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Abstract. Human-Computer Interaction (HCI) devices such as the keyboard 
and the mouse are among the most contaminated regions in an operating room 
(OR). This paper proposes a sterile, intuitive HCI to navigate MRI images using 
freehand gestures. The system incorporates contextual cues and intent of the us-
er to strengthen the gesture recognition process. Experimental results showed 
that while performing an image navigation task, mean intent recognition accu-
racy was 98.7% and that the false positive rate of gesture recognition dropped 
from 20.76% to 2.33% with context integration at similar recognition rates. 
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1 Introduction 

Recent advances in computer-assisted surgery are taking user centered interfaces to 
the operating room (OR) in more and more hospitals and outpatient clinics. Since HCI 
devices are possible sources of contamination due to the difficulty in sterilization, 
clinical protocols have been devised to delegate control of the terminal to a sterile 
human assistant [1], [2]. Nevertheless, this mode of communication has been shown 
to be cumbersome [3], prone to errors [1] and overall, inefficient. This paper proposes 
a sterile method for the surgeon to naturally, and efficiently manipulate MRI images 
through touchless, freehand gestures. Image manipulation through gestural devices 
has been shown to be natural and intuitive [4] and does not compromise the sterility 
of the surgeon. The system extends a system previously developed by the authors [5] 
with the use of dynamic two-handed gestures and contextual knowledge. 

2 System Overview 

2.1 MRI Image Browser 

Users interact with an image browser developed to navigate and manipulate MRI 
images. The browser (developed with OpenGL and OpenCV libraries) displays sever-
al sequences on the left side of the screen for selection and a single slice from the 
selected sequence on the right side of the screen (see Fig. 1(a)). The user then selects 
an image representing an anatomical structure of interest. This image is then manipu-
lated through several actions such as increasing/decreasing image brightness, and 
rotating the image in the clockwise or counter-clockwise directions. 
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The images are accessed entirely through gestural commands (one gesture for each 
command). The lexicon consists of ten gestures (see Fig. 2(a)) which were selected 
from interviews with nine veterinary surgeons. The gestures encompass image navi-
gation and manipulation tasks such as browsing (up, down, left, and right), zooming 
(zoom-in, and zoom-out), rotation (clockwise, and counter-clockwise) and brightness 
change (brightness-up, and brightness-down).  The system can also be used indepen-
dently of a fixed display such as a television or monitor; Fig. 1(b) shows the system 
being used with a pico-projector hanging around the user. 

 

Fig. 1. (a) MRI Image Browser (b) Browser with the pico-projector 

2.2 Gesture Recognition 

A Microsoft Kinect using the OpenNI SDK was used to capture the user’s skeleton 
thus providing the positions of various landmark positions on the human body from 
depth data (see Fig. 2(b)). The positions of the left and right shoulders, and the head 
were quantized and delivered to a decision tree, as visual cues to gauge the user’s 
intention. If the user intends to use the system, the position of the left and right hands 
are tracked and the trajectories are classified with a set of 10 Hidden Markov Models 
(HMMs). Additionally, non-visual contextual cues such as the sequence of commands 
issued by the user was modeled as a Markov chain and the time between commands 
were also used as contextual cues to aid in gesture recognition. The recognized com-
mand is then sent to the MRI image browser. 

 

Fig. 2. (a) Gesture Lexicon (b) Skeleton model and tracked marker-less points 

3 Gesture Recognition with Contextual Cues 

Gaze has been established as a critical cue in establishing attention which stems from 
the intention of a user to interact with a person or a device [6]. Other fundamental 
cues are head orientation, body posture and the position of the hands w.r.t the body 
[7]. The following sections describe how visual and non-visual contextual cues are 
used to recognize the performed gestures. 
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3.1 Intention Recognition 

The intention recognition module decides whether a performed gesture is intentional 
or not based on anthropometric and kinematic features of the human body. The torso 
orientation ( ఏܶ), head orientation confidence (ܪఏ), hand orientation w.r.t. the torso 
,ఏܮ) ܴఏ) are combined to form the visual context feature vector, 

