fixed parameter tractable. Recent work of one of the present authors [19] shows
that directed pathwidth admits an XP algorithm, that is, an algorithm with
running time nO(k), where k is the directed pathwidth of the given digraph with
n vertices.

Without parameterization, both problems can be solved in O∗(2n) time, where
n is the number of vertices and the O∗ notation hides polynomial factors, us-
ing Bellman-Held-Karp style dynamic programming for vertex ordering prob-
lems [4]. Suchan and Villanger [18] improved the running time for pathwidth to
O(1.9657n) and also gave an additive constant approximation of pathwidth in
O(1.89n) time. On the other hand, no algorithm faster than O∗(2n) time was
known for directed pathwidth before the present work.

Our result is as follows.

Theorem 1. The direct pathwidth of a digraph with n vertices can be computed
in O(1.89n) time.

Our algorithm can be viewed as one based on Bellman-Held-Karp style dynamic
programming. For each U ⊆ V (G), let N−(U) denote the set of in-neighbors
of U . Given a positive integer k and a digraph G, we build the collection of
“feasible” subsets of V (G), where U ⊆ V (G) is considered feasible if G[U ∪
N−(U)] has a directed path-decomposition of width ≤ k whose last subset Xt

contains N−(U) (for a more precise definition of feasibility see Section 2). To get
a non-trivial bound on the number of subsets U , we adopt a strategy essentially
due to Suchan and Villanger [18]. Since either U , N−(U), or V (G)\(U ∪N−(U))
has cardinality at most n/3, the hope is that we may be able to obtain a non-
trivial upper bound on the number of relevant subsets U using the well-known
bound 2H(α)n on the number of subsets of V (G) with cardinality at most αn,
whereH(x) is the binary entropy function, with α = 1

3 . Note that 2
H(1/3) < 1.89.

The difficulty, as observed in [18], is that there can be an exponential number
of subsets U with N−(U) = S for a fixed S. The larger constant 1.9657 or the
relaxation to additive constant approximation in [18] comes from the need to
deal with this problem.

184 K. Kitsunai et al.

A key to overcoming this difficulty is the following observation whose undi-
rected version is used in [18]. Suppose we are to decide whether the directed
pathwidth of G is at most k and S is a vertex set of G with |S| < k − d. Let
C be the set of strongly connected components of G[V (G) \ S] with cardinality
greater than d. For each subset A of C, we are able to define at most one subset
U in a “canonical form” such that N−(U) = S, U contains all components in
A, but disjoint from all components in C \ A. Although there are variants of
U that satisfy these conditions, it can be shown that only the canonical one is
needed in our dynamic programming computation. Thus, the number of relevant
subsets U with N−(U) = S is bounded by 2|C| ≤ 2

n
d+1 . See Lemma 5 for a more

formal treatment.
Our result is established by two algorithms, which we call LARGE-WIDTH

and SMALL-WIDTH. Algorithm LARGE-WIDTH deals with the case where
k ≥ (13 + δ)n, δ being a small constant, while algorithm SMALL-WIDTH deals
with the other case. In algorithm LARGE-WIDTH, the slack of δn allows us to
bound the number of subsets U with N−(U) = S for each S with |S| ≤ n/3
by 21/δ. In algorithm SMALL-WIDTH, we force a slack of d where d is a large
enough constant: we record only those feasible sets U with |N−(U)| < k− d. To
process those subsets U with |N−(U)| ≥ k − d, we use an algorithm based on
the XP algorithm in [19], which runs in nd+(1) time and either decides that the
directed pathwidth of G is at most k, decides that U is irrelevant, or produces
some proper superset W with |N−(W)| < k − d, which can safely replace U in
the search. See Lemma 12 for details.

The rest of this paper is organized as follows. In Section 2 we define basic
concepts and prove some lemmas needed by our algorithms. In Section 3, we
state and analyze algorithm LARGE-WIDTH. In Section 4, we review the XP
algorithm given in [19] to prepare for the next section. Then, in Section 5, we
state and analyze algorithm SMALL-WIDTH. Finally, in Section 6, we combine
the two algorithms to prove Theorem 1.

2 Preliminaries

Let G be a digraph. We use the standard notation: V (G) is the set of vertices
of G, E(G) is the set of edges of G, and G[U], where U ⊆ V (G), is the subgraph
of G induced by U . For each vertex v ∈ V (G), we denote by N−

G (v) the set of in-
neighbor of v, i.e., N−

G (v) = {u ∈ V (G) \ {v}|(u, v) ∈ E(G)}. For each subset U
of V (G), we denote by N−

G (U) the set of in-neighbors of U , i.e., N−
G (U) =⋃

v∈U N−
G (v)\U . When G is clear from the context, we dropG from this notation.

We also use the notation Ũ = V (G) \ (U ∪ N−(U)) where G is implicit.
We call a sequence σ of vertices of G non-duplicating if each vertex of G occurs

at most once in σ. We denote by Σ(G) the set of all non-duplicating sequences
of vertices of G. For each sequence σ ∈ Σ(G), we denote by V (σ) the set of
vertices constituting σ and by |σ| = |V (σ)| the length of σ.

For each pair of sequences σ, τ ∈ Σ(G) such that V (σ)∩V (τ) = ∅, we denote
by στ the sequence in Σ(G) that is σ followed by τ . If σ′ = στ for some τ , then

Computing Directed Pathwidth in O(1.89n) Time 185

we say that σ is a prefix of σ′ and that σ′ is an extension of σ; we say that σ is
a proper prefix of σ′ and that σ′ is a proper extension of σ if τ is nonempty.

Let G be a digraph and k a positive integer. We say σ ∈ Σ(G) is k-feasible for
G if |N−

G (σ′)| ≤ k for every prefix σ′ of σ. We say that σ is strongly k-feasible
for G if moreover σ is a prefix of a k-feasible sequence τ with V (τ) = V (G). We
may drop the reference to G and say σ is k-feasible (or strongly k-feasible) when
G is clear from the context.

For each U ⊆ V (G), we say that U is k-feasible (strongly k-feasible) if there
is a k-feasible (strongly k-feasible) sequence σ with V (σ) = U .

The directed vertex separation number of digraph G, denoted by dvsn(G), is
the minimum integer k such that V (G) is k-feasible.

It is known that the directed pathwidth of G equals dvsn(G) for every di-
graph G [20](see also [12] for the undirected case). Based on this fact, we work
on the directed vertex separation number in the remaining of this paper.

The following lemma formulates a straightforward reasoning used twice in the
sequel.

Lemma 1. Let U ⊆ V (G), let X ⊆ V (G)\U be such that N−(X) ⊆ U∪N−(U),
and let W = U ∪ X. Suppose that W is k-feasible and U is strongly k-feasible.
Then, W is also strongly k-feasible.

Proof. Since U is strongly k-feasible, there is a sequence U = U0, U1, . . . , Uh =
V (G) of k-feasible sets of vertices such that Ui−1 ⊆ Ui and |Ui| = |Ui−1|+ 1 for
1 ≤ i ≤ h. Let Wi = Ui ∪ X for 0 ≤ i ≤ h. Since N−(X) ⊆ U ∪ N−(U) by
assumption, we have N−(Wi) ⊆ N−(Ui) and hence |N−(Wi)| ≤ k, for 0 ≤ i ≤ h.
Since Wi−1 ⊆ Wi and either |Wi| = |Wi−1| or |Wi| = |Wi−1| + 1 for 1 ≤ i ≤ h,
a straightforward induction shows that Wi for each 0 ≤ i ≤ h is k-feasible.
Therefore, W0 = W is strongly k-feasible. ��

We call U ⊆ V (G) a full set (with respect to G), if there is no v ∈ N−(U) with
N−(v) ⊆ U ∪ N−(U). For each U , there is a unique superset of U that is a full
set, which we denote by fullset(U). Indeed, fullset(U) is defined by

fullset(U) = U ∪ {v ∈ N−(U) | N−(v) ⊆ U ∪ N−(U)}.

Note that N−(fullset(U)) ⊆ N−(U).

Lemma 2. Let U be an arbitrary subset of V (G). If U is k-feasible then so is
fullset(U). Moreover, if U is strongly k-feasible then so is fullset(U).

Proof. Let X = fullset(U) \U and let v1, v2, . . . , and vh, where h = |X |, be the
elements of X listed in an arbitrary order. Let U0 = U and Ui = Ui−1 ∪ {vi},
1 ≤ i ≤ h. Since N−(vi) ⊆ U ∪ N−(U) for 1 ≤ i ≤ h by the definition of
fullset(U), we have N−(Ui) = N−(Ui−1)\{vi} for 1 ≤ i ≤ h. Therefore, the first
claim of the lemma follows.

Suppose next that U is strongly k-feasible. By the first claim, fullset(U) is
k-feasible. Since N−(X) ⊆ U ∪N−(U), by Lemma 1 it follows that fullset(U) =
U ∪ X is strongly k-feasible. ��

186 K. Kitsunai et al.

Let U ⊆ V (G), H = G[V (G)\N−(U)]. Observe that, for each strongly connected
component C of H , either C ⊆ U or C ⊆ Ũ , as otherwise N−(U) would contain
a vertex in C.

An undirected counterpart of the following lemma is called the component
push rule in [18].

Lemma 3. Let U and H be as above and let C be a strongly connected compo-
nent of H such that C ⊆ Ũ , N−(C) ⊆ U ∪N−(U), and |N−(U)|+ |C| ≤ k+ 1.
If U is k-feasible then U ∪ C is k-feasible. Moreover, if U is strongly k-feasible
then U ∪C is strongly k-feasible.

Proof. Let W = U ∪ C. First observe that N−(W) = N−(U): N−(W) ⊆
N−(U) since N−(C) ⊆ U ∪ N−(U) by assumption; N−(U) ⊆ N−(W) since
C ∩ N−(U) = ∅. The first claim of the lemma is trivial since |N−(U ∪ A)| ≤
|N−(U)| + |C| − 1 ≤ k for every nonempty subset A of C.

Suppose next that U is strongly k-feasible. Since N−(C) ⊆ U ∪ N−(U) by
assumption, by Lemma 1 it follows that W is strongly k-feasible. ��

For each digraphH let C(H) denote the set of all strongly connected components
of H . Consider the natural partial ordering ≺ on C(H): C ≺ D if and only if H
contains a directed path from a vertex in C to a vertex in D. For each U ⊆ V (G)
with |N−(U)| ≤ k, we denote by pushk(U) the superset of U defined as follows.
Let H = G[V (G) \ N−(U)], s = k − |N−(U)| + 1, and define

P = {C ∈ C(H) | C ⊆ Ũ , |C| ≤ s, and there is no D ∈ C(H)

with D ⊆ Ũ , |D| > s, and D ≺ C}.

Then, we let pushk(U) = U ∪
⋃

C∈P C.
By a repeated application of Lemma 3, we obtain the following lemma.

Lemma 4. Let U ⊆ V (G). If U is k-feasible then so is pushk(U). Moreover, if
U is strongly k-feasible then so is pushk(U).

Following [18] we use component push rules not only as an algorithmic technique
but also as a tool for analysis. The following lemma formalizes this latter aspect.

Lemma 5. Let S ⊆ V (G) with |S| ≤ k. Then, the number of vertex sets
U ⊆ V (G) with N−(U) = S and pushk(U) = U is at most 2

n
s+1 where

s = k − |S|+ 1.

Proof. Fix S ⊆ V (G) with |S| ≤ k and let s = k− |S|+1. Let H = G[V (G) \S]
and Cs the set of strongly connected components of H with cardinality strictly
larger than s. Note that, for each U ⊆ V (G) with N−(U) = S and a strongly
connected component C of H , either C ⊆ U or C ⊆ Ũ . Thus, each such U
induces a bipartition (AU ,BU) of Cs: C ⊆ U for each C ∈ AU and C ⊆ Ũ for
each C ∈ BU .

We call a bipartition (A,B) of Cs valid if there is no pair C ∈ B and D ∈ A
such that C ≺ D where ≺ is the partial ordering defined before on the set of

Computing Directed Pathwidth in O(1.89n) Time 187

strongly connected components of H . For some U to exist such that AU = A
and BU = B, (A,B) must be a valid partition of Cs because, for each U with
N−(U) = S, we cannot have two strongly connected components C and D of H
with C ≺ D, C ⊆ Ũ , and D ⊆ U .

For each valid bipartition (A,B) of Cs, there is exactly one U ⊆ V (G) such
that N−(U) = S, pushk(U) = U , and (AU ,BU) = (A,B). Indeed, such U is
defined by

⋃
C∈A∪D C, where D is the set of strongly connected components C

of H such that |C| ≤ s and there is no D ∈ B with D ≺ C.
Since |Cs| ≤ n

s+1 , the number of bipartitions of Cs is at most 2
n

s+1 and

this bound applies to the number of vertex sets U with N−(U) = S and
pushk(U) = U . ��
Let H(x) = −x log x − (1 − x) log(1 − x), 0 < x < 1, denote the binary entropy
function. We freely use the following well-known bound on the number of subsets
of bounded cardinality.

Proposition 1. (see [7], for example) Let S be a set of n elements and let
0 < α ≤ 1

2 . Then the number of subsets of S with cardinality at most αn is at

most 2H(α)n.

3 Algorithm LARGE-WIDTH

Given an integer k > 0 and a digraph G with n vertices, Algorithm LARGE-
WIDTH decides whether dvsn(G) ≤ k in the following steps.

The algorithm uses function f∗ defined as follows. Define f : 2V (G) → 2V (G)

by f(U) = fullset(pushk(U)). Since U ⊆ f(U), there is some h for each U such
that fh(U) = fh+1(U). We denote this fh(U) by f∗(U). Note that if W = f∗(U)
for some U then W = fullset(W) = pushk(W).

1. Set U1 := {{v} | v ∈ V (G), |N−(v)| ≤ k} and Ui := ∅ for 2 ≤ i ≤ n.
2. Repeat the following for i = 1, 2, . . . , n− 1.

(a) For each U ∈ Ui and for each v ∈ V (G) \U with |N−(U ∪ {v})| ≤ k, let
W = f∗(U ∪ {v}) and reset Uj := Uj ∪ {W} where j = |W |.

3. If Un is not empty then answer “YES”; otherwise answer “NO”.

Lemma 6. Algorithm LARGE-WIDTH is correct.

Proof. In the following proof, we abuse the notation and let Ui, 1 ≤ i ≤ n,
denote the final value of the program variable Ui. To justify the answer at step
3, we show that V (G) is k-feasible if and only if Un is nonempty.

First note that, by Lemmas 2 and 4, every member of Ui is k-feasible for
1 ≤ i ≤ n. Therefore if Un �= ∅ then V (G) is k-feasible.

To prove the other direction, suppose V (G) is k-feasible. We show that Un �= ∅.
Let t be the largest i such that Ui contains a strongly k-feasible vertex set. If
t = n then we are done. Suppose not and let U ∈ Ut be strongly k-feasible. Then,
by definition, there must be some v �∈ U such that U ∪{v} is strongly k-feasible.
Then, by Lemmas 2 and 4, W = f∗(U ∪ {v}) is strongly k-feasible. Since the
algorithm puts W in Uj where j = |W | > t, this is a contradiction and therefore
it must be that t = n. ��

188 K. Kitsunai et al.

We analyze the complexity of this algorithm for particular values of k for which
this algorithm is intended.

Lemma 7. Let δ > 0 be fixed. For k > (13 + δ)n, algorithm LARGE-WIDTH

runs in O∗(2H(1
3)n) time.

Proof. Let W denote the set
⋃

2≤i≤n Ui after the algorithm execution. We con-
sider the following subsets of W :

W1 = {U ∈ W | |U | ≤ n/3},
W2 = {U ∈ W | |U ∪ N−(U)| ≥ 2n/3}, and
W3 = W \ (W1 ∪ W2).

By Proposition 1, we have |W1| ≤ 2H(1
3)n. To bound |W2|, observe that U =

fullset(U) for each member U of W and hence, for each S ⊆ V (G), there is
at most one U ∈ W such that U ∪ N−(U) = S. Since the number of S with

|S| ≥ 2n/3 is at most 2H(1
3)n, we have |W2| ≤ 2H(1

3)n.
For each U ∈ W3, we have |N−(U)| < n/3. For each S ⊆ V (G) with |S| < n/3,

let WS = {U ∈ W3 | N−(U) = S}. Since U = pushk(U) for each U ∈ W , we

have, by Lemma 5, |WS | ≤ 2
n

k−|S|+2 ≤ 2
1
δ for each S. Since the number of

S ⊆ V (G) with |S| < n/3 is at most 2H(1
3)n, we have |W3| = O(2H(1

3)n). Since
each member of W is involved in a computation of nO(1) time, the total running
time of the algorithm is O∗(2H(1

3)n). ��

4 XP Algorithm

We review the XP algorithm for directed pathwidth due to Tamaki [19] which
is an essential ingredient in algorithm SMALL-WIDTH.

Theorem 2. [19] Given a positive integer k and a digraph G with n vertices
and m edges, it can be decided in O(mnk+1) time whether V (G) is k-feasible.

The algorithm claimed in this theorem is based on the natural search tree consist-
ing of all k-feasible sequences in Σ(G). The running time is achieved by pruning
this search tree of potentially factorial size into one with O(nk+1) search nodes.
The following lemma is used to enable this pruning. We say that a proper ex-
tension τ of σ ∈ Σ(G) is non-expanding if |N−(τ)| ≤ |N−(σ)|.

Lemma 8. (Commitment Lemma [19]) Let σ be a strongly k-feasible sequence
in Σ(G) and let τ be a shortest non-expanding k-feasible extension of σ, that is,

1. |N−(V (τ))| ≤ |N−(V (σ))|, and
2. |N−(V (τ ′))| > |N−(V (σ))| for every k-feasible proper extension τ ′ of σ with

|τ ′| < |τ |.

Then, τ is strongly k-feasible.

Computing Directed Pathwidth in O(1.89n) Time 189

Suppose sequence σ is in the search tree and has a non-expanding k-feasible
extension τ . Then the commitment lemma allows σ to “commit to” this descen-
dant τ : we may remove from the search tree all the descendants of σ with length
|τ | but τ . It is shown in [19] that the resulting search tree contains O(nk+1)
sequences.

To adapt this result for our purposes, we need some details of the pruned
search tree. Let σ and τ be two k-feasible sequences of the same length. We say
that σ is preferable to τ if either |N−(V (σ))| < |N−(V (τ))| or |N−(V (σ))| =
|N−(V (τ))| and σ < τ in the lexicographic ordering on Σ(G) based on some fixed
total order on V (G). We say σ suppresses τ , if σ is preferable to τ and there
is some common prefix σ′ of σ and τ such that σ is a shortest non-expanding
k-feasible extension of σ′.

Let Si, 1 ≤ i ≤ n, denote a set of k-feasible sequence with length i defined
inductively as follows. Each member of Si will represent a node in our search
tree at level i.

1. S1 = {v | |N−(v)| ≤ k}.
2. For 1 ≤ i < n, let Ti+1 = {σv | σ ∈ Si, v ∈ V (G) \ V (σ), and |N−(V (σ) ∪

{v})| ≤ k}. We let Si+1 be the set of elements of Ti+1 not suppressed by any
elements of Ti+1.

To analyze the size of each set Si, [19] assigns a sequence sgn(σ), called the
signature of σ, to each k-feasible sequence σ as follows.

Call a non-expanding k-feasible extension τ of σ locally shortest, if no proper
prefix of τ is a non-expanding extension of σ. We define sgn(σ) inductively as
follows.

1. If σ is empty then sgn(σ) is empty.
2. If σ is nonempty and is a locally shortest non-expanding extension of some

prefix of σ, then sgn(σ) = sgn(τ), where τ is the shortest prefix of σ with
the property that σ is a locally shortest non-expanding k-feasible extension
of τ .

3. Otherwise sgn(σ) = sgn(σ′)v, where v is the last vertex of σ and σ = σ′v.

Lemma 9. [19] For each i, 1 ≤ i ≤ n, if σ and τ are two distinct elements of
Si then neither sgn(σ) nor sgn(τ) is the prefix of the other.

The following properties of the pruned search tree follow from this lemma.

Lemma 10. Suppose σ ∈ S|σ| is a non-expanding extension of a singleton se-
quence v. Then, σ is the only extension of v in S|σ|.

Proof. Let σ0 = v and, for i = 1, . . ., let σi be the shortest prefix of σ that
is a non-expanding extension of σi−1. We see that σ1 is well-defined since σ is
a non-expanding extension of σ0 and that there is some j > 0 such that σi for
1 ≤ i ≤ j is well-defined and σj = σ. Observe that, for 1 ≤ i ≤ j, σi is the locally
shortest non-expanding extension of σi−1 and σi−1 is the shortest prefix α of σi

190 K. Kitsunai et al.

such that σi is the locally shortest non-expanding extension of α. Therefore, by
the definition of the signature, we have sgn(σi) = v for 0 ≤ i ≤ j.

Suppose now that S|σ| contains some extension τ of v that is distinct from
σ. By Lemma 9, sgn(τ) must start with some u �= v. This is possible only if τ
has a prefix τ ′ that is a non-expanding extension of the empty sequence, which
implies that N−(V (τ ′)) = ∅. This is impossible since if such τ ′ exists, then some
prefix of σ would be suppressed contradicting the presence of σ in S|σ|. ��

Lemma 11. Let 1 ≤ j ≤ n and let h be the minimum value of |N−(V (σ))| over
all sequences σ in

⋃
1≤i≤j Si. Then, we have |Si| ≤ nk−h for 1 ≤ i ≤ j.

Proof. In [19], it is shown that |sgn(σ)| ≤ |N−(V (σ))| for each k-feasible se-
quence σ. The proof therein in fact shows that |sgn(σ)| ≤ |N−(V (σ))| − h for
σ ∈
⋃

1≤i≤j Si. By Lemma 9, we have |Si| ≤ nk−h for 1 ≤ i ≤ j. ��

5 Algorithm SMALL-WIDTH

Fix ε > 0 and fix an integer d > 1/ε. The following description of our algorithm
depends on d. We assume k, an input to the algorithm, satisfies k > d; otherwise
the algorithm in Theorem 2 runs in nO(1) time.

Our strategy is to record only those sets U with |N−(U)| < k − d and U =
pushk(U) in our computation. For each S with |S| < k − d, by Lemma 5, the
number of U such that N−(U) = S and U = pushk(U) is at most 2εn.

To process U with |N−(U)| ≥ k − d, we use the XP algorithm in [19]. The
following lemma is at the heart of our algorithm.

Lemma 12. There is an algorithm that, given a k-feasible vertex set U ⊆ V (G)
with k − d ≤ |N−(U)| ≤ k, runs in nd+O(1) time and either

1. proves that U is strongly k-feasible,
2. proves that U is not strongly k-feasible, or
3. produces some proper superset W of U with |N−(W)| < k − d such that U

is strongly k-feasible if and only if W is strongly k-feasible.

Proof. Let G/U denote the graph obtained from G by shrinking U into one
vertex vU : V (G/U) = (V (G) \ U) ∪ {vU} and E(G/U) = E1 ∪ E2 ∪ E3 where

E1 = {(u, v) ∈ E(G) | u, v ∈ V (G) \ U},
E2 = {(vU , u) | u �∈ U, ∃v ∈ U : (v, u) ∈ E(G)}, and

E3 = {(u, vU) | u �∈ U, ∃v ∈ U : (u, v) ∈ E(G)}.

We run the algorithm in Theorem 2 on H = G/U , setting the root of the search
tree to be the singleton sequence consisting of vU . Suppose first that the search
tree does not contain any sequence σ with |N−

H (V (σ))| < k− d. In this case, the
size of the search tree is O(nd+1) by Lemma 11 and therefore the running time of
this algorithm execution is nd+O(1). If the search tree contains a sequence σ with
V (σ) = V (H), we know that {vU} is strongly k-feasible in H and hence U is

Computing Directed Pathwidth in O(1.89n) Time 191

strongly k-feasible in G. Otherwise we conclude that U is not strongly k-feasible
in G.

Suppose next that the search tree contains a sequence σ with |N−
H (V (σ))| <

k−d: let σ be the shortest among such. We expand the search tree in the breadth-
first manner and stop the search as soon as σ is encountered. By Lemma 10, σ is
the only sequence with length |σ| in the search tree. Since σ is obtained from the
singleton sequence vU via a series of commitments (see the proof of Lemma 10),
σ is strongly k-feasible in H if and only if {vU} is strongly k-feasible in H . In
terms of the original graph G, we let W = U ∪ (V (σ) \ {vU}) and see that U is
strongly k-feasible if and only if W is strongly k-feasible. We return W for the
third case of the algorithm. The size of the search tree is O(nd+1), and hence
the running time is nd+O(1), in this case as well. ��

Algorithm SMALL-WIDTH, given G and k, decides if dvsn(G) ≤ k in the fol-
lowing steps.

1. Set U1 := {{v} | v ∈ V (G), |N−(v)| ≤ k} and Ui := ∅ for 2 ≤ i ≤ n.
2. Repeat the following for i = 1, 2, . . . n− 1.

For each U ∈ Ui and for each v ∈ V (G) \ U with |N−(U ∪ {v})| ≤ k, let
U ′ = U ∪ {v} and do the following.
(a) If |N−(U ′)| < k − d then let W = pushk(U

′) and reset Uj := Uj ∪ {W},
where j = |W |.

(b) If |N−(U ′)| ≥ k−d then apply the algorithm of Lemma 12 to G and U ′.
i. If U ′ is found strongly k-feasible, then stop the entire algorithm

answering “YES”.
ii. If U ′ is found not strongly k-feasible, then do nothing.
iii. If a proper superset W of U ′ with |N−(W)| < k−d is returned, then

reset Uj := Uj ∪ {pushk(W)}, where j = | pushk(W)|.
3. If Un is nonempty then answer “YES”; otherwise answer “NO”.

Lemma 13. Algorithm SMALL-WIDTH is correct.

Proof. As a consequences of Lemma 12, the answer “YES” at step (2-b-i) is
correct. So suppose that the algorithm terminates at step 3. In the following
proof, we abuse the notation and let Ui, 1 ≤ i ≤ n, denote the final value of
the program variable Ui. To justify the answers at step 3, we prove that V (G)
is k-feasible if and only if Un is nonempty.

First observe that every member of
⋃

1≤i≤n Ui is k-feasible. This is certainly
true for every member of U1 and the algorithm ensures only k-feasible sets are
put into Uj , for any j, at subsequent steps. Note that we rely on Lemma 4 when
we put pushk(X) for some k-feasible set X into Uj at steps (2-a) and (2-b-iii).
Therefore, if Un is nonempty, then V (G) is k-feasible.

To prove the other direction, suppose V (G) is k-feasible. We show that Un is
nonempty.

Let t be the maximum i such that Ui contains a strongly k-feasible vertex set.
If t = n we are done. Suppose not and let U ∈ Ut be strongly k-feasible. Since U
is strongly k-feasible, there must be some v ∈ V (G) \ U such that U ′ = U ∪ {v}

192 K. Kitsunai et al.

is strongly k-feasible. If |N−(U ′)| < k − d then the algorithm puts pushk(U
′)

in Uj for some j > t, a contradiction since pushk(U
′) is strongly k-feasible by

Lemma 4. Otherwise, the algorithm of Lemma 12 is applied to U ′. Under our
assumptions that case (2-b-i) does not happen and that U ′ is strongly k-feasible,
the algorithm must return some proper superset W of U ′ with |N−(W)| < k−d
that is strongly k-feasible. A contradiction since the algorithm puts pushk(W)
in Uj for some j > t.

In either case, we have a contradiction and conclude that t = n. ��

Lemma 14. For k ≤ n/2, algorithm SMALL-WIDTH runs in O(2(H(k/n)+ε)n)
time.

Proof. It is clear that the algorithm spends nd+O(1) = nO(1) time to process
each element in U =

⋃
1≤i≤n Ui. Therefore, it is enough to show that |U| ≤

O(2(H(k/n)+ε′)n) for some ε′ < ε.
Obviously, we have |U1| ≤ n. Let U ∈ U \ U1. Since U = pushk(X) for some

X , we have U = pushk(U). By Lemma 5, for each S ⊆ V (G) with |S| < k − d,
the number of U with N−(U) = S and pushk(U) = U is at most 2ε

′n where
ε′ = 1

d+3 < ε. The desired upper bound on |U| follows since the number of vertex

sets S with |S| < k − d is smaller than 2H(k/n)n. ��

6 Combining the Two Algorithms

Theorem 1 immediately follows from a combination of the two algorithms given
in previous sections. Observe 2H(1/3) < 1.89 and choose positive δ and ε so
that 2H(1/3+δ)+ε < 1.89. If k > (13 + δ)n, we apply algorithm LARGE-WIDTH;
otherwise, we apply algorithm SMALL-WIDTH. From Lemmas 7 and 14, we see
that the running time of the algorithm is O(1.89n) in both cases.

References

1. Barát, J.: Directed path-width and monotonicity in digraph searching. Graphs and
Combinatorics 22(2), 161–172 (2006)

2. Bodlaender, H.L.: A Tourist Guide Through Treewidth. Acta Cybernetica 11, 1–23
(1993)

3. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM Journal on Computing 25, 1305–1317 (1996)

4. Bodlaender, H.L., Fomin, F.V., Kratsch, D., Thilikos, D.: A Note on Exact Al-
gorithms for Vertex Ordering Problems on Graphs. Theory of Computing Sys-
tems 50(3), 420–432 (2012)

5. Bodlaender, H.L., Kloks, T., Kratsch, D.: Treewidth and Pathwidth of Permuta-
tion Graphs. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS,
vol. 700, pp. 114–125. Springer, Heidelberg (1993)

6. Bodlaender, H.L., Möhring, R.H.: The Pathwidth and Treewidth of Cographs.
SIAM Journal on Discrete Mathematics 6(2), 181–188 (1992)

7. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)

Computing Directed Pathwidth in O(1.89n) Time 193

8. Gusted, J.: On the pathwidth of chordal graphs. Discrete Applied Mathemat-
ics 45(3), 233–248 (1993)

9. Habib, M., Möhring, R.H.: Treewidth of cocomparability graphs and a new order-
theoretic parameter. Order 11(1), 44–60 (1994)

10. Johnson, T., Robertson, N., Seymour, P.D., Thomas, R.: Directed tree-width. Jour-
nal of Combinatorial Theory, Series B 82(1), 138–154 (2001)

11. Kashiwabara, T., Fujisawa, T.: NP-completeness of the problem of finding a
minimum-clique-number interval graph containing a given graph as a subgraph.
In: Proceedings of International Symposium on Circuits and Systems, pp. 657–660
(1979)

12. Kinnersley, G.N.: The vertex separation number of a graph equals its path-width.
Information Processing Letters 42(6), 345–350 (1992)

13. Kloks, T., Bodlaender, H.L., Müller, H., Kratsch, D.: Computing treewidth and
minimum fill-in: All you need are the minimal separators. In: Proceedings of the
1st Annual European Symposium on Algorithms, pp. 260–271 (1993)

14. Monien, B., Sudborough, I.H.: Min cur is NP-complete for edge weighted trees.
Theoretical Computer Science 58(1-3), 209–229 (1988)

15. Robertson, N., Seymour, P.D.: Graph minors. I. Excluding a forest. Journal of
Combinatorial Theory, Series B 35(1), 39–61 (1983)

16. Robertson, N., Seymour, P.D.: Graph minors VIII The disjoint paths peoblem.
Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

17. Suchan, K., Todinca, I.: Pathwidth of Circular-Arc Graphs. In: Brandstädt, A.,
Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 258–269. Springer,
Heidelberg (2007)

18. Suchan, K., Villanger, Y.: Computing Pathwidth Faster Than 2n. In: Chen, J.,
Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917, pp. 324–335. Springer, Heidel-
berg (2009)

19. Tamaki, H.: A Polynomial Time Algorithm for Bounded Directed Pathwidth. In:
Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 331–342. Springer,
Heidelberg (2011)

20. Yang, B., Cao, Y.: Digraph searching, directed vertex separation and directed
pathwidth. Discrete Applied Mathematics 156(10), 1822–1837 (2008)

MSOL Restricted Contractibility

to Planar Graphs�

James Abello1, Pavel Klav́ık2, Jan Kratochv́ıl2, and Tomáš Vyskočil2

1 DIMACS Center for Discrete Mathematics and Theorethical Computer Science,
Rutgers University, Piscataway, NJ

abello@dimacs.rutgers.edu
2 Department of Applied Mathematics, Faculty of Mathematics and Physics,

Charles University, Prague
{klavik,honza,whisky}@kam.mff.cuni.cz

Abstract. We study the computational complexity of graph planariza-
tion via edge contraction. The problem Contract asks whether there
exists a set S of at most k edges that when contracted produces a planar
graph. We give an FPT algorithm in time O(n2f(k)) which solves a more
general problem P -RestrictedContract in which S has to satisfy in
addition a fixed inclusion-closed MSOL formula P .

