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Preface

The 6th International Conference on Provable Security (ProvSec 2012) was held
in Chengdu, China, September 26–28, 2012. The workshop was organized by the
University of Electronic Science and Technology of China.

ProvSec 2012 received 66 submissions from 15 different countries all over the
world. The review process was a challenging task. Almost all submissions were
carefully evaluated by four reviewers for a total of 262 reviews, and then dis-
cussed among the Program Committee. Moreover, 62 external subreviewers gave
review comments on their area of expertise. The Program Committee selected 20
papers for the program out of 66 submissions. Among these 20 papers, 16 were
accepted as full papers and four as short papers. Further, the program featured
two excellent invited talks given by Masayuki Abe (Secure Platform Laborato-
ries, NTT Corporation, Japan) titled “Tools over Bilinear Groups for Modular
Design of Cryptographic Tasks” and Victor Shoup (New York University, USA)
titled “GNUC Is not UC.”

Many people contributed to the success of ProvSec 2012. First we would
like to thank all of the authors for submitting their works. We deeply thank
the 46 Program Committee members as well as the external reviewers for their
volunteer work of reading and discussing the submissions. We thank the Publicity
and Publication Co-chairs, Shaoquan Jiang and Yong Yu, for their support.
We also would like to thank the local Organizing Committee, Yongjian Liao,
Chunxiang Xu, Sheng Cao, and Xuyun Nie, for their dedication and commitment
in organizing the conference. Finally, we want to express our gratitude to our
generous sponsor: the University of Electronic Science and Technology of China.

September 2012 Tsuyoshi Takagi
Guilin Wang



ProvSec 2012

The 6th International Conference on Provable Security
Chengdu, China

September 26–28, 2012

Organized and Sponsored by the University of Electronic Science and
Technology of China (UESTC)

General Chair

Zhiguang Qin UESTC, China

Publication and Publicity Co-chairs

Shaoquan Jiang UESTC, China
Yong Yu UESTC, China

Program Co-chairs

Tsuyoshi Takagi Kyushu University, Japan
Guilin Wang University of Wollongong, Australia

Program Committee

Michel Abdalla ENS and CNRS, France
Man Ho Au University of Wollongong, Australia
Feng Bao Institute for Infocomm Research, Singapore
Carlo Blundo University of Salerno, Italy
Zhenfu Cao Shanghai Jiaotong University, China
Liqun Chen Hewlett-Packard Labs, Bristol, UK
Xiaofeng Chen Xidian University, China
Raymond Choo University of South Australia, Australia
Georg Fuchsbauer University of Bristol, UK
David Galindo University of Luxembourg, Luxembourg
Wei Gao Ludong University, China
Goichiro Hanaoka AIST, Japan
Mingxing He Xihua University, China
Swee-Huay Heng Multimedia University, Malaysia
Javier Herranz Universitat Politècnica de Catalunya, Spain
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Benoit Libert Université Catholique de Louvain, Belgium
Joseph K. Liu Institute for Infocomm Research, Singapore
Mark Manulis TU Darmstadt, Germany
Kanta Matsuura University of Tokyo, Japan
Atsuko Miyaji JAIST, Japan
Joern Mueller-Quade Karlsruhe Institute of Technology, Germany
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Tools over Bilinear Groups for Modular Design
of Cryptographic Tasks

Masayuki Abe

Secure Platform Laboratories, NTT Corporation, Japan
abe.masayuki@lab.ntt.co.jp

Modular construction is a design paradigm that combines smaller and more general
building blocks for larger and more specific cryptographic tasks. It is often used in
theoretical works to show feasibility of the tasks and efficient instantiations are con-
sidered separately. Some cryptographic tasks find efficient solutions dedicated for their
own purposes, yet efficient modular designs are of value as they can be a reasonable
alternative for comparison and offer more comprehensible security proofs.

The building blocks are desired to work over the same primitive or setting where
the underlying hardness assumptions are made. Among many primitives ranging from
well-studied RSA to recent lattices, bilinear groups are certainly one of the reason-
able choices as their rich structure allows to implement several tricks while retaining
efficiency to some extent. In fact, vast number of cryptographic schemes have been
constructed over bilinear groups. A cryptographic scheme such as a signature scheme,
encryption, commitment, and so on is called structure-preserving over bilinear groups if
its public inputs and outputs consist of group elements and relevant verifications are rep-
resented by pairing product equations. Such schemes are interoperable and compatible
with efficient non-interactive proofs of knowledge and are quite useful in constructing
privacy-protecting cryptographic tasks.

This talk is a survey about structure-preserving schemes. We present the state of art,
open issues, and applications. Some of the latest results will be explained in more depth.

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



One-Move Convertible Nominative Signature

in the Standard Model

Dennis Y.W. Liu1,2 and Duncan S. Wong2

1 School of Professional and Continuing Education, University of Hong Kong
2 Department of Computer Science, City University of Hong Kong

dennis.liu@hkuspace.hku.hk, duncan@cityu.edu.hk

Abstract. A Nominative Signature (NS) is a non-self-authenticating
signature which is jointly generated by a signer (or a nominator) and a
user (or a nominee), but once generated, its validity can only be deter-
mined by the user. No one else including the signer can tell the signature’s
validity unless the user confirms or disavows so, while the user cannot
cheat either. One-move NS is an efficient type of NS that requires the
signer to send only one message to the user during the signature gener-
ation stage. Currently, there exists only one one-move NS scheme which
is proven secure in the standard model, and is convertible, that is, the
user can transform a nominative signature to a publicly verifiable one
without the help of the signer. However, the number of elements in the
keys of both signer and user grows linearly with the value of the se-
curity parameter. In this paper, we propose a new one-move NS which
is convertible, can be proven secure in the standard model, and also
has a constant number of elements in the keys of both signer and user.
We apply the Boneh-Boyen short standard signature in a novel way to
build this nominative signature scheme. We show that this new scheme
achieves the best performance among all the schemes proven secure in
the standard model, and its security relies only on the standard q-SDH
and DDH assumptions.

Keywords: nominative signature, undeniable signature, non-self-
authenticating signature.

1 Introduction

A nominative signature (NS) scheme [14,24,17] allows a signer (or nominator)
A to work jointly with a user (or nominee) B to generate a signature σ on a
message m such that the validity of σ can only be verified by B. In addition,
only B can convince a (third-party) verifier C the validity of σ by running a
confirmation/disavowal protocol which also ensures that B cannot cheat.

In [12], Huang et al. used a practical scenario to illustrate a possible ap-
plication of NS. A hospital authority certifies and signs on official documents
containing the medical records of each patient. For privacy, the patient, how-
ever, is the only one who can show and demonstrate the legitimacy of his/her
own medical documents to others, such as an insurance company. NS plays an

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 2–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



One-Move Convertible Nominative Signature in the Standard Model 3

important role here where the hospital authority, the patient and the insurance
company are the signer, the user, and the verifier, respectively. Some may no-
tice that the hospital authority may simply release a medical document without
participating in the nominative signature generation, but the patient can accuse
the hospital authority of making false claims on the patient’s medical records.
The role of NS in this scenario is to produce a mutual agreement on the validity
of the patient’s medical documents. Without the hospital authority’s involve-
ment, the professional validity of the medical document cannot be ensured, while
without the patient’s agreement, the hospital authority cannot forge a medical
document. Also, only the patient can demonstrate the validity of the medical
document to the insurance company (i.e. the verifier) for making an insurance
claim. The hospital authority cannot announce to the public or leak anything
provable about the patient’s medical records.

In general, NS is also useful in user certification systems [23], which concerns
about letting a user B convince a (third-party) verifier C the validity of B’s
birth certificate, driver’s licence, academic transcripts or other documents, that
are issued by an authority A, but not allowing C to further disseminate the
validity information of any ofB’s certificates withoutB’s consent. It was believed
that user certification systems could be constructed from Universal Designated
Verifier Signature (UDVS) [23]. However, the signer A has to be fully trusted
by the user B. If A is malicious, A may disclose the certificate which is publicly
verifiable, and, A can generate a UDVS signature all by himself. An alternative
non-self-authenticating signature primitive that may be used to construct such
systems is called Designated Confirmer Signature (DCS) [7] in which the ability
to prove the validity of a signature is shifted to the user B. In such a DCS
scheme, the signer A is still able to confirm the signature to any public verifier
C, though the signature is not public verifiable. For a detailed discussion of
non-self-authenticating signatures, we refer readers to [17].

Since the introduction of NS by Kim et al. [14] in 1996, there have been
a number of refinements on the definitions and security models [17,12,27,21].
The construction of NS has also been improved significantly, particularly on the
number of message flows (also known as ‘moves’) between the signer and the
user during the nominative signature generation stage (four-move in [17], two-
move in [15] and one-move in [12,27,28,21]). The concept of convertibility is also
considered in [13,12,27,28,21], in which a nominative signature can be converted
to a publicly verifiable standard signature by the user B. All of the constructions
are proven secure in the random oracle model, not until recently, Schuldt et al.
[21] proposed an NS scheme which is proven secure in the standard model. Their
scheme is based on the standard signature scheme due to Waters [26]. It is not
only one-move but is also convertible. However, the number of elements in the
keys of both signer A and user B grows linearly with the value of the security
parameter as the scheme is based on Waters’ standard signature scheme.

Our Results. In this paper, we propose a new NS scheme which is one-move,
convertible, and also has security proven in the standard model. Furthermore,
the number of elements in the keys of both signer A and user B is constant and
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does not grow with the value of the security parameter. In our construction,
we apply the Boneh-Boyen short standard signature (BB) [2] in a novel and
interesting way, so that it is non-self-authenticating, convertible, and also sup-
ports efficient confirmation/disavowal. When compared with the only available
NS scheme proven secure in the standard model [21], our new scheme has shorter
keys, and makes 45% improvement in efficient during the signature generation.
More details will be given in Sec. 5.

Outline. The definition of convertible nominative signature (CNS) is given in
Sec. 2 and its security model in Sec. 3. Our proposed CNS scheme is then de-
scribed in Sec. 4. A comparison on the efficiency with previous CNS schemes
will be discussed in Sec. 5. Finally, the paper is concluded in Sec. 6.

2 Convertible Nominative Signature Definitions

In this paper, we focus our attention on Convertible NS which requires only one
move from the signer to the user during the signature generation stage. Hence
in the following, we give a definition for one-move convertible NS:

A one-move Convertible Nominative Signature (CNS) consists of six proba-
bilistic polynomial-time (PPT) algorithms and three protocols. Algorithms are
(SystemSetup, SKeyGen, UKeyGen, NSVer, Conv, Ver); protocols are (SigGen,
Confirmation and Disavowal).

1. SystemSetup: On input 1k where k ∈ N is a security parameter, it generates
a list of system parameters denoted by param.

2. SKeyGen: On input param, it generates a public/private key pair (pkA, skA)
for the signer.

3. UKeyGen: On input param, it generates a public/private key pair (pkB, skB)
for the user.

4. NSVer: On input a message m ∈ {0, 1}∗, a nominative signature σ, a public
key pkA and a private key skB , it returns valid or invalid.

A CNS scheme proceeds as follows. SystemSetup is first invoked for generating
param. SKeyGen and UKeyGen are then executed to initialize the two entities,
the signer A and the user B. To generate a nominative signature σ, A chooses a
message m, and carries out SigGen protocol below with B. In the one-move set-
ting, A is the initiator and B is the responder. A generates a partial nominative
signature denoted by σ′ and sends it to B. B then generates and outputs a nom-
inative signature denoted by σ. Formally, the SigGen consists of two algorithms,
(Sign, Receive), which are carried out by signer A (who is holding (pkA, skA))
and user B (who is holding (pkB , skB)), respectively.

SigGen Protocol: Besides (pkA, skA), A’s input is (param, m, pkB). Be-
sides (pkB , skB), B’s input is (param, m, pkA). SigGen protocol proceeds
as follows:
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1. A generates σ′ ← Sign(param, pkB,m, skA) and sends σ′ to B;
2. B generates σ ← Receive(param, pkA,m, σ

′, skB).

At the end of the protocol, B either outputs a nominative signature σ
or ⊥ indicating the failure of the protocol run.

Unlike the original definition in [17], the SigGen protocol defined above is spe-
cific to the one-move setting, that is, signer A initiates and generates a partial
nominative signature σ′, then B generates the final nominative signature σ upon
receiving σ′. Note that the signature space should be specified explicitly in each
CNS construction. In the following, let S(pkA, pkB) be the signature space.

For a nominative signature σ in S(pkA, pkB), the validity of σ can be deter-
mined by B using NSVer. If σ is valid, B can prove its validity to any third
party C using the following Confirmation protocol, otherwise, B can prove its
invalidity to C using a Disavowal protocol.

4. NSVer: On input a message m ∈ {0, 1}∗, a nominative signature σ, a public
key pkA and a private key skB , it returns valid or invalid.

Confirmation/Disavowal Protocol: On input (m,σ, pkA, pkB), B sets a bit
μ to 1 if valid ← NSVer(m,σ, pkA, skB); otherwise, μ is set to 0. B first
sends μ to C. If μ = 1, Confirmation protocol is carried out; otherwise,
Disavowal protocol is carried out. At the end of the protocol, C outputs
either accept or reject while B has no output.

5. Conv: On input an alleged message-signature pair (m,σ), if valid← NSVer(m,
σ, pkA, skB), B runs Conv(m,σ, pkA, skB) to extract a standard (publicly
verifiable) signature σstd.

6. Ver: On input (m,σStd, pkA, pkB), it returns valid or invalid.

Correctness : The scheme is said to satisfy the correctness requirement if, for all
param ← SystemSetup(1k), (pkA, skA) ← SKeyGen(param), (pkB, skB) ←
UKeyGen(param), allmessage-signaturepairs (m,σ) such thatσ ← Receive(param,
pkA,m, Sign(param, pkB,m, skA), skB), and all converted standard signatures
σstd ← Conv(m,σ, pkA, skB), we have:

– valid ← NSVer(m,σ, pkA, skB);
– C outputs accept at the end of the Confirmation protocol when both B and
C follow the protocol honestly, and;

– valid ← Ver(m,σstd, pkA, pkB).

Given a message m and a nominative signature σ ∈ S(pkA, pkB), if invalid ←
NSVer(m,σ, pkA, skB), then C outputs accept at the end of the Disavowal pro-
tocol provided that both B and C follow the protocol honestly.

The soundness of Confirmation (resp. Disavowal) protocol requires that no
PPT user can convince a third party that an invalid (resp. valid) nominative
signature is “valid” (resp. “invalid”).
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3 Security Model

Before presenting the security games for CNS, we begin with the oracles.

– CreateSigner: On input a query, it generates a key pair (pkA, skA) using
SKeyGen, and returns pkA.

– CreateUser: On input a query, it generates a key pair (pkB , skB) using UKey-
Gen, and returns pkB.

– Corrupt: On input a public key pk, if pk is generated by CreateSigner or Cre-
ateUser, the corresponding private key is returned; otherwise, ⊥ is returned.
pk is said to be corrupted.

– Sign: On input a message m, two distinct public keys, pk1 (signer) and pk2
(user), returns σ′ where σ′ is a partial nominative signature.

– Receive: On input a message m, a partial nominative signature σ′, two
distinct public keys, pk1 (signer) and pk2 (user), returns σ where σ is a valid
nominative signature. σ is said to be valid on m with respect to pk1 and pk2
if valid ← NSVer(m,σ, pk1, sk2) where sk2 is the corresponding private key
of pk2.

– Confirmation/Disavowal: On input a message m, a nominative signature σ
and two public keys pk1 (signer) and pk2 (user), let sk2 be the correspond-
ing private key of pk2. The oracle, acting as the user (prover) and runs
NSVer(m,σ, pk1, sk2). If the output is valid, the oracle returns a bit μ = 1
and carry out the Confirmation protocol. Otherwise, μ = 0 and carry out the
Disavowal protocol.

– Convert: On input (m,σ, pk1, pk2) such that valid ← NSVer(m,σ, pk1, sk2),
the oracle returns σStd such that valid ← Ver(m,σStd, pk1, pk2).

A secure convertible nominative signature (CNS) scheme should satisfy the fol-
lowing security requirements: (1) Unforgeability Against Malicious Users,
(2) Unforgeability Against Malicious Signers, (3) Invisibility, (4) Non-
transferability, and (5) User-only Conversion.

Remark: Similar to [21], we adopt the registered-key model [1], in which the
adversary is required to certify that the public keys used are properly gener-
ated and it knows the corresponding private keys. We employ the three oracles
CreateSigner, CreateUser and Corrupt to capture this model.

3.1 Unforgeability against Malicious Users

This security notion ensures that the user cannot forge a valid nominative sig-
nature without the aid of the signer.

Game Unforgeability against Malicious Users: Let S be the simulator and F
be a forger.

1. (Initialization) Let k ∈ N be a security parameter. S runs param ←
SystemSetup(1k) and (pkA, skA) ← SKeyGen(param). Then, F is invoked
with (param, pkA).
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2. (Attacking Phase) F is allowed to make queries to the oracle CreateSigner,
CreateUser, Corrupt, Sign mentioned above.

3. (Output Phase) F outputs (m∗, σ∗, pkB, skB).

F wins the game if valid ← NSVer(m∗, σ∗, pkA, skB) provided that:

1. F has never queried Corrupt(pkA) for corrupting skA;
2. (pkB, skB) must be created by querying CreateUser;
3. (m∗, pkA, pkB) has never been queried to Sign.

F ’s advantage in this game is defined to be the probability that F wins.

Definition 1. A CNS is unforgeable against malicious users if no PPT forger
F has a non-negligible advantage in Game Unforgeability Against Malicious Users.

Note that Confirmation/Disavowal and Convert oracles are not needed to provide
in the game above as F can readily carry out these protocols and algorithm as
(malicious) users by making use of CreateUser and Corrupt oracles.

A slightly stronger notion of security, called Strong Unforgeability Against Mali-
cious Users requires that the adversary cannot even generate a new signature on
a previous signed message. The game is similar to Game Unforgeability Against
Malicious Users, with an exception that (m∗, pkA, pkB) can be queried to Sign
by F . The output (m∗, σ∗) by F must not be a query result from Sign before.
Our construction proposed in the next section satisfies this stronger security
property.

3.2 Unforgeability against Malicious Signers

This notion captures the security requirement that the signer cannot forge a
valid nominative signature without the aid of the user.

Game Unforgeability against Malicious Signers: Let S be the simulator and
F be a forger.

1. (Initialization) Let k ∈ N be a security parameter. S runs param ←
SystemSetup(1k) and (pkB, skB) ← UKeyGen(param). Then, F is invoked
with (param, pkB).

2. (Attacking Phase) F is allowed to make queries to the oracles CreateSigner,
CreateUser, Corrupt, Receive, Confirmation/Disavowal and Convert mentioned
above.

3. (Output Phase) F outputs (m∗, σ∗, pkA, skA).

F wins the game if valid ← NSVer(m∗, σ∗, pkA, skB) provided that

1. F has never queried Corrupt(pkB) for corrupting skB;
2. (pkA, skA) must be created by querying CreateSigner;
3. (m∗, σ′∗, pkA, pkB) has never been queried to Receive such that
σ∗ ← Receive(m∗, σ′∗, pkA, pkB).

F ’s advantage in this game is defined to be the probability that F wins.
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Definition 2. A CNS is unforgeable against malicious signers if no PPT forger F
has a non-negligible advantage in Game Unforgeability Against Malicious Signers.

Note that the Sign oracle are not needed to provide in the game above as F
can readily carry out this algorithm as (malicious) signers by making use of
CreateUser and Corrupt oracles.

Similar to Strong Unforgeability Against Malicious Users, there is a stronger
security notion called Strong Unforgeability Against Malicious Signers. The game
is similar to Game Unforgeability Against Malicious Signers, with an exception
that (m∗, σ′∗, pkA, pkB) can be queried to Receive by F . The output (m∗, σ∗) by
F must not be a query result from Receive before. Our construction proposed in
the next section also satisfies this stronger security property.

3.3 Invisibility

We require that no verifier C (including signer A) can tell the validity of a
nominative signature, except user B. In the formalization below, we define an
auxiliary algorithm called NSSim (which stands for Nominative Signature Sim-
ulator). The algorithm takes (param, pkA, pkB,m, σ

valid) as input, where σvalid

is a valid nominative signature for message m under signer A’s public key pkA
and user B’s public key pkB, outputs σ

invalid so that σinvalid ∈ S(pkA, pkB) but
σinvalid is no longer a valid nominative signature for m under (pkA, pkB). The
purpose of introducing NSSim is to explicitly define the capability of the public
who can always convert a valid nominative signature to an invalid one while both
σvalid and σinvalid would look indistinguishable to verifier C, and only user B
can tell which signature is valid and which one is not, and by this, we model the
Invisibility requirement. Also note that NSSim has to be explicitly described in
the construction of a new NS scheme in order to have the new scheme be proven
satisfying the Invisibility requirement.

Game Invisibility: The initialization and attacking phases are the same as that
of Game Unforgeability Against Malicious Signers. In the game, the adversary
is a distinguisher D. Below are the two additional phases in the game.

1. (Challenge Signature Generation Phase) At some point in the game, D
sends a message m∗ to the simulator while acting as the signer for car-
rying out a run of SigGen with the simulator which acts as the user. Let
σvalid be the nominative signature generated by the simulator at the end
of the SigGen protocol run. Note that valid ← NSVer(m∗, σvalid, pkA, skB).
The challenge signature σ∗ is then generated by the simulator based on
the outcome of a random coin toss b. If b = 1, set σ∗ = σvalid. If b = 0,
set σ∗ ← NSSim(param, pkA, pkB,m, σ

valid).
2. (Guess Phase) D continues querying the oracles, until it outputs a guess
b′.

D wins the game if b′ = b provided that

1. D has never queried Corrupt(pkB) for corrupting skB;
2. (pkA, skA) must be created by querying CreateSigner;
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3. (m∗, σ′∗, pkA, pkB) has never been queried to Receive such that
σ∗ ← Receive(m∗, σ′∗, pkA, pkB).

4. (m∗, σ∗, pkA, pkB) has never been queried to Confirmation/Disavowal and
Convert.

D’s advantage in this game is defined as P [b′ = b]− 1
2 .

Definition 3. A CNS has the property of invisibility if no PPT distinguisher D
has a non-negligible advantage in Game Invisibility.

3.4 Non-transferability

The Confirmation/Disavowal protocols should be zero-knowledge so that no PPT
verifier (including the signer) can transfer the proof transcript of a nomina-
tive signature to others. The zero-knowledge property of the protocols implies
non-transferability of proof transcripts. Non-transferability requires that a ver-
ifier cannot produce any evidence during the Confirmation/Disavowal protocols
and thus ensures that the verifier cannot convince a third party that the va-
lidity/invalidity of a message-signature pair. Non-transferability follows directly
from the Invisibility property which implies that an invalid signature is indistin-
guishable from a valid one, and the zero-knowledge property of the Confirma-
tion/Disavowal protocols implies that a verifier can simulate the proof transcripts.
Hence, a verifier can sample a signature from the signature space and create the
corresponding proof transcripts which are indistinguishable from those that are
honestly generated from the Confirmation/Disavowal protocols.

3.5 User-Only Conversion

This security notion requires that it should be infeasible for anyone other than
the user to convert a valid nominative signature to a publicly-verifiable one. We
consider the following game.

Game User-Only Conversion: Suppose C is a malicious adversary who wants
to convert a nominative signature to a standard signature. The initialization
and attacking phases are the same as that of Game Unforgeability Against
Malicious Signers.

– (Challenge Signature Generation Phase) At some point in the game, C
is given (m∗, σ∗) from the simulator.

– (Conversion Phase) At the end of the game, C outputs (m∗, σStd) if σ∗

is a valid signature on m∗ with respect to pkA and pkB. Otherwise, it
returns ⊥.

C wins if valid ← Ver(m,σStd, pkA, pkB) provided that
1. C has never queried Corrupt(pkB) for corrupting skB ;
2. (pkA, skA) must be created by querying CreateSigner;
3. (m∗, σ∗, pkA, pkB) has never been queried to Confirmation/Disavowal and

Convert;
C’s advantage is defined as the probability that C wins.
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Definition 4. A CNS satisfies user-only conversion if no PPT adversary C has
a non-negligible advantage in Game User-only Conversion.

Theorem 1. If a CNS satisfies invisibility with respect to Def. 3, the scheme
satisfies user-only conversion.

Proof. We prove by contradiction. Suppose there is a scheme which does not
satisfy User-only Conversion, we show that it cannot satisfy Invisibility. We con-
struct a distinguisher D which breaks the Game Invisibility by using a successful
adversary C in Game User-only Conversion. D acts also as the simulator of Game
User-only Conversion. First, as the initialization and attacking phases of the Game
User-only Conversion are the same as that of the Game Invisibility, D passes param
and pkB to C after receiving them from its simulator in Game Invisibility. D is
able to simulate all available oracle queries perfectly from C by routing them
to its simulator. At the end of the Game User-only Conversion, if C outputs a
valid signature σstd, D knows that σ∗ must be a valid nominative signature, and
hence wins the Game Invisibility.

4 Our Construction

Let G1, G2 and GT be cyclic groups of prime order p. Let g1 be the generator
of G1 and g2 be the generator of G2. Let e : G1 × G2 → GT be an efficiently
computable map with the following properties: (1) Bilinear: for all a, b ∈ Z,
e(ga1 , g

b
2) = e(g1, g2)

ab; and (2) Non-degenerate: e(g1, g2) �= 1 where 1 is the
identity element of GT .

Our construction requires an asymmetric (i.e. G1 �= G2) pairing algorithm
with only efficiently-computable isomorphism ψ : G2 → G1. For more details
about asymmetric bilinear pairing and previous cryptographic applications, we
refer readers to [22,4,2].

The computational assumptions of our construction are given in Appendix B.

4.1 The Scheme

In [2], a short standard signature (BB) scheme based on bilinear pairing that is
strongly existentially unforgeable under an adaptive chosen message attack in
the standard security model was proposed. We will adopt this standard signature
scheme as the building block of our CNS scheme. Here is a brief review of the
BB’s scheme:

Let (G1, G2) be bilinear groups for some prime p. Let H : {0, 1}∗ → Zp be a
collision resistant hash function.

Key Generation: Select random generators g1 ∈R G1 and g2 ∈R G2, and random
integers x, y ∈R Z∗

p. Compute u = g2
x and v = g2

y. Also compute z =
e(g1, g2) ∈ GT . The public key is the tuple (g1, g2, u, v, z). The secret key
is (x, y).
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Signing: Given a secret key (x, y) and a message m, pick a random r ∈R

Zp \−{x+H(m)
y } and compute σ = g1

1/(x+H(m)+yr). Here, the inverse 1/(x+

H(m) + yr) is computed modulo p. The signature is the pair (σ, r).
Verification: Given a public key (g1, g2, u, v, z), a message m, and a signature

(σ, r), verify that (g1, g2, σ, g
H(m)
2 vru) is a DDH tuple by testing whether

e(σ, g
H(m)
2 vru) = z. If the equality holds the signature is declared valid;

otherwise it is declared invalid.

Outline of Our CNS Scheme. The signer A generates a BB signature σ′ =
(σBB , rA) and sends it to the user B. B ‘masks’ σBB in a fashion of ElGamal
encryption [10] to produce (σ1, rA, α1) so that even A is not able to determine if
it contains her valid BB signature. Furthermore, B generates his own BB signa-
ture (σ2, rB) on the ‘message’ σ1 and ‘masks’ it in the same fashion of ElGamal
encryption to produce (σ2, rB , α2) so that the CNS can satisfy unforgeability
against malicious signer. The final CNS is therefore (σ1, σ2, rA, rB, α1, α2). We
use ElGamal encryption to ‘mask’ (i.e. blind the BB signature from the pub-
lic) because of its homomorphic property which allows us to implement the
(zero-knowledge) proof of knowledge system for the Confirmation/Disavowal
protocols. Furthermore, it allows B to easily remove the mask during Conver-
sion, hence achieving convertibility in our CNS. Fig. 1 illustrates the algorithms
and here is a detailed description of the scheme:

SystemSetup: Let k ∈ N be a system parameter. The algorithm generates
three cyclic groups G1, G2 and GT of prime order p ≥ 2k and a bilinear
map e : G1 × G2 → GT . It also specifies a collision resistant hash function
H : {0, 1}∗ → Zp. Select random generators g1 ∈ G1 and g2 ∈ G2. Let
param = (p,G1, G2, GT , g1, g2, H).

SKeyGen: On input param, generate randomly xA1 , xA2 ∈ Z∗
p. Calculate yA1 =

g
xA1
2 and yA2 = g

xA2
2 . Let (yA1 , yA2) be the public keys, pkA, and (xA1 , xA2)

be the private keys, skA, of signer A.

UKeyGen: On input param, generate randomly xB1 , xB2 , xB3 ∈ Z∗
p. Calculate

yB1 = g
xB1

2 , yB2 = g
xB2

2 and yB3 = g
xB3

1 . Let (yB1 , yB2 , yB3) be the public
keys, pkB, and (xB1 , xB2 , xB3) be the private keys, skB, of user B.

SigGen Protocol: Let m ∈ {0, 1}∗ be a message. A and B carry out the follow-
ing:

1. A picks a random rA ∈ Zp \ −{xA1+H(m||yB)

xA2
} where yB = yB1 ||yB2 ||yB3 ,

computes σBB = g1
1/(xA1+H(m||yB)+xA2rA) and sends σ′ ← (σBB , rA) to

B. Here, the inverse 1/(xA1 +H(m||yB) + xA2rA) is computed modulo p.

2. B verifies if e(g1, g2)
?
= e(σBB , yA1g

H(m||yB)
2 yrAA2

). If so, B generates

σ1 = σBByB3
r1 and α1 = g1

r1 where r1 ∈R Zp, picks a random rB ∈
Zp \ −{xB1+H(σ1)

xB2
} and generates σ2 = g1

1/(xB1+H(σ1)+xB2rB)yB3
r2 and

α2 = g1
r2 where r2 ∈R Zp and forms the signature (m, σ) where

σ = (σ1, σ2, rA, rB , α1, α2).
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SKeyGen(param): NSVer(m, σ, pkA, skB):

xA1 , xA2 ← Z∗
p if e(α1, yA1g

H(m||yB)
2 yrA

A2
)xB3

yA1 ← g
xA1
2 , yA2 ← g

xA2
2 = e(σ1, yA1g

H(m||yB)
2 yrA

A2
)/e(g1, g2) ∧

Set pkA = (yA1 , yA2), skA = (xA1 , xA2) e(α2, yB1g
H(σ1)
2 yrB

B2
)xB3

return (pkA, skA) = e(σ2, yB1g
H(σ1)
2 yrB

B2
)/e(g1, g2)

return valid
else return invalid

UKeyGen(param): Conv(m, σ, skB):
xB1 , xB2 , xB3 ← Z∗

p r3 ←R Zp

yB1 ← g
xB1
2 , yB2 ← g

xB2
2 , yB3 ← g

xB3
1 δ1 ← σ1/α

xB3
1

Set pkB = (yB1 , yB2 , yB3) δ2 ← g1
1/(xB1

+H(δ1)+xB2
r3)

skB = (xB1 , xB2 , xB3) Set δ = (δ1, δ2, rA, r3)
return (pkB, skB) return δ

Send(param, pkB,m, skA): Ver(m, δ, pkA, pkB):

rA ←R Zp \ −{xA1
+H(m||yB)

xA2
} if e(g1, g2) = e(δ1, yA1g

H(m||yB)
2 yrA

A2
) ∧

Set yB = yB1 ||yB2 ||yB3 e(g1, g2) = e(δ2, yB1g
H(δ1)
2 yr3

B2
)

σBB ← g1
1/(xA1

+H(m||yB)+xA2
rA) return valid

Set σ′ = (σBB, rA) else return invalid
return σ′

Receive(param, pkA, m, σ′, skB):

if e(g1, g2) = e(σBB, yA1g
H(m||yB)
2 yrA

A2
)

σ1 ← σBByB3
r1 , α1 ← g1

r1 where r1 ←R Zp

rB ←R Zp \ −{xB1
+H(σ1)

xB2
}

σ2 ← g1
1/(xB1

+H(σ1)+xB2
rB)yB3

r2

α2 ← g1
r2 where r2 ←R Zp

Set σ = (σ1, σ2, rA, rB , α1, α2)
return (m, σ)

else return ⊥

Fig. 1. Concrete Construction of the CNS Algorithms

Signature Space: σ is said to be in the signature space S(pkA, pkB) if σ1,
σ2, α1, α2 ∈ G1 and rA, rB ∈ Zp. In order to check the validity of a nomina-
tive signature, the following algorithm is executed by user B.

NSVer: On input (m,σ, pkA, skB) where σ is in S(pkA, pkB), the algorithm

checks if e(α1, yA1g
H(m||yB)
2 yrAA2

)xB3
?
= e(σ1, yA1g

H(m||yB)
2 yrAA2

)/e(g1, g2), and

e(α2, yB1g
H(σ1)
2 yrBB2

)xB3
?
= e(σ2, yB1g

H(σ1)
2 yrBB2

)/e(g1, g2).

If so, output valid; otherwise, output invalid.

Confirmation/Disavowal Protocol: B first runs NSVer(m,σ, pkA, skB). If the
output is valid, B sends μ = 1 to a verifier C and carries out the following
(zero-knowledge) proof of knowledge with the verifier:
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PoK{xB3 : g1
xB3 = yB3

∧ e(α1, yA1g
H(m||yB)
2 yrAA2

)xB3 = e(σ1, yA1g
H(m||yB)
2 yrAA2

)/e(g1, g2)

∧ e(α2, yB1g
H(σ1)
2 yrBB2

)xB3 = e(σ2, yB1g
H(σ1)
2 yrBB2

)/e(g1, g2)}
Otherwise,B sends μ = 0 to C and carries out the following (zero-knowledge)
proof of knowledge with the verifier:

PoK{xB3 : g1
xB3 = yB3

∧ (e(α1, yA1g
H(m||yB)
2 yrAA2

)xB3 �= e(σ1, yA1g
H(m||yB)
2 yrAA2

)/e(g1, g2)

∨ e(α2, yB1g
H(σ1)
2 yrBB2

)xB3 �= e(σ2, yB1g
H(σ1)
2 yrBB2

)/e(g1, g2))}
Conv: On input (m,σ, skB) where σ is a valid nominative signature on m re-

spect toA andB, B randomly picks r3 ∈ Zp, and generates δ = (δ1, δ2, rA, r3)
where δ1 = σ1/α

xB3
1 and δ2 = g1

1/(xB1+H(δ1)+xB2r3).

Ver: On input (m, δ, pkA, pkB), C checks if

e(g1, g2)
?
= e(δ1, yA1g

H(m||yB)
2 yrAA2

) and e(g1, g2)
?
= e(δ2, yB1g

H(δ1)
2 yr3B2

)

If so, output valid; otherwise, output invalid.

For Invisibility (Sec. 3.3), we define σinvalid ← NSSim(param, pkA, pkB,m, σ
valid)

as follows. Given σvalid := (σ1, σ2, rA, rB , α1, α2), NSSim outputs σinvalid as
(σ′1, σ′2, rA, r′B, α

′
1, α

′
2) where σ

′
1, σ

′
2 ←R G1, r

′
B ←R Zp, α

′
1, α

′
2 ←R G1.

Remark: The confirmation/disavowal protocols given above are Σ-protocols [9]
with special soundness and perfect special honest-verifier zero-knowledge. Their
corresponding four-move fully fledged perfect zero-knowledge protocols can be
obtained by applying the transformation in [8]. We therefore omit the details
here and refer readers to [8].

The security analysis of the scheme is given in Appendix C.

5 Efficiency Analysis

In Table 1, comparisons on the signature size, key sizes for signer A and user B,
signature generation efficiency in terms of modular exponentiation calculation by
A (Sign) and B (Receive) individually, and the security assumptions used for un-
forgeability and invisibility, are shown. When comparing with previous schemes,
ours achieves strong unforgeability with comparable key size (unchanged for A’s
key and only two additional G and Z∗

p elements for B’s key when compared
with the scheme in [28]). The number of elements for the keys of the scheme
in [21] is proportional to the security parameters, while in our scheme, the key
size remains constant. Our scheme has a 45% increase in efficiency during sig-
nature generation, in terms of number of modular exponentiation calculations,
when compared with the scheme in [21]. While the schemes in [12,27,28] are
secure in random oracle model, our scheme is proven secure using standard com-
putational assumptions (i.e. CDH & q-SDH) which gives more confident in its
security among currently available NS schemes.
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Table 1. Comparison with Existing Secure One-Move NS Schemes

Scheme σ AKey BKey SigGena

HLW08 [12] 4G 1G+1Z∗
p 1G+1Z∗

p 1 + 4
ZLY08 [27] 2G 1G+1Z∗

p 1G+1Z∗
p 1 + 2

ZY09 [28] 1G 2G+2Z∗
p 2G+2Z∗

p 1 + 2
SH11 [21] 3G+Zp 2G+(n+2)Zp

b 5G+[2(n+1)+3]Zp 3 + 8
Ours 4G+2Zp 2G+2Zp 3G+3Zp 1 + 5

Unforgeability Invisibility Convertibility Standard Model

HLW08 [12] WCDH-I, WCDH-II WDDH × ×
ZLY08 [27] WCDH-I, WCDH-II WDDH

√ ×
ZY09 [28] CDH 3-DDH

√ ×
SH11 [21] CDH, DLP, DLiP DLiP

√ √
Ours q-SDH DDH

√ √

a No. of Modular Exponentiations in signature generation (Sign + Receive).
b n: No. of bits of message to be signed.

6 Conclusion

We proposed a more efficient one-move convertible nominative signature (CNS)
scheme which is secure under standard computational assumptions, in terms of
the reduced key size and the increased efficiency in signature generation when
compared with the scheme in [21]. Our scheme is also strongly unforgeable. It is
under our further investigation whether our techniques in our CNS construction
can be also adopted in other non-self-authenticating signature schemes.
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A Related Work

The notion and construction of nominative signature were first proposed by
Kim et al. [14] Their construction was based on Schnorr’s Signature [19,20]
and was later found flawed in [13]. In the construction of [14], the signer can
always determine the validity of a nominative signature. Huang and Wang [13]
proposed the notion of convertible nominative signature, to allow only the user
to convert a signature to a publicly-verifiable one. A new scheme was proposed,
but later Susilo and Mu [24] described an attack against this new scheme. Later,
Guo et al. [11] showed that Susilo-Mu’s attacking algorithms would still enable
a signer to accept a nominative signature as a valid one even if it is actually
invalid, and that the signer cannot prove the validity of a signature to any
third party nor convert a nominative signature into a publicly verifiable one
using Susilo-Mu’s algorithms. In particular, they showed that there exists no
efficient algorithm for the signer to check the validity of a published nominative
signature if the signature is generated honestly by the signer in the signature
generation phase and the decisional Diffie-Hellman problem is hard. In the same
paper, Guo et al. described a new attack, which allows the signer of Huang and
Wang’s scheme to generate valid signatures on his own and show the validity of
the signature to anyone without the consent of the user. Wang et al. [25] also
showed that Huang-Wang nominative signature scheme is insecure under their
original security model, in the sense that the signer can determine the validity
of a new message-signature pair with some indirect help from the user and the
signer is further able to prove the validity of nominative signatures to a third
party.

Liu et al. [17] proposed the first set of formal definitions and security models
for NS. The NS construction in [17] requires at least four rounds of communica-
tion between the signer and the user during signature generation. More efficient
nominative signature schemes based on ring signatures [18] were proposed in
[15,16]. The scheme in [15] requires two rounds in generating a nominative sig-
nature by utilizing the verifiable decryption technique [6]. The first one-move
(non-interactive) NS scheme was proposed in [16]. Later, more one-move NS
schemes [12,27,28] based on bilinear pairing were proposed and were proven se-
cure in random oracle model. Schuldt et al. [21] pointed out that the scheme in
[27] could not satisfy the basic invisibility requirement. In the same paper, an
NS scheme relying on the standard signature scheme by Waters [26] was pro-
posed and it is proven secure based on Decision Linear Problem (DLiP) and
Discrete Logarithm Problem (DLP). However, in their scheme, the number of
components for both signer and user’s public keys are directly proportionally to
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the number of bits of the message which is considered inflexible in a variable
message length environment.

B Computational Assumptions

B.1 q-Strong Diffie-Hellman (q-SDH) Assumption

To achieve the Strong Unforgeability property in our construction, we adopt the
q-Strong Diffie-Hellman (q-SDH) Assumption [2,3], defined as below:

Let G1, G2 be two cyclic groups of prime order p, respectively generated by g1
and g2.

The q-SDH assumption in (G1, G2) is defined as follows: given a (q + 3)-tuple

as input (g1, g
x
1 , g

x2

1 , · · ·, gxq

1 , g2, g
x
2 ) ∈ Gq+1

1 × G2
2, output a pair (c, g

1/(x+c)
1 )

where c ∈ Zp for a freely chosen value c ∈ Zp \ {−x}. An algorithm A1 has
advantage ε1 in solving q-SDH in (G1, G2) if

P [A1(g1, g
x
1 , g

x2

1 , · · · , gx
q

1 , g2, g
x
2 ) = (c, g

1/(x+c)
1 )] ≥ ε1

where the probability is taken over the random choices of g1 ∈ G1 and g2 ∈ G2,
the random choice of x in Z∗

p, and random bits consumed by A1.

Definition 5. We say that the (q, t1, ε1)-SDH assumption holds in (G1, G2) if
no t1-time algorithm A1 has advantage at least ε1 in solving the q-SDH problem
in (G1, G2).

Remark: The q-SDH assumption applies to all G1 and G2 with an efficient
bilinear map e, in which G1 = G2 or G1 �= G2, and is proven in generic group
model in [2].

B.2 Decisional Diffie-Hellman (DDH) Assumption

Let G1, G2 and GT be cyclic groups of prime order p. Let g1 be the generator
of G1 and g2 be the generator of G2. Let e : G1 × G2 → GT be an efficiently
computable map. e is an asymmetric (i.e. G1 �= G2) pairing with only efficiently-
computable isomorphism ψ : G2 → G1. Given input (g1, g

a
1 , g

b
1, g

c
1, g2, e),

determine if c ≡ ab. An algorithm A2 has advantage ε2 in solving DDH if

P [A2(g1, g
a
1 , g

b
1, g

c
1, g2, e) = 1 | c ≡ ab] ≥ 1

2
+ ε2

where the probability is taken over the random choices of g1 ∈ G1, g2 ∈ G2 the
random choice of a, b, c in Z∗

p, and random bits consumed by A2.

Remark: In [5], the authors suggested, “a tempting workaround to this problem
(ciphertext anonymity) is to use an ‘asymmetric’ pairing e : G × Ĝ → GT in
the schemes that allow it, such as Boneh and Boyen’s ‘BB1’ and ‘BB2’, and
Waters’ by extension. In those schemes, and under the additional assumption
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that Decision Diffie-Hellman is hard in G, one may prevent the use of the pairing
as a direct test of whether a ciphertext is for a particular identity.” We assume
the Decisional Diffie-Hellman (DDH) assumption applies in G1 in our scheme
because there is no efficient isomorphism ψ−1 : G1 → G2 so that it is not easy to
find gr2 ← ψ−1(g1

b) where r ∈ Zq in order to allow the testing of the DH-tuple
(g1, g

a
1 , g

b
1, g

c
1) using bilinear map e.

Definition 6. We say that the (t2, ε2)-DDH assumption holds in G1 if no t2-
time algorithm A2 has advantage at least ε2 in solving the DDH problem in G1.

C Security Analysis

The unforgeability (security against malicious signers/users) of our CNS scheme
relies on the unforgeability property of BB’s [2] standard signature scheme. Any
efficient forger of the CNS signature is able to forge a valid standard signature
in BB’s scheme. The Invisibility property relies on the DDH assumption in
G1 where any efficient distinguisher D, who is able to distinguish the DH-tuple
(g1, yB3 , α1, σ1/σ

BB), can solve the DDH problem in G1.

We now first show that our construction described above is secure against ma-
licious users with respect to Def. 1.

Theorem 2. Let k ∈ N be a security parameter. For the CNS proposed above,
if a (t, ε, Q)-user can forge a valid nominative signature in Game Unforgeability
Against Users with probability at least ε after running at most time t and making
at most Q queries, there exists a (t′, ε′)-adversary which can forge a valid stan-
dard signature in Boneh-Boyen full signature scheme [2] with probability at least
ε′ = ε after running at most time t′ = t+Qtq+ c where tq is the maximum time
for simulating a query and c denotes some constant time for system setup and
key generation.

Proof. Let F be a (t, ε, Q)-forger having userB’s private key xB = (xB1 , xB2 , xB3 )
(obtained by querying Corrupt). We show that F can be turned into a (t′, ε′)-
algorithm S which can forge a valid standard signature in Boneh-Boyen full
signature scheme [2]. Assume a public key PK1 and PK2 is given by the chal-
lenger ch of the Strong Existential Unforgeability Game defined in [2].

Game Simulation: S first generates param according to SystemSetup. For signer
A, set, yA1 = PK1 and yA2 = PK2. Let (yA1 , yA2) be the public keys and
(xA1 , xA2) be the private keys of signer A.

For a Sign query on input (m, yA, y2), where yA = (yA1 , yA2), and y2 =
(yb1 , yb2 , yb3), the simulation can be carried out perfectly by requesting a signa-
ture σ′q = (σBB

q , rA) on m from ch and generates σ1 = σBB
q yr1b3 where r1 ∈R Zp.

