Dimitrios M. Thilikos
Gerhard J. Woeginger (Eds.)

Parameterized and
Exact Computation

7th International Symposium, IPEC 2012
Ljubljana, Slovenia, September 2012
Proceedings

LNCS 7535

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7535

Dimitrios M. Thilikos
Gerhard J. Woeginger (Eds.)

Parameterized and
Exact Computation

7th International Symposium, IPEC 2012

Ljubljana, Slovenia, September 12-14, 2012
Proceedings

@ Springer

Volume Editors

Dimitrios M. Thilikos

National and Kapodistrian University of Athens
Department of Mathematics
Panepistimioupolis

15784 Athens, Greece

E-mail: sedthilk @thilikos.info

Gerhard J. Woeginger

Eindhoven University of Technology

Department of Mathematics and Computer Science
P.O.Box 513

5600 MB Eindhoven, The Netherlands

E-mail: gwoegi@win.tue.nl

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-33292-0 e-ISBN 978-3-642-33293-7
DOI 10.1007/978-3-642-33293-7

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012946191
CR Subject Classification (1998): F2.1-3, G.1-2, G.2.3,1.3.5, G4, E.1,1.2.8

LNCS Sublibrary: SL 1 — Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the 23 papers presented at the 7th Interna-
tional Symposium on Parameterized and FExact Computation, TPEC 2012
(ipec2012.isoftcloud.gr), held on September 12-14, 2012 as part of the ALGO
2012 (algo12.fri.uni-lj.si) conference in Ljubljana (Slovenia). IPEC is an interna-
tional symposium series that covers research on all aspects of parameterized and
exact algorithms and complexity. The workshop series started in 2004 in Bergen
(Norway) as a biennial event, and in 2008 became an annual event. The first four
workshops in the series used the five-letter acronym IWPEC (which was bulky
and hard to pronounce), whereas from the fifth workshop onwards the catchy
four-letter acronym IPEC has been used. Over the years IPEC has become very
visible and it has grown into one of the main events for the algorithmics and
complexity community.

The IPEC 2012 plenary keynote talks were given by Andreas Bjérklund
(Lund University) on “The Path Taken for k-Path” and by Dédniel Marx (MTA
SZTAKI) on “Randomized Techniques for Parameterized Algorithms”. We had
two additional invited tutorial speakers: Michat Pilipczuk (University of Bergen)
speaking on lower bounds for polynomial kernelization, and Saket Saurabh (Chen-
nai) speaking on subexponential parameterized algorithms.

Altogether IPEC 2012 received 37 extended abstracts. Each submission was
reviewed by at least three reviewers. The Program Committee thoroughly dis-
cussed the submissions in electronic meetings using the EasyChair system, and
selected 23 papers for presentation. We expect the full versions of the papers
contained in this volume to be submitted for publication in refereed journals.

Many people contributed to the smooth running and the success of IPEC
2012. In particular our thanks go

— to all authors who submitted their current research to IPEC

— to all our reviewers and subreferees whose expertise flowed into the decision
process

— to the members of the Program Committee who graciously gave their time
and energy

— to the members of the Local Organizing Committee who made the conference
possible

— to Charalampos Tampakopoulos for his web-hosting services via isoftcloud.gr

— to the EasyChair conference management system for hosting the evaluation
process.

July 2012 Dimitrios M. Thilikos
Gerhard J. Woeginger

Organization

Program Committee

Jianer Chen
Marek Cygan
Henning Fernau
Fedor V. Fomin
Martin Grohe
Daniel Kral’
Stefan Kratsch

Mikko Koivisto
Igor Razgon
Saket Saurabh

Dimitrios M. Thilikos

Erik Jan van Leeuwen

Magnus Wahlstrém

Gerhard Woeginger

Texas A&M University, USA

University of Warsaw, Poland

University of Trier, Germany

University of Bergen, Norway

Humboldt University Berlin, Germany

Charles University Prague, Czech Republic

Max-Planck-Institut fiir Informatik, Saarbriicken,
Germany

University of Helsinki, Finland

University of Leicester, UK

Institute of Mathematical Sciences, Chennai, India

National and Kapodistrian University of Athens,
Greece

Sapienza University of Rome, Italy

Max-Planck-Institut fiir Informatik, Saarbriicken,
Germany

Eindhoven University of Technology,
The Netherlands

Organization Committee

Andrej Brodnik
Uros Cibej
Gagper Fele-Zorz
Matevz Jekovec
Jurij Miheli¢
Borut Robi¢
Andrej Toli¢

External Reviewers

Faisal Abu-Khzam

Mohammadhossein
Bateni

Sergio Bermudo

René Van Bevern

Ljiljana Brankovic

Peter Damaschke

Samir Datta
Anuj Dawar
Holger Dell

Pal Drange
Andrew Drucker
Serge Gaspers
Petr Golovach

Fabrizio Grandoni
Sylvain Guillemot
Jiong Guo

Danny Hermelin
Petr Hlinény

Bart Jansen

Iyad Kanj

VIII Organization

Petteri Kaski
Pavel Klavik
Lukasz Kowalik
Daniel Lokshtanov
Daniel Marx
Daniel Meister
Matthias Mnich

Jan Obdrzalek
Marcin Pilipczuk
Michat Pilipczuk
Marcus Ritt

Noy Rotbart
Ignasi Sau
Pascal Schweitzer

Narges Simjour
Karolina Soltys
Ondfej Suchy
Till Tantau
Yngve Villanger
Ryan Williams

Table of Contents

The Path Taken for k-Path........
Andreas Bjorklund

Randomized Techniques for Parameterized Algorithms
Dadniel Marz

Finding a Maximum Induced Degenerate Subgraph Faster Than 2™
Marcin Pilipczuk and Michal Pilipczuk

The Exponential Time Hypothesis and the Parameterized Clique
Problem
Yijia Chen, Kord Eickmeyer, and Jorg Flum

New Results on Polynomial Inapproximability and Fixed Parameter

Approximability of EDGE DOMINATING SET .. vvvvevneenennennnn..
Bruno FEscoffier, Jérome Monnot, Vangelis Th. Paschos, and
Mingyu Xiao

A New Algorithm for Parameterized MAX-SAT
ITvan Bliznets and Alexander Golovnev

Restricted and Swap Common Superstring: A Parameterized View
Paola Bonizzoni, Riccardo Dondi, Giancarlo Mauri, and Italo Zoppis

Nonblocker in H-Minor Free Graphs: Kernelization Meets
Discharging e
Lukasz Kowalik

Some Definitorial Suggestions for Parameterized Proof Complexity
Jorg Flum and Moritz Miller

An Exact Algorithm for Subset Feedback Vertex Set on Chordal
Graphs . .ot
Petr A. Golovach, Pinar Heggernes, Dieter Kratsch, and Reza Saei

Preprocessing Subgraph and Minor Problems: When Does a Small
Vertex Cover Help?
Fedor V. Fomin, Bart M.P. Jansen, and Michat Pilipczuk

A Polynomial-Time Algorithm for Planar Multicuts with Few
Source-Sink Pairs
Cédric Bentz

13

25

37

49

61

73

85

97

X Table of Contents

Instance Compression for the Polynomial Hierarchy and beyond 120
Chirangit Chakraborty and Rahul Santhanam

Polynomial Time and Parameterized Approximation Algorithms for
Boxicity . ..o 135
Abhijin Adiga, Jasine Babu, and L. Sunil Chandran

Homomorphic Hashing for Sparse Coefficient Extraction 147
Petteri Kaski, Mikko Koivisto, and Jesper Nederlof

Fast Monotone Summation over Disjoint Sets........................ 159
Petteri Kaski, Mikko Koivisto, and Janne H. Korhonen

Weighted Counting of k-matchings Is #W/[1]-Hard 171
Markus Blaser and Radu Curticapean

Computing Directed Pathwidth in O(1.89™) Time 182
Kenta Kitsunai, Yasuaki Kobayashi, Keita Komuro,
Hisao Tamaki, and Toshihiro Tano

MSOL Restricted Contractibility to Planar Graphs................... 194
James Abello, Pavel Klavik, Jan Kratochvil, and Tomds Vyskodil

On the Space Complexity of Parameterized Problems................. 206
Michael Elberfeld, Christoph Stockhusen, and Till Tantau

On Tractable Parameterizations of Graph Isomorphism 218
Adam Bouland, Anuj Dawar, and Eryk Kopczyriski

Parameterized Algorithmics and Computational Experiments for
Finding 2-Clubs 231
Sepp Hartung, Christian Komusiewicz, and André Nichterlein

Finding Dense Subgraphs of Sparse Graphs 242
Christian Komusiewicz and Manuel Sorge

Enumerating Neighbour and Closest Strings 252
Naomi Nishimura and Narges Simjour

An Improved Kernel for the Undirected Planar Feedback Vertex Set
Problem 264
Faisal N. Abu-Khzam and Mazen Bou Khuzam

Author Index 275

The Path Taken for k-Path

Andreas Bjorklund

Department of Computer Science, Lund University, Sweden
andreas.bjorklund@yahoo.se

Abstract. We give a historical account of the parametrized results for
the k-PATH problem: given a graph G and a positive integer k, is there a
simple path in G of length k. Throughout the years several ingenious ap-
proaches have been used, steadily decreasing the run time bound. More-
over, the techniques used have often found lots of other applications. We
will revisit some of the old results, as well as cover the state-of-the-art
techniques based on algebraic sieves. We will also briefly talk about what
is known about counting k-paths.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, p. 1, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Randomized Techniques
for Parameterized Algorithms™*

Daéniel Marx

Computer and Automation Research Institute,
Hungarian Academy of Sciences (MTA SZTAKI),
Budapest, Hungary
dmarx@cs.bme.hu

Abstract. Since the introduction of the Color Coding technique in 1994
by Alon, Yuster, and Zwick, randomization has been part of the toolkit
for proving fixed-parameter tractability results. It seems that random-
ization is very well suited to parameterized algorithms: if the task is to
find a solution of size k and only those random choices need to be correct
that are directly related to the solution, then typically we can bound the
error probability by a function of k. The talk will overview through var-
ious concrete examples how randomization appears in fixed-parameter
tractability results. We argue that in many cases randomization appears
in form of a reduction: it allows us to reduce the problem we are trying
to solve to an easier and more structured problem.

* Research supported by the European Research Council (ERC) grant
“PARAMTIGHT: Parameterized complexity and the search for tight complexity
results,” reference 280152.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, p. 2, 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Finding a Maximum Induced Degenerate
Subgraph Faster Than 2"

Marcin Pilipczuk’* and Michal Pilipczuk?**
! Institute of Informatics, University of Warsaw, Poland
malcin@mimuw.edu.pl
2 Department of Informatics, University of Bergen, Norway
michal.pilipczuk@ii.uib.no

Abstract. In this paper we study the problem of finding a maximum
induced d-degenerate subgraph in a given n-vertex graph from the point
of view of exact algorithms. We show that for any fixed d one can find a
maximum induced d-degenerate subgraph in randomized (2 — e4)"n°®
time, for some constant 4 > 0 depending only on d. Moreover, our
algorithm can be used to sample inclusion-wise maximal induced d-
degenerate subgraphs in such a manner that every such subgraph is
output with probability at least (2 — €4) ™"; hence, we prove that their
number is bounded by (2 —e4)".

1 Introduction

The theory of exact computations studies the design of algorithms for NP-hard
problems that compute the answer optimally, however using possibly exponential
time. The goal is to limit the exponential blow-up in the best possible running-
time guarantee. For some problems, like INDEPENDENT SET |1}, DOMINATING
SET |1, 2], and BANDWIDTH [3] the research concentrates on achieving better and
better constants in the bases of exponents. However, for many important compu-
tational tasks designing even a routine faster than trivial brute-force solution or
straightforward dynamic program is a challenging combinatorial question; the
answer to this question can provide valuable insight into the structure of the
problem. Perhaps the most prominent among recent developments in breaking
trivial barriers is the algorithm for HAMILTONIAN CYCLE of Bjorklund [4], but
a lot of effort is put also into less fundamental problems, like MAXIMUM IN-
DUCED PLANAR GRAPH [j] or a scheduling problem 1|prec| > C; [6], among
many others [7H12]. However, many natural and well-studied problems still lack
exact algorithms faster than the trivial ones; the most important examples are
TSP, PERMANENT, SET COVER, #HAMILTONIAN CYCLES and SAT. In par-
ticular, hardness of SAT is the starting point for the Strong Exponential Time
Hypothesis of Impagliazzo and Paturi [13,[14], which is used as an argument that
other problems are hard as well [15-18§].

* Partially supported by NCN grant N206567140 and Foundation for Polish Science.
** Partially supported by European Research Council (ERC) Grant “Rigorous Theory
of Preprocessing”, reference 267959.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 3-[[Z] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

4 M. Pilipczuk and M. Pilipczuk

A group of tasks we are particularly interested in in this paper are the prob-
lems that ask for a maximum size induced subgraph belonging to some class I1.
If belonging to IT can be recognized in polynomial time, then we have an ob-
vious brute-force solution working in 2"n°™) time that iterates through all the
subsets of vertices checking which of them induce subgraphs belonging to II.
Note that the classical INDEPENDENT SET problem can be formulated in this
manner for IT being the class of edgeless graphs, while if IT is the class of forests
then we arrive at the MAXIMUM INDUCED FOREST, which is dual to FEEDBACK
VERTEX SET. For both these problems algorithms with running time of form
(2 —)™ for some € > 0 are known [1, [11), [12]. The list of problems admitting
algorithms with similar complexities includes also IT being the classes of regular
graphs [19], graphs of small treewidth |20], planar graphs [5], 2- or 3-colourable
graphs [21]], bicliques [22] or graphs excluding a forbidden subgraph [23].

The starting point of our work is the question raised by Fomin et al. in [5].
Having obtained an algorithm finding a maximum induced planar graph in time
O(1.7347™), they ask whether their result can be extended to graphs of bounded
genus or even to H-minor-free graphs for fixed H. Note that all these graph
classes are hereditary and consist of sparse graphs, i.e., graphs with the num-
ber of edges bounded linearly in the number of vertices. Moreover, for other
hereditary sparse classes, such as graphs of bounded treewidth, algorithms with
running time (2 —¢)™ for some € > 0 are also known |20]. Therefore, it is tempt-
ing to ask whether the sparseness of the graph class can be used to break the 2™
barrier in a more general manner.

In order to formalize this question we study the problem of finding a maximum
induced d-degenerate graph. Recall that a graph is called d-degenerate if each
of its subgraphs contains a vertex of degree at most d. Every hereditary class
of graphs with a number of edges bounded linearly in the number of vertices
is d-degenerate for some d; for example, planar graphs are 5-degenerate, graphs
excluding K, as a minor are O(ry/logr)-degenerate, while the class of forests
is equivalent to the class of 1-degenerate graphs. However, d-degeneracy does
not impose any topological constraints; to see this, note that one can turn any
graph into a 2-degenerate graph by subdividing every edge. Hence, considering
a problem on the class of d-degenerate graphs can be useful to examine whether
it is just sparseness that makes it more tractable, or one has to add additional
restrictions of topological nature [24].

Our Results and Techniques. We make a step towards understanding the complex-
ity of finding a maximum induced subgraph from a sparse graph class by break-
ing the 2™-barrier for the problem of finding maximum induced d-degenerate sub-
graph. The main result of this paper is the following algorithmic theorem.

Theorem 1. For any integer d > 1 there exists a constant €4 > 0 and a
polynomial-time randomized algorithm Agq, which given an n-vertex graph G ei-
ther reports an error, or outputs a subset of vertices inducing a d-degenerate
subgraph. Moreover, for every inclusion-wise maximal induced d-degenerate sub-
graph, let X be ils vertex set, the probability that Aq outputs X is at least
(2 — {:‘d)_".

Finding a Maximum Induced Degenerate Subgraph Faster Than 2" 5

Let X(be a set of vertices inducing a maximum d-degenerate subgraph. If we
run the algorithm (2 —e4)™ times, we know that with probability at least 1/2 in
one of the runs the set Xy will be found. Hence, outputting the maximum size
set among those found by the runs gives the following corollary.

Corollary 2. There exists a randomized algorithm which, given an n-vertex
graph G, in (2—¢e4)"n®W) time outputs a set X C V(G) inducing a d-degenerate
graph. Moreover, X is mazximum with probability at least ;

As the total probability that Ay outputs some set of vertices is bounded by 1,
we obtain also the following corollary.

Corollary 3. For any integer d > 1 there exists a constant €4 > 0 such that
any n-vertex graph contains at most (2 — e4)™ inclusion-wise mazimal induced
d-degenerate subgraphs.

Let us elaborate briefly on the idea behind the algorithm of Theorem[Il Assume
first that G has large average degree, i.e., |[E(G)| > M|V (G)| for some large
constant \. As d-degenerate graphs are sparse, i.e., the number of edges is less
than d times the number of vertices, it follows that for any set X inducing a
d-degenerate graph G[X], only a tiny fraction of edges inside G are in fact inside
G[X]. Hence, an edge uv chosen uniformly at random can be assumed with high
probability to have at least one endpoint outside X. We can further choose at
random, with probabilities 1/3 each, one of the following decisions: u € X, v ¢ X
oru ¢ X, veX,oruvé¢ X. In this manner we fix the status of two vertices
of G and, if A > 4, the probability that the guess is correct is larger than 1/4. If
this randomized step cannot be applied, we know that the average degree in G
is at most Ad and we can apply more standard branching arguments on vertices
of low degrees.

Our algorithm is a polynomial-time routine that outputs an induced d-
degenerate graph by guessing assignment of consecutive vertices with proba-
bilities slightly better than 1/2. We would like to remark that all but one of the
ingredients of the algorithm can be turned into standard, deterministic branch-
ing steps. The only truly randomized part is the aforementioned random choice
of an edge to perform a guess with enhanced success probability. However, to
ease the presentation we choose to present the whole algorithm in a randomized
fashion by expressing classical branchings as random choices of the branch.
Organization. In Section 2] we settle notation and give preliminary results on de-
generate graphs. Section [3] contains the proof of Theorem [l Section H concludes
the paper.