For different formulas P we get different problems. As a specific ex-
ample, we study the �-subgraph contractability problem in which edges
of a set S are required to form disjoint connected subgraphs of size at
most �. This problem can be solved in time O(n2f ′(k, l)) using the gen-
eral algorithm. We also show that for � ≥ 2 the problem is NP-complete.
And it remains NP-complete when generalized for a fixed genus (instead
of planar graphs).

1 Introduction

Graph visualization techniques are thoroughly studied. In many applications vi-
sual understanding of the graph under consideration is important or required.
It is commonly accepted that edge crossings make a plane drawing of a graph
less clear, and thus the goal is to avoid them, or reduce their number. It is now
well-known that one can decide fast whether crossings can be avoided at all,
as planarity testing is linear time decidable [10], while determining the mini-
mum number of crossings needed to draw a non-planar graph is NP-hard [8].
Several variants of planar visualization of graphs have been then considered and
explored, including simultaneous embeddings, book-embeddings, embeddings on
surfaces of higher genus, etc.

Marx et al. [12] considered planarization of a graph by removing its vertices.
Another possible way to planarize a graph is by contracting some of its edges.

� The first author acknowledges support of Special focus on Algorithmic Foundations
of the Internet, NSF grant #CNS-0721113 and mgvis.com http://mgvis.com. The
latter three authors acknowledge support of ESF Eurogiga project GraDR as GAČR
GIG/11/E023.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 194–205, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MSOL Restricted Contractibility to Planar Graphs 195

If the number of contracted edges is not limited, every connected graph can
trivially be contracted into a single vertex, and thus becomes planar. A graph is
k-contractible if the number of contracted edges is limited by a number k. If k is
a part of the input, testing k-contractibility is NP-complete [1]. Polynomial-time
algorithms are known if one asks about contraction to a particular fixed planar
graph (so called H-contractibility); for nice overviews see [4,11]. In this paper,
we present a fixed-parameter tractable algorithm for contractability to planar
graphs.

Restricted Contractibility. We address the following more general problem.
A subset of edges S is called a planarizing set if by contracting S in G the
graph becomes planar. We want to find a planarizing set S of size at most k that
satisfies an additional restriction: a monadic second-order logic (MSOL) formula
P fixed for the problem.1

Problem: P -RestrictedContract

Input: An undirected graph G and an integer k.
Output: Is there a planarizing set S ⊆ E(G) of size at most k satisfying P

that when contracted produces a planar graph?

An MSOL formula P is inclusion-closed if for every S satisfying P also every
S′ ⊆ S satisfies P . This is a natural condition which, for instance, allows to look
for an inclusion-minimal matching in G. The main result of this paper is:

Theorem 1. For every inclusion-closed MSOL formula P , the problem P -

RestrictedContract is solvable in time O(n2f(k)) where n is the number of
vertices of G.

Our algorithm is a modification of a quadratic-time FPT algorithm for crossing
number of Grohe [9]. The most significant change is a different proof of Lemma 1.
We cannot use the same approach as in [9] because k-contractible graphs do not
have bounded genus [5] which is essential in [9].

For a trivial formula P that is true for every set of edges, we get the k-
contractibility problem considered above. We note that k-contractibility was
independently proved to be solvable in time O(n2+εf̄(k)) for every ε > 0 in
a recent paper of Golovach et al. [5]. We obtained independently our results
at a similar date [6]. The algorithm described here uses similar techniques but
improves the time complexity and in fact solves a more general problem.

	-subgraph Contractibility. For different formulas P , we get problems dif-
ferent from k-contractibility having new specific properties. As one example, we
describe a problem called 	-subgraph contractibility. A graph is called 	-subgraph
contractible if there exists a planarizing set S such that its edges form disjoint
connected subgraphs of size at most 	. We show that this property of the pla-
narizing set S can be described in MSOL.

1 More precisely, we have different formulas Pk(e1, . . . , ek) for each k where S =
{e1, . . . , ek}. So the length of the formula may depend on k.

196 J. Abello et al.

Problem: 	-SubContract

Input: An undirected graph G and an integer k.
Output: Is G 	-subgraph contractible by a set S having at most k edges?

This problem is closely related to graph clustering: The mentioned subgraphs
of size at most 	 are non-trivial clusters of the graph and are such that the re-
sulting cluster graph is planar. In comparison to k-contractibility, the contracted
edges have to be more equally distributed in G, and thus the contractions do
not change the graph too much.

From a graph drawing perspective this approach offers a drawing such that
all crossings happen in disjoint areas nearby the clusters and the rest of the
meta-drawing is crossing-free. Such a meta-drawing resembles well the original
graph and can be well grasped by a glance from the distance. The local crossings
get inspected by taking a magnifying glass for particular clusters.

Proposition 1. For every fixed 	, the problem 	-SubContract can be solved
in time O(n2f ′(k)) where n is the number of vertices.

If 	 = 1, the problem is solvable in linear time as it becomes just planarity
testing. For 	 ≥ 2, we prove:

Theorem 2. For 	 ≥ 2, the problem 	-SubContract is NP-complete.

We note that in the case of 	 = 2, the planarizing set S is a matching in G. In
the Conclusions Section, we show how the hardness result generalizes to surfaces
of higher genus.

Definitions and Notation

For a graph G, we denote by V (G) its vertices and by E(G) its edges (or simply
V and E, when the graph is clear from the context). We denote by G ◦ e the
(multi)graph obtained by contracting an edge e in G (in contractions, we keep
parallel edges and loops; they do not influence planarity of G ◦ e anyway).

For a set of edges S, we denote a graph created from G by contracting all edges
of S by G ◦S. We call S ⊆ E a planarazing set of G if G ◦S is a planar graph. We
say that G is k-contractible if there exists a planarizing set S of size at most k.

2 Restricted Contractibility Is Fixed-Parameter
Tractable

In this section, we show that the problem P -RestrictedContract for a fixed
inclusion-closed MSOL formula P is fixed-parameter tractable with parameter
k. Namely, we exhibit an algorithm, to solve this parameterized version, that
runs in time O(n2 · f(k)).

A basic structure of our algorithm is based on the following well-known idea
invented by Grohe [9]. If the graph has small tree-width, we can solve the prob-
lem in a “brute-force way” using MSOL. If the tree-width is large, we find an
embedded large hexagonal grid and produce a smaller graph to which we can
apply the procedure recursively.

MSOL Restricted Contractibility to Planar Graphs 197

2.1 Definitions

We first introduce notation similar to that of Grohe’s in [9].

Topological Embeddings. A topological embedding h : G ↪→ H of G into H
consists of two mappings: hV : V (G) → V (H) and hE : E(G) → P (H), where
P (H) denotes paths in H . These mappings must satisfy the following properties:

– The mapping hV is injective, distinct vertices of G are mapped to distinct
vertices of H .

– For distinct edges e and f of G, the paths hE(e) and hE(f) are distinct, do
not share internal vertices and share possibly at most one endpoint.

– If e = uv is an edge of G then hV (u) and hV (v) are the endpoints of the
path hE(e). If w is vertex of G different from u and v then path hE(e) does
not contain the vertex hV (w).

It is useful to notice that there exists a topological embedding h : G ↪→ H ,
if there exists a subdivision of G which is a subgraph of H . For a subgraph
G′ ⊆ G, denote by h � G′ the restriction of h to G′. For simplicity, we use the
term embeddings instead of topological embeddings.

Hexagonal Grid. We define recursively the hexagonal grid Hr of radius r (see
Figure 1). The graph H1 is a hexagon (the cycle of length six). The graph Hr+1

is obtained from Hr by adding 6r hexagonal faces around Hr as indicated in
Figure 1.

The nested principal cycles C1, . . . , Cr are called the boundary cycles of
H1, . . . , Hr . From the inductive construction of Hr, Hk is obtained from Hk−1

by adding Ck and connecting it to Ck−1. A principal subgrid Hs
r where s ≤ r

denotes the subgraph of Hr isomorphic to Hs and bounded by the principal
cycle Cs of Hr.

Flat Topological Embeddings. Let H be a subgraph of a graph G. An H-
component C of G is

– either a connected component of G \ H together with the edges connecting
C to H , or

– an edge e of G \ H with both endpoints in H .

H1

C1
C2

H2

H2
3

H3

Fig. 1. Hexagonal grids H1, H2 and H3. Inside H2, the principal cycles C
1 and C2 are

depicted in bold. Inside H3, the principal subgrid H2
3 is shown.

198 J. Abello et al.

C1

H

C2

C3(a)

C1

C2

C3

(b)

h+(H3)

Fig. 2. (a) H-components C1, C2 and C3 of G. (b) A subgraph h+(H3) consisting
of h(H3) and three proper components C1, C2 and C3 having attachments to inner
vertices of h(H3) (highlighted in bold). The embedding h is not flat since C3 obstructs
planarity.

The endpoints of edges of C contained in H are called the vertices of attachment
of C. Figure 2a illustrates the notion of H-components.

Let G be a graph and let h : Hr ↪→ G be an embedding of a hexagonal grid
in G. An h(Hr)-component C is called proper if C has at least one vertex of
attachment in h(Hr) \ h(Cr), namely, the component is attached to an inner
vertex of the grid. Let h+(Hr) denote the union of h(Hr) with all proper h(Hr)-
components. Notice that the proper h(Hr)-components may be obstructions to
the planarity of h+(Hr). The embedding h is called a flat embedding if h+(Hr)
is a planar graph. For an example, see Figure 2b.

Tree-width. For a graph G, its tree-width is the smallest integer k such that G
is subgraph of a k-tree. This parameter describes how much is G “similar” to a
tree. For our purposes, we use tree-width as a black box in our algorithm. The
following two properties of tree-width are crucial.

Theorem 3 (Robertson and Seymour [15], Boadlaender [2], Perkovic̀
and Reed [14]). For every s ≥ 1, there is an integer w ≥ 1 and a linear-time
algorithm that, given a graph G, either (correctly) recognizes that the tree-width
of G is at most w or returns an embedding h : Hs ↪→ G.

Theorem 4 (Courcelle [3]). For every graph G of tree-width at most t and
every MSOL formula ϕ, there exists an algorithm that in time O(n · g(t)), where
n number of vertices of G, decides the formula ϕ on G.

2.2 The Algorithm

Overview. The general outline of the algorithm is as follows. It proceeds in
two phases. The first phase deals with graphs of large tree-width and repeatedly
modifies G to produce a graph of small tree-width. In addition, we keep a set
F ⊂ E of forbidden edges for contractions. Initially, F is empty and during the
modification some edges are added. The second phase uses an MSOL formula
and Courcelle’s Theorem 4 to solve P -RestrictedContract on this graph.

MSOL Restricted Contractibility to Planar Graphs 199

Phase I. We first prove the following lemma, which states that in an embedded
large hexagonal grid Hs into G, we either find a smaller flat hexagonal grid
Hr, or else G is not k-contractible. This lemma represents the most significant
difference from the paper of Grohe [9].

Lemma 1. Let G be a k-contractible graph. For every r ≥ 1, there exists s ≥ 1
such that for every embedding h : Hs ↪→ G there is some subgrid Hr ⊆ Hs such
that h � Hr is a flat embedding.

Proof. For given r and k, we fix s and t large enough as follows: We choose
s ≈ 2kt so that Hs contains 2k + 1 disjoint subgrids Ht1 , . . . , Ht2k+1

of radius t

and let H ′
ti , formerly denoted by Ht−2

ti , be a subgrid of Hti without two outer-
most layers. We choose t ≈ 7rk so that each H ′

ti contains 7k+1 disjoint subgrids
Hti,r1 , . . . , Hti,r7k+1

of radius r.2 In this way, we get a hierarchy of nested sub-
grids:

Hs ⊃ Hti ⊃ H ′
ti ⊃ Hti,rj , 1 ≤ i ≤ 2k + 1, 1 ≤ j ≤ 7k + 1.

We argue next that in this hierarchy, some Hti,rj is h � Hti,rj a flat embedding.
Since we are assuming that G is k-contractible, we can fix a matching pla-

narizing set S and consider one subgrid Hti . Let a cell be an h-image of a
hexagon of H ′

ti . We call an h(H ′
ti)-component bad if it contains an edge from

S. A cell is considered bad if it contains an edge of S or if there is at least one
bad h(H ′

ti)-component attached to the cell. Since bad cells have some obstruc-
tions to planarity attached to them we will exhibit some grid Hti,rj such that
its embeddiing h(Hti,rj) avoids all bad cells.

To proceed, call an h(H ′
ti)-component C large if the vertices of attachment of

C are not contained in one cell (as an example, in Figure 2b, components C1 and
C2 are not large but C3 is large). Large h(H ′

ti)-components posses the following
useful properties which we prove afterwards in a series of claims.

1. If an h(H ′
ti)-component is large, then we can embed K3,3 into h+(Hti).

This means that there must be some Hti having no large h(H ′
ti)-component,

otherwise the graph would not be k-contractible.

2. On the other hand, if a bad h(H ′
ti)-component is not large, it can produce

at most seven bad cells.This implies that h(H ′
ti) must have a number of bad

cells bounded by 7k and therefore for some j, h(Hti,rj) is a flat embedding.

Claim. Let C be a large h(H ′
ti)-component. Then we can embed K3,3 into

h+(Hti) such that K−
3,3 := K3,3 − e is embedded directly into the grid h(Hti).

Proof. Instead of a tedious formal proof, we illustrate the main idea in Figure 3.
If C is large, it has two vertices u and v not contained in one cell. Thus there
exists a path P going across the grid “between” u and v. Using C as a “bridge”
from u to v, we can cross P by another path across the grid. These two paths
together with two outer layers of h(Hti) allow us to embed K3,3 into h+(Hti)
such that K−

3,3 is embedded into h(Hti). *
2 Actually just s ≈

√
2kt and t ≈

√
7kr would be sufficient.

200 J. Abello et al.

P
C

H ′
ti

Hti

u v

K3,3

↪→

Fig. 3. The component C acts as a bridge allowing two non-crossing paths across the
grid. Thus we can embed K3,3 into h(Hti).

Claim. There is some Hti such that there is no large h(H ′
ti)-component.

Proof. According to the above claim, if Ht� contains a large h(H ′
t�)-component,

we can embed K3,3 into h+(Ht�). Since G ◦ S is a planar graph, this embedding
of K3,3 has to be contracted by S. To contract this K3,3, there has to be an
edge e ∈ S incident with h(K−

3,3) and therefore incident with h(Ht�) directly.
But since |S| ≤ k and we have 2k+1 disjoint grids, there is some Hti not having
any edge S incident with h(Hti). Thus there is no large h(H ′

ti)-component. *

Claim. For this Hti , h(H
′
ti) contains at most 7k bad cells.

Proof. Let e ∈ S. Since no h(H ′
ti)-component C is large, it is attached to at

most seven cells. Therefore, if e ∈ C, we get at most seven bad cells. If e belongs
to a cell directly, we get two bad cells. Since |S| ≤ k, we get at most 7k bad
cells. *

To conclude the proof of Lemma 1, by the pigeon-hole principle one of
h(Hti,r1), . . . , h(Hti,r7k+1) containing no bad cells forces the existence of one
Hti,rj such that h+(Hti,rj) has no edges of S and it is planar; in other words
h(Hti,rj) is flat. ��

The next lemma shows that a small part of h+(Hr) is never contracted by a min-
imal set S. Let a kernel K of h+(Hr) denote the h-image of the central principal
cycle h(C1) together with the h(Hr)-components attached only to h(C1).

Lemma 2. Let G be a k-contractible graph and let S be a minimal planarizing
set of G. Let h : Hr ↪→ G, r ≥ 2k + 3 be a flat embedding and let K be a kernel
of h+(Hr). Then the edges of G incident with the vertices of K do not belong to
S.

Details of the proof are omited due to space limitations but it is very similar to
the one in Grohe [9] (see full version for details).

Recall that F is the set of forbidden edges to contract. If the graph G is
k-contractible by a planarizing set S such that S ∩ F = ∅, we say that G is
(k, F)-contractible. Proceeding with our algorithm, we use Lemma 2 to modify

MSOL Restricted Contractibility to Planar Graphs 201

the input G and F to a smaller graph G′ and an extended set F ′ as follows:
G′ := G ◦ K (the kernel K is contracted into a single vertex), F ′ is equal to F
together with edges connecting K to G \ K.

Lemma 3. The graph G is (k, F)-contractible if and only if the graph G′ is
(k, F ′)-contractible.

Proof. According to Lemma 2, a minimal matching planarizing set S for G
avoiding F does not contain any edges of K and F ′. Therefore, it also works for
G′.

On the other hand, if G′ has a matching contractible set S disjoint from F ,
consider an embedding of G′ ◦ S and replace the contracted vertex of the kernel
by an embedding of K in a manner completely analog to the one described in
the proof of Lemma 2. ��

Phase II. We show next that when the tree-width of G is small, we can solve
(k, F)-contractibility with respect to P using Courcelle’s theorem [3]. To this
effect all we need to show is that is possible to express (k, F)-contractibility in
monadic second-order logic (MSOL).

Lemma 4. For a fixed graph H, there exists an MSOL formula μH(e1, . . . , ek)
which is satisfied if and only if G′ := G ◦ e1 ◦ · · · ◦ ek contains H as a minor.

Due to space limitations, the proof is moved to the full version.
An MSOL formula ϕ(k,F) for testing (k, F)-contractibility can be defined as

follows. A formula σ tests whether edges e1, . . . , ek avoid F . Then solvability of
P -RestrictedContract can be checked using MSOL formula:

σ(F, e1, . . . , ek) :=
∧
i

(ei /∈ F),

ϕ(k,F) := σ(F, e1, . . . , ek) ∧ P (e1, . . . , ek)∧
∧ ¬μK5(e1, . . . , ek) ∧ ¬μK3,3(e1, . . . , ek).

The formula ϕ(k,F) is satisfiable if and only ifG is (k, F)-contractible with respect
to the MSOL formula P .

Putting All the Pieces Together. We finish this section with a proof of the
announced Theorem 1 stating that P -RestrictedContract for a inclusion-
closed MSOL formula P is solvable in time O(n2 · f(k)) disjoint from F .

Proof (Theorem 1). In Phase I, we repeat the following steps until the tree-width
of G is small enough. We find an embedding h of a large hexagonal grid Hs, by
Theorem 3 in linear time. Using Lemma 1, we can find a subgrid Hr such that
h(Hr) is flat. Moreover, we can find such Hr in linear time O(k2n) by testing
planarity for all h+(Hti,rj).

Using Lemma 2, we transform the graphG and the forbidden set F to a smaller
graph G′ and an extended forbidden set F ′ without changing the solution to our

202 J. Abello et al.

problem (see Lemma 3). After each modification, we get a smaller graph G.
Therefore we need to repeat the steps at most O(n) times for a total time for
Phase I of O(n2 · p(k)) for some function p.

Phase II uses Theorem 4 to solve the problem when G has small tree-width
using an MSOL formula ϕ(k,F) in time O(n · q(k)). Phase I modifies the graphs
and removes edges which do not appear in any minimal planarizing set. Since
the formule P is inclusion-closed, this does not pose a problem; there exists a
minimal planarizing set satisfying P if and only if there exists any planarizing
set satisfying P .

Therefore, the overall complexity of the algorithm is O(n2 · f(k)) for some
function f . ��

3 �-Subgraph Contractibility

Proposition 1 follows from the fact that 	-subgraph contractibility is expressible
using MSOL (details are contained in the full version).

Matching Contractibility. Concerning NP-completeness, we first introduce a
new problem called matching contractibility. The graph G is F -matching con-
tractible if there exists a planarizing set S which forms a matching in G and
S ∩ F = ∅.

Problem: MatchingContract

Input: An undirected graph G and a set of forbidden edges F ⊆ E.
Output: Is G an F -matching contractible graph?

First, we show that 	-subgraph contractibility can solve matching contractibil-
ity.

Lemma 5. Matching contractibility is reducible from 	-subgraph contractibility.

Proof. For an input G and F , we produce a graph G′ which is 	-subgraph con-
tractible if and only if G is F -matching contractible. We replace edges of G by
paths; if e ∈ F , we replace it by a path of length 	, if e /∈ F , we replace it by a
path of length 	 − 1. Also put k = |E(G′)| so only 	-subgraphs limit S.

If a planarizing set S is a matching in G avoiding F , then we can contract
the corresponding paths in G′ by 	-subgraphs. On the other hand, if a path in
G′ corresponding to e ∈ E(G) is contracted, it has to be contracted by a single
	-subgraphs. In such a case, e /∈ F (otherwise the path is too long) and the
contracted paths have to form a matching (the 	-subgraphs cannot share the
end-vertices belonging to G). So the planarazing set S′ of G′ gives a planarizing
set S of G which is a matching and which avoids F (we ignore the 	-subgraphs
not contracting entire paths). ��

Overview of the Reduction. To show the NP-hardness of MatchingCon-

tract, we present a reduction from Clause-Linked Planar 3-SAT. The
NP-completeness of this problem was shown by Fellows et al. [7]. An instance

MSOL Restricted Contractibility to Planar Graphs 203

I of Clause-Linked Planar 3-SAT is a Boolean formula in CNF such that
each variable occurs in exactly three clauses, once negated and twice positive,
each clause contains two or three literals and the incidence graph of I is planar.

Given a formula I, we construct a graph GI with a set FI of forbidden edges
such that GI is FI -matching contractible if and only if I is satisfiable. The
construction is performed by replacing each variable x by a variable gadget Gx

(all of them are isomorphic), and replacing each clause c by a clause gadget Hc.
Both the variable gadget and the clause gadget are graphs K5, containing most
of the edges in FI . In Figure 4, the edges not contained in FI are represented by
thick lines. Each variable gadget contains three pendant edges that are identified
with certain edges of the clause gadgets, thus connecting the variable and clause
gadgets.

Variable Gadget. Let a variable x be positive in clauses c1 and c2, and negative
in clause c3. The corresponding variable gadget Gx is depicted in Figure 4a. It
consists of 4 copies of K5, each having all but two edges in FI . Three of the
copies of K5 have pendant edges attached, denoted by

e(x, ci) = v(x, ci)w(ci), i ∈ {1, 2, 3}

(refer to Figure 4a). These edges also belong to the clause gadgets. All other
vertices and edges are private to the variable gadget Gx.

The main idea behind the variable gadget is that exactly one of the edges tx
and fx will be contracted, encoding in this way the assignment of the variable x:
tx for true and fx for false. The edges shared with the clause gadgets, e(x, c1)
and e(x, c2), can be contracted if and only if tx is contracted, and e(x, c3) can
be contracted if and only if fx is contracted.

Clause Gadget. Let c be a clause containing variables x, y and possibly z. The
clause gadget Hc is a copy of K5 with all but 2 or 3 edges in FI . The edges
that are not forbidden to contract share a common vertex w(c) and they are the
edges e(x, c), e(y, c) and possibly e(z, c) shared with the variable gadgets Gx,
Gy and possibly Gz (See Figure 4b).

To make the clause gadget planar, we need to contract exactly one of the
edges e(x, c), e(y, c) and possibly e(z, c). This is possible only if the clause is
satisfied by some variable evaluated as true in the clause.

Lemma 6. The graph GI is FI -matching contractible if and only if I is satisfi-
able.

Proof. =⇒: Suppose first that GI is FI -matching contractible, and let S ⊆
E(GI) be a matching planarizing set. Using S, we construct a satisfying as-
signment of I. Consider a variable, say x. Each copy of K5 needs to have at least
one edge contracted by S.

Exactly one of tx and fx is in S. If tx ∈ S, then t′x cannot be in S (note that
S is a matching), hence e′(x, c3) ∈ S, and e(x, c3) cannot be in S. On the other
hand, if tx /∈ S, necessarily fx ∈ S, and by a similar sequence of arguments,
none of e(x, c1) and e(x, c2) is in S.

204 J. Abello et al.

fx tx

f ′
x

e′(x, c1)

v(x, c1)

e(x, c1)

w(c1)
e′(x, c2)

v(x, c2)

e(x, c2)

w(c2)

t′x e′(x, c3)

v(x, c3)

e(x, c3)

w(c3)

(a) (b)

w(c)

e(x, c)

v(x, c)

v(y, c)v(z, c)

e(y, c)e(z, c)

Fig. 4. The bold edges can be contracted, dashed edges are forbidden edges from FI .
(a) The variable gadget where the three outgoing edges are shared with clause gadgets.
(b) The clause gadget; the edge e(z, c) may also be in FI if the clause contains only
two variables. The two or three contractible edges are shared with variable gadgets.

Define a truth assignment for the variables of I so that x is true if and only
if tx ∈ S. It follows that if x is evaluated as false in a clause c, then the edge
e(x, c) is not in S. Since S has to contain at least one edge of Hc, in each clause
gadget at least one variable must be evaluated to true. Thus I is satisfiable.

⇐=: Suppose that I is satisfiable and fix a satisfying truth assignment φ. We set

S = {tx, f ′
x, e(x, c1), e(x, c2), e

′(x, c3) | φ(x) = true} ∪
{fx, t′x, e(x, c3), e′(x, c1), e′(x, c2) | φ(x) = false}.

For the variable gadgets, S is a matching. Each clause gadget contains at least
one edge of S. But if a clause, say c, contains more than one variable evaluated
as true, its clause gadget contains more edges with a common vertex. In such a
case perform a pruning operation on c, i.e, remove all edges from S ∩E(Hc) but
one. The resulting set S′ is a matching such that each K5 in GI contains exactly
one edge of S′.

It only remains to argue that this set S′ is a planarizing set. The graph
G′ = G ◦ S′ consists of copies of K4 glued together by vertices or edges. Each
copy is attached to other copies by at most three vertices. Since K4 itself has
a non-crossing drawing in the plane such that three of its vertices lie on the
boundary of the outer face, and these vertices can be chosen arbitrarily as well
as their cyclic order on the outer face, the drawings of the variable and clause
gadgets can be combined together along a planar drawing of the incidence graph
of I. Therefore, G′ is planar. ��

This shows that 	-SubContract is NP-complete for every 	 ≥ 2:

Proof (Theorem 2). The problem 	-SubContract is reducible from Match-

ingContract. The above reduction shows that MatchingContract is NP-
hard. Clearly, 	-SubContract belongs to NP. ��

MSOL Restricted Contractibility to Planar Graphs 205

4 Conclusions

The problem 	-SubContract remains NP-complete when generalized for sur-
faces of a fixed genus g (instead of planar graphs). Consider a graph Hg such
that for every embedding of Hg into the surface, each face is homeomorphic to
the disk. We modify our reduction by taking GI ∪Hg as the graph and by adding
all the edges of Hg into F (see Section 3). For each surface, there exists such a
graph Hg (see triangulated surfaces in Mohar and Thomassen [13]).

Generalization of the FPT algorithm is an open problem, with the main dif-
ficulty being a generalization of Lemma 1:

Problem 1. Is a generalization of P -RestrictedContract on graphs on sur-
faces of genus g fixed-parameter tractable with parameter k?

References

1. Asano, T., Hirata, T.: Edge-Contraction Problems. Journal Comput. System
Sci. 26, 197–208 (1983)

2. Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small
tree-width. SIAM Journal on Computing 25, 1305–1317 (1996)

3. Courcelle, B.: The monadic second-order logic of graphs III: tree-decompositions,
minor and complexity issues. ITA 26, 257–286 (1992)

4. van’t Hof, P., Kamiński, M., Paulusma, D., Szeider, S., Thilikos, D.M.: On graph
contractions and induced minors. Discrete Applied Mathematics 160, 799–809
(2012)

5. Golovach, P.A., van’t Hof, P., Paulusma, P.: Obtaining Planarity by Contracting
Few Edges. CoRR, abs/1204.5113 (2012), http://arxiv.org/abs/1204.5113

6. Abello, J., Klav́ık, P., Kratochv́ıl, J., Vyskočil, T.: Matching and �-
Subgraph Contractibility to Planar Graphs. CoRR, abs/1204.6070 (2012),
http://arxiv.org/abs/1204.6070

7. Fellows, M.R., Kratochv́ıl, J., Middendorf, M., Pfeiffer, F.: The Complexity of
Induced Minors and Related Problems. Algorithmica 13(3), 266–282 (1995)

8. Garey, M.R., Johnson, D.S.: Crossing number is NP-complete. SIAM J. Alg. Discr.
Meth. 4(3), 312–316 (1983)

9. Grohe, M.: Computing crossing numbers in quadratic time. J. Comput. Syst.
Sci. 68(2), 285–302 (2004)

10. Hopcroft, J.E., Tarjan, R.E.: Efficient Planarity Testing. J. ACM (JACM) 21(4),
549–568 (1974)

11. Heggernes, P., van’t Hof, P., Lokshtanov, D., Paul, C.: Obtaining a bipartite graph
by contracting few edges. In: Proc. FSTTCS 2011, pp. 217–228 (2011)

12. Marx, D., Schlotter, I.: Obtaining a Planar Graph by Vertex Deletion. Algorith-
mica 62, 807–822 (2012)

13. Bojan, M., Thomassen, C.: Graphs on Surfaces. Johns Hopkins University Press
14. Perkovic̀, L., Reed, B.: An improved algorithm for finding tree decompositions

of small width. International Journal of Foundations of Computer Science 11(3),
365–371 (2000)

15. Robertson, N., Seymour, P.D.: Graph minors XIII. The disjoint paths problem.
Journal of Combinatorial Theory, Series B 63, 65–110 (1995)

http://arxiv.org/abs/1204.5113
http://arxiv.org/abs/1204.6070

On the Space Complexity

of Parameterized Problems

Michael Elberfeld, Christoph Stockhusen, and Till Tantau

Institute for Theoretical Computer Science
Universität zu Lübeck

D-23562 Lübeck, Germany
{elberfeld,stockhus,tantau}@tcs.uni-luebeck.de

Abstract. Parameterized complexity theory measures the complexity
of computational problems predominantly in terms of their parameter-
ized time complexity. The purpose of the present paper is to demonstrate
that the study of parameterized space complexity can give new insights
into the complexity of well-studied parameterized problems like the feed-
back vertex set problem. We show that the undirected and the directed
feedback vertex set problems have different parameterized space com-
plexities, unless L = NL; which explains why the two problem variants
seem to necessitate different algorithmic approaches even though their
parameterized time complexity is the same. For a number of further nat-
ural parameterized problems, including the longest common subsequence
problem and the acceptance problem for multi-head automata, we show
that they lie in or are complete for different parameterized space classes;
which explains why previous attempts at proving completeness of these
problems for parameterized time classes have failed.

