
Secure Keyword Search Using Bloom Filter

with Specified Character Positions

Takanori Suga1, Takashi Nishide2, and Kouichi Sakurai2

1 Department of Informatics, Graduate School of Information Science
and Electrical Engineering, Kyushu University

2 Department of Informatics, Faculty of Information Science
and Electrical Engineering, Kyushu University

Abstract. There are encryption schemes called searchable encryption
which enable keyword searches. Traditional symmetric ones support only
full keyword matches. Therefore, both a data owner and data searcher
have to enumerate all possible keywords to realize a variety of searches.
It causes increases of data size and run time.We propose searchable sym-
metric encryption which can check characters in the specified position as
we perform search on plaintexts. Our scheme realizes a variety of searches
such as fuzzy keyword search, wildcard search, and so on.

Keywords: Symmetric encryption, searchable encryption, Bloom filter.

1 Introduction

1.1 Background

In recent years, cloud computing is spreading rapidly and widely due to ad-
vance in computer and telecommunication technology. In cloud computing, we
outsource not only data but also processing to cloud servers.

The users cannot carry out investigations into the cause of security incidents
and the measures for preventing the recurrence of such incidents because the
users cannot know how cloud providers manage their servers. Therefore, we need
the measures for preventing the leakages before sending data to the cloud servers.
However, traditional encryption schemes prevent not only the leakages but also
the conveniences like searches. There are encryption schemes which enable us to
search without decryption. These schemes are called searchable encryption and
attract a great deal of attention.

There exist symmetric searchable encryption schemes and asymmetric ones.
The asymmetric ones can be used when it is difficult for us to share a secret key
securely as we send an e-mail. On the other hand, we can use symmetric ones if
and only if we can share a secret key securely, for example, when we share files in
the same organization. However, the symmetric ones can be executed faster than
asymmetric encryption in general. Therefore, we focus on symmetric searchable
encryption in this work.

An information flow of searchable encryption schemes is shown in Figure 1.

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 235–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

236 T. Suga, T. Nishide, and K. Sakurai

abc

Database

abc

File

Keyword Keyword

Encrypted File

Index

Trapdoor

Key

Data Owner Data Searcher

Server

(1) (1)

(2)

(4)

(5)

(6)

(7)

(8)

(3)

(8)
Result

Fig. 1. Flow of Searchable Encryption

1. A data owner shares a key with data searchers before encryption.
2. The data owner specifies the keywords KwA which represent the contents of

the file.
3. The data owner computes indexes IdxA of KwA. “Index” means a data

structure which enables the server to perform an encrypted keyword search
if and only if the server obtains a corresponding trapdoor that is explained
later.

4. The data owner sends encrypted data CA and IdxA to a server.
5. The server registers CA and IdxA to the database.
6. The data searcher computes trapdoors TdB of keywords KwB. “Trapdoor”

means a data structure which enables the data searcher to query the keyword
the data searcher wants to search in the server without revealing it.

7. The data searcher sends TdB to the server.
8. The server searches indexes in the database by using TdB and returns the

result to the data searcher.

IdxA,TdB do not reveal KwA,KwB to the server. Therefore, we can retrieve
data without letting the server know the keywords.

The types of searches are as follows.

Equality search. The keywords which match the query completely hit.
Prefix search. The keywords which contain the query in the head hit.
Suffix search. The keywords which contain the query in the tail hit.
Partial matching search. The keywords which contain the query anywhere

hit.
Wildcard search. The keywords which match any character other than wild-

card characters hit. Wildcard characters represent any characters.
Fuzzy keyword search. The keywords within a certain edit distance from the

query hit.

Secure Keyword Search Using Bloom Filter 237

Full-text search. We search the full content of a document for specified several
keywords.

Relational database search. We search a relational database for some values
(keywords, numbers, and so on). We usually use a query language like SQL
in this search.

1.2 Motivation

The searches for plaintexts such as search engines, searches in the computer,
searches for e-mails in a mailbox are realized in various ways and very conve-
nient. However, the available types of searches in searchable encryption schemes
have been restricted because the server searches hidden plaintexts for hidden
keywords. Therefore, our motivation is to enable to compare keywords in the
trapdoor per character with the hidden keyword in the index to realize more
advanced searches.

1.3 Related Works

Song et al. proposed the first practical searchable symmetric encryption scheme
in 2000 [15]D This scheme supports only equality search and thus is not so
convenient. After that, many searchable symmetric encryption schemes were
proposed [2,6,7,17]. These schemes aim to enhance the situations where they
are usable or to improve security and do not support any method other than
equality search.

In recent years, Li et al. proposed the first searchable encryption scheme which
supports a fuzzy keyword search [11]. This scheme is based on wildcard realized
by enumerating keywords like “?apple”, “?pple”, ..., and “apple?” for “apple”.
However, we cannot use any other wildcard patterns than prepared patterns for
fuzzy keyword search because this wildcard is realized by whole keyword match
as equality search. Furthermore, we cannot search any keyword other than those
which are enumerated by the data owner.

