
Perfect Keyword Privacy in PEKS Systems

Mototsugu Nishioka

HITACHI, Ltd., Yokohama Research Laboratory, Japan
mototsugu.nishioka.rc@hitachi.com

Abstract. This paper presents a new security notion, called perfect
keyword privacy (PKP), for non-interactive public-key encryption with
keyword search (PEKS) [5]. Although the conventional security notion
for PEKS guarantees that a searchable ciphertext leaks no information
about keywords, it gives no guarantee concerning leakage of a keyword
from the trapdoor. PKP is a notion for overcoming this fatal deficiency.
Since the trapdoor has verification functionality, the popular concept of
“indistinguishability” is inadequate for capturing the notion of keyword
privacy from the trapdoor. Hence, our formalization of PKP depends
on the idea of formalizing a perfectly one-way hash function [10,11].
We also present IND-PKP security as a useful notion for showing that a
given PEKS scheme has PKP. Furthermore, we present PKP+ and IND-
PKP+ as enhanced notions of PKP and IND-PKP, respectively. Finally,
we present several instances of an IND-PKP or IND-PKP+ secure PEKS
scheme, in either the random oracle model or the standard model.

1 Introduction

Much attention has been paid to encryption systems that go beyond tradi-
tional public-key encryption (PKE) systems, such as identity-based encryption
(IBE) [6,13,17], public-key searchable encryption [5,19], attribute-based encryp-
tion (ABE) [16], and functional encryption (FE) [7]. This paper deals with non-
interactive public-key encryption with keyword search (PEKS), which is first
presented in [5]. The PEKS provides a simple but useful mechanism to cryp-
tographically protect data while keeping it available for search. For example,
Alice can generate a searchable ciphertext corresponding to her selected key-
word using Bob’s public key. She then stores the ciphertext to a server. Bob can
generate another key, called a trapdoor, corresponding to his selected keyword
by using own secret key. Bob then sends the trapdoor to the server. The server
can test whether or not the keywords corresponding to the ciphertext and the
trapdoor are identical, and Bob can receive the ciphertext from the server only
when the test is passed. In an email system, the server could be a gateway that
forwards emails from Alice to Bob’s portable terminal, depending on his selected
keywords, such as “urgent” or “the next business meeting”.

The conventional security for PEKS, called IND-PEKS-CKA security (cf. Def-
inition 2), requires that the searchable ciphertext does not leak any information
about the keyword. This security, however, gives no guarantee about leakage of
the keyword from the trapdoor. Indeed, there exist PEKS schemes, such as the

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 175–192, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

176 M. Nishioka

statistical consistent scheme presented in [1], that are IND-PEKS-CKA secure
but the trapdoor includes the keyword itself. This could bring serious problems
in many systems. For instance, in the above example, the malicious server (or
gateway) could collect the keywords selected by Bob from the given trapdoors
and use them to analyze his activities. The privacy of keywords from the trapdoor
has been discussed in the symmetric-key setting [14] and the interactive public-
key setting [9]. On the other hand, to solve a similar problem in symmetric-key
predicate encryption, Shen, Shi, and Waters [18] presented a security notion,
predicate privacy, to ensure that tokens reveal no information about the en-
coded query predicate. Subsequently, Blundo, Iovino, and Persiano [4] presented
a predicate encryption scheme with partial public key, and defined a token se-
curity to ensure the privacy of a pattern vector from a token. To the best of
our knowledge, however, there has been no discussion of the leakage of keywords
from trapdoors within the framework of PEKS, which is a non-interactive and
“total” public key setting.

1.1 Contributions

This paper presents a new security notion for PEKS, called perfect keyword
privacy (PKP), to protect the privacy of a keyword from an adversary having
both the trapdoor and the ciphertext of the underlying keyword. For formalizing
PKP, the well-known concept of “indistinguishability” is inadequate. This is
because a trapdoor has verification functionality; that is, when a keyword and
trapdoor are given, one can easily verify whether the trapdoor corresponds to
the keyword (see Section 3.1 for details). Therefore, we have applied the idea of
formalizing a perfectly one-way hash function (POWHF) [10,11].

Next, we present IND-PKP security as a useful notion for showing that a given
PEKS scheme has PKP. The IND-PKP security can be defined in a game-based
manner, whereas PKP is defined in a simulation-based manner. As compared
with IND-PEKS-CKA security, IND-PKP security is a more extensive notion
in the sense that it can ensure the privacy of a keyword from not only the ci-
phertext but also the trapdoor. Concerning the privacy of the keyword from
only the ciphertext, however, IND-PKP security is a strictly weaker notion than
IND-PEKS-CKA security. We demonstrate this by giving an instance of a PEKS
scheme that is IND-PKP secure but not IND-PEKS-CKA secure (cf. Remark 7).
Thus, PKP and IND-PKP security are independent notions from IND-PEKS-
CKA security. Therefore, for higher security in PEKS, both IND-PEKS-CKA
and IND-PKP securities are required. We also present PKP+ and IND-PKP+
security notions to enhance the PKP and IND-PKP security notions, respec-
tively, from the viewpoint of search pattern privacy; that is, when two trapdoors
are given, it is hard to guess whether they correspond to the same keyword.

Lastly, we give several instances of PEKS schemes that are IND-PKP se-
cure or IND-PKP+ secure, in addition to being IND-PEKS-CKA secure. In
Section 4.1, we describe the general methodology for constructing IND-PKP se-
cure PEKS schemes. By using this methodology, in Section 4.2 we present a
PEKS scheme that is IND-PEKS-CKA and IND-PKP secure in the standard

Perfect Keyword Privacy in PEKS Systems 177

model. In Section 4.3, we present a PEKS scheme that is IND-PEKS-CKA and
IND-PKP secure in the random oracle (RO) model, by direct construction. This
scheme is based on the PEKS scheme in [5] and requires no computational as-
sumptions for achieving IND-PKP security. In Section 4.4, we present a PEKS
scheme that is IND-PEKS-CKA and IND-PKP+ secure in the RO model.

1.2 Related Works

Numerous works on searchable encryption have been presented so far. In this
section, we briefly describe only prior works that are specifically related to this
paper. In particular, we concentrate on the public-key setting.