2 Preliminaries

Notation. We use standard graph notation. For a graph G, by V(G) and E(G)
we denote its vertex and edge sets, respectively. For v € V(G), its neighbor-
hood N¢g(v) is defined as Ng(v) = {u : wv € E(G)}. For a set X C V(G)
by G[X] we denote the subgraph of G induced by X. For a set X of vertices
or edges of G, by G \ X we denote the graph with the vertices or edges of X
removed; in case of vertex removal, we remove also all the incident edges.

6 M. Pilipczuk and M. Pilipczuk

Degenerate Graphs. For an integer d > 0, we say that a graph G is d-degenerate
if every subgraph (equivalently, every induced subgraph) of G contains a vertex
of degree at most d. Clearly, the class of d-degenerate graphs is closed under
taking both subgraphs and induced subgraphs. Note that 0-degenerate graphs
are independent sets, and the class of 1-degenerate graphs is exactly the class of
forests. All planar graphs are 5-degenerate; moreover, every K,.-minor-free graph
(in particular, any H-minor-free graph for |V (H)| = r) is O(rv/log r)-degenerate
125-27].

The following simple proposition shows that the notion of d-degeneracy admits
greedy arguments.

Proposition 4. Let G be a graph and v be a vertex of degree at most d in G.
Then G is d-degenerate if and only if G\ v is.

Proof. As G\ v is a subgraph of G, then d-degeneracy of G implies d-degeneracy
of G\ v. Hence, we only need to justify that if G\ v is d-degenerate, then so does
G. Take any X C V(G). If v € X, then the degree of v in G[X] is at most its
degree in G, hence it is at most d. However, if v ¢ X then G[X] is a subgraph of
G \ v and G[X] contains a vertex of degree at most d as well. As X was chosen
arbitrarily, the claim follows. a

Proposition M ensures that one can test d-degeneracy of a graph by in turn
finding a vertex of degree at most d, which needs to exist due to the definition,
and deleting it. If in this manner we can remove all the vertices of the graph,
it is clearly d-degenerate. Otherwise we end up with an induced subgraph with
minimum degree at least d 4+ 1, which is a sufficient proof that the graph is not
d-degenerate. Note that this procedure can be implemented in polynomial time.
As during each deletion we remove at most d edges from the graph, the following
proposition is straightforward.

Proposition 5. Any n-vertex d-degenerate graph has at most dn edges.

3 The Algorithm

In this section we prove Theorem [Il Let us fix d > 1, an n-vertex graph G and
an inclusion-wise maximal set X C V(G) inducing a d-degenerate graph.

The behaviour of the algorithm depends on a few constants that may depend
on d and whose values influence the final success probability. At the end of this
section we propose precise values of these constants and respective values of ¢4
for 1 < d < 6. However, as the values of ¢4 are really tiny even for small d, when
describing the algorithm we prefer to introduce these constants symbolically,
and only argue that there exists their evaluation that leads to a (2 —e4) ™" lower
bound on the probability of successfully sampling X.

The algorithm maintains two disjoint sets A, Z C V(G), consisting of vertices
about which we have already made some assumptions: we seek for the set X
that contains A and is disjoint from Z. Let @ = V(G) \ (AU Z) be the set of
the remaining vertices, whose assignment is not yet decided.

Finding a Maximum Induced Degenerate Subgraph Faster Than 2" 7

We start with A = Z = (. The description of the algorithm consists of a
sequence of rules; at each point, the lowest-numbered applicable rule is used.
When applying a rule we assign some vertices of @) to the set A or Z, depending
on some random decision. We say that an application of a rule is correct if,
assuming that before the application we have A C X and Z N X = (), the
vertices assigned to A belong to X, and the vertices assigned to Z belong to
V(G)\ X. In other words, a correct application assigns the vertices consistently
with the fixed solution X.

We start with the randomized rule that is triggered when the graph is dense.
Observe that, since G[X] is d-degenerate, G[X N Q] is d-degenerate as well and,
by Proposition [contains less than d|X N Q| edges. Thus, if |E(G[Q)])|/|Q)] is
significantly larger than d, then only a tiny fraction of the edges of G[Q)] are
present in G[X]|. Hence, an overwhelming fraction of edges of G[Q] has at least
one of the endpoints outside X, so having sampled an edge of G[Q] uniformly at
random with high probability we may assume that there are only three possibil-
ities of the behaviour of its endpoints, instead of four. This observation leads to
the following rule. Let A > 4 be a constant.

Rule 1. If |E(G[Q])| > Ad|Q)|, then:

1. choose an edge uv € E(G[Q]) uniformly at random;
2. with probability 1/3 each, make one of the following decisions: either assign
u to A and v to Z, or assign u to Z and v to A, or assign both v and v to Z.

Lemma 6. Assume that A C X and Z N X = () before Rule[ll is applied. Then
the application of Ruleldl is correct with probability at least Agj\l.

Proof. As |E(GIQ))| > AdIQ], but |E(GIX N Q)| < d|X N Q| < d|Q] by Propo-
sition [, the probability that uv ¢ E(G[X]) is at least *}'. Conditional on the
assumption uv ¢ F(G[X]), in the second step of Rule [Il we make a correct deci-
sion with probability 1/3. This concludes the proof. O

Note that the bound >‘3j\1 is larger than 1/4 for A > 4.

Equipped with Rule Il we may focus on the case when G[Q] has small average
degree. Let us introduce a constant £ > 2\ and let S C @ be the set of vertices
having degree less than kd in G[Q)]. If Rule[dlis not applicable, then |E(G[Q])| <
Ad|Q|. Hence we can infer that [S| > *72*|Q|, as otherwise by just counting the
degrees of vertices in @ \ S we could find at least ; - *}|Q| - kd = Ad|Q| edges
in G[Q]. Consider any v € S. Such a vertex v may be of two types: it either
has at most d neighbours in A, or at least d + 1 of them. In the first case, we
argue that we may perform a good guessing step in the closed neighbourhood
of v, because the degree of v is bounded and when all the neighbours of v are
deleted (assigned to Z), then one may greedily assign v to A. In the second case,
we observe that we cannot assign too many such vertices v to A, as otherwise
we would obtain a subgraph of G[A] with too high average degree. Let us now
proceed to the formal arguments.

8 M. Pilipczuk and M. Pilipczuk

Rule 2. Assume there exists a vertex v € @ such that |[Ng(v) N Q] < kd and
[Ng(v)NA| <d. Let r = |Ng(v)NQ| and v1,va,...,v, be an arbitrary ordering
of the neighbours of v in Q. Let v = v(r) > 1 be such that

R I SR R bt
Randomly, make one of the following decisions:

1. for 1 < i < r, with probability v~¢ assign v1,vs,...,v;_1 to Z and v; to A;
2. with probability y~"~! assign all vertices vy, va,...,v, to Z and v to A.

Note that the choice of v not only ensures that the probabilities of the options
in Rule [sum up to one, but also that v(r) < v([xd] — 1) < 2. We now show a
bound on the probability that an application of Rule 2] is correct.

Lemma 7. Assume that AC X and Z N X = () before Ruleld is applied. Then
exactly one of the decisions considered in Rule[d leads to a correct application.
Moreover, if in the correct decision exactly ig vertices are assigned to AUZ, then
the probability of choosing the correct one is equal to y~%.

Proof. Firstly observe that the decisions in Rule [2] contradict each other, so at
most one of them can lead to a correct application.

Assume that (Ng(v)NQ)NX # 0 and let v;, be the vertex from (Ng(v)NQ)NX
with the smallest index. Then the decision, which assigns all the vertices of
Ng(v) N Q@ with smaller indices to Z and v;, to A leads to a correct application.
Moreover, it assigns exactly ig vertices to AU Z and the probability of choosing
it is equal to y~%.

Assume now that (Ng(v) N Q)N X = 0. We claim that v € X. Assume
otherwise; then v has at most d neighbours in X, so by Proposition @ after
greedily incorporating it to X we would still have G[X] being a d-degenerate
graph. This contradicts maximality of X. Hence, we infer that the decision which
assigns all the neighbours of v from @ to Z and v itself to A leads to a correct
application, it assigns exactly r + 1 vertices to AU Z and has probability v =" 1.

O

We now handle vertices with more than d neighbours in A. Intuitively, there
can be at most d|A| such vertices assigned to A, as otherwise A would have an
induced subgraph with too high average degree. Hence, if there is significantly
more than 2d|A| such vertices in total, then picking one of them at random with
probability higher than 1/2 gives a vertex that needs to be assigned to Z. Let
us introduce a constant ¢ > 2.

Rule 3. If there are at least cd|A| vertices in @ that have more than d neigh-
bours in A, choose one such vertex uniformly at random and assign it to Z.

Lemma 8. Assume that AC X and Z N X = () before Rulel3 is applied. Then
the application of Ruleld is correct with probability at least 1 — 1/c.

Finding a Maximum Induced Degenerate Subgraph Faster Than 2" 9

Proof. Let P ={v € @ : |Ng(v)NA| > d}. As |P| > cd|A], to prove the lemma
it suffices to show that |P N X| < d|A|. Assume otherwise, and consider the set
((PNX)UA) CX. The number of edges of the subgraph of G[X] induced by
(PNX)UAis at least

d+DPNX|=dPNX|+|PNX|>d(|PNX|+]|4]) =d|(PNX)UA|

This contradicts the assumption that G[X] is d-degenerate, due to Proposition[l
]

Note that 1 —1/¢ > 1/2 for ¢ > 2.

We now show that if Rules[I] 21and Bl are not applicable, then |[AU Z] is large,
which means that the algorithm has already made decisions about a significant
fraction of the vertices of the graph.

Lemma 9. If Rules[[@ and[3 are not applicable, then |AU Z| > an for some
constant o > 0 that depends only on the constants d, \, k and c.

Proof. As Rule[Ilis not applicable, @} contains at most 2}5‘ |Q| vertices of degree
at least kd in G[Q]. As Rule] is not applicable, the remaining vertices have
more than d neighbours in A. As Rule [Blis not applicable, we have that

— 2\
" QI < edlA| < edAu 2],

As Q =V (G)\ (AU Z), simple computations show that this is equivalent to
|[AU Z| o cdk 41 -1
V(G)| K — 2\ ’

and the proof is finished. O

Lemma [ensures that at this point the algorithm has already performed enough
steps to achieve the desired success probability. Therefore, we may finish by
brute-force.

Rule 4. If |[AU Z| > an for the constant « given by Lemma [3 for each v € Q
independently, assign v to A or Z with probability 1/2 each, and finish the
algorithm by outputting the set A if it induces a d-degenerate graph, or reporting
an error otherwise.

We now summarize the bound on the success probability.

Lemma 10. The algorithm outputs the set X with probability at least

3\ e\
_ —(1—a)n
max<\/>\1,'y(fnd] 1)’cl> 2 ,

which is equal to (2 —eq)™ for some g4 > 0.

10 M. Pilipczuk and M. Pilipczuk

Proof. Recall that)\37’\1 <4,v([kd] =1) <2, ¢, <2and a >0, by the choice
of the constants and by Lemma [0l Therefore, it suffices to prove that, before
Rule @ is applied, the probability that A C X and ZN X =) is at least

3\ c B
max<\/)\1,’y(f,‘<d]—1),cl> .

However, this is a straightforward corollary of Lemmata [6] [and Bl O

This concludes the proof of Theorem [Il In Table [Tl we provide a choice of values
of the constants for small values of d, together with corresponding value of 2—¢,.

Table 1. Example values of the constants together with the corresponding success
probability

d 1 d 4

A 4.0238224 A 4.000000001397

K 9 K 33/4

c 2.00197442 c 2.0000000001164

« 0.050203 « 0.0037736
2—¢q 1.99991 2—¢q 1.9999999999996

d 2 d 5

A 4.00009156 A 4.000000000005457

K 17/2 K 41/5

c 2.00000763 c 2.0000000000004548

« 0.01449 « 0.0024331
2—¢eq 1.9999999 2 —eq4 1.999999999999999

d 3 d 6

A 4.000000357628 A 4.000000000000021316

K 25/3 K 49/6

c 2.0000000298 ¢ 2.0000000000000017833

« 0.0066225 « 0.0016978
2 —¢egq 1.9999999999 2 —eq 1.999999999999999997

4 Conclusions

We have shown that the MAXIMUM d-DEGENERATE INDUCED SUBGRAPH prob-
lem can be solved in time (2 — £4)"n®M) for any fixed d > 1. There are two
natural questions arising from our work. First, can the algorithm be derandom-
ized? Rules Pl and [3] can be easily transformed into appropriate branching rules,
but we do not know how to handle Rule [[] without randomization.

Second, our constants €4 are really tiny even for small values of d. This is
mainly caused by two facts: the gain over a straightforward brute-force algo-
rithm in Rule 2lis very small (i.e., v(|xd]) is very close to 2) and the algorithm
falls back to Rule [after processing only a tiny fraction « of the entire graph.
Can the running time of the algorithm be significantly improved? Another inter-
esting question would be to investigate, whether the MAXIMUM d-DEGENERATE

Finding a Maximum Induced Degenerate Subgraph Faster Than 2" 11

INDUCED SUBGRAPH problem can be solved in time (2 — £)"n®®) for some
universal constant e that is independent of d.

Apart from the above questions, we would like to state here a significantly
more challenging goal. Let G be a polynomially recognizable graph class of
bounded degeneracy (i.e., there exists a constant d such that each G € G is
d-degenerate). Can the corresponding MAXIMUM INDUCED G-SUBGRAPH prob-
lem be solved in (2 — eg)™ time for some constant eg > 0 that depends only on
the class G7 Can we prove some meta-result for such type of problems?

Our Rules [and [] are valid for any such class G; however, this is not true
for the greedy step in Rule 2l In particular, we do not know how to handle the
MAXIMUM INDUCED G-SUBGRAPH problem faster than 2" even if the input is
assumed to be d-degenerate.

Acknowledgements. We would like to thank Marek Cygan, Fedor V. Fomin
and Pim van 't Hof for helpful discussions.

References

1. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56(5), 1-32 (2009)

2. van Rooij, J.M.M., Nederlof, J., van Dijk, T.C.: Inclusion/Exclusion Meets Measure
and Conquer. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 554—
565. Springer, Heidelberg (2009)

3. Cygan, M., Pilipczuk, M.: Exact and approximate bandwidth. Theor. Comput.
Sci. 411(40-42), 3701-3713 (2010)

4. Bjorklund, A.: Determinant sums for undirected hamiltonicity. In: 51th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pp. 173-182.
IEEE Computer Society (2010)

5. Fomin, F.V., Todinca, ., Villanger, Y.: Exact Algorithm for the Maximum Induced
Planar Subgraph Problem. In: Demetrescu, C., Halldérsson, M.M. (eds.) ESA 2011.
LNCS, vol. 6942, pp. 287-298. Springer, Heidelberg (2011)

6. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Scheduling Partially
Ordered Jobs Faster Than 2". In: Demetrescu, C., Halldérsson, M.M. (eds.) ESA
2011. LNCS, vol. 6942, pp. 299-310. Springer, Heidelberg (2011)

7. Cygan, M., Pilipczuk, M., Wojtaszczyk, J.O.: Capacitated Domination Faster Than
O(2™). In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 74-80. Springer,
Heidelberg (2010)

8. Binkele-Raible, D., Brankovic, L., Cygan, M., Fernau, H., Kneis, J., Kratsch,
D., Langer, A., Liedloff, M., Pilipczuk, M., Rossmanith, P., Wojtaszczyk, J.O.:
Breaking the 2"-barrier for irredundance: Two lines of attack. J. Discrete Algo-
rithms 9(3), 214-230 (2011)

9. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Solving the 2-Disjoint
Connected Subgraphs Problem Faster Than 2". In: Ferndndez-Baca, D. (ed.)
LATIN 2012. LNCS, vol. 7256, pp. 195-206. Springer, Heidelberg (2012)

10. Fomin, F.V., Heggernes, P., Kratsch, D., Papadopoulos, C., Villanger, Y.: Enumer-
ating Minimal Subset Feedback Vertex Sets. In: Dehne, F., Tacono, J., Sack, J.-R.
(eds.) WADS 2011. LNCS, vol. 6844, pp. 399-410. Springer, Heidelberg (2011)

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Pilipczuk and M. Pilipczuk

Razgon, I.: Exact Computation of Maximum Induced Forest. In: Arge, L.,
Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160-171. Springer, Hei-
delberg (2006)

Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293—
307 (2008)

Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst.
Sci. 62(2), 367-375 (2001)

Calabro, C., Impagliazzo, R., Paturi, R.: The Complexity of Satisfiability of Small
Depth Circuits. In: Chen, J., Fomin, F.V. (eds.) IWPEC 2009. LNCS, vol. 5917,
pp. 75-85. Springer, Heidelberg (2009)

Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Woj-
taszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single
exponential time. In: Ostrovsky, R. (ed.) FOCS, pp. 150-159. IEEE (2011)
Lokshtanov, D., Marx, D., Saurabh, S.: Known Algorithms on Graphs of Bounded
Treewidth are Probably Optimal. In: Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 777-789 (2011)
Patragcu, M., Williams, R.: On the possibility of faster SAT algorithms. In: Pro-
ceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 1065-1075 (2010)

Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Pa-
turi, R., Saurabh, S., Wahlstrém, M.: On problems as hard as CNFSAT. CoRR
abs/1112.2275 (2011)

Gupta, S., Raman, V., Saurabh, S.: Fast Exponential Algorithms for Maximum
r~Regular Induced Subgraph Problems. In: Arun-Kumar, S., Garg, N. (eds.)
FSTTCS 2006. LNCS, vol. 4337, pp. 139-151. Springer, Heidelberg (2006)
Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Marion, J.Y., Schwentick, T. (eds.) STACS. LIPIcs, vol. 5, pp. 383-394. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2010)

Angelsmark, O., Thapper, J.: Partitioning Based Algorithms for Some Colouring
Problems. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005.
LNCS (LNAI), vol. 3978, pp. 44-58. Springer, Heidelberg (2006)

Gaspers, S., Kratsch, D., Liedloff, M.: On Independent Sets and Bicliques in
Graphs. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 171-182. Springer, Heidelberg (2008)

Gaspers, S.: Exponential Time Algorithms: Structures, Measures, and Bounds.
PhD Thesis, University of Bergen (2008)

Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Kernelization Hard-
ness of Connectivity Problems in d-Degenerate Graphs. In: Thilikos, D.M. (ed.)
WG 2010. LNCS, vol. 6410, pp. 147-158. Springer, Heidelberg (2010)

Kostochka, A.V.: Lower bound of the hadwiger number of graphs by their average
degree. Combinatorica 4(4), 307-316 (1984)

Thomason, A.: An extremal function for contractions of graphs. Math. Proc. Cam-
bridge Philos. Soc. 95(2), 261-265 (1984)

Thomason, A.: The extremal function for complete minors. J. Comb. Theory, Ser.
B 81(2), 318-338 (2001)

The Exponential Time Hypothesis
and the Parameterized Clique Problem

Yijia Chen!, Kord Eickmeyer?*, and Jorg Flum?