Keywords: parameterized complexity theory, logarithmic space, fixed-
parameter tractable problems, feedback vertex set, reachability prob-
lems.

1 Introduction

When designing classical or parameterized algorithms, the focus often lies on
the time complexity of a problem rather than its space complexity. Nevertheless,
the study of space classes like logarithmic space is an integral part of classical
complexity theory since many natural problems (like reachability and distance
problems in graphs or satisfiability problems for powerful logics) do not appear
to be complete for time classes like P or NP, rather they turn out to be complete
for space classes like L, NL, or PSPACE.

It stands to reason that we may also expect some parameterized problems to
be complete not for standard parameterized time classes like FPT or W[1] or XP,
but rather for parameterized space classes. Furthermore, by analogy to findings
from classical complexity theory, we may expect that parameterized problems
with low space complexity can be solved quickly. A typical result supporting

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 206–217, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On the Space Complexity of Parameterized Problems 207

this reasoning is that the parameterized vertex cover problem has low space
complexity—it lies in the class para-L [5,11]—and, indeed, this problem can be
solved very quickly in the parameterized setting.

In the present paper we investigate the space complexity of a number of
natural parameterized problems whose space complexity has not yet been studied
in this context. We will argue that the differences in their space complexities are
the reasons why the problems could not be shown to be complete for standard
parameterized time classes. Moreover, our results suggest a possible explanation
of why the problems vary with respect to how quickly they can be solved in
practice even though they lie in the same parameterized time class. As prominent
examples, we compare the directed and the undirected version of the feedback
vertex set problem as well as the treewidth problem. All of these problems are
indistinguishable with respect to the parameterized time classes they belong to
(namely FPT), but with regard to their space complexity they can be classified
using new natural complexity classes that reflect their different complexities. As a
corollary of these efforts we obtain that the directed and the undirected feedback
vertex set problem have different parameterized space complexity, unless L = NL.

Previous research on parameterized space complexity [5,7,11] was directed at
the logspace analogues para-L and para-NL of para-P, which is commonly known
as FPT, as well as at the logspace analogues XL and XNL of XP. When one
tries to determine the parameterized space complexity of natural parameterized
problems, it quickly turns out, however, that these space classes do not suffice to
paint a complete picture of the complexity landscape of the parameterized world.
For this reason, we introduce new classes that are motivated by parameterized
versions of natural reachability problems. An overview of the classes and our
containment and completeness results is given in Figure 1.

para-P

XNL

para-NL-cert

XL

para-L-cert

para-NL

para-NL[f log]

para-L

p-vertex-cover

p-distance

p-fvs

p-colored-det-reach

p-mdfa-acceptance

p-treewidth

p-colored-reach

p-mnfa-acceptance

p-dfvs

Fig. 1. Overview of the parameterized space classes studied in this paper and param-
eterized problems that lie in them. A filled circle indicates that the problem does not
only lie in the class, but is even complete for it under para-L-reductions.

208 M. Elberfeld, C. Stockhusen, and T. Tantau

Related Work. In 1997, Cai et al. [5] introduced the class uniform-logspace+
advice, which is the same as para-L, and they also considered its nondetermin-
istic version. They showed that several problems in para-P also belong to para-L
or para-NL, including the naturally parameterized vertex cover problem, which
lies in para-L, and the parameterized k-leaf spanning tree problem, which lies
in para-NL. In 2003, Flum and Grohe [11] continued the study of para-L and
para-NL by showing that the parameterized model-checking problem of first-
order formulas on graphs of bounded degree lies in para-L. This implies that
many standard parameterized graph problems belong to para-L when we re-
strict our attention to bounded-degree graphs. In this context they asked, which
other problems in para-P also belong to para-NL or para-L, and whether there
are problems that are contained in para-P but are not contained in para-L or
para-NL under the assumption that para-P �= para-L. In this paper, we answer
this question affirmatively by presenting natural problems that belong to para-P,
but are not contained in para-L under standard assumptions.

Organization of This Paper. In Section 2 on preliminaries we fix the terminol-
ogy and review the definitions of parameterized space classes from the literature
as well as of parameterized reductions. In Section 3 we investigate parameter-
ized problems that are known to be tractable (that is, they are known to lie in
para-P = FPT), but whose space complexity has not yet been investigated. The
objective of this section is to get a deeper understanding of why some prob-
lems inside para-P appear more difficult than others even though they are all
tractable. In Section 4 we turn our attention to parameterized problems that
presumably lie outside of para-P. This time, our findings on the space com-
plexity of natural problems provide explanations why researchers have failed to
prove completeness of these problems for natural parameterized time classes like
W[1] or XP: The problems turn out to lie in or to be complete for parameterized
space classes. Due to space restrictions some proofs are only sketched or omitted;
complete formal proofs are given in the technical report version of the present
paper.

2 Preliminaries

A parameterized problem is a pair (Q, κ) of a language Q ⊆ Σ∗ and a param-
eterization κ : Σ∗ → N that maps input instances to natural numbers, their
parameter values. In the classical definition, Downey and Fellows [9] require the
parameterization to be computable, while Flum and Grohe [12] require it to be
computable in polynomial time. In this paper we need the binary representation
of the parameter number to be computable in logarithmic space. This is the
case, in particular, when the parameter is specified explicitly within the input.

For a classical complexity class C, a parameterized problem (Q, κ) belongs to
the para-class para-C if there is an alphabet Π , a computable function π : N →
Π∗, and a language A ⊆ Σ∗ ×Π∗ with A ∈ C such that for all x ∈ Σ∗ we have
x ∈ Q ⇐⇒

(
x, π
(
κ(x)

))
∈ A. Flum and Grohe [12] phrase this as “(Q, κ) is

On the Space Complexity of Parameterized Problems 209

in C after a precomputation on the parameter”. In particular, FPT is the same
as para-P and all fixed-parameter tractable problems are in P after a precom-
putation on the parameter. Analogously, we can define the classes para-L and
para-NL as the family of problems that are in L and in NL after a precomputa-
tion on the parameter, respectively. In terms of the O-notation, a parameterized
problem (Q, κ) over Σ is in para-L if there is a function f : N → N such that the
question x ∈ Q can be decided within space f

(
κ(x)

)
+ O
(
log |x|

)
.

A different way of defining a parameterized version of a classical complexity
class C is to consider its so-called X-class [9]. A problem (Q, κ) is in XC if for
every number w ∈ N the slice Qw = { x | x ∈ Q and κ(x) = w} lies in C. It is
immediate from the definition that para-C ⊆ XC holds. The class XP is in wide
use in parameterized complexity theory; the logarithmic space classes XL and
XNL have previously been studied Chen, Flum, and Grohe [7,11].

In order to compare the complexity of parameterized problems, we use para-
meterized logspace reductions, called para-L-reductions in the following. Follow-
ing Flum and Grohe, we define them similarly to FPT-reductions: Let (Q1, κ1)
and (Q2, κ2) be parameterized problems over some alphabets Σ1 and Σ2. A
para-L-reduction is a mapping R : Σ∗

1 → Σ∗
2 such that

1. for all x ∈ Σ∗
1 we have x ∈ Q1 ⇐⇒ R(x) ∈ Q2,

2. κ2

(
R(x)

)
≤ g
(
κ1(x)

)
for some computable function g,

3. R is para-L-computable with respect to κ1.

By standard arguments one can show that all classes in this paper are closed
with respect to para-L-reductions.

3 Space Complexity of Tractable Problems

From the perspective of classical fpt-theory, the complexity of a parameterized
problem is “settled in principle” once it has been shown to be solvable in time
f
(
κ(x)

)
· nc; further research then focusses on making f as slowly growing as

possible. In the following, instead of trying to differentiate between problems
in para-P through their f -functions, we try to determine differences caused by
their different space complexities.

We start our exploration with a deceptively simple problem, namely the dis-
tance problem with the distance as the parameter:

Problem 3.1 (p-distance).

Instance. A directed graph G, two vertices s and t of G, and a natural num-
ber l.

Parameter. l.
Question. Is there a path from s to t in G of length at most l?

This problem is clearly in para-P and, since the distance problem lies in NL, also
in para-NL. It might also seem like a good candidate for a para-NL-complete
problem. Indeed, Flum and Grohe [11] showed that classes like para-P, para-NL,
and para-L are “uninteresting” from the parameterized point of view in the
sense that complete problems for the underlying classical complexity classes are

210 M. Elberfeld, C. Stockhusen, and T. Tantau

always complete for the parameterized versions when considering the trivial pa-
rameterization. In particular, the standard distance problem for directed graphs
is complete for para-NL with the trivial parameterization κ(x) = 1. However,
this argument does not carry over to the above version of the distance problem
with its more natural parameterization.

In order to describe the complexity of p-distance precisely, it turns out that
a new class is needed that is derived from transferring the definition of the class
W[P] to the space setting in a certain way. A classical definition of W[P] is as the
para-P-reduction closure of the weighted circuit satisfiability problem [1]. Alter-
natively, W[P] is also the class of all problems (Q, κ) that are solvable by ntms
deciding Q in para-P-time, making at most f

(
κ(x)

)
· log |x| nondeterministic

steps on any input x. Finally, W[P] also contains exactly the problems decidable
via dtms that are provided with a proof certificate of length f

(
κ(x)

)
· log |x| (the

certificate is on a special read-only tape and the machine must accept all x ∈ Q
for some certificate and must reject x /∈ Q for all certificates).

In the context of parameterized time complexity all of the three characteriza-
tions ofW[P] yield the same classes. When we look at the space analogues of these
classes, the situation is somewhat different: First, the para-L-reduction closure
(rather than the para-P-reduction closure) of the parameterized weighted circuit
satisfiability problem is still W[P], see [7], and this class clearly does not capture
the complexity of p-distance. Second, when we replace the para-P time bound
in the second characterization by a para-L space bound, a subclass of para-NL

arises. Third, when we make the same replacement in the third definition, a
presumably different class arises that is a subclass of XNL.

Definition 3.2. A parameterized problem (Q, κ) is in the class para-NL[f log]
if it can be decided by a para-NL Turing machine which makes at most f

(
κ(x)

)
·

O
(
log |x|

)
many nondeterministic steps.

Definition 3.3. A parameterized problem (Q, κ) is in the class para-L-cert if it
can be decided by a para-L Turing machine which is provided proof certificates
of length f

(
κ(x)

)
· O
(
log |x|

)
.

It turns out that para-NL[f log] is precisely what we need to characterize the
complexity of the distance problem with its natural parameterization:

Theorem 3.4. p-distance is complete for para-NL[f log] with respect to para-L
reductions.

Sketch of Proof. The containment p-distance ∈ para-NL[f log] is shown by an
algorithm that guesses a path of length l from s to t. For hardness, consider a
problem (Q, κ) with a Turing machine M that witnesses (Q, κ) ∈ para-NL[f log]
and an input x. Compute the configuration graph ofM on input x. Unfortunately
we cannot pass this graph to the p-distance problem because the length of the
path from the initial configuration s to the accepting configuration t is not
bounded exclusively by the parameter. However, the number of configurations
that are followed by nondeterministic steps on any path from s to t is bounded

On the Space Complexity of Parameterized Problems 211

by f
(
κ(x)

)
· O
(
log |x|

)
. We use this fact by first contracting the deterministic

parts of the configuration graph and then shortening the paths in the resulting
graph by a logarithmic factor such that the length of the paths from s to t is
exclusively bound by the parameter. ��

In general, para-NL[f log] seems to contain many parameterized versions of prob-
lems that are contained in NL in the classical sense and that follow the guess-
and-forget approach, i.e. guessing an element from the input, processing this
element, and guessing the next element while forgetting the previous one. With
this observation, many NL-complete problems can be shown to be complete for
para-NL[f log] with natural parameterizations, e.g. many problems from [15].
On the other hand, para-NL[f log] and para-NL do not coincide under standard
assumptions. This can be shown with the observation that every NL-complete
problem is complete for para-NL with respect to the trivial parameterization.

Theorem 3.5. para-NL[f log] = para-NL if, and only if, L = NL.

The Feedback Vertex Set Problems. While it is useful to know that para-NL[f log]
has many natural complete problems, our original goal for looking at parame-
terized space classes was to study the parameterized space complexity of well-
studied problems in para-P that do not come from the logspace world in the way
p-distance does. We now look at the problem of identifying a set S of vertices
of a given graph G such that G− S has treewidth at most w for a fixed natural
number w. For w = 0 this is the vertex cover problem. For w = 1 we obtain the
(undirected) feedback vertex set problem p-fvs. We also look at the problem of
deciding whether a given graph has treewidth w for a given w.

The first problem of this “treewidth hierarchy” has been studied in the context
of parameterized space complexity theory by Cai et al. [5], who showed that
p-vertex-cover ∈ para-L. We look at the next problem of this hierarchy, the
feedback vertex set problem p-fvs. It does not seem to lie in para-L nor even in
para-NL. However, it turns out that the class para-L-cert contains it:

Theorem 3.6. p-fvs ∈ para-L-cert.

Proof. On input of an undirected graph G, our para-L-cert Turing machine M
interprets its certificate of length κ(x) ·

⌈
log |V |

⌉
as the description of the k ver-

tices of the feedback-vertex set. Then M removes these vertices and its incident
edges from G and checks whether the resulting graph G′ is acyclic. Both, re-
moval and test for acyclicity can be done by para-L Turing machines [8]. With
the fact that para-L-cert is closed with respect to para-L-reductions we obtain
the result. ��

While the classes para-NL[f log] and para-NL are contained in para-P, this is
not the case for para-L-cert under the standard assumption para-P � W[sat]
since the weighted satisfiability problem for propositional formulas belongs to
para-L-cert.

Theorem 3.7. If para-L-cert ⊆ para-P, then W[sat] = para-P.

212 M. Elberfeld, C. Stockhusen, and T. Tantau

In particular, p-fvs is not complete for para-L-cert, unless para-P = W[sat],
which is considered to be unlikely (para-L-cert does, however, have natural com-
plete problems as shown in Section 4). Nevertheless, para-L-cert turns out to
be useful for contrasting the complexity of the feedback vertex set problem for
undirected graph to the version for directed graphs.

The undirected version was shown to be fixed-parameter tractable in 1993 by
Bodlaender [2]. The fixed-parameter tractability of the directed version remained
an open problem until Chen et al. [6] presented a para-P-algorithm in 2008. So
far, these apparently different complexities could only be felt by looking at the
complexity of the proofs. In the setting of parameterized logarithmic space, the
different complexities are not only mirrored, we are even able to prove that p-fvs
and p-dfvs are of different complexity (under standard assumptions):

Theorem 3.8. p-dfvs ∈ para-L-cert if, and only if, L = NL.

Proof. To prove the forward direction, we first show that the parameterized
problem p-unreach, the complement of the reachability problem where we ask
whether there does not exist a path from a given vertex s to another vertex t in a
directed graph parameterized by the trivial parameterization, para-L-reduces to
p-dfvs. The reduction works in two steps: The first step takes the n-vertex input
graph and makes it acyclic by producing n copies if it, conceptually arranging
them as n layers from left to right, and drawing edges between consecutive layers
from left to right in the same way as they are present in the original graph. The
second step inserts an edge from t’s copy in the last layer to s’s copy in the first
layer. The resulting directed graph remains acyclic (has a feedback vertex set of
size 0) exactly if there is no path from s to t in the input graph.

Next, assume p-dfvs ∈ para-L-cert. This implies the existence of a para-L-tm
that, provided with a certificate of length f

(
κ(x)

)
· log |x|, decides p-unreach.

But because p-unreach is parameterized in the trivial way, this Turing machine
is in fact a deterministic logarithmic-space Turing machine that decides the NL-
complete reachability problem in directed graphs. This implies L = NL.

For the backward direction assume L = NL. Then the algorithm used above
for p-fvs also works for p-dfvs because cycle detection in directed graphs is
then possible in deterministic logarithmic space. ��

This raises the question, what class captures p-dfvs. The central difference be-
tween p-fvs and p-dfvs is the complexity of the underlying cycle detection prob-
lem: In the undirected case this can be done in deterministic logarithmic space,
in the directed case nondeterministic logarithmic space is required. Therefore,
the natural approach is to consider a nondeterministic version of para-L-cert,
namely para-NL-cert: This class is defined in a similar way as para-L-cert, but
here we allow para-NL Turing machines. We immediately obtain the following
result:

Theorem 3.9. p-dfvs ∈ para-NL-cert.

For the same reasons as in the undirected case, we will not be able to prove that
p-dfvs is complete for para-NL-cert.

On the Space Complexity of Parameterized Problems 213

Many more problems from para-P are contained in para-L-cert and its non-
deterministic version. In fact, every problem that can be decided via a bounded
search tree algorithm [9], where the aim is to find a root-to-leaf path within a
search tree whose depth depends on the parameter, is a promising candidate
to be contained in para-L-cert, because the certificate of a para-L-cert Turing
machine can describe the desired root-to-leaf path.

The Treewidth Problem and Slicewise Logarithmic Space. We conclude this sec-
tion with a study of the treewidth problem: Given a graph G and a natural
number w as the parameter, the question is whether G has treewidth at most w.
Bodlaender showed that this problem is fixed-parameter tractable in 1996 [3],
and a recent result [10] from 2010 showed that for every fixed w this problem is
decidable in deterministic logarithmic space. These theorems immediately give
us the following result, but we will not be able to show that p-treewidth is
complete for XL unless para-P = W[sat]:

Theorem 3.10. p-treewidth ∈ XL.

The following theorem relates XL and XNL to the surrounding complexity classes.

Theorem 3.11
1. para-L-cert ⊆ XL and para-NL-cert ⊆ XNL,
2. para-NL-cert ⊆ XL implies L = NL.

4 Space Complexity of Intractable Problems

Most of the classes discussed in the previous section are not known to be con-
tained in para-P. In fact, these classes contain problems that are far above of
para-P inside the W-hierarchy, for example the clique problem or the weighted
satisfiability problem for propositional formulas, both of which are contained in
para-L-cert. Therefore, a natural question is to ask for complete problems for
these classes. In this section, we will give natural complete problems for the
classes that are not fully contained in para-P, that is, para-L-cert, para-NL-cert,
XL, and XNL.

Slicewise Logarithmic Space. So far, only few problems are known to be complete
for XL or XNL. Chen, Flum, and Grohe gave the first complete problems for
these classes based on Turing machine simulations. They studied the compact
Turing machine computation problem for deterministic and nondeterministic
Turing machines, p-ctmc and p-cntmc, respectively [7]. The p-ctmc problem is
defined as follows: On input of an encoding of a deterministic Turing machineM ,
a string x over M ’s alphabet, and a natural number k in binary, the question is
if there is an accepting computation of M on x that uses at most k work tape
cells, where k is the parameter. The problem p-cntmc is defined in the same
way, but with respect to nondeterministic Turing machines.

We add the following natural automata evaluation tasks to the list of problems
complete for XL and XNL.

214 M. Elberfeld, C. Stockhusen, and T. Tantau

Problem 4.1 (p-mdfa-acceptance)

Instance. The code of a deterministic finite two-way automaton A with k
heads and an input string x.

Parameter. k.
Question. Does A accept x?

The problem p-mnfa-acceptance is defined in the same way, but with respect
to nondeterministic automata.

Theorem 4.2
1. p-mdfa-acceptance is complete for XL with respect to para-L reductions.
2. p-mnfa-acceptance is complete for XNL with respect to para-L reductions.

Proof. Hartmanis showed [13] that A ∈ L holds if, and only if, there is a deter-
ministic multi-head automaton that decides A. The basic idea is that the position
of an automata’s head on the input tape can be used to store a number between
0 and n, where n is the input tape length, and, thus, the position of a head can
store up to log2 n bits of information. A fixed number of heads hence suffice to
store the information of the work tape of a machine using O(log n) space and
modifications of this work tape correspond to appropriate sequences of auxiliary
heads computing the right number of steps to be made by one of the heads. The
details of the construction are not important for proving the theorem. It suffices
to note that p-mdfa-acceptance lies in XL because the construction of Hart-
manis is uniform. To show hardness, given a parameterized problem (Q, κ) ∈ XL

that is solved by a machine in space f
(
κ(x)

)
·O
(
log |x|

)
+ f
(
κ(x)

)
, by Hartma-

nis’s result there is a multi-head two-way automaton deciding Q whose number
of heads depends only on f(κ(x)). A para-L-reduction must simply map the
input x to this automaton together with x. The proof for the nondeterministic
version is analogous. ��
The next results show that, outside of para-P, the classes XL and XNL enable
us to make statements about problems that could not be classified within the
W-hierarchy. Consider the following well-known problem of finding a longest
common subsequence of k strings, parameterized by k:

Problem 4.3 (p-lcs).

Instance. A set {s1, . . . , sk} of strings over an alphabet encoded in the input
and a natural number l.

Parameter. k.
Question. Is there a subsequence of the given strings with length at least l?

Bodlaender et al. [4] showed that p-lcs is hard for W[t] for every level t.
Pietrzak [16] showed that the variant p-flcs, where the alphabet is fixed, is
hard for W[1]. Pietrzak also conjectured that an exact classification of this prob-
lem within the parameterized hierarchy is not possible, because it seems not
to be contained in W[P], the highest class of the W-hierarchy. While classical
dynamic-programming approaches show that the longest common subsequence
problem is contained in XP, completeness for XP could not be shown. We give
a strong argument that this is not possible using the class XNL:

On the Space Complexity of Parameterized Problems 215

Theorem 4.4. p-lcs ∈ XNL.

Proof. To decide on a given input of k strings whether there exists a longest
common subsequence of length l, the XNL Turing machine scans the first string
from left to right and guesses the subsequence, using a pointer to a symbol in
the first string. Using k − 1 additional pointers on the remaining strings, the
machine verifies that the guessed subsequence is also contained within the k− 1
remaining strings. ��

By definition, X-classes inherit their inclusion structure from their underlying
complexity classes. From this, we immediately get the following theorem:

Theorem 4.5. p-lcs is not complete for XP, unless NL = P.

Because p-lcs is hard for every level of the W-hierarchy it is now tempting to
conclude W[t] ⊆ XNL for every t, but this is not the case. The error in this
argument is that the hardness of p-lcs has been shown with respect to para-P
reductions, but XNL is only closed with respect to para-L reductions. On the
other hand, this shows that under standard assumptions it will not be possible
to prove that p-lcs is hard for the levels of the W-hierarchy using only para-L
reductions, because this would imply NL = P. However, it is an open question
whether one can show that p-lcs is complete for XL or XNL.

Problems for Parameterized Logarithmic Space with Certificates. In the previous
section we introduced the classes para-L-cert and para-NL-cert to upper bound
the parameterized space requirements of the fixed-parameter tractable problems
p-fvs and p-dfvs, respectively. These problems are not complete for the corre-
sponding classes under standard assumptions; in the present section we identify
natural complete problems for the classes para-L-cert and para-NL-cert.

The reachability problem, which asks whether there exists a path from a start
to a target vertex in a given directed graph, is among the most prominent prob-
lems in the study of logarithmic space-bounded computations. Its general version
is NL-complete [14] and becomes L-complete if the path we ask for is determin-
istic [8]; that means, every vertex on the path has only a single outgoing edge
in the graph. In the same way as one can understand the transition from the
classical complexity class P to its parameterized version W[P] by considering the
complete circuit evaluation problem for the former and the complete parameter-
ized weighted circuit satisfiability problem for the later class, we use the following
variant of the reachability problem to better understand the transition from the
classical classes L and NL to their certificate-based parameterized counterparts
para-L-cert and para-NL-cert, respectively.

Problem 4.6 (p-colored-reach).

Instance. A vertex set V , two vertices s, t ∈ V , a set of multi-colored edges
E ⊆ V × V , and a natural number k.

Parameter. k.
Question. Is there a set of k colors, such that there is a path from s to t that

uses only edges that have at least one of the chosen colors.

216 M. Elberfeld, C. Stockhusen, and T. Tantau

Let p-colored-det-reach denote the variant where the path must be deter-
ministic.

Theorem 4.7. p-colored-reach is complete for para-NL-cert with respect to
para-L reductions.

Sketch of Proof. For proving p-colored-reach ∈ para-NL-cert, we use a Tur-
ing machine that guesses a path through the graph that is made up by edges of
the k colors chosen by the certificate. To prove hardness, we consider the con-
figuration graph of a para-NL-cert machine that accesses a certificate that has
to be given. Consequently, configurations are only partially known; they lack
the information which symbol is read on the certificate tape, but contain the
position of the head on it. Moreover, the present transitions are not determined
completely, but each one is triggered by a particular position in the certificate
that stores a particular symbol. The main idea of the reduction is now to parti-
tion the certificate into k blocks of logarithmic length, establish a set of colors for
each block and each possible string in the block, and color all transitions that are
due to the corresponding string in the corresponding block. After making sure
that at least one color is chosen for each block, we get the desired reduction. ��

The following theorem immediately follows from the proof of the previous one
and the fact that we consider deterministic instead of nondeterministic Turing
machines for para-L-cert.

Theorem 4.8. p-colored-det-reach is complete for para-L-cert with respect
to para-L reductions.

Similar to the transition from the classical reachability problem to the deter-
ministic version p-colored-det-reach, many results on logarithmic space-
bounded computations can be adjusted to work in the context of graphs that
are constructed by choosing k sets of edges.

5 Conclusion

We have introduced new parameterized space classes that capture the complexity
of parameterized problems and help in understanding the complexity of fixed-
parameter tractable problems. We have seen that, under the assumption L �= NL,
well-known problems like p-fvs and p-dfvs are separated. Moreover, classes
like para-L-cert and para-NL-cert are not fully contained in para-P, but capture
natural reachability problems that could not be classified in an exact way before.

The next step is to reconsider other parameterized problems (both fixed-
parameter tractable and intractable under standard assumptions like W[1] �=
para-P) with the presented framework in mind: How can these problems be clas-
sified within this framework? What techniques from classical space complexity
help in the parameterized setting and vice versa? In particular, it might be
interesting to use the framework to better understand the complexity of prob-
lems whose unparameterized versions are known to lie in P and, thus, are nor-
mally not studied from the parameterized point of view. An interesting problem

On the Space Complexity of Parameterized Problems 217

in this direction is the associative generability problem parameterized by the
size of the generator set: On input of the description of an associative operator
◦ : U × U → U and a parameter k, decide whether there is a set of generators
G ⊆ U of size k such that all of U can be generated using only elements from G.
We believe that this problem is complete for para-NL-cert and currently prepare
a proof of this statement for the technical report version of this paper.

As also suggested by our reviewers, one might even better understand the
complexity of parameterized problems whose slices are not P-complete by con-
sidering parameterized versions of classical complexity classes based on parallel
and circuit computations like NC, NC1, TC0, and AC0.

References

1. Abrahamson, K.A., Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and
completeness IV: On completeness for W[P] and PSPACE analogues. Annals of Pure
and Applied Logic 73(3), 235–276 (1995)

2. Bodlaender, H.L.: On linear time minor tests with depth-first search. Journal of
Algorithms 14(1), 1–23 (1993)

3. Bodlaender, H.L.: A linear time algorithm for finding tree-decompositions of small
treewidth. Siam Journal on Computing 25(6), 1305–1317 (1996)

4. Bodlaender, H.L., Downey, R.D., Fellows, M.R., Wareham, H.T.: The parame-
terized complexity of sequence alignment and consensus. Theoretical Computer
Science 147(1), 31–54 (1995)

5. Cai, L., Chen, J., Downey, R.G., Fellows, M.R.: Advice classes of parameterized
tractability. Annals of Pure and Applied Logic 84(1), 119–138 (1997); Asian Logic
Conference

6. Chen, J., Liu, Y., Lu, S., O’Sullivan, B., Razgon, I.: A fixed-parameter algorithm
for the directed feedback vertex set problem. Journal of the ACM 55(5), 21:2–21:19
(2008)

7. Chen, Y., Flum, J., Grohe, M.: Bounded nondeterminism and alternation in pa-
rameterized complexity theory. In: CCC 2003, pp. 13–29 (2003)

8. Cook, S.A., McKenzie, P.: Problems complete for deterministic logarithmic space.
Journal of Algorithms 8(3), 385–394 (1987)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
10. Elberfeld, M., Jakoby, A., Tantau, T.: Logspace versions of the theorems of Bod-

laender and Courcelle. In: FOCS 2012, pp. 143–152 (2010)
11. Flum, J., Grohe, M.: Describing parameterized complexity classes. Information and

Computation 187, 291–319 (2003)
12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
13. Hartmanis, J.: On non-determinancy in simple computing devices. Acta Informat-

ica 1, 336–344 (1972)
14. Jones, N.D.: Space-bounded reducibility among combinatorial problems. Journal

of Computer and System Sciences 11(1), 68–85 (1975)
15. Jones, N.D., Edmund Lien, Y., Laaser, W.T.: New problems complete for nonde-

terministic log space. Mathematical Systems Theory 10(1), 1–17 (1976)
16. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest com-

mon supersequence and longest common subsequence problems. Journal of Com-
puter and System Science 67(4), 757–771 (2003)

On Tractable Parameterizations

of Graph Isomorphism

Adam Bouland1, Anuj Dawar2, and Eryk Kopczyński3

1 Massachusetts Institute of Technology, Cambridge, MA, USA
2 University of Cambridge, Cambridge, UK
3 University of Warsaw, Warsaw, Poland

Abstract. The fixed-parameter tractability of graph isomorphism is an
open problem with respect to a number of natural parameters, such
as tree-width, genus and maximum degree. We show that graph isomor-
phism is fixed-parameter tractable when parameterized by the tree-depth
of the graph. We also extend this result to a parameter generalizing both
tree-depth and max-leaf-number by deploying new variants of cops-and-
robbers games.

1 Introduction

The fixed-parameter complexity of the graph isomorphism problem (GI) remains
open with respect to a number of interesting graph parameters. Several param-
eterizations of graph isomorphism are known to yield tractable algorithms. For
instance, graph isomorphism is known to be fixed-parameter tractable in the
following parameters: size of the smallest feedback vertex set [17], tree-distance
width [28], largest multiplicity of an eigenvalue of the adjacency matrix [8], size
of the largest color class (in the case of colored graph isomorphism) [2][10][1],
and maximum size of a simplicial component (in the case of chordal graph iso-
morphism) [27].