 ܸ ൌ  ሾ ఏܶ, ,ఏܪ ,ఏܮ ܴఏሿ் (1) 

The information encapsulated in this feature vector allows us to successfully deter-
mine whether the user “intends” to perform a gesture or not. The cues are explained in 
detail below: 

• Torso orientation: The orientation of the torso helps determine whether the 
user is facing the system and is thus intending to use it. The 3D position of  
the left and right shoulder (ܮሬԦ௦, ሬܴԦ௦) is used to compute the azimuth orientation of 

the torso w.r.t. the ܺ-axis, i.e. ఏܶ ൌ cosିଵ ൬൫௅ሬԦೞିோሬԦೞ൯ห௅ሬԦೞିோሬԦೞห ڄ ሾ1 0 0ሿ்൰. 

• Head orientation: The location of the head is obtained from the skeleton and 
is used to reduce the search space of the Viola-Jones frontal face detector [8]. 
A continuous estimate ܪఏ  of the confidence that the head of the user is for-
ward-facing is computed by sliding a 10 ൈ 1 mean filter over the output of the 
frontal face detector per frame. This cue provides information regarding the 
gaze of the user. 

• Hands position: Arm orientation with respect to the torso is an indication of 
whether the user wants to gesticulate towards the camera, or instead, is en-
gaged in a surgical task. The 3D position of each hand is used to compute its 
orientation with the waistline providing the inclination of each hand (i.e.ܮఏ, ܴఏ) 
with respect to the zenith angle. 

Integration of Visual Contextual Cues 
A dataset of 2100 sample sequences of “intentional” behavior, and 2650 samples of 
“unintentional” behavior were captured from users and manually annotated (ܫ and ܷ, 
respectively). Then, each sequence was quantized into a feature vector (see Equation 
1). The data set was used to train a decision tree which was pruned to produce a min-
imum-cost tree of 63 nodes. 

3.2 Gesture Spotting 

Once intent has been determined, the gesture was segmented from the trajectory of 
the user’s hands. Gesture spotting [7] is the process of automatically determining the 
start and the end of a gesture. Low-level features such as gesture acceleration [9] 
serve as a proxy to segment each gesture (gestures are preceded and succeeded by 
sudden acceleration and deceleration respectively). The segmented observations were 
used as inputs to the discrete HMMs.  

Let the velocity of hand ݄ at time ݐ be ௛ܸሺݐሻ, and ݐଵ and ݐே  the start and end 
times of a sliding window, respectively ( ݐ א ሼݐଵ, … ,௞ݐ … , ேሽሻݐ . If the variance ߪଶሺ ௛ܸሺݐ௞ሻሻ exceeds the threshold  ߙ  (an empirically determined), ݐ௞  is set as the 
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start point of the gesture. The end-point is similarly determined. If the length of the 
segmented gesture exceeds a threshold, a gesture has been spotted. 

3.3 Pre-selection of Gesture Classes 

The contextual information used so far is a good proxy for gestural intent; neverthe-
less it does provide much information about the likelihood of a given gestural occur-
rence. A combined measure of gesture likelihood is obtained using two non-visual 
contextual cues. These cues are learned independently of the gesture interface, since 
they are intrinsic to the task alone. All the non-visual cues were gathered after observ-
ing a large number of MRI browsing tasks completed by the users of the system. 

• Delay between commands: The time between commands ݐ஽ provides predic-
tive information. For example, navigational commands exhibit shorter delays 
between commands whereas image manipulation commands image have a 
longer delay. A normal distribution was fitted to the observed delays between 
commands, so each gesture class ݇ (mapped to a command) has a normal dis-
tribution ࣨሺߤ௞,   .௞ሻ assigned to itߪ

• Command history: The command history provides information regarding 
which commands are more probable to occur given the previous command. 
Since all commands are not equiprobable, the command history helps in reduc-
ing the possible set of gestures by using the knowledge of the previously 
evoked command ܥ௧ିଵ. The sequence of commands is modeled as a first-order 
Markov chain and a transition matrix ܣ is learned from user-interactions. 