Boneh, Di Crescenzo, Ostrovsky, and Persiano [5] first presented the frame-
work of PEKS. They formally defined its security and presented concrete schemes
with this security. They also showed a general transformation from anonymous
IBE to PEKS. Abdalla et al. [1] defined consistency in PEKS and gave an
improved transformation from anonymous IBE to PEKS that guarantees consis-
tency. They also introduced three extensions of the established notions: anony-
mous HIBE, PKE with temporary keyword search, and IBE with keyword search.
Bellare, Boldyreva, and O’Neill [3] presented an efficiently searchable encryption
(ESE) system to enable fast data search (i.e., logarithmic time in the database
size) in outsourced databases. The ESE system utilizes a “tag”, which can be
generated in a deterministic manner both from the plaintext and from the cor-
responding ciphertext, as an index for search. Specifically, the server computes
the tag of a ciphertext to be stored in the database and uses the tag to store
the ciphertext appropriately in a data structure. The client computes and sends
its tag to the server and receives any matches and associated data. They also
presented an ESE scheme, called “Hash-and-Encrypt” encryption scheme, and
showed that it is PRIV secure in the RO model when the underlying encryption
scheme is IND-CPA secure. Unlike the trapdoor in the PEKS system, an ESE
tag can be computed without a secret key. Therefore, ESE always allows data
searches by anyone who can access the server. Moreover, its security depends on
only the ciphertext, because the tag can be computed from it. Thus, the ESE
system essentially has a different structure from that of PEKS, and it is outside
the scope of this paper. Camenisch, Kohlweiss, Rial, and Sheedy [9] presented an
extended notion of PEKS, called public-key encryption with oblivious keyword
search (PEOKS), in which a user can obtain the trapdoor from the secret key
holder without revealing the keyword. They constructed a PEOKS scheme by
using a committed blind anonymous IBE scheme based on the anonymous IBE
scheme in [8]. In PEOKS, however, the trapdoor is generated in an interactive
manner. In contrast, our goal in this paper is to define and achieve security for
guaranteeing the privacy of the keyword from the trapdoor, within the frame-
work of PEKS (i.e., trapdoors are generated in a non-interactive manner). Boneh,
Sahai, and Waters [7] presented a general framework for FE, and showed that
existing encryption concepts, such as ABE and PE, can be expressed as partic-
ular functionalities of FE. They also discussed the formal security definition for
FE. They showed that the natural indistinguishability game-based definition is

178 M. Nishioka

inadequate for certain functionalities since trivially insecure constructions may
satisfy it. They hence presented a simulation-based security in which one getting
the secret key reveals no information other than the result of decryption when the
ciphertext is given. However, although simulation-based security can be achieved
in the random oracle model, for a quite simple functionality (the functionality
corresponding to IBE), it cannot be achieved even in the non-programmable
random oracle model. Since PEKS can also be considered as a special case of
FE, the security in [7] is applicable to PEKS. Both game-based security and
simulation-based security, however, have the goal of achieving privacy of a key-
word from a ciphertext, and they give no guarantee concerning keyword leakage
from a trapdoor.

2 Preliminaries

We say that a function f : N → [0, 1] is negligible if, for every constant c > 0,
there exists an integer kc such that f(k) ≤ k−c for all k ≥ kc. For a group G,
G∗ denotes a set G\{1G}, where 1G is an identity element of G. For a finite set
S, x← S denotes the operation of picking an element uniformly from S. We use
x, x′ ← S as shorthand for x ← S ; x′ ← S. If A is a probabilistic algorithm,
then y ← A(x1, x2, . . . ; r) is the result of running A on inputs x1, x2, . . . and
coins r. We let y ← A(x1, x2, . . .) denote the experiment of picking r at random
and letting y to be A(x1, x2, . . . ; r). The notation Pr[x1 ← S1; x2 ← S2; . . . :
p(x1, x2, . . .)] denotes the probability that the predicate p(x1, x2, . . .) is true
after the ordered execution of x1 ← S1, x2 ← S2, and so on. If α is neither an
algorithm nor a set then x← α is a simple assignment statement. For a random
variable X, [X] denotes a set {x | Pr[X = x] > 0}, and ||X|| denotes a value
maxx∈[X]{Pr[X = x]}. E(X) denotes the expectation of X, and x← X denotes
selection of a random sample from X; thus, Pr[x ← X] = Pr[X = x]. We use
x, x′ ← X as shorthand for x← X ; x′ ← X. The random variablesX and Y are
independent if Pr[X = a∧Y = b] = Pr[X = a] ·Pr[Y = b] for any a, b ∈ {0, 1}∗.
A probability ensemble is a sequence X = {Xk}k∈N of random variables Xk.
We say that X is well-spread if ||Xk|| is negligible in k. The d-composite bilinear
group generator G is a PPT algorithm that takes a security parameter k as input
and outputs (p1, . . . , pd,G,GT , e), where pi are prime numbers with pi > 2k, G

and GT are multiplicative cyclic groups with order N =
∏d

i=1 pi, and e is a map
from G×G to GT , called a bilinear map, with the following properties:

1. Computable: There is an efficient algorithm to compute e(g, h) for any g, h ∈
G.

2. Bilinear: e(gx, gy) = e(g, g)xy for any g ∈ G and any x, y ∈ ZN .
3. Non-degenerate: If g is a generator of G then e(g, g) is a generator of GT .

In particular, the 1-composite bilinear group generator is simply called a bilinear
group generator. For an integer m dividing N , Gm denotes the subgroup of G
with order m. Then, e(x, y) = 1G for any x ∈ Gm and any y ∈ Gn when m and
n are coprime. This is called the “orthogonality property”.

Perfect Keyword Privacy in PEKS Systems 179

Definition 1. A non-interactive public-key encryption with keyword search
(PEKS) scheme consists of the following polynomial-time randomized algorithms:

– KG(1k): Takes a security parameter k, and generates a public/secret key pair
(PK, SK). Here, the keys include the information about the keyword space
KSPk.

– Td(SK,w): For SK and a keyword w ∈ KSPk, produces a trapdoor Tw.
– PEKS(PK,w): For PK and w ∈ KSPk, produces a searchable ciphertext Cw

of w.
– Test(PK,Cw, Tw′): For PK, Cw = PEKS(PK,w), and Tw′ = Td(SK,w′),

where w,w′ ∈ KSPk, outputs 1 if w = w′. Otherwise, outputs 0 with an
overwhelming probability1.

The security of PEKS is defined against an active attacker who is able to obtain
a trapdoor Tw for any keyword w of his choice, to ensure that a PEKS(PK,w)
does not reveal any information about w unless Tw is available [5].

IND-PEKS-CKA Security. LetΠ = (KG,Td,PEKS,Test) be a PEKS scheme,
and let A = (A1,A2) be a probabilistic polynomial-time (PPT) adversary. We
then consider the following experiment.