! Department of Computer Science, Shanghai Jiaotong University
yijia.chen@cs.sjtu.edu.cn
2 National Institute of Informatics, Tokyo
eickmeye@nii.ac.jp
3 Mathematisches Institut, Albert-Ludwigs-Universitit Freiburg
joerg.flum@math.uni-freiburg.de

Abstract. In parameterized complexity there are three natural defi-
nitions of fixed-parameter tractability called strongly uniform, weakly
uniform and nonuniform fpt. Similarly, there are three notions of subex-
ponential time, yielding three flavours of the exponential time hypoth-
esis (ETH) stating that 3SAT is not solvable in subexponential time.
It is known that ETH implies that p-CLIQUE is not fixed-parameter
tractable if both are taken to be strongly uniform or both are taken
to be uniform, and we extend this to the nonuniform case. We also show
that even the containment of weakly uniform subexponential time in
nonuniform subexponential time is strict. Furthermore, we deduce from
nonuniform ETH that no single exponent d allows for arbitrarily good
fpt-approximations of clique.

1 Introduction

In parameterized complexity, FPT most commonly denotes the class of strong-
ly uniformly fixed-parameter tractable problems, i.e., parameterized problems
solvable in time f(k)-n°®M for some computable function f. Downey and Fellows
also introduced the classes FPT\,; and FPT,, of uniformly and nonuniformly
fixed-parameter tractable problems, where one drops the condition that f be
computable or allows for different algorithms for each k, respectively. (We give
detailed definitions in Section [21) For example, p-CLIQUE ¢ FPT,,, where p-
CLIQUE denotes the parameterized clique problem, means that for all d € N
and sufficiently large fixed k determining whether a graph G contains a clique of
size k is not in DTIME (nd). The obvious inclusions between the classes FPT,
FPT i, and FPTy, can be shown to be strict [I].
In classical complexity, the subexponential time classes

DTIME (2°e“<">), DTIME (2°<">), and (.. ,DTIME (257), (1)

* This work was supported by a fellowship of the second author within the FIT-
Programme of the German Academic Exchange Service (DAAD).

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 13-£4] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

14 Y. Chen, K. Eickmeyer, and J. Flum

have been considered. In particular, there are the corresponding versions of the
exponential time hypothesis, namely the strongly uniform exponential time hy-
pothesis ETH, the uniform exponential time hypothesis ETHyy;, and the nonuni-
form exponential time hypothesis ETH,,, which are the statements that 3SAT is
not in these respective classes, where n denotes the number of variables of the
input formula [l By results due to Impagliazzo et al. [3] we know that these three
statements are equivalent to the ones obtained by replacing 3SAT by the clique
problem CLIQUE; then, n denotes the number of vertices of the corresponding
graph.

Furthermore, it is known [4] that ETH implies p-CLIQUE ¢ FPT, where p-
CLIQUE denotes the parameterized clique problem. As pointed out, for example
in [5], there is a correspondence between subexponential algorithms having a
running time 20(") and FPT\yp; similar to that between running time 20°"(n) and
FPT. Therefore, it is not surprising that ETH,,; implies p-CLIQUE ¢ FPT,;
(we include a proof in Section HI).

The first main result of this paper shows that ETH,,, implies that p-CLIQUE ¢
FPT,,. So, putting the three results together, we see that:

(i) if ETH holds, then p-CLIQUE ¢ FPT;
(ii) if ETHyp; holds, then p-CLIQUE ¢ FPT y;
(iii) if ETH,, holds, then p-CLIQUE ¢ FPT,,,.

One of the most important complexity classes of (apparently) intractable param-
eterized problems is the class W[1], the class of problems (strongly uniformly)
fpt-reducible to p-CLIQUE. By replacing (strongly uniformly) fpt-reducible by
uniformly fpt-reducible and nonuniformly fpt-reducible, we get the classes W[1]yni
and W/[1],,, respectively. So, the previous results can be seen as providing some
evidence that FPT # W(1], FPT,; # W[1],,;, and FPT,, # W[1] . Note that
the strongest separation, FPT,, # W/[1]_ , obtained in this paper under ETH,,,,
plays a role in [6] (see the comment following Theorem 1.1 of that paper). In
a recent paper [7] on the history of Parameterized Complexity Theory, Downey
remarks that the question FPT,, # W[1] is a central issue of the theory.

We get the implication (iii) by using a family of algorithms witnessing p-CLI-
QUE € FPT,, to obtain an algorithm showing p-CLIQUE is in “FPT,y; for posi-
tive instances.” Once we have this single algorithm for p-CLIQUE, we adapt the
techniques we used in [§] to show (i), to get that the clique problem CLIQUE is
in (,-o DTIME (2°"), that is, the failure of ETHy,.

The basic idea of parameterized approximability is explained in [9] as fol-
lows: “Suppose we have a problem that is hard to approximate. Can we at least
approximate it efficiently for instances for which the optimum is small? The clas-
sical theory of inapproximability does not seem to help answering this question,
because usually the hardness proofs require fairly large solutions.” In [9] and [10]
the framework of parameterized approximability was introduced. In particular,
the concept of an fpt approximation algorithm with a given approximation ratio
was coined and some (in)approximability results were proven.

! We should mention that in [Z] a different statement is called nonuniform ETH.

ETH and the Parameterized Clique Problem 15

Our second main result is a nonapproximability result for p-CLIQUE: under
the assumption ETH,,,, we show that for every d € N there is a p > 1 such that
p-CLIQUE has no parameterized approximation algorithm with approximation
ratio p and running time f(k) - n? for some function f : N — N.

The content of the different sections is the following. We recall concepts and
fix notation in Section 2l In Section Bl we derive a result on the clique problem
used to obtain both main results (in Sectiondland Section[l). Then, in Section[d]
we show that the results relating the complexity of p-CLIQUE and the different
variants of ETH are of a more general nature. Finally, in Section [1] we show
that the second and third time class in () are distinct.

2 Some Preliminaries

Let N denote the positive natural numbers. If a function f : N — N is nonde-
creasing and unbounded, then f~! denotes the function f~!: N — N with

f—l(n) — {max{i eN ‘ f(’t) < n}7 if n > f(l)

1, otherwise.

Then, f(f~'(n)) < nforalln > f(1) and the function f~! is nondecreasing and
unbounded.

Let f,g : N = N be functions. Then f € 0°(g) (often written as f(n) €
0°%(g(n))) if there is a computable function h : N — N such that for all £ > 1
and n > h(f), we have f(n) < g(n)/¢.

We denote the alphabet {0,1} by X'. The length of a string = € X* is denoted
by |z|. We identify problems with subsets @ of X*. If z € @ we say that x is a
positive instance of the problem Q. Clearly, as done mostly, we present concrete
problems in a verbal, hence uncodified form. For example, we introduce the
problem CLIQUE in the form:

CLIQUE
Instance: A graph G and k € N.
Problem: Does G have a clique of size k?

A graph G is given by its vertex set V(G) and its edge set E(G). By |G| we
denote the length of a string naturally encoding G. The cardinality or size of a
set S is also denoted by |S].

If A is an algorithm and A halts on input z, then we denote by ta(z) the
number of steps of A on input z; if A does not halt on x, then t4(x) := co.

We view parameterized problems as pairs (@, k) consisting of a classical prob-
lem @ C X* and a parameterization k : X* — N, which is required to be
polynomial time computable. We will present parameterized problems in the
form we do for p-CLIQUE:

16 Y. Chen, K. Eickmeyer, and J. Flum

p-CLIQUE
Instance: A graph G and k € N.
Parameter: k.
Problem: Does G have a clique of size k7

A parameterized problem (Q,) is (strongly uniformly) fized-parameter tractable
or, in FPT, if there is an algorithm A deciding (), a natural number d, and a
computable function f : N — N such that t4(z) < f(k(z)) - |z|? for all z € X*.

If in this definition we do not require the computability of f, then (Q, x) is
uniformly fized-parameter tractable or, in FPTy,,;. Finally, (Q,) is nonuniformly
fized-parameter tractable or, in FPT,,, if there is a natural number d and a
function f : N — N such that for every k € N there is an algorithm A} deciding
the set {x € Q | k(x) = k} with t4, (z) < f(k(2)) - |2|? for all z € X*.

In Section [6] we assume that the reader is familiar with the notion of (strongly
uniform) fpt-reduction, with the classes of the W-hierarchy, and for ¢,d € N
with the weighted satisfiability problem p-WSAT(I3 4) (e.g., see [11]). We write
(Q, r) <Pt (Q', k') if there is an fpt-reduction from (Q, k) to (Q’, k').

3 Going from Nonuniform to Uniform on Positive
Instances

In this section we show how to get a single algorithm detecting cliques of size k
in time f(k)-|G 1°®) on positive instances from the existence of such algorithms
of running time O(|G \EHW %) for each pair of natural numbers k, /. We now state
this assumption formally; and we will later show it to be unlikely because it

implies that ETH,,, is not true.
Definition 1. We say that CLIQUE satisfies (%) if

for every ¢ € N there is an ey € N such that for every k € N there is a
constant ar € N and an algorithm Ay ; which on every graph G' which
contains a clique of size k outputs such a clique in time

apk - ‘G‘ez+k/£.

The behaviour of A, on graphs without a clique of size k or on inputs
not encoding graphs may be arbitrary.

By a standard self-reduction argument we have:
Lemma 2. If p-CLIQUE € FPT,,, then CLIQUE satisfies (x).

We now use the algorithms in (*) to obtain a single algorithm with a guaranteed
running time on positive instances.

ETH and the Parameterized Clique Problem 17

Lemma 3. If CLIQUE satisfies (%), then there is an algorithm A deciding CLIQUE
and there is a function f: N — N such that

ta(G, k) < f(k) -|G|""
for every positive instance (G, k) of CLIQUE.
Proof. We let C be any algorithm which on input (G, k) decides in time \G\O(k)
whether G contains a clique of size k, e.g., by brute force. Let { My, Ma, ...} be
any recursive enumeration of all Turing machines. By standard arguments we
may assume that, given inputs ¢, i, and x, we can simulate ¢ steps of machine

M, on input z in time polynomial in i, ¢ and |z|.
We define the algorithm A as follows:

A //G=(V(G),E(G)) agraph and k € N

1. do the following in parallel:

2 simulate C on (G, k) and

3. simulate M; on G for i =1,...,|G]|.

4. if the simulation of C accepts then accept

5 if the simulation of C rejects then never halt

6 if one of the machines M; finds a clique of size k then accept.

Obviously, this algorithm will accept an input (G, k) if and only if G contains
a clique of size k. We now turn to the claimed running time. Let £ > 1, and let
e¢ be the corresponding constant from assumption (x). For k > £(£ + 1)ey, the
running time of Ay is bounded by

.
apr - |G|,

and for all but finitely many instances G, the algorithm A, j, will be among the
ones simulated by A. For such instances G, the running time of A is bounded by
((# machines to be simulated in parallel) - (# of steps) - \G\)O(l) ,

k o(1)
< (161 - ac - G111 - |G1)

d-(k41)
Sck . |G| £—1

for suitable constants ¢ and d, the latter one not depending on ¢, k or G.

4 ETH,, and the Complexity of p-Clique

In this section we show our first main result, namely:

Theorem 4. If ETH,, holds, then p-CLIQUE ¢ FPT,,,.

18 Y. Chen, K. Eickmeyer, and J. Flum

To obtain this result we prove the following chain of implications
(@) = (b)pos = (¢)pos = (d),
where

(a) p-CLIQUE € FPT,,;
(b)pos There is an algorithm A deciding CLIQUE such that for all positive in-
stances (G, k) of CLIQUE and some function f : N — N we have

ta(G, k) < F(k) - |G["".

(c)pos There is an algorithm A deciding CLIQUE such that for all positive in-
stances (G, k) of CLIQUE, where G has vertex set V(G), we have

ta(G, k) < 20UV,
(d) ETH,, does not hold.

Note that =(d) = —(a) is the claim of Theorem @l

The implication (a) = (b)pos was shown in the previous section (Lemma
and Lemma [3). We turn to the implication (b)pos = (¢)pos- Let (b) and (c)
be the statements obtained from (b)pos and (c)pes, respectively, by deleting the
restriction to positive instances. Note that (c) is equivalent to the failure of
ETH,y;. Furthermore, we let (b)eg be the statement (b) with the additional
requirement that the function f is computable and let (c)egr be the statement
obtained from (c) by replacing 2°(V () by 20" (IV(&)D) Again note that (C)efr is
equivalent to the failure of ETH.

Lemma 5. (1) (b)esr implies (¢)efr;

(2) (b) implies (c);

(8) (b)pos implies (¢)pos-

Part (1) was shown as Theorem 27 in [8] (and previously in []). We argue
similarly to get parts (2) and (3). In particular, we use the following lemma
stated and proved in [§] as Lemma 28. Its proof uses the fact that a clique in a
graph G can be viewed as an “amalgamation of local cliques” of subgraphs of G.

Lemma 6. There is an algorithm D that assigns to every graph G = (V, E)
and k,m < |V| in time polynomial in |V|-2™ a graph G' = (V',E') with
V| < |V|*-2™ such that

G has a clique of size k <= G’ has a clique of size [|V|/m/]. (2)

Proof (of Lemmal[4 (3)). The proof of Lemma [0l (2) is obtained by the obvious
modification and is left to the reader.

Let the algorithm I be as in Lemmal[fl Assuming (b),os there is an algorithm
A deciding CLIQUE such that for all positive instances (G, k) of CLIQUE we have
ta(G, k) < f(k) - |G|°™®) and hence,

ta(G, k) < F(k) - [V (@)™

for some f : N — N. We consider the following algorithm deciding CLIQUE:

3)

ETH and the Parameterized Clique Problem 19

B // G a graph and k € N

1. Do in parallel for every m < |V(G)| the following

2. simulate D on (G, k,m) and let G’ be its output
3. simulate A on (G, [|[V(G)|/m])

4 if A accepts for some m then accept

5 else reject.

Let (G, k) be a positive instance of CLIQUE and n := |V (G)|. Without loss of
generality, we can assume that f is nondecreasing and unbounded. For

o[])

we have m > log n and m € o(n) and, by (@),
t(G [IV(@)|/m]) < f([n/m]) - (n? - 2m)el/m) = go(m),
Thus, the running time for Line 2 to Line 5 is bounded by 2°("). Therefore
ts(G, k) < O(n - 2°0M) < 20(), m

We already remarked that (c) is equivalent to the failure of ETH,y;. Thus, part
(2) of the previous lemma yields:

Corollary 7. If ETHyy;, then p-CLIQUE ¢ FPT,y;.

Proof of (¢)pos = (d): For every € > 0 there is an ng such that for graphs with
[V(G)| > no the running time of the algorithm asserted by (c)pos is bounded
by 2¢V(G)l on positive instances. For graphs with at least ng vertices we let the
algorithm run for at most this many steps and reject if it does not hold within
this time bound. For smaller graphs we use brute force.

For later purposes we remark:

Corollary 8. If CLIQUE satisfies (x), then ETHy, does not hold.

Proof. If CLIQUE satisfies (), then (b)pes holds by Lemma Bl We have shown
that (b)poes implies (d), thus, ETH,, does not hold.

5 ETH,, and the Parameterized Approximability of
p-Clique

Let p > 1 be a real number. As in [J], we say that an algorithm A is an fptyn;
parameterized approzimation algorithm for p-CLIQUE with approximation ratio
p if

(i) ta(G, k) < f(k) - V(@)D for all instances (G, k) of p-CLIQUE and some
function f: N — N;

20 Y. Chen, K. Eickmeyer, and J. Flum

(ii) for all positive instances (G, k) of p-CLIQUE the algorithm A outputs a clique
of size at least k/p; otherwise, the output of A can be arbitrary.

If d € N and we get to(G,k) < f(k) - |[V(G)|¢ in (i), then we say that A is an
fotuni parameterized approximation algorithm for p-CLIQUE with approzimation
ratio p and exponent d.

Now we can state the main result of this section:

Theorem 9. If ETH,,, holds, then for every d € N there is a p > 1 such that
p-CLIQUE has no fptyn; parameterized approximation algorithm with approxima-
tion ratio p and exponent d.

The key observation which, together with Corollary Rl will yield this theorem is
contained in the following lemma.

