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Abstract. The nearest neighbor rule (NN) is one of the most powerful yet 
simple non parametric classification techniques. However, it is time consuming 
and it is very sensitive to noisy as well as outlier objects. To solve these 
deficiencies several prototype selection methods have been proposed by the 
scientific community. In this paper, we propose a new editing and condensing 
method. Our method combines the Rough Set theory and the Compact Sets 
structuralizations to obtain a reduced prototype set. Numerical experiments over 
repository databases show the high quality performance of our method 
according to classifier accuracy.  
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1 Introduction 

The nearest neighbor (NN) classifier is one of the most popular supervised 
classification methods in Pattern Recognition. However, it suffers from two important 
drawbacks: (i) High storage and computational requirements: it storages the entire 
training set, requiring large space. Moreover, to determine the class of a new object, it 
needs to compare it with every prototype in the training set, and (ii) Sensitivity: the 
NN classification rule is quite sensitive to noisy and outlier objects.  

To overcome these drawbacks researchers have proposed prototype selection 
methods. These methods aim to obtain a reduced set of representative objects 
(prototypes) to be used for classification. In the literature, these techniques are known 
as prototype selection and prototype generation methods. The former obtain a reduced 
set composed by objects in the original training set, and the later may create artificial 
prototypes, not present in the original data [1]. Another challenge with the NN 
classifiers is handling mixed as well as incomplete data. This kind of data affects most 
prototype generation methods, by lacking of the properties of vector spaces. Some 
prototype selection methods based on geometric properties of the data space are also 
inapplicable, because the objects are defined in a Cartesian space instead of a Metric 
space.  Among prototype selection methods, there is a distinction between error based 
editing and condensing methods. Error based editing methods are focused on remove 
noisy as well as outlier objects, and aim at smoothing the class boundaries, improving 
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accuracy. On the contrary, condensing methods aim at reducing redundant objects, 
and to obtain training set as small as possible. Although they have a different goal, 
combining both techniques may result into a small training set, with high classifier 
accuracy. In this paper, we combine the Rough Set Theory and the Compact Set 
structuralization to achieve this objective, and also to handling mixed and incomplete 
data sets.  

The paper is organized as follows: section two reviews some of the previous work 
done in prototype selection, section three introduces the proposed method, section 
four shows the results of the numerical experiments and section five offers some 
conclusions.  

2 Previous Works on Prototype Selection 

Since the introduction of Nearest Neighbor classifier, reducing the training set have 
been an active research area in the Pattern Recognition and Artificial Intelligence 
field. In this section we only address methods capable of handling mixed as well as 
incomplete data. The methods to reduce the training set can be divided in editing 
methods and condensing methods. Condensing methods aim at reducing redundant 
objects, and to obtain a training set as small as possible. Several condensing methods 
have been proposed, and among them we can mention the Minimal Consistent Set 
(MCS) [2], the Generalized Condensed Nearest Neighbor (GCNN) [3], the Prototype 
Relevance Selection (PRS) [4], the Gray Based Reduction (GBR1, GBR2) [5] and the  
CSESupport [6]. Recently, several algorithms have been proposed, such as Multiple 
Instance Learning [7] and Class Boundaries Preserving (CBP) [8]. 

Opposite to condensing methods, editing methods try to smooth class boundaries, 
by removing noisy or outlier objects. Usually, editing methods do not reduce a 
significant amount of objects, but in some cases may improve classifier accuracy. The 
first method to accomplish this task was the Edited Nearest Neighbor (ENN) by 
Wilson [9].  It removes every object misclassified by a k-NN classifier, with k value 
as used defined parameter. Among editing methods are NENN [10], editing based on 
Rough Sets (EditRS1, EditRS2) [11] and editing based on Maximum Similarity 
Graphs (MSEditA, MSEditB) [12].  

Although editing and condensing methods achieve complementary objectives, the 
smoothing power of editing methods, and the high reduction rates of condensing 
algorithms have not been sufficiently exploited by combining both approaches into a 
single algorithm.  The analysis of previous prototype selection methods reveals that 
improving NN in both accuracy and computational requirements by reducing the 
training set is still an open problem. Previous methods cannot accurately deal with 
both objectives, which is the basic motivation of the method introduced in this paper. 