On the other hand, many natural parameterizations of the problem are known
to produce algorithms which run in time O(nf(k)), which places them in XP,
but for which fixed-parameter tractability remains open. For instance, graph
isomorphism is in XP when parameterized by the size of the smallest excluded
minor [25][14] or topological minor [13] of a graph . This generalizes a long line of
previous results that GI is in XP with respect to a number of other parameters,
including genus [22], maximum degree [20], and tree-width [4]. It should be
pointed out that in none of these cases do we know of any hardness result that
indicates the problem is not fixed-parameter tractable.

One particular open question is whether or not GI is fixed-parameter tractable
when parameterized by tree-width or path-width. In the present paper, we show
that the problem is fixed-parameter tractable when parameterized by the tree-
depth of a graph. The tree-depth of a graph measures how close a graph is to
a star, in much the same way that tree-width measures how close a graph is to
a tree. This parameter is natural in the context of sparse matrix factorization

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 218–230, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

On Tractable Parameterizations of Graph Isomorphism 219

[15][21] and descriptive complexity [7]. Our proof yields a natural generalization
to a parameter we introduce and call generalized tree-depth, which generalizes
the parameter max-leaf-number as well.

The key idea in our proof is to use a characterization of tree-depth in terms
of cops and robbers games in order to show that in any graph G of tree-depth
at most d, the number of vertices that can serve as “roots” of a minimum height
tree-depth decomposition is bounded by a function of d. This allows us to create
an automorphism-invariant tree-depth decomposition algorithm based on Lin-
dell’s algorithm for logspace tree canonization [18].

2 Preliminaries

A language Q over an alphabet Σ is said to be fixed-parameter tractable with
respect to parameterization κ : Σ∗ → N, if it can be decided on input x in time
O(f(k)nc) where n = |x|, c is a fixed constant, k = κ(x) is the value of the
parameter and f is an arbitrary function.

The max-leaf-number of a graph G is the maximum number of leaves in a
spanning tree of G.

The tree-depth of a graph is defined recursively as follows:

Definition 1. Let G be a graph with connected components G1, ..., Gp. Then
the tree-depth of G, denoted td(G), is given by

td(G) =

⎧⎪⎪⎨⎪⎪⎩
1 if |V (G)| = 1
1 + min

v∈V (G)
td(G − v) if p = 1 and |V (G)| > 1

max
i=1...p

td(Gi) otherwise

⎫⎪⎪⎬⎪⎪⎭
For example, the tree-depth of a star is 2, and the tree-depth of the complete
graph Kn is n. In some sense tree-depth measures how close a graph is to a star.
Tree-depth occurs naturally in descriptive complexity, in which it was recently
shown that monadic second order logic and first order logic coincide on a class
of graphs C iff C has bounded tree-depth [7].

An alternative definition of tree-depth is also helpful for our results. The height
of a rooted tree T is the length of the longest path from the root to a leaf. The
closure of a rooted tree T , denoted clos(T), is the graph obtained by adding
edges from each vertex v to all vertices w which lie on a path from the root to
v. Then the tree-depth of a connected graph G is the minimum height of a tree
such that G is a subgraph of clos(T) [24].

Consider a connected graph G and a tree T over V (G) such that G is a
subgraph of clos(T). We will call such a tree T a tree-depth decomposition of G
if it obeys the following property: for every rooted subtree of T , the subgraph
of G induced by the subtree is connected. It can be easily shown that a graph
has tree-depth ≤ d iff it has a tree-depth decomposition of depth d. The root
of the decomposition is the root of the tree T . Note that if G is disconnected,
we define the tree-depth decomposition as a rooted forest consisting of the tree-
depth decompositions of its connected components.

220 A. Bouland, A. Dawar, and E. Kopczyński

Tree-depth is well-behaved with respect to the operation of taking minors.
Also, we can test if a graph has tree-depth d efficiently:

Claim 2. If H is a minor of G, then td(H) ≤ td(G) [24].

Claim 3. Given a graph G, we can find the tree-depth of G in time O(f(d)n2)
for some computable function f , where d = td(G) [23].

We note that the tree-depth of a graph gives a lower bound on the vertex cover
number of G. To see this, note that any graph of vertex cover number k has a
depth k+1 decomposition tree T taken as follows: Order the vertices of a minimal
vertex cover arbitrarily and place them in a path. At the bottom of the path,
attach all remaining nodes of the graph as leaves. This obeys E(G) ⊆ clos(T)
by the definition of vertex cover, so for any graph G, td(G) ≤ vcn(G) + 1.

Likewise, it can be easily shown that the path-width of a graph is a lower-
bound on its tree-depth [3]. So if GI were FPT when parameterized by path-width,
then it would trivially also be FPT parameterized by tree-depth. However GI is
not known to be fixed-parameter tractable when parameterized by path-width.

3 Games

Suppose that G is a connected graph of tree-depth d. We will show that the
number of vertices in G which can serve as a root of a minimal tree-depth
decomposition is bounded as a function of d. In order to prove this result, we
will descibe yet another equivalent definition of tree-depth in terms of cops and
robbers games. Such games are frequently used in the context of logic and graph
isomorphism, e.g. [5]. The bound we obtain on the number of roots will play a
crucial role in our isomorphism algorithm.

3.1 A Characterization of Tree-Depth in Terms of
Cops-and-Robbers

We define a cops-and-robbers game in which the cops do not move once they
land on the graph. Thus, the number of moves in the game is limited by the
number of cops. We make this precise below.

Consider the following game played on a connected graph G = (V,E). The
game is played by two players, called Cop and Robber. The Cop player controls
d cops, and the Robber player controls one robber.

First, Robber places the robber on any vertex in G, and announces his po-
sition. Cop announces a position where he will place his next cop. In response,
the robber can move along a path in the graph to another position, including
the one announced by Cop, but he cannot move through positions previously
occupied by cops.

The Cop player wins if, at the end of the move, the robber is on the vertex
just occupied by a cop, and the Robber player wins if all d cops are on the graph
and the robber is still not caught. This game is known to capture tree-depth
[11][12] in the following way:

On Tractable Parameterizations of Graph Isomorphism 221

Claim 4. For a connected graph G, td(G) is equal to the least d for which the
Cop player has a winning strategy.

Proof. If td(G) = d, consider the following strategy for the Cop player: place the
first cop on the root r of the decomposition. Place the next cop on the root of
the depth d− 1 decomposition of the connected component of G− r containing
the robber. Repeat. Clearly this is a winning strategy for the Cop player with
d cops. On the other hand, given a winning strategy γ with d cops, construct a
decomposition by taking the root of each (sub)decomposition to be the position
played by γ if the robber is in that connected component. Since γ uses d cops,
the depth of the resulting tree T is at most d, and we will have E ⊆ clos(T)
because γ is a winning strategy. ��

Hence a vertex v is a root of a tree-depth decomposition of minimal depth iff
the Cop player has a winning strategy using td(G) cops which places the first
cop at v. Let root(G) be the set of all roots. In the rest of this section we
will provide a self-contained proof that |root(G)| is bounded by a function of
d = td(G). As pointed out by an anonymous referee, this fact also follows easily
from a recent paper by Dvor̆ák, Giannopoulou and Thilikos [6]. These authors
showed that the class Cd = {G : td(G) ≤ d} is characterized by a finite set of

forbidden subgraphs, each with at most 22
d−1

vertices. Now consider a graph
G of tree-depth d. Since G /∈ Cd−1, there exists a subgraph H of G containing

at most 22
d−2

vertices with td(H) = d. If γ is a winning strategy for Cop on
G using at most d cops, then γ must make its first move in H . Indeed, if γ
makes its first move outside of H , then the robber player can move into H ,
and subsequently play an optimal Robber strategy for H , forcing γ to use d+1

cops to win. Therefore root(G) ⊆ H , so |root(G)| ≤ 22
d−2

. We conjecture that
|root(G)| = 2O(d), but for our purposes it is enough to show that it is bounded.

3.2 Components and Isomorphisms

Consider the state of the game after k rounds of play. Let B be the set of k
vertices occupied by cops so far.

We say that C ⊆ V is a component of V −B if there are no edges between C
and V −C−B, i.e., the Cops have blocked all exit routes from C. We say that two
components C1 and C2 are isomorphic iff there is a bijection φ : C1∪B → C2∪B
such that φ(b) = b for b ∈ B, and E(v1, v2) iff E(φ(v1), φ(v2)).

3.3 Counting Components

We will show that for a connected graph G, td(G) and root(G) are unaffected by
removing “extra” copies of isomorphic components which arise in the course of
the game. This will be the key fact which allows us to bound the size of root(G)
as a function of the tree-depth.

222 A. Bouland, A. Dawar, and E. Kopczyński

Lemma 5. Let G be a connected graph with td(G) = d. Let B ⊆ V be a set
of k vertices, and let C1, C2, . . . , Cu be isomorphic components of V −B, where
u ≥ d+ 1. Let G′ be the graph obtained from G by removing all the components
Ci for i > d+ 1. Then td(G) = td(G′) and root(G) = root(G′).

Proof. Without loss of generality we can assume that for each b ∈ B there is an
edge between b and Ci.

Let ρ be a Robber strategy which forces Cop to use d cops. We will construct
a Robber strategy ρ′ based on ρ which forces the Cop player to use at least d
cops on G′. This will show td(G′) ≥ d. Since G′ is a subgraph of G, td(G′) ≤ d,
so this will show the tree-depth is unaffected by removing the extra copies of
isomorphic components.

Let γ′′ be a Cop strategy on G′. We will play γ′′ against ρ′, and construct ρ′

to force γ′′ to use d cops.
We start by having ρ′ place the robber on an arbitrary vertex of the graph

(it does not matter since the graph is connected). Then we construct ρ′ in two
stages. The basic idea is to mirror the strategy ρ as closely as possible. We will
only have to change the strategy if γ′′ plays in a Ci for i ≥ d + 1 (because we
deleted these vertices), or once B has been filled with cops.

The first stage begins, and ends iff cops have been placed on all vertices of B,
and the robber has moved to a Ci. This ensures that throughout this stage, the
robber can move between all copies of Ci in G′ which do not contain cops. We
now have ρ′ play the same move that ρ would play in G, unless ρ plays in a Ci

for i ≥ d+ 1. If this occurs, we mimic the response of ρ via the isomorphism in
one of the copies of Ci in G′ which currently does not contain any cops. Since
any Cop player on G can place cops in at most d copies of Ci, and we have kept
d copies of the Ci in G′, we will never run out of copies to mirror this strategy.

If γ′′ never exits the first stage, it must use at least d cops to win. Indeed if
the robber is connected to the Ci’s which contain no cops, the robber can always
move between these Ci’s via B, so γ′′ loses. If the robber is confined outside the
Ci’s, γ

′′ must use at least d cops because ρ′ is identical to ρ once it is confined
outside the Ci’s.

If γ′′ does place cops on all of B, with the robber confined to a Ci, we proceed
to the second stage. In this stage we simply directly copy the behavior of ρ on an
isomorphic copy of Ci as before. We can easily see that ρ′ forces the Cop player
to use d cops, and hence td(G) = td(G′).

Now to show root(G) = root(G′), consider any winning Cop strategy γ′ in-
duced by a winning strategy γ on G. If γ makes its first move on a Ci, then we
could remove this Ci in constructing G′ to create a winning strategy for the Cop
player on G′ using d− 1 cops, which is a contradiction. Hence root(G) must be
disjoint with Ci for all i. Therefore γ must place its first cop outside all Ci, and
so does γ′. Therefore root(G) ⊆ root(G′). We can likewise reverse this entire ar-
gument by considering adding copies of isomorphic components to G′ to obtain
a larger graph G, assuming G′ has at least d copies of the component already.
By constructing the Cop and Robber strategies for G based on the strategies for
G′, we can see that root(G′) ⊆ root(G). Thus root(G) = root(G′). ��

On Tractable Parameterizations of Graph Isomorphism 223

3.4 Measuring Components

Let G be an arbitrary graph. As long as we can find a set B ⊆ V (G) such that
the graph G − B contains more than d+ 1 isomorphic components, we remove
the extra components by Lemma 5. Ultimately we obtain a minimal graph G′

where each component appears at most d + 1 times. From Lemma 5 we know
that root(G′) = root(G). Thus, we have only to show that |root(G)| is bounded
for minimal graphs.

Let γ be winning a strategy for the Cop player which uses at most d cops,
and let ρ be any robber strategy. The the following holds.

Lemma 6. Let G be a connected graph which is minimal as described in Lemma
5. Let B be the set of vertices blocked by cops after i rounds of play between any
such γ and ρ. Then there exists a function f such that the component of G−B
containting the robber consists of at most f(d, i) vertices.

Proof. The proof follows by reverse induction on i. For i = d we know that
Robber has been caught, so f(d, d) = 0.

For i < d, let v be the vertex where γ puts its next cop. Let B′ = B∪{v}. From
the inductive assumption we know that each component of V − B′ has size at

most s = f(d, i+1). Up to isomorphism there are at most S = 2(
s
2)(i+1) possible

components of size s. Since the graph G is minimal, each of them appears at
most d+ 1 times. Thus, f(d, i) ≤ 1 + (d+ 1)S. ��

Thus, a minimal graph of tree-depth d has at most f(d, 0) vertices, and we have
proven the following lemma:

Lemma 7. If a connected graph G has tree-depth d, then the number of roots
of tree-depth decompositions of G of minimal depth is at most f(d) for some
function of d.

4 Isomorphism Algorithm

We will now create an algorithm which shows that graph isomorphism param-
eterized by tree-depth is in FPT. The basic idea is to extend the logspace al-
gorithm for tree isomorphism developed by Lindell [18] to test for isomorphism
over tree-depth decompositions.

Lindell’s algorithm works by establishing an ordering< on the set of connected
trees [18]. In his algorithm, two trees S and T obey S < T if

1. |S| < |T |, where |S| denotes the number of nodes in S.
2. |S| = |T | and #s < #t, where #s is the number of children of the root of S
3. |S| = |T |, #s = #t = k and (S1, S2, ..., Sk) < (T1, T2, ..., Tk) lexicographi-

cally, where we inductively assume that S1 ≤ S2 ≤ ... ≤ Sk and T1 ≤ T2 ≤
... ≤ Tk are the ordered subtrees of S and T obtained by removing the roots
of S and T .

Clearly S ∼= T iff neither S < T nor T < S [18].

224 A. Bouland, A. Dawar, and E. Kopczyński

We will extend this ordering on trees to an ordering of the tree-depth decompo-
sitions. To test for isomorphism, we will find a minimal, canonical decomposition
of each graph and compare the decompositions.

Recall that a tree-depth decomposition of a connected graph G consists of a
rooted tree T over V (G) such that E(G) ⊆ E(clos(T)). A tree-depth decompo-
sition also has the property that any induced subgraph of G obtained by the
vertices of a rooted subtree of T is connected.

We say that two decompositions T1 of G1 and T2 of G2 are equivalent, denoted
T1 , T2, if there is an isomorphism φ between T1 and T2 which preserves the
edges of the underlying graphs as well, i.e. both (u, v) ∈ E(T1) ⇔ (φ(u), φ(v)) ∈
E(T2) and (u, v) ∈ E(G1) ⇔ (φ(u), φ(v)) ∈ E(G2). In particular, T1 , T2

implies G1
∼= G2.

Suppose that we are given a connected graph G with td(G) = d. Given a
tree-depth decomposition T of G, define a sub tree-depth decomposition of a
graph G′ induced by a subtree of T ′ of T to consist of the following: the tree T ′

over V (G′) with root t′, as well as the path P from the parent of t′ to the root
of T . If td(G′) = d′, then P consists of vertices r = r1, r2, ...rd−d′ , where r is the
root of T and rd−d′ is the parent of t′ in T . See Figure 1 for clarification.

We inductively define an ordering of sub tree-depth decompositions of G as
follows. Let S and T be two depth d′ subdecompositions of GS and GT , respec-
tively, with roots s and t, respectively, and which share the same path P defined
above. Note S and T must share the same path P to be comparable. Also note
that when considering the entire graph, P is empty so this defines an ordering
on all tree-depth decompositions.

We say that the subdecomposition S of GS is less than the subdecomposition
T of GT , denoted S < T , if one of the following conditions is satisfied:

1. |GS | < |GT |
2. |GS | = |GT | and #s < #t, where #x is the number of connected components

in GX − x.
3. |GS | = |GT |, #s = #t, and (E(r1, s), E(r2, s), ..., E(rd−d′ , s)) <

(E(r1, t), E(r2, t), ..., E(rd−d′ , t)) lexicographically, where E(x, y) = 1 if
there is an edge from x to y and 0 otherwise. If d′ = d this condition is
trivially satisfied.

4. |GS | = |GT |, #s = #t, E(ri, s) = E(ri, t) ∀i = 1...(d − d′) and

(S1, S2, ..., Sk) < (T1, T2, ..., Tk)

lexicographically, where we inductively assume S1 ≤ S2 ≤ ... ≤ Sk and
T1 ≤ T2 ≤ ... ≤ Tk are the connected components of GS − s and GT − t,
ordered by their subdecompositions induced by S and T . (Here S ≤ T means
S < T or S , T).

This ordering has several nice properties. The following can be shown by simple
induction on the tree-depth:

On Tractable Parameterizations of Graph Isomorphism 225

Fig. 1. A sub-decomposition of G′ with root s and components S1...Sk of G′ − s

Claim 8. Suppose G and H are connected graphs, both of tree-depth d and the
same size. Let S be a minimal tree-depth decomposition of G and T a minimal
tree-depth decomposition of H according to the above ordering. Then if neither
S < T nor T < S, then S , T and G ∼= H.

By condition (4) of the ordering, we know that to find the minimal decomposition
ofG rooted at s, we simply need to find the minimal decompositions of each of the
connected components of G− s. This forms the basis of a recursive algorithm to
compute the minimum depth-d decomposition of a graph G, Algorithm 1. With
this in hand, we can show that Algorithm 2 correctly tests for isomorphism.

Algorithm 1. Recursive construction of a minimal tree-decomposition

Input: A connected graph G′ of tree-depth d′ along with a specified path
P = r1...rl.

Output: A sub tree-depth decomposition S of G′ of depth d′ which is minimal
with respect to < for P .

if td(G) = 1 then
Output the trivial decomposition of the graph.

else
Find R = {v ∈ V (G′) : td(G′ − v) = d− 1}.
Remove those elements r ∈ R which do not have minimal values of
(E(r1, r), E(r2, r), ..., E(rl, r)) or #r.
foreach r ∈ R do

Compute minimal decompositions of S1...Sk, the connected components
of G′ − r, using this algorithm and appending r path P .
Order S1...Sk by < using k log k comparisons.

end
Find which r ∈ R produces the decompositions (S1, ...Sk) which are minimal
in lexicographic order, and output the decomposition obtained by making
this the root of the decomposition.

end

226 A. Bouland, A. Dawar, and E. Kopczyński

Algorithm 2. An isomorphism algorithm parameterized by tree-depth

Input: Two graphs G and H .
Output: Whether or not G ∼= H .
Check that td(G) = td(H) = d, if not output that G and H are not isomorphic.
Compute S, a minimal decomposition of G , and T , a minimal decomposition of
H using Algorithm 1 with an empty P .
If neither S < T nor T < S, output G ∼= H .
Else output that G and H are not isomorphic.

Claim 9. If G ∼= H are connected graphs, then the decompositions produced by
Algorithm 1 on G and H are isomorphic.

Proof. Follows because all steps in Algorithm 1 are isomorphism invariant. ��

Corollary 10. Algorithm 2 correctly tests for isomorphism over connected
graphs.

Theorem 11. Graph isomorphism is fixed-parameter tractable in tree-depth.

Proof. We will upper bound T (n, d), the runtime of Algorithm 1 on a connected
graph G with n vertices and tree-depth d.

By Claim 3 we can check if td(G) = d − 1 in time f(d − 1)n2, so finding
R = {v ∈ V (G′) : td(G′ − v) = d− 1} can be done in time f(d)n3.

Next we reduce the size of R to only those vertices with minimal #r. For each
r, computing #r can be done in time Σi=1...#rO(|Si|2) ≤ O(n2). Hence this step
takes time O(g(d)n2), since by Lemma 7 |R| ≤ g(d).

Now the algorithm recurses. By Lemma 7 it will recurse on at most g(d)
different roots. For each of these roots r, if k = #r then it will compute a
decomposition of each of the connected components S1...Sk of G− r, which will
take time ≤ Σk

i=1T (|Si|, d− 1). To order these decompositions by <, it will then
make k log k comparisons of the decompositions using <, each of which takes
time O(n2), and subsequently make g(d)k comparisons in time g(d)kn2 between
these sorted decompositions to find which of the g(d) roots is minimal.

This yields a recursion relation for the run time given by

T (n, d) ≤ f(d)n3 + g(d)n2 + g(d)

{(
k∑

i=1

T (|Si|, d− 1)

)
+ O(k log kn2)

}
(1)

One can easily check that a run time of T (n, d) = h(d)n3 log(n) suffices. Plugging
this ansatz into the recursion relation, and simplifying using the convexity of
n3 log(n) and the fact that k ≤ n, one can see that

T (n, d) ≤ (f(d) + g(d))n3 log(n) + g(d)
{
h(d − 1)n3 log(n) +O(n3 log(n))

}
(2)

Taking h(d) = f(d) + g(d) (h(d − 1) +O(1)), we have T (n, d) ≤ h(d)n3 log(n).
By setting h(0) = 1, this provides an inductive definition of h as a function.

On Tractable Parameterizations of Graph Isomorphism 227

Therefore Algorithm 1 runs in time O(h(d)n3 log(n)). Since checking if two
decompositions are equivalent takes O(n2) time (assuming the orderings of the
sub-decompositions of each level are recorded), Algorithm 2 correctly decides
isomorphism over connected graphs in time O(h(d)n3 log(n)). This algorithm
extends easily to disconnected graphs by the convexity of n3. ��

5 Generalized Tree-Depth

We will now define a new parameter which generalizes both tree-depth and max-
leaf-number. Recall that the max-leaf-number of a graph G, denoted mln(G), is
the maximum number of leaves in a spanning tree of G. A crucial fact is that
if mln(G) = k, then the number of vertices of degree �= 2 in G is bounded by a
function of k. This can be easily used to show that graph isomorphism is fixed-
parameter tractable in max-leaf-number, by simply trying all bijections between
vertices of degree �= 2 and noting that all other vertices lie on simple paths.

Claim 12 (From Kleitman and West [16] via [9]). If G is a graph with
mln(G) ≤ k, then G is a subdivision of a graph H with at most 4k− 2 vertices.

Low max-leaf-number means that the graph becomes a collection of paths after
removing a small number of vertices. Low tree-depth, on the other hand, means
that the graph quickly degenerates to an empty set after alternately removing
vertices and considering disjoint components separately. Following the example
of max-leaf number, we can generalize tree-depth by allowing a broader class
of graphs as leftovers at the end of k-cops and robbers game. Previously, we
said that the Cop player wins the game if a cop lands on the robber. Consider a
modified version of the game, in which Cop wins if the robber is confined to either
a simple path with cops at both endpoints or a simple cycle. The endpoints of
this path (which must be occupied by cops) may be connected to other vertices
of the graph, but the other points of the path may not have any edges to the
rest of the graph. To win by confining the robber to a cycle, the cycle must be
disconnected from the rest of the graph.

Definition 13. A graph G has generalized tree-depth d, denoted gtd(G) = d,
iff d is the least k such the Cop player has a winning strategy in the modified
k-cops and robber game described above.

It is clear that the generalized tree-depth of a graph is a lower bound on its tree-
depth, since a single vertex is a simple path of length zero. Furthermore, this
parameter bounds from below the max-leaf-number, because the Cop player has
a winning strategy using 4mln(G)−2 cops by placing places cops on all vertices of
degree �= 2. Therefore for any graph G, gtd(G) ≤ 4mln(G) and gtd(G) ≤ td(G),
so this parameter generalizes both tree-depth and max-leaf-number.

We can now extend our arguments from the previous sections to show that
graph isomorphism is fixed-parameter tractable in the generalized tree-depth.
First, note that having generalized tree-depth d is equivalent to having a tree-
depth decomposition of depth d as before, except that the leaves of the tree

228 A. Bouland, A. Dawar, and E. Kopczyński

can now consist of simple paths. The simple cycles, being disconnected from the
graph, are omitted from the decomposition and are handled separately later.
The endpoints of the path in each leaf are specified in the decomposition. By
the same arguments as in [24], Cd = {G : gtd(G) ≤ d} is closed under taking
minors for d ≥ 2, while C0 and C1 have trivial poly-time membership tests,
yielding a (non-constructive) FPT algorithm to compute generalized tree-depth
in time O(f(d)n3) by the Robertson-Seymour Theorem [26][19].

Next, note that our arguments bounding the number of roots of a decompo-
sition also carry through. When counting the number of vertices in each com-
ponent, we count only the endpoints of the paths in the leaves, since only these
vertices can connect to the rest of the graph. These specified endpoints are con-
sidered the roots of the leaf’s decomposition. This ensures that the base case of
Lemma 6 is still bounded above by two. We again obtain that the number of
roots of a graph of generalized tree-depth d is bounded by a function g(d). The
fact that we handle simple cycles separately is crucial to keeping this bound.

We can likewise extend Lindell’s tree isomorphism algorithm to an FPT algo-
rithm for generalized tree-depth exactly as before. To do so, we simply modify
our ordering on decompositions to take in to account the number of nodes in
the path of each leaf, and handle the simple cycles separately. This yields an
algorithm to test for isomorphism in O(h(d)n4) time, where d is the generalized
tree-depth and h(d) is a function which is not necessarily computable, as we
have used the Robertson-Seymour theorem. We have thus shown:

Theorem 14. GI is fixed-parameter tractable in generalized tree-depth.

6 Conclusion

We have shown that graph isomorphism is fixed-parameter tractable when pa-
rameterized by generalized tree-depth. An open question is whether or not GI is
FPT in the path-width of the graph. Unlike in the case of tree-depth, the number
of valid path-width decompositions of a graph is exponential in the number of
vertices, so our approach does not immediately generalize.

Acknowledgments. Research by Adam Bouland was partially supported by
the NSF Graduate Research Fellowship under grant no. 1122374 and by a Mar-
shall Scholarship. Research by Anuj Dawar was partially supported by EPSRC
grant EP/H026835. Research by Eryk Kopczyński was partially supported by
ESF Research Networking Programme GAMES and by the Polish National Sci-
ence Centre (grant N N206 567140).

References

1. Arvind, V., Das, B., Johannes, K., Toda, S.: Colored Hypergraph Isomorphism is
Fixed Parameter Tractable. In: ECCC 93 (2009)

2. Babai, L.: Monte-Carlo algorithms in graph isomorphism testing. Tech. Rep. DMS
79-10, Université de Montréal, pp. 1–33 (1979)

On Tractable Parameterizations of Graph Isomorphism 229

3. Bodlaender, H., Hafsteinsson, H., Gilbert, J.R., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18,
238–255 (1995)

4. Bodlaender, H.L.: Polynomial Algorithms for Graph lsomorphism and Chromatic
Index on Partial k-Trees. Journal of Algorithms 11(4), 631–643 (1990)

5. Cai, J.-Y., Fürer, M., Immerman, N.: An Optimal Lower Bound on the Number
of Variables for Graph Identification. Combinatorica 12(4), 389–410 (1992)

6. Dvořák, Z., Giannopoulou, A., Thilikos, D.M.: Forbidden graphs for tree-depth.
European Journal of Combinatorics 33(5), 969–979 (2012)

7. Elberfeld, M., Grohe, M.: Where First-Order and Monadic Second-Order Logic
Coincide. Arxiv preprint arXiv:1204.6291, pp. 1–15 (2012)

8. Evdokimov, S., Ponomarenko, I.: Isomorphism of Coloured Graphs with Slowly
Increasing Multiplicity of Jordan Blocks. Combinatorica 19(3), 321–333 (1999)

9. Fellows, M., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F., Saurabh, S.:
The Complexity Ecology of Parameters: An Illustration Using Bounded Max Leaf
Number. Theory of Computing Systems 45(4), 822–848 (2009)

10. Furst, M., Hopcroft, J.: Luks: Polynomial-time algorithms for permutation groups.
In: Proc. FOCS 1980, pp. 36–41 (1980)

11. Ganian, R., Hliněný, P., Kneis, J., Langer, A., Obdržálek, J., Rossmanith, P.: On
Digraph Width Measures in Parameterized Algorithmics. In: Chen, J., Fomin, F.V.
(eds.) IWPEC 2009. LNCS, vol. 5917, pp. 185–197. Springer, Heidelberg (2009)

12. Giannopoulou, A., Hunter, P., Thilikos, D.: LIFO-search: A min-max theorem and
a searching game for cycle-rank and tree-depth. Submitted to J. Discrete Math.
(2011)

13. Grohe, M., Marx, D.: Structure Theorem and Isomorphism Test for Graphs with
Excluded Topological Subgraphs. In: Proc. STOC 2012, pp. 173–192 (2012)

14. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded
minors. In: Proc. LICS 2010, pp. 179–188 (2010)

15. Heath, M., Ng, E., Peyton, B.: Parallel algorithms for sparse linear systems. SIAM
Review 33(3), 420–460 (1991)

16. Kleitman, D., West, D.: Spanning Trees with Many Leaves. SIAM J. Discrete
Math. 4, 99–106 (1991)

17. Kratsch, S., Schweitzer, P.: Isomorphism for Graphs of Bounded Feedback Ver-
tex Set Number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81–92.
Springer, Heidelberg (2010)

18. Lindell, S.: A logspace algorithm for tree canonization. In: Proc. STOC 1992, pp.
400–404 (1992)

19. Lovász, L.: Graph minor theory. Bulletin of the AMS 43(1), 75–86 (2006)
20. Luks, E.: Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer and System Sciences (1982)
21. Manne, F.: An Algorithm for Computing an Elimination Tree of Minimum Height

for a Tree. Tech. Rep. CS-91-59, University of Bergen, Norway (1992)
22. Miller, G.: Isomorphism testing for graphs of bounded genus. In: Proc. STOC 1980,

pp. 225–235 (1980)
23. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures and Algorithms.