Boneh et al. proposed the first searchable asymmetric encryption scheme [4].
Abdalla et al. proposed anonymous IBE [1] and mentioned the relationship to
searchable asymmetric encryption scheme. After that, many searchable asym-
metric encryption schemes were proposed [5]. Sedghi et al. proposed a search-
able asymmetric encryption scheme which supports wildcard search [14]. This
scheme support a fixed wildcard search as our scheme and is realized with bilin-
ear pairing. In symmetric key settings, we can execute symmetric key encryp-
tion schemes or hash functions faster than asymmetric key encryption schemes
in general. However, there is no searchable symmetric encryption scheme which
supports general wildcard searches.

Goh proposed a searchable symmetric encryption scheme for full-text search
with Bloom filter [8] and Watanabe et al. proposed a searchable symmetric
encryption scheme for relational database with Bloom filter [16]. These schemes
use Bloom filter for efficiency.

238 T. Suga, T. Nishide, and K. Sakurai

1.4 Challenging Issues

After the first searchable encryption scheme was proposed, many searchable
encryption schemes were proposed. As an example, consider the wildcard search
like “2011/??/??” to find the dates from “2011/01/01” to “2011/12/31”. These
schemes make data searchers enumerate all possible keywords like “2011/01/01”,
“2011/01/02”, ..., and “2011/12/31” or the data owner enumerates all possible
patterns the data searcher may query. In this case, the data searcher has to
enumerate 365 keywords because we know wildcard characters represent the
dates. However, the data searcher has to enumerate more keywords when the
data searcher cannot know what wildcard character can be because we have to
enumerate all possible characters.

We can perform search by testing whether any character other than wildcard
characters matches if we can compare not keywords but characters. Therefore,
our challenging task is designing a searchable encryption which supports searches
based on character comparison in a secure manner.

1.5 Our Contribution

In this work, we propose a searchable symmetric encryption scheme which sup-
ports searches based on the comparison per character. In this paper, we call this
search position-specific keyword search.

This search brings us the following advantages:

– We can realize wildcard search efficiently. For example, in [11], we can per-
form a search for “2011/??/??” by comparing any character other than wild-
card characters. In this example, we need 365 trapdoors with the traditional
searchable symmetric encryption schemes but only one trapdoor with our
scheme.

– We can also realize the wildcard-based fuzzy keyword search proposed by
Li et al. [11] efficiently. Given keyword length � and edit distance d, we can
decrease index data size from O(�d) to O(1).

– We can realize partial matching search with a few indexes because the data
searcher can ignore characters other than specified characters. We can realize
it with a single index, but we can realize it efficiently if we put the same number
of indexes as the length of the specified keyword. For example, we can performa
partial matching search for “dog” by sending several trapdoors “dog”, “?dog”,
..., “?...?dog”when a single index “housedog” is put in the cloud servers. In this
search, given the upper bound of the keyword length u and the keyword length
�, the number of trapdoors thatmust be sent to the cloud server is u−�. On the
other hand, we can perform a partial matching search for “dog” by sending a
single trapdoor if eight indexes “housedog”, “ousedog”, “usedog”, ..., “g” are
put in the cloud servers because the indexes contain “dog”. Another example
is the indexes for “doggy”. In this example, we put five indexes “doggy”, ...,
“y”, in the cloud server and we can also perform a partial matching search for
“dog” by sending a single trapdoor because “doggy”matches “dog”by ignoring
characters other than specified characters.

Secure Keyword Search Using Bloom Filter 239

Table 1. Comparison of Search Functions

Name Key Search type

our scheme symmetric searches with specified characters
Song et al’s scheme [15] symmetric equality search
Li et al.’s scheme [11] symmetric fuzzy keyword search

Z-IDX [8] symmetric full-text search
Watanabe et al.’s scheme [16] symmetric relational database search

PEKS [4] asymmetric equality search
Sedghi et al.’s scheme [14] asymmetric wildcard search

We can execute our scheme faster than asymmetric ones because we do not
need complex computations like pairing used by asymmetric ones. Furthermore,
we can perform searches efficiently without testing all indexes on the server side
as explained in Section 5.1.

In our construction, we use pseudo-random functions for security improve-
ment. The pseudo-random functions can conceal the information because no
efficient algorithm can distinguish an output of pseudo-random functions from
an output of random functions. We also use the Bloom filter to decrease the data
size of the output of pseudo-random functions because pseudo-random functions
needs some bits (e.g., 256 bits with HMAC-SHA256) for a single input, but one
Bloom filter with the same length can contain multiple outputs of pseudo-random
functions.

Note that Goh’s scheme [8] and Watanabe et al.’s scheme [16] already use the
Bloom filter only for an index, whereas we use the Bloom filter not only for an
index but also for a trapdoor. We cannot apply this our technique to the Goh’s
original scheme and Watanabe et al.’s scheme, so the data size of the trapdoor
cannot be decreased. Although we can apply this our technique to Goh’s second
scheme described in the appendix of [8], its applicability was not mentioned in
[8] and the security proof of the second scheme was not given explicitly in [8].