Experiment Expind:peksA,Π (k)

(PK, SK)← KG(1k) ; (w0, w1, σ)← ATd(SK,·)
1 (1k, PK)

b← {0, 1} ; Cwb
←PEKS(PK,wb) ; b

′←ATd(SK,·)
2 (1k, PK, σ, w0, w1, Cwb

)
If b = b′ then return 1 else return 0.

Here, w0, w1 ∈ KSPk and w0 �= w1, σ is a string representing the configuration
of A1 at its quitting point, and A is prohibited from asking for the trapdoors
w0 or w1. The advantage of A in the above experiment is defined as

Advind:peksA,Π (k) =

∣
∣
∣
∣Pr

[
Expind:peksA,Π (k) = 1

]
− 1

2

∣
∣
∣
∣ .

Definition 2. We say that a PEKS scheme Π is indistinguishable against a
chosen-keyword attack (CKA), briefly, IND-PEKS-CKA secure, if Advind:peksA,Π (k)
is negligible for any A.

3 Perfect Keyword Privacy

3.1 Definition

The IND-PEKS-CKA security (in Definition 2) guarantees the privacy of the
keyword from a searchable ciphertext. It does not, however, guarantee any se-
curity concerning leakage of the keyword from the trapdoor. For example, in
[1], a PEKS scheme with statistical consistency is presented and shown to be

1 This property is called computational consistency in [1]. In this paper, we call it
“consistency” for brevity.

180 M. Nishioka

IND-PEKS-CKA secure under the BDH assumption. That scheme is designed,
however, so that the trapdoor includes the keyword itself. To overcome this
deficiency, we present a new security notion, perfect keyword privacy (briefly,
PKP), for a PEKS to ensure the privacy of the keyword from both the trapdoor
and the searchable ciphertext. In this section, we present a formal definition of
PKP. In formulating security against information leakage, the natural, popular
concept that comes to mind is “indistinguishability”. We first explain why in-
distinguishability is inadequate for defining PKP. We now consider the following
game based on indistinguishability.

1. For (PK, SK) ← KG(1k), the adversary receives the public key PK and is
allowed to access to the trapdoor oracle Td(SK, ·).

2. In the challenge phase, the adversary submits two keywords, w0, w1, and
receives a target trapdoor Twb

= Td(SK,wb) for a randomly chosen b ∈
{0, 1}. The adversary can continuously make queries to the trapdoor oracle
Td(SK, ·), except for querying w0 or w1.

3. In the guess phase, the adversary finally outputs b′∈{0, 1} as its guess for b.

It is then required that no PPT adversary can guess the challenge bit b with a
non-negligible advantage. There exists an adversary, however, that can guess b
with an overwhelming probability in the above game. After receiving the trap-
door Twb

in Step 2, the adversary computes Cwi = PEKS(PK,wi) for each
i = 0, 1 and outputs b′ ∈ {0, 1} such that Test(Twb

, Cwb′) = 1. Then, from the
consistency of PEKS, the probability Pr[b = b′] is overwhelming.

Our formalization of PKP depends on an idea of formalizing a POWHF
[10,11]. Informally, we say that a PEKS scheme has PKP if there is no efficient
way to guess the keyword w from the given trapdoor Tw and ciphertext Cw other
than the “select and test” method; in other words, the adversary selects a key-
word w′ in an arbitrary manner and tests whether Test(Tw,PEKS(PK,w′)) = 1
holds. If the test is passed, the adversary decides that w = w′. In our definition,
the “select and test” method is formalized by an oracle Ow, called a test oracle,
in the ideal system: for a query (keyword) w′, Ow responds with 1 if w = w′;
otherwise, it responds with 0. Note that one may think that the oracle Ow should
be defined so that it outputs 0 with an overwhelming probability when w �= w′

because Definition 1 adopts computational consistency. It can easily be shown,
however, that this difference does not affect Definition 3.

Perfect Keyword Privacy. Let Π = (KG,Td,PEKS,Test) be a PEKS scheme.
Let X = {Xk}k∈N be a probability ensemble such that [Xk] = KSPk. From now
on, unless otherwise indicated, we assume that X is well-spread and independent
from key generation (cf. Remarks 1 and 2). X determines the distribution of
keywords; that is, when the security parameter k is given, the keyword w is
given as a random sample from Xk. Let P = {Pk}k∈N be a predicate family,
where Pk is an efficiently computable predicate over [Xk]. Let A and B be PPT
algorithms. We then define the following experiments. See Section 2 for other
notations and conventions.

Perfect Keyword Privacy in PEKS Systems 181

Experiment Exppkp:realA,Π,X ,P(k) Experiment Exppkp:idealB,Π,X ,P(k)
w ← Xk ; (PK, SK)← KG(1k) w← Xk ; (PK, SK)← KG(1k)
Tw ← Td(SK,w) ; Cw ← PEKS(PK,w) z ← BOw,Td(SK,·)(1k, PK)

z ← ATd(SK,·)(1k, PK, Tw, Cw) If z = Pk(w) then return 1
If z = Pk(w) then return 1 else return 0. else return 0.

Definition 3. We say that a PEKS scheme Π has perfect keyword privacy
(PKP) with respect to X if for any P and A, there exists a negligible function
negl and B such that

Pr
[
Exppkp:realA,Π,X ,P(k) = 1

]
≤ Pr

[
Exppkp:idealB,Π,X ,P(k) = 1

]
+ negl(k) (1)

for all k ∈ N. We also say that Π has PKP if it has PKP with respect to any X .
Remark 1. In Definition 3, the probability ensemble X is given independently
from the key generation of the PEKS scheme. This setting is very significant for
obtaining a useful notion, IND-PKP security, to achieve PKP (see the proof of
Theorem 1). From a practical viewpoint, we think that this is a natural setting
in the real world. Generally, public keys are not used as keywords because they
are large, meaningless phrases, whereas other identifiers, such as a user’s name
and email address, are usually used to designate a person.

Remark 2. Definition 3 is meaningful even if X is not well-spread. However,
without loss of generality, we can assume that the probability ensemble X is
well-spread when defining the privacy of the keyword from the trapdoor. As
described at the beginning of this section, if the trapdoor is given, the adversary
can always verify whether it corresponds to his own chosen keyword. From this
fact, in (1) we can exclude the case of choosing w ∈ [Xk] such that Pr[Xk = w]
is non-negligible. Notice that the number of keywords appearing with a non-
negligible probability is polynomially bounded in k.

Remark 3. In Definition 3, only a single tuple of the trapdoor and ciphertext is
given to the adversary A. In Section 3.2, we present a notion, IND-PKP security,
and use it to show that a given PEKS scheme has PKP. From a hybrid argument
[2], we can show that (single-target) IND-PKP security implies multi-target IND-
PKP security. Thus, IND-PKP security implies multi-target PKP.