Reduction: Eventually, F outputs a forged signature (σ∗1 , σ
∗
2 , r

∗
A, r

∗
b , α

∗
1, α

∗
2) on

m∗. A standard signature can be extracted by calculating σBB = σ∗1/α∗
1
xb3 =

g1
1/(xA1+H(m∗||yb)+xA2r

∗
A). S successfully forges a standard signature

(m∗||yb, σBB) and returns it to the challenger ch. Therefore, the proba-
bility ε′ = ε and the running time of S is at most t′ = t+Qtq + c.
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Theorem 3. Let k ∈ N be a security parameter. For the CNS proposed above,
if a (t, ε, Q)-signer can forge a valid nominative signature in Game Unforgeability
Against Signers with probability at least ε after running at most time t and mak-
ing at most Q queries, there exists a (t′, ε′)-adversary which can forge a valid
standard signature in Boneh-Boyen full signature scheme [2] with probability at
least ε′ = ε after running at most time t′ ≤ t+Qtq + c where tq is the maximum
time for simulating a query and c denotes some constant time for system setup
and key generation.

Proof. We show how to construct a (t′, ε′)-algorithm S to forge a Boneh-Boyen
signature from a (t, ε, Q)-forger F who has signer A’s private keys (xA1 , xA2)
(obtained by querying Corrupt). Set, yB1 = PK1 and yB2 = PK2. Pick also a
random xB3 ∈ Z∗

p and calculate yB3 = g
xB3
1 . Let (yB1 , yB2 , yB3) be the public

keys and (xB1 , xB2 , xB3 ) be the private keys of user B.

The simulation of the oracles are shown below:

– Receive: Upon receiving (m,σBB , ra) from F for the generation of nominative
signature, S requests a standard signature σq

′ = (σBB
q , rB) on σ1 from ch.

Then, B generates σ2 = σBB
q yB3

r2 and α2 = gr2 where r2 ∈R Zp and forms
the nominative signature (m, σ) where σ = (σ1, σ2, ra, rB, α1, α2).

– Convert: If (m,σ) is valid, S calculates δ1 = σ1/α1
xB3 and requests a stan-

dard signature (δ2, r3) on δ1 from ch. S then returns δ = (δ1, δ2, rA, r3) to
F . Otherwise, S returns ⊥.

– Confirmation/Disavowal: Given a (m,σ) pair with respect to A and B, S can
always carry out the proof because the witness xB3 is always known to S.

Reduction: Eventually, F outputs a forged signature (σ∗1 , σ
∗
2 , r

∗
a, r

∗
B, α

∗
1, α

∗
2) on

m∗. A standard signature can be extracted by calculating σBB = σ∗2/α2
∗xB3 . S

successfully forges a standard signature (α∗
1, σ

BB) and returns it to the challenger
ch. The simulation can be performed perfectly. Therefore, the probability ε′ = ε
and the running time of S is at most t′ = t+Qtq + c.

Corollary 1. The CNS proposed above is strongly unforgeable (Def. 1 & 2) if
the q-Strong Diffie-Hellman (q-SDH) problem defined in Appendix B is hard.

Readers may refer to [2] for reviewing how a forger F of the standard signature
scheme can be constructed to efficiently solve the q-Strong Diffie-Hellman (q-
SDH) problem.

Theorem 4 (Invisibility). Assume the NS proposed above is unforgeable, it
has the property of invisibility (Def. 3) under Decisional Diffie-Hellman (DDH)
assumption.

Proof. We show that if there exists a distinguisher D, who has signer A’s pri-
vate keys (xA1 , xA2) (obtained by querying Corrupt), with advantage ε in Game
Invisibility, we can construct a DDH distinguisher DDDH with advantage ε′.
DDDH is given a random DDH problem instance (g1, X, Y, Z) ∈ G4

1 where
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X = g1
μ, Y = g1

ν and determine Z
?
= g1

μν . Generate randomly xB1 , xB2 ∈ Z∗
p.

Calculate yB1 = g
xB1

2 and yB2 = g
xB2

2 . Set yB3 = X . Let (yB1 , yB2 , yB3) be the
public keys and (xB1 , xB2 , μ) be the private keys of user B.

The simulation of the oracles are shown below:

– Receive: Upon receiving (m,σBB , ra) from D, DDDH generates σ1 =
σBByB3

r1 and α1 = g1
r1 where r1 ∈R Zp, picks a random rB ∈ Zp \

−{xB1+H(σ1)

xB2
} and forms σ2 = g1

1/(xB1+H(σ1)+xB2rB)yB3
r2 and α2 = g1

r2 .

The signature is (m, σ) where σ = (σ1, σ2, ra, rB, α1, α2). D
DDH maintains

a list:

LReceive = {(m,σ, r1, r2)1, (m,σ, r1, r2)2, · · ·, (m,σ, r1, r2)n}
of all Receive queries.

– Convert: If (m,σ) is valid, due to the unforgeability property of the scheme,
(m,σ) must be generated from a previous query. DDDH looks up LReceive,
extracts r1 and calculates δ1 = σ1/yB3

r1 and generates a standard signature
(δ2, r3) on δ1. D

DDH then returns δ = (δ1, δ2, ra, r3) to D.
– Confirmation/Disavowal: Given a (m,σ) pair with respect to A and B, DDDH

returns ⊥ if σ was not returned in a response to a previous Receive query,
which has a negligible probability due to the unforgeability property of the
scheme. Otherwise, DDDH exploits the zero knowledge property of the con-
firmation protocol to simulates the protocol to D by using standard rewind
and replay techniques. Note that the zero-knowledge protocol obtained by
using the conversion by Cramer et al. [8] provides perfect zero-knowledge
proof and thereby allows DDDH to provide a perfect simulation.

At some point in the game, D submits a message m∗ to the DDDH and carry
out a run of SigGen with DDDH . DDDH then returns a challenge nominative
signature σ∗ = (σ∗1 , σ

∗
2 , r

∗
a, r

∗
B, Y, α

∗
2) where σ∗1 = g1

1/(xa1+H(m∗||yB)+xa2ra
∗)Z,

σ∗2 = g1
1/(xB1+H(σ∗

1 )+xB2rB
∗)Xr2 , and r∗a corresponds to the value given by D in

the protocol run of SigGen. Note that our simulation is indistinguishable from
the simulation defined in Game Invisibility. The reason is that r2, r

∗
B are random

in Zp and X,Y, Z ∈ G1 are elements from the random DDH problem instance.
Thus, we have σ∗1 , σ

∗
2 , α

∗
1, α

∗
2 ∈R G1, r

∗
B ∈R Zp. Therefore, σ

∗ is indistinguishable
from the challenge signature generated by NSSim defined in Game Invisibility. For
the event that if D distinguishes the validity of σ∗ successfully, so does DDDH

on solving the DDH problem instance. Hence DDDH has a success probability
of at least ε′ = ε.

Similar to the evaluation of Theorem 3, the running time of DDDH is at most
t′ = t+Qtq + c.

Corollary 2 (User-only Conversion). The CNS proposed has the property of
invisibility. By Theorem 1, the CNS has also the property of user-only conversion.
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Abstract. Compared to conventional ring signature schemes, condition-
ally anonymous ring signatures allow to revoke the anonymity of actual
signer without the group manager’s help if necessary. When the actual
signer intends to confirm his role, it can be proved by a confirmation
algorithm. In addition, any user, who is in a ring but not signer, can
claim this through a disavowal algorithm. There were several proposals
which were proved secure in random oracles. In other words, the security
of such schemes depends on the randomness of hash functions. Recently,
Zeng et al. proposed a generic construction of conditionally anonymous
ring signature scheme without random oracles. Their scheme relies on
NIZKs and pseudorandom functions, which render it to be inefficient.
This paper proposes a practical ring signature scheme with traceability
without random oracles in the common reference string model.

Keywords: Conditional Anonymity, Ring Signature, Standard Model,
NIWI Proof System.

1 Introduction

In traditional ring signature scheme [9], the identity of the actual signer is un-
conditionally anonymous. In other words, even if all the private keys of a set
are revealed, we still cannot determine who is the signer of a given signature.
This property is intended to protect the privacy of the signer. However, when
the generated ring signature is disputed, it is impossible to identify who should
be responsible for it. The notion of group signature [5] can avoid this problem
since there exists a group manager who can revoke the identity of the signer by
using a trapdoor. However this kind of construction does not fit for an ad hoc
manner.

In conditionally anonymous ring signature, contrast to group signature, every
node within the ring is equal and there is no special node as group manger. Dif-
ferent from conventional ring signature, conditionally anonymous ring signature
has advanced properties: confirmation and disavowal. By those means, an actual
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signer can be traced without group manager’s help. Specifically, the signer con-
firms the fact of signing through a confirmation protocol and non-signer refutes
that through a disavowal protocol.

Komano et al. [8] firstly proposed a construction of conditionally anonymous
ring signature, though their confirmation protocol and disavowal protocol are
interactive. Wu et al. [11] proposed a notion of Ad Hoc Group Signature, which
essentially is a conditionally anonymous ring signature. their self-traceability
algorithm is non-interactive and the signature size is constant. However, the
security of [11] is based on a new assumption (called DFDH assumption). Under
the security model of [8], Zeng et al. proposed a new efficient conditionally
anonymous ring signature scheme [12]. The confirmation/disavowal algorithms
in [12] are both non-interactive and have constant costs, and the security is based
on standard assumption (DBDH assumption). However, compared to [11], the
size of the ring signature in [12] is proportional to the size of ring.

All those conditionally anonymous ring signature schemes are provably secure
in the random oracle model, in other words, security of such schemes depends
on the randomness of hash functions. As argued in [3], cryptographic protocols
constructed under the random oracle models are not secure in the real world.
Recently, Zeng et al. proposed a generic construction of conditionally anony-
mous ring signature scheme without random oracles. Their scheme relies on
NIZKs and pseudorandom functions, which makes it inefficient. Constructing an
efficient and practical conditionally anonymous ring signature without random
oracles is necessary.

Our Contribution
We propose a practical conditionally anonymous ring signature scheme without
random oracles under the security model of [8] and [12]. We make use of Non-
interactive Witness-indistinguishable (NIWI) proof system [6,7] and sub-linear
size ring signature scheme[4] to construct the conditionally anonymous ring sig-
nature scheme. The genuine signer can confirm his role through confirmation
protocol, while non-signers can refute it through disavowal protocol. Both the
confirmation and disavowal algorithms are non-interactive. In addition, the sig-
nature size is O(k

√
N)[4], which is more efficient than [8] and [12], where k is a

security parameter and N is the number of ring members.

2 Preliminaries

In this section, we introduce the mathematical setting and the complexity as-
sumptions which will be used in the paper.

2.1 Bilinear Groups of Composite Order

We use bilinear groups of composite order n = pq, where p and q are primes,
introduced by Boneh, Goh and Nissim (BGN)[2]. In this setting, G is a multi-
plicative cyclic group of order n; Gp and Gq are the subgroups of G with order
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p and q respectively; g is the generator of G; h is the generator of Gq; GT is a
multiplicative group of order n; ê : G × G → GT is an efficiently computable
map with the following properties:

– Bilinearity. ∀ u, v ∈ G, ∀ a, b ∈ Z, ê(ua, vb) = ê(u, v)ab.
– Non-degeneracy. ê(g, g) is a generator of GT whenever g is a generator of
G.

– Computability. ∀ u, v ∈ G, ê(u, v) can be computed efficiently.
– GT,p and GT,q are the GT -subgroups of order p and q, respectively.

2.2 Complexity Assumptions

Definition 1. [Subgroup Decision (BGN) [2]] Given the description of G with-
out the factorization of n, and r selected randomly either from G or from Gq,
decide whether r is in Gq.

Definition 2. [Strong Diffie-Hellman Assumption in Gp [1]] Given η, ηx, ηx
2

,

· · · , ηxt ∈ Gp as input, output a pair (c, η1/(x+c)), where c ∈ Zp.

2.3 Underlying Signature

Our proposal takes the fully secure BB signature scheme [1] as underlying sig-
nature, which is secure against the strong existential forgery under an adaptive
chosen message attack provided that SDH assumption is hard (Definition 2).
This signature scheme is secure in Gp and also adapted for composite order
groups [4]. The original BB signature scheme is described in the setting of asym-
metric paring ê: G1×G2 → GT . It is trivial to replace it as the symmetric paring
setting. Let us review the fully secure BB signature scheme under the symmetric
paring version:

KeyGen. Choose η ∈ Gp and x, y ∈ Zp. The public key is the tuple (η, ηx, ηy).
The secret key is (x, y).

Signing. Given the secret key (x, y) and a message m ∈ Zp, pick r ← Zp

\{−x+m
y }, compute σ = η

1
x+yr+m ∈ Gp. The signature is the pair (σ, r).

Verification. Check the equation ê(σ, ηx · (ηy)r · ηm) = ê(η, η) holds or not.

In our ring signature scheme, we adapt this fully secure BB signature under the
symmetric paring and composite order groups.

2.4 Non-interactive Witness-Indistinguishable Proof

Proof system allows a prover P to convince a verifier V truth of the statement.
For an efficiently computable binary relation R, if (x, ω) ∈ R, where x is the
statement and ω is the witness for this statement, we let L be the language
consisting of statements in R, then a non-interactive proof system (P, V ) for L
satisfies the following properties:
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– Completeness. For any common reference string crs, Vcrs(x, Pcrs(x, ω)) = 1
holds always.

– Adaptive Soundness. For any adversary A, it holds that

Pr[Vcrs(x, π) = 1 : (x, π) ← A(crs)] = 0

If (P, V ) is non-interactive witness-indistinguishable proof system, the additional
witness-indistinguishability for secure parameter k should be satisfied:

Pr[(x, ω0, ω1) ← A(1k);π ← P (1k, x, ω0) : A(π) = 1 ∧ (x, ω0), (x, ω1) ∈ R]
≈ Pr[(x, ω0, ω1) ← A(1k);π ← P (1k, x, ω1) : A(π) = 1 ∧ (x, ω0), (x, ω1) ∈ R]

Witness-indistinguishability means that proof does not reveal which witness the
prover used.

2.5 NIWI Proofs for Commitment Scheme

Now we intend to use NIWI proofs to prove the committed values satisfying an
equation, such as BB signature’s verification equation: ê(σ, gx · gm) = ê(g, g)
(Here we take the weak BB signature scheme for composite order groups for
example). When h has order n, we obtain witness-indistinguishability. When h
has order q, the proof has soundness in Gp. The first step is to commit the
variables σ and the verification key gx. The commitments are

C = σhr1 , L = gxhr2

The prover’s goal is to convince the verifier that the commitments contain σ
and the verification key gx which satisfy the BB verification equation. We plug
in the commitments in place of the variables in the BB verification equation:

ê(C,L · gm) = ê(σhr1 , gxhr2gm) = ê(σ, gxgm)ê(σ, hr2)ê(gx+m.hr1)ê(hr1 , hr2)
= ê(g, g)ê(σ, hr2)ê(gx+m.hr1)ê(hr1 , hr2)
= ê(g, g)ê(σr2 · g(x+m)r1 · hr1r2 , h)

Then we regard σr2 · g(x+m)r1 · hr1r2 as prover’s NIWI proof π. It is easy to see
that this proof would be convincing in the soundness setting, where h has order
q, because in that setting, we have the soundness key λ, λ = 1 mod p and λ = 0
mod q. Then the verifier would know but not be able to compute

ê(Cλ, Lλgm) = ê(g, g)ê(π, h)λ = ê(g, g)

This gives us soundness, since σ = Cλ, gx = Lλ satisfy the verification equation
of BB signature. This proof also satisfies the witness-indistinguishability. In the
witness-indistinguishability setting, where h has order n, the commitments are
perfect hiding. Therefore, in the verification equation, nothing except for π has
any information about σ and gx. For π = σr2 · g(x+m)r1 · hr1r2 , since r1 and r2
are random values, any witness can satisfy the proof π.
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3 Model of Conditionally Anonymous Ring Signature

3.1 Syntax

Definition. A conditionally anonymous ring signature consists of the following
algorithms. Let the universe of members U = {1, · · · , χ}.
1. A probabilistic key generation algorithm K, given a security parameter s,

outputs public key and private key (pki, ski) for member i.
2. A probabilistic signing algorithm S, given a message m, a private key skk of

signer k, and the public keys pk1, · · · , pkn of set R = {u1, · · · , un}, outputs
a tuple (m, σ,R). For simplicity, we do not distinguish i and its public key
pki.

3. A deterministic verification algorithm V , given (m, σ,R), determines whether
σ is a valid ring signature w.r.t. (m,R).

4. A confirmation protocol C, executed between a signer k and a verifier with
a common input (m,R, σ, k). A signer also inputs his secret key skk. Finally,
a verifier either accepts or rejects signer’s confirmation.

5. A disavowal protocol D, executed between a member i ∈ R and verifier with
common input(m, σ,R, i). The member i also has ski as his secret input.
Finally, a verifier either accepts or rejects the disavowal of member i.

3.2 Oracles

In this subsection, we introduce some oracles utilized in the security models.

Osig(i,m,R). This is the signing oracle and holds i ∈ R. Upon this, a ring
signature σ w.r.t. (m,R) using ski is returned.
Ocor(i). This is the corruption oracle. Upon this, the secret key ski of member
i is returned.
OC/D(i,m, σ,R). This is the confirmation/disavowal oracle. Upon this, the
oracle takes ski as the secret input to interact with the verifier to confirm or
disavow that σ is generated by ski w.r.t. (m,R).

3.3 Security Model

The security of a conditionally anonymous ring signature scheme is formulated
in four properties: anonymity, unforgeability, traceability and non-frameability.
They are now introduced as follows.

Anonymity. Anonymity essentially means that given a signature no one can
tell who is the actual signer. Formally, for any distinguisher D, consider the
following game (denoted by an anonymity game):

– Initially, D receives pki for all i ∈ U .
– D can query oracles Osig, Ocor, OC/D adaptively and receive the answer

properly.
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– D outputs (m∗, pki0 , pki1 , R∗) for (i0, i1) ∈ R∗ as his challenge. In turn,
the challenger takes b ← {0, 1}, and uses skib to generate a challenge ring
signature σ∗ on (m∗, R∗) for D.

– D can continue to query oracles Osig , Ocor, OC/D. Specially, he cannot
request OC/D(ib,m

∗, R∗, σ) for any σ and ib cannot be corrupted.

At the end of game, D generates a guess bit b′ for b. Denote Succanon(D) the
success event of D in the game. Define AdvanonD (s) = |Pr[Succanon(D)] − 1

2 |. A
ring signature is conditionally anonymous if for any probabilistic polynomial time
distinguisher D, AdvanonD (s) is negligible in security parameter s.

Unforgeability. A conditionally anonymous ring signature is unforgeable if it
is infeasible for any forger to forge a signature on uncorrupted R∗. Formally, for
any forger F , consider the following game (unforgeability game):

– Initially, F receives pki for all i ∈ U .
– F can query oracles Osig, Ocor, OC/D adaptively and receive the answer

properly.

At the end of game, F generates a forgery (m∗, R∗, σ∗). F succeeds if (m∗, R∗,
σ∗) passes the signature verification while (m∗, R∗) was never queried to Osig

oracle and no i ∈ R∗ is corrupted. Denote the success probability of F by
Pr[Succuf (F)]. A conditionally anonymous ring signature scheme is unforgeable,
if for any probabilistic polynomial time forger F , Pr[Succuf (F)] is negligible.

Traceability. Traceability describes that for any valid ring signature, it is
impossible that any member of its ring R can deny generating it. Formally, for
an adversary A, consider the following game (called traceability game):

– Initially, A receives pki for all i ∈ U .
– A can query oracles Osig, Ocor, OC/D adaptively and receive the answer

properly.

At the end of game, A outputs a signature (m,σ,R) and plays the role of each
j ∈ R to execute the disavowal protocol with the challenger. A succeeds if the
challenger is convinced of the disavowal for all j ∈ R. Pr[Succtr(A)] denote the
success probability of A. A conditionally anonymous ring signature scheme is
traceable, if for any probabilistic polynomial time adversary A, Pr[Succtr(A)] is
negligible.

Non-frameability. Non-frameability represents that if one did not generate
a signature, then he should be able to prove this using a disavowal protocol.
Formally, consider the non-frameability game below:

– Initially, A receives pki for all i ∈ U .
– A can query oracles Osig, Ocor, OC/D adaptively and receive the answer

properly.
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At the end of game,A outputs a valid signature (m∗, σ∗, R∗) and uncorrupted j ∈
R∗ such that (j,m∗, R∗) was never queried to Osig oracle. Then the challenger
uses skj to execute the disavowal protocol with A. A succeeds if the challenger

fails to disavow. Let Succnf (A) denote the success event of A. A conditionally
anonymous ring signature is non-frameable if for any probabilistic polynomial
time attacker A, Pr[Succnf (A)] is negligible.

3.4 High Level

We give the description of this conditionally anonymous ring signature scheme
firstly. Consider a ring R = {pk1, · · · , pkn}, a signer k knows his private key skk
corresponding to one of the public keys in R and wants to sign a message m.

The actual signer k uses private key skk = (xk, yk) to generate a fully se-

cure BB signature on m [1]: σ = g
1

xk+ykr+m . σ here is regarded as the par-
tial signature. We hope the ring signature can be traced anyway, therefore, we
cannot make a BGN encryption [2] to σ. However, we do not hope σ is pub-
licly verifiable, thus the public key pki of member i cannot be set as BB sig-
nature fashion: pki = (gxi , gyi). Instead, it should be BGN commitment [2]:

pki = (gxi ĥei , gyi ĥdi). Therefore, for a given signature σ and public key pkk,
it is impossible to ensure the consistency between σ and pkk. Then we commit
the verification key pkk of the signer, and make use of the NIWI proofs [6,7]
to prove the the partial signature σ and the committed verification key belong
to a language LBB. Finally, we adopt the sub-linear size ring signature algo-
rithm [4] to prove the committed pkk belongs to ring R without revealing which
one.

For the traceability algorithm, signer k uses the witness skk and the common
input σ to generate a confirmation proof πc, which is used to prove k is the
signer of a given ring signature σ. The non-signer i, also can make a disavowal
proof πd to prove he is not the signer of σ using the witness ski. Both of the two
protocols are non-interactive.

3.5 Construction

Common Reference String. Run BGN generator [2] to get (G,GT , n, p, q, ê, g, h,

ĥ, h̃), where G is a group with order n and g is the random generator of G.
n = pq, p and q are primes, Gp and Gq are subgroups of G with order p and

q respectively: G = Gp ×Gq. h, ĥ, h̃ are random generators of Gq. The bilinear
map ê : G × G → GT . H is the collision free hash function, H : {0, 1}∗ → Zn.

The CRS string is crs = (n,G,GT , ê, g, h, ĥ, h̃, H).

Key Generation. Member i chooses xi, yi, ei, di ∈ Zn as his private key and the
corresponding public key pki = (gxi ĥei , gyiĥdi).
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Signing. Suppose a signer k chooses a ring R = {pk1, · · · , pkN} and a message
m, he generates the ring signature as follows:

1. Compute the hash value: τ = H(m,R).

2. Generate a partial signature: choose r ← Zn, compute σ = g
1

xk+ykr+τ . This
is a fully secure BB signature [1].

3. Generate a proof πσ = ĥ
1

xk+ykr+τ . πσ is a proof that the signer cannot make
another σ′, such that σ �= σ′ ∈ G but (σ)q = (σ′)q.

4. Choose r1, r2, r3 ∈ Zn, compute hr1 and commit pkk with r2, r3: C1 =
gxk ĥekhr2 , C2 = gyk ĥdkhr3 .

5. Generate NIWI proofs

π1 = g
ek+dkr

xk+ykr+τ hr1(ek+dkr), π2 = g
r2+r3r

xk+ykr+τ +(xk+ykr+τ)r1hr1(r2+r3r).

These NIWI proofs are used to prove (σhr1 , τ, C1, C2) ∈ LBB .
6. Generate a NIWI proof π to prove the verification key pkk in the commitment

(C1, C2) belongs to the ring R using the sub-linear ring signature algorithm
proposed in [4].

7. Publish the ring signature Σ = (R, r, σ, hr1 , πσ, {C1, C2}, π1, π2, π).

Verification. The verifier does as follows:

1. Compute τ = H(m,R).

2. Reject if ê(σ, ĥ) �= ê(g, πσ).

3. Reject if ê(σ · hr1 , C1 · Cr
2 · gτ ) �= ê(g, g) · ê(π1, ĥ) · ê(π2, h).

4. Accept if the proof π is valid.

Confirmation. The real signer, i.e., member k, wants to confirm a ring signature
Σ is signed by him, he acts as follows:

1. Generate a proof πc = g
ek+dkr

xk+ykr+τ .
2. Publish πc to the verifier.

The verifier uses member k’s public key pkk = (gxk ĥek , gyk ĥdk) to check ê(σ, gxk ĥek ·
(gyk ĥdk)r · gτ ) = ê(g, g)ê(πc, ĥ). If the equation holds, one convinces that mem-
ber k is the actual signer of Σ.

Disavowal. Non-signer, i.e., member j, can make use of this algorithm to prove
he is not the actual signer of Σ w.r.t. the same (m, r,R):

1. Generate σj = g
1

xj+yjr+τ .

2. Generate a proof πσj = h̃
1

xj+yjr+τ

3. Generate a proof πd = g
ej+djr

xj+yjr+τ .
4. Publish (σj , πσj , πd).
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The verifier uses member j’s public key pkj = (gxj ĥej , gyj ĥdj ) to check the
following steps. If all are accepted, he is convinced that member j is not the
signer of Σ.

1. Reject if ê(σj , h̃) �= ê(πσj , g).

2. Reject if ê(σj , g
xj ĥej · (gyj ĥdj )r · gτ ) �= ê(g, g) · ê(πd, ĥ).

3. Accept if σj �= σ.

Remark 1. In both constructions of Shacham et al.[10] and Chandran et al.
[4], signer should commit the underlying signature, i.e. BB signature and the
verification key. Since the signature is committed (by the randomness), it cannot
be used for disavowal. In order to enforce the confirmation and disavowal, we
cannot commit the BB signature. However, it violates the anonymity, since the
BB signature is publicly verifiable. Therefore, we modify the original public key
setting of BB signature as pk = (gxĥe, gyĥd). It is easy to see that, for a given

BB signature σ = g
1

x+yr+m , no one can check the consistency between σ and pk.
In this way, we commit the verification key pk only. Therefore, the property of

disavowal can be achieved by checking σj
?
= σ.

Remark 2. For a malicious signer, for example, the signer computes σ′ = σhr,
then he also can provide valid NIWI proofs to ensure validity of the ring signa-
ture Σ. Therefore, the malicious signer can disavow his signing successfully. In
order to prevent this modification by malicious signer, the step 3 in the Signing
algorithm is necessary. In this way, the malicious signer cannot make another σ′

satisfying that σ′ �= σ but (σ′)q = (σ)q .

4 Security

A conditionally anonymous ring signature scheme is secure if it satisfies the
properties of anonymity, unforgeability, traceability and non-frameability.

Anonymity. Informally, anonymity holds if for a given ring signature Σ∗ =
(R∗, r, σ, hr1 , πσ, {C1, C2}, π1, π2, π), no one can tell who is the actual signer,
even though he can access OC/D, Osig and Ocor. Specially, the challenge users
(i0, i1) ∈ R are not corrupted and the queries OC/D(ib,m

∗, Σ,R∗) for b = 0, 1
are not issued.

Theorem 1. The proposed scheme is conditionally anonymous if the subgroup
decision assumption holds.

Proof. We consider two experiments E0 and E1 in the anonymity game.
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E1(1
s) (Actual Adversary Experiment where h Has Order q)

CRS : Get the CRS string crs = (n,G,GT , ê, g, h, ĥ, h̃, H)

KGen : Choose xi, yi, ei, di ∈ Zn, set ski = (xi, yi, ei, di), pki = (gxi ĥei , gyi ĥdi)
Ocor(i) : Return ski
Osig(i,m,R): Compute τ = H(m,R)

Choose r, r1, r2, r3 ← Zn, compute σ = g
1

xi+yir+τ , πτ = ĥ
1

xi+yir+τ

hr1 , C1 = gxiĥei · hr2 , C2 = gyi ĥdi · hr3
Compute π1 = g

ei+dir

xi+yir+τ hr1(ei+dir),

π2 = g
r2+r3r

xi+yir+τ +(xi+yir+τ)r1hr1(r2+r3r)

Generate a NIWI proof π to prove {C1, C2} is consistent with one
public key in ring R

Return Σ = (R, r, σ, hr1 , πσ, {C1, C2}, π1, π2, π)
OC/D(i,m, σ,R): Return σi = g

1
xi+yir+τ , πc/d = g

ei+dir

xi+yir+τ , πσi = h̃
1

xi+yir+τ

Challenge : Fix i0, i1 from R∗ and choose b← {0, 1}, generate Σ∗ using skib
Let b′ be the output of adversary
Return true iff b′ = b

Let Pr[E0(1
s)] be the advantage of adversary D in E0, Pr[E0(1

s)] = p0(s) =
|Succanon(D)− 1

2 |. We have to show p0(s) is negligible.
We now consider the second experiment, where we change h such that h has

order n.

E1(1
s) (h has order n)

CRS : Get the CRS string crs = (n,G,GT , ê, g, h, ĥ, h̃, H)

KGen : Choose xi, yi, ei, di ∈ Zn, set ski = (xi, yi, ei, di), pki = (gxi ĥei , gyi ĥdi)
Ocor(i) : Return ski
Osig(i,m,R): Compute τ = H(m,R)

Choose r, r1, r2, r3 ← Zn, compute σ = g
1

xi+yir+τ , πτ = ĥ
1

xi+yir+τ

hr1 , C1 = gxiĥei · hr2 , C2 = gyi ĥdi · hr3
Compute π1 = g

ei+dir

xi+yir+τ hr1(ei+dir),

π2 = g
r2+r3r

xi+yir+τ +(xi+yir+τ)r1hr1(r2+r3r)

Generate a NIWI proof π to prove {C1, C2} is consistent with one
public key in ring R

Return Σ = (R, r, σ, hr1 , πσ, {C1, C2}, π1, π2, π)
OC/D(i,m, σ,R): Return σi = g

1
xi+yir+τ , πc/d = g

ei+dir

xi+yir+τ , πσi = h̃
1

xi+yir+τ

Challenge : Fix i0, i1 from R∗ and choose b← {0, 1}, generate Σ∗ using skib
Let b′ be the output of adversary
Return true iff b′ = b
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Now, let p1(s) = Pr[E1(1
s)] = |Succanon(D)− 1

2 |. We claim |p0(s)− p1(s)| =
negl(s), otherwise, there exists a distinguisher D′ to tell h ← Gq from h ← G,
which breaks the subgroup decision assumption.

When h has order n, the commitment is perfectly hiding. Therefore, the adver-
sary D cannot gain any information from the commitments using h in E1. Since

σ∗ = g
1

xib
+yib

r∗+τ∗
is generated by the partial secret key (xi, yi) of member ib,

no one can check the consistency between σ∗ and pkib . π is a secure NIWI proof
for the committed pkib , which was proven in [4]. Therefore, D’s advantage in E1

is negligible, which means p1(s) = negl(s). And that |p0(s) − p1(s)| = negl(s),
thus p0(s) = negl(s), completes this proof. ��
Unforgeability. Unforgeability states that there is no forger F who can gener-
ate a valid ring signature Σ∗ w.r.t. the challenge (R∗,m∗) even if F can access to
Ocor,Osig ,OC/D, assuming that (R∗,m∗) is not queried to Osig and no i ∈ R∗

is corrupted.

Theorem 2. This proposal is unforgeable if the BB signature is unforgeable.

Proof. In the unforgeability game, we reduce unforgeability of our ring signature
scheme to the BB signature (the stronger version)[1]. We assume F is the forger
of our ring signature scheme. B is F ’s challenger, who tries to forge the full
version of BB signature. C is B’s challenger of BB signature scheme.

C gives the challenge parameters of BB signature to B: Group G and its order
n with n’s factorization n = pq; the generators η of Gp and h of Gq; BB signature
public key (η1, η2) in Gp.

Setup. B picks r1, û, ũ ← Z∗
q , sets g = ηhr1 , ĥ = hû, h̃ = hũ. Then, B

generates user keys: Firstly, he picks i∗ ← {1, 2, · · · , χ}. For each i �= i∗, he picks
xi, yi ← Zn and ei, di ← Zq, sets pki = (gxi ĥei , gyi ĥdi) and ski = (xi, yi, ei, di).

For i = i∗, B picks r2, r3 ← Zq and sets pki∗ = (η1ĥ
r2 , η2ĥ

r3). Note that B does
not know the private key ski∗ of member i∗, and his goal is to forge BB signature
of user i∗.

Now B runs F with providing the following values: (n,G,GT , ê, g, h,H, ĥ, h̃),
and the public keys {pki}χi=1. F makes the following queries:

Query on Ocor(i): If i = i∗, B terminates with Fail; otherwise, B returns
(xi, yi, ei, di) to F .

Query on Osig(i,m,R): If i �= i∗, B can use the private key (xi, yi, ei, di)
of member i to generate the ring signature normally; If i = i∗, B needs to
make the signing query of BB signature in Gp from his challenger C. C first
computes τ = H(m,R) ∈ Zn, then returns (σ̂, r) on (η1, η2) to B. B checks that
ê(σ̂, η1 · ηr2 · ητ ) = ê(η, η) or not. If not, B terminates with Fail. Otherwise, B
generates a ring signature on (i∗,m,R) for A as follows:

1. Choose t0, t1 ← Zq, compute σ = σ̂ht0 , ht1 ;

2. Compute πσ = hr
−1
1 t0û;
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3. Choose t2, t3 ← Zq, compute C1 = (η1ĥ
r2) · ht2 , C2 = (η2ĥ

r3) · ht3 ;
4. Compute π1 = h(t0+t1)(r2+r3r), π2 = h(t0+t1)(t2+t3r+r1τ)−r21 ;
5. Generate a NIWI proof π using the witness pki∗ = (η1ĥ

r2 , η2ĥ
r3) according

to [4];
6. Publish the ring signature Σ = (R, r, σ, ht1 , πσ, {C1, C2}, π1, π2, π).
Query on OC/D(i): If i �= i∗, B uses (xi, yi, ei, di) to generate πc/d, σi, πσi ;

if i = i∗, for a generated ring signature Σ, B returns σi = σ̂ht0 , πσi = hr
−1
1 t0ũ,

πc/d = ht0(r2+r3r)+(t0r1τ−r21)û
−1

to F .

Finally, F outputs a forgery Σ∗ = (R∗, r∗, σ∗, ht
∗
1 , {C∗

1 , C
∗
2}, π∗1 , π∗2 , π∗) w.r.t.

(m∗, R∗). If i∗ /∈ R∗, B claims Fail, otherwise B makes use of Σ∗ to forge a
BB signature w.r.t. (m∗, R∗). In this case, F cannot make corruption queries
and signing queries on all i ∈ R∗. Since Σ∗ is valid, so does π∗, and {C∗

1 , C
∗
2}

must commit a public key which belongs to R∗, therefore, the following equation
holds:

ê(σ∗ht
∗
1 , C∗

1 · (C∗
2 )

r∗ · gτ∗
) = ê(g, g)ê(π∗1 , ĥ)ê(π

∗
2 , h)

Let λ be chosen so λ ≡ 1 mod p and λ ≡ 0 mod q, raising both sides to power λ:

ê(σ∗ht
∗
1 , C∗

1 (C
∗
2 )

r∗ · gτ∗
)λ = ê(g, g)λ · ê(π∗1 , ĥ)λ · ê(π∗2 , h)λ

ê(σ∗, η1(η2)r
∗ · ητ∗

)λ = ê(ηhr1 , ηhr1)λ

ê((σ∗)λ, η1 · ηr∗2 · ητ∗
) = ê(η, η)

Obviously, (σ∗)λ is a valid BB signature w.r.t. m∗. Note that, member i∗ be-
longs to R∗, the advantage of B’s forgery on (i∗,m∗) is 1

|R∗|εF , where εF is the

advantage that F forges the valid ring signature w.r.t. (m∗, R∗). ��
Remark 3. In the unforgeability game, we work with a group of composite order,
which can be trivially from the Chinese Remainder Theorem. Given generators
η ∈ Gp and h ∈ Gq, η

r1hr2 is a generator of G. Given u = ηxhy ∈ G, u’s
projection into Gp and Gq are ηx and hy, respectively. For u ∈ Gp and v ∈
Gq, ê(u, v) = 1 holds, which implies that for all u1, u2 ∈ Gp, v1, v2 ∈ Gq,
ê(u1v1, u2v2) = ê(u1, u2) · ê(v1, v2) holds.
Traceability. This property states that if a ring signature Σ w.r.t. (m,R) is
valid, then there must exist one member i ∈ R that cannot pass the disavowal
protocol. This property can be reduced to the soundness of NIWI proofs in our
scheme.

Theorem 3. This scheme is traceable if the NIWI proofs are sound.

Proof. For a valid ring signature Σ w.r.t. (m,R), there must exist a member in
R who cannot deny his generation of Σ. This proceeds in two steps:

1. Σ must be consistent with pkk for some k ∈ R. Since Σ is a valid ring
signature, π1, π2 are used to prove {σhr1 , C1, C2} ∈ LBB and π is a valid
NIWI proof. Therefore, σ must be consistent with one public key, say pkk,
which is committed in C1, C2, and pkk ∈ R.
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2. If the partial signature σ is consistent with pkk, then member k cannot
disavow. Otherwise, k can output σ′ �= σ and pass this equation ê(σ′, gxk ĥek ·
(gyk ĥdk)r ·gτ ) = ê(g, g) · ê(π′dis, ĥ). When ĥ has order q, let λ ≡ 1 mod p and
λ ≡ 0 mod q, we raise both sides to power λ and get ê((σ′)λ, gxk ·gykr ·gτ ) =
ê(g, g). It means, (σ′)λ is the member k’s BB signature on (r, τ). σ is also
the valid BB signature of member k on (r, τ), so we obtain (σ′)q = σ = σq

and σ �= σ′, which contradicts the soundness of πσ. ��

Non-frameability. This property states that no uncorrupted member would be
framed if he did not sign. If member i ∈ R∗ is uncorrupted and did not produce
a ring signature Σ∗ w.r.t. (m∗, R∗), he did not generate NIWI proofs (π1, π2, π)
such that the partial signature σ∗ is consistent with his public key pki. If member
i fails to disavow the signature Σ∗, it means his disavowal σ = σ∗, which breaks
the unforgeability of BB signature: the forger generates a BB signature on behalf
of the uncorrupted member i.

5 Conclusion

In this paper, we propose a practical conditionally anonymous ring signature
scheme in the standard model. The generated ring signature can be traced when
it is necessary. Our traceability algorithm is constructed by confirmation protocol
and disavowal protocol. The actual signer can confirm his signing through a con-
firmation protocol, while non-signer can refute by using the disavowal protocol
if he did not generate this ring signature. Both the confirmation and disavowal
protocols are non-interactive. In addition, our proposal is secure without the
random oracles.
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Abstract. Designing an ID based signcryption scheme in the standard
model is among the most interesting and important problems in cryptog-
raphy. However, all the existing systems in the ID based setting, in the
standard model, do not have either the unforgeability property or the in-
distinguishability property or both of them. In this paper, we present the
first provably secure ID based signcryption scheme in the standard model
with both these properties. The unforgeability property of this scheme is
based on the hardness of Computational Diffie-Hellman problem and the
indistinguishability property of this scheme is based on the hardness of
Decisional Bilinear Diffie-Hellman problem. Our scheme is strongly un-
forgeable in the strong attack mode called insider security. Moreover, our
scheme possess an interesting property called public verifiability of the
ciphertext. Our scheme integrates cleverly, a modified version of Waters’
IBE and a suitably modified version of the ID based signature scheme in
the standard model proposed by Paterson et al. However, our security
reductions are more efficient. Specifically, while the security reductions
for indistinguishability is similar to the bounds of Waters’ scheme, the
unforgeability reductions are way better than the bounds for Paterson
et al.’s scheme.

Keywords: Provable Security, ID based signcryption, Strong Unforge-
ability, Standard Model, Public Ciphertext Verifiability, Insider Security.

1 Introduction

Signcryption aims at providing the confidentiality property of encryption and au-
thentication and non-repudiation properties of signature simultaneously with a
cost significantly less than the cost of performing encryption and signature sepa-
rately. This notion was introduced by Zheng [31] in 1997. The reduction in the
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computational and communication cost makes the scheme more practical and
hence it has numerous real time applications. Fast, compact, secure, unforgeable
and non-repudiated key transport, multi-cast, electronic commerce, authenticated
email are some of the areas where signcryption is highly applicable.

ID based cryptography, introduced by Shamir in 1984 [22] suggests the use
of user identity, such as his e-mail address or his telephone number, as his pub-
lic key rather than using some arbitrary strings which requires certificates from
the Certificate Authority (CA). A Private Key Generator (PKG) is a trusted
entity which when given a user’s identity computes the private key for the corre-
sponding user and returns it to the user through a secure channel. This method
eliminates the need for certificates, which were used in the conventional public
key setting.

The first ID based signcryption scheme was proposed by Malone-Lee [18]
in 2002. Many ID based signcryption schemes have been proposed since then,
adopting many different strategies, thereby reducing computational cost and also
reducing the ciphertext size ([5], [8], [17], [7], [2]).

But all these above schemes were proven secure in the random oracle model.
Canetti et al. in 2004 [6] showed the limitations and challenges of using random
oracle model. The instantiation of random oracles with real world hash functions
may result in insecure schemes. So, there is a natural urge to design systems
that are secure in standard model. It should be noted that the systems that are
secure in standard model are in general computationally more expensive than
the systems that are secure in random oracle model. We need to pay such an
extra cost due to more stringent demands of standard models.

The first ID based signcryption scheme without random oracles was proposed
by Yu et al. in 2009 [28] based on Waters’ ID based encryption [26]. But their
scheme was shown CPA insecure by Wang et al. [24], Zhang et al. [30] and
Zhang [29]. Zhang [29] also showed that [28] is SUF-insecure. Meanwhile, Ren
and Gu [27] proposed a Signcryption scheme based on Gentry’s IBE [9] but it
was shown by Wang et al. [25] that it has neither confidentiality nor existential
unforgeability. An improved semantically secure scheme was proposed by Jin,
Wen and Du [11] again based on Waters IBE but Li et al. [13] showed that
the scheme in [11] satisfies neither IND-CCA2 property nor EUF-CMA prop-
erty. Zhang [29] also proposed a new scheme. But Li et al. in 2011 [15] showed
that Zhang’s scheme [29] did not have IND-CPA property and they proposed
a new scheme claiming it to have both IND-CCA2 and EUF-CMA properties.
But the new scheme in [15] satisfies neither IND-CCA2 property nor EUF-CMA
property as shown by Selvi et al. in [21]. Li et al. [14] proposed another scheme
based on IBE proposed by Kiltz et al. [12] and IBS proposed by Paterson et
al. [20]. But Selvi et al. [21] have also shown that there are inconsistencies in
the proof of security of [14], thus concluding that all the ID based signcryp-
tion schemes proposed till now for the standard model are not provably secure.
Selvi et al. [21] have also concluded that achieving a provably secure ID based
signcryption scheme in the standard model through direct combination of an
ID based signature scheme and an ID based encryption scheme can only be
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done by the Sign then Encrypt approach. However, for any Sign then Encrypt
scheme, cost of signcryption = cost of signature + cost of encryption. But
our objective of designing a signcryption scheme is to have a scheme that has
cost of signcryption < cost of signature+ cost of encryption [31]. Hence we
need to take a fresh look at the design of the signcryption protocol and arrive
at an efficient customized scheme of signcryption. In the subsequent section we
present one such novel scheme and formally prove its security.

Hea An, Dodis and Rabin in 2002 [1] introduced the notion of strong unforge-
ability, to avoid the problems due to malleability. If a scheme is malleable, then
an adversary can produce a valid signature on a message when another valid
signature on the same message is available. So, they proved the unforgeabil-
ity property of their signcryption scheme using this strong notion. A signature
scheme becomes non-malleable when it satisfies this property. There are several
transformations available in literature to convert an EUF-CMA secure scheme to
a SUF-CMA secure scheme for signature schemes. Some of the transformations
available for the standard model are the transformations proposed by Boneh et
al. [4], Bellare et al. [3], Teranishi et al. [23] and Huang et al. [10].

The public ciphertext verifiability property of a scheme is very useful in low
power devices. This property allows any third party application, like firewalls,
to verify the validity of the sender and ciphertext without any interaction with
the receiver i.e without knowing the receiver’s secret key. This will allow the
application to prevent the ciphertexts, modified by an adversary, from reaching
the devices. Only valid ciphertexts can reach them, thus preventing unnecessary
use of their resources for decrypting the invalid ciphertexts. Here, the important
property is that, the third party application while verifying should not obtain
any knowledge about the message that is signcrypted. This property is provided
by the signcryption scheme proposed by Chow et al. [8]. But that scheme was
proven secure only in the random oracle model.