Lemma 10. Assume that p-CLIQUE has an fpty,; parameterized approzimation
algorithm with approximation ratio p > 1 and exponent d > 2. Then, for every
rational number r with 0 < r < loép, there is an algorithm B deciding CLIQUE
such that for some function g : N — N and every instance (G, k) of CLIQUE

ta(G, k) < g(k) - |V(G)[" 24T,

Proof. The main idea is as follows: we assume the existence of an fpt,,; param-
eterized approximation algorithm A for p-CLIQUE. Given an instance (G, k) of
CLIQUE we stretch it by passing to an equivalent “product instance” (G’,k’).
By applying A to (G’, k") we can decide whether (G, k) € CLIQUE.

For a graph G = (V,E) we let w(G) be the size of a maximum clique in
G. Furthermore, for every m € N with m > 1 we denote by G™ the graph
(V(G™), E(G™)), where

V(G™) :=V" ={(v1,...,0m) | v1,...,0m €V}
E(G™) := {{(ul,...,um),(vl,...,vm)} ‘ {U1y oy Uy V1, oy U }

is a clique in G and (uy,...,um) # (vl,...,vm)}.

One easily verifies that

W(G™) = w(G)™. (4)

Now we let A be an fpt,,; parameterized approximation algorithm for p-CLIQUE
with approximation ratio p > 1 and exponent d > 2, say, with running time
bounded by f(k)-|V(G)|%. Let r be a rational number with 0 < <, ! . Then,

log p
p < v/2 and for every k € N with k > 2 we get

(kkl)rkm > p. (5)

We let B be the following algorithm:

ETH and the Parameterized Clique Problem 21

B // G a graph and k € N

1. if k=1 or k < r then decide whether G has a clique of size k by
brute force

2. else simulate A on (GI*/71 ElI*/mT)
3. if A outputs a clique of GI*/1 of size kI*/71/p
4. then accept else reject.

The algorithm B decides CLIQUE: Clearly, the answer is correct if ¥ = 1 or
k < r. So assume that k& > 2 and k > r. If G has no clique of size k, that is,
w(@) < k — 1, then, by @), w(GM*/"1) < (k —1)[*/1. By @),

Elk/m1

> (k—1)l*/T;
) (k—1)

thus, compare Line 3 and Line 4, the algorithm B rejects (G, k). If w(G) > k
and hence, w(G““/r]) > Ek[%/71 then the approximation algorithm A outputs a
clique of GI*/71 of size k!*/"1/p; thus B accepts (G, k).

Moreover, on every instance (G, k) with G = (V, E) the running time of B is
bounded by

d
V|2 4 [V 2Tz g (k(k/ﬂ) . ‘V(G[k/r])’ < g(k) - |V|rrEre R/,

for a suitable g : N — N.
Setting r := 1/log p in the previous lemma, we get:

Corollary 11. If there is an fpty,; parameterized approximation algorithm for
p-CLIQUE with approzimation ratio p > 1 and exponent d > 2, then there exists
e € N and an algorithm B deciding CLIQUE with t5(G, k) < g(k)-|V (G)|¢T Tk los r

Proof of Theorem[& By contradiction, assume that for some d > 2 and all p > 1
the problem p-CLIQUE has an fpt,,; parameterized approximation algorithm
with approximation ratio p and exponent d.

If ¢ € N, then d- ¢ < 101 0 for suitable p > 1. Thus, by Lemma [0 there is
an algorithm A, deciding (%LIQUE such that for some e, € N and some function
¢ : N — N and every instance (G, k)

ta, (G k) < g(k) - [V (G)|* M7,

Fix k € N. Then, again using the self-reducibility of CLIQUE, there is an algo-
rithm Ay which on every graph G outputs a clique of size k, if one exists, in

time
0O (‘G‘ee—s-l—s-k/z) _

Thus, CLIQUE satisfies (x) (the property introduced in Definition [I]). Therefore,
ETH,, does not hold by Corollary 8l

22 Y. Chen, K. Eickmeyer, and J. Flum

6 Some Extensions and Generalisations

Some results of Section Bl and of Section [can be stated more succinctly and in
a more general form in the framework of parameterized complexity theory. We
do this in this section, at the same time getting some open questions.

The class FPT,, is closed under fpt-reductions, that is,

if (Q,r) <™ (Q', k") and (Q',r") € FPTyy, then (Q, k) € FPT,,. (6)

Thus, for every W[l]-complete problem (@, k) (complete under fpt-reductions),
we have

(Q,k) € FPT,, <= W[1] C FPT,,. (7)
Denote by FPT]Tni the class of problems (@, k) such that there is an algorithm
deciding @ and with running time h(s(z))-|z|?M) for 2 € Q, that is, for positive
instances = of Q. The class FPT] . is closed under fpt-reductions, too. So, again

uni

we have for every W/1]-complete problem (Q, k),
(Q,k) € FPT! . <= W][1] C FPT} (8)

uni uni*

Corollary 12. For every W[1]-complete problem (Q, k),
(Q, k) € FPT,, implies (Q,r) € FPTT

uni*

Proof. By Lemma 2] and Lemma B, we know that the implication holds for the
W]1]-complete problem p-CLIQUE. Now, the claim follows by (@) and (8.

It is not clear whether the previous implication holds for all problems (Q, k) €
WI1] (and not only for the complete ones). Of course, it does if FPT = W[1].
The proof of Lemma [3] makes essential use of a self-reducibility property of p-
CLIQUE. For t,d € N the weighted satisfiability problem p-WSAT(I}) has this
self-reducibility property, too. So, along the lines of Lemma [3] one gets (we leave
the details to the reader):

Lemma 13. Let t,d € N. Then
p-WSAT(I} 4) € FPTy, implies p-WSar(I},) € FPTT

uni-

And thus, we get the extension of Corollary 2] to all levels of the W-hierarchy:
Proposition 14. Let t € N. For every W[t]-complete problem (Q, k),

(Q, k) € FPT,, implies (Q,k) € FPTT

uni*

After Theorem [l we have considered two further properties of the clique problem
there denoted by (b)pos and (c¢)pos- One could also define these properties for
arbitrary parameterized problems (even though, there are some subtle points
as the terms 2°UV(&D and 2°0GD may be distinct). More importantly, these
properties are not closed under fpt-reductions. So somehow one has to check
whether other implications of Section Ml survive problem by problem. We do
that here for the most prominent WI2]-complete problem, the parameterized
dominating set problem p-DS:

ETH and the Parameterized Clique Problem 23

p-DS
Instance: A graph G and k € N.
Parameter: k.
Problem: Does G have a dominating set of
size k7

We denote by DS the underlying classical problem. In [8, Theorem 29] we have
shown:

If DS can be decided in time f(k) - |V(G)|°"®) for some computable
f N —= N, then DS can be decided in time 20" (V@)

eff

The reader should compare this result with the following one in the spirit of this
paper.
Theorem 15. If there is an algorithm A deciding DS such that for all positive
instances (G, k) of DS we have

ta(G,) < £(k) - |G|"
for some function f : N — N, then there is an algorithm B deciding DS such
that for all positive instances (G, k) of DS we have

t(G, k) < 220V(@D).

The proof of the corresponding result for CLIQUE, namely the implication (b)p os
= (c)pos, was based on Lemma [which used the fact that a clique in a graph can
be viewed as an “amalgamation of local cliques” of subgraphs. As dominating
sets are not necessarily an “amalgamation of local dominating sets,” in [8] we
took a detour via the weighted satisfiability problem for propositional formulas
in CNF. As an inspection of the exposition in [8] shows, it can be adapted to a
proof of Theorem

7 An Example

We believe that the three statements ETH, ETH,,;, and ETH,, are true and
hence equivalent. Here we consider the “underlying” complexity classes (see ().
Clearly,

eff
DTIME (20 (")) C DTIME (20(")) C .o DTIME (25") (9)

To the best of our knowledge it is open whether the first inclusion is strict. Here
we show the strictness of the second inclusion in (@). We remark that in [8|,
Proposition 5] we proved that the first class, that is, the effective version of the
second one, coincides with an effective version of the third class.

For m € N let 1™ be the string in X* consisting of m ones. Recall that
Y = {0,1}. For a Turing machine M we denote by enc(M) a string in X*
reasonably encoding the Turing machine M. Furthermore, M| denotes the length
of enc(M), M| = |enc(M)].

24

Y. Chen, K. Eickmeyer, and J. Flum

Theorem 16. The problem

Exp-HALT
Instance: A Turing machine M, z € X* and 1™ with
m € N.

Problem: Does M accept x in time olm/(IM| + [x])]+

is in .-, DTIME (2°™) \ DTIME (2°(")).

Due to space limitations we cannot present a proof in this extended abstract.

References

10.

11.

Downey, R., Fellows, M.: Fixed-parameter tractability and completeness iii: some
structural aspects of the w hierarchy. In: Ambos-Spies, K., Homer, S., Schoning,
U. (eds.) Complexity Theory, New York, NY, USA, pp. 191-225. Cambridge Uni-
versity Press (1993)

Ganian, R., Hlineny, P., Langer, A., Obdrzéalek, J., Rossmanith, P., Sikdar, S.:
Lower bounds on the complexity of MSO; model-checking. In: Proc. STACS 2012,
pp. 326-337 (2012)

Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences 63, 512-530 (2001)

Chen, J., Huang, X., Kanj, I.A., Xia, G.: Linear fpt reductions and computational
lower bounds. In: Proc. of STOC 2004, pp. 212-221 (2004)

Flum, J., Grohe, M.: Parametrized complexity and subexponential time (column:
Computational complexity). Bulletin of the EATCS 84, 71-100 (2004)

Grohe, M.: The complexity of homomorphism and constraint satisfaction problems
seen from the other side. J. ACM 54(1) (2007)

Downey, R.: The Birth and Early Years of Parameterized Complexity. In: Bod-
laender, H.L., Downey, R., Fomin, F.V., Marx, D. (eds.) Fellows Festschrift 2012.
LNCS, vol. 7370, pp. 17-38. Springer, Heidelberg (2012)

Chen, Y., Flum, J.: On miniaturized problems in parameterized complexity theory.
Theoretical Computer Science 351(3), 314-336 (2006)

Chen, Y., Grohe, M., Griiber, M.: On Parameterized Approximability. In: Bod-
laender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 109-120.
Springer, Heidelberg (2006)

Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51, 60-78 (2008)

Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006)

New Results on Polynomial Inapproximability
and Fixed Parameter Approximability
of EDGE DOMINATING SET*

Bruno Escoffier!, Jérome Monnot!, Vangelis Th. Paschos'2, and Mingyu Xiao®

1 PSL Research University, Université Paris-Dauphine, LAMSADE,
CNRS UMR 7243, France
{escoffier,monnot,paschos}@lamsade.dauphine.fr
2 Institut Universitaire de France
3 School of Computer Science and Engineering,
University of Electronic Science and Technology of China, China
myxiao@gmail.com

Abstract. An edge dominating set in a graph G = (V, E) is a subset S
of edges such that each edge in £ — S is adjacent to at least one edge
in S. The EDGE DOMINATING SET problem, to find an edge dominating
set of minimum size, is a basic and important NP-hard problem that
has been extensively studied in approximation algorithms and parame-
terized complexity. In this paper, we present improved hardness results
and parameterized approximation algorithms for EDGE DOMINATING SET.
More precisely, we first show that it is NP-hard to approximate EDGE
DOMINATING SET in polynomial time within a factor better than 1.18.
Next, we give a parameterized approximation schema (with respect to
the standard parameter) for the problem and, finally, we develop an
0" (1.8217)-time exact algorithm where 7 is the size of a minimum ver-
tex cover of G.

1 Introduction

As one of the basic problems in Garey and Johnson’s work on NP-complete-
ness [I7], EDGE DOMINATING SET has received high attention in history. It is
NP-hard even in planar or bipartite graphs of maximum degree 3 [26]. Due to its
theoretical and practical interests, many algorithms have been developed in order
to tackle it. There is a simple 2-approximation algorithm for EDGE DOMINATING
SET in unweighted graphs. It is not hard to verify that any maximal matching
in the graph is an edge dominating set of size at most double of the minimum
size. Carr et al. [7] proved a (2 4+ !)-approximation algorithm for WEIGHTED
EDGE DOMINATING SET (the generalization of EDGE DOMINATING SET where
weights are assigned to the edges of the input graph and the objective becomes

* Research partially supported by the French Agency for Research under the DEFIS
program TODO, ANR-09-EMER-010 and the National Natural Science Foundation
of China under the Grant 60903007.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 25 E 2012.
© Springer-Verlag Berlin Heidelberg 2012

26 B. Escoffier et al.

to determine a minimum total-weight edge dominating set), the ratio of which
was later improved to 2 by Fujito and Nagamochi [I6]. Improved results have also
been obtained in sparse graphs [6] and in dense graphs [22]. However, providing
an approximation algorithm with ratio (strictly) smaller than 2, or proving that
such algorithm does not exist (under some likely complexity hypothesis) still
remains as an open problem. Chlebik and Chlebikova [9] proved that it is NP-
hard to approximate it within any factor better than (75 Assuming the unique
game conjecture (UGC), [22] showed some inapproximability results on dense
instances, a corollary of which is that for every € > 0 EDGE DOMINATING SET is
inapproximable within ratio 3/2 — ¢ (under UGC).

In terms of parameterized complexity, EDGE DOMINATING SET, with param-
eter k being the size of the solution, is fixed-parameter tractable (FPT). Fer-
nau [I4] gave an O*(2.6181%)-time algorithm that has been subsequently im-
proved by Fomin et al. [I5] downto O*(2.4181%) and by Binkele-Raible and Fer-
nau [I] downto O*(2.3819%). Currently, the best result is the O*(2.3147%)-time
algorithm by Xiao et al. [23]. When the graph is restricted to be of maximum
degree 3, the result can be further improved to O*(2.1479%) [24]. There is also a
long list of contributions to exact algorithms for EDGE DOMINATING SET, such
as the O*(1.4423V1)-time algorithm by Raman et al. [20], the O*(1.4082!VI)-
time algorithm by Fomin et al. [I5], the O*(1.3226!V!)-time algorithm by Rooij
and Bodlaender [21], and finally the O*(1.3160/V])-time algorithm by Xiao and
Nagamochi [25].

In this paper, we study parameterized approximation for EDGE DOMINATING
SET. A parameterized approximation algorithm is a technique combining param-
eterization and approximation for getting approximation algorithms with fixed-
parameter running time. In this way, we may be able to achieve approximation
ratios unachievable (or yet unachieved) in polynomial time via fixed-parameter
running times that are smaller than the running times of exact algorithms. We
may also be able to use this technique to handle W[1]-hard problems which un-
likely have fixed-parameter tractable algorithms. The interested reader can be
referred to [4ITTIT9] for more about this issue. Let the parameter k be the size of
the solution to our problem. In the FPT framework, we want to design algorithms
with running time f(k)|7|°™") that decide whether there is a solution of size at
most k or not, where f is a computable function. In approximation algorithms,
we are interested in designing polynomial-time algorithms to find a solution of
size g(k), where ¢ is a computable function. In parameterized approximation,
we wish to design algorithms with running time f(k)|I|°(") that either find an
approximate solution of size g(k) or report that there is no solution of size k.
Clearly, any fixed-parameter tractable problem allows parameterized approxi-
mation algorithms for any computable function g. However, this may not hold
for W[1]-hard problems. For example, the dominating set problem (find a set S
of k vertices in graph G = (E, V) such that each vertex in V' — S is adjacent to
at least one vertex in S) does not allow parameterized approximation algorithms
for g(k) of the form k+ ¢ with fixed constant ¢ [I1I]. For EDGE DOMINATING SET,
we are interested in designing parameterized approximation algorithms, which

Polynomial Inapproximability and FPT Approximability of EDS 27

produce edge dominating sets of size at most (1 + &)k (or assert that there is
no solution of size k) in f(k,e)|7|°") time for some computable function f. Of
course, the goal is to find such an algorithm for a function f which is smaller
than the O*(2.3147%)-time (exact) FPT algorithm by Xiao et al. [23]. This issue
has already been considered for other FPT problems, in particular for the MIN
VERTEX COVER problem. In [2I3]I3] several parameterized approximation algo-
rithms running faster than (exact) FPT algorithms and achieving ratios better
than the ratio 2 (achievable in polynomial time) are given. Note that [313] ask
as open question if similar results can be achieved for EDGE DOMINATING SET.

The remaining parts of this paper are organized as follows. In Section 2] we
give an improved hardness result for EDGE DOMINATING SET by showing that it
is not 5v/5 — 10 + & < 1.18 approximable in polynomial time unless P=NP. In
Sections Bl and @ we tackle parameterized approximation algorithms, answering
positively to the open question in [3]. More precisely, in Section [B we first give
a simple algorithm to present the basic ideas, and then improve this algorithm
in Section @ We conclude the article in Section Bl by devising a parameterized
algorithm for EDGE DOMINATING SET where the parameter is the vertex cover
number of the graph. Due to lengthe limits, results are presented here without
proofs that can be found in [I2].

2 An Improved Polynomial-Time Lower Bound

In this section, we give some new hardness results for EDGE DOMINATING SET,
which are based on a reduction preserving approximation from the famous MIN
VERTEX COVER problem (find a minimum subset S of vertices in a graph such
that each edge has at least one endpoint in S) to EDGE DOMINATING SET.

Before, recall some existing results between MIN VERTEX COVER and EDGE
DOMINATING SET. The first two are rather folklore: there exist two simple ap-
proximation preserving reductions between MIN VERTEX COVER and EDGE DOM-
INATING SET transforming a polynomial-time p-approximation algorithm for one
of them into a polynomial-time 2p-approximation algorithm for the other one.
Let G = (V, E) be a simple graph and let M* C E and C* C V be a minimum
edge dominating set and a minimum vertex cover of G, respectively. We will use
7 = |C*| to denote the size of a minimum vertex cover of G. Since, it is well known
that M* can be supposed to be a maximal matching, we get 7 = |C*| > |M*|.
Also V(M*), the set of endpoints of M*, forms a vertex cover of G and then
2|M*| > 1. Thus, 7 > |[M*| > 7. Now, from any p-approximation algorithm for
MIN VERTEX COVER given by V' we can polynomially find an edge dominating
set B’ by taking at most one arbitrary edge incident to each vertex of V’. Thus,
using the above expression for 7, we get |E'| < |V'| < px71 < 2p|M*|. Conversely,
from any p-approximation algorithm for EDGE DOMINATING SET given by M’,
we can construct a vertex cover V' = V(M') of G by taking the endpoints of M*.
Hence, using expression for 7, we deduce: |V'| = 2|M'| < 2p|M*| < 2p x 7.