Integration of Non-visual Contextual Cues 
Given a command delay, and a current command, the probability of the next gesture ݇ from the gesture lexicon Γ was computed by finding the joint probability between 
the gesture class given the delay time ݐ஽, and the probability of transition to the cur-
rent command. Formally, 

 ௞ܲ ൌ ܲሺ݇|ݐ஽ሻܲሺ݇|ܥ௧ିଵሻ  ݇׊ א Γ                                               (2) 

All hand trajectories corresponding to gestures where ௞ܲ ൐ ߳, were classified using 
chains of HMM detailed in the next subsection. 

3.4 Post-selection of Gesture Classes 

The motion of the centroids of the hands from the skeleton model is fed to the gesture 
recognition algorithm. This algorithm attempts to classify the spotted trajectory (see 
section 3.2) as belonging to one of the ten gestures in the surgical gesture lexicon Γ. 
The input to the gesture recognition algorithm is the feature vector ݑ which encodes 
the velocity of each hand along each axis in Թଷ. Given that the centroids of the first 
and second hand in the ݊th frame are given by (ݔ௙;௡, ,௙,௡ݕ ,௦;௡ݔ) ௙;௡) andݖ ,௦,௡ݕ  (௦;௡ݖ
respectively, then the feature vector for a frame ݊ is computed as ݑ, ሾݔ௙;௡ െ ,௙;௡ିଵݔ ௙;௡ݕ െ ,௙;௡ିଵݕ ௙;௡ݖ െ ,௙;௡ିଵݖ ௦;௡ݔ െ ,௦;௡ିଵݔ ௦;௡ݕ െ ,௦;௡ିଵݕ ௦;௡ݖ െ  ௦;௡ିଵ,ሿ  ሺ3ሻݖ
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Fig. 3. Pruning the gesture lexicon with visual and non-visual contextual cues 

A subset Λ ك Γ (determined in the pre-selection process) of discrete HMMs (one 
corresponding to each gesture), was used to recognize the trajectories. Each HMM is 
a left-right model [10] with 5 states. Each element in the vector ݑ (velocities of the 
hands along each axis in Թଷ) was quantized to three possible symbols; ሼ൅,0, െሽ. If |ݑ௜| ൑ ߬, then ݑ was considered static (0 symbol). Else, the sign corresponding to the 
velocity along the corresponding axis was assigned. 

Each vector ݑ was quantized to 3଺ representations which form the set of observa-
tion symbols for each HMM. Ten HMMs (an HMM ߣ௞ ൌ ሺܣ௞, ,௞ܤ  (݇ ௞ሻ per gestureߨ
was trained with labeled data with the Baum-Welch [10] algorithm. A gesture ݇ was 
said to be recognized if ߣ௞ resulted in the highest probability of the set of quantized 
observations ܱ ൌ ሾ ଵܱ, … , ்ܱሿ். The probabilities were computed using the Viterbi 
algorithm [10] on the segmented trajectories, i.e. 

 ݇ ൌ argmax௞ ܲሺܱ|ߣ௞ሻ ݇׊ ൌ 1, … , |Λ| (4) 

4 Experiments 

The following section discusses the experiments conducted to validate the hypothesis 
that contextual information (intention) can be used to detect accurately the gestures 
evoked by the user.  

4.1 Experiment 1: Intention Detection 

The first experiment tested the prediction of intention based on contextual cues, as 
described in section 3.1. A dataset of 4750 observations was collected to train and test 
the decision tree, of which 44% represented “intentional” behavior, and the rest 
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“unintentional” behavior. An ROC 
curve (see Fig. 4) was generated 
through 2-fold cross-validation for ten 
discrete values of ߢ , the maximum 
depth of the decision tree ( ߢ  varied 
from 6-15). The ROC curve indicates 
that the peak operating point of the 
classifier has recognition accuracy of 
97.9% with 1.36% false positive rate. 
A true positive is obtained when the 
user is correctly found to be facing the 
screen.  