1.6 Comparison with Existing Works

Let the keyword length be �, and edit distance d for fuzzy keyword search.
We show the comparison of search functions in Table 1, and the comparison

of data size and run time to generate an index and a trapdoor with Goh’s
scheme, Song et al.’s scheme and Li et al.’s scheme in Table 2. In Table 2, “single
index” and “single trapdoor” are two methods described in Section 1.5. Note that
although we show the orders of the index data size in Table 2 together, these
orders have the different meanings because an index of Goh’s scheme consists of
multiple keywords, and an index of our scheme consists of a single keyword.

We can see the decrease in data size and run time compared with exist-
ing schemes in Table 2. In particular, we can decrease the index size in the
fuzzy keyword search. Since our scheme is not designed for full-text search,
Goh’s scheme is more space- and computation-efficient than our scheme when we

240 T. Suga, T. Nishide, and K. Sakurai

Table 2. Efficiency Comparison

Data size Run time
Type of search Name Index Trapdoor Index Trapdoor

equality search
our scheme O(1) O(1) O(�) O(�)

Song et al’s scheme [15] O(�) O(�) O(�) O(�)
Goh’s scheme [8] O(1) O(1) O(n) O(1)

fuzzy keyword
search

our scheme O(1) O(�d) O(�) O(�d+1)
Song et al’s scheme [15] — — — —

Li et al’s scheme [11] O(�d) O(�d) O(�d) O(�d)

partial matching
search

our scheme (single index) O(1) O(u) O(�) O(u�)
our scheme (single trapdoor) O(�) O(1) O(�2) O(�)

Song et al’s scheme [15] — — — —
Li et al’s scheme [11] — — — —

(�: keyword length, d: edit distance, u: upper bound of keyword length, n: number of
keywords in one file).

perform a full-text search. However, our scheme is more space-efficient than the
existing schemes when we perform more complex search like a fuzzy keyword
search. c

2 Preliminaries

Notations

We use the following notations in this paper.

Symmetric set difference. We define a symmetric set difference A � B as
A�B = (A−B) ∪ (B −A).

Random number. x
R← S denotes random variable x chosen at random from

the set S.
The number of elements. We use |A| to denote the number of elements in A
String concatenation. a ‖ b denotes concatenation of two strings a, b.
Character. w[n] denotes n-th character in string w.
Logical operations. Given two logical values a, b, a ∧ b denotes the logical

AND between a and b, and a ∨ b denotes the logical OR between a and b.

Pseudo-random Functions

A pseudo-random function is computationally indistinguishable from a random
function. To be more specific, we call a function f : {0, 1}n × {0, 1}s → {0, 1}m
which has the following features as (t, ε, q)-pseudo-random function.

– Given an input x ∈ {0, 1}n and a key sk ∈ {0, 1}s, f(x, sk) can be computed
efficiently.

– For any t time oracle algorithm A with at most q adaptive queries,

Secure Keyword Search Using Bloom Filter 241

|Pr[Af(·,sk) = 0|sk R← {0, 1}s]−Pr[Ag = 0|g R← {F : {0, 1}n → {0, 1}m}]| < ε.

In this paper, we use a keyed hash function like HMAC-SHA256 where the key
sk is shared among a data owner and data searchers.

Symmetric Key Encryption

We use Π = (Setup(1λ), Enc(sk, ·), Dec(sk, ·)) to denote a symmetric key en-
cryption scheme. Given a security parameter λ, Setup(1λ) outputs a secret key.
Given a secret key sk, Enc(sk, ·) andDec(sk, ·) are an encryption and decryption
scheme with sk.

Bloom Filter

Bloom filter [3] is space-efficient probabilistic data structure. Bloom filter has
a false positive. It means that Bloom filter may output true even if it does not
have the element to be checked. On the other hand, Bloom filter does not have
a false negative. It means the element is guaranteed not to be in Bloom filter if
Bloom filter outputs false.

Bloom filter is denoted as m-bit array with address from 1 to m. First, this
bit array is initialized with 0. To add an element to Bloom filter, we compute k
addresses a1, a2, ..., ak with k hash functions h1, h2, ..., hk first. Then, we make
the bits corresponding to the addresses be 1. To determine if Bloom filter has
the element, we also compute k addresses a′1, a

′
2, ..., a

′
k. Then, we check if all bits

corresponding to the addresses are 1. We can know with certain error rate that
the element is in the Bloom filter if and only if all bits are 1. We can also without
error know the element is not in Bloom filter if some bits are 0.

Search Expression

In this paper, we express a position-specific keyword search as a DNF logical
formula p = (p(1,1) ∧ ... ∧ p(1,m1)) ∨ ... ∨ (p(n,1) ∧ ... ∧ p(n,mn)). In this formula,
p(i,j)(i ∈ [1, n], j ∈ [1,mi]) denotes the logical formula which compares the
character in the specified position, and let w[x] = c denote a comparison which
checks if x-th character of w is c.