In Theorem [just below, we improve the expansion 2p of the reduction to
2p — 1. Dealing with weighted versions of these two problems, it is proved in [5]

28 B. Escoffier et al.

that weighted MIN VERTEX COVER can be approximated as well as weighted
EDGE DOMINATING SET.

Theorem 1. For any p > 1, if there is a polynomial-time p-approrimation algo-
rithm for EDGE DOMINATING SET, then there exists a polynomial-time (2p — 1)-
approzimation algorithm for MIN VERTEX COVER.

In order to prove Theorem [I we show that for each instance G = (V, E') of MIN
VERTEX COVER, we can construct at most |V| instances G; = (V;, E;) (where
[Vi| < 3|V|) of EDGE DOMINATING SET such that a (2p — 1)-approximation
solution to G can be found in polynomial time based on a p-approximation
solution to each G;. For each positive integer 1 < ¢ < |V, the graph G; = (V;, E;)
is a graph constructed from G in the following way: V; = V U {aj,a;- 1] €
{1,...,i}} and E; = EU F; U H;, where F; = {(a;,a}) : j € {1,...,1}} and
H;, = {(v,a5) : v e V,j € {1,...,i}}. Informally, G; contains a copy of G, an
induced matching F; and a complete bipartite graph between the vertices of G
and the left part of the induced matching F;. It is NP-hard to approximate MIN
VERTEX COVER within any factor smaller than 10v/5 — 21 by a result of Dinur
and Safra [I0]. By this result and Theorem [we get the following corollary.

Corollary 1. For any ¢ > 0, EDGE DOMINATING SET is not (5v/5 — 10 4 ¢)-
approzimable in polynomial time unless P = NP.

Note that under UGC, since MIN VERTEX COVER cannot be approximated to
within 2 — ¢ for any € > 0 [I8], we get that for any € > 0, EDGE DOMINATING
SET is not (3/2 — e)-approximable in polynomial time, which is the same lower
bound recently achieved in [22].

3 A Simple Parameterized Approximation Schema

In this section, we design a simple parameterized approximation schema for
EDGE DOMINATING SET. As mentioned in Introduction, this algorithm contains
the basic idea upon which the improved algorithms in Section [l is built.

3.1 CONSTRAINED EDGE DOMINATING SET

First of all, we introduce a CONSTRAINED EDGE DOMINATING SET problem and
present some properties for it. Given a graph G = (V,E) and a prescribed
subset V73 C V of non-isolated vertices, an edge dominating set M is called a
constrained edge dominating set of G, if V1 C V(M). In the CONSTRAINED EDGE
DOMINATING SET problem, we are asked to find a constrained edge dominating
set of minimum size. CONSTRAINED EDGE DOMINATING SET is a natural genera-
tion of EDGE DOMINATING SET where V; = (). We show a simple approximation
algorithm for CONSTRAINED EDGE DOMINATING SET.

Lemma 1. For an instance (G, V1) of CONSTRAINED EDGE DOMINATING SET,
let My be a mazimum matching in the induced graph G[Vi], Ma be a mazimum

Polynomial Inapproximability and FPT Approximability of EDS 29

matching in the induced graph G[V — V1|, and M3 be a set of |Vi — V(My)]
edges such that each edge in Ms is incident on a different vertex in Vi — V (My).
Edge set M' = M; U M> U M3 is a constrained edge dominating set with size
|M'| < (2—p1)v, where v is the size of a minimum constrained edge dominating
set M* and pyv is the number of edges in M™* with both endpoints in Vi, for
some p1.

Note that Lemma [I] is a special case of Lemma Bl in the next section (but we
prefer to give a proof of both lemmas for readability).

Lemma [[limplies a 2-approximation algorithm for CONSTRAINED EDGE DOM-
INATING SET and a possible way to design a parameterized approximation algo-
rithm for EDGE DOMINATING SET. Note that we can first find a vertex set V}
such that V4 C V(M*) for some minimum edge dominating set M* of G and
then use the algorithm in Lemma [Tl to get an approximation algorithm for EDGE
DOMINATING SET. The approximation ratio is related to the size of V;: the larger
the set V7, the better the ratio.

3.2 A Parameterized Approximation Schema for EDGE DOMINATING
SET

As already mentioned in introduction, deciding whether a graph contains an edge
dominating set of size k can be done in O*(2.3147%) time by the parameterized
algorithm presented in [23]. Here we design a parameterized approximation al-
gorithm for it. It is based on the following fact:

Suppose that there are a set Vi and an edge dominating set M such that
Vi CV(M), M| <k and |V1| = k+p'k. Then the number of edges in M
that have both endpoints in Vi is at least p'k.

Indeed, if there were o < p'k edges in M with both endpoints in Vi, then the
number of vertices in V4 would be at most 2a+ (|M|—a) < [M|+a < k+p'k =
[Vi|, a contradiction. Putting together the above emphasized fact and Lemma [l
and taking M = M*, one can see that the computed edge set M’ is of size at
most (2 — p')k.

Then, our goal is to find such a large set V;i. As in several articles devising
FPT algorithms for EDGE DOMINATING SET, we can use the fact that V' (M*) for
a minimum edge dominating set M* is a vertex cover of G. For each edge in the
graph, at least one endpoint of it is in V(M*). Then, we can use a branching
algorithm to construct a set V3 of size up to k + p’k such that V; is part of the
vertex set of a minimum edge dominating set V' (M*) in G. We iteratively select
an edge (a,b) in the current graph and branch into two branches by including
either a or b into V7 and deleting it from the graph until the size of V4 becomes
k+ p'k or the remaining graph has no edge. This process produces at most ok+p'k
vertex sets Vi of size at most k4 p'k in O*(257'F) time and at least one of them
is contained in V(M™*). For each of the vertex sets Vi, we use the algorithm in
Lemma [Tl to compute M’ and return a smallest one. The returned edge set is an
edge dominating set of size at most (2 — p')k if |[M*| < k (note that if in a leaf

30 B. Escoffier et al.

of the search tree we have a set V4 C V(M*) with V1| < k + p'k, this means
that the remaining graph is empty and the output solution is then optimal by
Lemma [T]). By taking p’ =1 — p, we deduce the following result.

Lemma 2. For any p > 0, there exists a (1 + p)-approzimation algorithm to
k-EDGE DOMINATING SET running in O*(22=P%) time for 0 < p < 1.

When p = 0, Lemma [implies that k-EDGE DOMINATING SET can be solved in
O*(4%) time, which is far away from the current best parameterized algorithm
of running time O*(2.3147%). To reduce the gap, we will improve the running
time bound of our parameterized approximation schema in the next section.

4 Improved Parameterized Approximation Schemata

In the algorithm presented in Section B2} in order to search V; we may need
to branch on each edge. One way to reduce the running time is to reduce the
number of branchings in the algorithm. This approach has been used for (exact)
FPT algorithms to obtain improved running times. We will use some of these
improved branchings, but we need to combine them with approximability. We
first deal with these approximation properties in Section [£.1] and then present
the improved parameterized approximation algorithm in Section

4.1 More Approximation Algorithms for CONSTRAINED EDGE
DOMINATING SET

Given a graph G = (V, E). We consider a partition (V1,V2,V3) of the vertex
set V such that:

— Each connected component of the induced graph G[V»] is a clique.
— There is no edge between a vertex in V5 and a vertex in V3.

Once the set V7 is given, we can find in linear time the set of connected compo-
nents of G[V — V4] which are cliques and which constitute Va. Let us now give
more properties of our problems based on this partition.

We consider an instance (G = (V, E), V1) of CONSTRAINED EDGE DOMINATING
SET. Let M* be a minimum constrained edge dominating set of (G = (V, E), V1)
and v = |M*|.

We denote by aq (resp., ag, a3) the number of edges in M* with both end-
points in V3 UV, (resp., with one endpoint in V3 and one in V3, both endpoints
in V3). This partitions the edge set M* into three sets, hence, v = a1 + @z + as.

Moreover, since the connected components of G[Va] are cliques and V (M*) is a
vertex cover of G, we know that V' (M*) contains at least |C;| — 1 vertices in each
clique C; of G[V3]. Assume that there are p cliques Ci,--- ,C, in G[Vz] among
which ¢ cliques Q1, - -+ ,Qq are such that V(Q,;) C V(M*). Then V(M*)NVz =
|[V2| — p + ¢. In other words, we have:

201 +az = V(M) N (ViNWa)| = [Vi| + |Va| = p+¢ (1)

Polynomial Inapproximability and FPT Approximability of EDS 31

We are ready now to specify an approximation algorithm for CONSTRAINED EDGE
DOMINATING SET (Algorithm ApproxPolyl in Figure[dl), which is a generation
of the algorithm in Lemma [T

Input: A graph G = (V = V1 UV, U Vs, E) with the above partition of V.
Output: An edge dominating set M such that Vi C V(M).

1. Add a vertex ¢; to each clique C; in G[Vz], to create a clique of size |C;|+1.
Let V3 = {c}, -+, ¢} be the set of added vertices.

2. Compute a maximum matching M; in G[V4 U Va2 U V3.

3. While there is an edge e = (u,c;) in My with ¢, € V5 and there exists a
neighbor w of u not saturated by M, replace e with (u,w) in M.

4. Let Mj be the set of edges in M; with an endpoint in V5.

Compute a maximum matching M> in G[V3].

6. For each unsaturated vertex in Vi, select an arbitrary edge incident on it.
Let M3 be the set of such edges.

7. Output M = My U My U M3 — Mj.

ot

Fig. 1. Algorithm ApproxPolyl

Lemma 3. Edge set M =ApprozPolyl(G) is a constrained edge dominating
set of (G, V1) with size |M| < (2 — p1)v, where piv = a1 is the number of edges
in M™ with both endpoints in Vi U Vs.

Note that Lemma [l is a special case of Lemma [3] where the vertex set V5 is
an empty set. Lemma [3] shows that we do not need to branch on each clique
component in G[V — Vi] in order to search the vertex set of a constrained edge
dominating set.

To improve the running time of our parameterized approximation schema,
we also need to consider a particular case of the graph where in the partition
(V1, Va, V3) each connected component of G[V3] is a path of length 2.

Let N be the number of these paths in G[V3]. Considering a minimum con-
strained edge dominating set M*, we denote by:

— N; the set of paths in G[V3] such that there is an edge in M* between a
vertex in V] and the central vertex of the path; set ny = |Vy|;

— N3 the set of paths in G[V3] such that there is an edge of the path in M*;
set ng = | Nal;

— N3 the set of remaining paths in G[V3]; set ng = | N3].

Observe that some paths of G[V3] may be counted twice (once with Ny and
once with Na); so, N < nj + na + n3. Note that for each of the ng remaining
paths, M* has to take two edges (between V7 and the endpoints of the path)
to cover the edges of the path. In other words, as > 2n3 + ni. Moreover, by
definition, ns = as.

Consider Algorithm ApproxPoly2 (Figure[2) on an instance (G, V) of CON-
STRAINED EDGE DOMINATING SET.

32 B. Escoffier et al.

Input: A graph G = (V = V1 U Vo U V3, E), where each component in G[V3]
is a path of length 2.
Output: An edge dominating set M such that Vi C V(M).

1. Add a vertex ¢; to each clique C; in G[V2], to create a clique of size |C;|+1.
Let Va3 = {ci, - ,c,} be the set of added vertices.

2. Compute a maximum matching My in G[V; U Vo U V5 U V3], where V3 is
the set of central vertices of paths in G[V3].

3. While there is an edge e = (u, ;) in M; such that ¢; € V3 and there exists
a neighbor w of u not saturated by M, then replace e with (u,w) in M.

4. Let Mj be the set of edges in M; with an endpoint in V3.

5. For each path where the central vertex is not saturated by M, take one
edge in this path.
Let M> be this set of edges.

6. For each unsaturated vertex in Vi, select an arbitrary edge. Let M3 be the
set of such edges.

7. Output M = My U My U M3 — Mj.

Fig. 2. Algorithm ApproxPoly2

The following lemma holds.

Lemma 4. Edge set M =ApprozPoly2(G) is a constrained edge dominating set
of (G, V1) with size |M| < v + ns.

4.2 An Improved Parameterized Approximation Schema

Now we are able to give the improved parameterized approximation schema
ApproxFPT for k-EDGE DOMINATING SET as well as k-CONSTRAINED EDGE DOM-
INATING SET. As explained earlier, the principle is to search the vertex set V}
by using some ‘good’ branchings. Then, in each leaf of our search tree, we will
use the approximation algorithms devised in Section F1] (either directly, or after
some other steps).

We consider a k-constrained edge dominating set (G, V;) with partition I =
(V1, Va2, V3) of the vertex set. Let t = |Vi| + |V2| — p (where p is the number of
cliques in G[V3]). When t > (2 — p)k (0 < p < 1), there are at least (1 — p)k
edges in any optimal solution M* with both endpoints in V; U V5. Therefore,
Lemma Blimplies that a (1+ p)-approximation solution to k~-CONSTRAINED EDGE
DOMINATING SET can be found in polynomial time, if ¢ > (2 — p)k. We will use a
branch-and-search method to move vertices from V3 to V3 U V5 and therefore to
increase the parameter ¢. Note that for each vertex v € V3, it is either in V(M™*)
or not. For the second case, all neighbors of v should be in V(M*) since V(M*)
is a vertex cover of the graph. Then, we can branch on v by either moving v
into V4 (this means v € V(M™*)) or by moving the neighbor set N (v) of v in G[V3]
into V4 (this means v ¢ V(M™*)) and moving all newly created clique components

Polynomial Inapproximability and FPT Approximability of EDS 33

in G[Vs] into Vo. When v is a vertex of degree > 3 in G[V3], we can branch with
recurrence:

Ct)<Ct+1)+C(t+3) (2)

where C(t) is the worst size of the search tree in the algorithm when the current
value of |V1| 4 |Vz| — p is t. When the maximum degree of G[V3] is at most 2, we
may only get C(t) < C(t+ 1) + C(t + 2), by branching on a maximum degree
vertex. In fact, there are some techniques to branch on a component H in G[Vj3]
with a recurrence not worse than (2)), if H is not a path of length 2 [2TI2523].

For a path p1papsps ... of length at least 3, we can branch on ps by including
it into V1 or including its neighbors py and p4 into Vi. For the first branch, we
will also move a clique component pps into V5. Then we can get:

Ct) < C(t+2)+C(t+2) (3)

which is better than (2]).

For a cycle of length at least 5, we branch on an arbitrary vertex in the cycle
and then branch on the generated paths in each branch and finally we can get
a recurrence not worse than (2). For a cycle ¢icaczeq of length 4, we can also
branch with ([B]) by including either {c;,c3} or {c2,csa} into V. For the details
about the proof of this fact, reader is referred to [2T125]23].

It turns out that only for a component of path of length 2 in G[V5] we cannot
branch with a recurrence as good as (2]). We will call a branching with recurrence
at least as @) a good branching.

The main steps of the improved parameterized approximation schema, called
ApproxFPT, are listed in Figure Bl

Let p* ~ 0.21 be the number such that 1.466 = 1.619('=7"). Then the following
holds.

Theorem 2. For any p with 0 < p < 1, ApprozFPT is a (1 + p)-approximation
algorithm running in time O* (2.3740=P)F) if p < p* and in time O*(1.466(2~P)k)
if p=>p*.

5 Parametrization by the Vertex Cover Number

Since the size of any vertex cover in a graph is at least the size of any matching
in this graph, any parameterized algorithm for EDGE DOMINATING SET working
in O(f(k)[1]1°M) time also works in O(f(7)|I|°(V)) time, where 7 is the size
of the minimum vertex cover of the graph. Hence, it is possible to solve EDGE
DOMINATING SET within time O*(2.31477) by using the algorithm in [23]. In this
section we show that this result can be improved down to O* (1.8217).

To this aim, let us consider the algorithm FPT, presented in Figure @ which
outputs a minimum edge dominating set in graph G. Let o ~ 0.2864 be such

that 2.314701-) = (aa(lfa)m)‘

Theorem 3. FPT.(G) computes a minimum edge dominate set in O*(1.8217)
time.

34

B. Escoffier et al.

Input: A graph G = (V = V1 UV2UV3, E), an integer k > 0 and a real number
0<p<1

Output: A (1+ p)-approximation solution M to k-CONSTRAINED EDGE DOM-
INATING SET such that Vi C V(M).

1.

@

While t < (2 — p)k and there is a connected component of V3 which is

not a 2-path, do a good branching.

If t > (2 — p)k, compute ApproxPolyl(G).

Elseif p > 1/2, compute ApproxPoly2(G).

Elseif ¢ > (1 — p)k, do

(a) While ¢t < 2(1 — p)k and V3 # 0, do branch on a 2-path in G[V3] by
including either its central vertex or its two endpoints into Vi;

(b) Compute ApproxPoly2(G).

Elseif N > (1 — p)k, then compute ApproxPoly2(G).

Elseif N < 2(1 — p)k/3, branch into 2V branches by considering the 2V

subsets of paths. For each subset S, include the central vertex of paths

in S into Vi, include the two endpoints of the paths not in S into Vi, and

compute an optimal solution (now V3 = ().

Else consider any subset S of the set of the N paths in G[V3] with size |S]|

at most (1 — p)k — N. For each such subset S, include the two extremities

of the paths in S in Vi, and compute ApproxPoly2(G).