Remark 4. Concerning the privacy of a keyword from only the searchable ci-
phertext, IND-PEKS-CKA security gives strictly stronger security than that of
PKP. In Remark 7, we demonstrate this by presenting a PEKS scheme that is
IND-PKP secure (cf. Section 3.2) but not IND-PEKS-CKA secure. On the other
hand, there exist PEKS schemes, such as the scheme in [1] described above, that
are IND-PEKS-CKA secure but do not have PKP. Thus, PKP is a separate secu-
rity notion from IND-PEKS-CKA security; that is, PKP and IND-PEKS-CKA
security are independent of each other. Hence, for higher security in a PEKS sys-
tem, both IND-PEKS-CKA security and PKP are required. Note that strictly
speaking, the above results on separation and comparison are true under some
computational complexity assumptions because they are required for achieving
the securities of the instances.

182 M. Nishioka

We expect that the idea of PKP will be applied in FE systems to ensure the
privacy of a key from a secret key (see [7] for the detail of FE); since FE is
a generalized concept of many other primitives, such as IBE, PE, and ABE,
this idea is also applicable to those primitives. Informally, we say that an FE
scheme for a functionality F over (K,X) has perfect key privacy if a secret key
skk corresponding to the key k ∈ K leaks no information about k, beyond the
information obtained from the oracle OF (k,·), where for the query x, OF (k,·)
returns F (k, x). If OF (k,·) gives only trivial information2, like Ox in PEKS, then
this notion will give meaningful security in an FE system. We leave a detailed,
formal discussion to subsequent works.

3.2 How to Achieve PKP

In this section, we present a useful notion, called IND-PKP security, to show
that a given PEKS scheme has PKP. The IND-PKP security can be defined
in a game-based manner, whereas we defined PKP above in a simulation-based
manner. The IND-PKP security can be regarded as a strictly stronger notion
than PKP from the viewpoint of the strength relation between the cryptographic
assumptions for achieving these securities (cf. Remark 6).

IND-PKP Security. Let X = {Xk}k∈N be a probability ensemble, and let
Π = (KG,Td,PEKS,Test) be a PEKS scheme. Let A be a PPT algorithm, called
IND-PKP adversary. We then define the following experiment (cf. Remark 3).

Experiment Expind-pkpA,Π,X (k)

w0, w1 ← Xk ; b← {0, 1} ; (PK, SK), (PK ′, SK ′)← KG(1k)
Tw0 ← Td(SK,w0) ; Cw0 ← PEKS(PK,w0)
T ′
wb
← Td(SK ′, wb) ; C

′
wb
← PEKS(PK ′, wb)

b′ ← ATd(SK,·),Td(SK′,·)(1k, PK, Tw0 , Cw0 , PK ′, T ′
wb
, C′

wb
)

If b = b′ then return 1 else return 0.

The advantage of A in the above experiment is defined as

Advind-pkpA,Π,X (k) =

∣
∣
∣
∣Pr

[
Expind-pkpA,Π,X (k) = 1

]
− 1

2

∣
∣
∣
∣ ,

and b ∈ {0, 1} is called a challenge bit.

Definition 4. We say that a PEKS scheme Π is IND-PKP secure with respect
to X if Advind-pkpA,Π,X (k) is negligible for any A. We also say that Π is IND-PKP
secure if it is IND-PKP secure with respect to any X .
Theorem 1. If the PEKS scheme Π = (KG,Td,PEKS,Test) is IND-PKP se-
cure, then it has PKP.

2 For example, F (k, x) represents a result of execution of certain program Pk for input
x. Pk outputs a meaningful string only for particular x, whereas it outputs ⊥ for
other input. It is easy to find such particular x from k but difficult to find it from
skk.

Perfect Keyword Privacy in PEKS Systems 183

Proof. Let X = {Xk}k∈N be a well-spread probability ensemble. We show that
if the PEKS scheme Π is IND-PKP secure with respect to X , then it has PKP
with respect to X . For an IND-PKP adversary A, we define

ρ
(1)
A,Π,X (k)=Pr

[
(PK, SK), (PK ′, SK ′)←KG(1k) ; w←Xk ; Tw←Td(SK,w) ;

Cw ← PEKS(PK,w) ; T ′
w ← Td(SK ′, w) ; C′

w ← PEKS(PK ′, w) :

ATd(SK,·),Td(SK′,·)(1k, PK, Tw, Cw, PK ′, T ′
w, C

′
w) = 1

]
,

ρ
(2)
A,Π,X (k) = Pr

[
(PK, SK), (PK ′, SK ′)← KG(1k) ; w,w′ ← Xk ;

Tw ← Td(SK,w) ; Cw ← PEKS(PK,w) ; T ′
w′ ← Td(SK ′, w′) ;

C′
w′←PEKS(PK ′, w′) : ATd(SK,·),Td(SK′,·)(1k, PK, Tw, Cw, PK ′, T ′

w′ , C′
w′) = 1

]
.

Then we have

2 · Advind-pkpA,Π,X (k) =
∣
∣
∣ρ

(1)
A,Π,X (k)− ρ

(2)
A,Π,X (k)

∣
∣
∣ . (2)

We now suppose that Π does not have PKP with respect to X = {Xk}k∈N.
Then from Definition 3, there exists a predicate family P = {Pk}k∈N and a PPT
algorithm B such that for any PPT algorithm C,

ρ(k) = Pr
[
Exppkp:realB,Π,X ,P,t(k) = 1

]
− Pr

[
Exppkp:idealC,Π,X ,P (k) = 1

]
(3)

is non-negligible. We now consider a PPT algorithm C (in the ideal system) that
works as follows:

1. Select a random sample w′ ← Xk and make a trapdoor query w′ to ob-
tain the trapdoor Tw′ . Generate a searchable ciphertext of w′ by Cw′ ←
PEKS(PK,w′).

2. Run B on input (1k, PK, Tw′, Cw′), and output the corresponding response
of B. If B makes trapdoor queries then respond to them by using C’s trapdoor
oracle.

This completes the description of C. Moreover, for each w ∈ [Xk], we define

ζw;B(k) = Pr
[
(PK, SK)← KG(1k) ; Tw ← Td(SK,w) ;

Cw ← PEKS(PK,w) : BTd(SK,·)(1k, PK, Tw, Cw) = 1
]
.