Algorithms and Combinatorics, vol. 28. Springer (2012)
24. Nešetřil, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomor-

phism bounds. European Journal of Combinatorics 27(6), 1022–1041 (2006)

230 A. Bouland, A. Dawar, and E. Kopczyński

25. Ponomarenko, I.: The isomorphism problem for classes of graphs that are invari-
ant with respect to contraction. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
Steklov (LOMI) 174, 147–177 (1988) (Russian)

26. Robertson, N., Seymour, P.: Graph minors XX. Wagners conjecture. Journal of
Combinatorial Theory, Series B 92, 325–357 (2004)

27. Toda, S.: Computing automorphism groups of chordal graphs whose simplicial
components are of small size. IEICE Transactions on Information and Systems E89-
D(8), 2388–2401 (2006)

28. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for
Graphs of Bounded Distance Width. Algorithmica 24(2), 105–127 (1999)

Parameterized Algorithmics and Computational

Experiments for Finding 2-Clubs

Sepp Hartung, Christian Komusiewicz, and André Nichterlein

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin,
Berlin, Germany

{sepp.hartung,christian.komusiewicz,andre.nichterlein}@tu-berlin.de

Abstract. Given an undirected graph G = (V,E) and an integer � ≥
1, the NP-hard 2-Club problem asks for a vertex set S ⊆ V of size
at least � such that the subgraph induced by S has diameter at most
two. In this work, we extend previous parameterized complexity studies
for 2-Club. On the positive side, we give polynomial kernels for the
parameters “feedback edge set size of G” and “size of a cluster editing
set of G” and present a direct combinatorial algorithm for the parameter
“treewidth of G”. On the negative side, we first show that unless NP ⊆
coNP/poly, 2-Club does not admit a polynomial kernel with respect
to the “size of a vertex cover of G”. Next, we show that, under the
strong exponential time hypothesis, a previous O∗(2|V |−�) search tree
algorithm [Schäfer et al., Optim. Lett. 2012] cannot be improved and
that, unless NP ⊆ coNP/poly, there is no polynomial kernel for the dual
parameter |V |−�. Finally, we show that, in spite of this lower bound, the
search tree algorithm for the dual parameter |V | − � can be tuned into
an efficient exact algorithm for 2-Club that substantially outperforms
previous implementations.

1 Introduction

Finding cohesive subnetworks in a network is an important task in graph-based
data mining and social network analysis. The natural cohesiveness requirement is
to demand that the subnetwork is a complete graph, that is, a clique. However,
this requirement is often too restrictive and thus relaxed versions such as s-
cliques [1], s-plexes [22], and s-clubs [17] have been proposed. An s-club is a graph
with diameter at most s, and s-clubs are thus a distance-based relaxation of
cliques (which are exactly the graphs of diameter 1). For a constant integer s ≥ 1,
the problem of finding large s-clubs is defined as follows.

s-Club

Input: An undirected graph G = (V,E) and an integer 	 ≥ 1.
Question: Is there a vertex set S ⊆ V of size at least 	 such that G[S]
has diameter at most s?

Clearly, 1-Club is equivalent to the well-known Clique problem. In this work,
we consider 2-Club, the most basic variant of s-Club that is different from

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 231–241, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

232 S. Hartung, C. Komusiewicz, and A. Nichterlein

Clique. Furthermore, 2-Club is also an important special case concerning the
applications: For biological networks, 2-clubs and 3-clubs have been identified as
the most reasonable diameter-relaxations of Clique [19], further applications of
2-Club arise in the analysis of social networks [16]. Consequently, experimental
evaluations concentrate on finding 2-clubs and 3-clubs [5, 6, 15].

Related Work. For all s ≥ 1, s-Club is NP-complete on graphs of diameter
s+1 [3]; 2-Club is NP-complete even on split graphs and, thus, also on chordal
graphs [3]. For all s ≥ 1, s-Club is NP-hard to approximate within a factor of
n

1/2−ε [2]; a simple approximation algorithm obtains a factor of n
1/2 for even s ≥ 2

and a factor of n2/3 for odd s ≥ 3 [2]. Several heuristics [5] and integer linear
programming formulations [3, 5] for s-Club have been proposed and experimen-
tally evaluated [15]. 1-Club is equivalent to Clique and thus W[1]-hard with
respect to 	. In contrast, for s ≥ 2, s-Club is fixed-parameter tractable with
respect to 	 [6, 20, 21]. s-Club can be solved in O∗(2n−�) time by a search tree
algorithm [6, 20, 21]1. s-Club can be formulated in monadic second order logic
and thus is fixed-parameter tractable with respect to the treewidth of G [21].
Moreover, s-Club does not admit a polynomial kernel with respect to 	 (unless
NP ⊆ coNP/poly), but a so-called Turing-kernel with at most k2 vertices for
even s and at most k3 vertices for odd s [20]. 2-Club is solvable in polynomial
time on bipartite graphs, on trees, and on interval graphs [21].

Our Contribution. We make progress towards a systematic classification of the
complexity of 2-Club with respect to structural parameters of the input graph.
In Section 2, we give an O(k2)-vertex kernel for the parameter “size of a cluster
editing set” and an O(k)-size kernel for the parameter “feedback edge set size”.
The kernelization results for these rather large parameters are motivated by our
negative results: We show that 2-Club does not admit a polynomial kernel
with respect to the size of a vertex cover of the underlying graph, unless NP ⊆
coNP/poly. This excludes polynomial kernels for many prominent structural
parameters such as “feedback vertex set size”, pathwidth, and treewidth. In
Section 3, we give a direct combinatorial algorithm solving 2-Club in 2O(2ω)n2

time on graphs of treewidth ω. Notably, up to a constant in the exponent, this
is also the current best running time for the parameter vertex cover size (which
we present in Theorem 4). In Section 4, we study s-Club, s ≥ 2, parameterized
by the dual parameter k′ := n− 	. We prove that unless the Strong Exponential
Time Hypothesis (SETH)2 fails, s-Club cannot be solved in O∗((2 − ε)k

′
) time

for all ε > 0. This is evidence that the previous search tree algorithm [20] is

1 Schäfer et al. [20] actually considered finding an s-club of size exactly �. The claimed
fixed-parameter tractability with respect to n−� however only holds for the problem
of finding an s-club of size at least �. The other fixed-parameter tractability results
hold for both variants.

2 The SETH fails if the satisfiability problem for boolean formulas in conjunctive
normal form, the so-called Cnf-Sat problem, is solvable in O∗((2 − ε)n) time for
some ε > 0 where n denotes the number of variables; a recent survey on the (S)ETH
is given by Lokshtanov et al. [14].

Parameterized Algorithmics and Computational Experiments 233

optimal with respect to the parameter k′. Moreover, the presented reduction
also implies that s-Club does not admit a polynomial kernel with respect to k′

unless NP ⊆ coNP/poly.
Having explored the limits of parameterized algorithmics for the dual param-

eter k′ on the theoretical side, in Section 5 we examine its usefulness for solving
2-Club in practice. To this end, we implemented the search tree strategy for
the dual parameter together with data reduction rules that are partially deduced
from our findings in Section 2. We show that our implementation outperforms all
previously implemented exact algorithms for 2-Club on random and on large-
scale real world graphs. Especially on large graphs the concept of Turing ker-
nelization turns out to be the most efficient technique in our “parameterized
toolbox”.

Preliminaries. We only consider undirected and simple graphs G = (V,E)
where n := |V | and m := |E|. For a vertex set S ⊆ V , let G[S] denote
the subgraph induced by S and G − S := G[V \ S]. We use distG(u, v) to
denote the distance between u and v in G, that is, the length of a shortest
path between u and v. For a vertex v ∈ V and an integer t ≥ 1, denote
by Nt(v) := {u ∈ V \ {v} | dist(u, v) ≤ t} the set of vertices within dis-
tance at most t to v. Moreover, set Nt[v] := Nt(v) ∪ {v}, N [v] := N1[v], and
N(v) := N1(v). Two vertices v and w are twins if N(v)\{w} = N(w)\{v}. The
following simple observation will be used throughout this work.

Observation 1. Let S be an s-club in a graph G = (V,E) and let u, v ∈ V be
twins. If u ∈ S and |S| > 1, then S ∪ {v} is also an s-club in G.

For the relevant notions of parameterized complexity refer to [9, 10, 18]. A
more recent concept not presented in these monographs is Turing kerneliza-
tion. Roughly speaking, in Turing kernelization one creates polynomially many
problem kernels instead of one problem kernel. Then, the solution to the param-
eterized problem can be computed by solving the problem separately on each
of these problem kernels. Throughout this work, we assume that, unless stated
otherwise, the structural parameter under consideration is provided as an addi-
tional input of the 2-Club instance. Due to the space restrictions, most of the
proofs are deferred to a long version of this article.

2 Kernelization Algorithms and Lower Bounds

In this section, we provide polynomial-size problem kernels for 2-Club param-
eterized by “cluster editing set size” and “feedback edge set size”, respectively.
While these parameters can often be rather large, we show that for the (also rel-
atively large) parameter “vertex cover size of G”, there exists no polynomial-size
problem kernel (unless NP ⊆ coNP/poly).

234 S. Hartung, C. Komusiewicz, and A. Nichterlein

A Quadratic-Vertex Kernel for the Parameter Cluster Editing Set Size. A clus-
ter editing set of G is a set of edge additions and deletions that transforms G
into a vertex-disjoint union of cliques. Let G = (V,E), an integer 	, and a cluster
editing set D be an instance of 2-Club; the parameter is k := |D|. Denote by
V (D) the set of all endpoints of the edges in D and observe that G− V (D) is a
cluster graph. The following rules yield an O(k2)-vertex kernel for 2-Club. The
first reduction rule is obvious.

Rule 1. If there is a cluster C in G − V (D) with |C| ≥ 	, then reduce to a
trivial yes-instance.

It follows that any 2-club of size at least 	 has a nonempty intersection with V (D),
implying the correctness of the following data reduction rule.

Rule 2. If there is a cluster C in G − V (D) such that N(v) ∩ V (D) = ∅ for
all v ∈ C, then delete C.

After exhaustive application of Rule 2, at most |V (D)| ≤ 2k clusters remain in
G− V (D). Since Rule 1 has been applied, each cluster in G− V (D) has size at
most 	−1. Hence, if 	 ≤ 2k+1, then there are at most 4k2+2k vertices left and
we are done. Now, consider the case where 	 > 2k + 1. To bound the size of the
clusters in G − V (D) we use the following observation. Its correctness follows
from the fact that two vertices in different clusters of G−V (D) are not adjacent
and have no common neighbor.

Observation 2. For every 2-club S in G there is at most one cluster C in
G − V (D) such that S has a nonempty intersection with C.

Observation 2 implies that every 2-club of size at least 	 contains at least 	 − 2k
vertices from exactly one cluster C of G−V (D). Since all vertices in C are twins,
Observation 1 now implies that in an inclusion-maximal 2-club either all or no
vertices from C or are contained. Hence, for 	 > 2k+1 decreasing 	 and the size
of each cluster C by 	 − 2k − 1 produces an equivalent instance. This leads to
the following data reduction rule.

Rule 3. Delete 	− 2k− 1 arbitrary vertices in each cluster C of G−V (D) and
set 	 := 2k + 1.

Note that in case |C| ≤ l − 2k − 1 we simply delete all vertices of C. After ex-
haustive application of Rule 3 for each cluster C it holds that 1 ≤ |C| < 2k + 1.
Thus, we arrive at the following.

Theorem 1. 2-Club parameterized by the cluster editing set size k admits an
O(k2)-vertex kernel that can be computed in O(n +m) time.

A Linear Kernel for the Parameter Feedback Edge Set Size. A feedback edge
set of a graph is an edge set whose deletion leads to a forest. Let F ⊂ E be a
feedback edge set for G = (V,E). Furthermore, let T := (V,E \ F) be the forest
obtained by deleting F from G. The correctness of the first data reduction rule
follows from the fact that for each vertex v the set N [v] is a 2-club.

Parameterized Algorithmics and Computational Experiments 235

Rule 4. If there is a vertex v ∈ V with |N [v]| ≥ 	, then reduce to a trivial
yes-instance.

In the following, we exploit that after application of Rule 4 all 2-clubs of size at
least 	 have to “use” feedback edges. The next rule removes all vertices that are
not on paths between the endpoints between feedback edges. These vertices are
defined as follows.

Definition 1. For a feedback edge {u, v} ∈ F the path P{u,v} between u and v
in T is called feedback edge path. If a vertex w lies on the path P{u,v}, then the
edge {u, v} is a spanning feedback edge of w.

Rule 5. Let (G,) be reduced with respect to Rule 4. Then, delete all vertices
that do not lie on any feedback edge path.

The final rule removes vertices that are too far away from feedback edges.

Rule 6. If there is a vertex v that has in G distance at least three to at least
one endpoint of every spanning feedback edge, then remove v.

Applying these data reduction rules exhaustively results in a linear kernel:

Theorem 2. The 2-Club problem parameterized by the size k of a feedback
edge set admits a kernel of size 6k that can be computed in O(n4) time.

A Kernelization Lower Bound for the Parameter Vertex Cover. We next show
that 2-Club does not admit a polynomial kernel with respect to the parameter
vertex cover size. This result implies that 2-Club does not admit a polynomial
kernel for many structural graph parameters such as feedback vertex set number
or treewidth.

Theorem 3. 2-Club parameterized by vertex cover has no polynomial kernel
unless NP ⊆ coNP/poly.

3 Fixed-Parameter Tractability with Respect to
Treewidth

In this section, we show that 2-Club is fixed-parameter tractable when param-
eterized by treewidth. To demonstrate the principle idea behind the algorithm,
we first describe a fixed-parameter algorithm for the parameter vertex cover.

Theorem 4. s-Club is solvable in O(2k · 22k · nm) time where k denotes the
size of a vertex cover.

Extending the ideas behind Theorem 4, we now give a direct combinatorial al-
gorithm for the parameter treewidth which uses the following lemma.

Lemma 1. Let G be a graph and let S be a 2-club in G. Then, for any tree-
decomposition of G there is at least one vertex v ∈ S such that there is a bag
that contains N [v] ∩ S.

236 S. Hartung, C. Komusiewicz, and A. Nichterlein

Proof. Let T = (X1∪ . . .∪Xr, E) be a tree-decomposition of G. Fix an arbitrary
vertex u ∈ S and denote by Xu any bag in T that contains u. Now, choose a
vertex w ∈ S such that the length of the path from Xu to the first bag that
contains w is maximum. Denote this bag by Xw. We show that N(w)∩S ⊆ Xw.
Suppose there is a neighbor v ∈ N(w) ∩ S that is not contained in Xw. Since v
and w are adjacent and thus are together contained in at least one bag, v is not
contained in any bag on the path between Xu and Xw. This implies that the
path from Xu to the first bag that contains v is longer than the path between
Xu and Xw; a contradiction to the choice of w. ��

Theorem 5. 2-Club is solvable in 2O(2ω)·n2 time where ω denotes the treewidth.

4 Optimality of Dual Parameter Algorithm

In this section, we prove algorithmic lower bounds for s-Club when parameter-
ized by the dual parameter k′ := n − 	. We first show that there is a reduction
from Cnf-Sat to s-Club with certain properties that allows to infer these lower
bounds.

Lemma 2. There is a parameterized reduction from Cnf-Sat to s-Club where
the dual parameter in the constructed s-Club instance is equal to the number
of variables in the boolean formula of the Cnf-Sat instance.

Denoting the number of variables in a boolean formula by n, the Strong Expo-
nential Time Hypothesis (SETH) fails if Cnf-Sat can be solved in O∗((2− ε)n)
time for some ε > 0 [13]. Thus, by Lemma 2 an algorithm for s-Club running
in O∗((2 − ε)k

′
) time for some ε > 0 would disprove the SETH. This bound is

tight since s-Club can be solved in O∗(2k
′
) time [20].

Corollary 1. Unless the SETH fails, s-Club parameterized by the dual param-
eter k′ := n − 	 cannot be solved in O∗((2 − ε)k

′
) time for all s ≥ 2.

Chen et al. [7] showed that Cnf-Sat does not admit a polynomial kernel un-
less coNP ⊆ NP/poly. Since Lemma 2 provides a polynomial time and parameter
transformation [4] this lower bound result transfers to 2-Club.

Corollary 2. s-Club parameterized by the dual parameter k′ does not admit a
polynomial problem kernel unless coNP ⊆ NP/poly.

5 Implementation and Experiments

Search Tree. We implemented the following search tree strategy to find a max-
imum 2-club S in a given graph G = (V,E): If G is not a 2-club, then find a
vertex v ∈ V such that |N2(v)| is minimum among all vertices. Then, branch
into the cases to either delete v from G or to mark v to be contained in S and
subsequently delete all vertices in V \ N2[v]. During branching we maintain a

Parameterized Algorithmics and Computational Experiments 237

lower bound, that is, the size 	′ of a largest 2-club found so far; this lower bound
is initialized by the maximum degree plus one. Branching is aborted if the cur-
rent graph has less than 	′ vertices. After exploring all branches, we output the
current lower bound (along with a 2-club of this size).

The above search tree strategy was introduced by Bourjolly et al. [5] and
has been already experimentally evaluated [6]. By simple recursion analysis the
running time can be bounded by O∗(αn) where α is the golden ratio with α ≈
1.62 [6]. Schäfer et al. [20] showed that for the dual size parameter k′ this search
tree strategy runs in O∗(2k

′
) time (if branching is aborted if more than k′ vertices

have been removed). Note that by Corollary 1, the search tree size measured
by k′ cannot be improved unless the SETH fails.

Turing Kernelization. Before starting the search tree algorithm, we use the
Turing kernelization introduced by Schäfer et al. [20]. That is, we compute the
Turing kernels consisting of N2[v] for all vertices v of the input graph.3 We say
N2[v] is the Turing kernel for vertex v. Then, as long as at least one Turing
kernel is left, we apply the search tree algorithm to the smallest one, say the one
for vertex v, to find the largest 2-club in the Turing kernel of v that contains v.
Afterwards, we delete v in all other Turing kernels. The maximum 2-club found
during this iteration is the output. Note that this is indeed equivalent to what the
search tree algorithm does: In one case v is contained in the maximum 2-club S
and thus S ⊆ N2[v], in the other case v is not contained and can thus be deleted.
This observation explains the effectiveness of the search tree algorithms on the
considered real-world data from social network analysis: There, the smallest two-
neighborhood in the graph is typically much smaller than the entire vertex set,
ensuring that all except n nodes in the search tree have limited size.

Heuristic Speed-Up. Our main tool for accelerating the search tree algorithm is
an extensive application of the following data reduction rules in each branching
step. We describe the rules in descending order of observed effectiveness. Herein,
let G = (V,E) be the graph of the current branching step.

I1 Vertex Cover Rule: Let G′ = (V,E′) be the graph where two vertices are ad-
jacent iff they have distance at least three in G. Clearly, if a minimum vertex
cover of G′ has size at least x, then at least x vertex deletions have to be per-
formed in G to obtain a 2-club. We compute a 2-approximate vertex cover C
for G′ that is disjoint to the marked vertices (as they may not be deleted).
If |V |− �|C|/2
 is less than the current lower bound, then abort this branch.

I2 Cleaning conflicts with marked vertices: If there is a vertex v ∈ V that has
distance at least three to a vertex that is marked to be contained in the
2-club, then delete v. If v is marked, then abort this branch.

I3 Common neighbors of marked vertices: If there are two marked vertices with
only one common neighbor v, then mark v.

I4 Degree-one vertices: Remove each vertex v that has degree one. If v is marked,
then abort this branch.

3 After applying Rule 4 in advance, |N2[v]| ≤ �2.

238 S. Hartung, C. Komusiewicz, and A. Nichterlein

Table 1. Experimental results on random instances. For each combination of density,
n, a, b the other values are the average over 50 instances.

density [a ; b] n m max deg avg deg 2-club size time(s)

0.05 [0.00 ; 0.10] 160 633.60 18.30 7.40 19.30 0.18

0.10 [0.05 ; 0.15] 160 1279.54 28.54 15.46 29.54 2.43
[0.00 ; 0.20] 160 1276.40 31.68 15.44 33.08 2.79

0.15 [0.10 ; 0.20] 150 1674.28 35.72 21.84 56.98 98.44
[0.10 ; 0.20] 160 1899.78 38.15 23.26 63.44 372.52
[0.05 ; 0.25] 160 1906.68 41.04 23.26 77.12 21.54
[0.00 ; 0.15] 160 1894.08 44.52 23.20 88.60 1.80

0.20 [0.10 ; 0.30] 160 2544.66 50.28 31.36 143.16 0.04

The correctness of Rules I1–I3 is obvious. Rule I4 is correct since we initialized
our lower bound by a 2-club formed by a maximum degree vertex and thus a
larger 2-club cannot contain degree-one vertices (note that Rule I4 is a special
case of Rule 5).

We ran all our experiments on an Intel(R) Core(TM) i3-2130 CPU 3.40GHz
machine with 8GB memory under the Debian GNU/Linux 6.0 operating system.
The program is implemented in Java and runs under Java 1.6.0.18. The source
code is freely available from http://fpt.akt.tu-berlin.de/two_club/. We
tested our program on random instances as well as on real world data from
the 10th DIMACS challenge [8] and compare our running times with recent
implementations [6, 15].

Random Instances. As in previous experimental evaluations [6, 15], we use the
random graph generator proposed by Gendreau et al. [11] where the density
of the resulting graphs is controlled by two parameters, 0 ≤ a ≤ b ≤ 1, and
the expected density is (a + b)/2. Table 1 summarizes our findings. As first
observed by Bourjolly et al. [5], density 0.15 produces the hardest instances.
We solve instances of these types for n = 150 typically within 2min; previous
implementations needed about 6min [6], or up to an hour [15] for these instances.
We observed that the key point for the good behavior of our algorithm on these
instances is the Vertex Cover Rule that allows quite frequently to prune the
search tree.

Real-World Networks. We considered real-world data taken from the 2012 DI-
MACS challenge [8]. To investigate the usefulness of 2-Club as natural clique
relaxation concept, we ran our algorithm on instances from the clustering cat-
egory; to test our algorithm on large scale social network graphs we ran it on
graphs from the co-author and citation category. These graphs were obtained by
the co-author relationship or the citation relation among authors listed in the
DBLP and Citeseer database. In addition to the DIMACS instances, we created
a further DBLP coauthor graph, which is the largest instance in our experiments
(dblp thres 1). Table 2 shows the results.

http://fpt.akt.tu-berlin.de/two_club/

Parameterized Algorithmics and Computational Experiments 239

Table 2. Experimental results on instances from the DIMACS implementation [8]
taken from the clustering and the coauthor/citation category

category name n m max deg avg deg 2-club size time(s)

clustering email 1133 5451 71 9 72 3.27
hep-th 8361 15751 50 3 51 4.18

PGPgiantcompo 10680 24316 205 4 206 3.22
polblogs 1490 16715 351 22 352 9.93

power 4941 6594 19 2 20 2.53

coauthor citationCiteseer 268495 1156647 1318 8 1319 429.83
coAuthorsCiteseer 227320 814134 1372 7 1373 23.04
coAuthorsDBLP 299067 977676 336 6 337 216.64

dblp thres 01 715633 2511988 804 7 805 1742.57
dblp thres 02 282831 640697 201 4 202 119.03

We observe that, since the average degree in real world graphs is small, the
Turing kernelization typically produces small graphs for our search tree algo-
rithm. We thus can solve all instances from the clustering category within 10s.
This is a significant performance increase in comparison to [15] who needed up to
70min for these instances. Moreover, although the co-author/citation graphs are
quite large (up to 715,000 vertices), Turing kernelization enabled us to handle
them within roughly 30min.

We observed, however, the unexpected behavior that the largest 2-club is on
a majority of the real-world instances “just” a maximum degree vertex together
with its neighbors. Thus, the question arises whether the resulting community
structures are meaningful. In a first step to examine this, we created from a
DBLP coauthor graph subgraphs of the pattern dblp thres i where two authors
are related by an edge if they coauthored at least i papers. We expected that for
moderate values of i, say 2 or 3, the resulting (2-club) communities would have
a stronger meaning because there are no edges between authors that are only
loosely related. Unfortunately, even for values up to i = 6 this seems not to be the
case. We think the main reason for this is the large gap between the maximum
degree vertex (around 1000) and the average degree (less than 10). Thus, there
seem to be some authors that dominate the overall structure because of their
large number of coauthors. Notably, there are only few of these “dominating”
authors: less than 200 authors have more than 200 coauthors.4

6 Conclusion

On the theoretical side, we extended existing fixed-parameter tractability results
for the 2-Club problem by providing polynomial-size kernels for the parameters
cluster editing set size and feedback edge set size. We further gave a direct algo-
rithm for the parameter treewidth of G. Complementing these positive results,

4 This implies that the so-called h-index of the real-world instances is low and thus
a promising parameter. In companion work, however, we showed that 2-Club is
W[1]-hard with respect to the h-index of the input graph [12].

240 S. Hartung, C. Komusiewicz, and A. Nichterlein

we showed lower bounds on the kernel size for parameter vertex cover and on
the running time as well as on the kernel size for the dual parameter k′. On the
practical side, we provide the currently best implementation for 2-Club which
solves 2-Club in reasonable time even on large real-world graphs with more
than 700,000 vertices.

Still, there are many open questions that deserve further investigations: Is
there a substantially better algorithm for the parameter vertex cover than the
one for treewidth? Concerning the parameter solution size 	, can the, so far im-
practical, running time or the size of the Turing kernel be improved [20]? Are
there stronger parameters than the ones considered here for which 2-Club ad-
mits polynomial-size problem kernels? Finally, it would be interesting to transfer
our results to 3-Club which is also of interest in practice [15, 19].

References

[1] Alba, R.: A graph-theoretic definition of a sociometric clique. J. Math. Sociol. 3(1),
113–126 (1973)

[2] Asahiro, Y., Miyano, E., Samizo, K.: Approximating Maximum Diameter-
Bounded Subgraphs. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034,
pp. 615–626. Springer, Heidelberg (2010)

[3] Balasundaram, B., Butenko, S., Trukhanovzu, S.: Novel approaches for analyzing
biological networks. J. Comb. Optim. 10(1), 23–39 (2005)

[4] Bodlaender, H.L., Thomassé, S., Yeo, A.: Kernel bounds for disjoint cycles and
disjoint paths. Theor. Comput. Sci. 412(35), 4570–4578 (2011)

[5] Bourjolly, J.-M., Laporte, G., Pesant, G.: An exact algorithm for the maximum
k-club problem in an undirected graph. European J. Oper. Res. 138(1), 21–28
(2002)

[6] Chang, M.S., Hung, L.J., Lin, C.R., Su, P.C.: Finding large k-clubs in undirected
graphs. In: Proc. 28th Workshop on Combinatorial Mathematics and Computation
Theory (2011)

[7] Chen, Y., Flum, J., Müller, M.: Lower bounds for kernelizations and other prepro-
cessing procedures. Theory Comput. Syst. 48(4), 803–839 (2011)

[8] DIMACS. Graph partitioning and graph clustering (2012),
http://www.cc.gatech.edu/dimacs10/ (accessed April 2012)

[9] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
[10] Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer (2006)
[11] Gendreau, M., Soriano, P., Salvail, L.: Solving the maximum clique problem using

a tabu search approach. Ann. Oper. Res. 41(4), 385–403 (1993)
[12] Hartung, S., Komusiewicz, C., Nichterlein, A.: On structural parameterizations

for the 2-club problem (manuscript, June 2012)
[13] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential

complexity? J. Comput. System Sci. 63(4), 512–530 (2001)
[14] Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential

time hypothesis. Bulletin of the EATCS 105, 41–72 (2011)
[15] Mahdavi, F., Balasundaram, B.: On inclusionwise maximal and maximum cardi-

nality k-clubs in graphs. Discrete Optim. (to appear, 2012)

http://www.cc.gatech.edu/dimacs10/

Parameterized Algorithmics and Computational Experiments 241

[16] Memon, N., Larsen, H.L.: Structural Analysis and Mathematical Methods for
Destabilizing Terrorist Networks Using Investigative Data Mining. In: Li, X.,
Zäıane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 1037–
1048. Springer, Heidelberg (2006)

[17] Mokken, R.J.: Cliques, Clubs and Clans. Quality and Quantity 13, 161–173 (1979)
[18] Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University

Press (2006)
[19] Pasupuleti, S.: Detection of Protein Complexes in Protein Interaction Networks Us-

ing n-Clubs. In: Marchiori, E., Moore, J.H. (eds.) EvoBIO 2008. LNCS, vol. 4973,
pp. 153–164. Springer, Heidelberg (2008)

[20] Schäfer, A., Komusiewicz, C., Moser, H., Niedermeier, R.: Parameterized compu-
tational complexity of finding small-diameter subgraphs. Optim. Lett. 6(5) (2012)

[21] Schäfer, A.: Exact algorithms for s-club finding and related problems. Diploma
thesis, Friedrich-Schiller-Universität Jena (2009)

[22] Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept.
J. Math. Sociol. 6, 139–154 (1978)

Finding Dense Subgraphs of Sparse Graphs�

Christian Komusiewicz and Manuel Sorge��

Institut für Softwaretechnik und Theoretische Informatik, TU Berlin
{christian.komusiewicz,manuel.sorge}@tu-berlin.de

Abstract. We investigate the computational complexity of the
Densest-k-Subgraph (DkS) problem, where the input is an undirected
graph G = (V,E) and one wants to find a subgraph on exactly k ver-
tices with a maximum number of edges. We extend previous work on
DkS by studying its parameterized complexity. On the positive side, we
show that, when fixing some constant minimum density μ of the sought
subgraph, DkS becomes fixed-parameter tractable with respect to either
of the parameters maximum degree and h-index of G. Furthermore, we
obtain a fixed-parameter algorithm for DkS with respect to the com-
bined parameter “degeneracy of G and |V | − k”. On the negative side,
we find that DkS is W[1]-hard with respect to the combined parame-
ter “solution size k and degeneracy of G”. We furthermore strengthen
a previous hardness result for DkS [Cai, Comput. J., 2008] by showing
that for every fixed μ, 0 < μ < 1, the problem of deciding whether G
contains a subgraph of density at least μ is W[1]-hard with respect to
the parameter |V | − k.

1 Introduction

Identifying dense regions of graphs is a fundamental computational problem with
many important applications, for instance in computational biology [19] and
social network analysis [3]. There are many different definitions of what a dense
subgraph is [11, 17] and for almost all of these formulations, the corresponding
computational problems are NP-hard.

In this work, we study the problem of finding subgraphs with a fixed num-
ber k of vertices and a maximum number of edges. This problem is known
as Densest-k-Subgraph. For fixed k, maximizing the number of edges is
the same as maximizing the density of a graph G = (V,E) which is defined
as 2|E|/(|V |(|V | − 1)). Using the notion of density, the NP-hard Densest-k-
Subgraph problem [11, 15] can be defined as follows.

Densest-k-Subgraph (DkS) :
Input: A graph G = (V,E), and a nonnegative integer k.
Task: Find a vertex set S ⊆ V of size exactly k such that G[S] has
maximum density.

� One result of this work (Thm. 4) is contained in the first author’s dissertation [16].
�� Supported by DFG projects PABI (NI 369/7-2) and DAPA (NI 369/12).

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 242–251, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Finding Dense Subgraphs of Sparse Graphs 243

DkS is at least as hard as the well-studiedClique problem which asks for finding
a complete graph of order exactly k. In this work, our aim is to provide a better
overview of when DkS becomes computationally hard or tractable, respectively.
To this end, we consider how two types of parameters influence the complex-
ity of DkS. The first type of parameters are the classical parameters “solution
size k” and “parameterization by dual |V | − k”. The second type of parameters
measure the sparseness of the input graph G: maximum degree Δ, h-index,1

and degeneracy d. Bounded maximum degree means that all vertices have few
neighbors, bounded h-index means that most vertices have few neighbors, and
bounded degeneracy means that there is always a vertex with few neighbors. By
definition, Δ ≥ h-index ≥ d. The study of these three parameters is motivated
by two facts: First, many real-world networks such as biological and social net-
works are relatively sparse since they contain many vertices of low degree and
only few vertices of high degree (the network “hubs”). Second, the otherwise
notoriously hard Clique problem is much easier on sparse graphs. For example,
all maximal cliques can be enumerated in O(d3/d · d · n) time on graphs with
degeneracy d [9].