We call this formula p as search expression in this paper.
For example, the search expression p to perform an equality search for either

keyword “dog” or “cat” is as follows:

f = ((w[1] = “d”) ∧ (w[2] = “o”) ∧ (w[3] = “g”) ∧ (w[4] = null))

∨((w[1] = “c”) ∧ (w[2] = “a”) ∧ (w[3] = “t”) ∧ (w[4] = null))

File Identifier

File identifier means the unique name of a file. We can use an absolute path for
the file, a universal unique identifier (UUID) [10], and so on. We can use any
type of file identifier.

242 T. Suga, T. Nishide, and K. Sakurai

3 Proposed Scheme

We use one Bloom filter to store all characters of one keyword. We also use
pseudo-random functions when we add a character to Bloom filter and symmetric
key encryption scheme to encrypt data for the search results. We can use any
secure symmetric key encryption scheme.

We have to specify an upper bound u of the keyword length before use.
Note that each keyword is terminated with a null which denotes a null symbol.

null denotes the end of the keyword and is used for the query including the end
of the keyword.

This scheme has the following four algorithms.

KeyGen(1λ) Given a security parameter λ, output a secret key sk
R← {0, 1}λ.

Trapdoor(sk, p) Given a secret key sk and a search expression p, output a trap-
door for p. Let p = p1∨ ...∨pn, pi = (p(i,1)∧ ...∧p(i,mi)), where p(i,j) denotes
a comparison which checks if w[x(i,j)] = c(i,j). We use T = {T1, ..., Tn} to
denote a trapdoor for p. We can compute Ti for i ∈ [1, n] as follows.
1. Initialize a Bloom filter Ti.
2. For each term p(i,j) for j ∈ [1,mi], given p(i,j) denotes a comparison

which checks if w[k] = c, add a concatenated string k ‖ c to the Bloom
filter Ti.

BuildIndex(sk,FIDw, w) Given a secret key sk, a file identifier FIDwCand a
keyword w, compute an index I = {II , III} for w as follows.

1. Initialize a Bloom filter II.
2. For each character w[i] for i ∈ [1, |w|], add a concatenated string i ‖ w[i]

to II.
3. Let the number of pseudo-random functions used for the Bloom filter
II be k. Pick (u − |w|) · k random values and set the respective bits
of the Bloom filter to 1. This operation is equivalent to an insertion of
u − |w| random characters, where u − |w| is the difference between the
actual length and the upper bound, into the Bloom filter. We have this
operation to prevent the number of 1’s in II from revealing the length
of the keyword w.

4. Choose a random value rd
R← {0, 1}λ. This value is used to randomize

III.
5. Encrypt a collection of a file identifier FIDw, a keyword w, and rd with

a symmetric key encryption scheme as III = Enc(sk,FIDw ‖ w ‖ rd).
This value is used to query the file and to check if the search result is
correct. rd randomizes III to hide the equality of the keyword.

6. Output the index I = {II, III}.
This algorithm is executed as many times as the number of keywords.

SearchIndex(T, I) Given a trapdoor T for a certain keyword and an index I,
search the indexes in which all bits set to 1 in trapdoor are 1 and output the
search result III in the index I.

Secure Keyword Search Using Bloom Filter 243

We describe the information flow of this scheme as follows.

1. Those who share files share a key generated by KeyGen before using this
scheme.

2. A data owner encrypts a file with Enc. The data owner specifies keywords
and computes indexes of them with BuildIndex.

3. The data owner sends the encrypted file and index.
4. A server stores them in the database.
5. A data searcher computes a trapdoor for a specified keyword with Trapdoor.
6. The data searcher sends it to the server.
7. The server searches with SearchIndex and returns the result.

We describe the concrete examples of the outputs of BuildIndex and Trapdoor
in Appendix B that will help understand our scheme intuitively.

Optimization

We can use a linear search to execute SearchIndex. However, we can achieve
more efficient search with a binary tree search because we do not have to test
all indexes in a binary tree search. See Appendix C for the details.

Determining Suitable Parameters for Bloom Filter

We have to determine the length of Bloom filter m and the number of pseudo-
random functions k before use. Given the maximum number of characters n and
the acceptable possibility of false-positive fp, we can determine these parameters
as follows [8]:

k = − log2 fp,m =
kn

ln 2
(1)

4 Security Analysis

4.1 Security Model

The security model we use is based on IND-CKA [8]. We define the indistin-
guishability of keywords. Although Z-IDX [8] creates indexes from the set of
keywords, our scheme creates indexes from one keyword. We call this security
model IND-CPSKA1 to make the difference clear.

This security model is defined by the following game between a challenger C
and an adversary A as follows. We say that an adversary A (t, ε, q)-breaks our
scheme if AdvA is at least ε after A takes at most t time and query trapdoors to
C q times. We say that the symmetric searchable encryption I is (t, ε, q)-IND-
CPSKA secure if there is no adversary who can (t, ε, q)-break I.
1 IND-CPSKA denotes Indistinguishability under Chosen Position-Specific Keyword
Attack.