4.2 Experiment 2: Gesture Recognition 

The gesture recognition performance of the HMM was evaluated in this experiment. 
A dataset of 1000 gestures were performed by 10 users (10 gestures per user per 
class). Also, several configurations of the left-right HMM model with various discre-
tization thresholds ߬ were tested over the dataset through 10-fold cross-validation. 
The value of ߬ ൌ 28mm was found to be optimal (see Fig. 5). The performance per 
class at this optimal operating point is described by the confusion matrix, presented in 
Fig. 6. Mean recognition accuracy of 97.23% was obtained. Fig.6 also shows that the 
left and right gestures have relatively lower mean accuracy since they are respectively 
sub-gestures of the clockwise and counter-clockwise gestures and are thus susceptible 
to be confused. 

4.3 Experiment 3: In-task Recognition Performance 

Twenty two students were asked to perform a specific browsing and manipulation 
task using the MRI image browser in a laboratory environment. The task consisted of 
searching for a landmark image and performing image manipulation tasks on the 
landmark image. All the data was recorded over 220 trials (10 per student) and each 
performed gesture was manually annotated. Data from 2 users were discarded as out-
liers due to the failure of the Kinect to reliably determine the skeleton of the user. A 
total of 4445 gestures were collected from users performing this task. At the end of 
each trial, each user was asked to assemble a surgical box. This activity served as a 
controlled way to force the user shift the focus of attention from the image browser. 
Without contextual information, such activity could potentially trigger accidental 
gestures. Fig. 7 displays the isolated gesture recognition accuracy of the 4445 anno-
tated gestures captured when the user was interacting with the system.  During the 
“non-intentional” phase of each trial, the gesture spotter was executed and the seg-
mented gestures (false positives) were recognized. Intent was correctly determined 
98.7% of the time and mean gesture recognition accuracy (ACC) of 92.58% and 
93.6% was obtained for the system with and without context respectively.  

 

Fig. 4. ROC curve for intention recognition 
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Fig. 5. Mean gesture recognition accuracy vs. discretization threshold. On the vertical axis is 
the accuracy of each gesture (in different colored line), and on the horizontal is the discretiza-
tion threshold used to convert trajectories to sequences of discrete symbols. 

 

Fig. 6. Confusion matrix for ߬ = 28mm. The rows represent the true class of the gestures labels 
and the columns represent the class assigned by the algorithm. High values on the diagonal 
elements indicate high gesture recognition accuracy. 

 

Fig. 7. Comparison of gesture recognition with and without context 

The main advantage of incorporating context is visible in the reduction of the false 
positive rate (FPR) of 20.76% without context to 2.33% with context. 

0 10 20 30 40 50 60 70 80 90 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 (mm)

Ac
cu

ra
cy

 

 

clockw ise
counter-clockw ise

left

right

zoom in

zoom out
up

dow n

brightness dow n

brightness up
Mean

 

100

7.41

99.07

3.67

0.93

93.58

6.48

1.85

92.59

100

0.92

100

97.25

0.93

100

0.93

1.83

93.52

2.75

96.30

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Without Context With Context
0

0.5

1

R
at

e 
(%

)

 

ACC

FPR



 Intention, Context and Gesture Recognition for Sterile MRI Navigation 227 

 

5 Discussion and Conclusion 

The hypothesis that contextual information integrated with hand trajectory gesture 
information can significantly improve the overall system recognition performance 
was validated. It has been shown that the false positive rate is significantly reduced 
using context without affecting recognition performance. The intent recognition and 
gesture recognition systems have been shown to perform well (98.5% and 93.6% 
respectively) on data collected from user interactions. In the dataset of gestures, the 
average isolated gesture recognition rate was found to be 97.23%. 

Future work includes building a more sophisticated gesture spotter which uses the 
gestural knowledge as well as local features of the trajectory to segment gestures. 
Additionally, tracking skeletal joints independently is required to handle the possible 
situation of failure in skeletal tracking by the OpenNI SDK.  
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