Let Si
Pk

denote a set {w ∈ [Xk] | Pk(w) = i}, for each i ∈ {0, 1}. Then, since Xk

is independent from the key generation, we have

Pr
[
Exppc:realB,Π,X ,P(k) = 1

]
=

∑

w∈S1
Pk

Pr[Xk = w] · ζw;B(k)

+
∑

w∈S0
Pk

Pr[Xk = w] · (1− ζw;B(k)), (4)

184 M. Nishioka

Pr
[
Exppc:idealB,Π,X ,P(k) = 1

]
=

∑

w∈S1
Pk

Pr[Xk = w] ·
∑

w′∈[Xk]

Pr[Xk = w′] · ζw′;B(k)

+
∑

w∈S0
Pk

Pr[Xk=w] ·
∑

w′∈[Xk]

Pr[Xk=w′] · (1− ζw′;B(k)).

(5)

Let Zk be a random variable over [0, 1] = {a ∈ R | 0 ≤ a ≤ 1} such that
Pr[Zk = ζw;B(k)] = Pr[Xk = w]. Then, from (3), (4), and (5), we have

ρ(k) =
∑

w∈S1
Pk

Pr[Xk = w] ·
(

ζw;B(k)−
∑

w′∈[Xk]

Pr[Xk = w′] · ζw′;B(k)

)

−
∑

w∈S0
Pk

Pr[Xk = w] ·
(

ζw;B(k)−
∑

w′∈[Xk]

Pr[Xk = w′] · ζw′,B(k)

)

≤
∑

w∈[Xk]

Pr[Xk = w] ·
∣
∣
∣
∣
∣
∣
ζw;B(k)−

∑

w′∈[Xk]

Pr[Xk = w′] · ζw′,B(k)

∣
∣
∣
∣
∣
∣

= E(|Zk − E(Zk)|) ≤
√
E(Z2

k)− E(Zk)2. (6)

Let A∗ be an IND-PKP adversary such that for a given input (1k, PK, Tw,
Cw, PK ′, T̄ , C̄), where (T̄ , C̄) is (T ′

w, C
′
w) or (T ′

w′ , C′
w′), it runs B twice and

outputs 1 only when B(1k, PK, Tw, Cw) = B(1k, PK ′, T̄ , C̄) = 1. Then we have

E(Z2
k) = ρ

(1)
A∗,Π,X (k) and E(Zk)

2 = ρ
(2)
A∗,Π,X (k). (7)

From (2), (6), and (7), we finally have

ρ(k)2 ≤
∣
∣
∣ρ

(1)
A∗,Π,X (k)− ρ

(2)
A∗,Π,X (k)

∣
∣
∣ =

1

2
Advind-pkpA∗,Π,X (k).

This contradicts the assumption that Π is IND-PKP secure.

3.3 Additional Notions

In Section 4.3, we present an IND-PKP secure PEKS system in which the trap-
door is generated in a deterministic manner. In this system, when two trapdoors
are given under the same secret key, one can easily guess whether they cor-
respond to the same keyword. Thus, IND-PKP security cannot assure “search
pattern privacy”, in general. In this section, we address this issue.

Search Pattern Privacy. Let X = {Xk}k∈N be a probability ensemble, and
let Π = (KG,Td,PEKS,Test) be a PEKS scheme. Let A be a PPT algorithm,
called a SPP adversary. We then define the following experiment.

Perfect Keyword Privacy in PEKS Systems 185

Experiment ExpsppA,Π,X (k)

w0, w1 ← Xk ; b← {0, 1} ; (PK, SK)← KG(1k)
Tw0←Td(SK,w0) ; Twb

←Td(SK,wb) ; b
′ ← ATd(SK,·)(1k, PK, Tw0 , Twb

)
If b = b′ then return 1 else return 0.

The advantage of A in the above experiment is defined as

AdvsppA,Π,X (k) =

∣
∣
∣
∣Pr

[
ExpsppA,Π,X (k) = 1

]
− 1

2

∣
∣
∣
∣ ,

and b ∈ {0, 1} is called a challenge bit.

Definition 5. We say that a PEKS scheme Π has search pattern privacy
(briefly, SPP) if AdvsppA,Π,X (k) is negligible for any A and X .
Definition 6 (PKP+ and IND-PKP+). We say that a PEKS scheme has
PKP+ if it has both PKP and SPP. We also say that a PEKS scheme is IND-
PKP+ secure if it is IND-PKP secure and has SPP.

Remark 5. In Definition 5, it is essential that the adversary cannot see the ci-
phertexts Cw0 and Cw1 . If either of these is given, the adversary can easily guess
b by running the test algorithm. Thus, in a real system, SPP is meaningful in
a situation in which there is no ciphertext corresponding to the search keyword
(although the searcher has multiple trapdoors corresponding to the underlying
keyword). In our definition of SPP, the adversary is not allowed to choose the
keywords w0, w1. This is because we regard SPP as an additional notion for PKP
to strengthen the privacy of keywords.

4 PEKS Schemes with Perfect Keyword Privacy

As described in Remark 4, concerning the privacy of a keyword from only a
searchable ciphertext, IND-PKP security ensures strictly weaker security than
that of IND-PEKS-CKA security. Therefore, for higher security in PEKS, we
present several instances of a PEKS scheme that is IND-PKP secure or IND-
PKP+ secure, in addition to being IND-PEKS-CKA secure. As much as we
possible, we looked for appropriate instances in existing schemes and modified
them if necessary.

4.1 General Methodology

Before giving concrete instances, we describe a general methodology for achieving
IND-PKP security in PEKS schemes. We first introduce the notion of a secure
injective-function generator.

Definition 7. The injective-function generator is a pair of PPT algorithms I
and G such that (1) I takes a security parameter k as input and outputs λk ∈
{0, 1}∗, and (2) G takes λk as input and outputs an injective function π : Yλk

→

186 M. Nishioka

Zλk
, where Yλk

and Zλk
are sets uniquely determined from λk. We say that the

injective-function generator (I,G) is secure if for any well-spread probability
ensemble X = {Xk}k∈N with [Xk] ⊆ Yλk

, and any PPT algorithm B,

AdvsifB,I,G,X (k) =
∣
∣
∣
∣Pr

[
λk ← I(1k) ; π, π′ ← G(λk) ; x0, x1 ← Xk ;

b← {0, 1} ; b′ ← B(1k, π, π′, π(x0), π
′(xb)) : b = b′

]
− 1

2

∣
∣
∣
∣

is negligible.