244 T. Suga, T. Nishide, and K. Sakurai

Setup. C creates a set S of q pairs of position and character, and gives this to
A D A chooses some subsets S∗, that is, keywords from S and gives this to
C. After receiving S∗, C runs KeyGen to generate a secret key Kpriv, and C
computes the indexes for all subsets of S∗ with BuildIndex. Finally, C gives
all indexes and related subsets S∗ to A after computing all indexes. We note
that the correspondence relation between the indexes and S∗ is unknown to
A.

Query. A can query trapdoor Tx for word x to C. For each index I, A can
execute SearchIndex for Tx, I to tell whether I matches x.

Challenge. A picks nonempty two subsets V0, V1 ∈ S∗ such that |V0− V1|
= 0,
|V1 − V0|
= 0 and |V0| = |V1|. Here, A must not have queried C for the trap-
door of any character in V0�V1. A cannot query any trapdoor for a character
in V0�V1. A gives V0 and V1 to C. C chooses b from {0, 1} at random. C com-
putes BuildIndex(Vb,Kpriv) to get an index corresponding to Vb and gives it
back to A. After C gives the challenge (i.e., BuildIndex(Vb,Kpriv)) to A, A
cannot query any trapdoor for any character x ∈ V0 � V1 to C.

Response. A outputs b′ to guess b. The advantage A obtains is defined as
AdvA = |Pr[b = b′]− 1/2|.

4.2 Security Proof

Theorem 1 Given the number of pseudo-random functions k, our scheme is
(t, ε, q/k)-IND-CPSKA secure if f is a (t, ε, q)-pseudo-random function.

Proof. We can prove this theorem as the proof in [8].
We prove this theorem using its contrapositive. Suppose our scheme is not

(t, ε, q/k)-IND-CPSKA secure, that is, there is an algorithm A which (t, ε, q/k)-
breaks our scheme. Then we show we can construct the algorithm B which
distinguishes whether f is a pseudo-random function or a random function. Given
x ∈ {0, 1}n, B can use an oracle Of which outputs f(x) ∈ {0, 1}s for unknown
function f . B evaluates f with a query to Of whenever computing any four index
algorithms.

The algorithm B makes the simulation for A as follows.

Setup. B chooses a set S of q/k pairs of position and character from {0, 1}n at
random and sends it to A. A returns a collection S∗ of polynomial numbers
of subsets. For each subset D of S∗, B assigns a file identifier FIDD and gets
IFIDD

by computing BuildIndex for FIDD. B gives all indexes and related
subsets S∗ to A after computing all indexes. We note that correspondence
relation between the indexes and S∗ is unknown to A.

Query. B computes Trapdoor for x and returns a trapdoor Tx for x.
Challenge. A picks nonempty subset V0, V1 ∈ S∗ such that |V0 − V1|
= 0,
|V1 − V0|
= 0 and |V0| = |V1|. A cannot query any trapdoor for a character
in V0 � V1 to B. A gives V0 and V1 to B. B chooses b from {0, 1} and a file
identifier Vid at random. B computes BuildIndex to get IVb

and gives IVb

to A. The challenge to A is to guess b. A cannot query any trapdoor which
contains any character x ∈ V0 � V1.

Secure Keyword Search Using Bloom Filter 245

Response. A outputs b′ finally. B outputs 0 if b = b′, that is, f is a pseudo-
random function. Otherwise, B outputs 1.

B takes at most t time because A takes at most t time. B sends at most q queries
to Of because there are only q/k characters, A creates at most q/k queries, and
B creates k queries for A’s single query.

Finally, according to the following lemmas, B has advantage greater than ε
to determines if the unknown function f is a pseudo-random function or f is a
random-function because we have the following equation:

|Pr[Bf(·,k) = 0|k R← {0, 1}s]− Pr[Bg = 0|g R← {F : {0, 1}n → {0, 1}s}]| ≥ ε

This contradicts the assumption of pseudo-random functions.
Therefore, our scheme is (t, ε, q/k)-IND-CPSKA secure if f is a (t, ε, q)-pseudo

random function.

Lemma 1. |Pr[Bf(·,k) = 0|k R← {0, 1}s] − 1
2]| ≥ ε if f is a pseudo-random

function.

Lemma 2. Pr[Bg = 0|g R← {F : {0, 1}n → {0, 1}s}] = 1
2 if g is a random

function.

Proof. Lemma 1 is obvious because B simulates C completely in an IND-CPSKA
game if f is a pseudo-random function.

We prove Lemma 2. We have to consider only Challenge subsets V0, V1 because
other subsets in S do not reveal any information about the Challenge subsets.