3 Editing Based on Rough Sets and Compact Sets 

3.1 Rough Sets and Maximum Similarity Graphs 

Rough Set Theory (RST) has been an excellent mathematical tool for data analysis 
and it has offered an interesting theoretic base for the solution of many problems 
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within knowledge discovery. Rough Sets Theory was proposed by Pawlak in 1982 
[13]. In RST, a training set can be represented as a Decision System. First, an 
Information System is a pair S= (U, A), where U is a non-empty finite set of objects 
called the Universe and A is a non-empty finite set of attributes, and a Decision 
System is any information system of the form ܵܦ ൌ ܣ ׫ ሼܿሽ, where c∉A is the 
decision attribute. Classical definitions of lower and upper approximations were 
originally introduced with reference to an indiscernible relation which assumed to be 
an equivalence relation. Let B⊆A and X⊆U. B defines an equivalence relation and X 
is a concept. X can be approximated using only the information contained in B by 
constructing the B-lower and B-upper approximations of X, denoted by ܺכܤ and ܺכܤ 
respectively. The objects in ܺכܤ are sure members of X, while the objects in ܺכܤ are 
possible members of X. Rough set model has several advantages to data analysis, 
especially to edit training sets. It is based on the original data only and does not need 
any external information; no assumptions about data are necessary, and it is suitable 
for analyzing both quantitative and qualitative features [11].  

Maximum Similarity Graph (MSG) are a useful tool for structuralizing data in the 
Pattern Recognition field [14]. A Maximum Similarity Graph is a directed graph, such 
as it connects each object with its most similar neighbor. Formally, let be ܩ ൌ ሺܺ,  ሻߠ
a MSG for a set of objects X, with arcs θ. Two objects ݔ௜, ௝ݔ א ܺ form an arc ሺݔ௜, ௝ሻݔ א θ  if max௫א௑ሼ݉݅ݏሺݔ௜, ሻሽݔ ൌ ,௜ݔሺ݉݅ݏ ,௜ݔሺ݉݅ݏ ௝ሻ, whereݔ  ௝ሻ is a similarityݔ
function, usually ݉݅ݏ൫ݔ௜, ௝൯ݔ ൌ 1 െ ∆ሺݔ௜, ,௜ݔ௝ሻ and ∆ሺݔ  .௝ሻ is a dissimilarity functionݔ
In case of ties, the maximum similarity graph establishes a connection between the 
object and each of its nearest neighbors (figure 1).   

 

Fig. 1. Maximum similarity graph, using 1- Δ(.,.) as similarity function 

Among the advantages of Maximum Similarity Graphs we can mention that they 
do not need parameters for their construction, except of the similarity function to 
compare two objects. In addition, the objects form arcs only to their most similar 
objects in the training matrix, which is valuable information particularly in high 
Bayes risk zones.  The arcs between objects also contribute to predict the certainty of 
the correct classification of an object [12]. 

In a Maximum Similarity Graph, each connected component is called a Compact 
Set. In figure 2 we show the Compact Sets of figure 1. Formally, a subset ܰ ്  of X ׎
is a compact group if and only if [14]: 

ܽሻݔ׊௝ א ܺ ێێۏ
௜ݔۍێ א ܰ ۈۉ

ۇ max௫೔א௑௫೔ஷைೕ൛sim൫x୧, x୨൯ൟ ൌ sim൫x୧, x୨൯ 
 max௫೔א௑௫೔ஷ௫ೕ൛sim൫x୨, x୧൯ൟ ൌ sim൫x୨, x୧൯ ۋی

ۊ
ۑۑے
ېۑ  ௝ݔ א ܰ 
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ܾሻݔ׊௜, ௝ݔ א ܰ, ,௜భݔ׌ ڮ , ௜೜ݔ א ܰ
ێێۏ
ێێێ
ۍ ௜ݔ ൌ ௝ ൌݔ ௜భݔ ,p ሼ1׊ ௜೜ݔ ڮ , q െ 1ሽ
ێێۏ
ۍێ max௫೟א௑௫೟ஷை೔೛ ቄsim ቀݔ௜೛, x୲ቁቅ ൌ sim ቀݔ௜೛, ௜೛శభቁݔ
 max௫೟א௑௫೟ஷ௫೔೛ ቄsim ቀݔ௜೛శభ, x୲ቁቅ ൌ sim ቀݔ௜೛శభ, ۑۑے ௜೛ቁݔ

ېۑ
ۑۑے
ۑۑۑ
ې
 

ܿሻ Every isolated object is a compact set, degenerated.  

 

Fig. 2. Compact sets of the objects. Each ellipse corresponds to a compact set. 

Compact Sets are formed by highly similar objects, and have been used successfully 
to edit nearest neighbor classifiers [12]. 