An example of a secure injective-function generator is given in Section 4.2. Next,
we describe how to convert a PEKS scheme into an IND-PKP secure PEKS
scheme by using a secure injective-function generator. The essential point of the
conversion is that the secure function generator yields a fresh injective function
for each user, and the trapdoor and ciphertext are created from the keyword’s
function value. Let Π = (KG,Td,PEKS,Test) be a PEKS scheme, and let (I,G)
be an injective-function generator such that for λk ← I(1k), G(λk) outputs an
injective function from KSPk to KSPk. We then define a PEKS scheme Π∗ =
(KG∗,Td∗,PEKS∗,Test∗) as follows.

– KG∗(1k) outputs (PK∗, SK∗)= ((PK, λk, π), (SK, λk, π)) for (PK, SK) ←
KG(1k), λk ← I(1k), and π ← G(λk), where λk is a common parameter for
all users in this system.

– Td∗(SK∗, w) outputs Tπ(w) ← Td(SK, π(w)).
– PEKS∗(PK∗, w) outputs Cπ(w) ← PEKS(PK, π(w)).
– Test∗ is identical with Test.

Theorem 2. In the PEKS scheme Π∗, we have the following results.

(a) If (I,G) is secure, then Π∗ is IND-PKP secure.
(b) If Π is IND-PEKS-CKA secure, then Π∗ is IND-PEKS-CKA secure.

The proof of Theorem 2 is given in the full version of this paper. The above
methodology is simple and useful although some additional assumption may be
required for secure function generator. This methodology however cannot guar-
antee SPP in Π∗. The brute force approach (under a constraint) for obtaining an
IND-PKP+ secure PEKS scheme Π∗ by using a secure injective-function gener-
ator (I,G) is as follows. KG∗ creates (PK∗, SK∗) = ((PK, λk, π1, . . . , πn), (SK,
λk, π1, . . . , πn)) for (PK, SK)← KG(1k), λk ← I(1k), and π1, . . . , πn ← G(λk).
Td∗(SK,w) has a counter, and it outputs T ∗

w = Tπi(w) if this is the i-th execu-
tion for the same keyword w. PEKS∗(PK,w) outputs C∗

w = (Cπi(w))1≤i≤n. It
can readily be shown that if (I,G) is a secure injective-function generator and
the adversary is restricted to making at most n trapdoor queries to the same
keyword, then Π∗ is IND-PKP+ secure. We do not know of a general methodol-
ogy for obtaining an IND-PKP+ secure PEKS scheme without restriction. This
problem remains open. Note that obviously, we can obtain a similar result to
Theorem 2 when applying an RO generator (i.e., π is an RO in the above Π∗)
instead of a secure injective-function generator (cf. Proposition 5).

Perfect Keyword Privacy in PEKS Systems 187

4.2 Instance 1

In this section, we present a concrete instance of a PEKS scheme that can be
obtained by the methodology described in Section 4.1. This instance is based on
the Gentry IBE scheme [15] and the conversion [1] from the IBE scheme to the
PEKS scheme. The resulting scheme is both IND-PKP and IND-PEKS-CKA
secure in the standard model. Let G be a bilinear group generator. We define
an injective function generator (G,G) as follows: For I = (p,G,GT , e)← G(1k),
G(I) picks a primitive element ξ ∈ Z

∗
p at random and outputs a function π such

that π(x) = ξx for x ∈ Zp. Since ξ is a primitive element, π is injective. The
following assumption can be seen as a variant of the Decisional Diffie-Hellman
(DDH) assumption.

Assumption I. We say that G satisfies Assumption I if for any well-spread
probability ensemble X = {Xk}k∈N with [Xk] ⊆ Zp, and any PPT algorithm B,

∣
∣
∣
∣Pr[I = (p,G,GT , e)← G(1k) ; x0, x1 ← Xk ; ξ1, ξ2 ← PRIM(p) ;

b← {0, 1} ; b′ ← B(1k, I, ξ1, ξ2, ξx0
1 , ξxb

2) : b = b′]− 1

2

∣
∣
∣
∣

is negligible, where PRIM(p) is a set of all primitive elements in Zp.

From the definitions, the following proposition is clear.

Proposition 1. If G satisfies Assumption I, then (G,G) is secure.

Let (G,G) be the injective-function generator mentioned above. We then de-
fine the PEKS scheme Π1 = (KG,Td,PEKS,Test) as follows.

– KG(1k): For a security parameter k, run G and G to obtain I = (p,G,GT , e)
← G(1k) and π(x) = ξx ← G(I). Pick g, h ∈ G

∗ and α ∈ Zp at random, set
PK = (I, π, g, g1 = gα, h) and SK = α, and output (PK, SK), where (I, g)
are common parameters for all users in this system.

– Td(SK,w): To generate a trapdoor for a keyword w ∈ Zp under the secret

key SK, pick a random rw ∈ Zp and output Tw = (rw , hw=(hg−rw)
1

α−π(w)).
Note that the same rw is used for the same keyword w.

– PEKS(PK,w): To encrypt a keyword w under the public key PK, pick ran-
dom s ∈ Zp and R ∈ GT , and output Cw = (R, C1 = gs1g

−sπ(w), C2 =
e(g, g)s, C3 = R · e(g, h)−s).

– Test(PK, Tw, Cw): Using the notation in the description of Td and PEKS, if
R = C3 · e(C1, hw)C

rw
2 then output 1; otherwise, output 0.

The Gentry IBE scheme is shown to be anonymous and IND-ID-CPA secure
under the truncated decision ABDHE assumption (see [15] for details). There-
fore, from Theorem 4.2 in [1] and Theorem 2. (b), Π1 is IND-PEKS-CKA secure
under the same assumption, and it is computationally consistent. In addition,
from Proposition 1 and Theorem 2. (a), Π1 is IND-PKP secure under Assump-
tion I. However, Π1 is not IND-PKP+ secure because the trapdoor in Π1 is
uniquely determined per the keyword. An instance of a PEKS scheme that is
both IND-PEKS-CKA and IND-PKP+ secure is given in Section 4.4.

188 M. Nishioka

4.3 Instance 2

In this section, we present an efficient PEKS scheme that is IND-PKP and IND-
PEKS-CKA secure in the RO model, without depending on a secure injective-
function generator in its construction. To achieve IND-PKP security, this
instance requires no cryptographic assumption beyond those for achieving IND-
PEKS-CKA security. This scheme is based on the PEKS scheme proposed in
[5], with slight modification. Let G be a bilinear group generator. We begin by
describing the PEKS scheme Π2 = (KG,Td,PEKS,Test) associated with G.
– KG(1k): For a security parameter k, run G to obtain (p,G,G1, e) ← G(1k),

and select a ∈ Zp and g ∈ G
∗ (i.e., g is a generator of G) at random. Set

PK = (p, g,G,G1, e, g, h= ga, H1, H2) and SK = (PK, a), where H1 and
H2 are hash functions, and (p,G,G1, e, g,H1, H2) are common parameters
for all users in this system, and output (PK, SK).