If an optimal solution among all the leaves in the search tree is of size at

most (1 + p)k, then return it. Else report that there is no solution of size

at most k.

Fig. 3. Algorithm ApproxFPT

Input: A graph G = (V, E).
Output: A minimum edge dominate set.

1.

Compute a minimum vertex cover V* of G by using the algorithm in [§],

and let S* =V \ V™.

For k =1 to (1 —)7 determine whether there exists an edge dominating

set of size at most k by using the algorithm in [23]. If any, output the

minimum edge dominating set and quit.

Otherwise, for each subset V7 of V* of size at most at:

(a) Let Vo =V*\ Vi, St = N(Vi)NS*, and Sz = S* \ S1;

(b) Compute a maximum matching M (V1) in G[V2 U S1];

(c) For each vertex in V2 U S; unsaturated by M (V1), take one edge inci-
dent to this vertex. Together with M (V4), this gives a set M'(V1) of
edges.

Output a minimum edge dominating set computed in Step 3 (note that

some of the edge sets M’(V1) are not edge dominating sets).

Fig. 4. Algorithm FPT,

Polynomial Inapproximability and FPT Approximability of EDS 35
6 Conclusion

We provide in this article new insights on the approximability of EDGE DOMI-
NATING SET. Our parameterized approximation algorithm first apply some steps
of a branching algorithm, and then exploit the specificity of obtained instances
to get an approximate solution on them. This is rather different from the notions
of fidelity preserving transformation recently introduced in [13] where informally
the instance is first reduced in an approximate way (and then an (exact) FPT
algorithm is applied). In particular, our approximation algorithm relies on the
branching steps; this is not the case in the approach of [I3] and applying this
latter approach for EDGE DOMINATING SET is an interesting open question men-
tioned in [I3]. Moreover, our algorithm has complexity O*(y¥) for a ratio p where
v = 2.374 (exact algorithm) and v2 = 1.466. Since achieving a ratio 2 is poly-
nomial, one could hope to find approximation algorithms where v, — 1 when
p — 2, which we leave as open question.

References

1. Binkele-Raible, D., Fernau, H.: Enumerate and Measure: Improving Parame-
ter Budget Management. In: Raman, V., Saurabh, S. (eds.) IPEC 2010. LNCS,
vol. 6478, pp. 38—-49. Springer, Heidelberg (2010)

2. Bourgeois, N., Escoffier, B., Paschos, V.T.: Approximation of max independent
set, min vertex cover and related problems by moderately exponential algorithms.
Discrete Applied Mathematics 159(17), 1954-1970 (2011)

3. Brankovic, L., Fernau, H.: Combining Two Worlds: Parameterised Approximation
for Vertex Cover. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010. LNCS,
vol. 6506, pp. 390-402. Springer, Heidelberg (2010)

4. Cai, L., Huang, X.: Fixed-Parameter Approximation: Conceptual Framework and
Approximability Results. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC
2006. LNCS, vol. 4169, pp. 96-108. Springer, Heidelberg (2006)

5. Carr, R.D., Fujito, T., Konjevod, G., Parekh, O.: A 2110—Approximation Algorithm
for a Generalization of the Weighted Edge-Dominating Set Problem. J. Comb.
Optim. 5(3), 317-326 (2001)

6. Cardinal, J., Langerman, S., Levy, E.: Improved approximation bounds for edge
dominating set in dense graphs. Theoretical Computer Science 410(8-10), 949-957
(2009)

7. Carr, R., Fujito, T., Konjevod, G., Parekh, O.: A 2110—approximation algorithm for
a generalization of the weighted edge-dominating set problem. Journal of Combi-
natorial Optimization 5, 317-326 (2001)

8. Chen, J., Kanj, I.A., Xia, G.: Improved upper bounds for vertex cover. Theoretical
Computer Science 411(40-42), 3736-3756 (2010)

9. Chlebik, M., Chlebikova, J.: Approximation hardness of edge dominating set prob-
lems. Journal of Combinatorial Optimization 11(3), 279-290 (2006)

10. Dinur, I., Safra, M.: The importance of being biased. In: Proc. STOC 2002, pp.
33-42 (2002)

11. Downey, R.G., Fellows, M.R., McCartin, C., Rosamond, F.A.: Parameterized ap-
proximation of dominating set problems. Inf. Process. Lett. 109(1), 68-70 (2008)

36

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

B. Escoffier et al.

Escoffier, B., Monnot, J., Paschos, V.T., Xiao, M.: New results on polynomial
inapproximability and fixed parameter approximability of edge dominating set
(manuscript, 2012)

Fellows, M.R., Kulik, A., Rosamond, F., Shachnai, H.: Parameterized Approxima-
tion via Fidelity Preserving Transformations. In: Czumaj, A., Mehlhorn, K., Pitts,
A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 351-362.
Springer, Heidelberg (2012)

Fernau, H.: Edge Dominating Set: Efficient Enumeration-Based Exact Algorithms.
In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp.
142-153. Springer, Heidelberg (2006)

Fomin, F., Gaspers, S., Saurabh, S., Stepanov, A.: On two techniques of combining
branching and treewidth. Algorithmica 54(2), 181-207 (2009)

Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight
edge dominating set problem. Discrete Appl. Math. 118, 199-207 (2002)

Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory
of NP-completeness. Freeman, San Francisco (1979)

Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2-epsilon.
J. Comput. Syst. Sci. 74(3), 335-349 (2008)

Marx, D.: Parameterized complexity and approximation algorithms. The Computer
Journal 51(1), 60-78 (2008)

Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerat-
ing maximal independent sets and other techniques. Theory of Computing Sys-
tems 42(3), 563-587 (2007)

van Rooij, J.M.M., Bodlaender, H.L.: Exact Algorithms for Edge Domination. In:
Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp. 214-225.
Springer, Heidelberg (2008)

Schmied, R., Viehmann, C.: Approximating edge dominating set in dense graphs.
Theoretical Computer Science 414(1), 92-99 (2012)

Xiao, M., Kloks, T., Poon, S.-H.: New Parameterized Algorithms for the Edge
Dominating Set Problem. In: Murlak, F., Sankowski, P. (eds.) MFCS 2011. LNCS,
vol. 6907, pp. 604-615. Springer, Heidelberg (2011)

Xiao, M., Nagamochi, H.: Parameterized Edge Dominating Set in Cubic Graphs
(Extended Abstract). In: Atallah, M., Li, X.-Y., Zhu, B. (eds.) FAW-AAIM 2011.
LNCS, vol. 6681, pp. 100-112. Springer, Heidelberg (2011)

Xiao, M., Nagamochi, H.: A Refined Exact Algorithm for Edge Dominating Set.
In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp.
360-372. Springer, Heidelberg (2012)

Yannakakis, M., Gavril, F.: Edge dominating sets in graphs. SIAM J. Appl.
Math. 38(3), 364-372 (1980)

A New Algorithm for Parameterized MAX-SAT*

Ivan Bliznets and Alexander Golovnev

St. Petersburg University of the Russian Academy of Sciences, St. Petersburg, Russia

Abstract. We show how to check whether at least k clauses of an input
formula in CNF can be satisfied in time O*(1.358%). This improves the
bound O*(1.370%) proved by Chen and Kanj more than 10 years ago.
Though the presented algorithm is based on standard splitting techniques
its core are new simplification rules that often allow to reduce the size
of case analysis. Our improvement is based on a simple algorithm for a
special case of MAX-SAT where each variable appears at most 3 times.

Keywords: exact algorithms, maximum satisfiability, parameterized al-
gorithms, satisfiability.

1 Introduction

1.1 Problem Statement

Maximum Satisfiability (MAX-SAT) is a well known NP-hard problem where
for a given boolean formula in conjunctive normal form one is asked to find
the maximum number of clauses that can be simultaneously satisfied. In the
parameterized version of MAX-SAT the question is to check whether it is possible
to find an assignment that satisfies at least k clauses. The best known upper
bound O*(1.370%) for this problem was given in 2002 by Chen and Kanj [1]. The
previously known bounds are listed in the following table.

Bound Authors Year
0O*(1.618%) Mahajan, Raman [2] 1999
0*(1.3995%) Niedermeier, Rossmanith [3] 1999
0O*(1.3803%) Bansal, Raman [4] 1999
0*(1.3695%) Chen, Kanj [I] 2002

In this paper, we present an algorithm with the running time O*(1.358") for
parameterized MAX-SAT and O*(1.273%) for parameterized (n,3)-MAX-SAT.
(n,3)-MAX-SAT is a special case of MAX-SAT where each variable appears at
most three times.

An alternative way to parametrize MAX-SAT is to ask whether at least [[+
k' clauses can be satisfied ([2], [5], [6]). This is called parametrization above

* Research is partially supported by Federal Target Program “Scientific and scientific-
pedagogical personnel of the innovative Russia” 2009-2013 and Russian Foundation
for Basic Research.

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 37{8] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

38 I. Bliznets and A. Golovnev

guaranteed values since one can always satisfy at least [')] clauses (indeed,

the expected number of clauses satisfied by a random assignment is "}'). It is
shown in [2] that an upper bound ¢* for the parametrization considered in this
paper implies an upper bound qSle for an alternative parametrization. We do
not known any better results for this parametrization.

1.2 General Setting

Literals and Formulas. Throughout the paper, n denotes the number of vari-
ables, m denotes the number of clauses, and k denotes the number of clauses
one is asked to satisfy. By MAX-SAT(F') we denote the maximum number of
clauses in F' that can be satisfied simultaneously. MAX-SAT(F, k) = true iff
MAX-SAT(F) > k. The constants true and false are denoted just by 1 and 0.
Let #r (1) be the number of occurrences of a literal I. By F[I] we denote a for-
mula obtained from F by removing all occurrences of I and deleting all clauses
containing [. By Flz =] we denote a formula obtained by replacing x and &
by ¢ and y, respectively. We say that a variable has degree p if it occurs in the
formula exactly p times. Also we say that a variable x is of type (a, b) if the literal
x occurs a times and the literal £ occurs b times. We say that a variable z is a
(k,1)-singleton ((k,1)-non-singleton) if it is of type (k, 1) and the only negation
is contained (is not contained) in a unit clause. Unit clause is a clause of length
1. A literal [is called pure if the literal [does not appear in the formula. A literal
y dominates a literal x if all clauses containing z contain also y. Two literals
are called inconsistent if one of them is a negation of the second. A literal y is
a neighbor of a literal = if they appear in a clause together. We use “...” to
indicate the rest of a clause. E.g., (xV§V...) is a clause containing literals z,
and probably something else.

Branchings. Instance of a problem is a pair (F, k). The question is whether it is
possible to satisfy at least k clauses in a formula F'. For ¢ > 1, we say that there
exists a branching (a1, .. ., aq) if we can quickly construct formulas F, Fs, ..., Fj
such that the answer for the original problem can be found from the answers
to the problems (Fi,k — a1), (F2, k — a2),...,(Fy, k —aq). If | is a literal of F,

then clearly there exists a branching (F[l],k — #r(1)), (F[l],k — #r()). It is
well-known that if an algorithm on each stage uses only branchings from the set

(a1,1, .- "a’l’(h)v (042’1, s aalqz)v RN (at,l’ s ’at,Qt)’

where a;1 < a2 < -+ < ajyq,, for 1 < i < ¢, then its running time is O*(c¥)
where c is the largest positive root of a polynomial

t q;
p(X) = H(Xaj‘qj _ ZXaj,qj —aj‘i).
Jj=1 i=1
For branching (ai,...,as), where a1 < a2 < --- < a4, we denote by
7(a1,az,...,aq) the unique positive root of a polynomial X% — (X%~ 4

X792 ... 4 X% 7% 7(ay,aq,...,aq) is called a branching number.

A New Algorithm for Parameterized MAX-SAT 39

We say that a branching (b1,bs,...,b0y) is dominated by branching a
(a1,a2,...,aq) iff for every i,a; > b;.

1.3 The Main Idea of the Algorithm

A straightforward branching on a variable of high degree immediately gives a
good branching number. As it is common with branching algorithms, the main
bottleneck is when a formula consists of variables of low degree only. It is easy
to see that variables of degree at most 2 can be eliminated from the formula.
Consider a variable z of degree 3: (x V A)(x vV B)(Z V C), where A, B,C are
disjunctions of literals. If A or B consists of just one literal, then we can replace
(xVv A)(zV B)(zVC) with (AvV BV C)(AVC). If A and B are long, then we
can branch according to the following “resolution-like” rule:

e replace (zV A)(z VvV B)(ZVC) by (AVC)(BVC(C);
e set to 0 all literals from A, B, C.

More formally the correctness of these steps is shown in Simplification Rule
and Branching Rule

For solving MAX-SAT restricted to instances consisting of (3,1)- and (4, 1)-
singletons we use the algorithm for the Minimum Set Cover problem by van
Rooij and Bodlaender [7]. The running time of the algorithm is estimated in
Theorem [3

1.4 Organization of the Paper

In Section Bl we present a very simple algorithm for (n, 3)-MAX-SAT. Its analysis
is based on tricks mentioned above and contains no case analysis at all. In
Section Ml we show that the presented rules can be used to simplify a case analysis
of branching on a variable of degree 3. In Section [l we improve the upper bound
for Parameterized MAX-SAT.

2 Preliminaries: Simplification and Branching Rules

The following simplification rule is straightforward so we state it without a proof.

Simplification Rule 1. A literal | can be assigned the value 1 if | is a pure
literal or number of unit clauses () is not smaller than number of clauses con-
taining 1.

Simplification Rule 2. A variable of degree < 2 can be eliminated.

Correctness: If | is a pure literal, then we can set [= 1. Otherwise, F' = GA(lV
A)A(IVB). It is easy to see that MAX-SAT(F, k) = MAX-SAT(FA(AVB), k—1).
O

Simplification Rule 3. Pairs of clauses (x) and (T) can be removed.

40 I. Bliznets and A. Golovnev

Correctness: Clearly, MAX-SAT(F V (z) V (Z),k) = MAX-SAT(F,k — 1). It
does not matter whether the variable x appears in F or not. a

Simplification Rule 4. If two variables x andy of degree 3 appear together in
3 clauses, then all these 3 clauses can be satisfied by assigning x and y.

Correctness: One can satisfy 2 clauses by assigning « the remaining clause can
be satisfied by assigning . a

Simplification Rule 5. Let x be a variable of degree 3: F = GA(xV A) A (xV
B)A(zV C). If A or B has length < 2 then we can reduce the problem.

Correctness: Wlog, assume that A has length < 2. If the length of A equals to
1 then A is a single literal. It is easy to see that

MAX-SAT(F, k) = MAX-SAT(GA(AVBVC)A(AVC),k—1).
If A is empty we can set © = 1. The parameter is reduced by 2. O

Remark 1. Tt is easy to see that all Simplification Rules can be applied in poly-
nomial time and decrease k at least by one. Note that some of the simplifications
rules make several clauses of a formula satisfied while others may replace existing
clauses with new clauses and reduce the parameter (like SR2land SRE)). Since as
a result of applying a rule the number of satisfied clauses increases we usually
say that applying a simplification rule satisfies some clauses.

Branching Rule 1. For any literal 1, one can branch as (F[l),k —

#r(l)), (Fl], k= #r (1))

Branching Rule 2. Let x be a variable of degree 3: F = G A (x V A) A (z V
B) A (zV C). Then there is a branching:

e (GAN(AVC)AN(BV(O),k—1)
o (G' k—2), where G’ is obtained from G by assigning all literals from A, B,C
to 0.

Correctness: Let R = (AV C) A (B V C). It is a simple observation that if
an optimal assignment satisfies s clauses from R, where s = 1,2, then we can
satisfy s+ 1 clauses from F'— G but cannot satisfy s+ 2. However, if an optimal
assignment does not satisfy any clause from R we can still satisfy two clauses
from F' — G by setting x = 1. O

Corollary 1. If AUBUC contains inconsistent literals, then one can consider
only the first branch. It means that one can reduce (F, k) to (GA(AVC)A(BV
C),k—1).

Remark 2. We write BR2(z) if we apply Branching Rule 2 to a variable z.
Branching on a variable means applying Branching Rule 1. We write SRi(x) for
1 <4 <5, if we apply Simplification Rule ¢ to a variable .

A New Algorithm for Parameterized MAX-SAT 41

Lemma 1 (Kulikov, Kutzkov [8]). If a literal y dominates a literal x, then
one can branch as

o x=1y=0;
o r=0.

Proof. If in some assignment the literals and y both have the value 1, then
flipping the value of x cannot decrease the number of satisfied clauses. Indeed,
all clauses that can be satisfied by = = 1 are also satisfied by y = 1. O

Lemma 2. Let x be a (t,1)-non-singleton variable. Then branching on x is a
(t,2)-branching.

Proof. Let y be a neighbor of Z. In the branch = 1 we satisfy at least ¢ clauses.
In the branch z = 0 we can set y = 0 and satisfy at least 2 clauses. The lemma
follows from Lemma [Tl in this case we use literals y, Z instead of y, . O

Lemma 3. If ' contains a variable x of degree > 6, then branching number on
x is at most 7(1,5).

Proof. This follows from the fact that 7(1,5) > 7(2,4) > 7(3,3). O

3 Solving (n,3)-MAX-SAT in 1.2721% Time

By (n,3)-MAX-SAT we denote MAX-SAT restricted to instances in which each
variable appears in at most 3 clauses. In this section we give a simple algorithm
for (n,3)-MAX-SAT. The running time of the algorithm is 1.2721*. Note that
the previous known upper bound for (n,3)-MAX-SAT w.r.t. k is 1.3247% and
it follows from proof of Chen and Kanj for the general MAX-SAT. Throughout
this section we assume that F' is an (n,3)-MAX-SAT formula.

Lemma 4. Let x be a variable of degree 3: F = G A (xV A)A(xVB)A(ZVC)
and rules SR1-4 are not applicable to F. If A has length < 2, then we have
(2,4)-branching and the resulting formulas are (n,3)-MAX-SAT formulas.