1.1 Our Contribution

In this paper we present the first provably secure ID based signcryption scheme
without random oracles. Our scheme is based on the ID based signature scheme
in the standard model proposed by Paterson et al. [20], which in turn is based
on the PKI based signature scheme proposed by Waters [26]. We base the IND-
CCIA2 property of our scheme on the hardness of the Decisional Bilinear Diffie
Hellman assumption and the SUF-CMIA property of our scheme on the hard-
ness of the Computational Diffie Hellman assumption. The property of strong
unforgeability is present in our scheme even without using any of the transfor-
mations available to convert an existentially unforgeable scheme to a strongly
unforgeable scheme in the standard model. The proposed scheme also offers
insider security with respect to both confidentiality and unforgeability which
ensures that the signcryption scheme is secure even when one among the sender
or the receiver colludes with the adversary against the other. The scheme pro-
posed exhibits the crucial property of public ciphertext verifiability. Recall that
all the ID based signcryption schemes in the standard model such as [28], [27],
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[11], [29] and [15] are completely broken and the most recent scheme proposed
by Li et al. [14] has flaws in the proof. Even if the flaws in the proof of [14] are
fixed, our scheme has the following advantages over [14].

– The security of our scheme is based on a harder assumption i.e DBDH,
compared to the modified DBDH (mDBDH) used by [14].

– Our scheme has a tighter security reduction.
– Our scheme is more efficient than the one in [14].

1.2 Organisation

The rest of this paper is organized as follows. In section 2, preliminaries like
bilinear pairing, computational assumptions, a generic ID based signcryption
scheme, formal security model for ID based signcryption scheme are explained.
We present our ID based signcryption scheme in section 3. We prove the con-
fidentiality property and the strong unforgeability property of our scheme in
section 4. The efficiency of our scheme is explained in section 5 and the paper is
concluded in section 6.

2 Preliminaries

2.1 Bilinear Pairing

Let G and GT be multiplicative groups of prime order p and let g be generator
of G. The bilinear map ê is admissible only if it satisfies the following conditions:

– Bilinearity. For all g1, g2, g3 ∈ G,
• ê(g1g2, g3) = ê(g1, g3)ê(g2, g3)
• ê(g1, g2g3) = ê(g1, g2)ê(g1, g3)
• ê(ga1 , g

b
2) = ê(g1, g2)

ab for all a, b ∈ Zp.
– Non-Degeneracy. For all g1, g2 ∈ G, ê(g1, g2) �= IGT , where IGT is the

identity element of GT .
– Computability. There exists an efficient algorithm to compute ê(g1, g2) for

all g1, g2 ∈ G.

2.2 Computational Assumptions

In this section, we review the computational assumptions relevant to the protocol
we propose.

Computational Diffie-Hellman Problem (CDH). Given (g, ga, gb) ∈ G3

for unknown a, b ∈ Zp, the CDH problem in G is to compute gab.

Definition. The advantage of any probabilistic polynomial time algorithm A
in solving the CDH problem in G is defined as:

AdvCDH
A = Pr

[A(g, ga, gb) = gab | a, b ∈ Zp

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvCDH

A is negligibly small.
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Decisional Bilinear Diffie-Hellman Problem (DBDH) Given
(g, ga, gb, gc, α) ∈ G4 ×GT for unknown a, b, c ∈ Zp, the DBDH problem in G is
to decide if α = ê(g, g)abc.

Definition. The advantage of any probabilistic polynomial time algorithm A
in solving the DBDH problem in G is defined as:

AdvDBDH
A =

∣∣Pr [A(g, ga, gb, gc, ê(g, g)abc) = 1
]− Pr

[A(g, ga, gb, gc, α) = 1
]∣∣

The DBDH Assumption is that, for any probabilistic polynomial time algorithm
A, the advantage AdvDBDH

A is negligibly small, for a, b, c ∈R Zp.

2.3 ID Based Signcryption

A generic ID based signcryption scheme consists of the following four algorithms.

– Setup: This algorithm is run by the Private Key Generator (PKG). When
given a security parameter k, this algorithm outputs public parameters
params and a master secret key MSK. PKG keeps the corresponding MSK
as its secret value.

– Extract: When given an Identity ID, the PKG runs this algorithm using the
params and MSK and generates the private key du for the user. The PKG
then transmits the generated private key to the corresponding user through
a secure channel.

– Signcrypt: This algorithm is run by the sender. It takes as input, the public
parameters params, the private key dA of the sender, the identity of the
receiver IDB and the messagem to be sent to the receiver. The signcryption
σ is produced as output which is sent to the receiver.

– Unsigncrypt: On receiving the signcryption σ from the sender, the re-
ceiver runs this algorithm. The public parameters params, the identity of
the sender IDA, the private key of the receiver dB and the signcryption σ
are given as input to this algorithm. The message m is obtained as out-
put if the signcryption is valid or ⊥ is given as output. For the consistency
of the signcryption algorithm, if σ = Signcrypt(params, dA, IDB,m), then
m = Unsigncrypt(params, IDA, dB , σ).

2.4 Security Model for ID Based Signcryption

Indistinguishability. In 2002, Malone-Lee [18] proposed the first ID based
signcryption scheme. He extended the semantic security of encryption schemes
to signcryption schemes as Indistinguishability of ID based signcryption under
Adaptive Chosen Ciphertext Attack (IND-IBSC-CCA2). Later, Chow et al. [8]
used a stronger notion of security by allowing the adversary to adaptively choose
the identities to create a forgery during the challenge phase. This is similar to the
one proposed in [16]. This model was termed as Indistinguishability of ID based
signcryption under Adaptive Chosen Ciphertext and Identity Attack (IND-IBSC-
CCIA2). This is the strongest notion available in the literature for proving the



40 S.S.D. Selvi et al.

Indistinguishability property of the signcryption schemes. The formal definition
is given below.

A signcryption scheme is semantically secure against chosen ciphertext and
identity attack (IND-IBSC-CCIA2) if no probabilistic polynomial time adversary
A has a non-negligible advantage in the following game.

1. The challenger C runs the Setup algorithm and sends the public parameters
to the adversary A

2. Training Phase 1: The adversaryA can ask a polynomially bound number
of queries to the following oracles.
– Extract Oracle: When A queries for the private key of an identity ID,

the challenger C runs the Extract algorithm giving the ID and params
as input. C forwards the private key du of ID output by the Extract
algorithm to A.

– Signcrypt Oracle: A can ask for the signcryption on any message m
from any sender identity IDA to any receiver identity IDB. When A
does so, C runs the Extract algorithm for the sender identity IDA and
gets the private key dA of IDA. C then inputs 〈m, dA, IDB〉 into the
Signcrypt algorithm and forwards its output σ to A.

– Unsigncrypt Oracle:A queries for the unsigncryption of the ciphertext
σ by producing the sender identity IDA and receiver identity IDB. The
challenger C runs the Extract algorithm to find the private key dB
of the receiver IDB. C then runs the Unsigncrypt algorithm giving
〈σ, IDA, dB〉 as input and forwards the output m or ⊥ to A.

During this phase A can produce its queries adaptively i.e every query can
be asked dependent on the output of the previous queries.

3. Challenge Phase At the end of Phase 1, A chooses two plaintext mes-
sages m∗

0, m
∗
1 ∈ {0, 1}lm, two identities i.e. sender identity ID∗

A and receiver
identity ID∗

B on which it wishes to be challenged and sends them to the
challenger C. In this case, A should not have queried the Extract oracle for
ID∗

B. C takes a bit b randomly from {0, 1} and runs Signcrypt(m∗
b ,d

∗
A,ID

∗
B),

where d∗A is the output of Extract(ID∗
A). C sends the output σ∗ to A as

the challenge ciphertext.
4. Training Phase 2: The adversary A, after receiving σ∗ can ask again for

polynomially bound number of queries on the above mentioned oracles adap-
tively in the same way as in Phase 1 except that A cannot ask for the Ex-
tract(ID∗

B) query and Unsigncrypt query involving 〈σ∗, ID∗
A, ID

∗
B〉.

5. Once this Phase 2 of Training is over, A outputs b′. A wins this game if
b′ = b.

The advantage of adversary A in the above game is defined by Adv(A) =
(2× Pr(b′ = b)− 1).

The importance of this security model is that the adversary A can ask for
the private key d∗A of the sender whose identity is ID∗

A during Phase 2. This
captures the insider security model, which means that A will not have any
added advantage in the above game even when the private key of the sender is
leaked.
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Also, A is allowed to query the Signcrypt oracle with the challenge messages
m∗

0 or m∗
1 with the sender identity as ID∗

A and receiver identity as ID∗
B.

Unforgeability. Malone-Lee [18] proposed the Existential Unforgeability of ID
based signcryption under Chosen Message Attack (EUF-IBSC-CMA). Later,
Chow et al. [8] proposed a stronger notion of security called Existential Un-
forgeability of ID based signcryption under Chosen Message and Identity Attack
(EUF-IBSC-CMIA), where the adversary can not only choose the message to
attack adaptively but also the identities on which it is going to attack. This
notion is defined by the game between challenger and adversary as given below.

An ID based signcryption scheme is said to have the property of Existential
Unforgeability under Chosen Message and Identity Attack if no probabilistic
polynomial time adversary A has a non-negligible advantage in the following
game.

1. The challenger C runs the Setup algorithm and generates the public param-
eters and the Master Secret Key MSK. C then gives the public parameters
params to the adversary A

2. Now the adversary A can ask a polynomially bound number of queries to
any of the following oracles.

– Extract Oracle: When A queries for the private key of an identity ID,
the challenger C runs the Extract algorithm giving the ID, params and
MSK as input. C forwards the output du given by the algorithm to the
adversary A.

– Signcrypt Oracle: A can ask for the signcryption on any message m
by the sender identity IDA for the receiver identity IDB. In this case,
C runs the Extract algorithm for the sender identity IDA and gets the
private key dA of IDA as output. C then inputs 〈m, dA, IDB〉 into the
Signcrypt algorithm and forwards its output σ to A.

– Unsigncrypt Oracle: When A queries for the unsigncryption of the
ciphertext σ by producing the sender identity IDA and receiver iden-
tity IDB. The challenger C first runs the Extract algorithm for finding
the private key dB of the receiver IDB. C then runs the Unsigncrypt
algorithm inputting 〈σ, IDA, dB〉 and forwards its output m to A.

During this phase A can produce its queries adaptively i.e every query is
dependant on the previous queries.

3. At the end this training phase, A outputs the forgery 〈σ∗, ID∗
A, ID

∗
B〉 for

some message m∗. This forgery is valid when ID∗
A is not queried to the Ex-

tract oracle and if 〈m∗, ID∗
A, ID

∗
B〉 is not already queried to the Signcrypt

oracle.
4. A wins the game if σ∗ is a valid forgery on the message m∗ as signcrypted

by the identity ID∗
A intended for the identity ID∗

B.

The advantage of adversary A in the above game is defined by

Adv(A) = Pr [Unsigncrypt(σ∗, ID∗
A, ID

∗
B) = m∗]
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In this security model, the importance is that the adversary can query the Ex-
tract oracle for the identity of the receiver ID∗

B in the above game which cap-
tures the insider security model for unforgeability. So, even when the private key
of the intended receiver is leaked, the adversary A will not have any added ad-
vantage in producing a valid forgery in the above game. But the restriction here
is that 〈m∗, ID∗

A, ID
∗
B〉 should not have been queried already to the Signcrypt

oracle. The work done by Li et al. [14] has used similar security models which
provide insider security.

Strong Unforgeability. Hea An et al. [1] proposed that there is no necessity
for an adversary to produce forgery on a message that is not already queried.
Forgery can also be produced on the message that is queried already to the
Signcrypt oracle with the condition that the forged signcryption on m is not the
same as the one that is output by the Signcrypt oracle for the same message
m, with the same sender and the same receiver as the forgery. This notion is
called Strong Unforgeability. Our new scheme satisfies the notion of Strong Un-
forgeability of ID based signcryption under Chosen Message and Identity Attack
(SUF-IBSC-CMIA). This is the strongest security notion available for proving
the unforgeability property of signcryption schemes. We state this notion for-
mally as follows.

An ID based signcryption scheme is said to have the property of Strong Un-
forgeability under Chosen Message and Identity Attack if there is no probabilis-
tic polynomial time adversary A has a non-negligible advantage in the game
described as follows.

1. The challenger follows the same procedure as EUF-IBSC-CMIA game during
the setup and the training phases.

2. After training is over, the adversary A, produces 〈σ∗, ID∗
A, ID

∗
B〉 for the

message m∗, where ID∗
A is not queried to the Extract oracle and σ∗ is not

the output of the Signcrypt query asked by A with 〈m∗, ID∗
A, ID

∗
B〉 as

input.

3. A wins the game if σ∗ is a valid forgery on the message m∗ as signcrypted
from the sender identity ID∗

A to the receiver identity ID∗
B.

The advantage of adversary A in the above game is defined by

Adv(A) = Pr [Unsigncrypt(σ∗, ID∗
A, ID

∗
B) = m∗]

In the above security model, A can produce any valid 〈σ∗, ID∗
A, ID

∗
B〉 tuple for

the message m∗, where 〈m∗, σ∗〉 is not the output of any Signcrypt query with
ID∗

A and ID∗
B as the sender and receiver identities during the training phase.

So, m∗ may have been queried already to the Signcrypt oracle provided that σ∗

is not the output of the oracle during that query with the sender and receiver
identities being the same during that query and the forgery.
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3 Our Scheme

Setup

Consider groups G,GT of prime order p whose size is determined by the se-
curity parameter k. Let g be the generator of the group G. There exists a bi-
linear map defined by ê : G × G → GT , which is efficiently computable. Now,
choose α ∈ Zp randomly and compute g1 = gα. Randomly pick g2, h2 from
G and compute gα2 , h

α
2 . Also, choose h1, h3 randomly from G. Choose u′, v′,m′

randomly from the group G and also choose vectors U = (ui) and V = (vi)
each of length nu and M = (mi) of length l, whose elements are randomly
chosen from group G. Here, nu is the length of the identity strings that are
used. Let nm be the length of the message sent. There are four one-way, col-
lision resistant cryptographic hash functions H1 : GT × {0, 1}lτ → {0, 1}nm ,
H2 : {0, 1}|p|+nu+lτ → {0, 1}l, H3 : G → Z∗

p and H4 : {0, 1}nm+|p|+nu → Z∗
p,

where l is large enough that the hash functions are collision resistant and lτ ≈ 40.
Note that a typical value of l could be 256 and a random bit string of length l can-
not be guessed in polynomial time. The system parameter params is given by
〈G,GT , ê, H1, H2, H3, H4, g, g1, g2, h1, h2, h3, u

′, v′,m′,U,V,M〉. The master se-
cret key of the system is 〈α, gα2 , hα2 〉. The following algorithms define our scheme.

Extract(u, params, MSK)

Let an identity of a user u be represented by IDu which is a bit string of length
nu and let IDu[i] be the ith bit of IDu. Define Ωu ⊆ {1, 2, ..., nu} to be the set
of indices i such that IDu[i] = 1. The private key of a user u is constructed by
choosing a random ru ∈ Z∗

p and then computing

du = (dS , dUS , dR) = (gα2 (u
′ ∏
i∈Ωu

ui)
ru , hα2 (v

′ ∏
i∈Ωu

vi)
ru , gru)

Signcrypt(params, dA, B, m)

The private key of the sender A with identity IDA as given by the PKG is

dA = (dSA , dUSA , dRA) = (gα2 (u
′ ∏
i∈ΩA

ui)
rA , hα2 (v

′ ∏
i∈ΩA

vi)
rA , grA)

where ΩA ⊆ {1, 2, ..., nu} is the set of indices i such that IDA[i] = 1. Now, when
given a message m ∈ {0, 1}nm signcryption on the message is done by the sender
A as follows.

– Choose r ∈ Zp randomly and compute σ1 = gr ∈ G
– Encrypt the message as σ2 = H1(ê (g1, h2)

r, τ)⊕m ∈ {0, 1}nm, where τ ∈R

{0, 1}lτ
– Compute σ3 = (v′

∏
i∈ΩB

vi)
r ∈ G, where ΩB is the set of vertices i such

that IDB[i] = 1. Here, B is the receiver of the message.
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– Set σ4 = dRA ∈ G
– Compute λ = H3(σ1), β = H2(σ4, IDA, τ), ρ = H4(σ2, σ3, IDB)
– Compute σ5 = dSA(m

′∏
j∈β mj)

r
(
hλ1h3
)rρ ∈ G, where β ⊆ {1, 2, ..., l} de-

notes the set of indices j such that β[j] = 1

The ciphertext σ = 〈σ1, σ2, σ3, σ4, σ5, τ〉 is sent to the receiver. The size of the
ciphertext formed is 4|p|+nm+ lτ . Note that this scheme achieves the property
of strong unforgeability without using any of the transformations available to
convert an existentially unforgeable scheme to a strongly unforgeable one.

Unsigncrypt(params, A, dB, σ )

When the receiver B receives the ciphertext σ = 〈σ1, σ2, σ3, σ4, σ5, τ〉, he pro-
ceeds as follows.

– The private key dB received from the PKG is

dB = (dSB , dUSB , dRB ) = (gα2 (u
′ ∏
i∈ΩB

ui)
rB , hα2 (v

′ ∏
i∈ΩB

vi)
rB , grB )

– Compute λ = H3(σ1), β = H2(σ4, IDA, τ), ρ = H4(σ2, σ3, IDB)
– Then, using β, ρ and λ, check the validity of σ as follows

ê(σ5, g)
?
= ê(g1, g2) ê(u

′ ∏
i∈ΩA

ui, σ4) ê((m
′∏
j∈β

mj)(h
λ
1h3)

ρ, σ1) (1)

where ΩA is the set of indices i such that IDA[i] = 1 and β ⊆ {1, 2, ..., l}
denotes the set of indices j such that β[j] = 1

– If σ is invalid, reject σ and halt.

– If σ is valid, compute ê (g1, h2)
r =

ê (dUSB , σ1)

ê (dRB , σ3)
– Obtain the message as m = σ2 ⊕H1(ê (g1, h2)

r, τ)

The above verification process stated in equation (1) can be done by any user
who has access to σ, because all the components used in the verification pro-
cess are either the values in params 〈g, g1, g2, u′,U,m′,M, h1, h3〉, components
of the ciphertext 〈σ1, σ4, σ5〉 or components that are derived from the ciphertext
〈λ, β, ρ〉. and thus the integrity and validity of the sender and the ciphertext can
be verified by anyone. This gives the property of Public Ciphertext Verifia-
bility to our scheme.

4 Security

4.1 Indistinguishability

We first prove the Indistinguishability property, Indistinguishability of ID based
signcryption under Adaptive Chosen Ciphertext and Identity Attack (IND-IBSC-
CCIA2) of our scheme with the following theorem.
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Theorem 1. If there exists an IND-IBSC-CCIA2 adversary for our scheme
which can distinguish ciphertexts during the IND-IBSC-CCIA2 game explained
above, with a non-negligible probability ε when it runs for a polynomial time
t, asking at most qE extract queries, qS signcrypt queries and qUS unsigncrypt
queries, then there exists another algorithm, which can solve the Decisional Bi-
linear Diffie-Hellman (DBDH) problem with probability ε′ in polynomial time t′,
where

ε′ ≥ ε

4(qE)(nu + 1)

t′ ≤ t+O((nuqE + (nu + l)(qS + qUS))tm + (qE + qS + qUS)te + (qS + qUS)tp)

where nu is the length of the identity string, tm, te, tp are the time required for
each multiplication, each exponentiation and each bilinear pairing respectively
and l is a value large enough such that the hash functions outputting {0, 1}l in
the scheme are collision resistant.

Proof

Let us assume that a (ε, t, qE , qS , qUS)-adversary A for our scheme exists. We
will construct another algorithm B from this adversary A, who can solve the
Decisional Bilinear Diffie- Hellman (DBDH) problem with a non-negligible prob-
ability ε′ in polynomial time t′.

The algorithm B receives a DBDH tuple 〈g, ga, gb, gc, T 〉 ∈ G4 × GT , where
g is a generator of a prime order group G of order p. B simulates a challenger
for the adversary A to decide whether T is ê(g, g)abc or not. This simulation is
described as follows:

Setup

The simulator B sets lu = 2(qE), where qE is the number of Extract queries.
Here, the values qS and qUS are not bounded because the Signcrypt and the
Unsigncrypt queries do not abort when an Extract query of the sender or receiver
identity, used in any Signcrypt or Unsigncrypt query, aborts. This will be evident
from the explanation for the Signcrypt and the Unsigncrypt oracles. B then
chooses an integer ku randomly such that 0 ≤ ku ≤ nu. For the given values of
qE , qS , qUS and nu, we assume that lu(nu + 1) < p. Then, B chooses x′ ∈ Zlu

randomly and also chooses a vector X = (xi) of length nu where the elements
of X are chosen randomly from Zlu . B chooses an integer y′ randomly from Zp

and a vector Y = (yi) of length nu, where the elements of Y are also chosen
randomly from Zp.

Here we define a pair of functions for a user with identity IDu as follows:

F (u) = x′ +
∑

i∈Ωu
xi − luku J(u) = y′ +

∑
i∈Ωu

yi

The simulator now sets the public parameters as follows:

g1 = ga g2 = gd h1 = g
(λ∗)−1

1 h3 = g−1
1 gθ h2 = gb
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where d and θ are chosen randomly from Zp and λ∗ = H3(g
c). The values

ga, gb, gc are from the DBDH tuple given to the challenger C.

v′ = hx
′−luku

2 gy
′

vi = hxi
2 g

yi v′
∏

i∈Ω vi = h
F (u)
2 gJ(u)

Finally, B chooses two integers e′ and f ′ randomly from Zp and two vectors
E = (ei) and F = (fi) of lengths nu and nm respectively, where the elements of
E and F are chosen randomly from Zp. For any identity IDu,

u′ = ge
′

ui = gei u′
∏

i∈Ωu
ui = ge

′
g
∑

i∈Ωu
ei = ge

′+
∑

i∈Ωu
ei

where Ωu ⊆ {1, 2, .., nu} is the set of indices i where IDu[i] = 1.
For any β got for a message m as explained in the scheme,

m′ = gf
′

mi = gfi m′∏
i∈β mi = gf

′
g
∑

i∈β fi = gf
′+

∑
i∈β fi

There are four one-way, collision resistant, cryptographic hash functions H1 :
GT × {0, 1}lτ → {0, 1}nm, H2 : {0, 1}|p|+nu+lτ → {0, 1}l, H3 : G → Z∗

p and

H4 : {0, 1}nm+|p|+nu → Z∗
p, where l is large enough that the hash functions are

collision resistant and lτ ≈ 40. Note that a typical value of l could be 256 and a
random bit string of length l cannot be guessed in polynomial time.

Training Phase 1

The simulator during this phase answers to the queries from the adversary A as
follows.

Extract Queries
The simulator B does not know the master secret key ha2 . So, when the adversary
A asks for the private key of an identity IDu, B responds as follows. B calculates
F (u) for the identity IDu. If F (u) = 0 mod p, it aborts. Otherwise, B randomly
chooses ru ∈ Zp and calculates the private key du = (dS , dUS , dR) similar to [26]
as

dS = gd1

(
u′
∏
i∈Ωu

ui

)ru
g
−(e′+

∑
i∈Ωu

ei)/F (u)

1

dUS = g
−J(u)/F (u)
1

(
v′
∏
i∈Ωu

vi

)ru
, dR = g

−1/F (u)
1 gru

where Ωu ⊆ {1, 2, ..., nu} is the set of indices i such that IDu[i] = 1.

Signcrypt Queries
When A queries the Signcrypt oracle for signcryption of a message m by the
user with identity IDA as sender and the user with identity IDB as the intended
receiver, B simulates a valid ciphertext as follows.
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σ1 = gr, where r ∈ Zp is randomly chosen by B
σ2 = H1(ê(g1, h2)

r, τ)⊕m, where τ ∈R {0, 1}lτ
σ3 =
(
v′
∏

i∈ΩB
vi
)r

σ4 = grA , where rA is the randomness stored for IDA in the list lr. Otherwise
choose rA ∈ Zp randomly and store it in lr. Note that lr is the list that stores
〈IDu, ru〉 tuples.
β = H2(σ4, IDA, τ), ρ = H4(σ2, σ3, IDB) and λ = H3(σ1)

σ5 = gd1
(
u′
∏

i∈ΩA
ui
)rA (

m′∏
j∈β mj

)r (
hλ1h3
)rρ

where β ⊆ {1, 2, ..., l} denotes the set of indices j such that β[j] = 1.
The equation above for σ5 is correct because gd1 = (ga)d = (gd)a = ga2 .

The ciphertext σ = 〈σ1, σ2, σ3, σ4, σ5, τ〉 is sent to the adversary A. Here, the
Signcrypt queries never abort and they do not need an Extract query for the
sender identity IDA within them.

Unsigncrypt Queries
When A queries 〈σ, IDA, IDB〉 i.e the unsigncryption of the ciphertext σ which
was signcrypted by the sender IDA for the intended receiver IDB, to the Un-
signcrypt oracle simulated by B, it proceeds as follows.

B does an Extract query for the receiver identity IDB. If the Extract query does
not abort, B receives the private key for IDB as output from the Extract oracle.

dB = (dSB , dUSB , dRB ) = (ga2 (u
′ ∏
i∈ΩB

ui)
rB , ha2(v

′ ∏
i∈ΩB

vi)
rB , grB )

The simulator uses the private keys dUSB , dRB got from the extract oracle to
unsigncrypt the ciphertext σ using the Unsigncrypt algorithm as given in the
Scheme. If the extract query aborts i.e if F (B) = 0mod p, the simulator proceeds
as follows. The simulator calculates Δ as given below.

Δ =
σ5

gd1σ
(e′+

∑
i∈ΩA

ei)

4 σ
(f ′+

∑
i∈β fi)

1 σθρ1

=
σ5

dSA(u
′∏

i∈ΩA
ui)rA(m′∏

j∈β mj)rσ
θρ
1

=
(hλ1h3)

rρ

σθρ1
= (g

(λ/λ∗)−1
1 )rρ

Then, we calculate Δ∗ = Δ(((λ/λ∗)−1)ρ)−1

= gr1, where λ = H3(σ1). Now,
we can obtain the message as follows. m = σ2 ⊕ H1(ê(Δ

∗, h2), τ) = σ2 ⊕
H1(ê(g

r
1 , h2), τ) = σ2 ⊕H1(ê(g1, h2)

r, τ)

This message can be returned if the verification in Eq.(1) is satisfied. Thus, the
Unsigncrypt queries never abort even if the Extract queries for the corresponding
receiver identities abort.

Challenge Phase

The adversary A can adaptively ask polynomially bound number of these Ex-
tract, Signcrypt and Unsigncrypt queries to B. When A decides that training



48 S.S.D. Selvi et al.

is enough, it produces two messages m∗
0 and m∗

1 along with the sender identity
ID∗

A and receiver identity ID∗
B adaptively and sends them to the challenger.

The challenger randomly chooses γ ∈ {0, 1} and then simulates the challenge
ciphertext as follows.
σ∗1 = gc

σ∗2 = H1(T, τ
∗) ⊕ m∗

γ , where g
c and T are taken by B from the DBDH tuple

given and τ∗ ∈R {0, 1}lτ .
σ∗3 =
(
v′
∏

i∈ΩB
vi
)c

= (gc)J(B
∗), where F (B∗) = 0 mod p

σ∗4 = grA , where rA ∈ Zp is randomly chosen
β∗ = H2(σ

∗
4 , ID

∗
A, τ

∗), ρ∗ = H4(σ
∗
2 , σ

∗
3 , ID

∗
B) and λ

∗ = H3(σ
∗
1)

σ∗5 = gd1
(
u′
∏

i∈ΩA
ui
)rA

(gc)f
′+

∑
j∈β∗ fi(gc)θρ

∗

where β∗ ⊆ {1, 2, ..., l} denotes the set of indices j such that β∗[j] = 1.

Note that, the simulator will be able to successfully simulate the challenge ci-
phertext without aborting, as explained above, only if F (B∗) = 0 mod p. The
simulator aborts if F (B∗) �= 0 mod p as it will not be able to simulate the
component σ3 when F (B∗) �= 0 mod p.

The ciphertext σ∗ = 〈σ∗1 , σ∗2 , σ∗3 , σ∗4 , σ∗5 , τ∗〉 is sent to the adversary A.
Here, if the simulator B was given a valid DBDH tuple i.e. if T = ê(g, g)abc,

then the challenge ciphertext σ∗ = 〈σ∗1 , σ∗2 , σ∗3 , σ∗4 , σ∗5 , τ∗〉, which is sent to the
adversary A, is a valid signcryption on the message m∗

γ by the sender with
identity ID∗

A for the receiver with identity ID∗
B. Otherwise, if T is a random

element in GT , then challenge ciphertext is indistinguishable. So, in this case
the simulator will give no information about the choice of γ that it made.

Training Phase II

In this phase, the simulator answers to the queries from the adversary A in
the same way as it did in the Training Phase I. Here, A cannot ask for the
Unsigncrypt query of the challenge ciphertext σ∗ with sender identity as ID∗

A

and receiver identity as ID∗
B and the Extract query for the receiver identity

ID∗
B.
The strength of our scheme is that the adversary can again query the Signcrypt

Oracle for the signcryption of either of the challenge ciphertexts m∗
0 or m∗

1 with
the sender identity as ID∗

A and receiver identity as ID∗
B, during this phase. A

can also query the Extract oracle for the sender identity ID∗
A, which makes our

scheme insider secure.

Guess Phase

When the adversary A decides the training is enough, A outputs its guess γ′ of
γ. If the guess γ′ = γ, then the simulator outputs that T in the given DBDH
tuple is valid i.e T = ê(g, g)abc. Otherwise B outputs that 〈g, ga, gb, gc, T 〉 is not
valid DBDH tuple. Thus, B simulates a challenger for the adversaryA and solves
the DBDH problem with a probability ε′ from the forgery produced by A. This
concludes the description of the simulation.
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4.2 Unforgeability

We now prove the unforgeability property, Strong Unforgeability under Chosen
Message and Identity Attack(SUF-CMIA) of our scheme with the following the-
orem.

Theorem 2. If there exists an SUF-CMIA adversary for our scheme who can
create valid ciphertexts during the SUF-CMIA game explained above, with a non-
negligible probability ε when it runs for a polynomial time t, asking at most qE
extract queries, qS signcrypt queries and qUS unsigncrypt queries, then there ex-
ists another algorithm, who can solve the Computational Diffie-Hellman (CDH)
problem with probability ε′ in polynomial time t′, where

ε′ ≥ ε

4κqE(nu + 1)(nm + 1)

t′ ≤ t+O((nuqE + (nu + l)(qS + qUS))tm + (qE + qS + qUS)te + (qS + qUS)tp)

where nu is the length of the identity string and nm is the length of the message, κ
is the security parameter, tm, te, tp are the time required for each multiplication,
each exponentiation and each bilinear pairing respectively and l is a value large
enough such that the hash functions outputting {0, 1}l in the scheme are collision
resistant.

Due to page restrictions the proof of this theorem is omitted here.

5 Efficiency

The Signcrypt algorithm of our scheme performs one bilinear pairing operation
while calculating ê(g1, h2)

r . But note that ê(g1, h2) can be precomputed before
the protocol begins since both g1 and h2 are public parameters and they are
same for all runs of the protocol. The algorithm also performs 5 exponentiations
(4 of elements of group G and one of element of GT ). The unsigncrypt algorithm
performs 6 bilinear pairing operations of which ê(g1, g2) can be precomputed
and one exponentiation of an element of group G. Note that the calculation of
(hλ1h3)

ρ involves only one exponentiation according to the well known “square
and multiply” technique explained in [19]. When the number of computations
performed by our scheme and the scheme in Li et al. [14] are compared (excluding
the precomputed values), our scheme performs one exponentiation less than [14]
with same number of bilinear pairings.

Since none of the ID based signcryption schemes without random oracles are
provably secure in the literature, we will compare the efficiency of our scheme
with the ID based signcryption scheme π that was conceptually formatted in [21]
obtained by the ‘Sign then Encrypt’ approach. Note that π is the most efficient
signcryption scheme that can be got by the direct combination of IBE and IBS
schemes, since [20] and [12] are the most efficient IBS and IBE schemes with
SUF-CMA and IND-CCA2 properties respectively in the standard model.
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Table 1. Computational Complexity of π (Direct combination) and Ours

Scheme Secret Ciphertext #pairings #exponentiations

key size size S, US S, US

π 5|p| 2|p|+ nm 0(+1), 5(+1) 8, 3

Ours 3|p| 4|p|+ nm + lτ 0(+1), 5(+1) 5, 1

The numbers shown in the brackets indicate the values that can be precomputed before
the algorithm begins (and they remain same for all runs of the protocol).

6 Conclusion

We have presented the first secure ID based signcryption scheme and proven
its security in the standard model. This scheme satisfies the strongest notions
of security available for the signcryption schemes. Moreover, it has additional
interesting properties such as public ciphertext verifiability which is very useful
in the context of firewalls and spam filters. The security reduction is also tighter
compared to many other schemes in the standard model. There is a trade-off in
this scheme between the size of public parameters and the tightness to the under-
lying hard assumption. In our scheme we have included some extra parameters
namely a unsigncryption key to increase the probability to a much larger value
so that the security of our scheme is more tight to the underlying hard problem
much more than the existing signcryption schemes. An interesting and potential
future direction will be designing a more efficient protocol with reduced public
parameters, key size and reduced ciphertext size.
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Abstract. In the context of public key cryptography, combined encryp-
tion and signature schemes have attractive properties and are sometimes
used in practice. The topic of joint security of signature and encryption
schemes has a fairly extensive history. In this paper, we focus on the
combined public-key schemes in attribute-based setting. We present a
security model for combined CP-ABE and ABS schemes in the joint se-
curity setting. An efficient concrete construction of CP-ABE and ABS
based on Waters’s CP-ABE scheme is proposed. Our scheme is proved to
be selectively jointly secure in standard model under reasonable assump-
tions. Moreover, we consider the problem of how to build attribute-based
signcryption (ABSC) and obtain an ABSC scheme and show that it is
secure. We also give a general construction of combined ABSC, CP-ABE
and ABS schemes from combined CP-ABE and ABS schemes.

1 Introduction

Combining Encryption and Signature. It is common practice that crypto-
graphic key pairs used for encryption and signatures are independently chosen
to minimize the risk of key exposure. However, there are also scenarios in which
the same key pair is used instead for both encryption and signing operations to
reduce key storage requirements and other related costs, such as key certifica-
tion and verification. This is first formally studied by Haber and Pinkas [9], who
introduced the term combined public-key schemes—an encryption scheme and a
signature scheme are combined such that they share the same key generation
algorithm, while the existing encrypt/decrypt and sign/verify algorithms are
preserved. They also presented a security model reflecting the joint security of
the combined public-key schemes. In the model, an adversary attacking the en-
cryption component is allowed access to not only the decryption oracle, but also
the signing oracle. Similarly, an adversary attacking the signature component is
given access to both the signing and the decryption oracles.

Subsequently, Vasco et al. [23] showed that the Boneh-Franklin identity-based
encryption (IBE) scheme [3] and the Hess identity-based signature (IBS) scheme

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 53–69, 2012.
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[11] can be combined with provably joint security. Moreover, Paterson et al. [19]
recently proposed combined public-key schemes having joint security in the stan-
dard model, a property that has not been achieved in the previous work. Their
schemes make use of IBE, (pairing-based) short signatures and a data encapsu-
lation mechanism (DEM) as building blocks.

Combining ABE and ABS? In this work, we extend the field to the attribute-
based setting. Particularly, we ask the question of whether or not it is possible
to securely combine attribute-based encryption (ABE) [21] and attribute-based
signatures (ABS) [16].

ABE can be categorized into ciphertext-policy ABE (CP-ABE) and key-policy
ABE (KP-ABE). (ABS has the same analogues.) In the former, a secret key is
associated with an attribute set. A user can decrypt a ciphertext if and only if
the attribute set satisfies the access structure associated with the ciphertext. In
the latter, on the contrary, a secret key is associated with an access structure. A
user can decrypt a ciphertext associated with an attribute set if and only if the
attribute set satisfies the access structure associated with the user’s secret key.

In this paper, we focus on combining CP-ABE and the analogue in ABS.
Consider in some scenario (attribute-based messaging system in the campus),
both the functionality of ABE and ABS is required for data confidentiality and
authentication. At the same time, the attribute representation is the same for
one user, i.e. one has the attributes “student” and “computer science” in a cam-
pus. Thus, we need two separated ABE and ABS schemes, where two authorities
are required to authenticate attributes and each user needs to keep two secret
keys with the same attribute subset in the system. It is unrealistic and ineffi-
cient. Combined CP-ABE and ABS scheme is a solution for the above problems.
Henceforth, we use CCP-ABES as the abbreviation for combined CP-ABE and
ABS. With CCP-ABES, our goal is that each user can use the same secret
key (associated with some attribute set) to decrypt an attribute-based cipher-
text, sign an attribute-based signature, or perform attribute-based key-exchange
[8,28], with joint security in the standard model.

We note that, as explained in [19], it is easy to construct a general combined
public-key scheme from IBE: the signature component is constructed through the
Naor transform and the public-key encryption component through a tag-based
version of the CHK transform [4]. Here, signatures from the Naor transform are
simply secret keys in IBE, and the secret keys can be used to decrypt ciphertexts
from the CHK transform. Hence, one can simply use a bit prefix in the identity
space to provide domain separation between the signatures and secret keys, while
allowing the use of the same IBE key generation (or extraction) algorithm for
both encryption and signing operations.

However, it is not that straightforward to construct a CCP-ABES scheme.
The reason is that: for any IBE scheme, the identity space is at least super-
polynomial, and thus it is easy to encode a message or a verification key of
a one-time signature scheme as a particular “ID”. However, this is not always
true for in the attribute-based setting if we were to apply the same method to a
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delegatable1 CP-ABE scheme. As a matter of fact, the attribute space of a secret
key (by delegation) is usually small (even in large universe cases). Should we
use the aforementioned method (treating a message as an attribute analogous
to an indentity), we can afford to sign only short messages. As a consequence,
the resulting one-time signatures are no longer secure when the corresponding
verification keys are short. Furthermore, for the signature component of CCP-
ABES to achieve unforgeability under an adaptive chosen message attack, we
require that the corresponding CP-ABE be adaptively secure.

Another challenge is that we require that signatures from ABS leak no informa-
tion about the associated attributes, i.e. attribute privacy (or perfect privacy)—
an essential property of ABS. When signing a predicate by simply delegating to
the subset of attributes that satisfies the predicate, the signature (the delegated
decryption key for the predicate) usually reveals information related to the user’s
attribute set. This is because an access structure may be satisfied by different at-
tribute sets (secret keys) in different ways.

Our Techniques. Using an IND-CPA secure CP-ABE scheme with delegation,
users can delegate some of their attributes to a new secret key by running the
delegate algorithm. We make use of this feature in our CCP-ABES scheme. For
the ABS component of our CCP-ABES scheme, this delegation process becomes
a signing operation; while for the IND-CCA secure CP-ABE component, our
decrypt algorithm first runs the delegate algorithm, and then uses the delegated
key to decrypt the ciphertext.

We encode a predicate and message pair to be signed or a tag to achieve IND-
CCA security by some special attributes we call dummy attributes. Suppose
each user owns a set of dummy attributes. In the ABS component of our CCP-
ABES, we use a dummy attribute for each predicate and message pair (A,m)
to be signed. We then use other dummy attributes which intersect with the
dummy attributes used in the ABS component for the CP-ABE component.
Moreover, one dummy attribute is used for each tag required to achieve IND-
CCA security. In our construction, we then apply programmable hash functions
to efficiently realize the public parameters and the secret key elements for the
dummy attributes. Particularly, we use different programmable hash functions to
encode the predicate and message pairs to be signed in the ABS component and
the tags to achieve IND-CCA security in the CP-ABE component, respectively.
This is also to provide domain separation between the signatures and secret keys.

The adaptive security required in the ABS component for the dummy at-
tributes can be easily obtained from the properties of a programmable hash
function, such as that by Waters [24]. Interestingly, our IND-CCA secure CP-
ABE component is more efficient than the previous ABE schemes achieving
IND-CCA security [27] because ours replies only one dummy attribute in the
ciphertext.

Our Contributions. Firstly, we present a security model for combined CP-
ABE and ABS (CCP-ABES) schemes in the joint security setting. There are

1 The delegatability property of ABE mimics the key extraction functionality in IBE.
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two essential security definitions with regards to joint security for CCP-ABES,
namely, ciphertext indistinguishability under a chosen ciphertext attack (IND-
CCA) for the CP-ABE component, and existential unforgeability under an adap-
tive chosen message attack (EUF-CMA) for the ABS component. As with pre-
vious security models for combined public-key schemes, in both security games,
the adversary is allowed to query the secret key generation, decryption and sign-
ing oracles. Furthermore, we consider perfect privacy for the ABS component,
as with standard ABS schemes. This property ensures that the distribution of
signatures created from different secret keys for a predicate and message pair is
the same.

We then give a concrete construction of CCP-ABES.Our scheme is based on the
Waters CP-ABE scheme and is proven to be selectively and jointly secure under
well-established assumptions in the standard model. Moreover, the ABS compo-
nent of our CCP-ABES scheme achieves perfect privacy under unbounded adver-
saries. Our construction is significantly more efficient than considering CP-ABE
and ABS separately. For example, our secret keys have |S| + 2 group elements in
comparison with 2|S|+ 4 group elements in the latter, where |S| is the number of
attributes. Further efficiency comparisons can be found in Section 4.2.

Finally, as a further contribution that is of independent interest, we apply our
idea of CCP-ABES to attribute-based signcryption (ABSC). We obtain an ABSC
scheme and show that it is jointly secure. We also give a general construction of
combined ABSC, CP-ABE and ABS schemes from CCP-ABES schemes. Using
our CCP-ABES construction, we show that the resulting ABSC scheme is more
efficient and expressive than previous work.

2 Preliminaries

2.1 Bilinear Groups and Complexity Assumptions

We present some basic concepts on groups with efficiently computable bilinear
maps. Let G and GT be two multiplicative cyclic groups of prime order p. Let
g be a generator of G and e be a bilinear map, e : G × G → GT such that
e(g, g) �= 1 for g and for any u, v ∈ Zp, it holds that e(gu, gv) = e(g, g)uv.
We say that G is a bilinear group if the group operation in G and the bilinear
map e : G ×G → GT are both efficiently computable. Notice that the map e is
symmetric since e(gu, gv) = e(g, g)uv = e(gv, gu).

We define the decisional bilinear Diffie-Hellman exponent (BDHE) and Diffie-
Hellman exponent (DHE) assumptions as follows.

Definition 1. Let κ be a security parameter. G is a bilinear group of prime
order p, where p > 2κ. g is an independent generators of G. Denote −→y g,γ,n =

(g1, g2, . . . , gn, gn+2, . . . , g2n) ∈ G2n−1, where gi = gγ
i

for some unknown γ ∈
Zp. We define the advantage function Advn-BDHE

G,B (κ) of an adversary B as∣∣Pr[B(g, gs,−→y g,γ,n, e(gn+1, g
s)) = 0]− Pr[B(g, gs,−→y g,γ,n, Z) = 0]

∣∣
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where the probability is over the random choices of g ∈ G, Z ∈ GT and s, γ ∈ Zp.
We say that the decision n-BDHE assumption holds in G if Advn-BDHE

G,B (κ) is
negligible for any probabilistic polynomial time (PPT) adversaries in κ.

Definition 2. Let κ be a security parameter. G is a bilinear group of prime
order p, where p > 2κ. g is an independent generator of G. Denote −→y g,γ,n =

(g1, g2, . . . , gn, gn+2, . . . , g2n) ∈ G2n−1, where gi = gγ
i

for some unknown γ ∈
Zp. We define the advantage function Advn-DHE

G,B (κ) of an adversary B as

Pr[B(g,−→y g,γ,n) = gn+1]

where the probability is over the random choices of g ∈ G and γ ∈ Zp. We say
that the n-DHE assumption holds in G is if Advn-DHE

G,B (κ) is negligible for any
PPT adversaries in κ.

2.2 Symmetric Encryption

Let κ be a security parameter. A symmetric encryption scheme SE := (E ,D)
is specified by its encryption algorithm E (encrypting m ∈ MsgSp(κ) with keys
K ∈ K(κ)) and decryption algorithm D (returning m ∈ MsgSp(κ)or ⊥). Here
we restrict ourselves to deterministic algorithms E and D.

The most common notion of security for symmetric encryption is that of ci-
phertext indistinguishability, which requires that all efficient adversaries fail to
distinguish between the encryptions of two messages of their choice. Another
common security requirement is ciphertext authenticity. Ciphertext authentic-
ity requires that no efficient adversary can produce a new valid ciphertext under
some key when given one encryption of a message of his choice under the same
key. A symmetric encryption scheme which satisfies both requirements simulta-
neously is called secure in the sense of authenticated encryption (AE-OT secure).
Note that AE-OT security is a stronger notion than chosen-ciphertext security.

The above requirements are formalized as follows:

Ciphertext Indistinguishability. Let SE := (E ,D) be a symmetric encryption
scheme, and let A be an adversary. We define the following experiment:

– The challenger chooses a random key K ∈ K(κ).
– A submits two messagem0,m1 ∈ MsgSp(κ) to the challenger. The challenger

randomly chooses b ∈ {0, 1} and sends the ciphertext c∗ := EK(mb) to A.
– A eventually outputs a guess b′ for b. If b′ = b, it returns 1 else returns 0.

The advantage of A in breaking the ciphertext indistinguishability security of
SE is:

AdvIND
SE,A(κ)

def
:=
∣∣Pr[ExpIND

SE,A(κ) = 1]− 1/2
∣∣

Definition 3. The symmetric encryption scheme SE has indistinguishable ci-
phertexts if for any PPT adversary A the advantage AdvIND

SE,A(κ) is negligible.
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Ciphertext Authenticity. In this work we are only interested in one-time
authenticated schemes. That is, schemes for which no efficient adversary can
produce a new valid ciphertext after seeing the encryption of a single message.