3.2 Hybridizing Rough Sets and Compact Sets 

In order to consider the advantages of both Rough Sets and Compact Sets, we use the 
definition of Neighborhood Rough Sets introduced by Hu et al. [15]. Given an 
arbitrary object ݔ௜ א ܺ and a set of attributes ܤܣ, the neighborhood ߲஻ሺݔ௜ሻ of ݔ௜ in 
feature space B is defined as the set of objects which dissimilarity values with 
respect ݔ௜ , taking into consideration only the attributes in B, is lower than a 
threshold ߲. Formally, ߲஻ሺݔ௜ሻ ൌ ൛ݔ௝หݔ௝ א ܺ, ∆஻ሺݔ௜, ௝ሻݔ ൑ ߲ൟ, where ∆ is a 
dissimilarity function. As mention by Hu et al., a neighborhood granule degrades to 
an equivalent class if the threshold ߲ ൌ 0. In this case, the objects in the same 
neighborhood granule are equivalent to each other. Consequently, the neighborhood 
rough sets are a generalization of Pawlak´s rough sets. In our case, we want to obtain 
neighborhood granules without fixing the threshold ߲, so we redefine the 
neighborhood ߲஻ሺݔ௜ሻ of ݔ௜ in feature space B, as a Minimum Neighborhood Rough 
Set, taking as the ߲ value the minimum dissimilarity between ݔ௜  and every other 
object in the data. ߲஻ሺݔ௜ሻ ൌ ൜ݔ௝ ฬݔ௝ א ܺ, ∆஻൫ݔ௜, ௝൯ݔ ൌ min௫ೕא௑ሺ∆஻൫ݔ௜,  ௝൯ሻൠ (1)ݔ

Given a Decision System ܵܦ ൌ ܣ ׫ ሼܥሽ, the lower approximation of the decision is 
defined as the union of the lower approximation of each decision class. The lower 
approximation of the decision is also called the positive region of the decision. The 
minimum neighborhood ߲஻ሺݔ௜ሻ of ݔ௜ in feature space B can be rewritten as: 
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߲஻ሺݔ௜ሻ ൌ ൛ݔ௝ห൫ݔ௜, ௝൯ݔ א  ൟ (2)ߠ

where   are the arcs in a Maximum Similarity Graph, using as similarity function  1 െ ∆஻. In a Minimum Neighborhood Rough Set, the positive region of a decision 
class, ܱܲܵ஻ሺܿሻ is composed by all objects connected in a Maximum Similarity Graph 
with objects of the same class. The positive region will be formed by objects which 
are sure members of one of the decision classes, and can be correctly classified by a 
NN classifier, while boundary region is the set of samples which may be misclassified 
by a NN classifier. Opposite, the objects in the boundary region are connected to 
objects from more than one decision class.   ܱܲܵ஻ሺܿሻ ൌ ቄݔ௜ ቚݔ௜ א ܺ, ,ఏאሺ௫೔,௫ೕሻ׊ ௜ሻݔሺܥ ൌ ௝൯ݔ൫ܥ ൌ ܿቅ (3) 

where ܥሺݔ௜ሻ denotes the decision class of object ݔ௜.  
Our method (Figure 3) first computes the positive region of each decision class. 

Then, it computes compact sets of the positive region of each decision class, grouping 
the objects in subclasses according to its similarity (dissimilarity). Then, we condense 
each compact set to a single object, the representative prototype p.  We select as 
prototype the object that maximizes the similarity with respect to other objects in the 
compact set CS, that is, the object for which the similarity value is the maximum: 

p ൌ argmax௢א஼ௌ ൝෍ ,݋ሺ݉݅ݏ ݅ሻ௜א஼ௌ ൡ (4) 

Our approach gracefully handles mixed and incomplete data, because it is based on 
Maximum Similarity Graph computation and Neighborhood Rough Sets, which do 
not assume any metric or geometric property of data.  