Without loss of generality, assume that V0 � V1 has two characters x, y such
that x ∈ V0, y ∈ V1 and A guesses b with advantage δ. Given f(z), it means that
A can determine if z = x or z = y with advantage δ, that is, A can distinguish
the output of a random function f with advantage δ. However, if f is a random
function, A cannot distinguish the output, so we have δ = 0. Therefore, A can
guess b with the probability of at best 1/2. Finally, we proved Lemma 2. �

4.3 Limitation

In this scheme, the trapdoor is divided into the clauses. Therefore, the server
can know the search result of each clause. For example, in an equality search
for “dog” or “cat”, the server cannot know the plaintext “dog” and “cat”, but
the server can know the search result for “dog” and the search result for “cat”
respectively.

This limitation exists in many of the existing works as well as this work. For
example, Goh’s scheme [8] generates a trapdoor per keyword and the server
can know the search result for each keyword. Similarly, Li et al.’s scheme [11]
generates a trapdoor set per keyword and the server can know the search result
for not only each keyword but also each clause.

246 T. Suga, T. Nishide, and K. Sakurai

102 104

100

102

BuildIndex

Keyword length [bytes]

T
im

e
[m

se
cs

]

Fig. 2. Run Time for BuildIndex

100 101 102

10−2

100

102

104

106
EnumerateKeywords
Trapdoor

Keyword length [bytes]
T

im
e

[m
se

cs
]

Fig. 3. Run Time for Search

5 Evaluation

Given a bit length of Bloom filter m, an index consists of m-bit Bloom filter and
III in I. Given the number of terms divided by disjunctions in the search expres-
sion n�, the size of trapdoor is n�m bits because it has n� Bloom filters. Given
the total number of characters in all keywords �m, the execution of BuildIndex
needs O(�m) time because we have to compute O(�m) pseudo-random functions.
Similarly, given the number of terms in search expression nt, the execution of
Trapdoor needs O(nt) time.

5.1 Implementation

We implemented our scheme with fuzzy keyword search [11] on a 2.8 GHz In-
tel Core 2 Duo CPU. We used 256-bit Bloom filter, symmetric key encryp-
tion scheme AES [12], and keyed hash function HMAC-SHA256 [9,13]. HMAC-
SHA256 can be used as distinct pseudo-random functions as f(sk, x), fi(sk, x) =
f(sk, i ‖ x).

The run time for BuildIndex is shown in Figure 2 and the run time for Trap-
door is shown in Figure 3. EnumerateKeywords is an algorithm to enumerate
keywords proposed by Li et al. We can see in the figure that the larger the key-
word length becomes, the more time we need, and our scheme is unsuitable for
very long keyword. However, it is not a practical problem because a keyword
does not often have a large number of characters.

We implemented SearchIndex in the following two ways.

Method 1. This method is based on complete search with a relational database
SQLite. The server stores indexes divided into 64 bits. Trapdoor is also
divided into 64 bits. Given divided indexes Idx1, ..., Idxn and trapdoors

Secure Keyword Search Using Bloom Filter 247

100 101 102 103

0

50

100

Keyword length [bytes]

F
al

se
 p

os
iti

ve
 r

at
e

[%
]

2 bits
16 bits
128 bits
1024 bits

Fig. 4. False-Positive Rate

Td1, ...,Tdn, a query for the trapdoor can be constructed as ((Idx1&Td1) =
Td1) ∧ ... ∧ ((Idx1&Tdn) = Tdn). We divide indexes and trapdoors because
the maximum length SQLite can compute AND operation is 64 bits. This is
an implementation problem. We do not have to divide indexes and trapdoors
if the database supports AND operation of larger bits.

Method 2. This method is based on binary tree search. Each bit of indexes
corresponds to a link of the tree. The leaf node has the search result. In
this method, we construct a binary tree from the indexes generated with the
same key. This search is realized by following the link recursively. We can
ignore the link of 0 corresponding to the bit of 0. See Appendix C for the
details. Therefore, we do not have to go through the whole tree, and we can
achieve more efficient search than the sequential exhaustive search.

A fuzzy keyword search with 6-byte keyword on the database which has 1,000,000
keywords takes 44 seconds on average when we use Method 1. However, it takes
only 280 milliseconds on average when we use Method 2.

5.2 Bloom Filter Parameters v.s. False-Positive Rate

We performed an experiment to clarify how the Bloom filter parameters affect
the false-positive rate. In this experiment, we used HMAC-SHA256 [9,13], and
the number of pseudo-random functions is 3 (fixed).

We performed this experiment as follows. First, we generate a random keyword
kwidx and generate an index Idxkwidx

for kwidx. Next, we generate another
random keyword kwtd (kwidx
= kwtd) and generate a trapdoor Tdkwtd

. Finally,
we check if Idxkwidx

matches Tdkwtd
. If Idxkwidx

matches Tdkwtd
, this result is

a false-positive because kwidx
= kwtd.

248 T. Suga, T. Nishide, and K. Sakurai

We show the result of this experiment in Figure 4. In this figure, the x-axis is
a keyword length of kwidx and kwtd, the y-axis is a false-positive rate, and the
graph legends are the bit lengths of the Bloom filter.