Let SE = (E ,D) be a symmetric encryption scheme, and let A be an adversary.
We define the following experiment:

– The challenger chooses a random key K ∈ K(κ).
– A submits a message m ∈ MsgSp(κ) to the challenger and receives the

ciphertext c := EK(m) to A.
– A eventually outputs a ciphertext c′. If c′ �= c and DK(c′) �=⊥, it returns 1

else returns 0.

The advantage of A in breaking the ciphertext indistinguishability security of
SE is:

AdvCT-INT
SE,A (κ)

def
:= Pr[ExpCT-INT

SE,A (κ) = 1]

Definition 4. The symmetric encryption scheme SE has ciphertext integrity if
for any PPT adversary A the advantage AdvCT-INT

SE,A (κ) is negligible in κ.

2.3 Collision-Resistant Hash

Let κ be a security parameter. Collision-resistant hash functions are a family
of keyed hash functions. Let H := {Hs}s∈{0,1}k is a family of hash functions for
each k-bit key s where k is polynomial in security parameter κ. H is said to be
collision-resistant if, for any hash function Hs in H, it is infeasible for a PPT
adversary to find two distinct y �= x such that Hs(x) = Hs(y). Let B denote
an adversary against collision-resistant hash functions, we define the advantage
function of the adversary B as follows:

AdvCR
H,B(κ) := Pr[x �= y ∧ Hs(x) = Hs(y) : s←R {0, 1}k]

H is collision resistant if for any PPT adversary B, AdvCR
H,B(κ) is negligible in κ.

2.4 Access Structure and Secret-Sharing Scheme

Definition 5. Let P = {P1, P2, . . . , Pn} be a set of parties. An access structure
is a set collection A ⊆ 2{P1,P2,...,Pn}\∅. An access structure is monotone if
∀B,C : if B ∈ A and B ⊆ C then C ∈ A. The sets in A are called the authorized
sets, and the sets not in A are called the unauthorized sets. min(A) is called a
minterm of A if B ∈ min(A), and for every C � B, the set C is unauthorized.

When used in ABE or ABS schemes, we replace the parties by attributes. Simi-
larly, the access structure is corresponding to an attributes set collection which
will contain the authorized sets of attributes.

We will make use of linear secret-sharing schemes in our construction.

Definition 6 (Linear Secret-Sharing Schemes (LSSS)). A secret-sharing
scheme Π over a set of parties P is called linear (over Zp) if
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– The shares for each party form a vector over Zp.
– There exists a matrixM with � rows and n columns called the share-generating

matrix for Π. For all i = 1, . . . , �, the i-th row of M we let the function ρ
defined the party labeling row i as ρ(i). When we consider the column vector
v = (s, y2, . . . , yn), where s ∈ Zp is the secret to be shared, and y2, . . . , yn ∈ Zp

are randomly chosen, thenM·v is the vector of � shares of the secret s according
toΠ. The share λi = Mi · v belongs to party ρ(i).

For S ∈ A be any authorized set, and let I := {i : ρ(i) ∈ S}. Then, there
exist coefficients {ωi ∈ Zp}i∈I such that

∑
i∈I ωi · λi = s. Furthermore, these

coefficients {ωi ∈ Zp}i∈I can be found in time polynomial in the size of the
share-generating matrix M.

Remarks. We note that we use the convention that vector (1, 0, . . . , 0) is the
target vector for any linear secret-sharing scheme. For any satisfying set of rows
I in M, we will have that the target vector is in the span of I:

∑
i∈I ωi ·Mi =

(1, 0, . . . , 0). {ωi ∈ Zp}i∈I are the coefficients used to reconstruct the secret
above.

3 Combined CP-ABE and ABS

A CCP-ABES scheme can been seen as an extension of the combined signature
and encryption scheme [19] in attribute-based setting. A CCP-ABES scheme
shares a setup algorithm and a key generation algorithm. Hence, the same public
parameters and master secret key are used in a CCP-ABES scheme. A single
secret key specified by user’s attributes is used for both signing and decrypting.
It comprises a tuple of algorithms (Setup, KeyGen, Sign, Verify, Encrypt,
Decrypt) such that (Setup, KeyGen, Sign, Verify) form an ABS scheme and
(Setup, KeyGen, Encrypt, Decrypt) form a CP-ABE scheme. We show the
algorithms in the following:

– Setup(κ,U). The algorithm takes a security parameter κ and an attribute
universe description U as input, and outputs public parameters PP and a
master secret key MSK.

– KeyGen(PP,MSK, S). The algorithm takes as input public parameters PP,
a master key MSK and a set of attributes S ⊆ U, and returns a secret key
SKS associated with S.

– Encrypt(PP,m,A). The algorithm takes as input public parameters PP, a
messagem and an access structure A over U. It returns a ciphertext CT such
that a secret key generated from the attribute set S can be used to decrypt
CT if and only if S ∈ A. And we assume that A is implicitly included in the
ciphertext.

– Decrypt(PP,CT, SKS). The algorithm takes as input public parameters PP,
a ciphertext CT, which contains an access structure A, and a secret key SKS

associated with an attribute set S. It returns the message m if S ∈ A.
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– Sign(PP, SKS ,A,m). The algorithm takes as input public parameters PP,
a message m, an access structure A and a signature generation key SKS

associated with an attribute set S such that S ∈ A. It outputs a signature
σ. And we assume that A is implicitly included in the signature.

– Verify(PP, σ,m). This takes as input a message m, an access structure A, a
signature σ with an access structure A and public parameters PP. It outputs
1 if the signature is valid and 0 otherwise.

For correctness of attribute-based signature, if S ∈ A, we require that

Verify(PP,Sign(PP,KeyGen(PP,MSK, S),A,m),m) = 1

where (PP,MSK) ← Setup(κ,U).
When defining the security of a CCP-ABES scheme, we consider the notions of

existential unforgeability of the ABS component under adaptive chosen message
attacks (EUF-CMA) and indistinguishability of the CP-ABE component under
chosen ciphertext attacks (IND-CCA). The two notions need to be extended
to reflect an adversary’s ability to request both signatures and decryptions. In
the EUF-CMA security of an ABS component, it is necessary to provide the
adversary with the access to the decryption oracle of CP-ABE component. In
the IND-CCA security of a CP-ABE component, it is necessary to provide the
adversary with the access to the signature oracle of ABS component. The security
definitions are given formally here.

Definition 7 (EUF-CMA security in the presence of a decryption or-
acle). Let κ be a security parameter and Π := (Setup,KeyGen,Encrypt,
Decrypt,Sign,Verify) be a CCP-ABES scheme. Existential unforgeability of
the ABS component under adaptive chosen message attacks in the presence of
an additional decryption oracle of CP-ABE component is defined through the
following game between a challenger and an adversary A.

Setup: The challenger runs Setup(κ,U), and sends the public parameters PP
to A.
Queries: A can make secret key, signature and decryption queries.

– Secret key queries: A adaptively chooses an attribute set S ⊆ U and
receives the secret key SKS := KeyGen(PP,MSK, S) from the challenger.

– Signature queries: A adaptively chooses a pair (A,m) consisting of an ac-
cess structure A and a message m. The challenger chooses an arbitrary set
S ∈ A and computes a signature σ := Sign(PP,KeyGen(PP,MSK, S),A,m)
which is returned to A.

– Decryption queries: A adaptively chooses a ciphertext CT and an attribute
set S associated with the secret key used to decrypt. The challenger returns
the output of Decrypt(PP,CT,KeyGen(PP,MSK, S)) to A. 2

2 We define the decryption queries for CP-ABE component as the definition given in
[27].
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Forgery: At the end of the game, A outputs a tuple (m∗, σ∗), where σ∗ consists
a challenge signing access structure A∗. A wins if:

– A has not made any signature query for the pair (A∗,m∗).
– None of the attribute sets in secret key queries phase is authorized for the

challenge signing access structure A∗.
– Verify(PP, σ∗,m∗) = 1.

For the ABS component of a CCP-ABES scheme Π, the probability of an ad-
versary A succeeding in breaking existential unforgeability under chosen message
attacks is defined as

SuccEUF-CMA
A,Π (κ) := Pr[A wins]

We say the ABS component of a CCP-ABES scheme Π is EUF-CMA secure in
the presence of a decryption oracle if SuccEUF-CMA

A,Π (κ) is negligible with respect
to the security parameter κ, for any PPT adversary A.

Additionally, we say that the ABS component of a CCP-ABES scheme Π is
selectively EUF-CMA secure in the presence of a decryption oracle if we add
an Init stage before setup where the adversary selects a challenge signing access
structure A∗ to attack.

Definition 8 (IND-CCA security in the presence of a signing oracle).
Let κ be a security parameter and Π := (Setup,KeyGen,Encrypt,Decrypt,
Sign,Verify) be a CCP-ABES scheme. Indistinguishability of the CP-ABE com-
ponent under chosen ciphertext attacks in the presence of an additional signing
oracle of the ABS component is defined through the following game between a
challenger and an adversary A.

Setup: The challenger runs Setup(κ,U), and gives the public parameters PP
to the adversary.
Phase 1: A can make secret key, signature and decryption queries.

– Secret key queries: A adaptively chooses an attribute set S ⊆ U and
receives the secret key SKS := KeyGen(PP,MSK, S) from the challenger.

– Signature queries: A adaptively chooses a pair (A,m) consisting of a mes-
sage m and an access structure A. The challenger chooses an arbitrary set
S ∈ A and computes a signature σ := Sign(PP,
KeyGen(PP,MSK, S),A,m) which is returned to A.

– Decryption queries: A adaptively chooses a ciphertext CT and an attribute
set S associated with the secret key used to decrypt. The challenger returns
the output of Decrypt(PP,CT,KeyGen(PP,MSK, S)) to A.

Challenge: The adversary A submits two messages m0 and m1 of equal length
and a challenge encrypting access structure A∗. The challenger chooses μ ∈
{0, 1} at random and encrypts mμ under A∗. The resulting ciphertext CT∗ is
given to the adversary.
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Phase 2: The adversary can continue to make queries as Phase 1 but with
the restriction that A must not request the decryption oracle for the challenge
ciphertext CT∗.

Guess. Finally, the adversary outputs a guess μ′ of μ. We say that A wins
the game if none of the attribute sets in Phase 1 and Phase 2 that satisfies the
challenge encrypting access structure A∗ has been queried and μ′ = μ. And the
probability is defined as SuccIND-CCA

A,Π (κ).
For a CCP-ABES scheme Π, the advantage of an adversary A in the above

game is defined as

AdvIND-CCA
A,Π (κ) :=

∣∣∣SuccIND-CCA
A,Π (κ)− 1

2

∣∣∣
We say the CP-ABE component of a CCP-ABES scheme Π is IND-CCA secure
in the presence of a signing oracle if AdvIND-CCA

A,Π (κ) is negligible with respect to
the security parameter κ, for any PPT adversary A.

We say that the CP-ABE component of a CCP-ABES scheme Π is selectively
IND-CCA secure in the presence of a signing oracle of ABS component if we
add an Init stage before setup where the adversary commits to the challenge
encrypting access structure A∗.

Informally, we say that a CCP-ABES scheme is (selectively) jointly secure if it
is both (selectively) EUF-CMA secure in the presence of a decryption oracle
of CP-ABE component and (selectively) IND-CCA secure in the presence of a
signing oracle of ABS component.

Perfectly Private. Perfect privacy is a typical requirement for an ABS scheme.
This property ensures that for an attribute-based signature the verifier only
knows that the actual attributes that have been used to sign satisfy the spec-
ified signing predicate. Perfect privacy must hold even against an unbounded
adversary with the master secret key. In the ABS component of the CCP-ABES
scheme, it is necessarily to consider this security property.

Definition 9. The ABS component of a CCP-ABES scheme is perfectly private,
if for any message m, any attribute sets S1, S2 and any access structure A such
that S1 ∈ A, S2 ∈ A, the distribution of Sign(PP,KeyGen(PP,MSK, S1),A,m)
is identical to that of Sign(PP,KeyGen(PP,MSK, S2),A,m).

4 Our Construction

In this section, we give a concrete CCP-ABES construction that is selectively
and jointly secure in the standard model. Our scheme, built upon the CP-ABE
scheme by Waters [26], supports general access structure and is realized by LSSS.
We denote an access structure by a pair (M, ρ), where M is a matrix used to
realize the access structure and ρ is an injective function used to map the rows
of matrix M to the corresponding attributes.
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– Setup(κ,U). On input a security parameter κ, and an attribute universe U:
1. Choose groups (G,GT ) of prime order p > 2κ and two collision-resistant

hash functions H1 : {0, 1}∗ → {0, 1}k, H2 : {0, 1}∗ → Zp.
2. Choose a symmetric encryption scheme SE := (E ,D) with key-space

K := GT .
3. Pick random group elements u, h, v0, v1, . . . , vk ∈ G. Here (v0, v1, . . . , vk)

are the public descriptions of the programmable hash function PH1(ω) :

{0, 1}k → G evaluated as PH1(ω) := v0
∏k

i=1(vi)
ωi , where ω is parsed

as a k-bit string ω1, . . . , ωk, while u, h are the public descriptions of the
programmable hash function PH2(δ) : Zp → G evaluated as PH2(δ) :=
uδh.

4. Pick random group elements g, {hx}x∈U ∈ G and exponents α, a ∈ Zp.
5. Output the public parameters and the master secret key:

PP := (g, e(g, g)α, ga, u, h, {hx}x∈U, v0, v1, . . . , vk) , MSK := (α).

– KeyGen(PP,MSK, S): On input the public parameters PP, the master se-
cret key MSK, and an attribute set S ⊆ U, the algorithm picks a random
value t ∈ Zp and creates a secret key as

SKS :=
(
D := gα+at, L := gt, {Dx := htx}x∈S

)
.

– Enc(PP,A = (M(�×n), ρ),m): On input the public parameters PP, an access
structure A = (M(�×n), ρ) and a message m ∈ MsgSp(κ):
1. Pick a random vector v := (s, y2, . . . , yn) ∈ Zn

p and set λi := 〈v,Mi〉,
for i = 1, . . . , �, where Mi is the i-th row of M.

2. Compute K := e(g, g)αs, δ := H2(C0, C1, . . . , C�,A).
3. Output the ciphertext as

CT :=
(
C := EK(m), C0 := gs, {Ci := gaλih−s

ρ(i)}i=1,...,�, C
′ := (PH2(δ))

s
)
.

– Dec(PP,CT, SKS): On input the public parameters PP, a ciphertext CT
parsed as (C,C0, {Ci}i=1,...,�, C

′,A) and a secret key SKS parsed as (D,
L, {Dx}x∈S):
1. Compute an index set I := {i : ρ(i) ∈ S} and {αi}i∈I such that

∑
i∈I αi ·

Mi = (1, 0, . . . , 0). Note that such I always exists if A accepts S.
2. Compute δ := H2(C0, C1, . . . , C�,A) and the symmetric key K as

K :=
e(C0, D · PH2(δ))

e(C′, g) ·∏i∈I

(
e(Ci, L) · e(C0, Dρ(i))

)αi
.

3. Output the message m := DK(C).
– Sign(PP,A = (M(�×n), ρ),m, SKS): On input the public parameters PP, an

access structure A = (M(�×n), ρ), a message m ∈ {0, 1}∗ and a secret key
SKS parsed as (D,L, {Dx}x∈S):
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1. Compute an index set I = {i : ρ(i) ∈ S} and {αi}i∈I such that
∑

i∈I αi ·
Mi = (1, 0, . . . , 0). Note that such I always exists if A accepts S.

2. Pick random {βi}i=1,...,� satisfying
∑�

i=1 βi ·Mi = (0, 0, . . . , 0).
3. Pick t′ ∈ Zp randomly to re-randomize the secret key in the form of

D′ := gα+a(t+t′), L′ := g(t+t′), ∀x ∈ S D′
x := h(t+t′)

x .

4. Pick z, r ∈ Zp randomly and compute ω := H1(A,m) and the signature
as

σ :=

(
σ0 := D′ · (PH1(ω))

r , σ′0 := gr,{
σ0,i := (L′)αi(gz)βi , σ1,i := (D′

ρ(i))
αi(hzρ(i))

βi

}
i=1,...,�

)
.

where αi = 0 for ρ(i) �∈ I.
5. Output the signature σ := (σ0, σ

′
0, {(σ0,i, σ1,i)}i=1,...,�,A).

– Verify(PP, σ,m): On input the public parameters PP, a signature σ parsed
as (σ0, σ

′
0, {(σ0,i, σ1,i)}i=1,...,�,A), and a message m:

1. Pick a random vector v := (s, y2, . . . , yn) ∈ Zn
p and compute the shares

λi := 〈v,Mi〉 for i = 1, . . . , �.
2. Compute ω := H1(A,m) and

T :=
e(gs, σ0)

e
(
PH1(ω)s, σ′0

) ·∏i=1,...,� e
(
gaλih−s

ρ(i), σ0,i
) · e(gs, σ1,i) .

3. Accept the signature σ as valid, and thus output 1 if e(g, g)αs = T .
Otherwise, it output 0.

4.1 Security Analysis

In what follows, we prove that our CCP-ABES scheme is selectively and jointly
secure. The proof comprises three stages: first, we prove that the ABS component
is selectively EUF-CMA secure; then we show that the CP-ABE component is
selectively IND-CCA secure; in the last stage, we show that our CCP-ABES
scheme is perfectly private.

Theorem 1. The ABS component in the scheme above is selectively EUF-CMA
secure in the presence of a decryption oracle if H1 is a collision-resistant hash
function, SE = (E ,D) is an AE-OT secure symmetric scheme and the w-DHE
assumption holds in G, where w = |U|.
Theorem 2. The ABS component in our CCP-ABES scheme is perfectly private.

Due to space considerations the proof of the theorems is given in the full version
of this paper.
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4.2 Efficiency Analysis

We now compare the efficiency of our CCP-ABES scheme against two separate
CP-ABE and ABS schemes that are used together to give the same function-
alities. We compare our scheme with the second CP-ABE scheme in [26] and
the ABS scheme in [16], in terms of the sizes of public parameters, secret keys
and ciphertexts. Let |G| and |GT | denote the size of the underlying group G and
GT . Let |U| be the number of attributes in the system. The access structure is
expressed by M with � rows and n columns. We also let |S| denote the number of
attributes associated with user’s secret key and τ denote the size of the cipher-
text of an AE-OT secure symmetric encryption. We assume that the size of the
ciphertext exclude the size of access structure. The comparison is summarized
in Table 1.

We can see that our CCP-ABES scheme is significantly more efficient than the
two ABE and ABS schemes of [26] and [16], particularly in the public parameters
and the secret key. Moreover, our scheme obtains stronger security (CCA versus
CPA) in the CP-ABE component.

Table 1. Efficiency Comparison

Schemes Params Size Secret Key Size Ciphertext Size Signature Size

[26] + [16] (6 + 3|U|+ k)|G|+ |GT | (2|S|+ 4)|G| (1 + �)|G|+ |GT | (2 + �+ n)|G|
Ours (5 + |U|+ k)|G|+ |GT | (|S|+ 2)|G| (2 + �)|G|+ τ (2 + 2�)|G|

5 Attribute-Based Signcryption

The goal in an attribute-based signcryption (ABSC) scheme is to achieve the
combined functionality of attribute-based encryption and attribute-based signa-
ture, and allows users to obtain message confidentiality and origin authentication
through one operation in an attribute-based manner. We define an ABSC scheme
to consist of four algorithms:

– Setup(κ,U). The algorithm takes a security parameter κ and an attribute
universe description U as input, and outputs public parameters PP and a
master secret key MSK.

– KeyGen(PP,MSK, S). The algorithm takes as input public parameters PP,
a master key MSK and a set of attributes S ⊆ U, and returns a secret key
SKS associated with S.

– Signcrypt(PP,m,AS ,AE , SKSs). The algorithm takes as input public pa-
rameters PP, a message m, an access structure AE for encrypting, an access
structure AS for signing and a signing secret key SKSs , and returns a sign-
cryptext CT of message m. And we assume that AE and AS are implicitly
included in the signcryptext.

– Unsigncrypt(PP,CT, SKSd
). The algorithm takes as input public parame-

ters PP, a signcryptext CT and a secret key SKSd
, and outputs either the

message m or an error symbol ⊥.
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For correctness, if Sd ∈ AE ∧ Ss ∈ AS , we require that

Unsigncrypt(PP,Signcrypt(PP,m,AS ,AE , SKSs), SKSd
) = m

where (PP,MSK) ← Setup(κ,U), SKSs ← KeyGen(PP,MSK, Ss) and SKSd
←

KeyGen(PP,MSK, Sd).

5.1 Combined ABSC, CP-ABE and ABS Scheme

While efficient ABSC schemes using short public parameters and secret keys for
both sender and receiver roles are interesting in their own right, we will consider
the more extended primitive which additionally allows that users can also use the
ABSC secret keys associated with their attributes in an ordinary CP-ABE and
ABS scheme. We consider a scheme implementing the functionality of ABSC,
CP-ABE and ABS scheme using a single secret key and short public parame-
ters. This type of scheme consists of algorithms (Setup, KeyGen, Signcrypt,
Unsigncrypt, Encrypt, Decrypt, Sign, Verify).

As in the case of a combined public key scheme, a combined ABSC, CP-
ABE and ABS scheme which is jointly secure (as defined in the following) can
trivially be constructed by concatenating public parameters and secret keys of
independent ABSC, CP-ABE and ABS schemes. However, as above, we focus
on schemes which are more efficient than this type of trivial construction. When
capturing the security of the combined scheme, ABSC component. We must
give an adversary access to a signcryption and unsigncryption oracle in both the
confidentiality and unforgeability definitions. In addition, we must also give the
adversary access to signing and decryption oracles since we are considering a
scheme which additionally implements the functionality of CP-ABE and ABS.
We will formally define the security of the ABSC component of the type of
combined scheme we are considering: EUF-ABSC-CMA security in the presence
of additional oracles, IND-ABSC-CCA security in the presence of additional
oracles, and perfect privacy in the full version of this paper.

5.2 Construction Based on CCP-ABES Scheme

We will now show how a CCP-ABES scheme can be used to construct a combined
ABSC, CP-ABE and ABS scheme. Our construction is based on the “sign then
encrypt” construction. Given a CCP-ABES scheme C := (C.Setup, C.KeyGen,
C.Encrypt, C.Decrypt, C.Sign, C.Verify), the combined ABSC, CP-ABE and
ABS scheme ABSC(C) is given as following.

– ABSC(C).Setup(κ) : Returns C.Setup(κ).
– ABSC(C).KeyGen(PP,MSK, S) : Returns C.KeyGen(PP,MSK, S).
– ABSC(C).Encrypt(PP,m,A) : Returns C.Encrypt(PP, 0||m,A).
– ABSC(C).Decrypt(PP,CT, SKS) : m′ ← C.Decrypt(PP,CT, SKS). Parses
m′ = 0||m and returns m.

– ABSC(C).Sign(PP, SKS ,A,m) : Returns C.Sign(PP, SKS ,A, 0||m).
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– ABSC(C).Verify(PP, σ,m) : Returns C.Verify(PP, σ, 0||m).
– ABSC(C).Signcrypt(PP,m,AS,AE , SKSs) : σ ← C.Sign(PP, SKSs ,AS ,

1||AE ||AS ||m) CT ← C.Encrypt(PP, 1||σ||m,AE), and returns CT.
– ABSC(C).Unsigncrypt(PP,CT, SKSd

) : m′ ← C.Decrypt(PP,CT, SKSd
).

If m′ =⊥, returns ⊥. Otherwise, parses m′ = 1||σ||m. If C.Verify(PP, σ,
1||AE ||AS ||m) → 1, returns m. Otherwise, returns ⊥.

Remark. In this general construction, we require that the message space in the
CP-ABE component of C should be large enough that can contain an attribute-
based signature. Indeed, our construction in last section satisfies this property.

Theorem 3. Let C be a CCP-ABES scheme, the ABS component of which is
(selectively) EUF-CMA secure in the presence of a decryption oracle. Then the
ABSC component of combined ABSC, CP-ABE and ABS scheme ABSC(C) is
(selectively) EUF-ABSC-CMA secure in the presence of additional oracles.

Theorem 4. Let C be a CCP-ABES scheme, the ABS component of which
is (selectively) IND-CCA secure in the presence of a signing oracle. Then the
ABSC component of combined ABSC, CP-ABE and ABS scheme ABSC(C) is
(selectively) IND-ABSC-CCA secure in the presence of additional oracles.

Theorem 5. Let C be a CCP-ABES scheme, the ABS component of which is
perfectly private. Then the ABSC component of combined ABSC, CP-ABE and
ABS scheme ABSC(C) is perfectly private.

Due to the space limit, the proof of Theorem 4. 5. 6. will be appear in the
complete version of this paper.
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Abstract. Following both theoretical and practical arguments, we con-
struct UC-secure bit-commitment protocols that place their strength on
the sender’s side and are built using tamper-evident devices, e.g., a type
of distinguishable, sealed envelopes. We show that by using a second
formalisation of tamper-evident distinguishable envelopes we can attain
better security guarantees, i.e., EUC-security. We show the relations be-
tween several flavours of weak bit-commitments, bit-commitments and
distinguishable tamper-evident envelopes. We focus, at all points, on the
lightweight nature of the underlying mechanisms and on the end-to-end
human verifiability.

1 Introduction

Most of the recent approaches to primitive-construction employ the universal
composability (UC) framework [6] in order to specify and prove the correct-
ness/security of their cryptographic designs. The UC framework is a formalism
that allows for cryptographic protocols to be computationally analysed in a single
session, yet the security guarantees thereby obtained are preserved when mul-
tiple sessions are composed concurrently, in parallel and/or sequentially. In [6],
Canetti shows that any polynomial-time multi-party functionality is feasible in
the UC framework if the majority of participants are honest. Otherwise, feasi-
bility is usually attained if the models are augmented with “setup-assumptions”,
obtaining the so-called “UC hybrid models” (i.e., extra ideal functionalities are
made available to the parties).

UC-formalisations of tamper-evident/tamper-resistant hardware devices have
been used as setups to UC-realize different cryptographic primitives, from bit-
commitment to polling schemes [13,15,12,16,17,19,18]; the tamper-evidence of
a device implies that, if tampered with, the device will signal the inflicted ab-
normalities, whereas tamper-resistance denotes the impossibility of tampering
with the device. Tamper-evidence-based UC-secure protocols [16,17,19] also bear
lightweight, humanly constructible/verifiable cryptographic mechanisms. To re-
alize UC-secure weak bit-commitment (WBC) protocols, a type of distinguish-
able tamper-evident envelopes were shown sufficient and necessary (in the sense

� Full version of this paper: [3].
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that simpler functionalities of distinguishable tamper-evident containers are not
sufficient to realize bit-commitments) [18]. The protocols thereby constructed
placed their “strength” on the receiver’s side, i.e., it is the receiver who creates
the tamper-evident devices or prepares them. In [18], Moran and Naor raise the
question of finding such lightweight, UC-secure (weak) bit-commitment protocols
that in turn place their strength on the sender’s side, i.e, sender-strong proto-
cols. Along similar lines, Brassard, Chaum and Crépeau in foundation papers
have long made the question: “Is it preferable to trust Vic or Peggy? We do not
know, but it sure is nice to have the choice. [4]”.

Contributions. The contributions of this paper are as follows:

– We create weak bit-commitments that place the (adversarial) strength on
the committer side, i.e., sender-strong WBC, and that are UC-secure. To
achieve this, we require a new formalisation of distinguishable envelopes and
use it as a UC setup functionality (see the motivations below).

– We describe a hierarchy of ideal functionalities for sender-strong weak bit-
commitments and UC-realize them. In this, we relate better with the existing
literature in the field (see Section 2.2 for details).

– We relate our first functionality of distinguishable envelopes (FDE
OneSeal), the

standard UC-functionality of bit-commitment (FBC) and those of WBC
(already existing and newly introduced herein), showing most implication-
relations between them.

– We introduce a second distinguishable envelope functionality (FpurpotedDE
OneSeal ),

which allows for the corresponding DE-based WBC protocols herein and the
ones in [18] to be enjoyed a stronger security notion: be not only UC-secure,
but also EUC-secure.

Motivation for Our Formalisation of Tamper-Evident Envelopes. As Moran et
al. state in [18], there are many ways to formalise tamper-evident containers,
reflecting the different requirements of the possible physical implementations of
such devices. The sole motivation given in [18] for allowing creator-forgeability
is the desiderata of creating more complex, somewhat stronger protocols. But,
when it comes to placing this sort of asymmetric strength on the sender’s side,
it only makes sense to construct commitment protocols that are, in the stan-
dard sense, computationally hiding and somewhat binding, i.e., the receiver is
powerless and the sender can possibly equivocate his commitments. (By con-
trast, in [18] are both partially hiding and partially binding and are then am-
plified.) In this context, we conjecture that it is not possible to be based only
on tamper-evident envelopes à la Moran et al. [18] and construct hiding sender-
strong bit-commitment protocols, which would further be UC-secure in the same
time. To overcome this shortcoming, we have herein slightly modified the origi-
nal, tamper-evident envelope functionality from [18], preventing the creator from
resealing envelopes. Hence, we model seal-once distinguishable tamper-evident
envelopes (or, envelope allowing one-seal only). By contrast, the functionality
in [18] formalises a multi-seal distinguishable tamper-evident envelope.
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Furthermore, the previous protocols designed using tamper-evident envelopes
à la Moran et al. [18] were only UC-secure and not EUC-secure. We noted that
if we relaxed the forging abilities of the envelope-creator in the aforementioned
way and we furthermore allow for purported destinator for envelopes the corre-
sponding DE-based protocols obtained both here and in [18] attain EUC-security
and not only UC-security.

Our Weak Bit-Commitments from a theoretical viewpoint. Alongside the UC-
framework, sender-strong weak bit-commitments are also interesting by tradi-
tional theoretical lines, where they are easier to construct (see Section 3.4).
In [4], outside of the UC-framework, Brassard et al. proved that the existence
of “chameleon” bit-commitments1 implies the existence of zero-knowledge (ZK)
proofs of knowledge which were MA-protocols (i.e., where the verifier sends in-
dependent bits). Moreover, in [2] Beaver proved that in order for the aforemen-
tioned ZK proofs of knowledge (PoK) to be provable secure against adaptive
adversaries, the chameleon bit-commitments (BC) are not enough, but content-
equivocable bit commitments are needed (i.e., the equivocation is possible only
if a record of the traffic between the sender and the receiver is available to the
sender and not other types of witnesses, like parts of messages). One of our

weak BC functionalities, Fq−WBC
LearnAtOpening, models this last type of important weak

bit-commitments.

Our Weak Sender-Strong Bit-Commitments from a practical viewpoint. A real-
life situation were the committer/sender should be given the chance to “change
his mind” is the case in negotiation-based protocols where the receiver is known
or thought to be corrupt (e.g, hostage-release cases, reputations [1], anonymous
special auctioning [21], etc.).

To sum up, we are motivated to present certain means of attaining different
UC and EUC-secure, bit-commitment protocols placing their strength on the
sender’s side, i.e., sender-strong (SS).

Related Work. A series of works on designing UC-secure protocols using tamper-
resistant building blocks have recently emerged [13,8,15,12,19]. For example, the
formalism by Katz, in [13], opens for the creation and exchange of tamper-proof
hardware tokens used in a commitment protocol, which is UC-secure if the tokens
are stateful and the DDH assumption holds. In [8], the two-party computation
can equally be UC-realized, but the model is relaxed: the tokens are stateless
and the assumption is switched to the existence of oblivious transfer protocols in
the UC plain model. Similar results are obtained using tamper-resistant devices
as building blocks in a model called the trusted agent model [15]. Like in [8]
and unlike in [13], Mateus and Vaudenay [15] permit a freer flow of devices from
their creator to their users and backwards. Similar protocols are constructed by
Moran et al., in [19], using tamper-resistant hardware tokens that can be passed

1 These are commitments where the sender could cheat at the decommitment phase
if given extra information.
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in one direction only. We note that the distinction of having UC-commitments
which place the strength on the sender or, on the contrary, place their strength
on the receiver has also been underlined [19] within this context of using tamper-
resistant hardware as UC-setup.

Simpler cryptographic protocols UC-constructed using not tamper-resistant
devices, but tamper-evident devices in form of sealed envelopes and sealed locks
have been studied in [18,16,17]. All the protocols thereby presented place their
strength on the receiver’s side.

2 Setup and Target UC Functionalities

2.1 UC-Setup Functionalities Modelling Tamper-Evident Envelopes

The FDE
OneSeal Functionality. In general, a functionality for tamper-evidence

stores a table of envelopes, indexed by their unique id. More precisely, an entry
in this table is of the form (id, value, holder, state). The values in one entry
indexed by id are respectively denoted valueid, holderid and stateid.

In particular, the functionality FDE
OneSeal models a tamper-evident “envelope”,

distinguishable by some obvious mark (e.g., barcode, serial number, colour, etc.).
Protocol parties can simply open such containers, but any such opening will
be obvious to other parties who receive the “torn” envelope. The FDE

OneSeal ideal
functionality, running in the presence of parties P1, . . . , Pn and an ideal adversary
I is described in the following.

Seal(id , value). Let this command be received from party Pi. It creates and seals
an envelope. If this is the first Seal message with id id, the functionality stores
the tuple (id, value, Pi, sealed) in the table. If this is not the first command of
type Seal for envelope id, then the functionality halts.

Send(id , Pj ). Let this command be received from party Pi. This command en-
codes the sending of an envelope held by Pi to a party Pj . Upon receiving
this command from party Pi, the functionality verifies that there is an entry
in its table which is indexed by id and has holderid = Pi. If so, it outputs
(Receipt, id, Pi, Pj) to Pj and I and replaces the entry in the table with
(id, valueid, Pj , stateid).

Open id . Let this command be received from party Pi. This command encodes
an envelope being opened by the party that currently holds it. Upon receiving
this command, the functionality verifies that an entry for container id appears in
the table and that holderid = Pi. If so, it sends (Opened, id, valueid) to Pi and
I. It also replaces the entry in the table with (id, valueid, holderid, broken).

Verify id . Let this command be received from party Pi. This command denotes
Pi’s verification of whether or not the seal on an envelope has been broken. The
functionality verifies that an entry indexed by id appears in the table and that
holderid = Pi. It sends (Verified, id, stateid) to Pi and to I.

One of the differences from the corresponding functionality presented in [18]
is that the one introduced above does not output tuples containing the creator’s
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identity. This would have been of no interest for the protocols constructed in the
following and would hinder EUC-security proofs given herein. However, a more
important difference is that the creator of an envelope cannot re-seal it, i.e., he
cannot forge the value stored initially inside the envelope. Hence, we use the
syntagm “OneSeal” to refer to the functionality herein and, sometimes, we use
the expression “MultiSeal” to designate the tamper-evident envelopes in [18].
This modification is driven by the fact that we could not yet prove or disprove
the existence of a sender-strong, somewhat binding and not partially hiding, but
computationally hiding bit commitment that is also simulatable within UC, using
only creator-forgeable/multi-seal tamper-evident envelopes.

It is relatively easy to see that regular bit-commitments can be immediately
constructed using one distinguishable tamper-evident envelope, see Section 4.
The relation with the regular commitment functionality is however not symmet-
ric, as will detail (i.e., if FDE

OneSeal implies BC, it is not necessarily the case that
FBC
OneSeal implies DE).
The tamper-evident envelope functionality in [18] is denoted as FDE

MultiSeal.

2.2 Target UC Functionalities of Bit-Commitment

We now describe our target functionalities Fq−WBC
� that model different weak

bit-commitment (WBC) protocols, where

� ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening}.

In this fashion, we can relate the WBCs UC-realized herein both with traditional
weak bit-commitments [2] of theoretical importance (e.g., see our Fq−WBC

LearnAtOpening),
and with weak bit-commitments UC-created in [18] with distinguishable en-

velopes (see our Fq−WBC
EscapeThenMayCheat). The differences between these functionalities

lie mainly in learning that equivocation is possible (yet not obligatory) at the

commitment phase (Fq−WBC
LearnAtCommitment) or the opening phase (Fq−WBC

LearnAtOpening) vs.
cheating only when the committer has not yet been caught abusing the protocol
(Fq−WBC

EscapeThenMayCheat).

The Fq−WBC
EscapeThenMayCheat functionality idealising q-weak bit-commitment. Let q ∈

(0, 1). The functionality maintains a variable bit, where bit ranges over {0, 1,�}.
Commit b. When the Commit b command (b ∈ {0, 1}) is sent to the function-
ality by a sender S, the value b is recorded in the variable bit. The functionality
of Fq−WBC

EscapeThenMayCheat outputs Committed to the receiver R and to the ideal ad-

versary I2. Further commands of this type or of type EquivocatoryCommit
below are ignored by the functionality.

EquivocatoryCommit. When the EquivocatoryCommit command is sent
to the functionality, the Fq−WBC

EscapeThenMayCheat functionality replies to the sender and

2 Throughout, the fact that the output is sent to the ideal adversary as well is inherent
to the UC framework, i.e., see the UC-notion of “delayed output”.
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the ideal adversary with a ⊥ message, with probability 1 − q. With probability
q, the functionality sets the variable bit to the value �, outputs Committed to
the sender, the receiver and to the ideal adversary. Further commands of this
type or of type Commit above are ignored by the functionality.

AbortCommit. When the AbortCommit command is sent to the function-
ality, the Fq−WBC

EscapeThenMayCheat functionality replies to the sender, to the receiver,
and to the ideal adversary with a ⊥ message (denoting an abnormal end of the
execution). Further commands are ignored.

Open. Upon receiving the command Open from the sender, the functionality
verifies that the sender has already sent the Commit b command. Then, the
Fq−WBC
EscapeThenMayCheat functionality outputs (Opened, bit) to the receiver and to the

ideal adversary. Further commands are ignored by the functionality.

EquivocatoryOpen c. Upon receiving this command from the sender, with
c ∈ {0, 1}, the functionality verifies that bit = �. Then, the functionality

Fq−WBC
EscapeThenMayCheat outputs (Opened, c) to the receiver and to the ideal adver-

sary. Further commands are ignored by the functionality.
In this functionality, the binding property of commitments can be defied.

It corresponds to the weak bit-commitment functionality used by Moran and
Naor [18], but it applies to the sender-strong case. In that sense, a dishonest
player decides to try and open his commitment to any value even from the very
beginning of the protocol and he can be successful in doing so with a probability
of q ∈ (0, 1), once he has not been caught red-handed.

Note that the WBC functionality presented above and the ones to be pre-
sented further model single bit commitments. Yet, they can easily be extended
to respective functionalities for multiple commitments: i.e., eachCommit b com-
mand sent by a sender S aimed at a receiver R would become Commit(id , b,R)
and each corresponding functionality would, for each commitment, store a tuple
(id, sender, receiver, value) doing the respective checks.

The Fq−WBC
LearnAtCommitment functionality idealising q-weak bit-commitment. Let q ∈

(0, 1). The functionality maintains a tuple (bit, equiv), where bit ranges over
{0, 1} and equiv ranges over {“Yes”, “No”}.
Commit b. When the Commit b command (b ∈ {0, 1}) is sent to the function-
ality, the value b is recorded in the variable bit. With probability q the value
“Yes” is stored in equiv or, with probability 1 − q the value “No” is stored in
equiv. The Fq−WBC

LearnAtCommitment functionality outputs Committed to the receiver

and to the ideal adversary. The Fq−WBC
LearnAtCommitment functionality outputs the up-

dated value of equiv to the sender and to the ideal adversary. Further commands
of this type are ignored by the functionality.

Open. Upon receiving this command, the functionality verifies that the sender
has already sent the Commit b command. Then, the Fq−WBC

LearnAtCommitment function-
ality outputs (Opened, bit) to the receiver and to the ideal adversary. Further
commands are ignored by the functionality.
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EquivocatoryOpen. Upon receiving this command, the functionality verifies
that the sender has already sent the Commit b command. Then, the functional-
ity checks the value of equiv. If the value is “Yes”, then Fq−WBC

LearnAtCommitment outputs
(Opened, bit) to the receiver and to the ideal adversary. If the value is “No”,

then Fq−WBC
LearnAtCommitment halts. Further commands are ignored by the functionality.

The Fq−WBC
LearnAtCommitment functionality mirrors a protocol which allows the sender

to cheat by breaking the binding property of the protocol. Note that this cheating
possibility is “decided” at the commitment phase, i.e., it is at some point during
the commitment phase that the potential cheater learns about his opportunity.
Also, note that while the cheating is allowed, it does not necessarily need to
happen (i.e., there are two distinct opening commands).

Next, we give a similar functionality where in turn the possibility of equivo-
cation becomes clear only at the opening phase.

The Fq−WBC
LearnAtOpening functionality idealising q-weak bit-commitment. Let q ∈

(0, 1). The functionality maintains a variable bit, ranging over {0, 1}.
Commit. When the Commit b command (b ∈ {0, 1}) is sent to the function-

ality, the value b is recorded in the variable bit. The Fq−WBC
LearnAtOpening functionality

outputs Committed to the receiver and to the ideal adversary. Further com-
mands of this type are ignored by the functionality.

Open. Upon receiving this command, the functionality verifies that the sender
has already sent the Commit b command. Then, the Fq−WBC

LearnAtOpening functional-
ity outputs (Opened, bit) to the receiver and to the ideal adversary. Further
commands are ignored by the functionality.

EquivocatoryOpen. Upon receiving this command, the functionality verifies
that the sender has already sent the Commit b command. With probability
q, the Fq−WBC

LearnAtOpening outputs (Opened, bit) to the receiver and to the ideal

adversary. With probability 1 − q, the Fq−WBC
LearnAtOpening sends ⊥ to the sender S

and the ideal adversary I. Further commands of this type are ignored by the
functionality (but commands of type Open are still allowed).

The Fq−WBC
LearnAtOpening functionality mirrors a protocol which allows the sender to

cheat by breaking the binding property of the protocol, knowingly at some point
during the opening phase, i.e., i.e., it is at some point during the opening phase
that the potential cheater learns about his opportunity, similarly to traditional
lines in [2]. As aforementioned, note that while the cheating is allowed, it does
not necessarily need to happen.

Note that sender-strong weak bit-commitments protocols with distinguish-
able, tamper-evident envelopes that allow only partial hiding are of course easier
to UC-construct than those that require perfect hiding. Amplifications
techniques could then be applied. However, we take the view that once the pro-
tocols that we seek are sender-strong, UC-realizing a functionality which is only
partially hiding is would contradict the aim for the senders’ strength (hence, the
“computationally hiding” UC functionalities that we have given above).
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3 UC (Sender-Strong) Bit-Commitments

Driven by the theoretical and practical motivations presented in the introduction,
we are now going to present protocols that UC-implement the weak
bit-commitment (WBC) functionalities above, use the herein introduced func-
tionalities of distinguishable envelopes as the UC-setup and place their strength
on the senders’ sides.

We start with the protocol Pass&MayCheat which UC-realizes the function-

ality F 1
2−WBC
EscapeThenMayCheat using the FDE

OneSeal. We continue the protocols CommitEn-
ablesCheat and OpenEnablesCheat which respectively UC-realize the

functionalities of F 2
3−WBC
LearnAtCommitment and F 2

3−WBC
LearnAtOpening, using the FDE

OneSeal. We
then present amplification techniques of such weak BC protocols. The tech-
niques maintain the lightweight character of the constructions. We conclude the
section by a strengthening of the FDE

OneSeal functionality such that we attain EUC-
security [7], i.e., not only UC-security.

3.1 The Pass&MayCheat Protocol

The Commitment Phase.

1. A sender S seals four envelopes and creates two pairs out of them such that
each pair contains the set {x, x} of values, for a random x ∈ {0, 1}. Each
pair “contains” its own value x. He sends two envelopes, one from each pair,
to the receiver R. (E.g., the pairs are pair1 = (E1, E2), pair2 = (E3, E4) and
S sends, e.g., E1, E3 to R).

2. The receiver R stores the identifiers of the envelopes in a register W . (I.e.,
it stores (1, 3), given the illustrated execution by S above.). Then, R sends
them back without opening them.

3. The sender S verifies that the recently returned envelopes have the seals
unbroken. If this is not so, he halts. Otherwise, he sends the two envelopes
not sent before. (I.e., If seals are unbroken, then S sends the remaining
E2, E4.)

4. The receiver verifies that the envelopes received do not have the ids stored
already. If they do, he halts. Otherwise, he opens one of these envelopes,
sends back the other one without opening it, together with the value of an
id stored already inW to request back one envelope. The receiver also stores
the ids of the envelopes seen this time round. (I.e., R opens, e.g., E2, sends
backE4 and, e.g., 1, thus requesting back envelopeE1.) Given the steps of the
protocol so far, note that the opened envelope together with the requested one
form an initial pair. Also, once the sender has sent this requested envelope,
the sender will be left with the other of the initial pairs at his end. These
comments equally apply to the equivocatorial commitment phase to follow.

5. The sender S verifies that the recently returned envelope has the seal un-
broken. If this is not so, he halts. Otherwise, he sends the one requested
envelope to R. He also sends the value d = b ⊕ x, where b is the bit he is
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committing to and x is the bit hidden inside each envelope in the pair to be
found at his side. (I.e., If the seal is unbroken, then S sends the requested
E1, d = b⊕ x, where x is in E3 and/or in E4).

6. The receiver R opens the last envelope received and checks that the value
at its side are equal. If not, he aborts. (I.e., If E1 and E2 do not contain the
same value, then R aborts).