– Td(SK,w): As a trapdoor for a keyword w ∈ {0, 1}∗ under the secret key
SK = (PK, a), output Tw = H1(PK||w)a ∈ G.

– PEKS(PK,w): To encrypt a keyword w under the public key PK, pick a
random r ∈ Zp and output Cw = (C1 = gr, C2 = H2(e(H1(PK||w), hr))).

– Test(PK,Cw, Tw): Using the notation in the description of Td and PEKS, if
H2(e(Tw, C1)) = C2, then output 1; otherwise, output 0.

The consistency of the above PEKS scheme is shown in [1]. As compared to the
original scheme, the input to H1 includes a public key in Π2. This modification
does not collapse the IND-PEKS-CKA security of the scheme because it can be
seen as the original PEKS scheme with a special keyword form. Therefore, like
the original scheme, this scheme can be shown IND-PEKS-CKA secure in the
RO model under the BDH assumption [5]. Interestingly, IND-PKP security of
Π2 can be shown only under the RO assumption (i.e., without a computational
assumption).

Proposition 2. Suppose that H1 and H2 are ROs. For any probability ensem-
ble X = {Xk}k∈N and any IND-PKP adversary A against Π2 that makes at
most qH1(k) queries to H1 and at most qt(k) trapdoor queries when the security
parameter k is given,

Advind-pkpA,Π2,X (k) ≤ 2(qt(k) + qH1(k)) · ||Xk||+ 2−k (k ∈ N).

The proof of Proposition 2 is given in the full version of this paper.

Remark 6. From Definition 3, the original PEKS scheme in [5] is shown directly
to has a PKP under the RO assumption. This is because in the trapdoor, the
keyword is hidden by the RO H1, and the ciphertexts can be created from
the trapdoor. However, it will be impossible to show the IND-PKP security of
this scheme only under the RO assumption. If the DDH assumption (on G) is
added, then the scheme is shown to be IND-PKP secure. In this sense, IND-
PKP security can be regarded as a strictly stronger notion than PKP. On the
other hand, if H1 and H2 are freshly chosen in each key generation (not used as
common parameters), then the original scheme is shown to be IND-PKP secure
only under the RO assumption.

Perfect Keyword Privacy in PEKS Systems 189

4.4 Instance 3

As described in Section 3.1, achievement of both IND-PEKS-CKA and IND-
PKP+ securities can be considered as the highest security in a PEKS system.
Unfortunately, we could not find an appropriate instance within any existing
schemes (even allowing for slight modification). We then present a new PEKS
scheme that is IND-PKP+ and IND-PEKS-CKA secure in the RO model. Let
G3 be a 3-composite bilinear group generator. We begin by describing the PEKS
scheme Π3 = (KG,Td,PEKS,Test) associated with G3.
– KG(1k): For a security parameter k, run G3 to obtain I = (p1, p2, p3,G,GT , e)
← G3(1k) and set N = p1p2p3. Pick gi ∈ G

∗
pi

(1 ≤ i ≤ 3) and R2 ∈ Gp2

at random. Set PK = (N,G,GT , e, g2, g3, g=g1R2, H) and SK = (PK, g1),
where H is a hash function from {0, 1}∗ to Gp1 , and output (PK, SK).

– Td(SK,w): To generate a trapdoor of a keyword w ∈ {0, 1}∗ under the
secret key SK, pick s ∈ Zp1 and R3, S3 ∈ Gp3 at random, and output Tw =
(T1 = gs1R3, T2 = H(w)sS3).

– PEKS(PK,w): To encrypt a keyword w under the public key PK, pick r ∈
ZN and Y2, Z2 ∈ Gp2 at random, and output Cw = (C1 = grY2, C2 =
H(w)rZ2).

– Test(PK,Cw, Tw): Using the notation in the description of Td and PEKS, if
e(T1, C2) = e(T2, C1), then output 1; otherwise, output 0.

From the orthogonality property, the completeness and consistency of Π3 can
readily be verified. To show the security of Π3, we introduce the following as-
sumptions.

Assumption II. We say that G3 satisfies Assumption II if for any PPT algo-
rithm B,

AdvA-2
A,G3

(k) =

∣
∣
∣
∣ Pr

[
I ← G3(1k) ; N ← p1p2p3 ; gi ← G

∗
pi

(1 ≤ i ≤ 3) ;

X0, X1 ← Gp1 ; s, s′ ← ZN ; R3, S3, R
′
3, S

′
3 ← Gp3 ; b← {0, 1} ;

b′ ← B
(
1k, N,G,GT , e, g1, g2, g3, (g

s
1R3, X

s
0S3), (g

s′
1 R′

3, X
s′
b S′

3)
)

: b = b′
]
− 1

2

∣
∣
∣
∣

is negligible.

Assumption III. We say that G3 satisfies Assumption III if for any PPT al-
gorithm B,

AdvA-3
A,G3

(k)=

∣
∣
∣
∣Pr

[
I←G3(1k) ; N←p1p2p3 ; gi←G

∗
pi

(1 ≤ i ≤ 3) ; α, β ← Z
∗
N ;

X0, X1 ← Gp1 ; r ← ZN ; R2, Y2, Z2 ← Gp2 ; g ← g1R2 ; b← {0, 1} ;

b′←B
(
1k, N,G,GT , e, g2, g3, g

α
1 , g

β
1 , g

αβ
1 , g,X0, X1, (g

rY2, X
r
bZ2)

)
: b = b′

]
− 1

2

∣
∣
∣
∣

is negligible.

190 M. Nishioka

Assumption IV. We say that G3 satisfies Assumption IV if for any PPT algo-
rithm B,

AdvA-4
A,G3

(k) =

∣
∣
∣
∣ Pr

[
I ← G3(1k) ; N ← p1p2p3 ; h0, h1 ← (GT)p1 ; α, β ← Z

∗
N ;

b← {0, 1} ; b′ ← B
(
1k, N,G,GT , e, h0, h1, h

α
b , h

β
b , h

αβ
b

)
: b = b′

]
− 1

2

∣
∣
∣
∣

is negligible.

It can readily be shown that if G3 satisfies Assumption II then it also satisfies
the DDH assumption over (GT)p1 . Thus, Assumption II is a stronger assumption
than the DDH assumption over (GT)p1 . Assumption IV is presented to explain
the position of Assumption III but with a simpler representation. Proposition 3
says that Assumption III is a stronger assumption than Assumption IV its proof
is straightforward and left to the reader.