This figure shows that an m-bit Bloom filter is effective with small false-
positive rates up to m-byte keyword.

6 Conclusion

In this work, we proposed a searchable symmetric encryption scheme which
supports a variety of searches by enabling comparison per character as searches
for plaintexts. We implemented our scheme and we confirmed that our scheme
can be performed on both of client and server in practical time.

Our future work is to find a scheme which creates a single index for the mul-
tiple keywords or single trapdoor for multiple terms divided by the disjunctions
to decrease data size, run time or information obtained by the server.

Acknowledgments. Thiswork is partially supported byGrant-in-Aid forYoung
Scientists (B) (23700021), Japan Society for thePromotion of Science (JSPS). This
work is also partially supported by the Telecommunications Advancement
Foundation (TAF).

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions. Journal of Cryptology 21,
350–391 (2008)

2. Bao, F., Deng, R.H., Ding, X., Yang, Y.: Private Query on Encrypted Data in
Multi-user Settings. In: Chen, L., Mu, Y., Susilo, W. (eds.) ISPEC 2008. LNCS,
vol. 4991, pp. 71–85. Springer, Heidelberg (2008)

3. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13, 422–426 (1970)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Boneh, D., Waters, B.: Conjunctive, Subset, and Range Queries on Encrypted
Data. In: Vadhan, S. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer,
Heidelberg (2007)

6. Chang, Y.-C., Mitzenmacher, M.: Privacy Preserving Keyword Searches on Remote
Encrypted Data. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005.
LNCS, vol. 3531, pp. 442–455. Springer, Heidelberg (2005)

7. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Proceedings of the
13th ACM Conference on Computer and Communications Security, CCS 2006, pp.
79–88. ACM, New York (2006)

8. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/2003/216/

http://eprint.iacr.org/2003/216/

Secure Keyword Search Using Bloom Filter 249

9. Krawczyk, H., Bellare, M., Canetti, R.: HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104 (Informational) (February 1997)

10. Leach, P., Mealling, M., Salz, R.: RFC 4122: A universally unique identifier (UUID)
URN namespace (2005)

11. Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., Lou, W.: Fuzzy keyword search over
encrypted data in cloud computing. In: 2010 Proceedings of the IEEE INFOCOM,
pp. 1–5 (March 2010)

12. NIST: Announcing the advanced encryption standards (AES). Federal Information
Processing Standards Publication 197 (2001)

13. NIST: Announcing the secure hash standard. Federal Information Processing Stan-
dards Publication 180-2 (2002)

14. Sedghi, S., van Liesdonk, P., Nikova, S., Hartel, P., Jonker, W.: Searching Keywords
with Wildcards on Encrypted Data. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010.
LNCS, vol. 6280, pp. 138–153. Springer, Heidelberg (2010)

15. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the IEEE Symposium on Security and Privacy, S&P 2000,
pp. 44–55 (2000)

16. Watanabe, C., Arai, Y.: Privacy-Preserving Queries for a DAS Model Using En-
crypted Bloom Filter. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA
2009. LNCS, vol. 5463, pp. 491–495. Springer, Heidelberg (2009)

17. Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and
searchable audit log. In: The 11th Annual Network and Distributed System Secu-
rity Symposium (2004)

A Pseudocode

We show the algorithms of our scheme with pseudocodes.
In these algorithms, we use m to denote the bit length of a Bloom filter and

k to denote the number of pseudo-random functions.
In Algorithm 2, the search expression se is denoted as

((x(1,1), c(1,1)), ..., (x(1,m1), c(1,m1))), ..., ((x(n,1), c(n,1)), ..., (x(n,mn), c(n,mn)))
in order to denote it as an array. For example, ((1, d), (2, o), (3, g), (4, null)) de-
notes an equality search for “dog” only in this section. |se| denotes the number
of elements of the array se.

B Execution Example of Proposed Scheme

We describe the concrete examples of the outputs of BuildIndex and Trapdoor
in this section. Suppose that Alice outsources data and Bob searches data. Alice
specifies “dog” to denote the content of the file. Bob searches “dog” by an
equality search. The bit length of the Bloom filters is 16 bits, the number of
pseudo-random functions is 2, and the upper bound of the keyword length is 5.
Suppose that they share these parameters.

1. First, Alice executes KeyGen and sends sk to Bob in a secure manner.
2. Alice executes BuildIndex as follows:

250 T. Suga, T. Nishide, and K. Sakurai

Algorithm 1. BuildIndex

Require: w is a keyword to build an index.
Ensure: (BF, c) is an index for w.

Initialize a bit array BF with zeros.
for i = 1 to |w| do

for j = 1 to k do
p← fj(i ‖ w[i]).
BF [p]← 1.

end for
for j = 1 to (u− |w|) · k do

Pick rd ∈ [1, |BF |] at random.
BF [rd]← 1.

end for
end for
Encrypt FIDw ‖ w ‖ rd and assign it to c.
Return (BF, c).