The EquivocatoryCommitment Phase.

1. A sender S seals four envelopes and creates two pairs out of them such
that one pair contains the set {x, x} of values, for a random x ∈ {0, 1}
and the other pair contains the values {0, 1}. He sends two envelopes, one
from each pair, to the receiver R. (E.g., The pairs are pair1 = (E1, E2),
pair2 = (E3, E4) and S sends E1, E3 to R).

2. Same as in the commitment phase.
3. Same as in the commitment phase.
4. Same as in the commitment phase.
5. Same as in the commitment phase.
6. Same as in the commitment phase.

Let A denote the pair of envelopes to be found at this stage on the sender side.

The Opening Phase.

1. The sender S sends one envelope Ek in the remaining pair, i.e., Ek ∈ A or
k ∈ {i, j}.

2. The receiver R checks that Ek is in the set A (by checking the ids). If so, he
opens the envelope Ek to find the value bk hidden inside and then he sets
the commitment-bit b′ to d⊕ bk. Otherwise, the receiver halts.

The EquivocatoryOpening Phase.

1. The sender S sends from the remaining pair A the envelope Ek that contains
the bit d⊕ c, where c is the bit that the sender wants to open to.

2. Same as in the opening phase.

In the following figure, we give an illustration of the protocol above, in a
symmetric way (i.e., E1 and E2 could be interchanged in their appearances,
etc.).

Explanations on the Pass&MayCheat protocol. Assume first that the sender S
creates pairs of envelopes such that each contains the set {x, x} of values and
that the sender respects the calculation of d for the non-equivocable case. It is
clear that at the end of the protocol, the sender has no choice but to open to
the correct bit. If, in turn, S does not form d as specified and R does follow the
protocol, then S may not be able to open.

Assume now that the sender S creates pairs of envelopes such that one contains
the set {x, x} of values and the other contains the set {0, 1} of values. Depending
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S R

seals env-pairs P1 = (E1, E2),
P2 = (E3, E4) s. t. the ordered
(x, x, 0, 1) or (x, x, y, y) is in
the pairs, with x, y ∈ {0, 1}

E1 from P1, E3 from P2�
remember ids 1, 3, i.e., W = {1, 3}

{E1, E3}�
continue if {E1, E3}
have not been tampered

E2 from P1, E4 from P2�

check ids 2, 4 /∈ {1, 3}, rmb. ids {2, 4}
open E2
(note that E2 and E1 to-be-requested form

the P1 pair)

E4, 1�
check E4 for tamper

(after sending E1 below,

S will be left with pair P2)

let d be b ⊕ bl ,

l ∈ {3, 4} �E1, d
check 1 ∈ {1, 3}, open E1

FOR Commit:

let d ∈ {0, 1}
�E1, d

check 1 ∈ {1, 3}, open E1

FOR EquivocatorialCommit:

FOR Open/EquivocatorialOpen:

let En, n ∈ {1, 2, 3, 4} \ {k3, k1}
�En

check if n ∈ {1, 2, 3, 4} \ {k3, k1}
if passed, open En

set b′ to d ⊕ bn
if not passed, halt

on the choice of R to open envelopes, the sender may continue the protocol;
clearly this is possible in half of the cases (the possibility that a randomly chosen
bit x is equal either to 0 or to 1, depending which was the opening of R). In
such cases, S can clearly open the value d to any bit-value, since he is left with
x and its negation x in the pair A at his end.

Note that the receiver R cannot cheat without being caught: i.e., torn en-
velopes are obvious to the sender and opening by R of more than two envelopes
–to try and break the hiding property– is not possible due to the stage-by-stage
unsealing enforced by the protocol.

Also, note that the envelopes used within are seal-once envelopes. Thus, the
sender S is not able to change the values x stored inside the envelopes, after step
4 of the commitment phase (say, in order to avoid being caught by R).

Theorem 1. In a hybrid UC-model, where the setup is the FDE
OneSeal functional-

ity, the Pass&MayCheat protocol UC-realizes the F 1
2−WBC
EscapeThenMayCheat functionality.

Due to space constraints, the proof of Theorem 1 is given in the the full version
of this paper [3].

3.2 The CommitEnablesCheat and OpenEnablesCheat Protocols

The CommitEnablesCheat Protocol

The Commitment Phase. The sender wants to commit to a bit b and proceeds
as it follows.
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S R

�pick b1, b2, b3, not all equal

seal bi in Ei, i ∈ {1, 2, 3}
E1, E2, E3

remember {E1, E2 E3}

�E1, E2, E3check E1, E2, E3 for tamper

take m= MAJ(b1, b2, b3)

let d be b ⊕ m �d

pick i in {1, 2, 3}� i
FOR CommitEnablesCheat:

dispose of Ei

pick i in {1, 2, 3}FOR OpenEnablesCheat:

dispose of Ei

honest S �Ek with bk=m
test: Ek is in {E1, E2 E3} \ {Ei}
if passed, open Ek
set b′ to d ⊕ bk
if not passed, halt

equivocatory S

�Ek with bk=m test: Ek is in in {E1, E2 E3} \ {Ei}
if passed, open Ek
set b′ to d ⊕ bk
if not passed, halt

� i

1. The sender S creates 3 sealed envelopes denoted E1, E2, E3 respectively
containing the bits denoted b1, b2, b3, such that not all bits are equal. The
sender sends the envelopes over to the receiver R.

2. The receiver memorises the set {E1, E2, E3} of envelopes and sends them
back to the sender

3. The sender verifies that the envelopes sent back are untampered with. Then,
he computes m as the majority of the bits sealed inside, i.e., he computes
m = MAJ(b1, b2, b3). The sender wants to commit to a bit b. He calculates
d = b⊕m. Then, the sender sends d to the receiver.

4. The receiver sends the identifier i of an envelope that the sender should
dispose of, i.e., i ∈ {1, 2, 3}. Let the set S = {E1, E2, E3} \ {Ei} denote the
set of remaining envelopes.

5. The sender disposes of envelope i. (Note that after this the sender can equiv-
ocate if the remaining envelopes contain different bits.)

The equiv value is 2
3 .

The Opening Phase.

1. The non-equivoquing sender sends an envelope Ek such that bk = m.
The equivoquing sender sends an envelope Ek such that bk = m.

2. The receiver tests that Ek ∈ S and if so, he sets b′, the commitment bit, as
follows: b′ = d⊕ bk. If the test fails, the receiver halts.

Note that by being asked to discard3 an envelope at the opening phase instead of in
step 4 of the commitment phase, the idea behind protocol CommitEnablesCheat
can be shaped to obtain a protocol where the equivocation becomes clear only at

3 A possible way of implementing discarding is sending the emptied envelope back to
the receiver.



Several Weak Bit-Commitments Using Seal-Once Tamper-Evident Devices 81

the opening time. The protocol obtained in this way is hereby denoted
OpenEnablesCheat.The protocols CommitEnablesCheatand OpenEnablesCheat
are graphically represented in the previous figure.

Note once more that, unlike in the Pass&MayCheat protocol, in CommitEn-

ablesCheat and OpenEnablesCheat protocols, the committer can cheat with
some probability (i.e., 2

3 ), yet this is not influenced by him being caught cheat-
ing, but rather by a mere choice of the receiver.

These requirements sound similar to looking for a means in which Alice would
commit to a bit b using a BSC (binary symmetric channel) with noise level q [5].
Nevertheless, the existing solutions [5,10,20] to problems of the latter kind are
receiver-strong, not sender-strong. Also, they are not constructed to be UC-
secure, but secure by classical lines, which may be weaker. Moreover, those
original constructions involve error-correction codes and/or pseudo-random gen-
erators being manipulated by the participants. Thus, those primitives are also
beyond our cryptographically lightweight scope. Therefore, to obtain senders’
strength, UC-security, simplicity and human operability we have proposed pro-
tocols CommitEnablesCheat and OpenEnablesCheat above.

Explanations on the CommitEnablesCheat and OpenEnablesCheat protocols.
We detail on the CommitEnablesCheat protocol above, the explanations on Ope-

nEnablesCheat being very similar and immediately following. Let us consider
the case where the parties follow the protocol. We can see that if S prepares the
envelopes correctly (i.e., they contain a permutation of {x, x, x}, x ∈U {0, 1})
and he adheres to step 2, then at step 3, the value m = x. No matter what
value bi has (i.e., x or x), in the set S of remaining envelopes there is always an
envelope Ek with the value x inside that opens the commitment correctly. With
probability 2

3 , the set S still contains an envelope with value x. In this last case,
S could open his commitment to the flipped bit (i.e., point 2 in the opening
phase). By the above, the protocol is complete. One can see that the case where
S does not follows the protocol in terms of envelope sealing does not bring him
any benefit. In Theorem 2, we formalise the above explanations, in the context
of the UC framework.

Theorem 2. In a hybrid UC-model, where the setup is the FDE
OneSeal functional-

ity, the CommitEnablesCheat and OpenEnablesCheat protocols UC-realize the

F 2
3−WBC
LearnAtCommitment and the F 2

3−WBC
LearnAtOpening functionalities, respectively.

Due to space constraints, this proof is given in the full version of this paper [3].

3.3 Amplifying q-WBC Sender-Strong Protocols

Let �∈ {Pass&MayCheat, CommitEnablesCheat, OpenEnablesCheat}.
Let � ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening}.

By using k instances of a q-weak sender-strong protocol of the �-kind of
protocols, we can obtain a protocol Amplified_� protocol that UC-realizes

Fqk−WBC
� . Hence, we can attain regular bit-commitments for a conveniently

large k. See the formalisations below.
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The Amplified_Pass&MayCheat Protocol:

(Equivocatory) Commitment Phase. The sender commits, all equivocally or
all normally, to a bit bj in k sequential rounds, each time using the

Fq−WBC
EscapeThenMayCheat functionality, j ∈ {1, . . . , k}. The j-th such functionality is

denoted Fq−WBC
EscapeThenMayCheat; j .

Each functionality Fq−WBC
EscapeThenMayCheat; j to which EquivocatoryCommit was

sent, outputs to its sender Committed, with probability q and ⊥ otherwise. If ⊥
is sent, then the receiver aborts.

(Equivocatory) Opening Phase. The sender opens (equivocally or not) all

commitments using the functionalities of Fq−WBC
EscapeThenMayCheat; j . The receiver halts

if the openings are not all the same.

Theorem 3. Let q ∈ (0, 1) and λ be a security parameter. By using k = Ω(λ)

instances of an Fq−WBC
� functionality, we can construct a protocol Amplified_�

that UC-realizes the FBC functionality, where
� ∈ {EscapeThenMayCheat, LearnAtCommitment, LearnAtOpening} and
�∈ {Pass&MayCheat, CommitEnablesCheat, OpenEnablesCheat}.

In particular, the protocol Amplified_Pass&MayCheat UC-realizes the func-

tionality of Fqk−WBC
EscapeThenMayCheat.

For the regular BC functionality, FBC , see the full version of this paper [3].
The Amplified_Pass&MayCheat BC protocol is trivially following out of Am-

plified_Pass&MayCheat, i.e., where equivocation is not possible. By letting
k = log ε

log q in Theorem 3, we make Amplified_Pass&MayCheat a ε-WBC, with
ε arbitrarily close to 0. However, for Amplified_Pass&MayCheat to UC-realize
FBC , we need a k to be of linear-size in the security parameter λ. Proofs that
weak bit-commitment protocols in the above sense can be amplified to regu-
lar bit-commitments exist already, e.g., [20]. The proofs therein follow long-
established lines, i.e., not the UC framework 4. Also, they often refer to receiver-
strong protocols and generally use more convoluted primitives, e.g., pseudo-
random generators, error-correcting codes, outside our lightweight interests. Our
proof is done in the UC framework and, as we can see, the protocol respects the
sender-strong aspects sought-after herein. Due to space constraints, the actual
proof of Theorem 3 is given in the full version of this paper [3].

3.4 (Stronger) Universally Composable Security

A UC-oriented note is that something as little as the order of the messages in the
commitment-phase of the weak protocol CommitEnablesCheat above and/or the
amount of randomness given to the sender does impact the UC-simulatability. A
protocol only different from CommitEnablesCheat in that it inverts the order of

events 3 and 4 in the commitment phase does not UC-realize the F 2
3−WBC
LearnAtCommitment

4 Similar proofs of amplifications may exist in the UC framework, however they would
not be with respect to the Fq−WBC

i functionalities as introduced in Section 2.
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functionality, while it is perfectly hiding and binding with probability 2
3 in the

classical sense. Thus, it seems to be easier to construct q-weak bit-commitments
using just a formalisation of distinguishable envelopes, but when sender-strength
and UC-security are both sought after subtle difficulties arise (q ∈ (0, 1)).

Another important UC note is that the protocols above (and in fact all weak
bit-commitment protocols constructed previously for the receiver-strong case in
Moran and Noar’s work [18]) are not secure in stronger versions of the UC frame-
work, e.g., GUC (Generalised UC) or EUC (externalised UC) [7]. For a wrap-up
on GUC (Generalised UC) or EUC (externalised UC), see the full version of this
paper [3]. To support this claim, it is enough to show that the protocols are
not secure in the EUC framework. So, in an EUC model with the FDE

OneSeal-setup
consider an environment that prepares the envelopes and feeds them to the ad-
versary. It is clear that the ideal adversary cannot “extract” the bit b to commit
to and thus he cannot indistinguishably simulate the commitment phase.

Lemma 4. In a hybrid EUC-model, where the setup is the FDE
OneSeal functionality,

the CommitEnablesCheat protocol does not EUC-realizes the F 2
3−WBC
LearnAtCommitment

functionality.

Due to space constraints, the proof of this lemma is given in the full version of
this paper [3].

As aforementioned, along very similar lines the receiver-strong protocols in
previous works [18] are not EUC-secure either. We modify the FDE

OneSeal function-
ality slightly such that when used as a setup, we attain EUC-security of the
protocols herein and those WBC protocols in Moran and Noar’s work [18].

FpurpotedDE
OneSeal : A Stronger Functionality for Tamper-Evident Distinguishable Sealed

Envelopes. This functionality stores tuples of the form (id, value, holder, state).
The values in one entry indexed with id, like before.

SealSend(id , value, Pj ). Let this command be received from an envelope-creator
party Pi. It seals an envelope and sends its id to the future holder Pj . If
this is the first Seal message with id id, the functionality stores the tuple
(id, value, Pj , sealed) in the table. The functionality sends (id, Pi) to Pj and
to I. (Optionally, it can send (id, sealed) to Pi and to I). If this is not the first
command of type Seal for envelope id, then the functionality halts.

Send(id , Pj ). Let this command be received from a holder-party Pi. This com-
mand encodes the sending of an envelope held by Pi to a party Pj . Upon re-
ceiving this command from party Pi, the functionality verifies that there is an
entry in its table which is indexed by id and has holderid = Pi. If so, it out-
puts (Receipt, id, Pi, Pj) to Pj and I and replaces the entry in the table with
(id, valueid, Pj , stateid).

Open id . Let this command be received from a holder-party Pi. This command
encodes an envelop being opened by the party that currently holds it. Upon
receiving this command, the functionality verifies that an entry for container id
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appears in the table and that holderid = Pi. If so, it sends (Opened, id, valueid)
to Pi and I and replaces the entry with (id, valueid, holderid, broken).

Verify id . Let this command be received from a holder-party Pi. This command
denotes Pi’s verification of whether or not the seal on an envelope has been
broken. The functionality verifies that an entry indexed by id appears in the
table and that holderid = Pi. It sends (Verified, id, stateid) to Pi and to I.

Themain difference betweenFpurpotedDE
OneSeal and the originalFDE

OneSeal functionality
is that an envelope is created for a specifically intended holder and this holder is
consequently notified with a message of the form (id, creator). Note that this en-
hancement is realistic (i.e., if to be used in a protocol, the delivery address of the
receiver is to be specified by a manufacturing body). However, note that the func-
tionality does not store or reveal publicly the creators of the envelopes (i.e., that
would be a stronger enhancement, akin to signing the tamper-evident devices).
With this modification, the holder-to-be knows that a specific envelope has been
freshly produced by a specific creator. Intuitively, this prevents the weakness in
the proof of Lemma 4 from happening, i.e.,R cannot accept envelopes that are not
(newly) meant for him. Also, the creator is authenticated by the functionality, in
the sense that he cannot use envelopes made by others. In a larger sense, this can
prevent relay attacks. More formally, the following holds.

Theorem 5. In a hybrid EUC-model, where the setup is the FpurpotedDE
OneSeal func-

tionality, the CommitEnablesCheat protocol EUC-realizes the F 2
3−WBC
LearnAtCommitment

functionality.

The proof of the above theorem follows from the proofs of Theorem 2 and that
of Lemma 4, combined with the fact that FpurpotedDE

OneSeal -envelopes have a specified
entity as their destination and this entity knows this fact upon the creation of
the envelopes. We conjecture that Theorem 5 holds even in the case of adaptive
adversaries.

4 Relations between (Weak) Bit-Commitments and
Distinguishable Envelopes in UC

Given the results above and those in [18], we have that FDE
OneSeal (or FpurpotedDE

OneSeal )
can create receiver-strong and sender-strong weak UC bit-commitments, which
in turn can be amplified to obtain regular UC bit-commitments. The FBC func-
tionality or a flavour of it (see FCOM in [6]) constitutes a sufficient setup to
UC-realize a ZK protocol [6]. Under these circumstances, it is definitely inter-
esting to investigate the existent implications between different sort of weak
bit-commitment, regular bit-commitment and tamper-evident envelopes, in the
UC framework.

Firstly, note that a multiple commitment FMCOM [6] setup suffices to UC-

realize an Fq−WBC
EscapeThenMayCheat, Fq−WBC

LearnAtCommitment or an Fq−WBC
LearnAtOpening functionality,

for some q ∈ (0, 1). (We recall the FMCOM [6] functionality in the full version of
this paper [3]). In other words, several instances of the regular bit-commitment
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functionality FBC suffice to UC-construct a sender-strong weak bit-commitment.
In particular, three regular bit-commitment FBC functionalities (see the full ver-
sion of this paper [3]) UC-construct a 2

3 -WBC which is sender-strong. Let a pro-
tocol P be obtained from protocol CommitEnablesCheat where the creation and
transmission of the three envelopes is respectively replaced by creation and trans-
mission of three commitments using FMCOM or using three respective instances

of FBC . An analogous fact holds also for F 2
3−WBC
LearnAtOpening, where to construct the

protocol P we use OpenEnablesCheat instead of CommitEnablesCheat.
Secondly, as a consequence of Theorem 3, note that all sender-strong weak

BCs UC-imply regular BCs.
Thirdly, it should be answered whether bit-commitment setup suffice to UC-

realize the FDE
OneSeal distinguishable tamper-evident envelope functionality. We

conjecture that question 1 has a negative answer. This is intuitively due to the
fact that in bit-commitments it is the sender who opens the commitment and,
in an envelope-emulating protocol, it should be the envelope’s creator who needs
to perform the corresponding opening. But, in order for this to be generally
possible, an envelope creator ought to know the current envelope holder, which
is not the case in our formalisations (i.e., envelopes can be passed on from holder
to holder, without the notification of the creator).

To sum up, amplification proofs considered, we have completed the picture
of UC-realisability of different flavours of sender-strong weak BC with tamper-
evident envelopes and of their relation to (almost) regular BC and receiver-strong
weak BCs by Moran and Naor [18]. To some level, we can say that all weak BCs
are equivalent to regular BCs. We leave the EUC or the GUC correspondents of
the implications enumerated above as open questions.

5 Conclusions

Answering a variant of the open question in Moran and Naor’s work [18] and
several practical needs [9,14,11], we conclude that simple, sealed envelopes can
also create sender-strong (weak) bit-commitments protocols. In the process, we
have also discussed the fact that the protocols in [18] are not EUC-secure but only
UC-secure. We mainly focused on creating sender-strong bit-commitments with
the same level of security. Nevertheless, we showed how to modify the FDE

OneSeal

functionality given in Moran and Naor’s work [18] such that we also create
(weak) bit-commitment protocols that are EUC-secure. We showed lightweight
amplification proofs of our WBC protocols. We lastly discussed some of the
implications between UC weak BCs, UC regular BCs and distinguishable tamper-
evident UC envelopes. The interest in weak BC protocol per se was motivated
by both theoretical and practical reasons. The GUC-security of our schemes
remains to be discussed.
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4. Brassard, G., Chaum, D., Crépeau, C.: Minimum Disclosure Proofs of Knowledge.
Journal of Computer Systems Science 37, 156–189 (1988)
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Abstract. The Random Oracle model popularized by Bellare and Rog-
away in 1993 has proven to be hugely successful, allowing cryptographers
to give security proofs for very efficient and practical schemes. In this
paper, we discuss the possibility of using an incompressible but fixed,
”algorithmically random” oracle instead of the standard random oracle
and show that this approach allows for rather similar results to be proven
but in a completely different way. We also show that anything provably
secure in the standard random oracle model is also secure with respect
to any algorithmically random oracle and then discuss the implications.

1 Introduction

Cryptology is the science of secure communication. Security, however, is often
quite hard to achieve unconditionally, and one usually needs to base the security
of a primitive on some set of computational assumptions. Nevertheless, there
are cases where computational assumptions seem insufficient for a protocol that
is fast enough for practical purposes. In these cases, the standard model is of-
ten augmented by giving access to an oracle that is chosen uniformly and at
random from the set of all possible oracles. Proofs in such a Random Oracle
Model (ROM) are usually considerably simpler and still offer rather convincing
evidence that the result does indeed hold in practice. The approach of using
random oracles has its roots in complexity theory [1]. In cryptology, its use was
popularized by Bellare and Rogaway [2] and it has seen widespread use since
then.

The near-ideal functionality supplied by such an oracle simplifies the proofs
and often allows for very simple constructions to be proved secure with respect to
very strong security properties. The main problem is that in reality, no such ide-
ally random oracles are available and as such, one would need to use something
else – usually either a hash function such as SHA-2 or a symmetric encryption
primitive such as AES – in their place. Since the instantiation is not ideally ran-
dom, however, the proof in the random oracle model is only of heuristic value
and there are indeed constructions that are secure in the random oracle model
but which have no secure poly-time implementations [3,4]. Nevertheless, it has
proven to be a valuable heuristic, as most of the schemes that have been devel-
oped in such a way have not been broken yet even with concrete instantiations.

Random oracles are also used extensively in proving separation results and
lower bounds for black box reductions. In this case, the random oracle is used as

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 88–103, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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a provably secure instance of a specified primitive (such as a one-way function
or collision resistant hash function) in order to create a computational world in
which the base primitive does indeed exist whereas the thing that one should be
able to construct from it does not.

When working in the ROM, one is not dealing with a single fixed oracle, but
rather a random family of oracles where security is shown only on average. This
can make it hard to say anything about any concrete oracle in particular. It is,
of course clear that if a property holds on measure 1 of all the oracles, there
have to exist fixed oracles for which it holds. This may not be enough for some
applications, however. For instance, it seems to provide a major obstacle for
generalizing separation results to the non-uniform model [5].

In this paper we show that practically everything that is secure in the ROM
is also true with respect to every ”algorithmically random” deterministic oracle.
This gives a better characterization of the oracles by essentially giving a con-
structive specification of the measure 1 set for which the claim holds. Among
other things, it allows one to freely replace the ”truly” random oracle with a
single fixed oracle that is only ”algorithmically” random.

To prove our results, we will use Algorithmic Information Theory along with
Chaitin-Kolmogorov-Solomonoff randomness (also called algorithmic or deter-
ministic randomness), which is built around the notion of incompressible bit
sequences. We show how to give cryptographic proofs in that model by demon-
strating how to prove one-wayness of a function based directly on the algorithmi-
cally random oracle. We will then proceed to the main result, using a somewhat
different side of AIT to give a simple and concise proof of the fact that using an
algorithmically random oracle actually yields a stronger model than the classical
ROM. We will then discuss the implications of the result to the previous work
in the field.

To date, Chaitin-Kolmogorov-Solomonoff complexity has seen only very lim-
ited use in cryptology, mainly in the study of pseudo-randomness. For instance,
Beth and Dai [6] showed that the linear complexity of a string is nearly equal
to the Kolmogorov complexity for practically all bit strings. Its use in com-
putational complexity theory has been somewhat more widespread, even being
applied to the study of oracle separations in the random oracle model (see [7,8]).
However, our approach differs markedly from the one used there by being con-
siderably less technical and assuming far less background knowledge about al-
gorithmic randomness. This should make our result more approachable to the
wider audience and may perhaps serve as a simple and practical introduction
into Algorithmic Information Theory for cryptologists.

2 Basic Terminology

In this section we will introduce the terminology used throughout the following
paper.

We say that a function ε(n) is negligible when it is asymptotically smaller
than any inverse polynomial.
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The basic model in the following discussion will be a Turing machine with
a binary alphabet {0, 1}. It has three tapes: one input tape, one output tape
and one working tape. Movement on the working tape is unrestricted, but only
forward movement is allowed on both input and output tapes. In the following
we assume the machines to have programs that always terminate on the inputs
they are given (although the set of inputs can be restricted in which case the
behavior on the other inputs does not concern us). This means that in general
we are talking about computable partial functions φ : {0, 1}∗ → {0, 1}∗ where
{0, 1}∗ is defined to be the set of all finite bit strings. We assume the existence
of a standard coding 〈·, ·〉 for pairs of bit strings into a single bit string and
henceforth assume that a Turing machine can take any number of finite inputs on
its input tape. We will also assume a canonical correspondence between natural
numbers N and bit strings {0, 1}∗ so that one set can be substituted for the other
in the argumentation whenever convenient. We call a real number ξ (bitwise)
computable when there exists a Turing machine K : N → {0, 1}∗ so that the
output of K(n) is the first n bits of ξ. We will later also need machines that
take one infinite input, which is then accounted for by appending that input
on the tape after the finite inputs. We also fix a Universal Turing Machine
U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that U(p, i) = x precisely when the p-th
Turing machine (in some ordering of Turing machines) gives the output x on
input i. In this case the bit string p is called the program for the Turing machine
it stands for. We will use xy to mean the concatenation of x with y. We will also
be talking about infinite bit sequences. We denote the set of all such sequences by
{0, 1}ω and note that this is disjoint with {0, 1}∗ that contains all finite strings.
For an infinite bit sequence x ∈ {0, 1}ω we will write x(n) for the (n + 1)-th
bit of the sequence (so the first bit is x(0)) and xa:b for the substring of the
sequence formed by concatenation of x(a)x(a+ 1) . . .x(b− 1). For convenience,
we use special notation xn = x0:n.

We will also make use of the standard (uniform) Lebesgue probability mea-
sure defined over {0, 1}ω, which is implicitly assumed whenever probability or
measure over infinite bit sequences is discussed, i.e. when noting that a property
holds with measure 1 over {0, 1}ω.

By a polynomial-time Turing machine we mean a machine that always halts
within a number of steps polynomial in its input length. When talking about
probabilistic Turing machines, we assume that the machines additionally have
one extra input tape that is filled with independently and uniformly chosen
random bits. When talking about non-uniform Turing machines, we assume that
there is one extra input tape that has some advice information that is the same
for all inputs of the same length. We note that for polynomial-time machines both
models (and the combination of the two) can be simulated in polynomial time
on the original three tape machine by packing the contents of the randomness
tape and the advice tape both on the one input tape along with the input, as
only a polynomially bounded number of bits could be read from either of them.

We also introduce the notion of an Oracle Turing machine, that has an ad-
ditional functionality for dealing with an outside subroutine (oracle) function
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f : {0, 1}∗ → {0, 1}. The oracle function f can be any well-defined deterministic
function, which does not have to be computable. The oracle query is assumed
to take just one step in terms of execution time. We will use ()· to differentiate
between normal and oracle Turing machines. There is a trivial isomorphism be-
tween the set of all oracles and the set {0, 1}ω (where f(n) is the n-th bit of the
bit sequence) and we will make implicit use of it whenever convenient.

We will use the standard definition of a primitive used in the separation result
literature, best explained in Reingold et al. [9]. In brief, a primitive P is a class
of (not necessarily computable) functions intended to perform a security related
task (e.g. data confidentiality, integrity etc.). Each primitive P is characterized
by the success function εPk·, which for every instance f of P, an adversary A,
and the security parameter k returns the breakage success εPkf,A ∈ [0, 1] (the
unit interval of real numbers). In this paper, both instances and the success
functions are generally assumed to be computable, however.

3 The Random Oracle Model

The random oracle is often modeled informally as an agent that, when queried
with input x, flips random coins to get a response y, except when the query x has
occurred before, in which case it answers with the exact same response as it did
before. The agent can be queried by both honest parties and adversaries and has
to answer to both consistently. More formally, the random oracle model entails
giving all parties access to an oracle that is chosen uniformly and at random
from the set of all oracles. Success and failure probabilities are now defined over
not only the randomness tapes of the parties but also over the choice of oracles.

In practice, the oracle, which is formally a function o : {0, 1}∗ → {0, 1}
(or equivalently, a bit sequence o ∈ {0, 1}ω) is often used in the form of a
family of functions fn : {0, 1}m(n) → {0, 1}n (where m is a polynomial). Such a
function can be constructed from a given bit sequence o (provided by the oracle)
in a completely straightforward way by defining fon(i) = oSn+ni,...,Sn+n(i+1)−1

where Sn =
∑n

j=1 j · 2m(j)) is the length of the descriptions of foj for j < n.
This construction is bijective, meaning that if o is chosen uniformly among all
candidates, so is the family {fn : n ∈ N}. Therefore, it makes no difference
which of the two is taken as a basis for the definition of a random oracle. In the
following, we will denote the standard random oracle as O.

We will use the following definition

Definition 1. Let g be an instance of a primitive P and let εoA(n) be the proba-
bility that adversary A succeeds in breaking gn relative to oracle o ∈ O. We say
that g is secure against A relative to o if εoA(n) is negligible in n. We say that
g is secure in the ROM if for all adversaries A, g is secure with probability 1
(taken over o ← O).

There is another, stronger definition of security in the ROM, which is favored
in the more practical branches of cryptology and which basically states that a
primitive is secure if for all adversaries A, the probability (taken over both o
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and the random coins of A) of A succeeding is negligible. Anything secure w.r.t.
that stronger model is also secure with respect to our definition. The distinction
between the two models is mainly technical, but there are also some deeper issues.
The critique of Canetti et al. [3] illustrates the difference pretty well, as it is easy
to see that it only makes sense with respect to the stronger model. Essentially,
our definition corresponds to the notion of non-programmable random oracle of
Nielsen [4].

In this work, we will basically show that the measure 1 set of oracles for
which the security is proven in this case is sure to contain the set of all algorith-
mically random sequences, thus allowing us to replace the ”random” random
oracle with a fixed, algorithmically random bit sequence. We will now give a
brief introduction into the field of algorithmic randomness and make the idea of
algorithmically random oracles somewhat more precise.

4 Algorithmic Information Theory and the
Algorithmically Random Oracle Model

Algorithmic Information Theory (AIT) stems from independent work by Kol-
mogorov [10], Chaitin [11] and Solomonoff [12] who all tried to develop a purely
algorithmic and deterministic concept of randomness. The intuition behind their
work is that a bit string can be considered random when it cannot be compressed
or (equivalently) contains no significant testable patterns.

In the context of modern algorithmic information theory, the notion of incom-
pressibility is usually formulated in terms of self-delimiting programs1. In this
case the Universal Turing machine U is such that it is assumed to terminate only
when the machine halts with its input tape head at the last bit of the input.
This self-delimiting requirement essentially means that the length of the pro-
gram has to be encoded inside the program. For our purposes, it is basically just
a minor technical constraint, but the assumption is of central importance when
using the results from AIT. The self-delimiting requirement is not restrictive as
any non-self delimiting program can easily be converted into a self-delimiting
format by prefixing it with its length and a short (self-delimiting) program that
interprets the length in the correct way.

The self-delimiting description-length complexity (or Chaitin complexity for
short) H(x) of a bit string x is then defined as the length |x′| of the shortest
(self-delimiting) program and input pair x′ = 〈p, i〉 such that U(x′) = x. Due
to the self-delimiting requirement, H(x) can actually be somewhat larger than
|x|, but the difference is upper bounded by O(lg |x|). Finite strings of length
n whose complexity is equal to Σ(n) = max{H(x)|x ∈ {0, 1}n} are defined as
being Chaitin random.

1 This has not always been the case. The self-delimiting model was first introduced
by Levin [13] and popularized by Chaitin [14] and is seen by many as the biggest
breakthrough in AIT [15].
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In this work, however, we are mainly concerned with randomness of infinite
bit sequences. There are many equivalent definitions, the most common of which
is probably the following.

Definition 2 (Algorithmic Randomness). A bit sequence x ∈ {0, 1}ω is said
to be algorithmically random when there exists a constant cx (the randomness
threshold) such that all of its prefixes xn have complexity H(xn) ≥ n− cx.

It turns out that such sequences do exist and are, in fact, quite common. The
following result is due to Martin-Löf [16].

Theorem 1. A measure 1 of bit sequences x ∈ {0, 1}ω are algorithmically ran-
dom.

There are also concrete examples of such sequences, the best known of which is
probably the Chaitin’s constant,ΩU – the halting probability of a given Universal
Turing Machine U over all its valid inputs. This number is uncomputable in the
strongest possible sense in that any program computing its n initial bits correctly
has to have a length of at most n− c for some fixed constant2 c.

In some sense, an algorithmically random sequence serves as a good replace-
ment for ”real” randomness in the probability theory sense. The Algorithmically
Random Oracle Model (AROM) is thus very simple – we just augment the nor-
mal computational world with an oracle access to an algorithmically random
bit sequence. Depending on the circumstances, one may actually wish to choose
a particular random bit sequence that has other good properties besides being
algorithmically random. In this work, however, we will get by with properties
that every such sequence possesses.

Definition 3. We say that g is secure in the AROM if for all adversaries A, g
is secure relative to all algorithmically random oracles o ← O.

We will demonstrate that replacing ”real” randomness with its algorithmic coun-
terpart allows us to use description-length based proof methods in cryptology.
For that, we begin by proving that a secure one-way function exists in AROM.
This is an analogue of a similar result proven by Impagliazzo [18] for the standard
ROM.

5 A One-Way Function in an Algorithmically Random
Oracle Model

One-way functions are one of the most widely used primitives in cryptology.

Definition 4 (One-Way Function). A family of functions {fn : {0, 1}m(n) →
{0, 1}n|n ∈ N} is one-way if for every randomized polynomial-time adversary A,
the probability Prx←{0,1}m(n) [x′ := Af (n, f(x)) : f(x′) = f(x)] is negligible.

2 The same also holds for proving the correctness of the computed bits i.e. you can only
prove the correctness of a limited number of bits in any finite theory. Remarkably,
there even exists a choice of U for which not a single bit of ΩU can be proven correct
in ZFC [17].
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For every algorithmically random string r, the standard construction (described
in Section 3) results in a function family that is one-way in a very strong sense.
To prove that, however, we will first need a Lemma about the output distribution
of such a construction. The proof of the Lemma will also serve as an introduction
to the incompressibility arguments used in the following two theorems.

Lemma 1. Let r be an algorithmically random sequence and let f rn be defined
as above. Let m = m(n) be such that m ≥ n. Then for a sufficiently large n, no
more than m32m−n different inputs can map to the same output.

Proof. To prove the claim, we try to construct a program that would print out
the n2m bits of r corresponding to f rn, but which, along with its inputs would
itself be describable in less than n2m − cr bits. This leads to a contradiction, as
it allows us to give a description of rSn+1 that is shorter than should be possible
for an algorithmically random sequence3.

The description of f rn consists of two parts: the description of the algorithm
followed by the bit strings describing its inputs. The algorithm itself is universal
and the length of its description is independent of the lengths of its inputs. The
algorithm is also assumed to be encoded in a self-delimiting fashion p so that it
can determine where its own description ends and the inputs begin.

Let yf be the most frequent output of f rn and let X be the set of inputs that
leads to this output. Denote k = |X |.

We construct an algorithm that will take the following inputs: the numbers
m and n, followed by the value yf and its number of occurrences k. After them
there is a list of k indices i0, . . . , ik−1 that describe the set X . Indices are
incremental, so that the elements of X in their lexicographic order would have
indices i0, i0+ i1, . . . ,

∑k−1
j=0 ij . The last input contains all the contents of the yet

unspecified blocks in their normal order.
The program works in the following way:

• Read m,n. Initialize a table of 2m segments each of length n bits.
• Iterate over all the values x ∈ X using i0, . . . , ik−1 :

◦ Fill the segment corresponding to x with yf
• Fill the table sequentially with the remaining bits of input.
• Output the contents of the table.

It should be clear that such a program will indeed output the first n2m bits of r.
We now turn to the question of how many bits are needed to encode the inputs.
We firstly note that we need to be able to tell, when one of the inputs ends and
another one begins. As such, we would like all the inputs to be encoded in a
self-delimiting way.

There are many standard ways to achieve that [15]. The simplest approach
would be to encode 0 as 00, 1 as 11 and to reserve 01 and 01 as the delimiting

3 It is trivial to convert a short description of fr
n to that of rSn+1 once n is known

by simply building a program that outputs first Sn bits of it’s input verbatim and
then runs the program describing fr

n on the remaining input. Such a description is
necessarily shorter as n2m bits suffice for the description of fn if n is known.
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symbols signaling that this is where the current input ends and the next one
begins. To code an integer n in this manner would take 2 lgn+ 2 bits. There is
a more efficient way to encode a bit string, however. Namely, instead of coding
the whole string in this costly manner, we can start by first coding the length of
the bit string and then just writing the bit string after it. When parsing, we can
first read the length and then read length bits after it to get the string itself.
Coding an integer in that way requires lg n+ 2 lg lg n+ 2 bits.

Coding m and n therefore takes lgn+lgm+2 lg lgm+2 lg lgn+4 = O(lgm)
bits. As n is known, coding yf takes just n bits as it can just be written verbatim.
Coding k is again standard, taking lg k+2 lg lg k+2 < m+O(lgm) bits. Coding
the following list of indices will also be done in the standard way. However, we
note that since

∑k−1
j=0 ij < 2m, the total length of their encoding cannot exceed

k
(
lg
(
2m

k

)
+ lg lg

(
2m

k

)
+ 2
)
, which follows directly from the fact that the uniform

distribution always has maximal Shannon entropy. The remaining bits of rn2m

can also be encoded verbatim as their number is completely determined by n, m
and k. The inputs can thus be encoded with n2m+k (m− n+ 2 lgm+ 2− lg k)+
m+O(lgm) bits.

If r is an algorithmically random sequence, k ≥ m32m−n leads to a contradic-
tion as it produces a coding that is asymptotically shorter than n2m − cr. ��

We will now proceed to the main theorem of this section, which states that
an algorithmically random sequence will indeed yield a very strong one-way
function. Our result is similar to that of Impagliazzo [18], where it was shown
that measure 1 of all oracles will result in a one-way function secure in the non-
uniform model. However, our result is stronger in that we explicitly state that
the measure 1 set in question is that of algorithmically random sequences:

Theorem 2. Let r be an algorithmically random sequence and let f rn be defined
as before. If m = m(n) is such that m ≥ n then {f rn|n ∈ N} is an ε-secure
one-way function (secure even in the non-uniform model).

Proof. Let r and the function m(n) be fixed and denote fn := f rn. Assume that
there exists a (possibly non-uniform) polynomial-time oracle machine A· that is
able to invert {fn|n ∈ N} (i.e. Afn(n, y) can find a x such that y = fn(x) with
probability greater than ε where the probability is taken over all the possible
inputs x ∈ {0, 1}m). Since A· is polynomial-time, there exists a polynomial upper
bound q(n) on the number of oracle, randomness and advice queries that it can
make. We show that existence of such an adversary will lead to a contradiction
in a similar manner as in the previous proof, i.e we show how to use it to get an
impossibly short description of the bits of r that correspond to fn.

When constructing the shorter description, we will encode the adversary along
with its randomness and advice tapes. Since the adversary is successful on aver-
age, there has to exist a randomness string for which the adversary is at least as
successful as on average over all the randomness strings. Encoding the adversary
algorithm (which is of fixed size) along with this randomness string and advice
string can clearly be done in O(q(n)) bits.
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Since A· is at least ε successful, Lemma 1 implies that there are at least
ε2m

m32m−n = m−3ε2n different output values that it can invert successfully, as in
the worst case, each output value that can be inverted can have at mostm32m−n

input values correspond to it. Let Y be the set of all such values. Therefore
|Y | > m−3ε2n.

We can assume that whenever Afn(y) = x such that fn(x) = y (so y ∈ Y ),
the query fn(x) occurs somewhere within the execution of A·(y) – if not, we can
augment A· by forcing it to query its output from fn before actually returning
it (which does not increase the program length or running time by more than
O(1)). This means that we can define for all y ∈ Y a number ky as the index of
the first query for x such that fn(x) = y that is made within the execution of
Afn(y). Note that ky ≤ q(n) and as such we can write it with just lg q(n) bits,
if q(n) is known beforehand.

However, for theoretical considerations it is somewhat easier to assume the
adversary successful only on a subset of Y with a certain structure. Let y0 be the
(lexicographically) first element in Y and define yi, i > 0 as the first such element
of Y that is not given as an answer to the oracle queries made by the adversary
A· on any of the previous values y0, . . . , yi−1. Now define Y ′ = {y0, y1, . . . , yk}.
It should be clear that |Y ′| > q(n)−1|Y | > q−1(n)m−3(n)ε2n since each new
element added to Y ′ can stop at most q(n) elements of Y from also being added.
This selection ensures us that if A· is run consecutively on the elements of Y ′

then the first time that a query to f resulting in y ∈ Y ′ is seen is precisely within
the computation of A·(y). Let ε′ = |Y ′|2−n.

The description we construct for rn2m is composed of the integers m,n, l, the
program code for A· with its advice and randomness tapes, the list of indices
i (encoded as in the previous proof) for Y ′ and the corresponding values of ky
and finally the remaining bits of r that are in a specific order dependent on A·.

The description algorithm is the following:

• Read m,n. Initialize a table of 2m segments each of length n bits.
• Iterate through the index list for y ∈ Y ′:

◦ Start computing A·(y).
◦ When you need to query f(x) see if the result is already in the table for
f . If not, assume that the next n bits in the store are just that value and
add it to the table before using it within A·.

◦ Whenever you get to ky-th query of A·, just write y into the slot corre-
sponding to the query x that was made and move on to the next value
of y in Y ′.

• Fill the table sequentially with the remaining bits of input.
• Output the contents of the table.

It is clear we can order the bits in the last part of the store of bits so that the
final answer is indeed rn2m .

Let us now consider the size of this description. The program we described is
clearly of a fixed size p. The numbers m and n can be written in O(lg n) bits.
Encoding A· along with its advice and randomness takes l = O(q(n)) bits. The
index list and the values of ky can be written in |Y ′|(lg(ε′−1) + 2 lg lg(ε′−1) +
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lg q(n)) ≤ |Y ′|(n−lg |Y ′|+2 lgn+lg q(n)) bits. The last part of the bit store takes
n2m − n|Y ′| room because for each y ∈ Y ′ we get one pair f(x) = y for free
from A·. Adding everything up we get that the complexity of the description
is n2m + l + |Y ′| (2 lgn+ lg(q(n)) − lg |Y ′|) . Thus, if |Y ′| > n3q(n) (i.e ε >
n3q2(n)m3(n)2−n), this contradicts the fact that H(rn2m) > n2m − cr for large
enough n.

This means that even a relatively low inversion rate of an adversary will lead
to a contradiction. ��

6 One-Way Permutation from an Algorithmically
Random Permutation Oracle

In most cases, the construction of the required ”randomness” functionality (such
as a hash function or a pseudorandom generator) is pretty straightforward. How-
ever, there are cases where the randomness required is assumed to have more
structure. We will now show how to prove similar results in these cases as well.

In these cases, we cannot use the random string as the oracle directly. We
can, however, build a computable injective correspondence O between the bit
sequences {0, 1}ω and the oracles F that we want. It turns out that this is
sufficient.

Formally, the construction itself needs to behave as an oracle, i.e. have the
shape O : {0, 1}∗ → {0, 1}. For ease of understanding, we will instead construct
a function O : N × {0, 1}∗ → {0, 1}∗ so that O(n, ·) is a permutation of n bits.
This is just for notational convenience and can easily be accounted for with
the standard definition by using the standard pairing function 〈·, ·〉 and defining
O′(〈n, k, j〉) to equal the j-th bit of O(n, k) whenever j < n and k < 2n and to
be 0 otherwise.

The construction we use is completely straightforward, but very slow, working
in exponential-time. There are (2n)! different permutations of n bits so encoding
one of them uniformly at random requires lg(2n)! bits on average. Since (2n)! is
not a power of two, however, this figure only holds on average and the number
of bits required for uniform sampling is unbounded in the worst case. However,
we claim that this poses no real problems and that we can work as if �lgN� bits
allowed uniform selection from N elements even when N is not a power of two
(see Appendix A for justification for this claim).

We fix a computable canonical enumeration function P for permutations (so
that P(N, i, ·) is the i-th N -element permutation). We will construct the oracle
Ox(n, ·) = P (2n, S(x, n), ·), where S is a sampling routine that for each n inde-
pendently samples an index from (2n)! choices based on the bit sequence x. This
concludes the construction.

We will now show that whenever r is an algorithmically random string, {f rn :=
Or(n, ·)} is a one-waypermutation in a very strong sense. This somewhat strength-
ens an analogous result of Gennaro and Trevisan [19] who proved the same, but in
the standard ROM.
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Theorem 3. If r is an algorithmically random sequence, then f rn (as defined
above) is a one-way permutation (again secure even in the non-uniform model).