Proof. If A haslength 0, then we can set x = 1. Otherwise, by Simplification Rule
Bl we eliminate one clause and get a new formula F’ = GA(AVBVC)A(AVO).
Variables of degree 4 in the formula F’ can appear only in A and C. Branching
on the variable A gives (n, 3)-MAX-SAT formulas in both branches. A has degree
4, so the branching gives at least (1, 3)-branching (note that 7(2,2) < 7(1, 3)).
As one clause is already satisfied, the resulting branching is at least (2,4). O

Lemma 5 (Bliznets [9]). If each variable of F appears once negatively and
twice positively and all negative literals occur in unit clauses, then MAX-SAT(F')
can be computed in polynomial time.

Proof. Construct a graph Gr = (V, E) in the following way. Introduce a vertex
for each clause consisting of positive literals, introduce an edge between two
vertices if the corresponding two clauses share a variable. Then MAX-SAT(F') =
n+ v(Gr), where v(Gr) is the size of a maximum matching in Gp. O

42 I. Bliznets and A. Golovnev

Algorithm 1. (n,3)-MAX-SAT-ALG — solving (n,3)-MAX-SAT in time
1.2721%.

Input: F — instance of (n,3)-MAX-SAT.

Parameter: £ — number of clauses asked to satisfy.

Output: true, if k£ clauses can be satisfied simultaneously; false otherwise.

apply Simplification Rules 1-4
if all negations are singletons then
return answer (use Lemma [).
choose z, s.t. Z is not a singleton: (z vV A)(z Vv B)(z Vv C),|C| > 0, |A| < |B|
if |A| <1 then
use Lemma M for branching
if |[A| > 2 then
branch BR 1(x)

Theorem 1. Algorithm (n,3)-MAX-SAT-ALG solves (n,3)-MAX-SAT in time
1.2721*.

Proof. By Lemma [the running time of step Bl is polynomial. Step [gives
(2,4)-branching by Lemmall Branching at step B gives at least (4, 2)-branching.
Indeed, |C| > 0 and Lemma [[] implies that in case x = 0 we can satisfy at least
two clauses: one is (Z V C') and one more with a literal ¢ where ¢ is some literal
from C. By SR, there are at least 4 clauses containing variables from A. In the
branch x = 1 two clauses are satisfied by x and there exist variables y, z that
appear one or two times in the new formula. There are at least 2 clauses that
contain variable y or z. Hence, SR2 applied to variables y, z from A satisfies two
new clauses. Thus, branching on = gives (4, 2)-branching. The running time of
the algorithm is max(7(2,4),7(3,3))F = 7(2,4)* < 1.2721*. O

4 Removing Variables of Degree 3

In this section we show that if a formula contains a variable of degree 3 then we
can either decrease k or find a good branching. Suppose that x occurs three times
in F' and no simplification rules are applicable to F. Assume that F' contains
clauses (z V A), (z vV B), (Z V C) where A, B,C are disjunctions of literals. We
consider only cases where |A|,|B| > 2 because otherwise we can apply SRB(x)
or assign 1 to z.

Definition 1. Denote by LN (1A1,...,Ay) the set of all clauses of F' containing
a negation of some literal from A; U---U A

Throughout this section we assume that AU BUC' does not contain inconsistent
literals. Otherwise, by Corollary [[] the formula can be simplified.

Lemma 6. Let y, z be literals such that y,z € AUBUC, § occurs two or more
times and dominates z (call this situation a first special case of domination).
Then there is a (2,4)-branching.

A New Algorithm for Parameterized MAX-SAT 43

Proof. Recall that g,z appear in some clauses from LN(!A,!B,!C). Consider
the branching F[y], F[g]. In the second case two clauses are satisfied with § and
z can be substituted by 1, because it becomes a pure literal. z = 1 satisfies at
least one of the following clauses: (x V A), (z V B), (Z V C). After that we use
SR2(x) since = appears at most two times. This satisfies at least 4 clauses. In
the formula F[y] we use SR2(z) and that is why the parameter is decreased
by 2. O

Lemma 7. Let y,z be literals from AU B U C such that § occurs once and
dominates Z (call this situation a second special case of domination). Then there
is a (3,3)-branching.

Proof. Like in the previous lemma in F[y] we can assign 1 to z. A literal z
appears at least two times because Z occurs once in the formula. So z = 1
satisfies two more clauses(z and Z do not appear in one clause). This satisfies at
least 3 clauses. In F'[y] — we satisfy 2 clauses containing y and one using SR2{(x)
because after assigning y = 1 we have one or two clauses containing the variable
. We get a (3,3)—branching. O

Lemma 8. If [LN(!A,!B,!C)| < 3 then we have a special case of domination
or A= B =yV z. In the former case we have a good branching ((2,4)-, (3,3)-,
(1,6)-branching or better), while in the latter case the parameter can be decreased.

Proof. We know that |A|,|B| > 2. So AU B contains more than two literals or
equals y V z. In the former case three literals should occur in two clauses, so this
is a domination. In the latter case we can replace clauses with the variable x by
the clause (y V z V C) and decrease the parameter by two. a

Now we can assume that we only work with formulas where |[LN (!4, !B, !C)| > 2.
If [ILN(1A,!B,!C)| > 3 using BR2(z) we immediately get (1,6)-branching. So
for the rest of this section |[LN(14,!B,!C)| = 3.

Lemma 9. If |AU BUC| > 3 then we have a special case of domination
and hence one of the Lemmas [G[7 is applicable. So there is a (2,4)- or (3,3)-
branching.

Proof. At least 4 negations of the literals from |A U B U C| should be placed in
3 clauses and it is impossible without special case of domination. a

From the previous lemma we conclude that it is enough to consider formulas
where |[AUBUC| < 3.

Lemma 10. If min{|A|, |B|} > 3 then either there is a special case of domina-
tion or the parameter can be decreased.

Proof. f |[AU BUC| > 3 we have a special case of domination because of
Lemma [@l Otherwise from |[A U B U C| < 3 and min{|A|,|B|} > 3 it follows
that |[A] = |B|=3and aVA =2V B =2xVy VyzVys. So, we can replace
xV A,xzV B,ZVC by AV C and decrease the parameter by 2. O

Now wlog we can assume that ztVA=zVyV z.

44 I. Bliznets and A. Golovnev

Lemma 11. If we have an instance (F, k) and for all variables x that appear
three times the following holds:

e 1 occurs in clauses xV A, xV By, TV Cy
e LN(14,,!B,,!1C;) =3

then we can decrease the parameter or apply one of the following branchings:
(3,3),(2,4) or better.

Proof. Suppose that all previous lemmas are not applicable otherwise we are
done. So we can choose a variable z that occurs three times and A, = y V z.
Note that if § occurs three times then we have a case of domination and in
this situation a good branching ((2,4)-, (3, 3)-, (1, 6)-branching or better) exists.
Consider two cases: § appears exactly once or twice.

Case 1: y appears exactly once.

Case 1.1: j has a neighbor.
F' contains the following clauses:

(xvyVvz), (xVv...), (@Vv...), @GVwV...).

In F[g] by Lemma [I] we can assign 0 to w and use SRBl(z) or SR2(z).
So, we decrease the parameter by 3. In F[y] we satisfy at least two
clauses and using SRZ(x) we decrease the parameter by 1. We obtain
(3,3)-branching. So in all other cases we must have a clause (7).

Case 1.2: y appears more than 2 times and there is an occurrence

outside a variable z.
After Fly] and SR2(z) we satisfy at least 4 clauses. In F[g] using SRE|z)
we decrease the parameter by 2.

Case 1.3: a literal y appears in all clauses with a variable z.
We have the following clauses:

(xVyVz), (xVyVv...), (@VvyVv...), (@)

The variable y does not occur in the rest of the formula, otherwise we
can treat it as a case 1.2. So, it is enough to consider y = 0. Because
an assignment with £ = 1,y = 0 is not worse than the same assignment
with x =y =1 and z = 0,y = 1. It means that we can satisfy one clause
and one variable without branching.
Case 1.4: y occurs exactly twice

Using symmetry we can conclude that the clause with does not contain
any other literals. Otherwise we have case 1.1. Again using symmetry
ideas we may conclude that either Z appears twice or zZ appears once
and z appears exactly twice and there is a clause (z) . Consider these
two subcases separately.

A New Algorithm for Parameterized MAX-SAT 45

Case 1.4.1: zZ appears once and z appears exactly twice

(xVvyVvz), (zVv...), (&), @), (2).

In Flx] using SR2[y), SR2(z) we decrease the parameter by 4. In
F[z] it is easy to see that we can assume y = Z. So we obtain (4, 4)-
branching.

Case 1.4.2: Z appears twice.
In this case we have the following clauses:

@VyVvz), (@V...), @), @, (EV...), (EV...).

F[z] and then SR2(z), SR2(y) decrease the parameter by 3. In F[Z]
we can assume that z = §. We get a (3, 4)-branching.
Case 2: yj appears exactly twice.
Using symmetry we conclude that z also appears twice otherwise we have
the situation described in case 1. So, we have the following family of clauses:

(xvVyVz), (xvB), (ZV...), (@GV...), (GV...).

Assume y € B (the case z € B is similar). F[y] and then x = 0 removes
3 clauses. In F[y] we use SRE(x) and this removes 3 clauses. If y, z do not
appear in B we have |B| < 2 or |[AUB| > 4 and we get a special domination
case, considered before.

O

Theorem 2. If x occurs exactly 3 times in F, then either the parameter can be
decreased or there is a (1,6)-, (2,4)- or (3, 3)-branching.

5 Solving MAX-SAT in 1.358F

In this section we present a simple algorithm that improves the upper bound for
Parameterized MAX-SAT (Algorithm MAX-SAT-ALG). The main bottleneck
of the analysis is when all variables are (1, 3)-singletons or (1, 4)-singletons. We
consider this case separately.

We reduce an instance of this restricted MAX-SAT to the instance of Mini-
mum Set Cover. The Minimum Set Cover is, given a universe U and a collection
S of subsets of U, to find the minimum cardinality of a subset S’ C S which
covers U: Jg,cq i = U. For e € U, f(e) (frequency of e) denotes the number
of subsets of S in which e is contained.

It can be shown that algorithm for the Minimum Dominating Set given by
van Rooij and Bodlaender [7] in fact solves also the Minimum Set Cover in
time 1.28759%(U:5) where k(U,S) = 3", ., v(f(e)) +2 5,es w(|Si]), and v, w are
weight functions. The maximum value of v is 0.595723 and the maximum value
of w is 1. We note that for sets of cardinality < 4 the maximum value of w is
0.866888 (see the end of section 3 in [7]). Therefore, we can use the following
lemma due to van Rooij and Bodlaender [7].

46 I. Bliznets and A. Golovnev

Theorem 3. Algorithm MSC solves the Minimum Set Cover prob-

lem where the cardinality of each set in S is at most 4 in time
O*(1.287590.595723|UH—O.866888\S|) — O*(1.290.6\U|+0.9\S|).

The following theorem was proved by Lieberherr and Specker [I0]. Later Yan-
nakakis [I1] gave a simple proof of this bound by the probabilistic method.

m

3 clauses

Theorem 4. If any three clauses in F are satisfiable, then at least 2
are simultaneously satisfiable.

Theorem Bl is used for instances with m < 1.5k, while Theorem [is used for
instances with m > 1.5k. We are now ready to prove an upper bound.

Theorem 5. Algorithm MAX-SAT-ALG solves MAX-SAT in time
O*(1.3579%).

Proof. Below we show that in each case the algorithm branches with branching
number at most 7(5,10,1) < 1.3579, so the running time of the algorithm is
0*(1.3579F).

e Step Bl If deg(z) > 6 then by Lemma Bl we get (1,5)-branching. 7(1,5) =
1.3248 < 1.3579.

e Step [l If deg(xz) = 3 then by Theorem 2] we get (1, 6)-branching. 7(1,6) =
1.2852 < 1.3579.

o Step [A (3,2)-variable gives 7(3,2) ~ 1.3248 < 1.3579. By Corol-
lary 2] branching on (4, 1)-non-singleton or (3, 1)-non-singleton gives at least
7(3,2) = 1.3248 < 1.3579.

e Step[Q z is a (2,2)-variable, y is a (1, 4)-singleton, neighbor of z and literal
y does not dominate x, Z simultaneously. Branching on y gives 7(4,1) and
the next iteration in branch y = 1 has a variable of degree 3 or smaller. The
overall branching number is smaller than 7(4 4+ 1,4 + 6,1) = 7(5,10,1) <
1.3579.

e Step[2 z is a (2, 2)-variable. Neighbors of « are variables of degree 4 or z, T
are dominated by y. So, both F[z] and F[Z] contain a variable of degree 3.
By Theorem 2] a variable of degree 3 gives (1,6),- (2,4)- or (3, 3)-branching.
So the possible branchings are 7(2+1,2+6,2+ 1,24+ 6),7(2+ 2,2+ 3,2+
2,243),7(24+3,243,2+3,2+3) the worst case among them is 7(3, 8, 3, 8) ~
1.3480 < 1.3579.

In the following we assume that all variables are (3, 1)- or (4, 1)-singletons.

e Step 4 Now all variables are singletons. It means that we can satisfy n
clauses by setting all variables to 0. If k& < n this solves the problem.

e Step[Ifl We assume that each variable occurs 3 or 4 times positively and once
negatively in a unit clause. Note that all clauses are either negative singletons
or positive clauses (all variables in positive clauses occur only positively).
We claim that for such a formula there always exists an optimal assignment
satisfying all positive clauses. Indeed, if some positive clause is not satisfied
then by flipping any of its variables we can only increase the number of

A New Algorithm for Parameterized MAX-SAT 47

Algorithm 2. MAX-SAT-ALG — solving MAX-SAT in time 1.3579".

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:

Input: F — instance of MAX-SAT.
Parameter: k& — number of clauses asked to satisfy.
Output: 1, if k£ clauses can be satisfied simultaneously; 0 otherwise.

apply Simplification Rules 1-5.
if there is z, s.t. deg(z) > 6 then

branch on z
if there is = of degree 3 then

branch on z according to Theorem
{Now we have only variables of degree 4 and 5.}
if F contains a variable z of type (3,2), (3, 1)-non-singleton or (4, 1)-non-singleton
then

branch on z
{Now we have only singletons and (2, 2)-variables.}
if F contains a variable x of type (2,2) then

if z has a neighbor (4, 1)-singleton y and z, T are not simultaneously dominated

by y then

branch on y
else
branch on z

{Now all variables are (3, 1)-singletons or (4, 1)-singletons.}
if £k <n then

return 1
if m < 1.5k then

return k < Msc(F)

if there is a clause of length 2: (z V y) then
branch as F[z,y]; Flz = g].

else
return 1

satisfied clauses. It means that we want to assign 1 to the minimal number of
variables to satisfy all positive clauses. It is the Minimum Set Cover problem.
We construct an instance of the Minimum Set Cover problem in the following
way. U is the set of positive clauses (|[U| = m—n). S contains n sets. Set S; €
S consists of positive clauses, which contains a variable z;. Now we would
like to cover U by the minimal number of sets from S. If ¢ is the minimal
number of sets required to cover U, then the maximum number of satisfied
clauses is m —t. We can compare this number to k and return the result. By
Theorem Bl the algorithm for Minimum Set Cover for sets of cardinality < 4
has running time T'(F) = O*(1.29(-6IUI+0-91SD) — O*(1.29(0-6(m=n)+0.9n))
We know that k > n and m < 1.5k. Thus T(F) =~ 1.3574% < 1.3579*.

Step I8 We know that the formula contains clauses (Z) and (g). If there is
a clause (z V y), then some optimal solution satisfies clause (x V y). Indeed,
if it does not, we can just set x = 1 and the number of satisfied clauses does
not decrease. So, we can branch as x = y = 1 and = 3. In the first branch
we satisfy at least 3 clauses, because z is a (3,1)— or (4,1)—variable. In

48

I. Bliznets and A. Golovnev

the second branch we satisfy clause (z V y) and by Simplification Rule Bl we
satisfy one of the clauses (x) and (Z). We obtain (2, 3)-branching.

e Step Now we have a formula with m > 1.5k clauses. F' does not contain

clauses of length 2. Therefore, every triple of clauses is satisfiable. By The-
orem [4] there is an assignment, which satisfies at least Qg” > k clauses. a

Acknowledgments. We are greatful to Konstantin Kutzkov for fruitful discus-
sions and suggesting Branching Rule 2] . We would like to thank our supervisor
Alexander S. Kulikov for help in writing this paper and valuable comments. Also
we thank anonymous reviewers who helped improve the paper.

References

10.

11.

Chen, J., Kanj, I.A.: Improved Exact Algorithms for MAX-SAT. In: Rajsbaum, S.
(ed.) LATIN 2002. LNCS, vol. 2286, pp. 341-355. Springer, Heidelberg (2002)
Mahajan, M., Raman, V.: Parameterizing above guaranteed values: MaxSat and
MaxCut. J. Algorithms 31(2), 335-354 (1999)

Niedermeier, R., Rossmanith, P.: New Upper Bounds for MaxSat. In: Wiedermann,
J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 575—
584. Springer, Heidelberg (1999)

Bansal, N., Raman, V.: Upper Bounds for MaxSat: Further Improved. In: Aggar-
wal, A.K., Pandu Rangan, C. (eds.) ISAAC 1999. LNCS, vol. 1741, pp. 247-258.
Springer, Heidelberg (1999)

Alon, N.; Gutin, G., Kim, E., Szeider, S., Yeo, A.: Solving MAX-r-SAT Above a
Tight Lower Bound. Algorithmica 61, 638-655 (2011)

Crowston, R., Gutin, G., Jones, M., Yeo, A.: A New Lower Bound on the Maxi-
mum Number of Satisfied Clauses in Max-SAT and Its Algorithmic Applications.
Algorithmica 64(1), 56-68 (2012)

van Rooij, J.M., Bodlaender, H.L.: Exact algorithms for dominating set. Discrete
Applied Mathematics 159(17), 21472164 (2011)

Kulikov, A., Kutzkov, K.: New Bounds for MAX-SAT by Clause Learning. In:
Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp.
194-204. Springer, Heidelberg (2007)

Bliznets: A New Upper Bound for (n, 3)-MAX-SAT. Zapiski Nauchnikh Seminarov
POMI, 5-14 (2012)

Lieberherr, K.J., Specker, E.: Complexity of Partial Satisfaction. J. ACM 28, 411—
421 (1981)

Yannakakis, M.: On the approximation of maximum satisfiability. In: SODA 1992,
pp. 1-9 (1992)

Restricted and Swap Common Superstring:
A Parameterized View

Paola Bonizzoni?, Riccardo Dondi', Giancarlo Mauri?, and Italo Zoppis?