Algorithm 2. Trapdoor

Require: se is a search expression to generate a trapdoor.
Ensure: t is a trapdoor for se.

t← {}.
for i = 1 to |se| do

Initialize a bit array BFi with zeros.
for j = 1 to |se[i]| do

for h = 1 to k do
p← fh(se[i][j][1] ‖ se[i][j][2]).
BFi[p]← 1.

end for
end for
Append BFi to t.

end for
Return t.

Algorithm 3. SearchIndex

Require: td is a trapdoor and idx is an index.
Ensure: Output ‘true’ if idx matches trapdoor, otherwise return ‘false.’

for i = 1 to m do
if td[i] = 1 and idx[i] = 0 then

Return ‘false.’
end if

end for
Return ‘true.’

Secure Keyword Search Using Bloom Filter 251

(a) Alice creates a 16-bit Bloom filter. The Bloom filter is 0000000000000000
at this point.

(b) Alice computes two pseudo-random functions for the respective charac-
ters of “1 ‖ d”, “2 ‖ o”, “3 ‖ g”C“4 ‖ null”. Suppose that Alice obtains
6, 2 for “1 ‖ d”, 12, 4 for “2 ‖ o”, 5, 13 for “‖ g” and 2, 9 for “4 ‖
null”. Alice sets the respective bits to 1. The resultant Bloom filter is
0101110010011000 at this point. Alice picks two random values because
(u− |w|) · k = (5− 4) · 2 = 2. Suppose that Alice obtains 15 and 4. Alice
sets the respective bits to 1. The final Bloom filter is 0101110010011010
at this point. This value is II.

(c) Alice picks random value rd and computes III = Enc(sk,FIDw ‖ w ‖ rd).

3. Alice sends I = (II, III) to the server.

4. Bob executes Trapdoor to perform an equality search. The search expression
is (w[1] = “d”) ∧ (w[2] = “o”) ∧ (w[3] = “g”) ∧ (w[4] = null). This search
expression means that the searched keyword equals to “dog” including the
terminal symbol. Bob computes two pseudo-random functions for the respec-
tive characters of “1 ‖ d”, “2 ‖ o”, “3 ‖ g”C“4 ‖ null”. These values are the
same as those Alice computed. Bob sets the respective bits to 1. The Bloom
filter is 0101110010011000 at this point.

5. Bob sends this value to the server.

6. The server searches the indexes in which all bits set to 1 in trapdoor are 1
and returns the search result III in the index I to Bob. This was generated
by Alice in Step 2.

7. Bob decrypts III and confirms whether the original keyword is “dog”.

8. Bob queries the file whose identifier is FIDw .

9. The server returns the queried file.

The trapdoor in the example contains the termination character. Therefore, even
if Alice registers “doggy”, “doggy” does not hit and only “dog” hits because
w[4]
= null. Therefore, Bob can perform an exact equality search.

In this example, although we achieve an equality search, we can achieve a
wildcard search for “d?g” by computing pseudo-random functions of “1 ‖ d”, “3
‖ g”, “4 ‖ null” in Step 4. On the other hand, we can achieve a fuzzy keyword
search by an enumeration proposed by Li et al. [11]. When we perform a fuzzy
keyword search for “dog” with an edit distance 1, the data searcher Bob enu-
merates “?dog”, “?og”, “d?g”, “do?”, “dog?”, and Bob executes Trapdoor for
each search expression. When we perform a fuzzy keyword search with longer
edit distance, we increase the number of wildcard characters like “??dog”. In Li
et al.’s scheme, the user who computes an index also has to enumerate possi-
ble keywords and prepare corresponding indexes. However, our scheme does not
require the data owner to enumerate the keywords for a fuzzy keyword search
when the data owner computes an index.

252 T. Suga, T. Nishide, and K. Sakurai

1 1

0 1

1 0

0 1

0 1

Root Node

First bit

Second bit

Third bit

Leaf nodes

Fig. 5. Binary Search Tree

C Example of Binary Tree Search

We show an example of the binary search tree in Fig. 5. In this example, the
tree has four indexes 001, 011, 101 and 110 (i.e., the length of a Bloom filter is
three here). The leaf node has the search result.

Suppose that the server receives a trapdoor 101. The server can perform a
search as follows:

1. From the root node, follow the link of 1.
2. Follow the link of 0.
3. Follow the link of 1.
4. Obtain the search result from the leaf node corresponding to 101.
5. Go back to the node of Step 2, and follow the link of 1 because the second

bit of the trapdoor 101 is 0.
6. Finish the search since there is no more link to follow.

	Secure Keyword Search Using Bloom Filter with Specified Character Positions
	Introduction
	Background
	Motivation
	Related Works
	Challenging Issues
	Our Contribution
	Comparison with Existing Works

	Preliminaries
	Proposed Scheme
	Security Analysis
	Security Model
	Security Proof
	Limitation

	Evaluation
	Implementation
	Bloom Filter Parameters v.s. False-Positive Rate

	Conclusion
	References