The proof is completely analogous to that of Theorem 2, except for the fact
that since inputs and outputs are in a one-to-one correspondence, we no longer
need to encode the list of indices in, meaning that encoding takes 2n(n− lg e)−
|Y ′|(lg |Y ′|− lg q(n)− lg e)+O(q(n)), where (n− lg e) is due to the upper bound
provided by the Stirling approximation for factorials.

It is pretty easy to convince oneself that similar proof techniques can be used
for other types of oracles as well, provided they satisfy the following simple
computability restriction.

Definition 5 (Computable oracle family). We say that a family of or-
acles F is a computable oracle family if there exists a computable function
O : {0, 1}∗ × {0, 1}ω → {0, 1} so that O(·,x) terminates for all algorithmi-
cally random choices4 of x and so that F = O(·,O) (with the proper distribution
assuming O is the standard uniformly distributed random oracle).

In principle, this definition also allows the oracle to be augmented with extra
functionality (instead of just structure), which in principle means one can easily
make the proofs work when they are relative to multiple oracles simultaneously.
This is useful in the context of oracle separations. For instance, it allows one to
combine a random oracle with a PSPACE oracle (which is the approach used
in [20]) or even embed a special ”universal collision finder” as is done in [21].

7 Relation to the Random Oracle Model

In this section we prove a somewhat surprising result – that AROM is nearly
equivalent to classical ROM. Our proof makes use of an alternative charac-
terization of algorithmic randomness due to Martin-Löf [16] that is based on
computable tests for randomness.

Definition 6. Let n ∈ N and x ∈ {0, 1}ω. A computable partial function T (n, x)
is called a computable test for randomness when there exists a computable func-
tion α : N → [0, 1] such that

• limn→∞ α(n) = 0

• For all n ∈ N, T (n, x) halts for less than a measure α(n) of inputs x ∈
{0, 1}ω.

• For all n ∈ N, T (n+ 1, x) halts implies that T (n, x) also halts. 5

4 Again, see Appendix A for the motivation for this relaxation.
5 The third condition essentially guarantees the test is for the same pattern for different
values of n. It just states that if a string is labeled non-random for a larger confidence
parameter (where there are less non-random strings), it should also have been labeled
as non-random for all the previous confidence parameters.
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In essence, a computable test for randomness is a program that runs on a ran-
domness string, looking for statistically significant patterns where α(n) is the
significance level. A randomness string is then labeled non-random when such a
pattern be found for arbitrarily small significance levels.

We note that from the computability point of view, this definition is highly
asymmetric – it is expected to finish computation only on the non-random in-
stances. This makes sense, considering we are looking for uncommon patterns,
since if no such pattern is to be found, the program may keep on searching for
it indefinitely, only stopping if it finds something.

Such tests can be used to provide for an alternative characterization of algo-
rithmically random sequences.

Theorem 4 (Martin-Löf). An infinite sequence x ∈ {0, 1}ω is algorithmi-
cally random precisely when no computable test for randomness halts on it for
infinitely many values of n.

Before stating our main theorem, we will need to introduce an additional tech-
nical assumption.

Definition 7. We say that the security criterion of a primitive P is computable
if for any given poly-time adversary construction A, it’s success probability εA(k)
is a computable function of the security parameter k.

This computation is usually completely straightforward – given k, it is normally
possible to run A sequentially on all the valid inputs with all the possible out-
comes of random coins and this is also usually sufficient to determine the success
probability (even if it is defined as a similarity of output distributions, for in-
stance). For non-uniform adversaries, one can add an outer loop that runs the
computation over all the possible advice strings and outputs the maximal suc-
cess probability achieved by any fixed advice. As such, this seems to be a purely
technical restriction.

Theorem 5. Assume that a construction CO is an instance of some primitive
P (that has a computable security criterion) w.r.t. a random oracle O. Then CO

is secure in the ROM precisely when Cr is secure for all algorithmically random
bit sequences r.

Proof. Right-to-left implication is trivial. If Cr is secure for all algorithmically
random bit sequences r then it is also secure in the ROM due to Theorem 1.

Left-to-right implication is just slightly more complicated. Assume the con-
trapositive, i.e. that there exists an algorithmically random string r for which Cr

is not secure. This means that there exists a poly-time adversary construction
Ao which succeeds with non-negligible probability on infinitely many different
values of the security parameter n.

Since the security criterion is computable, the success probability of Ax for
the security parameter k is a computable function εA(x, k). Since εA(r, k) is
non-negligible, there exists a (computable) c such that εA(r, k) > k−c infinitely
often. Let T(x, k) be a Turing machine that sequentially checks k, k+1, k+2, . . .
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and halts when it finds a k′ so that εA(x, k
′) > k′−c. It is easy to verify that

T satisfies the criterions for a computable test for randomness and that it also
halts for all values of k when given r as input. This contradicts the fact that r
is an algorithmically random sequence.

It should be fairly easy to see that the proof will still work when the standard
random oracle is replaced by a computable oracle family O(·,O). For complete-
ness, we will state that result formally as well.

Corollary 1. Assume that a construction CF is an instance of some primitive P

(that has a computable security criterion) w.r.t. a given computable oracle family
F = O(·,O). Then CF is secure in the ROM precisely when CO(·,r) is secure for
all algorithmically random bit sequences r.

8 Discussion

Theorem 5 shows that AROM and ROM are nearly equivalent. One slight dif-
ference may arise when one chooses a specific algorithmically random sequence
that has extra properties. However, this may very well be desirable, especially
considering that one could do part of the proof in the standard ROM, then trans-
late it to AROM by following the same steps as in the proof of Theorem 5 and
then carry out the final part of the proof by making an additional assumption
about the used bit sequence.

There is one more factor that needs to be taken into account. In the comments
about definition 7, we noted that non-uniform adversaries are not a problem.
However, there is a small nuance there that needs to be elaborated on. In most
proofs for ROM, security is proven in a completely black-box way i.e. without
assuming that the advice string depends on the oracle. In these cases, all that can
be guaranteed by our method in AROM is security against uniform adversaries.
However, we believe it to be only a somewhat technical point as ”generic” non-
uniform advice is likely to be of only very limited help.

What may actually prove useful, however, is oracle-dependent advice which
was studied in the context of the standard ROM by Unruh [22]. He used clever
information-theoretic tricks to show that in many cases, a polynomial-length
oracle-dependent advice string can just be dealt with by fixing a small part of
the oracle and then choosing the rest uniformly and at random like in the classical
ROM. His methodology is fairly general and allows already known results to be
re-proven in the stronger model in a fairly standard way. The results in this
model achieve true non-uniform security and are the ones that can be carried
over with full strength to the AROM. It is also worth noting that Theorems 2
and 3 achieve non-uniform security in that stronger sense.

9 Conclusions and Further Work

The model of algorithmically random oracles shows a lot of promise. In this work,
we have shown that AROM is equivalent to the standard ROM in all but some
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minor technical details. We have also shown how security proofs can be directly
based on description length argumentation, which allows for more algorithmic
and possibly cleaner proofs.

We have shown how to use the methods of AIT to prove security of a crypto-
graphic primitive in AROM. As, by Theorem 5, a security proof for all algorith-
mically random oracles implies a proof relative to a standard random oracle, this
essentially provides a completely new proof technique for the ROM. It would be
nice to see this proof method actually being used for new and practical security
proofs.

As described in Section 8, AROM can also be slightly stronger than the stan-
dard ROM when one assumes additional properties beside the algorithmic ran-
domness. It would, therefore, be very interesting to see a proof that works in
AROM but not in the ROM. It would be even more interesting if the result
proven in AROM in such a way was provably impossible in the ROM.

The model of AROM was first conceived as an alternative for the oracle
extraction step used in oracle separations, which has the potential of generalizing
to the non-uniform model of computation. As such, it would be very interesting
for the author to see it being used for proving separation results or even as a
basis for a framework for generalizing already existing separation results into the
non-uniform model.
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A Notes on Uniform Selection

Oracles are quite often sampled uniformly and at random from a finite set of
N different choices or are constructed based on a countable number of such
samplings (for example, when first choosing a random permutation and then
choosing a collision query reply for each possible circuit-input pair, as in [21]).
This can be somewhat tricky when the choice has to be made based on a uni-
formly distributed bit sequence x ∈ {0, 1}ω. When N = 2k is a power of two,
this is a simple matter of just interpreting the first k bits of x as the index and
choosing the choice corresponding to them.

When N is not a power of two, there still exists a rather straightforward
method of uniform sampling. Let n := �lgN�. The procedure works as follows:
Take the first n bits of x. If the value encoded in these bits is less than N , use
that as the result. If not, recursively take the next n bits and repeat the process.

This sampling procedure is not guaranteed to terminate for every choice of
x ∈ {0, 1}ω. However, when this happens, x is compressible, as one can code
xkn with just kn − k + 2 lg k + c bits. This is easy to see since the set of n bit
blocks for which a process is continued is of size 2n − N < 2n−1 and one can
thus reconstruct the string based on the number of blocks k and n− 1 bits per
each block. This, among other things, implies that the measure of bit strings for
which the procedure does not terminate has measure zero. It is easy to verify
that this is still the case even when the bit sequence is used not for a single
sampling but for a countable number of samplings i.e. that all such sampling
attempts will succeed in finite time for every algorithmically random x. We also
note that if N is known, the string that encodes the choice is self-delimiting as
the selection algorithm is deterministic and it is easy to determine when it halts.

Suppose now that r is an algorithmically random sequence and suppose one
part of the oracle was chosen by this sampling procedure from the set of N
elements. Suppose further that the existence of some adversary A· would imply
that this part of the oracle (and hence of r) could be encoded in less than
lgN − f(N) bits for some f(N) = ω(1). Then it is also clear from the previous
paragraph that if the bit string that resulted in this choice was of length kn
(so choice was made based on the k-th block), that choice string could also be
encoded with just lgN − f(N)+ (k− 1)n+ c bits. This means that the existence
of A· would still lead to a contradiction even when this sampling method is used.
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Abstract. Over the years, various security notions have been proposed
in order to cope with a wide range of security scenarios. Recently, the
study of security notions has been extended towards comparing crypto-
graphic definitions of secure implementation with game-theoretic defini-
tions of universal implementation of a trusted mediator. In this work we
go a step further: We define the notion of game universal implementation
and we show it is equivalent to weak stand-alone security. Thus, we are
able to answer positively the open question from [17,18] regarding the ex-
istence of game-theoretic definitions that are equivalent to cryptographic
security notions for which the ideal world simulator does not depend on
both the distinguisher and the input distribution.

Additionally, we investigate the propagation of the weak stand-alone
security notion through the existing security hierarchy, from stand-alone
security to universal composability. Our main achievement in this di-
rection is a separation result between two variants of the UC security
definition: 1-bit specialized simulator UC security and specialized simu-
lator UC security. The separation result between the UC variants was
stated as an open question [23] and it comes in contrast with the well
known equivalence result between 1-bit UC security and UC security.

Keywords: security models, UC security, time-lock puzzles, game
theory.

1 Introduction

Nowadays we rely more and more often for everyday tasks on security protocols.
Moreover, the number of contexts where the use of security protocols is required
by law or expected by users has also grown rapidly in recent years. A wide
range of security properties have been defined and implemented into real-world
systems, but so far there is no unique notion that fulfills all requirements: For
example, a given notion may ensure strong security guarantees, but comes at
the price of inefficiency or it offers good scalability in practice, but there are
scenarios where it is too permissive. In order to ensure the most appropriate
security notion is chosen when designing a system, one should know very well
how various security notions relate to each other.

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 104–124, 2012.
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Recently the view on security definitions has been extended [18] with the incip-
ient study of the equivalence relation between weak precise secure computation
and a weak variant of the game theoretic notion of universal implementation for
a trusted mediator. However, it is still left as an open problem [17,18] how to
obtain such a comparisons for other, possibly stonger security notions.

1.1 Contribution

We have a three fold contribution.
First, we relate the notion of weak stand-alone security1 to the emerging game-

theoretic concept of universal implementation [17,18]. In contrast to previous
work, for our result we use a variant of universal implementation that discards
the cost of computation. We are able to answer positively the open question from
[17,18] regarding the existence of game-theoretic concepts that are equivalent to
cryptographic security notions where the simulator does not depend on both the
input distribution and the distinguisher.

Second, we present a separation result between two variants of UC security: 1-
bit specialized simulator UC security and specialized simulator UC security. The
separation result between the UC variants was stated as an open question [23]
and it comes in contrast with the well known equivalence result between 1-bit UC
security and UC security. Both variants of the UC security notion are obtained
from the UC security definition by changing the order of quantifiers2. Thus, we
continue the line of study started by [8,23]. In order to obtain the separation,
we first show that the 1-bit specialized simulator UC security is equivalent to
a seemingly weaker version of security, namely weak specialized simulator UC
security3.

The main proof technique used in our separation result is to employ a cryp-
tographic tool called time-lock puzzles. Intuitively, this cryptographic tool can
be used for comparing the computational power of two different polynomially
bounded Turing machines. In order to achieve the separation result, we use time-
lock puzzles from which we derive a result interesting also on its own, mainly a
construction of a one-way function and a hard-core predicate.

Third, we study the propagation of weak security notion through the hierar-
chy security definitions. More precisely, we show that the notion weak security
composed under concurrent general composition is equivalent to 1-bit specialized

1 The difference between stand-alone security and weak stand-alone security is in the
order of quantifiers. For stand-alone security, the simulator is universally quantified
over all distinguishers and input distributions. As detailed in Sect. 2, for our notion
of weak security the simulator depends only on the distinguisher and not on the
input distribution. This comes in contrast with [18], where the simulator for weak
precise secure computation depends on both distinguisher and input distribution.

2 This means that in contrast to the UC security definition, the simulator may depend
on the environment.

3 This notion, additionally to having the simulator depend on the environment, also
has the simulator depend on the distinguisher that compares the views of the envi-
ronment from the real and the ideal world.
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simulator UC security, which is a variant of UC security. Together with our sec-
ond result, this implies that weak stand-alone security and stand-alone security
are not equivalent.

1.2 Background and Related Work

The initial work [31] on general security definitions highlighted the need for a
framework expressing security requirements in a formal way. The first formal
definition of secure computation was introduced by Goldreich et al.[11]. The
first approaches for formally defining security notions [13,14] have taken into
account only the stand-alone model. In this model, the security of the protocol
is considered with respect to its adversary, in isolation from any other copy of
itself or from a different protocol.

Micali and Rogaway [25] introduce the first study of protocol composition,
which the authors call reducibility. The first security definition expressed as a
comparison with an ideal process, as well as the corresponding sequential com-
position theorem for the stand-alone model are provided in [3]. The framework
of universally composable security, for short UC security [4] allows for specifying
the requirements for any cryptographic task and within this framework protocols
are guaranteed to maintain their security even in the presence of an unbounded
number of arbitrary protocol instances that run concurrently in an adversarially
controlled manner.

The notion of specialized simulator UC security has been introduced in [23]
and it was shown that this is equivalent to general concurrent composability
when the protocol under consideration is composed with only one instance of
any possible protocol. Changing the order of quantifiers in the context of security
definitions has been previously used in [8,17,18] for strengthening or weakening
given security notions.

In parallel with the UC framework, the notion of reactive simulatability has
been developed [2,19,26,27,28,29]. A detailed review about the differences be-
tween reactive simulatability and universal composability notions can be read in
the related work section from [4].

Our study of the relation between security and game theoretic notions has
been triggered by the recently emerging field of rational cryptography, where
users are assumed to only deviate from a protocol if doing so offers them an
advantage. Rational cryptography is centered around (adapted) notions of game
theory such as computational equilibria [7]. A comprehensive line of work already
exists developing novel protocols for cryptographic primitives such as rational
secret sharing and rational secure multiparty computation [1,9,10,15,16,22].

In a related line of work [17,18] it is considered that computation is costly for
protocol participants who are defined as rational. The focus is on studying how
costly computation affects participants’ utilities and the design of appropriate
rational protocols. A participant’s strategy is defined as a Turing machine and
both the input and the complexity of the machine (e.g., the running time or
the space used by the machine for a given input) influence the utilities. The
work [17,18] develops a game-theoretic notion of protocol implementation and
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the authors show that a special case of their definition is equivalent to a weak
variant of precise secure computation.

1.3 Organization

This work is structured as follows: In Sect. 2 we review security notions and
in Sect. 3 we revise the game theoretic notion of universal implementation. In
Sect. 4 we prove our separation result between specialized simulator UC security
and 1-bit specialized simulator UC security. In Sect. 5 we show our equivalence
relation between weak security under 1-bounded concurrent general composition
and 1-bit specialized simulator UC security. In Sect. 5.1 we present the equiva-
lence between our weak security notion and the game-theoretic notion of strong
universal implementation. In Sect. 6 we present out conclusions and future di-
rections.

2 Review of Security Notions

In this work we consider all parties and adversaries run in polynomial time in
the security parameter k and not in the length of input. In this section we review
two models of security under composition: concurrent general composition and
universal composability. Both frameworks require the notion of (computational)
indistinguishability given below.

Definition 1 (Computational Indistinguishability). We call distribution
ensembles {X(k, z)}k∈N,z∈{0,1}∗ and {Y (k, z)}k∈N,z∈{0,1}∗ computationally in-
distinguishable and we write X ≡ Y , if for every probabilistic distinguisher D,
polynomial in k there exists a function ε, negligible in k, such that for every
z ∈ {0, 1}∗

|(Pr(D(X(k, z)) = 1)− (Pr (D(Y (k, z)) = 1)| < ε(k)

A variant of this definition, which we call indistinguishability with respect to a

given adversary D and we denote by
D≡, is similar to the definition above, with

the difference that “for every probabilistic distinguisher D” is replaced with “for
distinguisher D”. Such a definition we use in relation with our notion of weak
security.

2.1 Universal Composability

The standard method for defining security notions is by comparing a real world
protocol execution to an ideal world process execution. In the real world exe-
cution, a protocol interacts with its adversary and possibly with other parties.
In the ideal world execution, an idealized version of the protocol (called ideal
functionality) interacts with an ideal world adversary (usually called simulator)
and possibly with other parties. The ideal functionality is defined by the security
requirements that we want our protocol to fulfill.
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On an intuitive level, given an adversary, the purpose of the simulator is to
mount an attack on the ideal functionality; any probabilistic polynomial time
(or PPT) distinguisher may try to tell apart the output of the interaction be-
tween the ideal functionality and the simulator and the output of the interaction
between the protocol and its adversary. If for every adversary, a simulator exists
such that the two outputs cannot be told apart by any PPT distinguisher, then
our initial protocol is as secure as the ideal functionality, with respect to what
is called the stand-alone model.

Definition 2 (Stand-alone Security). Let ρ be a protocol and F an ideal
functionality. We say ρ securely implements F if for every probabilistic
polynomial-time real-model adversary A there exists a probabilistic polynomial-
time ideal-model adversary S such that for every protocol input x and every
auxiliary input z (given to the adversary) with x, z ∈ {0, 1}poly(n), where k is the
security parameter:

{IDEALF
S (k, x, z)}k∈N ≡ {REALρ,A(k, x, z)}k∈N.

By IDEALF
S (k, x, z) we denote the output of F and S after their interaction and

REALρ,A(k, x, z) denotes the output of the parties of ρ and adversary A after
their interaction. If we allow the simulator to depend on the distinguisher, we
obtain the weak stand-alone security notion.

The definition of universal composability follows the paradigm described above,
however it introduces an additional adversarial entity which is called environ-
ment. The environment, usually denoted by Z, is present in both the UC real
world and UC ideal world. The environment represents everything that is ex-
ternal to the current execution of the real-world protocol or to the ideal func-
tionality. Throughout the execution, both in the real and in the ideal world, the
environment can provide inputs to parties running ρ or the ideal functionality F
respectively, and to the adversary. These inputs can be a part of the auxiliary in-
put of Z or can be adaptively chosen. Also Z receives all the output messages of
the parties it interacts with and of the adversary. Moreover, the only interaction
between the environment Z and the parties of ρ or F is when the environment
sends the inputs and receives the outputs. Finally, at the end of the execution,
the environment outputs all the messages it received. The environment is mod-
eled as a PPT machine with auxiliary input. This auxiliary input captures the
intuition that Z may learn some information from previous executions and it
may also use it at any point later. Parties involved in the ideal execution give
their inputs to the ideal functionality which computes some outputs and sends
back these values.

When the protocol execution ends, Z outputs its view of that execution. In
the real world, his view contains messages that Z has received from the adversary
A and outputs of all parties of ρ. This is denoted by EXEC ρ,A,Z(k, z), where
k is the security parameter and z is the auxiliary input to Z. Similarly, in the
ideal world execution, the environment Z outputs its view which contains all the
messages received from S as well as all messages that the dummy parties of F
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output to Z. This is denoted by EXECF ,S,Z(k, z). We are now ready to define
UC security:

Definition 3 (UC Security). Let ρ be a PPT protocol and let F be an ideal
functionality. We say that ρ UC emulates F (or ρ is as secure as F with respect
to UC security) if for every PPT adversary A there is a PPT simulator S such
that for every PPT distinguisher Z and for every distribution of auxiliary input
z ∈ {0, 1}∗, the two families of random variables {EXECF ,S,Z(k, z)}k∈N and
{EXEC ρ,A,Z(k, z)}k∈N are computationally indistinguishable.

In the following we also use a relaxed version of this definition, where the order
of quantifiers between the environment and the ideal-world simulator is reversed
[23].

Definition 4 (Specialized Simulator UC Security). Let ρ be a protocol and
F an ideal functionality. We say that ρ emulates F under specialized simulator
UC security if for every probabilistic polynomial time adversary A and for every
environment Z, there exists a simulator S such that for every input z ∈ {0, 1}∗,
we have:

{EXECF ,S,Z(k, z)}k∈N ≡ {EXEC ρ,A,Z(k, z)}k∈N.

It had been shown [20] that the two notions defined above are not equivalent. In
the above definition, the output of the environment is considered to be a string of
arbitrary length. If the only change we make to the above definition is to consider
environments that have a 1-bit output, we obtain the notion of 1-bit specialized
simulator UC security. It has been an open problem [23] whether considering
only environments with one bit output would produce an equivalent definition.
In this work we show this is not the case. If in the specialized simulator UC
definition we let the simulator also depend on the distinguisher (i.e., the only
machine to establish whether the output of the executions in the real UC world
and in the ideal UC world cannot be told apart), then we obtain the notion of
weak specialized simulator UC security. Both specialized simulator UC variants
are defined in full detail in the full version [6].

2.2 Weak Security under 1- Bounded Concurrent General
Composition

Similarly to the above security concepts, the notion of security under concurrent
general composition [23] is defined using the real-ideal world paradigm. In this
model, an external and arbitrary protocol π gives inputs to and collects outputs
from an “internal protocol” that can be a real-world protocol or an ideal func-
tionality. We denote by ρ the real-world protocol interacting with π and by F
the ideal functionality. Protocol π may call multiple instances of the protocol it
interacts with as long as all of them run independently and all its messages may
be sent in a concurrent manner.

The computation in the ideal world is performed among the parties of π
and an ideal functionality F . Protocol π is providing F with inputs and after
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performing necessary computations, F sends the results to parties of π. The
messages between π and F are ideally secure, so the ideal adversary (or simulator)
can neither read nor change them.4

The ideal-world honest parties follow the instructions of π and output the
value prescribed by π. The corrupted parties output a special corrupted symbol
and additionally the adversary may output an arbitrary image of its view. Let
z be the auxiliary input for the ideal-world adversary S and let x̄ = (x1, ..., xm)
be the inputs vector for parties of π. The outcome of the computation of π with
F in the ideal world is defined by the output of all parties of π and S and is
denoted by {HYBRIDF

π,S(k, x̄, z)}k∈N.
The computation in the real world follows the same rules as the computation

in the ideal world, only that this time there is no trusted party. Instead, each
party of π has an ITM that works as the specification of ρ for that party. Thus, all
messages that a party of π sends to the ideal functionality in the ideal world are
now written on the input tape of its designated ITM. These ITMs communicate
with each other in the same manner as specified for the parties of ρ. After
the computation is performed, the results are output by these ITMs to their
corresponding parties of π. The outcome of the computation of π with ρ in
the real world is defined by the output of all parties and A and is denoted by
{REALπρ,A(k, x̄, z)}k∈N.

We are now ready to state the definition of security under concurrent general
composition [23], with the additional flavor of weak security.

Definition 5 (Weak Security under Concurrent General Composition).
Let ρ be a protocol and F a functionality. Then, ρ computes F under concurrent
general composition with weak security if for every probabilistic polynomial-time
protocol π in the F-hybrid model that utilizes ideals calls to F , for every proba-
bilistic polynomial-time real-model adversary A for πρ and for every probabilis-
tic polynomial-time distinguisher D, there exists a probabilistic polynomial-time
ideal-model adversary S such that for every x̄, z ∈ {0, 1}∗:

{HYBRIDF
π,S(k, x̄, z)}k∈N

D≡ {REALπρ,A(k, x̄, z)}k∈N.

If we restrict the protocols π to those that utilize at most � ideal calls to F , then
ρ is said to compute F under �-bounded concurrent general composition with
weak security.

3 Review of Game-Theoretic Definitions

In this section we review basic game-theoretic definitions that we further need
for establishing the equivalence between the our notion of weak security and the
strong univeral implementation notion given in [17] and redefined below.

4 This comes in contrast with the standard definition of UC ideal protocol execution,
where it is not enforced that the channels between the trusted parties and the rest
of the participants are ideally secure.
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A computational Bayesian game [21] denoted as Γ = ({Ti}ni=1, {Ai}ni=1,Pr ,
{ui}ni=1) (also called a game with incomplete information) consists of players
1, . . . , n where each of them makes a single move. The actions of each of the
players is computed by an interactive Turing machine Mi (short PPITM). The
incomplete information is captured by the fact that the type for each player i
(i.e., its private information) is chosen externally, from a set Ti, prior to the
beginning of the game. Pr is a publicly known distribution over the types. Each
player has a set Ai of possible actions to play and individual utility functions
ui. All actions are played simultaneously; afterwards, every player i receives a
payoff that is determined by applying its utility function ui to the vector of
types received in the game (i.e., profile types) and the actions played (i.e., action
profile). The machine Mi is called the strategy for player i. The output of Mi

in the joint execution of these interactive Turing machines denotes the action of
player i. Because of the probabilistic strategies, the utility functions ui actually
now correspond to the expected payoffs.

Rationally behaving players aim to maximize these payoffs. In particular, if a
player knew which strategies the remaining players intend to choose, he would
hence pick the strategy that induces the most benefit for him. As this simultane-
ously holds for every player, we are looking for a so-called Nash equilibrium, i.e.,
a strategy vector where each player has no incentive to deviate from, provided
that the remaining strategies do not change.

Definition 6 (Computational Nash Equilibrium). Let Γ be a computa-
tional game, where Γ = ({Ti}ni=1, {Ai}ni=1,Pr , {ui}ni=1) and let k be the security

parameter. A strategy vector (or machine profile) consisting of PPITMs
−→
M =

(M1, . . . ,Mn) is a computational Nash equilibrium if for all i and any PPITMM ′
i

there exists a negligible function ε such that ui(k,M
′
i ,
−−→
M−i) − ui(k,

−→
M) ≤ ε(k)

holds.

Here ui(k,M
′
i ,
−−→
M−i) denotes the function ui applied to the setting where every

player j �= i sticks to its designated strategy Mj and only player i deviates by
choosing the strategy M ′

i . In the definition above, we call Mi a computational

best response to
−−→
M−i.

The definition of a game can be extended to take into account which are
the utilities of a group of players participating in the prescribed protocol, or
deviating from it. In the rest of the paper we denote by Z the set of players
participating in such a coalition and we denote by uZ and UZ respectively, the
utility and the expected utility for such a coalition. We also denote for example
by MZ the vector of strategies (or the PPT ITMs) that the parties in Z run (or
are controlled by).

The definition of computational Nash equilibrium can be extended to the no-
tion of computational Nash equilibrium with immunity with respect to coalitions.
This requires that the property in the definition of computational Nash equi-
librium is fulfilled for all subsets Z of players, i.e., for all Z and all PPITM
M ′

Z controlling the parties in Z there exists a negligible function εZ such that

UZ(k,M
′
Z ,
−−−→
M−Z)− Ui(k,

−→
M) ≤ εZ(k) holds.
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So far we have assumed that players communicate only among each other.
We extend a computational game to a computational game with mediator. The
mediator is modeled by an ITM denoted F . Without loss of generality, we assume
all communication passes between players and the trusted mediator (that can
also forward messages among players).

Next we follow the approach from [18] to formalize the intuition that the

machine profile
−→
M = (M1, . . . ,Mn) implements a mediator F whenever a set

of players want to truthfully provide a value (e.g., their input or type) to the

mediator F , they also want to run
−→
M using the same values. For each player i,

let its type be ti = (xi, zi), where xi is player’s input and zi is some auxiliary
information (i.e., about the state of the world).

Let ΛF denote the machine that, given the type t = (x, z) sends x to the
mediator F , outputs as action the string it receives from F and halts. So ΛF

uses only input5 x and ignores auxiliary information z. By
−→
ΛF we denote the

machine profile where each player uses only ΛF . We ensure that whenever the

players want to use mediator F , they also want to run
−→
M if every time

−→
ΛF is

a computational Nash equilibrium for the game (G,F), then running
−→
M using

the intended input is a computational Nash equilibrium as well.
Finally, we provide our definition for game theoretic protocols implementing

trusted mediators. We call our notion game universal implementation. A closely
related notion, called strong universal implementation, has been previously de-
fined [17]. On an intuitive level, the main difference between the existing notion
and the new notion is that for strong universal implementation, parties consider
computation to be costly (i.e., time or memory used for computation may incur
additional costs in the utility of the users), while our notion basically regards
computation as “for free”. The naive intuition suggests that game universal im-
plementation is a weaker notion than strong universal implementation. However,
as we will see in Sect. 5.1, this intuition does not hold.

Definition 7 (Game Universal Implementation). Let ⊥i be the PPT ITM
ran by party i that sends no message (to the other parties or to the mediator) and
outputs nothing. Let Games be a set of m-player games, F and F ′ be mediators
and letM1, . . . ,Mm be PPT ITMs. We call ((M1, . . . ,Mm),F ′) a game universal
implementation of F with respect to Games if for all n ∈ N and all games

G ∈ Games with input length n if
−→
Λ

F
is a computational Nash equilibrium

in the mediated game (G,F) with immunity with respect to coalitions, then the
following two properties hold:

– (Preserving Equilibrium) (M1, . . . ,Mm) is a computational Nash equilibrium
in the mediated machine game (G,F ′) with immunity with respect to coali-
tions;

5 As in [17], the games considered are canonical games of fixed input n. Any game
where there are only finitely many possible types can be represented (by correspond-
ing padding of the input) as a canonical game for some length n.



On the (Non-)Equivalence of UC Security Notions 113

– (Preserving Action Distributions) For each type profile (t1, . . . , tm), the out-

put distribution induced by
−→
Λ

F
in (G,F) is statistically close to the output

distribution induced by (M1, . . . ,Mm) in (G,F ′);
– (Preservation of Best Response ⊥i) Additionally, for all n ∈ N, all games
G ∈ Games with input length n and all i ∈ {1, . . . ,m}, if ⊥i is a compu-

tational best response to
−→
Λ

F
−i in (G,F), then ⊥i is a computational best

response to
−→
M−i in (G,F ′).

4 Specialized Simulator UC Variants

Our main result in this section shows the separation between the notions of
specialized simulator UC and 1-bit specialized simulator UC. This answers an
existing open problem from [23] and furthermore clarifies the relations among
different (weak) security notions. We start with a lemma on the equivalence
between 1-bit specialized simulator UC (1-bit SSUC) and weak specialized sim-
ulator UC (weak SSUC).

Lemma 1 (Equivalence between 1-bit SSUC and weak SSUC). A pro-
tocol fulfills the 1-bit specialized simulator UC security if and only if it fulfills
the weak specialized simulator UC security.

Next we separate the notions of weak specialized simulator UC and specialized
simulator UC. For this we use a cryptographic tool called time-lock puzzles,
originally introduced in [30].

Definition 8 (Time-lock puzzles). A PPT algorithm G (problem generator)
together with a PPT algorithm V (solution verifier) represent a time-lock puzzle
if the following holds:
-sufficiently hard puzzles: for every PPT algorithm B and for every e ∈ N, there
is some f ∈ N such that

sup
t≥kf ,|h|≤ke

Pr [(q, a) ← G(1k, t) : V(1k, a, B(1k, q, h)) = 1] (1)

is negligible in k.
-sufficiently good solvers: there is some m ∈ N such that for every d ∈ N there is
a PPT algorithm C such that

min
t≤kd

Pr [(q, a) ← G(1k, t); v ← C(1k, q) : V(1k, a, v) = 1 ∧ |v| ≤ km] (2)

is overwhelming in k.

Intuitively, a time-lock puzzle is a cryptographic tool used for proving the com-
putational power of a PPT machine. G(1k, t) generates puzzles of hardness t
and V(1k, a, v) verifies that v is a valid solution as specified by a. The first re-
quirement is that B cannot solve any puzzle of hardness t, with t ≥ kf , for
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some f depending on B, with more than negligible probability. The algorithm
B may have an auxiliary input. This ensures that even puzzles generated using
hardness t chosen by B together with a trap-door like auxiliary information (of
polynomial length), do not provide B with more help in solving the puzzle.

The second requirement is that for any polynomial hardness value there exist
an algorithm that can solve any puzzle of that hardness. It is important that the
solution for any puzzle can be expressed as a string of length bounded above by
a fixed polynomial.

As promoted by [30] and later by [20], a candidate family for time-lock
puzzles which is secure if the RSA assumption holds, is presented next. A

puzzle of hardness t consists of the task to compute 22
t′

mod n where t′ :=
min(t, 2k) and n = p1 · p2 is a randomly chosen Blum integer. Thus, G(1k, t) =
((n,min{t, 2k}), (p1, p2,min{t, 2k})), where n is a k-bit Blum integer with factor-
ization n = p1 · p2, and V(1k, (p1, p2, t′), v) = 1 if and only if (v = v1, v2)

6 and

v1 ≡ 22
t′
mod n and v2 = n. Both solving the puzzle and verifying the solution

can be efficiently done if p1 and p2 are known. From this point further we call
these puzzles the Blum integer puzzles. An important property that we use in
the following is that any Blum integer puzzle has a unique solution.

Before we state and prove our main separation result in Theorem 1, we give as
reminder the definition of hard-core predicates and then we state two properties
related to them. These properties we use to conclude our main separation result.
Due to space constraints, we add their corresponding proofs in the full version.

Definition 9 (Hard-Core Predicate). A hard-core predicate of a collection
of functions gk,t : {0, 1}∗ → {0, 1}∗ is a boolean predicate HC : {0, 1}∗ → {0, 1}
such that:

– there exists a PPT algorithm E with HC (x) = E(x), for every x;
– for every PPT algorithm A and for every polynomial p, there exists kp and
tp such that for every k > kp and t > tp, we have Pr [A(1k, t, gk,t(x)) =
HC (x)] < 1

2 + 1
p(k) .

Now we are ready to state the two lemmas related hard-core predicates. The
first result shows that from a Blum integer time-lock puzzle we can construct a
one-way function and a hard-core predicate.

Lemma 2 (One-Way Function and Hard-Core Predicate from Blum
Integer Time-Lock Puzzles). Let (G,V) be a Blum integer time-lock
puzzle and let t be an integer. Let Sk,t be the set of all correctly generated

solutions v = (22
t

mod n, n) for puzzles q, where q = (t, n) is the output of

6 Without loosing any security of the initial definition of time-lock puzzles [30,20],

in addition to the value 22
t

mod n, our solution for the puzzle q = (t, n) contains
also the value n. The full use of defining solutions in such a way, will become more
clear when we define the one-way function based on time-lock puzzles: There is a

one-to-one correspondence between the pair of values (v = (22
t′
mod n, n), t) and

q = (t, n).
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algorithm G when invoked with parameters 1k and t. Then the collection of
functions {fk,t : Sk,t → {0, 1}∗}(k∈{0,1}∗,t∈{0,1}k) and {gk,t : Sk,t × {0, 1}∗ →
{0, 1}∗}(k∈{0,1}∗,t∈{0,1}k) defined below are collections of one-way functions and
the predicate HC : {0, 1}∗ → {0, 1}∗ defined below is a hard-core predicate for

{gk,t}(k∈{0,1}∗,t∈{0,1}k).
7 We define fk,t(2

2tmod n, n) = (t, n) and for v, r ∈
{0, 1}∗ such that |v| = |r|, let gk,t(v, r) = (fk,t(v), r) and HC (v, r) =

∑|v|
i=1 vi · ri

mod 2.

Lemma 3 (Distribution of Hard-Core Predicates). Let k be a security pa-
rameter. Then, for any given integer t, let gk,t : Dk,t → {0, 1}∗ be a function such
that HC : {0, 1}∗ → {0, 1} is a hard-core predicate for the collection of functions
{gk,t}k∈{0,1}∗,t∈{0,1}k . Let X(k, t) be the distribution of (gk,t(x),HC (x)) and let
Y (k, t) be the distribution of (gk,t(x), U(x)) with x taken from the
domain Dk,t and U(x) being the uniform distribution on {0, 1}. Then the en-
sembles {X(k, t)}(k∈{0,1}∗,t∈{0,1}k) and {Y (k, t)}(k∈{0,1}∗,t∈{0,1}k) are computa-
tionally indistinguishable.

Lemma 4 (Weak SSUC Does Not Imply SSUC)
Assume Blum integer time-lock puzzles exist. Then there are protocols that ful-

fill weak specialized simulator UC security but do not fulfill specialized simulator
UC security.

Proof. Let (π,F) be a pair of protocol and ideal functionality as defined below.
The only input the ideal functionality F requires is the security parameter 1k.
Then F sends a message to the adversary (i.e. ideal simulator S) asking for its
computational hardness. Using the reply value t′ from S (which is truncated
by F to maximum k bits), the ideal functionality invokes Gen(1k, t′) → (q′, a′)
to generate a time-lock puzzle q′ of hardness t′, whose solution should verify
the property a′. The puzzle q′ is sent to S which replies with v′. Finally, F
checks whether v′ verifies the property a′. In case a′ does not hold, F stops
without outputting any message to the environment. Otherwise, for every value
i ∈ {1, . . . , k}, F generates a puzzle qi of hardness ti = 2i. Let j be such that
2j ≤ t′ < 2j+1, so j ∈ {1, . . . , k}.

For the puzzle qj , F computes the solution vj . F can efficiently compute this
solution as it knows the additional information aj. Additionally, F chooses r
uniformly at random from {0, 1}2k.8 The output of F to the environment is the
tuple (q1, . . . , qk, r,HC (vj , r)), where HC is the hard-core predicate of (G,V) as
given by Lemma 2.

For each hardness t′, we call P (t′) the distribution of the view of Z when
interacting in the ideal world.

The real world protocol π, is defined similarly to F , the only difference is the
final output: π outputs to Z a tuple (q1, . . . , qk, r, b), with r randomly chosen

7 We would alternatively call HC the hard-core predicate for (G,V).
8 Without loss of generality, we can assume the solution v of each puzzle q generated
using the parameters 1k and t has length 2 ·k. Indeed, we can prepend with 0’s to the
string v such that its length reaches 2 · k. It is easy to see that after this operation,
the properties stated in Lemma 2 still hold.
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from {0, 1}2k and b randomly chosen from {0, 1}. For each hardness t used by
the adversary A when interacting with Z, we call R(t) the distribution of the
view of Z when interacting in the real world.

The proof has two steps. First, we show that π is as secure as F with respect
to weak specialized simulator UC security. Let D be a distinguisher of hardness
tD (i.e., it can solve puzzles of hardness less or equal to tD with overwhelming
probability but it cannot solve puzzles of hardness greater than tD with more
than negligible probability) and an adversary A of hardness tA. Let l be the
minimum value such that 2l > max(tD, tA). We now require that the simulator S
has hardness t′ such that t′ ≥ 2l. As we will see next, this is one of the constraints
necessary for making the two distributions R(t′) and P (t) indistinguishable to
D.

The intuition is that in the ideal world D would have to solve a puzzle with
hardness larger than tD and learn the hard-core bit for such a puzzle. According
to Lemma 3, this hard-core bit is indistinguishable from a random bit, which is
actually what the protocol π outputs to the environment.

More formally, let (A,Z,D) be a triple of real world adversary, environment
and distinguisher and let 1k be the security parameter. Then, let e be such that
the length of the messages sent by Z to D is bounded above by ke. From (1),
there exists fDe such that for every polynomial p there exists k0p such that:

sup
t≥kfD

e ,|h|≤ke

Pr [(q′, a′) ← G(1k, t′) : V(1k, a′,D(1k, q′, h)) = 1] <
1

p(k)

for every k > k0p.
9 Given A, in an analogue way we define kf

A
e and k1p. With the

notation used in the description of π and F , it now becomes clear that we can

take tD = kf
D
e and tA = kf

A
e .

We construct S such that there exists a negligible function ε and k2 such that
for every k ≥ k2 and for every distribution of auxiliary input z we have:

|(Pr (D(EXECA,π,Z(k, z)) = 1)− (Pr (D(EXECF ,S,Z(k, z)) = 1)| < ε(k). (3)

We take k2 such that for every k ≥ k2, it holds that max(tA, tD) < 2k.
For a given tA and tD and for l defined as above, let f ′ be such that for

sufficiently large k, 2l ≤ kf
′ ≤ 2k. Let S be the simulator of hardness kf

′
that

as first reply to F sends t′ := kf
′
. According to (2), there exists m such that for

d := f ′ there exists Cf ′ such that

Pr [(q′, a′) ← G(1k, kf ′
); v′ ← Cf ′(1k, q′) : V(1k, a′, v′) = 1 ∧ |v′| ≤ km]

is overwhelming in k. When F sends a puzzle q′ to S, the simulator invokes
Cf ′ for (1k, q′) and sends to F the output v′ of Cf ′ . Internally, S simulates the
adversaryA and emulates the messages that the adversary would receive from Z
and π as follows: When F requires the value of the computational hardness from

9 This intuitively means that D can solve puzzles of hardness larger than kfD
e only

with negligible probability.
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S, then S acts as π and requires the computational hardness from simulated A.
When S receives t fromA, then it invokes Gen(1k, t), obtaining output (q, a) and
forwards to simulated A the puzzle q. Moreover, any message that internal A
wants to send to the environment, S forwards it to Z. Any message for A coming
from Z is immediately forwarded by S to the internally simulated adversary. This
completes the construction of S.

By construction, S solves the puzzle sent by F with overwhelming probabil-
ity and hence the output of F to Z is (q1, . . . , qk, r,HC (vj , r)) with the same
probability. The view of Z in the real world is (1k, t, q, v, (q1, . . . , qk, r, b)) and
the view of Z in the ideal world10 is (1k, t, q, v, (q1, . . . , qk, r,HC (vj , r))). By ap-
plying Lemma 3 for the distinguisher D and polynomial p, there exists kp and tp,
such that for every k > kp and t > tp, the advantage of D for distinguishing be-
tween the distributions of ((q, r), b) and ((q, r),HC (v, r)) (with G(1k, t) ← (q, a),
v the solution to q, b the random bit and r the uniformly distributed string of
k bits) is less than 1

p(k) . Hence, additionally to the previous constraints on k

and t′, we take k such that k > kp and max{tA, tD, tp} < 2k and t′ such that
t′ > max{tA, tD, tp}. With this we can conclude that the real and the ideal world
views are indistinguishable to D.

Second, we prove that π is not as secure as F with respect to specialized sim-
ulator UC security. Intuitively, for every hardness tS (polynomial in the security
parameter k) of a simulator machine S, there exists a distinguisher DS such
that for every t ≤ tS , DS can solve puzzles of hardness t. As we will see next,
DS uses this property to distinguish with non-negligible probability between the
environment’s output distribution in the real and in the ideal world.

Formally, let A be the real world adversary that can solve puzzles of hardness
tA such that when receiving its input from the environment, it replies to π with
tA and the corresponding correct solution for the puzzle received. Let Z be the
environment that just sends the security parameter to all parties (i.e., including
the adversarial parties), receives their outputs and then outputs as view the
messages received from the honest parties (i.e., protocol π in the real world
or F in the ideal world). For every simulator S, we show that there exists a
distinguisher DS and a distribution for the auxiliary input z such that:

{EXECF ,S,Z(k, z)}k∈N

DS�≡ {EXECπ,A,Z(k, z)}k∈N.

Given S of hardness tS , we choose DS such that it can solve puzzles of hardness
at least tD = max (tS , tA) with overwhelming probability in k. Such a DS exists
according to (2). Additionally, after receiving the view of Z, DS solves one by
one each puzzle qi included in that view that has associated hardness ti ≤ tD
and it obtains each time the corresponding correct and unique solution vi with

10 One may argue of course that the view of Z may or may not contain the values
t, q, v, depending on the adversary A. Also, additionally to the view(s) stated above,
the environment could output the interaction that it has with A besides messages
t, q, v. However, for the analysis of this proof, the views considered above are the
worst case scenario that would allow a distinguisher to tell apart the two worlds.



118 O. Ciobotaru

overwhelming probability. Then DS evaluates HC (vi, r). Lets call m the last
bit in the output of the honest party (i.e., F or π) to Z11. Next, DS checks
if m �= HC (vi, r) for all i as defined above. If this holds, then D outputs 1,
otherwise it outputs 0.