We study the complexity of DkS mostly by considering the following problem
which can be seen as a decision variant of DkS. Here, one asks whether there
is a k-vertex subgraph with density at least μ, where 0 ≤ μ ≤ 1 is some fixed
constant. We call such subgraphs μ-cliques, that is, a graph G = (V,E) is a
μ-clique if the density of G is at least μ.

μ-Clique:
Input: A graph G = (V,E), and a nonnegative integer k.
Question: Is there a vertex set S ⊆ V of size at least k such that G[S]
is a μ-clique?

Throughout this work, we assume that μ is a fixed constant, in other words,
that it is independent of k and n. This assumption can be motivated by the fact
that in many applications, the dense subgraphs that one wants to find should
be almost complete graphs.

Related Work. Clique, which asks to find a complete subgraph of order k is
W[1]-hard with respect to the parameter k and fixed-parameter tractable with
respect to the dual parameter n − k [7]. Finding a densest subgraph of order
exactly k is NP-hard and W[1]-hard with respect to k, as it is a generalization
of Clique. Moreover, DkS is W[1]-hard with respect to the parameter n −
k [5]. It is, however, fixed-parameter tractable with respect to the combined
parameter “maximum degreeΔ and k” [6]. Holzapfel et al. [13] showed that DkS
remains NP-hard, even when looking only for subgraphs with average degree at
least 2 +Ω(1/k1−ε) for 0 < ε < 2. Finding k-vertex subgraphs of average degree
at least 2+O(1/k), however, can be done in polynomial time. Furthermore, DkS
is NP-hard even in graphs with maximum degree three and degeneracy two [10].

1 The structural graph parameter h-index was introduced by Eppstein and Spiro [8]
in the context of triangle counting in dynamic graphs. For a definition, see Section 2.

244 C. Komusiewicz and M. Sorge

Table 1. Summary of our results and previous results for μ-Clique and DkS. Note
that hardness transfers from μ-Clique to DkS and tractability transfers in the reverse
direction. For fixed-parameter tractability (FPT) results, we write a rough estimate
of the exponential running time factor. Herein, k denotes the order of the sought μ-
clique, � = n− k is the number of vertices that have to be deleted in order to obtain a
μ-clique or a densest subgraph, and d denotes the degeneracy of the input graph.

parameter μ-Clique DkS

max. degree Δ FPT: ΔO(Δ) (Theorem 1), NP-hard for Δ = 3 [10]
no poly. kernel (Theorem 7)

h-index h FPT: hO(h) (Theorem 2),
no poly. kernel (Theorem 7)

degeneracy d ∈ XP (Lemma 1(iii)) NP-hard for d = 2 [10]
(k, d) W[1]-hard (Theorem 6)
� W[1]-hard (Theorem 4) W[1]-hard [5]

(�, d) FPT: (�+ d)O(�) (Theorem 3)

The “densest subgraph” in this reduction, however, has very low, non-constant
density. For an overview of computational aspects of finding dense subgraphs,
we refer to the survey of Kosub [17]. A related problem is Minimum Subgraph

of Minimum Degree, where the task is to find a subgraph of order at most k
such that each vertex has a given minimum degree. Minimum Subgraph of

Minimum Degree is W[1]-hard with respect to the parameter k but becomes
fixed-parameter tractable on graphs of bounded local treewidth and graphs with
excluded minors [2]. A further related problem is to find a subgraph that has
maximum average degree (without constraint on the order). This problem is
polynomial-time solvable using network flow techniques [12].

Our Results. Table 1 gives an overview of our results; note that all negative re-
sults that were obtained for μ-Clique immediately transfer to DkS. Our results
can be summarized as follows. Finding dense subgraphs is significantly harder
than finding cliques since μ-Clique and DkS are W[1]-hard with respect to
the parameter (d, k). Furthermore, we show that the W[1]-hardness for DkS
parameterized by n − k [5] can also be generalized to hold for μ-Clique for
all μ, 0 < μ < 1. Finally, we show that, in contrast to DkS, μ-Clique is fixed-
parameter tractable for the parameters maximum degree Δ and h-index h of G.
In particular, we show that the practically relevant case of finding subgraphs
whose density μ deviates not too much from the maximum density (that is, 1/μ
is small) is still tractable for bounded Δ or h.

2 Preliminaries

We consider simple undirected graphs G = (V,E) where n := |V | and m := |E|.
The order of a graph is the number of vertices. For a vertex set S ⊆ V we denote

Finding Dense Subgraphs of Sparse Graphs 245

by N(S) :=
⋃

v∈S N(v) \S the neighborhood of S, and by deg(v) the degree of v.
We use G[S] to denote the subgraph induced by S. The degeneracy of a graph G
is the smallest integer d such that every induced subgraph of G has at least
one vertex with degree at most d. The h-index of a graph G is the maximum
integer h such that G contains h vertices of degree at least h. The property of
being a μ-clique is not hereditary, but has a “nestedness” property [17]: Every
μ-clique G = (V,E) has an induced subgraph G′ on |V | − 1 vertices that is also
a μ-clique. For the relevant notions from parameterized complexity, refer to [7].

3 Fixed-Parameter Algorithms

Here, we present fixed-parameter algorithms for the parameters maximum de-
gree Δ of G, h-index of G and the combined parameter that comprises n−k and
degeneracy of g. Before presenting these algorithms, we observe relationships be-
tween the order of μ-cliques and the sparsity parameters under consideration. We
also give an observation about the enumeration of certain subgraphs in degree
bounded graphs, which yields a subroutine used in our algorithms.

Preparations. The relation between the order of a μ-clique and its maximum
degree, h-index and degeneracy is as follows.

Lemma 1. A μ-clique with
(i) maximum degree Δ has order at most Δ/μ+ 1.

(ii) h-index h has order at most h·(h−1)+2·(n−h)·h
μ·(n−1) < 2·h

μ .

(iii) degeneracy d has order less than (4 · d+ μ)/2 · μ.

The upper bound h·(h−1)+2·(n−h)·h
μ·(n−1) on the order of μ-cliques is tight as a graph

consisting of a clique of order h and of n − h further vertices that are an inde-
pendent set but adjacent to all vertices of the clique has density exactly μ if n
is equal to the upper bound.

Continuing the preparation for our tractability results, a central observation
is the following.

Lemma 2. Let G be a graph with maximum degree Δ and let v be a vertex in G.
There are at most 4k · (Δ−1)k connected subgraphs of G that contain v and have
order at most k. Furthermore, these subgraphs can be enumerated in O(4k · (Δ−
1)k · (n+m)) time.

Proof. We describe a search tree for enumerating these subgraphs. In each search
tree node, we maintain two vertex sets P (the “pivot set”) and N , where N is
a subset of P and the task is to enumerate all vertex sets S such that 1) G[S]
is connected, 2) P ⊆ S, and 3) the vertices of N have no neighbors in S \ P .
Furthermore, in each of the search tree nodes, there will be a distinguished active
vertex v of P \ N . We will consider adding neighbors of the active vertex first.
The details are as follows.

Assume that there is an arbitrary but fixed ordering of the vertices of G.
Initialize the search by setting the pivot set P := {v} and setting N = ∅ where v

246 C. Komusiewicz and M. Sorge

is the vertex with lowest index in the fixed ordering. Furthermore, set v as active
vertex. Then, in each search tree node, do the following. First, reportG[P]. Then,
if |P | = k, abort this branch. Otherwise, if |P | < k and there is no active vertex,
then choose the vertex v ∈ P \ N that has lowest index in the fixed ordering as
new active vertex. Now, branch into the following cases to add neighbors of the
active vertex v: First, for each neighbor u of v in V \ P that is not adjacent to
any vertex in N create a search tree branch with (P ∪{u}, N) that is, one branch
for each possibility to add a neighbor of v and keep v as active vertex in these
branches. Second, create one further search tree branch with (P,N ∪ {v}), that
is, a branch in which we assume that no further neighbors of v may be added;
in this branch v will become inactive.

Since a vertex never leaves P once it has been added and only neighbors of
vertices in P are added to P , clearly, the graph G[P] is connected, contains v
and has order at most k in each search tree node. Furthermore, each connected
graph that contains v and is of order at most k is equal to G[P] in some search
tree node: for each vertex that is a neighbor of the current pivot set and not a
neighbor of N , we branch at some point into the case that this vertex is added.

To bound the number of search tree nodes, observe that at most k vertices
can be added to P and, hence, at most k vertices can be added to N . Now,
assume that we branch in advance into all the cases to either add a neighbor
of an active vertex or move an active vertex to N , that is, we fix in advance
that we add say x1 neighbors of the first vertex, x2 neighbors of the second
active vertex and so on. The number of possible branchings is 22k, since in the
first branch, we add a vertex to P and in the second branch, we add a vertex
to N and the cardinality of both sets is at most k. Now, assume that we branch
for each such fixed case into the different cases to add a neighbor of the active
vertex v. Then, this can be done by a search tree of depth at most k and in each
search tree node, we branch into at most Δ − 1 cases, to add a vertex in V \ P
to P (note that except for the first branching, every active vertex v has at least
one neighbor in P since G[P] is connected). Hence, the overall search tree size
is O(4k · (Δ − 1)k). Since the steps at each search tree node can be performed
in O(n+m) time, the search tree also gives a O(4k · (Δ− 1)k · (n+m)) running
time enumeration algorithm. ��

Next, we present fixed-parameter algorithms for the parameters maximum de-
gree Δ and h-index. We gradually develop the algorithms starting with the
(easiest) case of finding connected μ-cliques in graphs with maximum degree Δ.
Then, we present an algorithm for disconnected μ-cliques in graphs with max-
imum degree Δ. Finally, we describe an algorithm for the parameter h-index.
Note that we can restrict ourselves to finding μ-cliques of order exactly k due to
the nestedness property.

Finding Connected μ-cliques. We use the enumeration algorithm described in
Lemma 2. For every vertex v, we start an enumeration of all connected graphs
of order at most k that contain v and instead of reporting the graphs, we check
whether it is a μ-clique and report it or not accordingly. Plugging in the bound
for k given by Lemma 1(i), we obtain the following.

Finding Dense Subgraphs of Sparse Graphs 247

Proposition 1. All connected μ-cliques in a graph G with maximum degree Δ
can be enumerated in O(4Δ/μ+1 · (Δ − 1)Δ/μ+1 · n(n+m)) time.

Finding Disconnected μ-cliques. The idea for finding disconnected μ-cliques is
to combine different connected subgraphs such that the sum of edges and ver-
tices yields a graph with density at least μ. In the process of combining these
connected μ-cliques, we have to ensure that we only combine these numbers for
disjoint graphs. Otherwise, a dense subgraph might be counted twice. To this
end, we use color coding [1] to obtain a randomized fixed-parameter algorithm
with one-sided error. The algorithm can be derandomized using standard tech-
niques with an additional running time factor of 2O(k)[1]. Assume that the input
graph contains a μ-clique of order k, and let S be the vertex set of this μ-clique.
The basic idea of color coding is to color the vertices of the input graph uniformly
at random with a set C of k colors and to hope that S is colorful, that is, for each
color in C there is exactly one vertex in S that has received this color. Assuming
the graph is colored this way, first use the enumeration algorithms for connected
μ-cliques described above, and then “combine” these connected graphs by ap-
plying dynamic programming. The color-coding/enumeration/dynamic program-
ming routine is repeated sufficiently often to achieve constant error probability.
The details are as follows.

After the coloring, first compute for every subset C′ ofC the densest connected
subgraph that has color set C′. This can be easily achieved by adapting the above
enumeration algorithm to only report colorful μ-cliques. Using this enumeration,
we fill a table D where for each color set C′ ⊆ C, the entry D(C′) contains
the maximum number of edges in a connected μ-clique in G whose vertices have
exactly the colors from C′. Afterwards, we find the maximum density of a colorful
μ-clique of order k using another table T . Here, the entry in T (C′) for some color
set C′ ⊆ C contains the number of edges of a (possibly disconnected) μ-clique
with maximum density in G whose vertices have exactly the colors from C′.
Observe that either T (C′) = D(C′), or there is a partition of C′ into C′

1, C
′
2 such

that T (C′) = T (C′
1) + T (C′

2). Thus, we fill T (C′) by the following recurrence:

T (C′) = max{D(C′), max
C′′⊂C′

{T (C′′) + T (C′ \ C′′)}}.

The maximum density of a colorful μ-clique of order k is then found in T (C).
The table T can be filled in O(3k) time, since there are at most this many
triples (C′, C′

1, C
′
2) such that C′ ⊂ C and (C′

1, C
′
2) partitions C

′ (each color in C
either has to be in C′

1, C
′
2, or C \ C′); for each such triple there is only one

table lookup. Adding the running time for filling T , we obtain a running time
of O(3k +4k · (Δ− 1)k · n(n+m)) = O(4k · (Δ− 1)k · n(n+m)), where Δ is the
maximum degree of G.

The error probability can be bounded as follows [1]. When coloring the vertices
with k colors uniformly at random, the probability of a μ-clique S being colorful
is exactly k!/kk, since there are kk distinct colorings of S and k! colorful ones.
By Stirling’s approximation, this probability is at least e−k and by repeating
ek times the random coloring and the algorithm above, the probability of missing

248 C. Komusiewicz and M. Sorge

a feasible μ-clique is at most (1 − e−k)e
k ≤ 1/e. Using Lemma 1(i) we obtain

the following.

Theorem 1. μ-Clique can be solved in time O((4e · (Δ − 1))Δ/μ+1n(n+m)),
reporting a yes-instance as a no-instance with probability at most 1/e, where Δ
is the maximum degree in the input graph.

It has previously been shown that, using random separation, DkS can be solved
in 2O(Δk) time with one-sided error and constant error probability [6]. Our algo-
rithm above applied to DkS runs in 2O(log(Δ)k) time.

Parameterization by h-index. We now describe how to adapt the algorithm from
Theorem 1 to obtain a fixed-parameter algorithm for the parameter h-index of
the input graph. In many practical applications the h-index is much smaller than
the maximum degree. For instance, social and biological networks have few so-
called hubs, that is, vertices of very high degree, and many low-degree vertices.
Hence, the h-index is much smaller than the maximum degree for these graphs.

The main idea of the algorithm is as follows. Let H be the set of the at
most h vertices with degree at least h, and assume that S is a vertex set of
size k such that G[S] is a μ-clique. First, by trying all 2h partitions of H , guess
the set HS of vertices that are in S ∩ H . We annotate every vertex v ∈ V \ H
with the number of neighbors it has in HS . Let the weight of a subgraph G′

of the input graph G = (V,E) be the sum of the vertex annotations in G′ and
the number of edges in G′. Now the task is to find a subgraph in G[V \ H] of
order at most k − |HS | that has maximum weight. If we have such subgraphs
for all possible choices of HS , we can compare them, also accounting for the
edges in G[HS], to obtain a densest subgraph of order at most k. To find the
maximum weight subgraphs in G[V \H], we proceed analogously to the algorithm
given above for Theorem 1; we omit the details. Using the size bound for k from
Lemma 1(ii), we obtain the following running time.

Theorem 2. μ-Clique can be solved in time O(2h · (4e · (h− 1))h/μ+1 ·h ·n(n+
m)), reporting a yes-instance as no-instance with probability at most 1/e where
h is the h-index of the input graph.

Degeneracy and Dual Parameter. In this section we show that DkS is fixed-
parameter tractable with respect to the combined parameter degeneracy and
	 := n−k, where n is the number of vertices in the input graph. Remember that
in μ-Clique we fix some constant minimum density μ of the sought graph. This
is necessary to bound the maximum value of k and, ultimately, obtain feasible
running time bounds. For the combined parameter (d,) this constraint can be
dropped. The algorithm is based on the following observation.

Lemma 3. Let G = (V,E) be a graph and let S ⊆ V such that G[S] is densest
possible and S has size k. Then, there is no vertex in V \ S that has degree at
least 	+ d, where 	 = n− k.

Proof. Assume that there is a vertex v of degree at least 	+d in V \S. Since v has
at most 	 − 1 neighbors in V \ S, it has at least d+ 1 neighbors in S. However,

Finding Dense Subgraphs of Sparse Graphs 249

because G is d-degenerate, there is a vertex u of degree at most d in G[S].
Thus, G[(S \ {u})∪ {v}] is a graph with at least one edge more than G[S]. This
contradicts the fact that G[S] is densest possible. ��

Note that we can regard DkS as the problem of deleting a set of 	 vertices
whilst removing the least possible number of edges. Let us call such a vertex set
sparsest 	-deletion set. To exploit Lemma 3, first mark every vertex with degree
at least 	 + d undeletable. Then, find a sparsest 	-deletion set in the degree-
bounded graph induced by the deletable vertices. To find this deletion set, we
employ, much in the spirit of the algorithms for maximum degree and h-index,
color coding and use dynamic programming to first find connected sparsest (≤)-
deletion sets and then combine them to an optimum one; we omit the details.
By the same argument as for the algorithm for μ-Clique and maximum degree,
it suffices to repeat e� times the random coloring and dynamic programming
procedure to obtain an error probability of at most 1/e. In summary, we have
the following.

Theorem 3. Densest-k-Subgraph can be solved in O((4e · (+ d− 1))�n(n+
m)) time, reporting a yes-instance as no-instance with probability at most 1/e,
where 	 = n− k and d is the degeneracy of the input graph.

4 Hardness Results

In this section, we present two reductions that show the limits of the approach
presented above.

4.1 W[1]-Hardness for Parameterization by Dual

First, we show that considering only the dual parameter 	 leads to W[1]-hardness
also in the case of μ-Clique.

Theorem 4. For any fixed μ, 0 < μ < 1, μ-Clique is W[1]-hard with respect
to the parameter 	 = n− k.

Somehow counter-intuitively, the reduction used in Theorem 4 suggests that in
order to obtain a graph with density μ it might be of advantage to delete a clique
from the input graph. Hence, one cannot expect that the set of removed vertices
induces a sparse graph. From the above reduction, we also obtain a lower bound
on the running time of algorithms for μ-Clique. This bound is based on the
exponential-time hypothesis (ETH) which implies that 3SAT cannot be solved
in O∗(2o(n)) time [14, 18].

Theorem 5. μ-Clique cannot be solved in time O∗(2o(Δ/μ)) for every 0 < μ ≤
1 unless the exponential time hypothesis (ETH) fails. Here, h is the h-index of
the input instance.

Clearly, Theorem 5 also excludes algorithms with running time O∗(2o(h/μ)).

250 C. Komusiewicz and M. Sorge

4.2 W[1]-Hardness for Parameterization by Degeneracy and
Solution Size

Next, we show that the parameter h-index cannot be replaced by the smaller
parameter degeneracy.

Theorem 6. For any fixed μ, 0 < μ < 1, μ-Clique is W[1]-hard parameterized
by (d, k), where d denotes the degeneracy of the input graph.

We can use the reduction behind Theorem 6 to also exclude polynomial-size
problem kernels for the parameters maximum degree and h-index.

Theorem 7. μ-Clique does not admit polynomial-size problem kernels with
respect to either maximum degree or h-index unless NP ⊆ coNP/poly.

Proof. It suffices to prove the statement for the larger maximum degree param-
eter. For this, we observe that the reduction used in Theorem 6 implies a cross-
composition [4] from Clique into μ-Clique parameterized by maximum degree.
A cross-composition from a language L ⊆ Σ∗ into a parameterized problem P is
an algorithm that, given t strings x1, x2, . . . , xt ∈ Σ∗, computes an instance x∗

of P with parameter value k such that its running time is bounded by a poly-
nomial in

∑t
i=1 |xi|, k is bounded by a polynomial in maxti=1 |xi|, and x∗ ∈ P

if and only if xi ∈ L for some 1 ≤ i ≤ t.2 If a parameterized problem that has
a cross-composition from an NP-hard language also admits a polynomial-size
problem kernel, then NP ⊆ coNP/poly [4].

Let a number of instances of Clique be given and without loss of generality,
assume that each instance asks for a clique of order k′.3 Merge the instances into
one instance of Clique by taking the disjoint union of the graphs. It is clear
that this graph contains a clique of given order if and only if one of its connected
components does. Then, apply the reduction used in Theorem 6 to the resulting
graph. To obtain that this procedure is a cross-composition, it remains to show
that the maximum degree in the created instance is bounded by a polynomial in
the maximum size of the input instances. This follows since the reduction used
for Theorem 6 does not merge any connected components and the introduced
gadget graph has size polynomial in k′. Thus, there is cross-composition from
Clique into μ-Clique parameterized by the maximum degree. ��

5 Outlook

Several research tasks remain. First, it would be interesting to improve the pre-
sented algorithms. We conjecture, however, that it is not possible to achieve
a running time of O∗(2o((Δ/μ) logΔ)), but have no proof for this at the mo-
ment. Furthermore, it would be interesting to obtain nontrivial Turing kernels
for μ-Clique and any of the considered parameters. Also, is there a better

2 For readability, we simplified the more general definition of cross-composition here.
3 If an instance asks for a smaller clique, simply add a new vertex and connect it to
all other vertices of this instance.

Finding Dense Subgraphs of Sparse Graphs 251

polynomial-time algorithm for μ-Clique on planar graphs than the XP-algorithm
for degeneracy? Finally, a further restriction that can be made in the area of
community detection is to bound the size of the neighborhood of the μ-cliques.
Efficient algorithms exploiting such bounds would be interesting and also prac-
tically relevant.

References

[1] Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
[2] Amini, O., Sau, I., Saurabh, S.: Parameterized Complexity of the Smallest Degree-

Constrained Subgraph Problem. In: Grohe, M., Niedermeier, R. (eds.) IWPEC
2008. LNCS, vol. 5018, pp. 13–29. Springer, Heidelberg (2008)

[3] Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network
analysis: The maximum k-plex problem. Oper. Res. 59(1), 133–142 (2011)

[4] Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new tech-
nique for kernelization lower bounds. In: Proc. 28th STACS. LIPIcs, vol. 9, pp.
165–176. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik (2011)

[5] Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lems. Comput. J. 51(1), 102–121 (2008)

[6] Cai, L., Chan, S.M., Chan, S.O.: Random Separation: A New Method for Solving
Fixed-Cardinality Optimization Problems. In: Bodlaender, H.L., Langston, M.A.
(eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

[7] Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
[8] Eppstein, D., Spiro, E.S.: The h-Index of a Graph and Its Application to Dynamic

Subgraph Statistics. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.)
WADS 2009. LNCS, vol. 5664, pp. 278–289. Springer, Heidelberg (2009)

[9] Eppstein, D., Löffler, M., Strash, D.: Listing All Maximal Cliques in Sparse Graphs
in Near-Optimal Time. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010,
Part I. LNCS, vol. 6506, pp. 403–414. Springer, Heidelberg (2010)

[10] Feige, U., Seltser, M.: On the densest k-subgraph problem. Technical report, The
Weizmann Institute, Department of Applied Math. and Computer Science (1997)

[11] Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorith-
mica 29(3), 410–421 (2001)

[12] Gallo, G., Grigoriadis, M.D., Tarjan, R.E.: A fast parametric maximum flow algo-
rithm and applications. SIAM J. Comput. 18(1), 30–55 (1989)

[13] Holzapfel, K., Kosub, S., Maaß, M.G., Täubig, H.: The complexity of detecting
fixed-density clusters. Discrete Appl. Math. 154(11), 1547–1562 (2006)

[14] Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

[15] Khuller, S., Saha, B.: On Finding Dense Subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

[16] Komusiewicz, C.: Parameterized Algorithmics for Network Analysis: Clustering &
Querying. PhD thesis, Technische Universität Berlin, Berlin, Germany (2011)

[17] Kosub, S.: Local Density. In: Brandes, U., Erlebach, T. (eds.) Network Analysis.
LNCS, vol. 3418, pp. 112–142. Springer, Heidelberg (2005)

[18] Lokshtanov, D., Marx, D., Saurabh, S.: Lower bounds based on the exponential
time hypothesis. Bulletin of the EATCS 105, 41–72 (2011)

[19] Saha, B., Hoch, A., Khuller, S., Raschid, L., Zhang, X.-N.: Dense Subgraphs with
Restrictions and Applications to Gene Annotation Graphs. In: Berger, B. (ed.)
RECOMB 2010. LNCS, vol. 6044, pp. 456–472. Springer, Heidelberg (2010)

Enumerating Neighbour and Closest Strings�

Naomi Nishimura and Narges Simjour

Cheriton School of Computer Science, University of Waterloo,
Waterloo, Ontario, Canada

{nishi,nsimjour}@uwaterloo.ca

Abstract. We present the first parameterized enumeration algorithm
for the neighbour string problem, where a neighbour string of n input
strings, each of length �, is a string that differs from input si in no more
than di positions. The problem is NP-complete even when the di’s are
equal; this is the well-known closest string problem.

Our new approach gives us the ability to tune the running time to
optimize the algorithm for varying relative values of n and d = maxi di.
For strings over an alphabet Σ, we can choose a tuning constant λ to
obtain an algorithm that runs in time O(n�+(nd)f(λ)(|Σ|−1)d5(1+λ)d),
where f is a function that decreases with increasing λ. When Σ = {0, 1},
the dependency on d is an asymptotic improvement over the previous
best parameterized time bound of O(n�+nd36.7308d) for finding a single
solution.

1 Introduction

In both the neighbour string problem [15] and the well-studied closest string
problem [7,16,2,13,8,10,6], the goal is to determine a string that is not too dif-
ferent from any of the n length-� input strings. In the latter case, the solution
cannot differ from any string si in more than d positions; in the former case,
for each si a bound di is specified as part of the input, and the solution cannot
differ from si in more than di positions. Aside from the application in coding
theory [7,8], to remove errors from sequences originating from a single sequence,
these problems have several applications in computational biology [16,2,11].

As the closest string problem is NP-complete even for binary strings [7], much
of the work has focused on finding approximate solutions [2,8,11]. Polynomial-
time approximation schemes (PTAS) [13,1,15], the most recent with running
time O(�(n�)O(ε−2)), have been proposed for the problem.

Gramm et al. [9] gave an integer programming formulation of the closest
string problem in (n− 1)B(n) variables, where the Bell number B(n) is at most
n!; since integer programs can be solved in time polynomial in the size of the
problem and number of variables [12], as a consequence the closest string problem
is fixed-parameter tractable (in FPT) when parameterized by n, albeit with a
huge function on n. Further developments have included solutions for the special
cases of n = 3 [9] and, for binary strings, n = 4 [3].
� Supported by the Natural Sciences and Engineering Research Council of Canada

(NSERC).

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 252–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enumerating Neighbour and Closest Strings 253

Solutions to the neighbour string problem have been built on a search tree
algorithm of Gramm et al. [9] for the closest string problem (which was used
to prove the fixed-parameter tractability with parameter d), and share the key
ideas of careful selection of two strings sx and sy and branching on all ac-
ceptable substrings in the region R of positions on which sx and sy differ. The
StringSearch algorithm of Ma and Sun [15], a modification of the closest string
algorithm, computes a neighbour string in time O(n� + nd

(
d+b

b

)
(|Σ| − 1)b4b) for

instances having mini di ≤ b and maxi di ≤ d. This algorithm generalized that of
Gramm et al. [9] by considering all substrings of R in a single round rather than
position by position. A series of further papers culminated in a running time of
O(n� + nd(

√
2|Σ|+ 4

√
8(
√

2+ 1)(1 +
√|Σ| − 1)− 2

√
2))d) [17,18,5]; these papers

made refinements in the choice of the strings sx and sy to aid in the analysis. Lok-
shtanov et al. [14] showed that there does not exist any O(2o(d log |Σ|) · (n�)O(1))
time algorithm, unless the Exponential Time Hypothesis (ETH) fails.

Recently, Chen et al. [6] added a third input string to the computations,
and obtained an O(n� + nd36.7308d)-time algorithm for binary strings and an
O(n� + nd1.612d(|Σ| + β2 + β − 2)d)-time algorithm 3-string for arbitrary

alphabet Σ, where β = α2 +1−2α−1+α−2 with α = 3

√√|Σ| − 1 + 1. For small
|Σ|’s, this time bound is an improvement over the previous best running time,
due to Chen and Wang [5]. The algorithm and analysis are both considerably
more complicated than those for the approaches using two strings; as the number
of strings increases, so does the number of different kinds of difference regions.

The reduction used to prove the NP-hardness of the closest string problem can
also be used to prove that the corresponding counting problem is #P-hard [4].
The integer programming formulation of Gramm et al. can also be used to enu-
merate all the solutions [4], thus proving the fixed-parameter tractability of the
enumeration problem with parameter n. Obtaining a parameterized enumeration
algorithm with parameter d is not necessarily possible unless all di’s are minimal,
in the sense that there does not exist a neighbour string with all the distances
strictly less than the required distances. When there are non-minimal di’s, there
can be as many as

(
�

maxi di

)
solutions for such instances. The simplest example is

an instance consisting of a single string s1 of length � and an arbitrary number
as d1. Given this constraint, we will consider an algorithm to be an enumeration
algorithm if it produces all solutions when the di’s are minimal, and produces
at least one solution otherwise.

We observe that in its original form, the O(n� + nd(d + 1)d)-time search
tree algorithm of Gramm et al. [9,10] does not always enumerate all solutions.
Starting with an input string sx, the algorithm tries to find an input string sy

such that H(sx, sy) > d. If there is no such string, then sx is produced as the
sole solution. When the set of solutions is a superset of the input strings, even if
the algorithm were modified to take the union of solutions found from starting
at each of the input strings, the algorithm would fail to produce any solution
that is not an input. In the example of the strings {0010, 0100, 1001, 1111} and
the value d = 3, there are eight solutions outside the set of inputs, such as 0001
and 0011, which are not found by this algorithm.

254 N. Nishimura and N. Simjour

Our Contributions. We propose a new enumeration algorithm, Crossover-
Search, for the neighbour string problem. As in previous algorithms, we con-
struct a region R on which two strings differ. In order to take advantage of all
n of the input strings instead of just two or three, we take different approaches
to solutions that are “close” to R and “far” from R. For the strings that are
“close”, we form n + 1 representative strings such that each “close” solution is
very close to one of the representatives, allowing us to handle all such solutions
in n + 1 recursive calls. The removal of the “close” strings allows us to exploit
the additional structure that results on the remaining “far” strings, allowing us
to improve bounds on the reduced instance.

Our analysis can be viewed as simulating the idea of considering a third string
as in 3-String, and, further, of extending it to the consideration of all input
strings. In doing so, we avoid the detailed case analysis that was required to
handle all the different subregions formed in 3-String.