Proposition 3. If G3 satisfies Assumption III, then it also satisfies Assumption
IV.

Proposition 4. Suppose that H is an RO. For any probability ensemble X =
{Xk}k∈N and any SPP adversary A that makes at most qH(k) queries to H
and at most qt(k) trapdoor queries when the security parameter k is given, there
exists a PPT algorithm B such that

AdvsppA,Π3,X (k) ≤ AdvA-2
B,G2

(k) + 2(qH(k) + qt(k)) · ||Xk|| (k ∈ N).

Proposition 5. Suppose that H is an RO. For any probability ensemble X =
{Xk}k∈N and any IND-PKP adversary A against Π3 that makes at most qH(k)
queries3 to H and at most qt(k) trapdoor queries when the security parameter k
is given,

Advind-pkpA,Π3,X (k) ≤ 2(qH(k) + qt(k)) · ||Xk|| (k ∈ N).

Proposition 6. Suppose that H is an RO. For any IND-PEKS-CKA adversary
A against Π3 that makes at most qH(k) queries to H when the security parameter
k is given, there exists a PPT algorithm B such that

Advind:peksA,Π3
(k) ≤ (qH(k) + 1)(qH(k) + 2) · AdvA-3

B,G3
(k) (k ∈ N).

The proofs of Propositions 4, 5, and 6 are given in the full version of this paper.
The open problem is to construct a PEKS scheme that is IND-PKP+ secure and
IND-PEKS-CKA secure, either in the standard model or the RO model, under
reasonable assumptions.

3 In the PEKS scheme Π3, H cannot be used as a common parameter for all users
because Π3 depends on a composite bilinear map. Hence, an IND-PKP adversary
can make queries to bothH andH ′. For simplicity, we assume that the total numbers
of queries to both H and H ′ is written by qH(k).

Perfect Keyword Privacy in PEKS Systems 191

Remark 7. We now consider a PEKS scheme that is identical with Π3 except
that the searchable ciphertext of w is given by Cw = (C1 = gr, C2 = H(w)r).
From a similar discussion to that for Proposition 5, it can be shown that this
PEKS scheme is IND-PKP secure; however, it is not IND-PEKS-CKA secure.
This is because for a given target ciphertext Cwb

= (C1, C2), an adversary can
easily guess the challenge bit b by outputting b′ ∈ {0, 1} such that e(g, C2) =
e(C1, H(wb′)). This instance demonstrates the separation between the IND-PKP
and IND-PEKS-CKA securities.

5 Postscript

We have introduced new security notions for PEKS systems, namely PKP, IND-
PKP, PKP+, and IND-PKP+, which take account of the privacy of a keyword
from a trapdoor. We have also showed that these notions ensure strictly weaker
security with respect to keyword leakage from only the ciphertext, as compared
to IND-PEKS-CKA security. Accordingly, for achieving higher security in PEKS,
we have presented several instances of a PEKS scheme that is IND-PKP or
IND-PKP+ secure, in addition to being IND-PEKS-CKA secure. From a prac-
tical viewpoint, however, we have no corroboration that either IND-PKP or
IND-PKP+ security is insufficient to ensure the privacy of a keyword from a ci-
phertext. We expect that the underlying notion and PRIV security [3] give equal
security levels, because they are defined for the situation in which the target key-
words are chosen from a well-spread distribution, and the (guessing) adversary
cannot see them. We are sure that it is easier to design efficient IND-PKP (or
IND-PKP+) secure PEKS schemes than it is to design efficient IND-PEKS-CKA
secure PEKS schemes. Indeed, we can use secure injective-function generators to
achieve IND-PKP security, and it is easy to design practical injective-function
generators that are secure under reasonable assumptions.

Acknowledgements. We would like to thank anonymous referees of ProvSec
2012 for their valuable comments.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and extensions. Journal of Cryptol-
ogy 21(3), 350–391 (2008)

2. Bellare, M., Boldyreva, A., Micali, S.: Public-Key Encryption in a Multi-user Set-
ting: Security Proofs and Improvements. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 259–274. Springer, Heidelberg (2000)

3. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable
Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552.
Springer, Heidelberg (2007)

4. Blundo, C., Iovino, V., Persiano, G.: Predicate Encryption with Partial Pub-
lic Keys. In: Heng, S.-H., Wright, R.N., Goi, B.-M. (eds.) CANS 2010. LNCS,
vol. 6467, pp. 298–313. Springer, Heidelberg (2010)

192 M. Nishioka

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

7. Boneh, D., Sahai, A., Waters, B.: Functional Encryption: Definitions and Chal-
lenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer,
Heidelberg (2011)

8. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (With-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

9. Camenisch, J., Kohlweiss, M., Rial, A., Sheedy, C.: Blind and Anonymous Identity-
Based Encryption and Authorised Private Searches on Public Key Encrypted Data.
In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 196–214. Springer,
Heidelberg (2009)

10. Canetti, R.: Towards Realizing Random Oracles: Hash Functions that Hide All
Partial Information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294,
pp. 455–469. Springer, Heidelberg (1997)

11. Canetti, R., Micciancio, D., Reingold, O.: Perfectly one-way probabilistic hash
functions. In: Proceedings of the 30th ACM STOC 1998, pp. 131–140 (1998)

12. De Caro, A., Iovino, V., Persiano, G.: Hidden vector encryption fully secure
against unrestricted queries. IACR Cryptology ePrint Archive, Report 2011/546,
http://eprint.iacr.org/2011/546

13. Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In:
Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363.
Springer, Heidelberg (2001)

14. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: Improved definitions and efficient constructions. In: Proceedings of the 13th
ACM Conference on Computer and Communication Security, pp. 79–88 (2006)

15. Gentry, C.: Practical Identity-Based Encryption Without Random Oracles. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer,
Heidelberg (2006)

16. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

17. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

18. Shen, E., Shi, E., Waters, B.: Predicate Privacy in Encryption Systems. In: Rein-
gold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

19. Waters, B., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and
searchable audit log. In: NDSS. The Internet Society (2004)

http://eprint.iacr.org/2011/546

	Perfect Keyword Privacy in PEKS Systems
	Introduction
	Contributions
	Related Works

	Preliminaries
	Perfect Keyword Privacy
	Definition
	How to Achieve PKP
	Additional Notions

	PEKS Schemes with Perfect Keyword Privacy
	General Methodology
	Instance 1
	Instance 2
	Instance 3

	Postscript
	References