If m is part of the view of the real world, then according to the definition of
π, m is a random bit in {0, 1} so it is different than a given bit HC (vi, r) with
probability 1

2 . This is equivalent to DS outputting 1 with probability 1
2log 2tD =

1
tD

when the view of Z is from the real world. Similarly, if m is part of the view
of Z in the ideal world, then there exists at least an index i such that HC (vi, r)
can be computed by DS and m = HC (vi, r); so DS outputs 1 with probability 0.
This implies DS can distinguish at least with the non-negligible probability 1

tD
12 between the output distributions from the two worlds and this concludes the
proof.

By putting together the results from Lemma 1 and from Lemma 4 we obtain:

Theorem 1 (1-bit SSUC and SSUC Not Equivalent). Assume Blum in-
teger time-lock puzzles exist. Then there are protocols secure with respect to 1-bit
specialized simulator UC security which are not secure with respect to specialized
simulator UC security.

5 Equivalence of Security Notions

Implication relations among various security notions with respect to computa-
tional security are depicted in Fig. 1. Previously existing notions are written in
a regular font, while the notions defined in this work are written in a boldface
font. The continuos line arrows depict relations we prove in this paper13; all
other relations have been previously known (the number in the square brack-
ets denotes the reference) or can be trivially derived (i.e., denoted by letter t).
Continuous line frames highlight security notions, while dotted frames highlight
game-theoretic concepts. Finally, open questions are marked by question marks.

It is a well-known result that UC security and 1-bit UC security are equivalent
[4]. It has been also shown [20] that specialized simulator UC security does not
imply UC security. Moreover, specialized simulator UC security is equivalent to
security under 1-bounded concurrent general composition [23]. It has been shown
[5] that stand-alone security does not imply specialized simulator UC security.14

11 Due to the definition of Z, the string m is also a part of the output of the
environment.

12 Since D is a polynomial time machine, its hardness tD is also a polynomial in the
security parameter k, so the function 1

tD
is non-negligible.

13 A letter and number next to an arrow represent the theorem T or the lemma L or
the corollary C where the respective result is shown in this paper.

14 In order to preserve the symmetry and clarity of our picture, we have indicated that
the result in [5] is that stand-alone security does not imply 1-bounded concurrent
general composition. This is indeed a immediate consequence of combining the results
from [5] and [23].
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Fig. 1. Implication Relations among Computational Security Concepts

The implication in the opposite direction holds trivially. Similarly, it is trivial to
see that universal composability implies specialized simulator UC security.

Our first result in this section proves that weak security under 1-bounded
concurrent general composition is equivalent to 1-bit specialized simulator UC
security. A similar proof technique has been used in [23], however, as detailed in
the full version, our proof requires more technicalities.

Theorem 2 (Equivalence between Weak 1-bounded CGC Security and
1-bit SS UC Security). Let ρ be a protocol and F an ideal functionality. We
have that ρ implements F under weak 1-bounded concurrent general composition
security, if and only if ρ securely computes F under 1-bit specialized simulator
UC security.

As a consequence of the above theorem, we are now also able to compare the no-
tion of 1-bounded concurrent general composition security [23] with our variant,
i.e., weak 1-bounded concurrent general composition security.

Corollary 1 (Weak 1-bounded CGC and 1-bounded CGC Not Equiv-
alent). Assume Blum integer time-lock puzzles exist. Then there are protocols
secure with respect to weak 1-bounded concurrent general composition which are
not secure with respect to 1-bounded concurrent general composition.

We show that the approach taken in Theorem 2 is not an overkill. Indeed, there
are protocols that are secure with respect to weak stand-alone security but they
are not secure anymore in the standard stand-alone model (proof placed in full
version). The results of Lemma 6 and Lemma 7 complete Fig. 1.
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Lemma 5 (Weak Security Does Not Imply Stand-alone Security). If
Blum integer time-lock puzzles exist, then there are protocols that fulfill the weak
security notion, but do not fulfill the stand-alone security notion.

Lemma 6 (WeakStand-aloneSecurityDoesNotImplyWeak1-bounded
CGC Security). There exists a protocol π which is secure with respect to weak
stand-alone model, but is not secure with respect to weak 1-bounded concurrent gen-
eral composition security.

As shown in Sect. 5.1, the next security result is essential for establishing the
relation between the existing game-theoretic notion of strong universal imple-
mentation [18] and our notion of game universal implementation. As a preamble,
we first give the intuition for weak precise secure computation. While the tra-
ditional notion of secure computation [12] requires only the worst case running
time complexity of the ideal world simulator to match the running time of the
real world adversary, weak precise secure computation [24] requires the complex-
ity of the simulator to match the complexity of the real world adversary, for each
arbitrary distinguisher and input.

Definition 10 (Weak Precise Secure Computation). Let π be a protocol,
F an ideal functionality and let C be the function that given a security parameter
k, a polynomially bounded party Q and the view v of Q in the protocol π, it
computes the complexity of Q running with k and v. We say that π is a weak
precise secure computation of F if there exists a polynomial p such that for every
real world adversary A, for every distinguisher D and for every input z, there
exists an ideal simulator S, with C(k,S, v) ≤ p(k, C(k,A,S(v))) such that :

{IDEAL(k, z,S,F)}k∈N

D≡ {REAL(k, z, A,−→M}k∈N.

Lemma 7 (Weak Precise Secure Computation Does Not Imply Weak
Stand-alone Security). If Blum integer time-lock puzzles exist, then there ex-
ists a protocol π which is secure with respect to weak precise secure computation,
but is not secure with respect to weak stand-alone security.

5.1 Relation between 1-Bit Specialized Simulator UC and Game
Universal Implementation

In the following we prove an equivalence result between game universal imple-
mentation and our definition of weak security. A similar result exists in connec-
tion with strong universal implementation [18], but that notion considers a re-
fined version for computational games, where the utility of the players may have
strong correlations with the complexity of the computation they perform (e.g.,
time complexity, memory complexity, communication complexity or complexity
of operations like reading inputs or copying messages). Our proof technique (see
full version) is in general similar to the one used in [18].
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Theorem 3 (Equivalence Between Game Universal Implementation
and Weak Stand-alone Security). Let comm be the communication medi-
ator represented by the cryptographic notion of ideally secure channels. Let f be
an m-ary function with the property that outputs the empty string to a party if
and only if it had received the empty string from that party. Let F be a medi-

ator that computes f 15 and let
−→
M be an abort-preserving computation of f16.

Then
−→
M is a weak secure computation of f17 with respect to statistical security

if and only if (
−→
M, comm) is a game universal implementation of F with respect

to Games, where Games is the class of games for which the utility functions of
the players depend only on players types and on the output values.

So we have shown that by restricting the class of games to those for which
the computation cost for parties during protocol execution is free, our variant
of universal implementation becomes equivalent to more standard notions of
security (i.e., where the simulator depends only on the distinguisher and not
anymore on both the distinguisher and input). Finding such equivalences was
stated as an open question in [18] and to the best of our knowledge, our work
makes the first step towards answering it.

One may ask if our new notion of game universal implementation is a subcase
of the existing notion of strong universal implementation [18]. Using Lemma 7,
Theorem 3 and the equivalence result between strong universal implementation
and weak precise secure computation [18], we obtain:

Corollary 2 (Non-Equivalence of Universal Implementation Variants).
The notion of strong universal implementation does not imply the notion of game
universal implementation.

15 The ideal machine profile
−→
ΛF computes f if for all n ∈ N, all inputs −→x ∈ ({0, 1}n)m,

the output vector of the players after an execution of
−→
ΛF on input −→x is identically

distributed to f(−→x ).
16 −→M is an abort-preserving computation of f if for all n ∈ N and for all inputs x̄ ∈

({0, 1}n)m, the output vector of the players after an execution of (⊥,−−−→M−Z) on input
x̄ is identically distributed to f(λ, ¯x−Z), where Z is a subset of all parties and λ is
the empty string.

17 We call
−→
M a weak secure computation of f if the following two properties are fulfilled:

– For all n ∈ N, all inputs −→x ∈ ({0, 1}n)m, the output vector of the players after an

execution of
−→
M on input −→x is distributed statistically close to f(−→x );

– For every adversary A and for every distinguisher D, there exists a simulator S
such that for every input z, the following relation is fulfilled :

{IDEAL(k, z,S ,F)}k∈N

D≡ {REAL(k, z,A,
−→
M}k∈N.

In the second property, the indistinguishability relation can be further detailed with
respect to perfect, statistical or computational security.
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6 Conclusions

In this work we have shown that two variants of the UC security definition
where the order of quantifiers is reversed, namely 1-bit specialized simulator UC
security and specialized simulator UC security are not equivalent. This comes
in contrast to the well known result that UC security and 1-bit UC security are
equivalent. We also show that weak security under concurrent general composi-
tion is equivalent to 1-bit specialized simulator UC. Additionally, these results
combined imply weak security and stand-alone security are not equivalent.

We have also established an equivalence result between a security notion (i.e.,
weak stand-alone security) and a game-theoretic notion (i.e., game universal
implementation). Based on the results mentioned above, as future work it is
worth investigating whether one can add ”composability properties” to game
universal implementation in order to derive a game theoretic notion equivalent
to 1-bit specialized simulator UC.
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Abstract. We propose a leakage-resilient unbounded extensible set del-
egation encryption scheme, which tolerates amount of bounded key leak-
age and supports unbounded delegation depth. Our scheme provides the
tolerance of key continual leakage that can capture both memory leakage
and continual leakage, which has appealing applications since there are
multiple secret keys per identity set and also can periodically update
and refresh the secret key. We construct the scheme in composite or-
der bilinear groups and prove the security with dual system encryption
methodology.

Keywords: Leakage-resilient encryption, statistical indistinguishability,
semantic security, unbounded delegation.

1 Introduction

In an encryption system, traditionally, security are usually proven under some
mathematical assumptions, such as the hardness of factoring, quadratic residue,
discrete logarithm and learn with errors etc, that the secret key must be securely
stored and the internal states are fully hidden for the possible attackers. Espe-
cially, the secret key corresponding to the challenged public keys or identities
must not leak any bit information to the attacker. However, this situation is
not necessarily true in real systems. For example, in side-channel attacks, an at-
tacker obtains information about the internal state of a device by measuring the
power consumption, computation time, and emitted sound and radiation, and
then uses this information to break the security of a cryptographic primitive. In
response to this, there has been a surge of interest in creating leakage-resilient
cryptographic schemes [1–3, 7, 8, 13].

In order to tolerant the key leakage, leakage-resilient cryptography models a
class of leakage output by allowing the attacker is able to specify an efficiently
computable leakage function and learning the partial keys or other possibly in-
ternal state from the output of function throughout the lifetime of the system.
In 2009, Akavia et al. [1] first presented a notion of memory attacks, in which
the attacker can learn arbitrary information about the challenge keys, only sub-
ject to the constraint that the total amount of output is bounded by a leakage

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 125–142, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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parameter �. However, if a device runs a key generation algorithm leaks one
bit of information for every message that it encrypts, then the secret key will
be thoroughly leaked. In order to avoid this case, we can refresh the keys be-
fore the leakage is dangerous for the decryption. Thus, in the implementations
of leakage-resilient cryptographic systems, refreshing secret keys is considered a
good solution in practice. If a key can be refreshed and it can also has the same
decryption ability, we call continual leakage-resilient.

Most cryptographic schemes become insecure in the continuous leakage setting
if the secret key remains static. Intuitively, if the attacker is allowed even a
single bit of leakage from the state, he can eventually recover all the parts of
the secret key and break security by repeatedly query the key. This leads us to
the realization that in the continuous leakage setting, the key can not remain
static, and must be refreshed. Brakershi et al. [7] proposed a leakage-resilient IBE
in the continual leakage model that relies on selective security (weaker model
than adaptive security) to allow the simulator to produce the keys incapable of
decryption challenge ciphertext.

Alwen et al. [3] presented three leakage-resilient identity-based encryption
schemes, which only allow bounded leakage on one secret key per decryption
identity. Chow et al. [9] also constructed three leakage-resilient identity-based
encryption schemes, which are based on the technique of hash proof systems [2] to
obtain leakage resilience. In a hash proof system, it leads to impose on restriction
that the attacker can only leak from one key for the challenge role, and no leakage
on the master key is allowed. Also, the schemes in [3] and [9] do not allow a user
to update/refresh his secret key during the lifetime of the system, then they can
not tolerant the continual leakage.

In delegatable encryption systems [6, 10, 11], a use r can delegate the access
right (decryption ability) from ancestors to their descendants. For example, in a
hierarchical identity-based encryption scheme, both secret keys and ciphertexts
are associated with ordered lists of identities. The identities if a user must fit
within the hierarchy depth specified by a public parameter [6, 10, 11, 14, 16],
that is, the size of public parameter will grow linearly with the maximum of
the hierarchy. Similarly, the keys and possible ciphertexts are growing linearly
the depth of the hierarchy. This will be inflexible in practical applications: it
is impossible to add new level to the hierarchy once the maximum depth is
previously fixed. In order to support possible hierarchy, we can set an enough
large hierarchy, however, it will aggravate the storage burden and increase the
communication overhead since the user hierarchy is less than the maximum
depth.

It is a challenging issue to remove the restriction of maximum hierarchy depth.
Lewko and Waters [15] first constructed unbounded HIBE and ABE, in which
the system public parameters are a constant number of group elements that
eliminate the need to pre-decide maximum hierarchy depth. The main idea is to
employ a secret-sharing mechanism to split the master key into shares.

Traditionally, the security in hierarchical encryption systems rely on the par-
titioning technique for proof of security in the adaptive security model. More
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precisely, in the partition model, the user identities will be partitioned into two
subsets: one contains identities for which challenge ciphertext can be generated
and the other of the secret keys can be extracted by the attacker. In delegat-
able encryption systems, however, this restricts the attacker from querying keys
for any identity. To overcome this constraint, Waters [18] proposed a notion of
dual system encryption to obtain adaptive security. In dual system encryption,
it guarantees that the challenge identity is different from the identities for which
the keys are extracted. If there is a collision then the attacker gains no advantage
in breaking the security of the system. Later, Lewko and Waters [14] presented
more efficient schemes whose security is based on static assumptions in the com-
posite order bilinear groups. Lewko et al. [13] constructed the leakage-resilient
IBE, HIBE and ABE in composite order groups, which are based on the sub-
group decision assumptions. Due to the property of the subgroup orthogonality,
it provides a possible mechanism to implement the statistical indistinguisha-
bility of a function’s output in multiple spaces. Although in [9], Alwen et al.
presented a leakage-resilient scheme in composite order bilinear groups, how-
ever, their scheme still relies on the technique of hash proof system to obtain
leakage resilience and the dual system encryption is only for full security proof.

Our Result. We design a leakage-resilient encryption that supports unbounded
extensible set delegation depth, in which we employ a secret-sharing approach
to split the master key into multiple shares in key components corresponding to
the elements in the set. User identities are specified as sets whose elements are
in ZN . The decryption key dχ can decrypt a ciphertext σχ′ when the encryption
policy χ′ and decryption role χ has χ � χ′. Moreover, role χ1 can perform a del-
egation to another role of extensible set χ2, i.e., χ1 � χ2. In order to implement
unbounded delegation, we do not set a maximum depth (set size) in the setup
algorithm. Our scheme is a general extension of fuzzy identity encryption [16]
supporting unbounded delegation ability and leakage resilience. Compared with
related literatures that impose a pre-determined maximum depth [15,18–20], the
public parameters of our scheme has the smallest size.

In the security of our scheme, we allow the attacker to learn arbitrary functions
of secret keys, as long as the total amount leakage bits per set are bounded by
parameter �. More precisely, we allow the attacker to handle key extraction query
and leakage query in the dual system encryption mechanism and provide leakage
information from multiple keys of the same ciphertext, which eliminates the need
for a separate technique to achieve leakage resilience in [9]. As we provide an
implicit refresh procedure for a key, the scheme supports continual resilient to
secret keys. Compared with previous schemes that only allow either bounded
leakage on one secret key per decryption role [9], our scheme has stronger leakage
resilience with no sacrifice efficiency.

Proposed scheme is constructed with dual system encryption methodology
in composite order bilinear groups, which tolerates the secret key leakage. The
scheme achieves the adaptively semantic security in the presence of bounded key
leakage model. The security proofs rely on the static mathematical assumptions
that are based on the static (bilinear) subgroup decisional problems [13–15].
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Roadmap. The remainder paper is organized as follows: Some preliminaries are
provided in Section 2; The model of leakage-resilient encryption with unbounded
extensible set delegation and its security model are given in Section 3; The
construction is presented in Section 4; The consistency is analyzed in Section 5;
The security analysis is provided in Section 6. and the performances of leakage
bound and leakage fraction are discussed in Section 7; Finally, the conclusion is
drawn in Section 8.

2 Preliminaries

Let N be a positive integer and ZN = {1, · · · , N − 1}. We let x be chosen

uniformly from ZN denote by x
$←− ZN . For a vector x = (x1, · · · ,xd) ∈ Zd

N , we
use gx to denote the vector of group elements gx = (gx1 , · · · , gxd) ∈ Gd

N . We
denote 〈ρ,σ〉 as the inner product of vectors ρ and σ, i.e., 〈ρ,σ〉 =

∑
i ρiσi.

Similarly, 〈gρ, gσ〉 = g
∑

i ρiσi . Let χ be a set, the size of χ is denoted by |χ|. We
use negl(·) to denote a negligible function.

2.1 Arbitrary Function Leakage Subspaces

In order to guarantee that, in case of obtaining partial leakage information of
the secret key (no more than �-bit), the attacker has the same decryption ability
with non-leakage information, we use a statistical indistinguishable theorem to
describe the bounded leakage. Let Dist(X1, X2) be the statistical distance of
two random variables X1 and X2. In our system, the leakage resilience relies on
the following Lemma from [7], which is also proved in [4].

Lemma 1. [7] Let p2 be a large prime, m, l, d ∈ N, 2d ≤ l ≤ m. Let X1
$←− Zm×l

p2

and X2
$←− Zm×d

p2
, and let T

$←− Rankd(Z
l×d
p2

), where Rankd(Z
l×d
p2

) denotes the
set of l × d matrices of tank d with entries in Zp2 . For any leakage function
f : Zm×d

p2
→W , there exists

Dist((X1, f(X1T )), (X1, f(X2))) ≤ ε(·), |W | ≤ 4(1− 1

p2
) · pl−2d+1

2 · ε(·)2

In particular, if the leakage f(X1T ) reveals bounded information X1, then
(X1, f(X1T )) and (X1, f(X2)) are statistically close. In the latter pair, X2 is
a random vector and the leakage function reveals nothing about the subspace
X1.

Corollary 1. Let p2 be a prime and m ≥ 3 be an integer. Let Δ,μ
$←− Zm

p2

and μ′ be selected uniformly randomly from the set of vector in Zm
p2

which are
orthogonal to Δ under the dot product modulo p2. For any function f : Zm

p2
→W ,

there exists

Dist((Δ, f(μ)), (Δ, f(μ′))) ≤ ε(·), |W | ≤ 4pm−3
2 (p2 − 1) · ε(·)2

The corollary 1 allows us to set leakage bound � = 2 + (n − 1 − 2c) log2 p2 for
our construction: set n + 1 = m and c (c ≥ 2) is any fixed positive constant,
ε(·) = p−c

2 is negligible.
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2.2 Bilinear Subgroups of Composite Order

Definition 1. Composite order groups Let Gcp be a group generator, that
takes a security parameter τ as input where τ ∈ N, outputs a description of
bilinear group G = (N = p1p2p3,G,Gt, ê), where p1, p2, p3 are distinct prime
τ-bit primes, G and Gt are cyclic groups of order N , and ê : G × G → Gt

is a bilinear map such that ∀u, v ∈ G and a, b ∈ ZN , ê(ua, vb) = ê(ub, va) =
ê(u, vb)a = ê(u, v)ab. A bilinear map is admissible if ê can be computed efficiently.

We set the order of the product of three primes. That is, N = p1p2p3. Let
Gp1 ,Gp2 ,Gp3 denote the subgroups of G having order p1, p2, p3. Obviously, for
a, b, c ∈ {1, p1, p2, p3}, assume that G1 = 1G, we indicate that Gabc = Ga ×
Gb × Gc, where the subgroups of G having order π is denoted by Gπ. Gπ can
be written uniquely as the product gd1

1 g
d2
2 g

d3
3 where g1, g2, g3 are the generators

of subgroups Gp1 ,Gp2 ,Gp3 , respectively. Suppose that h1 ∈ Gπ1 , h2 ∈ Gπ2 , it
has ê(h1, h2) = 1 if gcd(π1π2|N2, N) = N . This is called the orthogonality of
subgroups. In our system, the orthogonality of subgroups provides an ability to
construct the dual system encryption, i.e., normal keys/ciphertexts and semi-
functional keys/ciphertexts.

2.3 Complexity Assumptions

To prove the security of our scheme, we use the following well-established as-
sumptions in composite order bilinear groups. We first define the variable G =
(N,G,Gt, ê(, ·, )) ← Gcp(τ) that is generated by a composite order bilinear group
generating algorithm. In the security assumptions, the attacker outputs a guess
ψ ∈ {0, 1} and wins the assumption if the advantage in distinguishing between
Tψ and T1−ψ is non-negligible.

Assumption 1. Given a random instance derived from composite order group
generator Gcp, we define the distribution of Assumption 1 as follows:[

g
$←− Gp1 , D1 = (G, g), T1

$←− Gp1p2 , T2
$←− Gp1

]
We say that Assumption 1 holds if for all polynomial-time algorithm A the
advantage is negligible, where the advantage of A is defined as

Adv1Gcp,A(τ) := |Pr[A(D1, T1) = 1]− Pr[A(D1, T2)] = 1|

Assumption 2. Given a random instance derived from composite order group
generator Gcp, we define the distribution of Assumption 2 as follows:⎡⎢⎣g,X1

$←− Gp1 , X2, Y2
$←− Gp2 , g3, Y3

$←− Gp3

D2 = (G, g, g3, X1X2, Y2Y3)

T1
$←− Gp1p3 , T2

$←− Gp1p2p3

⎤⎥⎦
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We say that Assumption 2 holds if for all polynomial-time algorithm A the
advantage is negligible, where the advantage of A is defined as

Adv2Gcp,A(τ) := |Pr[A(D2, T1) = 1]− Pr[A(D2, T2)] = 1|

Assumption 3. Given a random instance derived from composite order group
generator Gcp, we define the distribution of Assumption 3 as follows:⎡⎢⎣g

$←− Gp1 , g2, X2, Y2
$←− Gp2 , g3

$←− Gp3 , α, s
$←− ZN

D3 = (G, g, g2, g3, g
αX2, g

sY2)

T1 = ê(g, g)αs, T2
$←− Gt

⎤⎥⎦
We say that Assumption 3 holds if for all polynomial-time algorithm A the
advantage is negligible, where the advantage of A is defined as

Adv3Gcp,A(τ) := |Pr[A(D3, T1) = 1]− Pr[A(D3, T2)] = 1|

3 Leakage-Resilient Unbounded Extensible Set
Delegation Encryption

3.1 The Model

A leakage-resilient unbounded extensible set delegation encryption scheme (LR-
UESDE)

∏
:= (Init, Ext,Enc,Dec,Del) is informally defined as follows:

(PP, SK) ←Init(τ, �) The system setup algorithm takes the security parameter τ
and the secret key leakage bound � as inputs, and outputs public key PP and
master secret key SK.

dχ ←Ext(PP, SK, χ) The key generation takes system public key PP, master key
SK, and a set χ = {S1, S2, · · · , Sj} as inputs, and outputs a secret key dχ.

σχ ←Enc(PP, χ,M) The encryption algorithm takes a message M , a receiver
set χ, and the system public key PP as inputs, and outputs a ciphertext σχ.

M ←Dec(PP, dχ, σχ′) The decryption algorithm takes a ciphertext σχ′ , a secret
key dχ, and the system public key PP as inputs, and outputs the messageM
if χ � χ′.

dχ∪χ′ ←Del(PP, χ, dχ, χ′) The delegation algorithm takes a secret key dχ of χ,
a set χ′, and the public key PP as inputs, and outputs a secret key dχ∪χ′ for
the union set χ ∪ χ′.

The consistency of LR-UESDE holds: For all correctly generated PP and dχ; Let
fi and f ′i be any polynomial-time computable functions. σχ ← Enc(PP, χ,M)
and M ′ ← Dec(PP, dχ, σχ′). If χ � χ′, there holds that M = M ′. Otherwise,
M �=M ′ except for negligible probability, i.e.,
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Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(PP, SK) ← Init(τ, �)
χ � χ′, fi, f ′i : d→ {0, 1}∗
σχ′ ← Enc(PP, χ′,M)
dχ ← Ext(PP, SK, χ)
dχ′ ← Del(PP, χ, dχ, χ

′ − χ)∑
i fi(dχ) ≤ �,

∑
i f

′
i(dχ′) ≤ �

M ′ ← Dec(PP, dχ, σχ′)
M ′′ ← Dec(PP, dχ′ , σχ′ )
M ′ =M, M ′′ =M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 1− ε(τ)

3.2 Leakage-Resilient Semantic Security

We model our leakage-resilient encryption scheme with unbounded extensible
set delegation to be semantically secure under the key leakage situation. We
note that the security still holds in the sense that the attacker can specify any
efficiently computable functions and learns the function outputs. We also allow
the attacker to query the leakage oracle about the user’s secret key.

In our security experiment, the attacker has access to the queries of key ex-
traction, delegation, leak and reveal. In order to model the leakage oracle, we
allow the attacker to get access to the leakage oracle on the secret key with only
the constraint that the amount outputs of the leakage can not get more than �
bits per secret key.

Definition 2. A leakage oracle OLeak is parameterized by secret key dχ and leak-
age parameter �. A query to the oracle OLeak is launched by a leakage function
f : d→ {0, 1}∗. The oracle computes and outputs f(dχ). The leakage oracle re-
sponds at most amount of � bits of a key dχ, and ignores all queries afterwards.

In order to simulate and elides the query for the attacker’s behavior, we define
four oracles: OExt,ODel, OLeak,ORvl, to answer the attacker’s query. These oracles
are associated with a handle h. The attacker issues a OExt oracle or a ODel oracle
to generate an entire secret key and stores it into the key queue. The attacker
issues a OLeak oracle query to obtain the leakage information on a secret key,
and issues a ORvl oracle to get access to an entire secret key.

We define the security experiment ExpLR-CPA∏
,A for the LR-UESDE scheme un-

der the key leakage situation. In the security experiment, any attacker must not
distinguish two messages in a ciphertext after performing a bounded of allow-
able queries as previous defined. The security experiment ExpLR-CPA∏

,A between
a challenger C and an attacker A is formally described as follows:

Setup. The challenger C runs Init algorithm to create the system public key PP

and the master key SK, and sends PP to attackerA. Also, C creates two initial
empty sets: Z = {Revealed-Set} and H = {h, χ, dχ, LeakBits} (handle-set-
key-leaked bits), where Z records all identities that the secret keys have been
revealed from ORvl, and H records the leakage bits of secret keys leaked from
OLeak. We use a handle h to get access to H.
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Query 1. A can make the following queries with an adaptive manner.

– Key extraction oracle (OExt(h, χ)): The challenger C searches H to get
the record. Otherwise, if not found (the secret key has not been created),
C makes call to OExt to generate dχ and adds a new record (h, χ, dχ, 0)
into queue H.

– Key delegation oracle (ODel(h, χ, χ
′)): At first C searches the secret key

dχ in H. C responds the query as follows:

1. Case the record found in H and the request is key update (χ′ = φ):
C performs the refresh procedure and sets LeakBits = 0.

2. Case the record found and χ′ �= φ: Make call to ODel to produce a
delegation key dχ∪χ′ , and add a record (h, χ ∪ χ′, dχ∪χ′ , 0) into H.

3. Case the record not found: Make call to OExt to generate dχ and add
a new record (h, χ, dχ, 0) into H. Then, make call to ODel to produce
a delegation key dχ∪χ′ , and add a record (h, χ∪ χ′, dχ∪χ′ , 0) into H.

– Leakage oracle (OLeak(h, f)): A request a key leakage query with a
polynomial-time function f : d → {0, 1}∗. C searches H to find the
record, and answers with f(dχ) if LeakBits + f(dχ) ≤ �, and updates
LeakBits with LeakBits+ f(dχ); Outputs 0 otherwise.

– Reveal oracle (ORvl(h)): A provides a handle h and uses ORvl(h) oracle
to obtain an entire secret key. C searches H to find the record of index
h, adds the corresponding χ into list Z and returns dχ to A.

Challenge. A chooses two equal plaintexts M0,M1 and a challenge set χ∗ with
the restriction that χ∗ �∈ Z. C tosses a random coin ψ ∈ {0, 1}, creates the
challenge ciphertext σχ∗ ← Enc(PP, χ∗,Mψ) and sends σχ∗ to A.

Query 2. This stage is the same as Stage-I, with the added constraint that OExt,
ODel and ORvl queries that involved secret keys of sets are not the subset of
χ∗.

Output. Attacker returns ψ′ as the guess of ψ, and wins if ψ′ = ψ.

A’s advantage in experiment ExpLR-CPA∏
,A is defined as

AdvLR-CPA∏
,A (τ) := |Pr[(ψ = ψ′)− 1

2
]|

Definition 3. Leakage-resilient Semantic Security Suppose that the at-
tacker has at most q queries for the keys, the LR-UESDE scheme is said to
be (q, �) semantically secure with leakage bound � if any probabilistic polynomial-
time attacker A achieves at most a negligible advantage AdvLR-CPA∏

,A in experi-

ment ExpLR-CPA∏
,A .

Definition 4. Continual-Leakage Resilience If a leakage-resilient encryp-
tion scheme is implicitly equipped with a refresh algorithm that takes in a secret
key and outputs a new and re-randomized key from the same distribution gener-
ated by a fresh call to Ext or Del algorithms, then the scheme is called continual
leakage resilient.
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4 Our Construction

In this section, we present the concrete construction of LR-UESDE scheme. In
our scheme, we use a composite order bilinear group of order N = p1p2p3, where
p1, p2 and p3 are distinct primes. We assume that the set elements are defined
in ZN\{0}. In order to simplify the design, we will assume that the extensible
set has not same element to the previous set, i.e., χ′ = χ1 ∪ χ2 is an extensible
set from χ1 such that χ1 ∩ χ2 = φ. We also assume that the elements in the
set χ are ordered so that we can guarantee that two equal sets have the same
elements sequence.

4.1 Intuition

The main idea of our construction is to employ a secret-sharing approach across
the size of the set of secret key. A secret key involves a sharing of the master key
α as a sum of exponents, where each piece of the sum is additionally blinded by a
random term which is unique to the piece. To successfully decrypt a ciphertext,
a user must effectively unblind each share, which can only be accomplished by
a user with all j elements in the set which matches the ciphertext vector in all
of the components through j. Also, our construction is derived from the dual
system encryption technique, which allows us to tolerant multiple keys per user
set. We implement the leakage resilience by expanding the semi-functional space
to multiple dimensional.

In our scheme, a secret key of set χ = {S1, . . . , Sj} has the form

dχ={S1,...,Sj} = (kρ,kw,ky ,kv,kr)

=

〈⎛
⎜⎜⎜⎝

gρ1

gρ2

...
gρn

⎞
⎟⎟⎟⎠

�

,

⎛
⎜⎜⎜⎜⎝

gλ1+〈ρ′1,σ〉wy1

gλ2+〈ρ′2,σ〉wy2

...

gλj+〈ρ′j ,σ〉wyj

⎞
⎟⎟⎟⎟⎠

�

,

⎛
⎜⎜⎜⎝

gy1

gy2

...
gyj

⎞
⎟⎟⎟⎠

�

,

⎛
⎜⎜⎜⎝

vy1(uSih)r1

vy2(uSih)r2

...
vyj (uSih)rj

⎞
⎟⎟⎟⎠

�

,

⎛
⎜⎜⎜⎝

gr1

gr2

...
grj

⎞
⎟⎟⎟⎠

�〉
× gz3

(1)

where gz3 ∈ Gn+4j
p3

, which means that all elements in dχ are in Gp1p3 . We note
that the secret key dχ implicitly holds

∑
i∈χ λi = α and

∑
i∈χ ρ

′
i =
∑

i∈[1,n] ρ.

n (n ≥ 2) is a positive integer that determines the leakage-resilient intensity.
The larger n causes a better leakage fraction being tolerated, and the smaller n
yields a shorter key and ciphertext.

A ciphertext σχ has the following form:

σχ = (cm, cσ, cs, cw, ct, cu)

=

⎛⎜⎜⎜⎜⎝M · ê(g, g)αs,

⎛⎜⎜⎜⎝
gσ1

gσ2

...
gσn

⎞⎟⎟⎟⎠
�

, gs,

⎛⎜⎜⎜⎝
wsvt1

wsvt2

...
wsvtj

⎞⎟⎟⎟⎠
�

,

⎛⎜⎜⎜⎝
gt1

gt2

...
gtj

⎞⎟⎟⎟⎠
�

,

⎛⎜⎜⎜⎝
(uSih)t1

(uSih)t2

...
(uSih)tj

⎞⎟⎟⎟⎠
�⎞⎟⎟⎟⎟⎠

(2)



134 B. Yang and M. Zhang

4.2 Concrete Construction

Init(τ, �) On input the system security parameter τ and the key leakage bound
�, this algorithm generate system public key PP and master key SK as follows:

1. Take a system security parameter τ as input to generate a description of
bilinear composite-order group G = (N = p1p2p3,G,Gt, ê), where p1, p2, p3
are distinct primes of size τ1, τ2, τ3-bit

1, and for i = 1, 2, 3, 2τi−1 ≤ pi ≤ 2τi

and τi = poly(τ);

2. At random pick α
$←− ZN , g, u, h, v, w, gσ

$←− G5+n
p1

where |σ| = n (n ≥ 2),

and g3
$←− Gp3 ;

3. Set the system public key as PP := (G, �, g, g3, u, h, v, w, g
σ, ê(g, g)α), where

� = �(τ) is the maximum leakage bound of secret key. We define the message
space in Gt, the ciphertext space in Gt ×G4j+n+1, and the set space in Z

j
N ,

where j is the value of the size of set χ.

4. Keep the master key SK := gα.

Ext(PP, SK, χ) The key extraction algorithm creates a secret key dχ of set χ =
{S1, · · · , Sj} as follows:

1. Randomly pick gλ1 , · · · , gλj ∈ Gp1 subject to the constraint that∏
i∈[1,j] g

λi = gα. Note that gλi (1 ≤ i ≤ j) can be chosen as follows:

at first uniformly choose λ1, · · · , λj−1 ∈ ZN , compute gλ1 , · · · , gλj−1 , and
gλj = gα/

∏
i∈[1,j−1] g

λi ;

2. At random choose a vector ρ
$←− Zn

N and ρ′
1,ρ

′
2, · · · ,ρ′

j
$←− Zn

N with the
constraint that

∑
i∈[1,j] ρ

′
i = ρ;

3. Choose r,y
$←− Z

j
N , z

$←− Z
n+4j
N randomly, and output the secret key dχ

dχ := (kρ,kw,ky,kv,kr)

=
〈
gρ, gλ+〈ρ′,σ〉wy, gy, vy(uχh)r, gr

〉
× gz3 (3)

Notice that all the components of dχ are the elements of subgroup Gp1p3 .

Del(PP, χ, dχ, χ′) If χ′ = φ, this algorithm only performs the secret key re-
randomization procedure (step 2) to update the secret key dχ. Otherwise, the
algorithm does the following two steps (derivation procedure and refreshness
procedure) to produce a derivation key dχ∪χ′ , which means that a user χ
of secret key dχ generates a secret key for χ ∪ χ′ = {S1, · · · , S|χ∪χ′|}. Let
dχ = (kρ,kw,ky,kv,kr).

1 τ1, τ2, τ3 are depended on the security parameter τ . We can choose different length
and get a different leakage fraction and leakage-resilient probability. In Section 7, we
will discuss the relationship among them.
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1. Derivation procedure. Let j = |χ| and k = |χ ∪ χ′|. At random choose

�λ′ $←− Zk
N with the constraint that

∑
i∈[1,k]�λ′i = 0, and extend the secret

key vector and compute the derivated secret key dχ∪χ′ as follows:

d′χ′ = (k′
ρ,k

′
w,k

′
y,k

′
v,k

′
r)

= (kρ, (kw||{1, · · · , 1︸ ︷︷ ︸
k−j

} × gλ
′
,ky ||{1, · · · , 1︸ ︷︷ ︸

k−j

},kv||{1, · · · , 1︸ ︷︷ ︸
k−j

},kr||{1, · · · , 1︸ ︷︷ ︸
k−j

})

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
gρ,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gλ1+�λ1+〈ρ′1,σ〉wy1

gλ2+�λ2+〈ρ′2,σ〉wy2

...

gλj+�λj+〈ρ′j ,σ〉wyj

g�λj+1

...

g�λk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gy1

gy2

...
gyj

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

vy1(uχ1h)r1

vy2(uχ2h)r2

...
vyj (uχjh)rj

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gr1

gr2

...
grj

1
...

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�
⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

2. Refresh procedure. At random pick �ρ
$←− Zn

N and

�ρ′
1,�ρ′

2, · · · ,�ρ′
k

$←− Zn
N with the constraint that �ρ =

∑
i∈[1,k]�ρ′

i.

Pick �r,�y
$←− Zk

N and �z
$←− Zn+4k+4

N randomly, and re-randomize the
secret key d′χ∪χ′ as follows:

dχ′ = (kρ,kw,ky,kv,kr)

= (k′
ρ,k

′
w,k

′
y,k

′
v,k

′
r)× (g�ρ, g〈�ρ′,σ〉w�y , g�y, v�y(uχ′

h)�r , g�r)× g�z
3

= (gρ+�ρ, gλ+�λ+〈ρ′+�ρ′,σ〉wy+�y, gy+�y , vy+�y(uχ′
h)r+�r, gr+�r)

× gz+�z
3

= (gρ� , gλ�+〈ρ�,σ〉wy� , gy� , vy�(uχ′
h)r� , gr�)× g

z�
3 (5)

where ρ� = ρ+�ρ, ρ′
� = ρ′+�ρ′, λ� = λ+�λ, y� = y+�y. z� = z+�z.

Remark 1. Obviously, if χ′ = φ, the derivation algorithm will perform the secret
key refresh for dχ. That is, the new secret key renews the randomness ρ,ρ′, r,y
and parties of Gp3 . More specifically, our scheme is continually leakage-resilient
such that there are many secret keys per user set, and the attacker is allowed to
obtain new leakage with maximum leakage bound on the new secret key after a
secret key is refreshed.

Remark 2. It is easy to see that the updated secret key has the the same dis-
tribution with the previous secret key, since the new random exponents ρ,ρ′, r′

and y′ are added by uniform randomness �ρ,�ρ′,�r and �y, independently.
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Enc(PP, χ,M) In order to transmits a secret message M ∈ Gt to a user of

set χ = {S1, · · · , Sj}, the sender picks s, t
$←− ZN × Zj

N , and outputs the
ciphertext

σχ := (cm, cσ, cs, cw, ct, cu) = (Mê(g, g)sα, gsσ, gs, wsvt, gt, (uχh)t)

Dec(PP, χ, dχ, χ′, σχ′) The decrypter χ can decrypt the message from σχ′ . At
first, the decrypter computes the indice of V = χ∩ χ′. If V �= χ, outputs ⊥.
Let V ⊆ {(cσi , cwi , cti , cui)|i = 1, . . . , k} be the set of elements of ciphertext
σχ′ for which S′

i = Si.

M ← cm
ên(cσ, kρ)

ê(cs,
∏

i∈V kwi)

∏
i∈V

ê(cwi , kyi)ê(cui , kri)

ê(cti , kvi)

where ên(g
ρ, gσ) denotes as n pairing operations, i.e., ê(gρ, gσ) = ê(g, g)〈ρ,σ〉.

5 Consistency

5.1 Decryption Correctness

Assume that σχ′=(cm, cσ, cs, cw, ct, cu), and dχ = (kρ,kw,ky,kv,kr), we ob-
serve that all components of σχ′ (except cm) are the elements in Gp1 and all
components of dχ are the elements in Gp1p3 . According to the subgroups orthog-
onality, we can eliminate all terms of Gp3 in secret key dχ when performing the
bilinear calculations. Also, χ � χ′ if dχ can correctly decrypt the ciphertext σχ′ ,
which means that the components in V . We have

cm
ên(cσ , kρ)

ê(cs,
∏

i∈V kwi)

∏
i∈V

ê(cwi , kyi)ê(cui , kri)

ê(cti , kvi)

= cm
ên(g

ρ, gsσ)

ê(cs,
∏j

i=1 kwi)

∏
i∈V

ê(wsvti , gyi)ê((uχih)ti , gri)

ê(gti , vyi(uχih)ri)

= cm
ên(g

ρ, gsσ)

ê(cs,
∏j

i=1 g
λi+〈ρ′

i,σ〉wyi)

∏
i∈V

ê(wsvti , gyi)ê((uχih)ti , gri)

ê(gti , vyi)ê(gti , (uχih)ri)

= cm
ê(g, g)s〈ρ,σ〉∏

i∈V ê(w
s, gyi)

ê(gs, g
∑j

i=1 λi)ê(gs, g〈
∑j

i=1 ρ′
i,σ〉)
∏

i∈V ê(gs, wyi)

=
Mê(g, g)sαê(g, g)s〈ρ,σ〉

ê(gs, gα)ê(gs, g〈
∑j

i=1 ρ′
i,σ〉)

(

j∑
i=1

gλi = gα)

=
Mê(g, g)s〈ρ,σ〉

ê(gs, g〈ρ,σ〉)
=M (

j∑
i=1

ρ′
i = ρ) (6)
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5.2 Derivation Invariance

Since the derivation algorithm additively re-randomizes each exponents
r1, · · · , rk, y1, · · · , yk, ρ1, · · · , ρn in a secret key dχ={S1,··· ,Sk}, and the product of

gλ1gλ2 · · · gλk is equal to gα with randomized λi ∈ ZN , it has the same distribu-
tion of a parent secret key dχ. Also, it is easy to see that dχ∪χ′ created through
any sequence of derivations Del is the same as the distribution of a secret key of
same set created by Ext algorithm.

6 Security

6.1 Straightforward Proof Idea

In order to simplify the proof, we assume that the element is appended to the
tail of the previous set. Because multiple elements can be emerged by multiple
calling to Del algorithm that each time emerges an element, we consider the case
of one element emerge. The security proof works as follows:

At first we convert the challenge ciphertext into semi-functional form, and
then convert the secret keys into a semi-functional form one by one. A semi-
functional key/ciphertext has Gp2 part, while a normal key/ciphertext has not.
If the order N can not be factored, we can show that these conversions are
indistinguishable. At the same time, we indicate that the attacker’s decryption
ability is indistinguishable before/after he obtains partial decryption secret key.

Let g2 be a generator of Gp2 , a semi-functional key and a semi-functional
ciphertext are created as follows.

EncSF Let σχ=(cm, cσ, cs, cw, ct, cu) be a normal ciphertext created by Enc
algorithm, a semi-functional ciphertext is constructed as follows: at random

select z1, z2, z3, z4, z5
$←− Zn

N×ZN×Z
j
N×Z

j
N×Z

j
N and set the corresponding

semi-functional ciphertext σ̂χ as

σ̂χ := (cm, ĉσ, ĉs, ĉw, ĉt, ĉu)

= (cm, cσ × gz1
2 , cs × gz22 , cw × gz3

2 , ct × gz4
2 , cu × gz5

2 ) (7)

ExtSF Let dχ = (kρ,kw,ky,kv,kr) be a normal secret key produced by Ext

or Del algorithm, a semi-functional key d̃χ is produced as follows: pick

x1,x2,x3,x4,x5
$←− Zn

N × Z
j
N × Z

j
N × Z

j
N × Z

j
N randomly, and calculate

d̂χ := (k̂ρ, k̂w, k̂y, k̂v, k̂r)

= (kρ × gx1
2 ,kw × gx2

2 ,ky × gx3
2 ,kv × gx4

2 ,kr × gx5
2 ) (8)

Here {xi, zi}i∈[1,5] are called the semi-functional factors of secret key and ci-

phertext. If χ1 uses a semi-functional key d̂χ1 to create a delegation key of χ2,
the new semi-functional factors are extend to be |χ2| dimensional except x1, z1.
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Decryption will succeed if a valid semi-functional key is used to decrypt a
normal ciphertext, or a normal key is used to decrypt a semi-functional cipher-
text However, decryption will cause an ambiguous output when using a semi-
functional key to decrypt a semi-functional ciphertext, since it will lead to an
extra term of g2.

ê(g2, g2)
∑n

i=1 x1iz1i+
∑

i∈V(x3iz3i+x5iz5i−x2iz2−x4iz4i) mod p2

Obviously, if the exponent in ê(g2, g2) is zero, decryption still works and the
key is nominally semi-functional. Otherwise, we say that the key is truly semi-
functional.

6.2 Indistinguishable Games

To prove the security for our scheme, we devise a sequence of games that are
proven to be indistinguishable. The first game is the real scheme and security
model of our scheme that the ciphertexts and secret keys are normal. In the
second game, we convert the challenge ciphertext into a semi-functional form,
and the secret keys are still unchanged. For an attacker A who at most queries q
secret keys, where q = poly(τ). We convert the secret keys to be semi-functional
one by one. During the change of secret keys into semi-functional form, we guar-
antee that in Game3,k the first k(1 ≤ k ≤ q) keys are semi-functional and the rest
of keys are normal. In Game3,q, all the secret keys and the challenge ciphertext
are semi-functional. Therefore, according to the thought of dual system encryp-
tion, all queried secret keys are unable to decrypt the challenge ciphertext. We
also prove that the attacker A is not aware of these changes that converts from
normal forms into semi-functional forms. We define the indistinguishable games
as follows:

Game0. This game is the real scheme of proposed construction in Section 4.2
and the security is defined in Section 3.2. In this game, all secret keys and
ciphertexts are normal, and a valid normal key can decrypt a normal cipher-
text.