Another contribution of our work is to introduce tuning constants ε and δ
that allow us to optimize the running time of our algorithm for values of n and
d that are related in different ways. This results in an overall running time of
O(n� + ndNδ(d, b, εd, n)), where Nδ(d, b, t0, n) is the maximum number of leaves
in the search trees (and hence the number of solutions) of input instances having
n strings of maxi di ≤ d and mini di ≤ b, called with threshold values δ and t0.
Furthermore, we prove that

Nδ(d, d, εd, n) ≤ ((n + 1)(d + 1))
�log(1− δ

2) ε�
(|Σ| − 1)d5d(1+ε+δ).

The measure kmin, used in defining “close” and “far”, can also be used to
advantage in the analysis of our modification of StringSearch, Enum-
StringSearch, designed to enumerate all neighbour strings. We prove a bound
on the maximum number of leaves in the search tree of EnumStringSearch
for input instances having n strings of maxi di ≤ d and d1 ≤ b, denoted by
M(d, b, n). In particular, we prove that

M(d, d, n) ≤ 2(n(d + 1))�lg
1
ε �(|Σ| − 1)d6d(1+ε),

for any 0 ≤ ε ≤ 1, and that the running time is in O(n� + ndM(d, d, n)).

2 Definitions

Throughout this article, we use Σ� to denote the set of all strings of length �
over the alphabet Σ. For any s ∈ Σ�, the character in position p in s, 1 ≤ p ≤ �,
is denoted by s[p]. For a set of positions or region R ⊆ {1, 2, . . . , �}, we use R
to denote {1, 2, . . . , �} − R, the positions not in the region R. We define s|R as
the string formed by removing the characters in R, and making the remaining
characters consecutive. For the example s = 01101 and R = {1, 3, 4}, s|R is
the string 010. By extension, for a set of strings S ⊆ Σ�, S|R is defined as
{s|R : s ∈ S}. For convenience, we call s|R (S|R) the restriction of s (S) to R.
For strings s1 and s2 of lengths |R| and �− |R|, we define s1 ⊕R s2 as the string

Enumerating Neighbour and Closest Strings 255

s of length � such that s|R = s1 and s|R = s2, and s1 ⊕R S as the set of strings
{s1 ⊕R s2 : s2 ∈ S}.

We use a distance measure to describe the degree to which strings differ from
each other. For two strings s1, s2 ∈ Σ�, P (s1, s2) is defined as the set {p : s1[p]
=
s2[p]} of positions on which the strings differ. The Hamming distance between
s1 and s2, denoted by H(s1, s2), is the number of positions in P (s1, s2); more
informally, we say that s1 is at distance H(s1, s2) from s2. For any d ≥ H(s1, s2),
we say that s1 (s2) is within distance d of s2 (s1). Informally, we can think of s1

and s2 as being far if H(s1, s2) is larger than some threshold value and as being
close otherwise.

Each solution to the neighbour string problem is close to all input strings,
where for each input a threshold value is supplied. Given an instance I =
{(s1, d1), (s2, d2), . . . , (sn, dn)}, where si ∈ Σ� and di is a non-negative integer
(the distance allotment) for 1 ≤ i ≤ n, a neighbour string for I is a string σ such
that for all i, H(σ, si) ≤ di. We use Is to denote the set of strings in instance I,
that is, Is = {s1, . . . , sn}, and NB(I) to denote the set of all neighbour strings
for I.

3 Enumerating Neighbour Strings

Our algorithm CrossoverSearch makes use of new ideas in both the algorithm
and its analysis. Before discussing the algorithm, we introduce some of our anal-
ysis in a simpler example, namely our minor modification EnumStringSearch
of the StringSearch algorithm of Ma and Sun [15].

3.1 Analysis of EnumStringSearch

The algorithm EnumStringSearch showcases a simplified form of our new
analysis technique; the algorithm itself is a minor modification of Ma and Sun’s
StringSearch that forms an enumerative algorithm. The algorithm proceeds
by first choosing s1 as the starting string sx and deciding if it is a solution (line 3).
A region R is defined as the set of positions in which sx differs from a second
string, sy. In Example 1 below, s2 is chosen as sy, as it satisfies the condition
(line 5) that sx and sy differ in at least d2 = 3 positions. The algorithm tries
each possible assignment of characters to the positions in R, and for each such
assignment w, forms solutions by recursively solving the problem on a reduced
instance consisting of the substrings formed by removing all positions in R. In
lines 7 and 8, values of w are grouped by k, where k = H(w, sx|R), the distance
between w and the restriction of sx to R. The distance allotment d′i for the
reduced instance is determined by subtracting from di the number of positions
that differ between si|R and w (line 9). We observe that since sx|R = sy|R, we
can set d′x to the minimum of d′x and d′y (line 10).

Example 1. For I = 〈(00000000, 3), (11111000, 3), (10011110, 3), (01111001, 3)〉,
sx = s1, sy = s2, R = {1, 2, 3, 4, 5}, and w = 00011, the d′i’s are determined as
d′2 = 3−3 = 0, d′3 = 3−1 = 2, d′4 = 3−2 = 1, and d′x = d′1 = min{3−2, d′2} = 0.

256 N. Nishimura and N. Simjour

Algorithm 1. CrossoverSearch

Require : An instance I = 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉, a real number δ, an
integer t0, and (sx, dx)

Assume : �s∀1 ≤ i ≤ nH(s, si) < di

1 if dx ≤ t0 then return
EnumStringSearch(〈(sx, dx), (s1, d1), (s2, d2), . . . , (sn, dn)〉);

2 Choose sy ∈ Is such that H(sx, sy) ≥ dy;
3 R ← P (sx, sy);
4 t ← �(1 − δ

2
)dx� + 1;

5 NB ← CrossoverSearch(I, δ, t0, (sx, t − 1));
6 foreach 1 ≤ i ≤ n do
7 ŝ = si|R ⊕R sx|R;
8 NB ← NB ∪ CrossoverSearch(I, δ, t0, (ŝ, t − 1));
9 end

10 foreach max{|R| − dy, t − dx+dy−|R|
2

} ≤ k ≤ dx do
11 foreach w ∈ Σ|R| with H(w, sx|R) = k do
12 foreach 1 ≤ i ≤ n do d′

i ← di − H(w, si|R);
13 d′

x ← min{d′
x, d′

y};
14 if mini H(w, si|R) + d′

x < t then produce a fake leaf and continue to
line 11;

15 NB ← NB ∪ (w ⊕R

CrossoverSearch(〈(s1|R, d′
1), . . . , (sn|R, d′

n)〉, δ, t0, (sx|R, d′
x)));

16 end
17 end
18 return NB;

The algorithm shown in Algorithm 2 differs from StringSearch only in
lines 5 (where the original > is replaced by ≥) and 11. The importance of the
change to line 5 is that the search will continue even when a neighbour string is
found. If the di’s are not minimal, the algorithm will find at least one solution
(if any exist), but is not guaranteed to find all solutions. To be precise, the
algorithm will terminate early at line 5 if sx is a neighbour string that is closer
than di for each si.

Lemma 1 below shows that, despite the change to line 5, the bounds obtained
for StringSearch still hold. The proof, omitted due to lack of space, follows
from the analogue in the analysis of StringSearch and the fact that H(sx, sy)
can equal dy has no impact on those proofs. The first item generalizes the fact
that if |R| > dx +dy, no neighbour string exists for I; the closer |R| is to dx +dy,
the smaller the value of d′x, and thus the easier the reduced instance. The second
item shows that at each recursive call, the size of dx is at most half that at the
previous level; we will see how to generalize this result in CrossoverSearch.
The bound given by the third item will prove useful in improving the results of
each algorithm, as in Theorem 1, where this result is used as a way to take an
early exit from a recursive analysis.

Enumerating Neighbour and Closest Strings 257

Algorithm 2. EnumStringSearch

Require : An instance I = 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉
Assume : �s∀1 ≤ i ≤ nH(s, si) < di

1 NB ← ∅; x ← 1;
2 if dx < 0 then return NB;
3 if H(sx, si) ≤ di for all 1 ≤ i ≤ n then NB ← {sx};
4 if dx = 0 then return NB;
5 Choose sy ∈ Is such that H(sx, sy) ≥ dy;
6 R ← P (sx, sy);
7 foreach |R| − dy ≤ k ≤ dx do
8 foreach w ∈ Σ|R| with H(w, sx|R) = k do
9 foreach 1 ≤ i ≤ n do d′

i ← di − H(w, si|R);
10 d′

x ← min{d′
x, d′

y};
11 NB ← NB ∪ (w ⊕R

EnumStringSearch(〈(s1|R, d′
1), (s2|R, d′

2), . . . , (sn|R, d′
n)〉));

12 end
13 end
14 return NB;

Lemma 1. 1. d′x ≤ dx+dy−|R|
2 (or, equivalently, |R| ≤ dx + dy − 2d′x)

2. d′x ≤ dx

2

3. For all 0 ≤ b ≤ d, M(d, b, n) ≤ (d+b
b

)
(|Σ| − 1)b4b.

Using a new analysis, we derive a new recursive bound for M(d, b, n) in Lemma 2.
Critical to our analysis is the value kmin = mini H(w, si|R) (it does not appear
explicitly in the algorithm), defined for a particular value of w. Unlike in the orig-
inal analysis of StringSearch, where a bound was based on k = H(w, sx|R),
we instead categorize different branches depending on kmin. In Example 1,
kmin = H(w, s3|R) = 1 and k = H(w, sx|R) = 2.

We will use a combination of the recursive bounds of Lemma 2 and Lemma 1,
item 3, to prove the complexity of EnumStringSearch in Theorem 1 and
Corollary 1. Due to space limitations, only a high-level idea of the proof is
provided.

Theorem 1. Given an instance I = 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉 for which
there does not exist s with H(s, si) < di for all 1 ≤ i ≤ n,
EnumStringSearch(I) returns NB(I) in O(n�+n maxi di ·M(maxi di, d1, n))
time, where

M(d, b, n) ≤ (n(b + 1))�lg
b

εd �(|Σ| − 1)b2bg(d(1 + ε), min{�2d(1 + ε)
3

�, b}),

for all 0 ≤ b ≤ d, 0 ≤ ε ≤ 1, and for g(x, y) =
(
x
y

)
2y. Furthermore, |NB(I)| ≤

M(maxi di, d1, n).

Stirling’s inequality will simplify the bound for the closest string problem, where
all di’s are equal to d, and thus b = d.

258 N. Nishimura and N. Simjour

Corollary 1. Given an instance I = 〈(s1, d), (s2, d), . . . , (sn, d)〉 for which there
does not exist s with H(s, si) < d for all 1 ≤ i ≤ n, EnumStringSearch(I)
returns NB(I) in O(n� + nd · M(d, d, n)) time, where

M(d, d, n) ≤ 2(n(d + 1))�lg
1
ε �(|Σ| − 1)d6d(1+ε),

for all 0 ≤ ε ≤ 1. Furthermore, |NB(I)| ≤ M(d, d, n).

At the heart of the proof of Theorem 1 is the recursive bound for M(d, b, n)
given in Lemma 2. The formula is generated by summing over every string w
produced at line 8 the number of search tree leaves in the branch for w. For any
w, we will use v(w) to denote the value of variable v in the body of the loop
processing that w. In particular, kmin(w) = mini H(w, si|R).

The n factor, not present in previous bounds [9,15], results from the fact that
although the number of w’s at distance c from sx is

(|R|
c

)
(|Σ|− 1)c, there can be

as many as n
(|R|

c

)
(|Σ| − 1)c w’s at minimum distance c from the si’s.

Lemma 2. For all 0 ≤ b ≤ d,

M(d, b, n) ≤ n(b + 1) · max
0≤i≤ b

2 ,0≤j≤b−i

(
d + b − 2i

j

)
(|Σ| − 1)jM(d − j, i, n).

Proof. We consider an input I = 〈(s1, d1), . . . , (sn, dn)〉, with maxi di ≤ d and
d1 ≤ b, maximizing the number of leaves in the search tree. The lemma holds
for b ≤ 0, as the algorithm stops at line 2 or 4 producing only one node in the
search tree.

For b > 0, the algorithm will branch on every w produced at line 8. For a
specific j, we consider all w’s such that kmin(w) = j. We can view each such w
as being formed by choosing an input string si, choosing j positions in R, and
choosing symbols for those positions that differ from the corresponding symbols
in si; in total the number of such w’s is thus at most n

(|R|
j

)
(|Σ| − 1)j . We claim

that the number of search tree leaves in the branch for any such w is at most

A(j) = max
0≤i≤min{b−j,

dy+b−|R|
2 }

M(d − j, i, n). (1)

An upper bound on the total number of nodes in the search tree is then found
by summing over all values of j the product of A(j) and the number of w’s with
kmin(w) = j, or ∑

0≤j≤b

n

(|R|
j

)
(|Σ| − 1)jA(j),

which can be shown by straightforward mathematical manipulations to be at
most

n(b + 1) · max
0≤i≤ b

2 ,0≤j≤b−i

(
d + b − 2i

j

)
(|Σ| − 1)jM(d − j, i, n), (2)

Enumerating Neighbour and Closest Strings 259

as needed to complete the proof. We also used the fact that the range of i in (2)
is a superset of its range in (1) as dy+b−|R|

2 ≤ b
2 .

All that remains is to prove the claim. We consider an arbitrary w produced at
line 8. Assuming that j = kmin(w), we show that the number of leaves produced
in the loop is no more than A(j).

In the case in which d′x(w) is non-negative, the number of leaves pro-
duced at the function call at line 11 is at most M(maxi d′i(w), d′x(w), n). Since
maxi d′i(w) ≤ maxi{di − H(w, si|R)} ≤ maxi di − mini H(w, si|R), we have
maxi d′i(w) ≤ d − j. There are thus at most M(d − j, d′x(w), n) leaves pro-
duced in the loop. We now wish to show that M(d − j, d′x(w), n) is bounded
above by A(j). We complete the proof by showing that d′x(w) is in the range
[0, min{b−j,

dy+b−|R|
2 }]. By definition, d′x(w) ≤ dx−H(w, sx|R) ≤ b−kmin(w) =

b − j, covering the first case in the minimum. By Lemma 1, item 1, d′x(w) ≤
dy+dx−|R|

2 ≤ d+b−|R|
2 .

For a negative d′x(w), the recursive call terminates at the second line, yielding
a single node. Here we show that the number of leaves produced in the loop, i.e.
1, is bounded above by A(j) by demonstrating that 1 ≤ M(d − j, i, n) for some
i in the range [0, min{b − j, d+b−|R|

2 }]. In fact, M(d − j, i, n) = 1 for i = 0, as
needed to complete the proof. ��

The challenge in proving Theorem 1 by induction stems from the fact that the
relative values of i and � 2(d−j)(1+ε)

3 � are not known for the i and j maximizing
the Lemma 2 recursive bound. Setting u to 2 in Lemma 3 below, given without
proof, allows us to correlate the relative values of b and � 2d(1+ε)

3 � with the relative
values of i and � 2(d−j)(1+ε)

3 �.
Lemma 3. For any integer u and for all i ∈ [0, b

2] and j ∈ [0, b− i], and d ≥ b,
if i ≥ �u(d−j)

u+1 �, then b ≥ 2ud
2u+1 and b ≥ � ud

u+1�.
Another challenge is that every time the recursive bound of Lemma 2 is applied,
an n(b + 1) factor is generated. However, log b applications of the bound are
needed before a constant b is reached. To reduce the exponent of n(b + 1) to
a constant, we stop using the recursive function of Lemma 2 after b becomes
smaller than εd, for a tuning constant ε, and then use the bound M(d, b, n) ≤(
d+b

b

)
(|Σ|−1)b4b of Ma and Sun (Lemma 1, item 3). As ε increases, the recursive

depth (and hence the exponent on n(d + 1)) decreases, as the ending condition
is met sooner. Since the optimal choice will depend on the relative values of n
and b, the ε in Theorem 1 can be set as best for each circumstance.

3.2 Overview of CrossoverSearch

In this section, we highlight the ideas in CrossoverSearch, shown in Algo-
rithm 1. Following previous algorithms, we begin by finding a difference region R
(lines 2–3). The new approach introduced in this algorithm is the classification
of all solutions into two types: an R-close solution is “close” to the restriction of

260 N. Nishimura and N. Simjour

some input string to R, and an R-close solution is “close” to restrictions of all in-
put strings to R. For the appropriate definition of “close”, each solution must be
of one of these types, since if a solution is not R-close, then H(σ|R, si|R) is large,
and hence H(σ|R, si|R) cannot be very big, since H(σ|R, si|R) + H(σ|R, si|R)
must be at most di. The analysis of R-close solutions uses the measure kmin

in a manner analogous to the analysis of EnumStringSearch in Section 3.1.
The fake leaves produced at line 14 are for technical reasons only; they make
the running time of the algorithm a nice function of the number of leaves, as
otherwise, some of the time-consuming branches do not produce many leaves.

Each R-close solution will be close to at least one of the n+1 strings si|R⊕R

sx|R, si ∈ Is ∪ {sx}. The algorithm will find all such neighbour strings through
the n + 1 recursive calls at lines 5 and 8, each of which uses one of the n + 1
strings as sx along with a small distance allotment t − 1. It is the threshold
t, then, that defines “close” to distinguish R-close and R-close solutions. The
smaller this threshold is, the more distances are considered “far”, and hence the
more solutions are R-close. In Example 1, if t = 3, the solution σ = 00011000
is considered R-close since H(s3|R, σ|R) = 1 ≤ t − 1. Consequently, σ will be
found efficiently through the function call at line 8 for ŝ = s3|R ⊕R sx|R. After
line 9, the search is confined to solutions whose restrictions to R are at distance
at least 3 from all the si’s.

The roles of lines 1 and 4 are related to the use of tuning constants for the
analysis. In EnumStringSearch a single tuning constant ε was confined to the
analysis, used to determine when to stop the recursive calls; here we add a second
tuning constant δ and, unlike in EnumStringSearch, introduce both constants
into the algorithm itself. Here, t0 plays the same role as ε. The additional constant
δ plays a role in choosing the threshold t.

We can think of the analysis as occurring in two stages. In the first stage, we
recursively reduce our bound on dx (line 4); this is similar to the reduction by
halving in EnumStringSearch (Lemma 1, item 2). Here instead of using 1

2 ,
we use 1 − δ

2 ; the bigger the value of δ, the smaller the value of t, which plays
a role in defining the new dx. The first stage ends when dx ≤ t0 (line 1). In the
second stage, i.e. within the instance of EnumStringSearch called at line 1,
the bound is halved at each recursive call, and Lemma 1, item 3 is invoked to
complete the analysis.

The inputs include not only the n strings and distance allotments and the
tuning constants δ and t0, but also a specified string and distance allotment pair
(sx, dx), where sx (as formed in line 7) is not required to be one of the input
strings. To avoid an increase in the number of strings in each invocation of the
algorithm, sx is not merged into I at line 8; also, whenever a constructed string
ŝ is expected to be closer than sx to the solutions, ŝ will replace the current
value of sx (line 8).

3.3 Analysis of CrossoverSearch

We prove the complexity of CrossoverSearch in Theorem 2. The ideas in the
proof of Theorem 1, such as the use of kmin and the use of the recursive bound

Enumerating Neighbour and Closest Strings 261

of Ma and Sun (Lemma 1, item 3) for small values of b are also used in the proof
of Theorem 2. In comparison, the parameter kmin appears in the algorithm
(line 14), and a more complicated condition is needed at line 10. Determining
a condition that satisfies both the correctness and the required complexity is a
challenge. Due to space constraints, we omit the proof, and only mention high
level ideas.

The ratio of t0 to d has the same role as the tuning constant ε in Enum-
StringSearch. The proof is optimized for values of δ smaller than 0.75, since
these are the only values of interest. Larger values of δ will produce 5d(1+ε+0.75)

factors in the bound, already worse than the 16d previous bound [15], also men-
tioned in Lemma 1, item 3.

Theorem 2. Given an instance I = 〈(s1, d1), (s2, d2), . . . , (sn, dn)〉, for which
there does not exist s with H(s, si) < di for all 1 ≤ i ≤ n, and for any 0 <
δ ≤ 0.75 and 0 ≤ ε ≤ 1, CrossoverSearch(I, δ, εd, (s1, d1)) returns NB(I) in
time O(n� + n maxi di · Nδ(maxi di, d1, εd, n)), where

Nδ(d, b, εd, n) ≤ ((n + 1)(b + 1))
�log(1− δ

2)
εd
b �

(|Σ| − 1)bf(d′, min{�4d′

5
�, b}),

for any 0 ≤ b ≤ d, and for f(x, y) =
(
x
y

)
4y and d′ = d + εd + δb. Furthermore,

|NB(I)| ≤ Nδ(maxi di, d1, εd, n).

Again, Stirling’s inequality simplifies the bound for the special case of the closest
string problem, where b = d.

Corollary 2. Given an instance I = 〈(s1, d), (s2, d), . . . , (sn, d)〉, for which
there does not exist s with H(s, si) < d for all 1 ≤ i ≤ n, and for any
0 < δ ≤ 0.75 and 0 ≤ ε ≤ 1, CrossoverSearch(I, δ, εd, (s1, d)) returns NB(I)
in time O(n� + nd · Nδ(d, d, εd, n)), where

Nδ(d, d, εd, n) ≤ ((n + 1)(d + 1))
�log(1− δ

2) ε�
(|Σ| − 1)d5d(1+ε+δ).

Furthermore, |NB(I)| ≤ Nδ(d, d, εd, n).

The bound is mainly derived from the recursive functions in Observation 1 and
Lemma 4. If b ≤ t0, the function call at line 1 makes the algorithm run Enum-
StringSearch with the additional string sx, thus producing no more than
M(d, t0, n + 1) leaves.

Observation 1. For all 0 ≤ t0 ≤ d, 0 ≤ b ≤ t0, Nδ(d, b, t0, n) ≤ M(d, b, n + 1).

The proof for larger values of b will use much of the analysis appearing in the
proof of Lemma 2.

Lemma 4. For every 0 ≤ t0 ≤ d, t = �(1 − δ
2)b�, and all t0 < b ≤ d,

Nδ(d, b, t0, n) is less than or equal to

max

⎧⎪⎨⎪⎩
(n + 1)

(
Nδ(d, t − 1, t0, n) + b · max

0≤i≤ b
2 ,t−i≤j≤b−i

(
d + b − 2i

j

)
(|Σ| − 1)jNδ(d − j, i, t0, n)

)
max

d̂≤d,b̂≤b
Nδ(d̂, b̂, t0, n)

.

262 N. Nishimura and N. Simjour

Proof. We use strong induction on b, considering the instance I and values
(sx, dx) that maximize the number of leaves in the search tree. When dx < b,
the number of leaves is bounded by Nδ(maxi di, dx, t0, n), covered by the second
line in the recursive formula.

From now on, we can assume that dx = b, and set d′ = maxi di. We let sy be
the string chosen at line 2; R will be P (sx, sy). The algorithm will make n + 1
function calls at lines 5 and 8, each producing at most Nδ(d′, t−1, t0, n) nodes. It
will then branch on every w produced at line 11. We claim that for any produced
w there exist 0 ≤ j ≤ b and s ∈ Is ∪ {sx} such that H(w, s|R) = j and the
number of leaves reached from w is at most

A(j) = max
max{t−j,0}≤i≤min{b−j,

dy+b−|R|
2 }

Nδ(d′ − j, i, t0, n).

In total, the number of w’s mapped to a certain j and s is at most
(|R|

j

)
(|Σ|−1)j .

An upper bound on the total number of leaves in the search tree is then found
by the counts for lines 5, 8, and 15, for a total of

(n + 1) · Nδ(d′, t − 1, t0, n) +
∑

0≤j≤b

(n + 1)
(|R|

j

)
(|Σ| − 1)jA(j),

which by straightforward mathematical manipulations is at most

(n + 1)

(
Nδ(d

′, t − 1, t0, n) + b · max
0≤i≤ b

2 ,t−i≤j≤b−i

(
dy + b − 2i

j

)
(|Σ| − 1)jNδ(d

′ − j, i, t0, n)

)

≤ (n + 1)

(
Nδ(d, t − 1, t0, n) + b · max

0≤i≤ b
2 ,t−i≤j≤b−i

(
d + b − 2i

j

)
(|Σ| − 1)jNδ(d − j, i, t0, n)

)
.

All that remains is to prove the claim. We omit details due to space limitations.
We consider an arbitrary w produced at line 11.

In the case in which d′x(w) is non-negative and mini H(w, si|R) + d′x(w) ≥ t,
the idea is to demonstrate that the number of leaves produced in the loop,
which is no more than Nδ(maxi d′i(w), d′x(w), t0, n) in this case, is at most A(j)
for j = kmin(w).

For a negative d′x or for mini H(w, si|R)+d′x smaller than t, the algorithm will
produce a single node. In this case, we show that the number of leaves produced
in the loop, i.e. 1, is bounded above by A(j) for j = k, i.e. H(w, sx|R). ��

4 Conclusions

Aside from theoretical improvements, the new bounds are indications of the
effectiveness of our approach. In particular, we expect the ideas in Crossover-
Search to be useful in practice, for cases mini di

d > 2
3 , which are considered hard

for previous algorithms.

Acknowledgements. The authors are grateful to anonymous reviewers for
their feedback and to Bin Ma for helpful discussions and mention of an instance
for which previous algorithms failed to find all closest strings.

Enumerating Neighbour and Closest Strings 263

References

1. Andoni, A., Indyk, P., Patrascu, M.: On the optimality of the dimensionality reduc-
tion method. In: Proc. 47th Annu. IEEE Symp. Foundations of Computer Science,
pp. 449–458. IEEE Computer Society, Washington (2006)

2. Ben-Dor, A., Lancia, G., Perone, J., Ravi, R.: Banishing Bias from Consensus
Sequences. In: Apostolico, A., Hein, J. (eds.) CPM 1997. LNCS, vol. 1264, pp.
247–261. Springer, Heidelberg (1997)

3. Boucher, C., Brown, D.G., Durocher, S.: On the Structure of Small Motif Recog-
nition Instances. In: Amir, A., Turpin, A., Moffat, A. (eds.) SPIRE 2008. LNCS,
vol. 5280, pp. 269–281. Springer, Heidelberg (2008)

4. Boucher, C., Omar, M.: On the Hardness of Counting and Sampling Center Strings.
In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 127–134.
Springer, Heidelberg (2010)

5. Chen, Z., Wang, L.: Fast exact algorithms for the closest string and substring
problems with application to the planted (l, d)-motif model. IEEE/ACM Trans.
Comput. Biol. Bioinformatics 8, 1400–1410 (2011)

6. Chen, Z.Z., Ma, B., Wang, L.: A three-string approach to the closest string problem.
J. Comput. Syst. Sci. Int. 78(1), 164–178 (2012)

7. Frances, M., Litman, A.: On covering problems of codes. Theory Comput. Syst. 30,
113–119 (1997)

8. Gąsieniec, L., Jansson, J., Lingas, A.: Efficient approximation algorithms for the
hamming center problem. In: Proc. 10th Annu. ACM-SIAM Symp. Discrete Algo-
rithms, pp. 905–906. SIAM, Philadelphia (1999)

9. Gramm, J., Niedermeier, R., Rossmanith, P.: Exact Solutions for CLOSEST
STRING and Related Problems. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001.
LNCS, vol. 2223, pp. 441–453. Springer, Heidelberg (2001)

10. Gramm, J., Niedermeier, R., Rossmanith, P.: Fixed-parameter algorithms for clos-
est string and related problems. Algorithmica 37(1), 25–42 (2003)

11. Lanctot, J.K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection
problems. Inform. and Comput. 185(1), 41–55 (2003)

12. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper.
Res. 8(4), 538–548 (1983)

13. Li, M., Ma, B., Wang, L.: Finding similar regions in many strings. In: Proc. 31st
Annu. ACM Symp. Theory of Computing, pp. 473–482. ACM, New York (1999)

14. Lokshtanov, D., Marx, D., Saurabh, S.: Slightly superexponential parameterized
problems. In: Proc. 22nd Annu. ACM-SIAM Symp. Discrete Algorithms, pp. 760–
776. SIAM, San Francisco (2011)

15. Ma, B., Sun, X.: More efficient algorithms for closest string and substring problems.
SIAM J. Comput. 39(4), 1432–1443 (2009)

16. Stojanovic, N., Berman, P., Gumucio, D., Hardison, R., Miller, W.: A Linear-time
Algorithm for the 1-Mismatch Problem. In: Dehne, F., Rau-Chaplin, A., Sack, J.,
Tamassia, R. (eds.) WADS 1997. LNCS, vol. 1272, pp. 126–135. Springer, Heidel-
berg (1997)

17. Wang, L., Zhu, B.: Efficient Algorithms for the Closest String and Distinguishing
String Selection Problems. In: Deng, X., Hopcroft, J.E., Xue, J. (eds.) FAW 2009.
LNCS, vol. 5598, pp. 261–270. Springer, Heidelberg (2009)

18. Zhao, R., Zhang, N.: A more efficient closest string algorithm. In: Proc. 2nd Int.
Conf. Bioinformatics and Computational Biology, pp. 210–215 (2010)

An Improved Kernel for the Undirected Planar

Feedback Vertex Set Problem

Faisal N. Abu-Khzam1 and Mazen Bou Khuzam2

1 Department of Computer Science and Mathematics
Lebanese American University

Beirut, Lebanon
faisal.abukhzam@lau.edu.lb

2 Department of Mathematics, Kuwait University
Al Safat, Kuwait

mazen@sci.kuniv.edu.kw

Abstract. We consider the parameterized Feedback Vertex Set problem
on unweighted, undirected planar graphs. We present a kernelization al-
gorithm that takes a planar graph G and an integer k as input and either
decides that (G, k) is a no instance or produces an equivalent (kernel)
instance (G′, k′) such that k′ ≤ k and |V (G′)| < 97k. In addition to the
improved kernel bound (from 112k to 97k), our algorithm features sim-
ple linear-time reduction procedures that can be applied to the general
Feedback Vertex Set problem.

1 Introduction

For a given undirected graph G, a feedback vertex set is a set of vertices whose
removal yields an induced forest. The problem of finding a feedback vertex set
of minimum size has applications in several domains including (for example)
constraint processing and Bayesian inference [1,7]. Formally, the Feedback Vertex
Set problem, henceforth FVS, is defined as follows:

Given: A graph G and a positive integer k.
Question: Does G have a feedback vertex set of cardinality k or less?

FVS is NP-complete in general [11], and remains NP-complete when the input
is restricted to planar graphs [15]. When parameterized by the solution size,
FVS is fixed parameter tractable [9]. This has motivated many successful efforts
to design parameterized FVS algorithms [6,8,12,13]. In particular, kernelization
algorithms for FVS received some attention lately [2,5,14].