 
Prototype Editing based on Rough sets and Compact sets (PERC) 

Inputs: Training set ܶ, Attribute set ܤ, Dissimilarity ∆. Outputs: Prototype set ܲ 

1. ܲ ൌ  ׎
2. Obtain a Maximum Similarity Graph, ܩ ൌ ሺܶ,   ܶ ሻ of the objects inߠ
3. For each decision class c: 

3.1. Compute  ܱܲܵ஻ሺܿሻ ൌ ൛ݔ௜หݔ௜ א ܶ, ,௜ݔ൫ߠ׊ ,௝൯ݔ ௜ሻݔሺܥ ൌ ௝൯ݔ൫ܥ ൌ ܿൟ 
3.2. Compute compact sets ܵܥ௖ of ܱܲܵ஻ሺܿሻ 

For each ܿݏ א  ௖ܵܥ
3.2.1. Select a representative prototype p using equation 4, ܲ ൌ ܲ ׫ ሼ݌ሽ 

4. Return ܲ 

Fig. 3. The PERC algorithm for prototype selection 

Summarizing, our algorithm to edit and condense the training matrix obtains the 
positive region of each decision class, then computes compacts set of each positive 
region and returns as the edited set the set of selected representative prototypes, one 
of each compact set.  Our approach takes advantages of the discriminative power of 
Rough Sets, as well as the structuralization abilities of Compact Sets. The PERC 
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algorithm smoothes the class boundaries by taking into consideration only the positive 
region of the decision, and obtains a highly condensed set, by taking representatives 
of the compact set structuralization of the positive region of each class. Our proposal 
also handles mixed and incomplete data sets.  

4 Experimental Analysis 

In order to compare the performance of the propose algorithm, we carried out some 
numerical experiments in a wide range of databases with both numerical and 
categorical attributes from the Machine Learning repository of the University of 
California at Irvine [16]. The description of used databases is given in table 1. We 
perform 10-fold cross validation and average the results in both classifier accuracy 
and object reduction rates. We use in our experiments as dissimilarity functions the 
HEOM and HVDM proposed by Wilson and Martínez [17].  

We compare our method against 12 classical and state of the art editing and 
condensing prototype selection methods. We use the Wilcoxon test to establish the 
statistical significance of the differences in performance of the studied methods. We 
set as null hypothesis no difference in performance between each pair of methods, and 
set a significant value of 0.05, for a 95% of confidence. In table 2, we summarize the 
results of the Wilcoxon test, using both HEOM and HVDM dissimilarities, according 
to classifier error and object retention rates.  

Table 1. Description of the databases used in numerical experiments 

Databases 
Attributes  

(Categorical 
-Numerical)  

Obj. 
Missing 
values 

Databases 
Attributes  

(Categorical 
-Numerical) 

Obj. 
Missing 
values 

autos 10-16 205 x heart-h 7-6 294 x 
balance 0-4 625  hepatitis 13-6 155 x 
breast-c 9-0 286 x iris 0-4 150  
breast-w 0-9 299  labor 6-8 57  
colic 15-7 368 x lymph 15-3 148  
credit-a 9-6 690 x sonar 0-60 208  
dermat. 1-33 366 x vote 16-0 435 x 
glass 0-10 214  wine 13-0 178  
heart-c 7-6 303 x zoo 16-1 101  

 
Each cell of the table 2 is formed by a pair (x,y), which x represents the 

significance value of the Wilcoxon test comparing our method with respect to other 
algorithm using the HEOM dissimilarity and y, using the HVDM dissimilarity. In 
bold are represented the values when our method outperforms the other method. The 
PRS method deletes all objects with the HVDM dissimilarity, being excluded of the 
statistical comparison (a - sign). 
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Table 2. Results of the Wicoxon test comparing our method aginst others  

 * our method had worse performance 
 
The results obtained of the experimental comparison show that our proposal 

obtains similar results with both dissimilarity functions. It obtains the best results 
according to object reduction, being significantly better than every other method. 
According to classifier error, the PERC method achieves very good results. It 
outperforms the GBR1 and GBR2 methods using both dissimilarities, and the PRS 
method with the HEOM dissimilarity, and ties with all other methods.  Our prototype 
selection schema losses with respect to the MSEditA using the HEOM dissimilarity, 
but ties this method with the HVDM function. It is important to point out that our 
method maintains the classifier accuracy using only a very reduced prototype set.  
The above results show that combining Rough Sets and Compact Sets leads to an 
edited set with high accuracy and also with much less objects than the original 
training set. 

5 Conclusions 

Prototype selection for improving the classifiers accuracy is a very important task in 
supervised classification problems with the NN classifier. In this paper a novel 
method is introduced, resulting from hybridizing Rough Sets with Maximum 
Similarity Graphs. Our method smooth decision boundaries, by using positive 
decision regions, and condenses the training data by selecting representative objects 
from compact sets structuralizations. The method is also able deal with databases 
containing objects described by features no exclusively numeric or categorical. 
Experimental results carried out over several repository data show the high 
performance of the proposed method.  
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