! DSLCS, Universita degli Studi di Bergamo, Bergamo, Italy
2 DISCo, Universita degli Studi di Milano-Bicocca, Milano, Italy
{bonizzoni,mauri,zoppis}@disco.unimib.it, riccardo.dondi@unibg.it

Abstract. In several areas, in particular in bioinformatics and in Al
planning, Shortest Common Superstring problem (SCS) and variants
thereof have been successfully applied. In this paper we consider two
variants of SCS recently introduced (Restricted Common Superstring,
RCS) and (Swapped Common Superstring, SWCS). In RCS we are given
a set S of strings and a multiset, and we look for an ordering M, of M
such that the number of input strings which are substrings of M, is
maximized. In SWCS we are given a set S of strings and a text T,
and we look for a swap ordering 7, of 7 (an ordering of 7 obtained by
swapping only some pairs of adjacent characters) such that the number
of input strings which are substrings of 7, is maximized. In this paper we
investigate the parameterized complexity of the two problems. We give
two fixed-parameter algorithms, where the parameter is the size of the
solution, for SWCS and ¢-RCS (the RCS problem restricted to strings
of length bounded by a parameter ¢). Furthermore, we complement these
results by showing that SWCS and ¢-RCS do not admit a polynomial
kernel.

1 Introduction

In several areas, such as bioinformatics [I1] and data compression [I5], the Short-
est Common Superstring problem (SCS) has been successfully applied for strings
comparison. For example, in bioinformatics, SCS aims to reconstruct the original
string from a set of different fragments of that string. Recently, some variants
of the SCS problem have been proposed to deal with problems in bioinformatics
and Al planning [10/6]. In such variants, a set of strings is given and we are asked
to rearrange a given multiset of characters or a given text in order to maximize
the number of strings which are substrings of the resulting text. This can be the
case, when the strings represent proteins and only the (multi)-set of amino acids
is given (or an ordering which may be affected by some errors), and we want
to infer the right ordering of such amino-acids that contains the given strings,
or at least a fraction of them. Another application of the above problem is Al
planning, where a set of tasks which have to be accomplished is given, and we
want to compute a plan that achieves as many goals as possible. Usually, the
plan corresponds to compute a SCS of strings representing the tasks. However,

D.M. Thilikos and G.J. Woeginger (Eds.): IPEC 2012, LNCS 7535, pp. 49-f0] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

50 P. Bonizzoni et al.

in practice we may have some constraints on the given tasks, hence the plan we
want to compute is a SCS with some restrictions [10].

Two combinatorial problems recently introduced in this context are the Re-
stricted Common Superstring (RCS) problem and the Swapped Common Su-
perstring (SWCS) problem. RCS is the more general problem: we are given a
set S of n strings over an alphabet X' and a multiset M over X', and we look for
an ordering M, of M such that the number of input strings which are substrings
of M, is maximized.

In the SWCS problem we are given a set S of n strings over an alphabet 3/
and a text T over X, and we look for a swap ordering 7, of 7 (an ordering of
T obtained by swapping only some pairs of adjacent characters) such that the
number of input strings which are substrings of 7, is maximized.

The complexity of the SCS problem has been extensively studied in the past
[2ITZYT6]: the problem is known to be APX-hard [2], even for equal length strings
over binary alphabet [I7].

The RCS problem is known to be NP-hard, even in the restricted case that
the input strings are defined over a binary alphabet or have length bounded by 2
[6]. Furthermore, in [6] it is shown that the problem is not approximable within
factor O(n'=¢), with a reduction from Maximum Independent Set. It is easy to
see that the reduction is also a parameterized reduction [912], thus implying
the WJ1]-hardness of RCS when parameterized by the size of the solution. The
SWCS is known to be NP-hard [10]. However, it is shown in [10] that a relaxed
version of the problem, where each occurrence of a string in the swap ordering
T, is counted, is polynomial time solvable.

For both problems we investigate the parameterized complexity, under some
natural parameterizations (for more details on parameterized complexity see
[912]). The ultimate goal of our investigations is to provide a multivariate anal-
ysis of the complexity of the two problems [7/13]. We consider as natural pa-
rameters, the size of the solution, that is the number of input strings which
are substrings of the computed solution, and the maximum length of the input
strings.

In Section Bl we provide some preliminary definitions and we formally state
RCS and SWCS. In Section[3we give two fixed-parameter algorithms for .-RCS
(the RCS problem restricted to strings of length bounded by a parameter £) and
SWCS, when the two problems are parameterized by the size of the solution.
We complement these two positive results with two negative results, that is we
show in Section @ that ¢-RCS and SWCS do not admit a polynomial kernel.
Kernelization is a well-known technique in parameterized complexity [9/12]. The
goal of kernelization is to preprocess (in polynomial time) an instance of a given
problem, so that the resulting instance, called kernel, has size depending only
on the considered parameter. Recently, the kernelization complexity has been
widely investigated [3U5I84], and different techniques have been introduced to
prove that a problem, although fixed-parameter tractable, does not admit a
polynomial size kernel.

Some of the proofs are omitted due to space limitation.

Restricted and Swap Common Superstring: A Parameterized View 51

2 Preliminaries

In this section, we introduce some basic definitions. Given a string s over an
alphabet X', denote by |s| the length of s. The i-th symbol of s is denoted by
s[i]. For two positions 4, j in s, with 1 < ¢ < j < |s|, denote by s[i, j] the substring
of s that starts at position ¢ and ends at position j. Given a set S of strings,
for each s € S define incl(s) = {s' € S : §' is a proper substring of s}. Given a
string s and a substring s, of s, we say that s, is covered by s. Furthermore, if
s[i, j] = sz, we say that s[i, j] is an occurrence of s, in s.

Given a multiset M over alphabet Y and a symbol o € Y| we denote by
occp (o) the number of occurrences of ¢ in M. Given a multiset M over an
alphabet Y| we define an ordering M, of M, as a string over X' containing
exactly occaq (o) occurrences for each o € X. Now, we are able to define the first
problem we are interested in.

Problem 1. [6] RCS

Input: a set S = {s1,...,s,} of strings over alphabet X, a multiset M over X.
Output: an ordering M, of M that maximizes the number of strings in S that
are substrings of M,,.

We will consider the restriction of RCS, denoted by ¢-RCS, where the strings
in S have length bounded by a parameter £.

Before giving the formal definition of the second problem we are interested in,
we need to introduce the definition of swap ordering. Given a text T = t1ts ... tp,
where each t;, 1 < i < m, is a character in X, a text T, = tr(1)tr(2) - - tr(m) is
called a swap ordering of T if it is induced by a permutation 7 : {1,...,m} —
{1,...,m} such that: (1) if 7(¢) = j, then 7(j) = i, (2) for all i, (i) € {i —
1,i,i+ 1}, (3) if w(i) # @ then tr(;) # t;. It follows that a swap ordering 7, of
T is obtained by swapping only some pairs of adjacent distinct characters of T .
Notice that the swaps must be consistent swaps, that is if 7, is a swap ordering of
T obtained by swapping characters in positions p1, p2 and characters in positions
Pp3, P4, With p1 +1 = po < p3 = py— 1, then these swaps are consistent, if p; < p3
(see Example [T]).

Ezample 1. Consider the text:

T = abzxcyz
The text T, = abcxyz is a swap ordering of 7 obtained by swapping the char-
acters and ¢ of T. The text 7] = axcbyz is not a swap ordering of T, since it
requires two non-consistent swaps: first a swap between characters in positions 2
and 3 of T, then a swap between characters in position 3 and 4 of the resulting
text.

Now, we are ready to define the SWCS problem.

Problem 2. [10] SWCS

Input: a set S = {s1,...,s,} of strings over alphabet X, a text T.

Output: a swap ordering 7, of the text 7 that maximizes the number of strings
in S that are substrings of 7.

52 P. Bonizzoni et al.

Assume that S* C S is a set of input strings covered by a solution of RCS
or SWCS. Then a string s € S* is called a maximal string of S* if there is no
string s’ € S* such that s € incl(s’).

Kernelization Complexity

In Section [we will prove some lower bounds on the kernelization complezity of
RCS and SWCS, so we introduce here some preliminary notions.

Let A be a finite alphabet and denote with A* the set of all finite length
strings over A. Let IT C A* x N be a parameterized problem, and let 1 ¢ A.
The derived classical problem IT¢ associated with IT is {z1* : (z,k) € IT}. In
[5], it is introduced the following definition of a class of reductions that can be
used to prove kernel lower bounds.

Definition 1. [5] Consider two parameterized problems II; and IIs. Then, II;
s polynomial time and parameter reducible to Ils, when there exists a function
f:{0,1}*xN — {0,1}* x N computable in polynomial time and a polynomial p :
N — N such that for each x1 € {0,1}* and k1 € N, denoted (v2, k2) = f(z1, k1),
then (x1,k1) € I holds iff (xa,ke) € IIa, and ko < p(k1). Such a function f is
a Polynomial Parameter Transformation (PPT) from II; to IIs.

The fundamental result proved in [5] shows that a PPT can be applied to prove
kernel lower bounds:

Theorem 1. [5] Let II; and IIy be two parameterized problems whose derived
classical problems II{ and II§ respectively, are NP-complete. If there exists a
PPT from IIy to Ils, then, if Il has a polynomial kernel, it follows that I1; has
a polynomial kernel.

3 Fixed-Parameter Algorithms for £.-RCS and SWCS

In this section we give two fixed-parameter algorithms for -RCS and SWCS,
both based on the color-coding technique [I]. First, we recall the basic definition
of perfect hash functions.

Definition 2. Let I be a set, a family F' of hash functions from I to {1,...,k}
is called perfect if for any subset I' C I consisting of k elements, there exists a
function f € F which is injective on I'.

A perfect family F of hash functions from I to {1,...,k}, having size
O(log |T]2°®)) can be constructed in time O(2°®)|I|log |I|) [I].

3.1 A Fixed-Parameter Algorithm for SWCS

First, we present a fixed-parameter algorithm for SWCS, where the parameter
k is the number of covered input strings. The algorithm is based on the color-
coding technique [I] and it is inspired by the polynomial time algorithm given

Restricted and Swap Common Superstring: A Parameterized View 53

in [I0] for a variant of the SWCS problem, where each occurrence of an input
string in the solution 7, contributes to the solution (hence each covered input
string can contribute more than once to the value of a solution).

First, we introduce some notation. Given a string s, two positions 7,7, 1 <
i < 7 <|T|, in the text T, with i = j — |s| + 1, and two values by, by € {0,1},
define sw(s, 1, j, b1, bs) = 1 if there is a swap ordering 7,[i, j] of T[i, j] such that:

1. To[é, j] is an occurrence of s;

2. if by = 1 (by = 0 respectively), T,[i, j] is obtained by swapping (not swapping
respectively) the characters in positions ¢ — 1 and i of T;

3. if bg =1 (by = 0 respectively), T,[¢, j] is obtained by swapping (not swapping
respectively) characters in positions j and j + 1 of T.

In any other case sw(s, i, j, b1, b2) = 0. Notice that if i = 1 (j = |T| respectively),
then it must hold b; = 0 (b; = 0 respectively).

Let F:{s1,...,8n} = {l1,...,1l;} be a family of perfect hash functions. Fix
a function f € F such that each string of S covered by a solution of SWCS is
assigned a unique label in {l3,...,1x}.

Before giving the details, we present the high-level idea of the algorithm. We
design a dynamic programming algorithm that, given a position 7, considers (if
it exists) the maximal substring s; that is a suffix of a swap ordering 7,[1,]
of T[1,4]. Hence T,[i — |s;| + 1,4] covers s;, and all the input strings that are
substrings of s;. Notice that a non-maximal input string may be covered in
different positions of 7,. In this case, we assume that each non-maximal input
string is covered by its leftmost occurrence in 7,. Any maximal substring sj €
S\ {s;} covered by T,[1,i] either does not overlap with s; (Case 1, Case 2 and
Case 3 of the recurrence), or it overlaps with s; (Case 4 of the recurrence). In
the latter case s; and s, must be identical in the overlapping positions. In the
former case, we consider three possible cases (Case 1, Case 2 and Case 3 of the
recurrence), since, depending on the occurrence of string s, in 7,, we have to
check that swaps are possible (see Example 2I).

Ezample 2. Let (T,S) be an instance of SWCS, defined as follows:
T = abxeyz S ={s1 = abx, s = xyz}

Notice that sw(s1,1,3,0,0) = 1, and sw(s1,4,74,b1,b2) = 0 in any other case;
sw(s2,4,6,1,0) = 1, and sw(sa,1,J,b1,b2) = 0 in any other case. Now, if sg is
the rightmost input string that occurs in 7, this implies a swap of the characters
z and c of T. Then, s; cannot be covered by 7, (this condition is tested in Case
2 of the recurrence).

Let (T, S) be an instance of SWCS, defined as follows:

T = abzcyde S = {s1 = abe, s2 = cde}

Notice that sw(s1,1,3,0,1) = 1, and sw(s1,4,74,b1,b2) = 0 in any other case;
sw(se2,5,7,1,0) = 1, and sw(sz2,4,7,b1,b2) = 0 in any other case. If sy is the
rightmost input string that occurs in 7,, this implies a swap of the characters
c and y of T. Then, s; cannot be covered by 7,, since it would require a swap
between characters x and c. Indeed the two swaps are not consistent, since ¢ has

54 P. Bonizzoni et al.

already been swapped with y (the inconsistency of these swaps is tested in Case
3 of the recurrence).

Now, we give the formal description of the algorithm. Define D], j, L, b], where
LC{ly,.... 5}, 1 <i<|T|,1<j<|S], and b € {0,1}, as follows:

— DJi,j, L,b] =1 if there is a swap ordering 7,[1,4] of T[1,4] such that:
1. T,[1,4] covers a set S* of strings uniquely labeled by the set L
2. s; is a maximal string in S* and it is a suffix of 7,[1,]
3. if b=1 (if b = 0 respectively) T, is obtained by swapping (not swapping
respectively) the characters of T in positions ¢, i 4+ 1
— else DJi, j, L,b] = 0.

Now, we can define the recurrence to compute D[i, j, L, b]. We assume that each
entry DJi, j, L, b] is initialized to 0. DI, j, L, b] is the maximum, with 1 <y <4,
1 < h <|S5| and '{0,1}, of the following values:

Case 1. Dy, h, L', V|Asw(sj,i—|s;|+1,4, by, b), wherey < i—|s;|—1,1 < h < n,
L/ IN{F(sp)} I 2 IN({F ()0 1 (sy) s € imel(s)}). and by € {0, 1};

Case 2. D]y, h, L' V] A sw(sj,y + 1,i,b',b), where y = i — |sj], 1 < h < n,
L' CLN\A{f(sj)}, L' 2 L\ ({f(s;)}U {f(sp) : sp € incl(s;)});

Case 3. Dy, h, L', V] A sw(s;,y + 2,4,bg,b), where y =i —|s;| — 1,1 < h <n,
L' C LA\{f(s5)} L' 2 L\ ({f(s;)}U {f (sp) : sp € incl(s;)}), and b’ + by < 1

Case 4. D[y, h, L', b'] Asw(s;[y —i+|sj|+1,|s;]],y +1,4,0,b), where i —|s;| <
y <i—1,1<h <mn, the leftmost y — i + |s;| characters of s; are identical
to the rightmost y — ¢ + |s;| characters of s;, L' C L\ {f(s;)}, and L' D
LN\ ({f(s5)} U{f(sp) = sp € incl(sjly — i+ |s;[+ 1,]s5]])})-

For the basic case, it holds: DJi, j, L’,b] = 1, for each position ¢ in the text T,
such that there is a swap ordering 7,[1, 7] of T[1, %] where s; is covered by T,[1, 7],
L' ={f(s;)} U{f(sp) : sp € incl(s;)}, and sw(s;,i — |s;]| + 1,4,b1,b2) = 1, for
some b1, bs € {0, 1}. Now, we prove the correctness of the dynamic programming
recurrence.

Lemma 1. D[i,j,L,b] = 1 if and only if there exists a set S" C S of strings
uniquely labeled by L and covered by a swap ordering To[1,4] of T|[1,4], such that
sj is a mazimal substring of S" covered by Toli — |s;| + 1,1], for some b{0,1}.

A consequence of Lemma [l is that there exists a solution 7, of SWCS over
instance (S, 7T), such that 7, covers k input strings of S if and only if there
exists an entry D[m,j, {l1,...,lk}, 1], for some j with 1 < j < n, such that
Dim,j, {l1,...,lx},1] = 1. The time complexity of the algorithm is
0(2°Mm?n2logn)), where |S| = n and |T| = m. Indeed, it is easy to see
that the recurrence can be computed in time O(2°)m?2n?). Since a perfect
family F of hash functions from S to {1,...,k}, having size O(logn2°®*)) can
be constructed in time O(2°® nlogn) [1], it follows that the time complexity of
the algorithm is O(2°®)m?2n2logn).

Restricted and Swap Common Superstring: A Parameterized View 55

3.2 A Fixed-Parameter Algorithm for ¢-RC