The Feedback Vertex Set problem has a kernelization algorithm that guaran-
tees a quadratic-order kernel in general [14]. Linear kernels have been obtained
on graphs of bounded genus and H-minor free graphs [3,10]. On planar graphs,
a kernel of order 112k has been presented in [4]. In this paper, we present a
linear-time kernelization algorithm for planar graphs that delivers kernels of or-
der 97k−203 (in the worst-case). The restriction to planar graphs allows us to use
structural constraints that bound the order (and size) of our reduced instances.
However, all the reduction procedures apply to general problem instances.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 264–273, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Improved Kernel for Planar Feedback Vertex Set 265

2 Preliminaries

Throughout this paper, the pair (G, k) denotes a given planar instance of Feed-
back Vertex Set. (G, k) will undergo a sequence of reduction operations that are
based on a set of rules. Each reduction operation transforms (G, k) into a po-
tentially smaller instance, (G′, k′), such that k′ ≤ k and G has a feedback vertex
set of size k if and only if (G′, k′) has a solution of size k′.

We shall use common graph theoretic terminologies. In particular, we denote
by NH(v) the set of neighbors of a vertex v in a graph (or subgraph) H . For A ⊂
V , G[A] denotes the subgraph ofG induced by A, and NH(A) = ∪v∈ANH(v)−A.
We denote by V (G) and E(G) the sets of vertices and edges of the graph G,
respectively. A graph H is bipartite if V (H) = A∪B so that each of the subsets
A and B induces an edge-less subgraph. We shall refer to such graph by H =
(A,B). The complete bipartite graph is denoted by Ka,b = (A,B) where a = |A|
and b = |B|.

We assume the graph G is given with a particular planar embedding. We de-
note the number of vertices, edges and faces of G by n, e and f respectively.
These three values are related via the invariance formula of Euler for connected
planar graphs, which states that n − e + f = 2. Euler’s formula leads to upper
bounds on the number of edges for many sub-families of planar graphs. In par-
ticular, a simple bipartite planar graph has at most 2n− 4 edges. In general, a
planar graph satisfies: e ≤ 3n − 6. These two well known formulae are used to
compute the upper bound on our kernel size.

During the reduction process, it may be possible to determine that a vertex
belongs to a solution of (G, k), if one exists. Such vertex will be deleted and
placed in a set S that, henceforth, denotes a potential solution of (G, k). More-
over, the value of k will be decremented by one. This action is justified by the
rather trivial fact that deleting a vertex v deletes all cycles containing it. Thus,
for v ∈ S, S \ {v} is a solution of (G − v, k − 1).

Multiple edges between adjacent vertices are possible, as they may arise due to
some operations performed on G. When this occurs, we assume that G is drawn
(or re-drawn) in the plane in such a way that any cycle of length two is the bound-
ary of a face (i.e., it has an empty interior). Intuitively speaking, this is always
possible since a multi-edge can be envisioned as obtained from thickening an edge
and (then) splitting it. With this in mind, we can always assume that a pair of
vertices share at most two edges, since additional edges do not introduce more cy-
cles. When a pair, {u, v}, of adjacent vertices share two edges, we say that edge
uv is a double-edge. Otherwise it is a single-edge.

We shall also assume thatG has no self loops. The existence of a self loop yields
an easy detection of an element of S (the single vertex that forms the cycle),
which results in deleting the corresponding vertex. Vertex deletion, on the other
hand, are applied frequently by our algorithm and could result in disconnecting
the graph in question. When this happens, we process the resulting connected
components separately, in a sequential manner. So we may always assume that
G is connected.

266 F.N. Abu-Khzam and M. Bou Khuzam

For a vertex v ∈ V (G), we denote by C(v) the set of all cycles ofG that contain
v. We extend this notation to subsets of V (G) by setting C(A) = ∪v∈AC(v),
where A ⊂ V (G). We denote by Pi any (sub)graph isomorphic to the path of
length i. As usual, the path length is the number of edges forming the path.
Moreover, the set of interior vertices of a path P shall be denoted by I(P).

Finally, the concept of cycle domination plays a role in simplifying our ar-
guments. For {u, v} ⊂ V , we say that u is dominated by v when C(u) ⊂ C(v)
(every cycle passing through u passes also in v). In other words, a solution that
contains v is at most as large as any solution that contains u. Detecting such
cycle domination is easy: for each pair {u, v} ⊂ V , delete v and check whether u
belongs to a cycle of the remaining graph. This checking can be performed via
depth-first search in linear time since G has a linear number of edges.

3 Reduction Rules

In this section, we present the reduction rules that are adopted by our kernel-
ization algorithm. Every such rule is stated as a lemma that describes a pair
(condition, action) and asserts that the action can be performed if the corre-
sponding condition holds. A reduction rule is safe (or sound) if its action trans-
forms (G, k) into an equivalent instance, while updating the potential solution
S. We shall assume that, for each i, rules 1 through i are applied exhaustively
before applying rule i + 1. Some reductions include the addition of edges or
double-edges. While this seems contrary to the concept of data reduction, it will
be an intermediate step to further reduction in the number of vertices (see Rules
5 and 7 below).

Some of the following rules are folkloric, and are left without proof. In par-
ticular, Rules 1-3 have appeared in several FVS algorithms (see [5,8]). We also
introduce a few rules that work for general FVS instances and allow us to use
planarity to achieve a linear-bound on the kernel size.

Reduction Rule 1. Vertices whose degree is less than two can be deleted.

Reduction Rule 2. If a vertex u has degree two, with incident single-edges uv
and uw, then we can delete u and add the edge vw.

Reduction Rule 2∗. If a vertex u has two neighbors v and w such that uv is a
single-edge and uw is a double-edge, then we can place w in S, decrement k by
one, and delete u and w.

Proof. At least one of u and w is in S and C(u) ⊂ C(w). So it is safe to place
w in S and decrement k by one.

Note that Rules 2 and 2∗ are special cases of the following general reduction rule:
if u and v are adjacent vertices and C(u) ⊂ C(v), then edge uv can be contracted.
This rule, however, is not needed to obtain the linear bound presented in this
paper.

Improved Kernel for Planar Feedback Vertex Set 267

Reduction Rule 3. If there are more than three edges between two vertices,
then we can safely remove all but two of these edges.

Reduction Rule 4. If a vertex u has exactly two neighbors v and w such that
uv, uw and vw are double-edges, then we can add both v and w to S, decrement
k by two, and delete u, v and w.

Reduction Rule 5. Let uv be a double-edge in G and let w be a degree-three
vertex whose neighbors are u, v and w′. Then deleting w and adding the two
edges uw′ and vw′ results in an equivalent instance (See figure 1). This action
can be performed even if w′ is a neighbor of u or v (or both).

Proof. At least one element of {u, v} belongs to S. W.l.o.g., assume u ∈ S. Then
the instance (G−u, k−1), which results from deleting u is equivalent to (G, k). In
this resulting instance, w can be bypassed, by Rule 2 (w is deleted and the edge
vw′ is added). Observe also that adding the two edges uw′ and vw′ introduces
only one additional cycle, namely (u, v, w′). If (G, k) is a yes instance, then the
new cycle will be covered by at least one element of {u, v}. Q.E.D.

Fig. 1. Rule 5

Reduction Rule 6. Let P be an induced path of endpoints u and v such that
N(P \{u, v}) = {w}. If P has more than two interior vertices, then an equivalent
instance can be obtained by placing w in S and deleting it. This action results
in replacing P by the edge uv due to (the re-application of) Rule 2.

Proof. First note that S must cover the local cycles of G[P ∪ {w}] and any
(global) cycles that pass through the endpoints of P . So it is possible that S
contains an element of I(P). If P has interior vertices w1, w2, · · · , ws such that
s ≥ 3, then each wi is dominated by {w, u} (or {w, v}). If s > 3, and w does
not belong to S, then at least two interior vertices of P are in S. So it is safe
to add w to S. If s = 3 and the solution S has only one element from I(P),
then w2 ∈ S since neither w1 nor w3 covers the cycles through w in G[P ∪ {w}].
However, deleting w2 will not result in disconnecting G[P ∪ {w}]. Therefore we
can replace w2 by w and obtain an equivalent (if not better) solution.

268 F.N. Abu-Khzam and M. Bou Khuzam

Reduction Rule 7. Let (A,B) = K2,b be a subgraph of G. If b ≥ 3 and
every vertex of B is of degree three, then we can add a double-edge between the
two elements of A. By Rule 5, and (possibly) Rule 4, this leads to deleting all
elements of B.

Proof. Note that every element of B is dominated by A (this being true since
every element of B has only one neighbor outside A). Let A = {v, v′} and
B = {v1, v2, · · · , vb}. If none of the elements of A is in S, then at least two
elements of B are needed to cover the cycles of the K2,b-subgraph induced by
A ∪ B. It follows that adding the double-edge between the two elements of
A is sound. This addition does not affect the planarity of G for the following
reason: once the double-edge vv′ is introduced, Rule 5 applies and every common
neighbor of degree three of v and v′ is deleted, except when two elements of B
are adjacent, in which case we use Rule 5 to delete one of them and (then) Rule
4 to delete the other.

The last reduction rule deals with induced paths whose interior vertices have
only two neighbors in addition to their endpoints. At this stage, we assume
every vertex has degree three or more. We observe the following.

Observation 1. Let P be an induced path satisfying |N(I(P))| = 4. In other
words, the interior vertices of P have only two neighbors u and v in addition
to the two endpoints of P . If |I(P)| ≥ 5 and every element of I(P) has at least
one neighbor in {u, v}, then any solution S of (G, k) that does not contain an
element of {u, v} must contain at least two elements of I(P).

Proof. If any of u and v has 4 neighbors in I(P), then the assertion holds (triv-
ially). Since |I(P)| ≥ 5, at least one element of {u, v} (say v) has 3 neighbors in
I(P), while the other has at least two neighbors. Assume one element x ∈ I(P)
covers all cycles of G[P ∪ {u, v}]. Obviously, x must be a neighbor of v that is
interior to the path connecting v’s neighbors in I(P). Moreover, x must also be
interior to the path connecting the neighbors of u in I(P) (even when u has
only two such neighbors, since in that case u and v cannot have common neigh-
bors). If x is deleted, the remaining neighbors of u and v (which “surround” x
in P) would be connected via both u and v, forming a cycle of length 6, which
contradicts the assumption.

Reduction Rule 8. Let P be an induced path satisfying |N(I(P))| = 4. As in
the above Observation, the interior vertices of P have only two neighbors u and v
in addition to the two endpoints of P . If |I(P)| = 6, and |NI(P)(v)| ≥ |NI(P)(u)|,
then a solution of (G, k) exists if and only if (G, k) has a solution that contains
v. So, in this case, we delete v and decrement k by one.

Proof. Let V (P) = {w0, w1, w2, · · · , ws} where wiwi+1 is an edge of G[P] (0 ≤
i < s; s ≥ 8). Any solution of (G, k) must cover all the local cycles and possibly

Improved Kernel for Planar Feedback Vertex Set 269

disconnect the two endpoints of P in G[P ∪ {u, v}]. We show that two elements
of I(P) are either not enough to cover all local cycles or one of them can be
replaced by v (safely). To see this, consider first the case where u has at most
two neighbors in I(P) and v has at least 4 such neighbors. If v is not in the
solution, at least two elements of I(P) are needed to disconnect the local cycles
through v. An equivalent (if not better) solution would include v and one of the
neighbors of u (to disconnect P and cover the local cycle through u, if any).

Now consider the case where each of u and v has more than two neighbors
in I(P). Assume there is a solution that contains only two elements wi and
wj (0 < i < j < s) and disconnets any local path between w0 and ws in
G[P ∪ {u, v}]. Then {wi, wj} is a feedback vertex set for the graph H obtained
fromG[P∪{u, v}] by adding the edge w0ws. LetH

′ be the acyclic graph obtained
by deleting wi and wj . The total number of edges incident on u and v in H ′ is
at least 4 (since |I(P)| ≥ 6), while the number of edges that are deleted from
the cycle {w0, w1, · · · , ws} is at most 4. It follows that H ′ has at least s + 1
edges and exactly s + 1 vertices, which contradicts the assumtpion that H ′ is
acyclic. Therefore, any solution that contains only two elements of I(P) can
result in either not covering all the local cycles or not disconnecting all local
paths between w0 and ws (in G[P ∪ {u, v}]). In such case, it would be safe to
take both u and v into the solution.

The instance (G, k) is said to be reduced with respect to the above reduction
rules if none of them applies to (G, k). We shall prove that such a reduced
instance has a solution only if |V (G)| < 97k.

4 A Linear Kernel

Our reduction process consists of applying the rules of the previous section ex-
haustively until none of them applies. Applying a rule starts by a search for a
graph structure that makes its condition holds. If this search is successful, it will
be followed by the action described by the rule. The resulting instance, (G, k),
is called a reduced instance.

Note that every reduction rule can be applied in linear time. In fact, it should
be clear that applying each of the Rules 1-4 takes linear time, especially if an
updated degrees-array is used. Moreover, it takes linear-time to check if the
condition of Rule 5 holds (select a degree-three vertex and check whether two
of its neighbors share a double-edge). Each of the conditions of the remaining
rules can be checked via depth-first search (DFS). Starting with any vertex of G,
DFS takes O(E(G)) (thus, linear-time) to find a path or a K2,b that satisfies the
required condition. Note that we require the “successive” application of all the
rules until they cannot be applied. The process of applying the rules is repeated
whenever k is decremented. It follows that the total reduction time is in O(kn).

Throughout the rest of this section we assume that (G, k) is a reduced yes
instance. Again, let S be a corresponding (complete) solution, and assume G is
a plane graph. By Rule 2, the degree of every vertex of G is bounded below by
three.

270 F.N. Abu-Khzam and M. Bou Khuzam

The complement of S in V (G) induces a forest F . Let L be the set of tree-
leaves in F . Each such leaf must have at least two neighbors in S. This is obvious
since each leaf has only one neighbor in F and at least three neighbors in G.
Note the use of Rule 2∗ here: the unique edge that is incident on a leaf of F is a
single-edge. So a leaf node with only one neighbor in S will be deleted, even if its
degree is three. Our objective is to compute an upper bound on the cardinality
of L, and use it to bound the number of elements in F . The following observation
is needed in the sequal.

Observation 2. Let u and v be non-adjacent vertices of a planar graph H. If
u and v have a common neighbor w whose degree is two in H, then the graph
obtained from H by adding the edge uv is also planar.

Proof. The following operations preserve planarity: contract edge uw, duplicate
the (resulting) edge uv, then subdivide one of the edges that connect u and v
(to get w back).

Our main result depends on some counting arguments that make use of the
following lemmas. Hereafter, a (c, 2)-chain of a graph G is an induced path on
c vertices (and length c − 1 ≥ 0), each of which is of degree two in G. When
the length of the induced path is not important (or arbitrary), such a path is
dubbed a degree-two chain. A degree-two chain is maximal if it is not contained
in a larger degree-two chain.

Consider a tree T and let C be a collection of disjoint (c, 2)-chains of interior
vertices in T . We say that C is maximal if T [V (T) \ V (C)] has no (c, 2)-chains.

Lemma 1. Let T be a tree with at most l leaves. If, for c ≥ 1, every maximal
collection of disjoint (c, 2)-chains has at most nc internal vertices, then T has
at most nc + 2cl − 2c+ 1 vertices.

Proof. The number of degree-three vertices of T is less than the number of its
leaves. Let T ′ be the tree obtained from T by replacing every maximal degree-
two chain by a single edge (by a sequence of edge-contractions). Then T ′ has
at most l − 1 internal vertices and at most 2l − 2 edges. Consequently, the
number of maximal degree-two chains in T is bounded above by 2l − 2. The
length of any degree-two chain is either smaller than c or consists of (or can be
decomposed into) one or more (c, 2)-chains and at most one (b, 2)-chain, b ≤ c−1.
It follows that the number of internal degree-two vertices is bounded above by
nc + (c − 1)(2l − 2). Q.E.D.

We now show that n6 is bounded by a linear function of k and that F has a
linear number of leaves.

Lemma 2. Let H = (A,B) be a simple bipartite planar graph. If |A| = k and
every vertex of B has at least three neighbors in A, then |B| ≤ 2k − 4.

Improved Kernel for Planar Feedback Vertex Set 271

Proof. Recall that, due to a corollary of Euler’s formula, H has at most 2nh − 4
edges, where nh = |V (H)| = k + |B|. Since every vertex of B is of degree at
least three, we have 2nh − 4 ≥ |E(H)| ≥ 3|B|. Replacing nh by k+ |B| gives the
desired inequality.

Lemma 3. If C is a maximal collection of (6, 2)-chains of internal vertices in
F , then |C| ≤ 2k − 4.

Proof. Let P be a (6, 2)-chain of internal vertices in F . By Rules 6 and 8, N(P)
has at least three elements from S (since P is I(P ′) for some path P ′ of length
8 in F). Let C′ be the set of vertices obtained by contracting every chain in
C (thus replacing every (6, 2)-chain by a single vertex of degree ≥ 3). Ignoring
the edges between elements of S, and replacing multiple edges by simple edges,
we consider the resulting simple bipartite planar graph (S,C′). The result now
follows from Lemma 2.

Lemma 4. Let L2 be the subset of L consisting of leaves that have exactly two
neighbors in S. Then |L2| ≤ 6k − 12.

Proof. For each pair {u, v} ⊂ S, the number of elements of L2 that are common
neighbors of u and v is at most 2. This follows easily from Rule 7. Consider the
planar graph H induced by S ∪ L2. And let H ′ be a graph obtained from H
by adding an edge between non-adjacent elements of S that share a common
neighbor. Then, by Observation 2, H ′ is also planar. Moreover, the number of
pairs of S that can share a common neighbor (from L) is bounded above by
the number of edges in H ′, which is at most 3k − 6. The proof is now complete
(knowing that each such pair has at most 2 common neighbors in L).

We now consider the leaves of F , if any, that have at least three neighbors in S.

Lemma 5. Let L3 = L\L2 be the set of leaves of F that have more than two
neighbors in S. Then |L3| ≤ 2k − 4.

Proof. Consider the planar bipartite subgraph H whose vertex set is S ∪L3 and
whose edges are elements of E(G) that connect elements of S to those of L3.
The proof follows from Lemma 2 by letting l be the number of leaves in L3 and
nh the number of vertices in H .

The above two lemmas guarantee that our reduced instance has a solution S of
size k only if the corresponding induced forest F has at most 8k− 16 leaves and
at most 2k−4 (6, 2)-chains. In fact, the number of elements of F that have three
neighbors in S and the number of (6, 2)-chains of F (which is n6/6) sum up to
at most 2k − 4. This can be obtained by considering (again) a bipartite plane
graph H = (A,B) where A = S and B consists of “contracted” (6, 2)-chains and
all elements of F that have three neighbiors in S. Therefore n6

6 + |L3| ≤ 2k − 4
(or n6 ≤ 12k − 6|L3| − 24). Moreover, l ≤ 6k − 12 + |L3| (again l is the total
number of leaves in F).

272 F.N. Abu-Khzam and M. Bou Khuzam

It follows, by Lemmas 1, 4 and 5 that |F | is bounded above by:
n6 + 2(6)l − 2(6) + 1 ≤ (12k − 6|L3| − 24) + 12(6k + |L3| − 12) − 11 = 84k +
6|L3| − 179 ≤ 84k + 6(2k − 4)− 179 = 96k − 203.

This proves our claimed linear kernel bound, which we state in the following
theorem.

Theorem 1. There is a linear-time algorithm that, given an arbitrary planar
instance (G, k) of Feedback Vertex Set, either decides that no solution exists or
produces an equivalent instance whose size is bounded above by 97k − 203.

5 Conclusion

We showed how to reduce any planar instance of Feedback Vertex Set into one
whose order is bounded by 97k − 203, where k is the input parameter. Our
reduction rules apply to general FVS instances and might be useful on their
own, as preprocessing steps.

Our kernel bound is obtained by counting arguments that made heavy use
of planarity. This bound can be improved further via reductions that consider
induced paths as in Rule 8, and by more detailed counting arguments. We con-
tinue to investigate the potential use of our techniques to obtain a much smaller
kernel bound without loosing the simplicity and efficiency of the corresponding
reduction procedures.

References

1. Bar-Yehuda, R., Geiger, D., Naor, J.(S.), Roth, R.M.: Approximation algorithms
for the vertex feedback set problem with applications to constraint satisfaction and
bayesian inference. In: SODA 1994: Proceedings of the Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, Philadelphia, PA, USA, pp. 344–354. Society
for Industrial and Applied Mathematics (1994)

2. Bodlaender, H.L.: A Cubic Kernel for Feedback Vertex Set. In: Thomas, W., Weil,
P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 320–331. Springer, Heidelberg (2007)

3. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thi-
likos, D.M.: (meta) kernelization. In: Proceedings of the 2009 50th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2009, pp. 629–638. IEEE
Computer Society, Washington, DC (2009)

4. Bodlaender, H.L., Penninkx, E.: A Linear Kernel for Planar Feedback Vertex Set.
In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 160–171.
Springer, Heidelberg (2008)

5. Burrage, K., Estivill-Castro, V., Fellows, M.R., Langston, M.A., Mac, S., Rosa-
mond, F.A.: The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
192–202. Springer, Heidelberg (2006)

6. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved Algorithms for the
Feedback Vertex Set Problems. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS
2007. LNCS, vol. 4619, pp. 422–433. Springer, Heidelberg (2007)

Improved Kernel for Planar Feedback Vertex Set 273

7. Dechter, R.: Enhancement schemes for constraint processing: backjumping, learn-
ing, and cutset decomposition. Artificial Intelligence 41(3), 273–312 (1990)

8. Dehne, F., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An
o∗(2O(k)) FPT Algorithm for the Undirected Feedback Vertex Set Problem. In:
Wang, L. (ed.) COCOON 2005. LNCS, vol. 3595, pp. 859–869. Springer, Heidel-
berg (2005)

9. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer (1999)
10. Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and

kernels. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2010, Philadelphia, PA, USA, pp. 503–510. Society for
Industrial and Applied Mathematics (2010)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman, New
York (1979)

12. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Improved Fixed-
Parameter Algorithms for Two Feedback Set Problems. In: Dehne, F., López-Ortiz,
A., Sack, J.-R. (eds.) WADS 2005. LNCS, vol. 3608, pp. 158–168. Springer, Hei-
delberg (2005)

13. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable al-
gorithms for finding feedback vertex sets. ACM Trans. Algorithms 2(3), 403–415
(2006)

14. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Transactions on Algo-
rithms TALG 6(2), 1–8 (2010)

15. Yannakakis, M.: Node-and edge-deletion np-complete problems. In: STOC 1978:
Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, pp.
253–264. ACM, New York (1978)

Author Index

Abello, James 194
Abu-Khzam, Faisal N. 264
Adiga, Abhijin 135

Babu, Jasine 135
Bentz, Cédric 109
Björklund, Andreas 1
Bläser, Markus 171
Bliznets, Ivan 37
Bonizzoni, Paola 49
Bou Khuzam, Mazen 264
Bouland, Adam 218

Chakraborty, Chiranjit 120
Chandran, L. Sunil 135
Chen, Yijia 13
Curticapean, Radu 171

Dawar, Anuj 218
Dondi, Riccardo 49

Eickmeyer, Kord 13
Elberfeld, Michael 206
Escoffier, Bruno 25

Flum, Jörg 13, 73
Fomin, Fedor V. 97

Golovach, Petr A. 85
Golovnev, Alexander 37

Hartung, Sepp 231
Heggernes, Pinar 85

Jansen, Bart M.P. 97

Kaski, Petteri 147, 159
Kitsunai, Kenta 182
Klav́ık, Pavel 194

Kobayashi, Yasuaki 182
Koivisto, Mikko 147, 159
Komuro, Keita 182
Komusiewicz, Christian 231, 242
Kopczyński, Eryk 218
Korhonen, Janne H. 159
Kowalik, �Lukasz 61
Kratochv́ıl, Jan 194
Kratsch, Dieter 85

Marx, Dániel 2
Mauri, Giancarlo 49
Monnot, Jérôme 25
Müller, Moritz 73

Nederlof, Jesper 147
Nichterlein, André 231
Nishimura, Naomi 252

Paschos, Vangelis Th. 25
Pilipczuk, Marcin 3
Pilipczuk, Micha�l 3, 97

Saei, Reza 85
Santhanam, Rahul 120
Simjour, Narges 252
Sorge, Manuel 242
Stockhusen, Christoph 206

Tamaki, Hisao 182
Tano, Toshihiro 182
Tantau, Till 206

Vyskočil, Tomáš 194

Xiao, Mingyu 25

Zoppis, Italo 49

	Title

	Preface
	Organization
	Table of Contents
	The Path Taken for k-Path
	Randomized Techniques
for Parameterized Algorithms
	Finding a Maximum Induced Degenerate
Subgraph Faster Than 2n
	Introduction
	Preliminaries
	The Algorithm
	Conclusions
	References

	The Exponential Time Hypothesis
and the Parameterized Clique Problem
	Introduction
	Some Preliminaries
	Going from Nonuniform to Uniform on Positive Instances
	ETHnu and the Complexity of p-Clique
	ETHnu and the Parameterized Approximability of p-Clique
	Some Extensions and Generalisations
	An Example
	References

	New Results on Polynomial Inapproximability
and Fixed Parameter Approximability of edge dominating set
	Introduction
	An Improved Polynomial-Time Lower Bound
	A Simple Parameterized Approximation Schema
	constrained edge dominating set
	A Parameterized Approximation Schema for edge dominating set

	Improved Parameterized Approximation Schemata
	More Approximation Algorithms for constrained edge dominating set
	An Improved Parameterized Approximation Schema

	Parametrization by the Vertex Cover Number
	Conclusion
	References

	A New Algorithm for Parameterized MAX-SAT

	Introduction
	Problem Statement
	General Setting
	The Main Idea of the Algorithm
	Organization of the Paper

	Preliminaries: Simplification and Branching Rules
	Solving (n,3)-MAX-SAT in 1.2721k Time
	Removing Variables of Degree 3
	Solving MAX-SAT in 1.358k
	References

	Restricted and Swap Common Superstring:
A Parameterized View
	Introduction
	Preliminaries
	Fixed-Parameter Algorithms for -RCS and SWCS
	A Fixed-Parameter Algorithm for SWCS
	A Fixed-Parameter Algorithm for -RCS

	Kernelization Complexity
	Kernelization Complexity of SWCS
	Kernelization Complexity of -RCS

	Conclusion and Open Problems
	References

	Nonblocker in H-Minor Free Graphs:
Kernelization Meets Discharging
	Introduction
	The Kernelization Algorithm
	Proof of Theorem 1, Basic Setup
	All Paths Are Safe
	References

	Some Definitorial Suggestions
for Parameterized Proof Complexity
	Introduction
	Preliminaries
	Parameterized Complexity
	Proof Theory

	Parameterized Proof Systems and fpt-Simulations
	Comparing Proof Systems via fpt-Simulations
	Comparing Proof Systems via Parameterized Polynomial Simulations
	References

	An Exact Algorithm for Subset Feedback Vertex
Set on Chordal Graphs
	Introduction
	Preliminaries
	Enumerating Minimal Subset Feedback Vertex Sets in Chordal Graphs
	The Chosen Simplicial Vertex v Is Undecided
	The Chosen Simplicial Vertex v Belongs to F
	Running Time Analysis

	Concluding Remarks
	References

	Preprocessing Subgraph and Minor Problems:
When Does a Small Vertex Cover Help?
	Introduction
	Preliminaries
	General Kernelization Theorems
	Characterization by Few Adjacencies
	Kernelization for Vertex-Deletion Problems
	Kernelization for Largest Induced Subgraph Problems

	Subgraph Testing versus Minor Testing
	Testing for Cliques
	Testing for Bicliques
	Testing for Paths
	Testing for Matchings

	Conclusion
	References

	A Polynomial-Time Algorithm for Planar
Multicuts with Few Source-Sink Pairs
	Introduction
	The Starting Point
	Preliminary Definitions and Results
	Description and Proof of the Algorithm
	A Structural Description of Optimal Solutions
	Algorithmic Aspects

	References

	Instance Compression
for the Polynomial Hierarchy and beyond
	Introduction
	Some Complexity Theory Notions
	Instance Compression for Polynomial Hierarchy
	Instance Compression in Second Level
	Instance Compression for Higher Levels

	Instance Compression for PSPACE
	Succinct IP and PSPACE
	Future Directions
	References

	Polynomial Time and Parameterized
Approximation Algorithms for Boxicity
	Introduction
	Prerequisites
	Boxicity of Graphs with Large Cliques
	Approximation Algorithms for Boxicity and Cubicity
	Computing the Boxicity of Graphs with Edit Distances as the Parameter
	An FPT Approximation Algorithm for Cubicity
	Conclusions and Open Problems
	References

	Homomorphic Hashing
for Sparse Coefficient Extraction
	Introduction
	Notation and Preliminaries
	Homomorphic Hashing for Subset Sum
	Homomorphic Hashing for Linear Satisfiability
	Homomorphic Hashing for the Union Product
	References

	Fast Monotone Summation over Disjoint Sets

	Introduction
	A Circuit for (p,q)-Disjoint Summation
	Concluding Remarks and Applications
	References

	Weighted Counting
of k-Matchings Is #W[1]-Hard
	Introduction
	Parameterized Counting Problems
	Counting k-Matchings

	Definitions and Proof Outline
	p#wPCCfptp#wMatch
	p#CCfptTp#wPCC
	p#typUCWfptTp#CC
	p#CliquefptTp#typUCW
	References

	Computing Directed Pathwidth
in O(1.89n) Time
	Introduction
	Preliminaries
	Algorithm LARGE-WIDTH
	XP Algorithm
	Algorithm SMALL-WIDTH
	Combining the Two Algorithms
	References

	MSOL Restricted Contractibility
to Planar Graphs
	Introduction
	Restricted Contractibility Is Fixed-Parameter Tractable
	Definitions
	The Algorithm

	-Subgraph Contractibility
	Conclusions
	References

	On the Space Complexity
of Parameterized Problems
	Introduction
	Preliminaries
	Space Complexity of Tractable Problems
	Space Complexity of Intractable Problems
	Conclusion
	References

	On Tractable Parameterizations
of Graph Isomorphism
	Introduction
	Preliminaries
	Games
	A Characterization of Tree-Depth in Terms of Cops-and-Robbers
	Components and Isomorphisms
	Counting Components
	Measuring Components

	Isomorphism Algorithm
	Generalized Tree-Depth
	Conclusion
	References

	Parameterized Algorithmics and Computational
Experiments for Finding 2-Clubs
	Introduction
	Kernelization Algorithms and Lower Bounds
	Fixed-Parameter Tractability with Respect to Treewidth
	Optimality of Dual Parameter Algorithm
	Implementation and Experiments
	Conclusion
	References

	Finding Dense Subgraphs of Sparse Graphs

	Introduction
	Preliminaries
	Fixed-Parameter Algorithms
	Hardness Results
	W[1]-Hardness for Parameterization by Dual
	W[1]-Hardness for Parameterization by Degeneracy and Solution Size

	Outlook
	References

	Enumerating Neighbour and Closest Strings

	Introduction
	Definitions
	Enumerating Neighbour Strings
	Analysis of EnumStringSearch
	Overview of CrossoverSearch
	Analysis of CrossoverSearch

	Conclusions
	References

	An Improved Kernel for the Undirected Planar
Feedback Vertex Set Problem
	Introduction
	Preliminaries
	Reduction Rules
	A Linear Kernel
	Conclusion
	References

	Author Index