Game1. This game is the same as Game0 except that all ODel queries are re-
placed by OExt oracle.

Game2. This game is similar to Game1 except that the challenge ciphertext is
converted into semi-functional form. Under Assumption 1, we show that the
advantage of an attacker in distinguishing this conversion is negligible.

Game3,0. This game is the same as Game2 except that the attacker can not
ask for the secret keys that the set is the challenge set modulo p2; We will
hold this constraint in the next games.

Game3,k. Let q(q = poly(τ)) be the amount of secret key queries that the
attacker makes. For k = 1, · · · , q, we refine Game3,k like in Game2, except
that the first k keys are semi-functional and the rest secret keys are normal.
Obviously, in these games, (1) for all queried set χ = {S1, · · · , Sj}, Si �=
0 mod p2; (2) the ciphertexts are semi-functional; (3) the first k keys are
semi-functional and the remaining keys are normal.
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Game4. This game is the same as Game3,q with the added restriction that the
component cm is replaced by a random element in Gt. This game means that
the messageM is hidden in the ciphertext so that the attacker has negligible
advantage in guessing the message from the ciphertext. We show that the
advantage of an attacker in distinguishing this change is negligible under
Assumption 3.

Claim 1. Any polynomial-time attacker A has a negligible advantage in distin-
guishing Game1 from Game0.

Claim 2. If there exists an attacker A in distinguishing Game2 from Game1
with advantage ε, there exists a PPT algorithm B with non-negligible advantage
in breaking Assumption 1.

Claim 3. If there exists a polynomial attacker A with advantage ε in distin-
guishing Game3,0 from Game2, then we can construct a PPT algorithm B with
the same advantage to break Assumption 2.

Claim 4. Suppose that there exists an attacker A in distinguishing Game3,k
from Game3,k+1 with non-negligible advantage ε, then we can construct a PPT
algorithm B in breaking Assumption 2.

Claim 5. Suppose that the leakage is at most nd = 2+(n− 1− 2c) logp2, where
c (> 0) is a positive constant. For any PPT attacker A in Gamek+1, whenever
A declares the k-th key to be associated to a space that contains the challenge
ciphertext vector, A’s advantage in changing when the truly semi-functional k
key is replaced by a nominal semi-functional key is p−c

2 .

Claim 6. If there exists a polynomial attacker A in distinguishing Game4 from
Game3,q with non-negligible advantage, we can construct a PPT algorithm B in
breaking Assumption 3.

The proofs are based on the subgroup decisional problems defined in Section 2.3.
The proof of lemma 2, 3, 4, 5 and 6 are given in the full version.

Theorem 1. Leakage resilience security Suppose that a composite order
group generator Gcp satisfies the security assumptions 1, 3 and 3, an attacker has
at most q-times key extraction/delegation queries, at most �-bit leakage queries
for every secret key, then the LR-UESDE scheme is (q, �) semantically secure
against secret keys leakage with leakage bound �.

Proof. In the composite order bilinear group G, if the assumptions 1,3 and 3
hold, then we prove that the real Game0 is computationally indistinguishable
from Game4 by Claims (2) - (6), in which the value ψ is information-theoretically
hidden. The attacker has negligible advantage in winning Game1, which is the
actual security game for the proposed LR-UESDE scheme. �
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7 Leakage Bound and Performance Analysis

We evaluate the performance of our scheme and provide the efficiency tradeoffs.
In Lemma 1 and Corollary 1, we set n = m − 1 and d = 1, c ≥ 2, then p2

−c is
negligible when p2 is a large prime. Since |W | ≤ 4p2

m−3(p2−1)ε(·)2 ≤ 4p2
n−1−2c,

we have � = log2 |W | = 2+(n− 1− 2c) log2 p2 bits. Here n ≥ 2 is an integer and
c is a positive constant. Obviously, the leakage bound is determined by the order
of subgroup Gp2 . We can obtain variable key sizes and allow different fractions
of leakage by varying the relative size of subgroups of G.

We use the term leakage fraction to denote the number of bits allowed to be
leaked from a key divided by the number of bits to the total key size. We assume
that p1, p2, p3 are primes of τ1, τ2, τ3 bits, where 2τi−1 ≤ pi ≤ 2τi for i = 1, 2, 3,
respectively. We assume that the size of subgroup elements are represented by
approximately

∑3
i=1 τi = Θ(log2N) bits. By fixing τ1 = β1τ , τ2 = τ , and

τ3 = β2τ , where τ is the system security parameter and β1, β2 are positive
constants, we can calculate the leakage fraction LFdχ

of secret key dχ is

LFdχ
=

n− 1− 2c+ 2
log2 p2

(1 + β1 + β2)(n+ 4|χ|) ≈
n− 1− 2c

(1 + β1 + β2)(n+ 4|χ|)
Intuitively, the higher value of n, the better leakage fraction. However, it will
yield the larger system public key, secret keys and ciphertexts. We are worth
mentioning that the smaller values of β1 and β3 lead to a better leakage fraction,
but it will imply shorter security parameters in subgroup Gp1 and Gp3 . More
detail, the size of system public key |PP| = |Gt|+(n+5)|Gp1 |+ |Gp3 |, the size of
secret key |dχ| = (n+4|χ|)|G|, and the size of ciphertext |σχ| = |Gt|+(4|χ|+n+
1)|G|. Obviously, the system public key is constant that is independent to the
delegation set χ. That is, our system can perform unbounded delegation depth.

8 Conclusion

We presented a leakage-resilient extensible set encryption with unbounded dele-
gation ability. The proposed scheme can tolerate the secret key leakage of both
memory leakage and continual leakage. We provided the security proof under
the dual system encryption mechanism in the standard model. We also assessed
the allowable leakage bound. As our scheme does not need to pre-establish a
possible global delegation depth in the system, it is flexible and scalable in sup-
porting arbitrary level of delegation depth in the practical applications. We also
leave an open problem to construct a leakage-resilient encryption to obtain both
unbounded delegation depth and constant keys/ciphertexts simultaneously.

Acknowledgment. The authors grateful thank the anonymous reviewers for
their helpful comments and suggestion. This work is supported by the NSFC
(№60973134,№61173164, №61170135),Guangdong Natural Science Foundation
(№10151064201000028), and the support by Grant-in-Aid for JSPS Fellows of
Japan(№22·00045).



LR-UESDE: A Continual-Leakage Resilient Encryption 141

References

1. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and
Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

2. Alwen, J., Dodis, Y., Naor, M., Segev, G., Walfish, S., Wichs, D.: Public-Key
Encryption in the Bounded-Retrieval Model. In: Gilbert, H. (ed.) EUROCRYPT
2010. LNCS, vol. 6110, pp. 113–134. Springer, Heidelberg (2010)

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the
Bounded-Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677,
pp. 36–54. Springer, Heidelberg (2009)

4. Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic En-
cryption, and Efficient Constructions without Random Oracles. In: Wagner, D.
(ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts.
In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005)

6. Boyen, X., Waters, B.: Anonymous Hierarchical Identity-Based Encryption (With-
out Random Oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp.
290–307. Springer, Heidelberg (2006)

7. Brakershi, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole
in the bucket: public-key cryptogaphy resilient to continual memory leakage. In:
FOCS 2010, pp. 501–510. IEEE (2010)

8. Brakerski, Z., Goldwasser, S.: Circular and Leakage Resilient Public-Key En-
cryption under Subgroup Indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010.
LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010)

9. Chow, S., Dodis, D., Rouselakis, Y., Waters, B.: Practical leakage-resilient identity-
based encryption from simple assumptions. In: ACM-CCS 2010, pp. 152–161 (2010)

10. Ducas, L.: Anonymity from Asymmetry: New Constructions for Anonymous HIBE.
In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 148–164. Springer, Hei-
delberg (2010)

11. Gentry, C., Halevi, S.: Hierarchical Identity Based Encryption with Polynomially
Many Levels. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 437–456.
Springer, Heidelberg (2009)

12. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully Secure Func-
tional Encryption: Attribute-Based Encryption and (Hierarchical) Inner Product
Encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91.
Springer, Heidelberg (2010)

13. Lewko, A., Rouselakis, Y., Waters, B.: Achieving Leakage Resilience through Dual
System Encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011)

14. Lewko, A., Waters, B.: New Techniques for Dual System Encryption and Fully
Secure HIBE with Short Ciphertexts. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 455–479. Springer, Heidelberg (2010)

15. Lewko, A., Waters, B.: Unbounded HIBE and Attribute-Based Encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (2011)

16. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EU-
ROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)



142 B. Yang and M. Zhang

17. Shi, E., Waters, B.: Delegating Capabilities in Predicate Encryption Systems.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
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Abstract. We introduce the concept of anonymous identity-based hash
proof system (IB-HPS), and show how to use it to construct identity-
based encryption schemes providing anonymity in the presence of key
leakage. We give four different constructions of anonymous IB-HPS based
on: (1) the decision bilinear Diffie-Hellman assumption, (2) the decision
truncated augmented bilinear Diffie-Hellman exponent assumption, (3)
the quadratic residuosity assumption, and (4) the decision learning with
errors assumption.

1 Introduction

The classical definitions of security for encryption schemes are mainly concerned
with the data privacy of the encrypted data. For example, the widely accepted
notions such as one-wayness (OW) and indistinguishability (IND) are both di-
rected at capturing different levels of data privacy in encryption schemes. How-
ever, in some applications, key privacy of the encrypted data is also required.

The concept of key privacy (or anonymity) was first formalized in the context
of symmetric-key encryption [1, 20, 25] and was later extended to the case of
public-key encryption (PKE) [9] and identity-based encryption (IBE) [2]. Briefly
speaking, in public-key setting and identity-based setting, anonymity requires
that a ciphertext does not reveal information of its intended recipient. Several
PKE and IBE schemes in the literature are shown to be anonymous, such as the
work [18, 12, 26, 5] in the standard model, and the work [4, 10, 11, 27] in the
random oracle model.

It is easy to see that the goals of data privacy and key privacy are orthog-
onal [9, 35]. However, unlike data privacy, key privacy is comparatively less
studied. Recently, a large body of work [32, 29, 8, 28] emerged on constructing
encryption schemes with data privacy against various key leakage attacks. Sev-
eral IBE schemes [7, 15, 30, 14] secure against key leakage attacks have been
proposed. However, all these work only focus on the security (data privacy) but
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not the anonymity (key privacy). Thus, it is compelling to study the anonymity
of IBE schemes in the context of key leakage attacks.

1.1 Related Work

Leakage Resilient Cryptography. Recently, much progress has been made
on leakage-resilient cryptography with the goal to design provably secure crypto-
graphic primitives against a myriad of side-channel attacks (e.g., power,
timing, radiation, cold-boot etc.), where the adversary may obtain limited ad-
ditional information about secret keys and other internal secret state, not cap-
tured by the traditional definitions. So far, there are mainly two leakage models
for leakage-resilient cryptographic schemes. One is called the “bounded-leakage
model” [6, 32, 8, 29, 7, 15], which does not restrict the type of leakage that
the adversary can obtain, but has to bound the overall amount of leakage in-
formation. The other is called the “continuous-leakage model” [13, 31, 23, 24],
which only bounds the amount of leakage per period (as opposed to overall) by
continually refreshing the secret keys, but has to place additional non-trivial
restrictions on the types of leakage.

Hash Proof System and Identity-Based Hash Proof System. Cramer
and Shoup [18] generalized their initial PKE scheme [17] to the paradigm of
hash proof system (HPS), thereby serving as a useful primitive to construct
CCA-secure PKE schemes. Boneh et al. [11] presented a variant of HPS, named
HPS with trapdoor, and use it to construct anonymous and CCA-secure IBE
schemes. As an instantiation, they proposed a variant of Cocks IBE [16] which
achieves anonymity and shorter ciphertext size. Naor and Segev [32] presented
a generic construction of PKE schemes that are resilient to key leakage from
any HPS. Alwen et al. [7] extended HPS to the identity-based setting, namely
the identity-based hash proof system (IB-HPS). They used it as a basic tool to
construct IBE schemes that provide security against various forms of key leakage
attacks in the “bounded-retrieval model” (BRM).

1.2 Our Contribution

As our main contribution, we investigate the anonymity of IBE schemes in the
presence of key leakage attacks and construct the first leakage-resilient anony-
mous IBE schemes in the BRM. Along the way, we develop new notions and get
results of independent interest. In particular, we:

– Define the notion of leakage-resilient anonymity of IBE schemes.
– Reformulate the paradigm of IB-HPS in a fine-grained way and highlight its

relation to the subset membership problem and the projective hash family;
define an additional property named (leakage-resilient) anonymity of IB-
HPS; show how to construct (leakage-resilient) anonymous IBE schemes from
anonymous IB-HPS.

– Give four constructions of anonymous IB-HPS based on the ideas behind
prior IBE schemes: [26, 11, 27, 14].
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– Define the notion of leakage-resilient anonymity of PEKS schemes, and con-
struct leakage-resilient anonymous PEKS schemes through leakage-resilient
anonymous IBE schemes, which is in turn derived from anonymous IB-HPS.

2 Definitions and Preliminaries

2.1 Notation

For a finite set S, we use s
R←− S to denote that s is sampled from the set S

uniformly at random, and use US to denote the uniform distribution over S.
For an integer n ∈ N, we use Un to denote the uniform distribution over {0, 1}n.
The main security parameter through this paper is κ, and all algorithms (includ-
ing the adversary) are implicitly given the security parameter κ. A probabilistic
polynomial-time (PPT) algorithm is a randomized algorithm that runs in time
polynomially in κ. If A is a randomized algorithm, we write z ← A(x1, . . . , xn; r)
to indicate that A outputs z on inputs (x1, . . . , xn) and random coins r. Some-
times for brevity, we omit r and write z ← A(x1, . . . , xn) when it is not necessary
to make explicit the random coins A uses.

2.2 Min-entropy and Randomness Extractor

Here we review some concepts related probability distributions and randomness
extractors.

The statistical distance between two random variables X , Y over a finite
domain Ω is defined as SD(X,Y ) = 1

2

∑
ω∈Ω |Pr[X = ω]− Pr[Y = ω]|. We say

that two variables are ε-close if their statistical distance is at most ε.
The min-entropy of a random variable X over a domain Ω is the negative

(base-2) logarithm of the predictability of X : H∞(X) = − log2(maxω∈ΩPr[X =
ω]). In many natural settings, the variable X is correlated with another variable
Y whose value is known to an adversary. In such scenarios, it is more conve-
nient to use the notion of average min-entropy [21], which captures the average
predictability of X given knowledge of Y . This is formally defined as

H̃∞(X |Y ) = − log2

(
Ey←Y

[
max
ω∈Ω

Pr[X = ω|Y = y]

])
where Ey←Y denotes the expected value over all values of Y . The following
lemma bound on average min-entropy was proved in [21]:

Lemma 1. If Y takes at most 2r possible values and Z is any random variable,
then

H̃∞(X |(Y, Z)) ≥ H∞(X |Z)− r

A main tool in our constructions is a strong randomness extractor [33]. The
following definition naturally generalized the standard definition of a strong ex-
tractor to the setting of average min-entropy:
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Definition 1. A polynomial-time function Ext : Ω → {0, 1}v is an average case
(m, ε)-strong extractor if for all pairs of random variables (X,Y ) such that X is

distributed over Ω and H̃∞(X |Y ) ≥ m and a random variable S over the seeds
set {0, 1}μ for some integer μ, we have that

SD((Ext(X ;S), S, Y )), (Um, S, Y )) ≤ ε

Dodis et al. [21] proved that any strong extractor is in fact an average-case strong
extractor, for a proper setting of the parameters:

Lemma 2 ([21]). For any δ > 0, if Ext is a (worst case) (m−log(1/δ), ε)-strong
extractor, then Ext is also an average-case (m, ε+ δ)-strong extractor.

As a specific example, they proved the following lemma which essentially gives
an explicit construction of an average-case strong extractor:

Lemma 3 ([21]). Let X and Y be two random variables such that X ∈ {0, 1}n
and H̃∞(X |Y ) ≥ k. Let H be a family of universal hash functions from {0, 1}n
to {0, 1}m. Then for h

R←− H, it holds that SD((h(X), Us, Y )), (Um, Us, Y )) ≤ ε
as long as m ≤ k − 2 log(1/ε).

2.3 Identity-Based Encryption

An IBE scheme [34, 10] consists of four PPT algorithms:

– Setup(κ): take as input a security parameter κ, and output a master pub-
lic/secret key pair (mpk,msk). Here mpk is the system parameters which
is publicly known, while msk is the master secret key and is known only
to Private Key Generator (PKG). We assume that mpk also includes the
description of identity set I and message set M . mpk will be used as an
implicit input of algorithms KeyGen, Encrypt and Decrypt.

– KeyGen(msk, id): take as input msk and an identity id, and output a private
key sk.

– Encrypt(id,m): take as input an identity id and a message m, and output a
ciphertext c.

– Decrypt(sk, c): take as input a private key sk and a ciphertext c, and output
the message m or a reject symbol ⊥ indicates that c is not well-formed.

3 Leakage-Resilient Anonymous IBE

Intuitively, we say that an IBE scheme is anonymous if no PPT adversary can
distinguish the identity under which a ciphertext was generated. Formal defini-
tions for anonymity of IBE can be founded in [2, 3]. To capture the anonymity
of IBE schemes in the presence of a variety of key leakage attack, we define
leakage-resilient anonymity of IBE schemes by modifying the usual anonymity
game (against chosen-plaintext attacks) appropriately in the bounded-retrieval
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model [19, 22, 8, 7]. This model imposes an additional requirement on LR
schemes by insisting them to provide a way to “grow” the secret key so as to
proportionally increase the amount of tolerated leakage, but without remarkably
increasing the size of the public key and lowing the efficiency of the schemes.
The game is parametrized by a security parameter κ and a leakage parameter �
played between an adversary A and a challenger CH.

Setup: CH runs Setup(κ) to generate (mpk,msk) and gives mpk to A.
Phase 1: A can adaptively make one of the following two types queries to CH.
In the following, let fi : SK → {0, 1}�i be an arbitrary function from SK to
{0, 1}�i, where SK is the set of private keys.

– Private key reveal query 〈id〉: CH responds by running KeyGen algorithm to
generate a private key sk for identity id.

– Private key leakage query 〈id, fi〉1: CH checks if the overall amount leakage
with respect to id exceeds �. If not, it responds with fi(sk). Otherwise it
responds with a reject symbol ⊥.

Challenge: Once A decides that Phase 1 is over, it outputs a message m and
two equal-length identities id0 and id1 on which it wishes to be challenged. The
restriction is that A did not issue the private key reveal query for id0 or id1 in
Phase 1. CH picks a random bit b ∈ {0, 1} and gives A the challenge ciphertext
c∗ = Encrypt(idb,m).
Phase 2: The same as Phase 1 except that the private key leakage queries or
reveal queries related to id0 and id1 are forbidden.
Guess: A outputs b′ ∈ {0, 1} and wins the game if b′ = b.

We call A in the above-described game a �-leakage anonymity adversary and
define its advantage as AdvA(κ, �) = |Pr[b′ = b] − 1/2|. We note that for the
main purpose of this paper, leakage-resilient security and anonymity are only
considered under chosen plaintext attack.

Definition 2 (Leakage-Resilient Anonymous IBE). An IBE scheme is �-
leakage-resilient anonymous if the advantage of any PPT adversary A in the
above game is negligible in κ. Let the relative leakage of the scheme be α = �/m̂,
where m̂ is the number of bits needed to efficiently store a private key sk.

4 Identity-Based Hash Proof Systems

The paradigm of IB-HPS has appeared in different forms in previous litera-
ture [11, 7]. In [11], an IB-HPS is viewed as a HPS with trapdoor. However,
their definition is not fine-grained enough to encompass all the IBE schemes re-
lying on hash proof techniques, e.g. Gentry IBE [26]. In the work [7], an IB-HPS
is viewed as an IB-KEM. Their treatment makes the transform from IB-HPS to

1 As prior work [15, 7] did, we allow the generation of multiple private keys but we
require that the leakage comes from only one.
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IBE more directly but obscure the connection among IB-HPS and the underlying
subset membership problem and projective hash family. They also introduced a
property named “anonymous encapsulation” of IB-HPS, which is useful to bring
anonymity, improve leakage-amplification, and shorten the ciphertexts for the
resulting IBE schemes. Their definition of anonymous encapsulation is: for the
original encapsulation algorithm, there exists an efficient and equivalent encap-
sulation algorithm that can generate the ciphertext and the DEM key without
knowing the intended identity (independently of id). However, this definition
seems a bit narrow. At least, it is unclear how to explain the anonymity of
Gentry IBE [26] using their framework.

In what follows, we redefine the paradigm of IB-HPS in a fine-grained way and
highlight its relation to the subset membership problem and the projective hash
family. We also define a property named anonymity of IB-HPS. The resulting
anonymous IB-HPS is general enough to encompass all the currently known
anonymous IBE schemes based on hash proof techniques.

4.1 Subset Membership Problem (SMP)

A subset membership problem M specifies a collection (Dκ)κ≥0 of distributions.
For each security parameter κ ≥ 0, Dκ is a probability distribution of instances.
Each instance Γ specifies the following:

– Finite non-empty sets X , W , PK, and a collection of sets V = (Vpk)pk∈PK

indexed by PK. For each pk ∈ PK, Vpk is a proper subset of X .
– A collection of binary relations R = (Rpk)pk∈PK indexed by PK. For each
pk ∈ PK, Rpk is a binary relation over X ×W . In particular, for x ∈ X
and w ∈ W with (x,w) ∈ Rpk, we say that w is a witness for x. We require
that for all x ∈ X , (x,w) ∈ Rpk for some w ∈W if and only if x ∈ Vpk. The
relation Rpk is actually defined over Vpk ×W .

We write Γ[X,V,W, PK,R] to indicate that the instance Γ specifies X , V , W ,
PK, and R as above. M also provides several basic algorithms:

– Gen(κ): take as input a security parameter κ and sample a random instance
Γ according to the distribution Dκ. We denote by SP the random coins used
by Gen.

– SampR(pk): take as input a value pk ∈ PK, and output a random x ∈ Vpk
with witness w ∈ W .

– SampR∗(pk): take as input a value pk ∈ PK, and output a random x ∈
X\Vpk.

We say that M is a hard subset membership problem if for any pk ∈ PK it
is computationally hard to distinguish random elements of Vpk from random
elements of X\Vpk. The subset membership assumption for M means that M is
a hard subset membership problem.
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4.2 Projective Hash Family (PHF)

Let X , Y , SK, PK be finite non-empty sets, and V be a collections of sets
indexed by PK as defined in SMP. Let H = {Hsk : X → Y }sk∈SK be a collection
of functions indexed by SK. Let α : SK → PK be a function from SK to PK,
which can be seen as a projection. Here the term “projection” indicates that α
is a many-to-one mapping. We refer to the tuple H = (H, SK, PK,X, V, Y, α) as
a projective hash family (PHF) if for any sk ∈ SK and pk = α(sk), the action
of Hsk on Vpk is determined by α(sk) – i.e., given α(sk) and x ∈ Vpk, Hsk(x) is
uniquely determined.

4.3 Definition of IB-HPS

Compared to the definitions of SMP and PHF in [18, 11], our definitions intro-
duces V as a collection of sets indexed by PK but not a single set, and R as a
collection of relations indexed also by PK but not a single relation. Correspond-
ingly, in [18, 11] the algorithms SampR and SampR∗ of M are independent of the
intended public key pk, while in our definition the two algorithms take pk ∈ PK
as their input. We will see that these modifications allow us to build an IB-HPS
that can encompass all known IBE schemes using hash proof technique.

Let P be an identity-based hash proof system (IB-HPS) for a subset mem-
bership problem M associates with each instance Γ[X,V,W, PK,R] of M and
a corresponding projective hash family H = (H, SK, PK,X, V, Y, α). P specifies
an identity set I, a function IHF : I → PK, and consists of four algorithms
(Setup, KeyGen, Pub, Priv) as follows.

– Setup(κ): run Gen(κ) to generate an instance Γ[X,V,W, PK,R] of M, pick
a suitable projective hash family H = (H, SK, PK,X, V, Y, α), and create
a master public/secret key pair (mpk,msk), in which mpk includes the de-
scriptions of Γ, H, I and IHF. We require that α can be efficiently invert-
ible with msk, and write its inverse function as σ(msk, ·), which satisfies
α(σ(msk, pk)) = pk for any pk ∈ PK.

– KeyGen(msk, id): take as input msk and id ∈ I, and output σ(msk, IHF(id)).
– Pub(id, x, w): take as input id ∈ I, an element x ∈ Vpk (where pk = IHF(id))

and a witness w ∈ W for x’s membership in Vpk, and output y = Hsk(x)
(where α(sk) = pk). This is the public evaluation algorithm.

– Priv(sk, x): take as input a private key sk and an element x ∈ X , and output
y ∈ Y . This is the private evaluation algorithm.

We require that an IB-HPS satisfies the following basic properties.

Correctness of Evaluation. For any master key pair (mpk,msk) produced by
Setup(κ) and any id ∈ I we have

Pr

[
y �= y′
∣∣∣∣x← SampR(IHF(id)), y ← Pub(id, x, w)

sk ← σ(msk, IHF(id)), y′ ← Priv(sk, x),

]
≤ negl(κ)
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Valid/Invalid Sample Indistinguishability. For any id ∈ I, a valid sam-
ple generated by SampR and an invalid sample generated by SampR∗ should
be computationally indistinguishable even given sk ← KeyGen(msk, id). The
valid/invalid sample indistinguishability can be formally addressed by the Inter-
active Subset Membership (ISM) assumption. We say that the interactive subset
membership assumption holds for P if for all PPT algorithms A its advantage
is negligible in κ in the following game.

Setup: CH computes (mpk,msk) ← Setup(κ) and gives mpk to A.
Phase 1: A adaptively queries CH with id ∈ I and CH responds with
σ(msk, IHF(id)).
Challenge: A chooses an arbitrary id∗ ∈ I as the target identity. CH
picks a random bit b ∈ {0, 1}, if b = 0, computes x∗ ← SampR(IHF(id∗)),
else computes x∗ ← SampR∗(IHF(id∗)). CH gives x∗ to A.
Phase 2: A can continue to issue more private key queries adaptively,
and CH responds the same way as it did in Phase 1.
Guess: A outputs a bit b′ ∈ {0, 1} and wins the game if b′ = b.

We define A’s advantage to be AdvA(κ) = |Pr[b′ = b]− 1/2|.

Smoothness. To attain the data privacy for the resulting IBE schemes, an
information theoretic property named smoothness is needed, which ensures that
for any id ∈ I and an invalid sample x with respect to pk = IHF(id), the
distribution of Priv(sk, x) is almost uniform over Y in the view of any PPT
adversary. This property has already been introduced in [7], and we re-define it
using our fine-grained syntax in and without the presence of leakage as follows:

Definition 3 (Smoothness). We say that an IB-HPS is smooth if, for any
(mpk,msk) produced by Setup(κ), and any id ∈ I, we have:

SD((x, y,R), (x, y′, R)) ≤ negl(κ)

where x← SampR∗(IHF(id)), y′ R←− UY , y is obtained by sk ← KeyGen(msk, id)
and computing Priv(sk, x), and R is the ensemble of all terms (master public
parameters, private keys) given to the adversary except the challenge ciphertext
and the leakage on sk. Particularly, we say that an IB-HPS is �-leakage-resilient
smooth if for any (possibly randomized and need not be efficient) function f(·)
with �-bit output, we have

SD((x, y, f(sk), R), (x, y′, f(sk), R)) ≤ negl(κ)

where x, y, y′ and sk are sampled as above.

Anonymity. To attain the key privacy for the resulting IBE schemes, we need
to set an additional information theoretic property named anonymity of IB-
HPS. Essentially, this property ensures that given two distinct identities id0 and
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id1, the distributions of their invalid samples x0 and x1, and the corresponding
outputs y0 and y1 of Priv are indistinguishable. We define this property in and
without the presence of leakage as follows:

Definition 4 (Anonymity). We say that an IB-HPS is anonymous if, for any
(mpk,msk) produced by Setup(κ), and any two distinct id0, id1 ∈ I, we have:

SD((x0, y0, R), (x1, y1, R)) ≤ negl(κ)

where xi ← SampR∗(IHF(idi)), yi is obtained by choosing ski ← KeyGen(msk, idi)
and computing yi = Priv(xi, ski) for i = {0, 1}, and R is the ensemble of all terms
(master public parameters, private keys) given to the adversary except the the
challenge ciphertext and the leakage on sk0 and sk1. Particularly, we say that
an IB-HPS is �-leakage-resilient anonymous if, for any (possibly randomized and
need not be efficient) function f0(·) and f1(·) with �-bit output, we have:

SD((x0, y0, f0(sk0), f1(sk1), R), (x1, y1, f0(sk0), f1(sk1), R)) ≤ negl(κ)

where (x0, y0, sk0) and (x1, y1, sk1) are sampled as above.

We now show how to convert a smooth and anonymous IB-HPS (Setup, KeyGen,
Pub, Priv) into a leakage-resilient smooth and anonymous IB-HPS using an
average-case randomness extractor Ext : Y → {0, 1}v with seeds set {0, 1}μ.
We modify the algorithms SampR and SampR∗ of M as follows:

– SampR(pk): sample x̄ ← SampR(pk), pick a seed s
R←− {0, 1}μ, and output

x = (x̄, s).

– SampR∗(pk): sample x̄← SampR∗(pk), pick a seed s
R←− {0, 1}μ, and output

x = (x̄, s).

We keep algorithms Setup and KeyGen unchanged, define:

– Pub(id, x, w): parse x = (x̄, s), compute ȳ = Pub(id, x̄, w), and output y =
Ext(ȳ; s).

– Priv(sk, x): parse x = (x̄, s), compute ȳ = Priv(id, x̄), and output y =
Ext(ȳ; s).

The theorem below shows that the transformed IB-HPS (Setup, KeyGen, Pub,
Priv) is leakage-resilient smooth and anonymous for appropriate parameters.

Theorem 1. Assume that an IB-HPS is smooth and anonymous and |Y | = 2m.
Let Ext : Y → {0, 1}v be an (m − �, εext) average-case extractor for some εext =
negl(κ). Then the above transform produces an �-leakage-resilient smooth and
�-leakage-resilient anonymous IB-HPS.

Proof. Based on the smooth property of the underlying IB-HPS, we have that
SD((x̄, ȳ, R), (x̄, ȳ′, R)) ≤ negl(κ), and thus SD((x, ȳ, R), (x, ȳ′, R)) ≤ negl(κ),

which implies H̃∞(ȳ|(x,R)) ≈ log2 |Y | = m. In the presence of leakage, an
adversary has access to at most � bits of leakage from the private key sk,
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i.e., to a random variable f(sk) with 2� values. By Lemma 1 we know that

H̃∞(ȳ|(x, f(sk), R) ≥ H̃∞(ȳ|(x,R))−� = m−�, therefore according to the defini-
tion of a (m−�, ε) extractor, we have SD((x, y, f(sk), R), (x, y′, f(sk), R)) ≤ εext

where y′ R←− UY . Since εext is also negligible in κ, the leakage-resilient smoothness
of the IB-HPS immediately follows. This part of proof has been presented in [7].

Based on the anonymous property of the underlying IB-HPS, we have that
SD((x̄0, ȳ0, R), (x̄1, ȳ1, R)) ≤ negl(κ), and thus SD((x0, ȳ0, R), (x1, ȳ1, R)) ≤
negl(κ). Applying the smooth property twice, we have

SD((x0, y0, f0(sk0), f1(sk1), R), (x0, y
′, f0(sk0), f1(sk1), R)) ≤ εext (1)

SD((x1, y1, f0(sk0), f1(sk1), R), (x1, y
′, f0(sk0), f1(sk1), R)) ≤ εext (2)

Since SD((x0, ȳ0, R), (x1, ȳ1, R)) ≤ negl(κ), then certainly we have

SD((x0, y
′, f0(sk0), f1(sk1), R), (x1, y′, f0(sk0), f1(sk1), R)) ≤ negl(κ) (3)

SD((x0, y0, f0(sk0), f1(sk1), R), (x1, y1, f0(sk0), f1(sk1), R)) ≤ negl(κ)+2εext im-
mediately follows by combining the inequalities 1, 2, 3. Since εext is also negligible
in κ, the desired leakage-resilient anonymity of the IB-HPS immediately follows.
This proves the theorem. ��

5 Leakage-Resilient Anonymous IBE from Anonymous
IB-HPS

We now show how to construct leakage-resilient anonymous IBE schemes from
anonymous IB-HPS. Our notion of leakage-resilience only allows leakage on single
private key for each identity, but not on master secret key.

5.1 Construction of Leakage-Resilient Anonymous IBE

The construction of a leakage-resilient anonymous IBE from a leakage-resilient
anonymous IB-HPS is almost immediate, by simply using the hashing value as
a one-time-pad to encrypt a message. In particular, given an IB-HPS where
the hashing value set Y has some group structure (Y,+) (e.g. bit-strings with
⊕), we construct an IBE scheme with the same identity set I and message set
M = Y . The algorithms Setup and KeyGen are identical to that of IB-HPS. The
algorithms Encrypt and Decrypt are constructed as follows:

– Encrypt(id,m): compute pk = IHF(id), generate x = SampR(pk;w), compute
y = Pub(id, x, w), set z = y +m, and output c = (x, z).

– Decrypt(c, sk): parse c as (x, z), compute y = Priv(x, sk), and output m =
z − y.

Note that the algorithm SampR∗ of the IB-HPS is not used in the construction,
but will be used to argue security.
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Theorem 2. The above construction yields an �-leakage-resilient CPA-secure
IBE if the underlying IB-HPS is �-leakage-resilient smooth.

Proof. The proof of this theorem has been presented in [7]. ��
Theorem 3. The above construction yields an �-leakage-resilient anonymous
IBE if the underlying IB-HPS is �-leakage-resilient anonymous.

Proof. We proceed via a sequence of games.

Game 0:Define Game 0 as the standard anonymous game. In the challenge stage
of Game 0, the challenger computes cb ← Encrypt(idb,m) which we expand as
cb = (xb, zb) where

xb = SampR(idb;w), yb = Pub(idb, xb, w), zb = yb +m

Game 1: Compared to Game 0, we modify the challenge stage by having the
challenger generate the ciphertext cb = (xb, zb) using the private key sk of idb:

xb = SampR(idb), y
′
b = Priv(xb, sk), zb = y′b +m

The difference between Game 0 an Game 1 is only the use of y′b versus yb. By the
correctness of evaluation, yb �= y′b happens with negligible probability so Game
0 and Game 1 are (statistically) indistinguishable.
Game 2: Based on Game 1, we further modify the challenge stage by having
the challenger generate the ciphertext cb = (xb, zb) as follows:

xb = SampR∗(idb), y′b = Priv(xb, sk), zb = y′b +m

We claim that Game 1 and Game 2 are computationally indistinguishable by
the valid/invalid sample indistinguishability of the underlying IB-HPS. Note
that, although the valid/invalid sample indistinguishability game does not ex-
plicitly embody leakage queries, it allows the adversary to learn all private keys.
Therefore indistinguishability between Game 1 and Game 2 holds even if the ad-
versary obtains the full information of private keys for the two target identities,
and hence certainly holds when just given limited amount of leakage.

According to the �-leakage-resilient anonymous property of IB-HPS, the advan-
tage of any PPT adversary in Game 2 is negligible. Therefore the advantage
of any PPT adversary in Game 0 is also negligible in κ, which concludes the
Theorem 3. ��
Remark 1. As implicitly noted in [7, Section 7], for an IB-HPS smoothness
instantly implies anonymity when the algorithm SampR is independent of pk.
This approach is used as a natural methodology to achieve anonymity for many
PKE/IBE schemes. We will see that the instantiations presented in Section 6.2,
Section 6.4 and Section 6.5 exactly follow this approach. However, there do exist
anonymous IBE schemes falling outside this methodology, for example, Gentry
IBE [26], as we will analyze in Section 6.3. Our paradigm of anonymous IB-HPS
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serves as a good framework to explain all the currently known anonymous IBE
schemes [14, 26, 11, 27] relying on hash proof techniques, either in the random
oracle model or in the standard model. We also stress that smoothness does not
always guarantee anonymity, for example, the IBE scheme [15] is derived from an
IB-HPS based on the DBDH assumption which is smooth but not anonymous,
as we will show in Section 6.1.

6 Instantiations

IB-HPS is known to exist based on a variety of assumptions [7]. We first describe
a construction of IB-HPS which is smooth but not anonymous, then describe four
constructions of IB-HPS which are smooth and anonymous. We note that the last
three constructions have been presented in [7]. For completeness, we interpret
them using our fine-grained paradigm.

6.1 Non-anonymous IB-HPS Based on the DBDH Assumption

We now describe an IB-HPS based on the DBDH assumption, which can be
viewed as the backbone of the leakage-resilient IBE scheme presented in [15].

Let M be a subset membership problem based on the DBDH assumption.
Gen(κ) runs bilinear group generator GroupGen(κ) to generate global public pa-
rameters (e,G,GT , p), picks five random generators g, g1 = ga, g2 = gb, g3 = gc,
g4 = gd from G, outputs an instance description Γ = (X,V,W, PK,R) of M,
where X = G × G × GT , W = Zp, PK = G, Vpk = {(pkw, gw, e(g, g)abw) ∈
X : w ∈ W}, Rpk = {(x,w) ∈ X ×W : ((pkw, gw, e(g, g)abw), w)}. SampR and
SampR∗ are defined as follows:

– SampR(pk): pick w
R←− Zp, output x = (pkw, gw, e(g, g)abw) ∈ Vpk.

– SampR∗(pk): pick w,w′ R←− Zp subjected to the condition w �= w′, output
x = (pkw, gw, e(g, g)abw

′
) ∈ X\Vpk.

Let H = (H, SK, PK,X, V, Y, α) be a corresponding projective hash family,
where SK = Zp ×G×G, Y = GT . For sk = (sk1, sk2, sk3) and x = (x1, x2, x3),

we define H as Hsk(x) = e(x1, sk3)e(x2, sk2)x
sk1
3 .

Let P be an IB-HPS for M associating H, which consists of four algorithms
as below:

– Setup(κ): run Gen(κ) to obtain (g, g1 = ga, g2 = gb, g3 = gc, g4 = gd),

pick u0, u1, . . . , un
R←− G∗, set mpk = (g, u0, u1, . . . , un, e(g, g)

ab, e(g, g)cd),
msk = (gab, gcd). The identity set I is Zp and IHF : Zp → G is defined as

IHF(id) = u0
∏n

i=1 u
idi

i where idi denotes the i-th bit of identity id (known
as Waters hash). σ(msk, pk) is constructed as: parse msk as (msk1,msk2),

pick t, r
R←− Zp, output (t,msk1msk

−t
2 pkr, g−r).

– KeyGen(msk, id): compute pk = IHF(id), output sk = σ(msk, pk).
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– Pub(id, x, w): compute pk = IHF(id), for x = (pkw, gw, e(g, g)abw) output
y = e(g, g)cdw.

– Priv(sk, x): parse sk as (sk1, sk2, sk3) and x as (x1, x2, x3), output y =
e(x1, sk3)e(x2, sk2)x

sk1
3 .

It is obvious that one can use the bilinear map as a tool to test if an invalid
sample x is generated by SampR∗ with respect to pk. Therefore the above IB-
HPS is smooth but not anonymous. This provides us an evidence that for IB-HPS
smoothness does not guarantee anonymity.

6.2 Anonymous IB-HPS Based on the DBDH Assumption

We now describe an IB-HPS based on the DBDH assumption, which can be
viewed as the backbone of the leakage-resilient IBE scheme presented in [14].

Let M be a subset membership problem based on the DBDH assumption.
Gen(κ) runs bilinear group generator GroupGen(κ) to generate global public pa-
rameters (e,G,GT , p), picks three random generators g, g1 = ga, g2 from G,
outputs an instance description Γ = (X,V,W, PK,R) of M, where X = G×GT ,
W = Zp, PK = G, Vpk = {(gw, e(g1, g2)w) ∈ X : w ∈ W}, Rpk = {(x,w) ∈
X ×W : ((gw, e(g1, g2)

w), w)}. Note that Vpk and Rpk for all pk ∈ PK are same
in this case. For simplicity we write V and R for short. SampR and SampR∗ are
defined as follows:

– SampR(pk): pick w
R←− Zp, output x = (gw, e(g1, g2)

w) ∈ V .

– SampR∗(pk): pick w,w′ R←− Zp subjected to the condition w �= w′, output
x = (gw, e(g1, g2)

w′
) ∈ X\V .

Let H = (H, SK, PK,X, V, Y, α) be a corresponding projective hash family,
where SK = Zp × G, Y = GT . For sk = (sk1, sk2) and x = (x1, x2), H is

defined as Hsk(x) = e(x1, sk2)x
sk1
2 .

Let P be an IB-HPS for M associating H, which consists of four algorithms
as below:

– Setup(κ): run Gen(κ) to generate g, g1 = ga, g2, set mpk = (g, g1 = ga, g2),
msk = a. The identity set I is {0, 1}∗ and IHF is a function from {0, 1}∗ to

G. σ(msk, pk) is constructed as: pick t
R←− Zp, output (t, (pk · g−t

2 )msk).
– KeyGen(msk, id): compute pk = IHF(id), output sk = σ(msk, pk).
– Pub(id, x, w): compute pk = IHF(id), for x = (gw, e(g1, g2)

w) output y =
e(pk, g1)

w.
– Priv(sk, x): parse sk as (sk1, sk2) and x as (x1, x2), output y = e(x1, sk2)x

sk1
2 .

As shown in [14], the above IB-HPS is smooth and anonymous.

6.3 Anonymous IB-HPS Based on the DTABDHE Assumption

We now describe an IB-HPS based on the DTABDHE assumption [26], which
can be viewed as the backbone of Gentry’s IBE [26].
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Let M be a subset membership problem based on the DTABDHE assumption.
The algorithm Gen(κ) runs bilinear group generator GroupGen(κ) to generate
global public parameters (e,G,GT , p), picks three random generators g, g1 = ga,
h from G, outputs an instance description Γ = (X,V,W, PK,R) of M, where
X = G × GT , W = Zp, PK = Zp, Vpk = {(gw1 g−w·pk, e(g, g)w) ∈ X : w ∈ W},
Rpk = {(x,w) ∈ X ×W : ((gw1 g

−w·pk, e(g, g)w), w)}. SampR and SampR∗ are
defined as follows:

– SampR(pk): pick w
R←− Zp, output x = (gw1 g

−w·pk, e(g, g)w) ∈ Vpk.
– SampR∗(pk): pick w,w′ R←− Zp subjected to the condition w �= w′, output
x = (gw1 g

−w·pk, e(g, g)w
′
) ∈ X\Vpk.

Let H = (H, SK, PK,X, V, Y, α) be a corresponding projective hash family,
where SK = Zp ×G, Y = GT .

Let P be an IB-HPS for M associating H, which consists of four algorithms
as below:

– Setup(κ): run Gen(κ) to generate (g, g1 = ga, h), set mpk = (g, g1, h), msk =
a. The identity set I is Zp and IHF is an identity function. σ(msk, pk) is
constructed as: pick t ∈ Zp, output (t, (hg

−t)1/(msk−pk)).
– KeyGen(msk, id): set pk = id, output σ(msk, pk).
– Pub(id, x, w): set pk = id, for x = (gw1 g

−w·pk, e(g, g)w) output y = e(g, h)−w.
– Priv(sk, x): parse sk = (sk1, sk2) and x = (x1, x2), output y = e(x1, sk2)x

sk1
2 .

As shown in [26], the above IB-HPS is smoothness and anonymous.

6.4 Anonymous IB-HPS Based on the Quadratic Residues
Assumption

We now describe an IB-HPS based on the QR assumption, which can be viewed
as the backbone of the IBE scheme presented in [11].

For a positive integer N , let J(N) denote the set J(N) = {x ∈ ZN :
(

x
N

)
= 1}

where
(
x
N

)
denotes the Jacobi symbol of x in Zn. Let QR(N) ⊆ J(N) be the

set of quadratic residues modulo N .
Let M be a subset membership problem based on the QR assumption. The

algorithm Gen(κ) runs prime generator PrimeGen(κ) to generate two primes (p, q)

and set the global public parameter to be (N, u,Q) (where N = pq and u
R←−

J(N)\QR(N) and Q is the algorithm defined in [7, Appendix C]), outputs an
instance description Γ = (X,V,W, PK,R) of M, where X = J(N) × {±1},
W = ZN , PK = J(N), Vpk =

{
(w2, b) ∈ X : w ∈ W, b =

( τ(w)
N

)}
, Rpk =

{(x,w) ∈ X ×W : ((w2,
( τ(w)

N

)
), w)}. Note that Vpk and Rpk for all pk ∈ PK

are same in this case. For simplicity we write V and R for short. SampR and
SampR∗ are defined as follows:

– SampR(pk): pick w
R←− Zp, set x1 = w2, run Q(N, u, 1, x1) to obtain τ and

compute x2 =
( τ(w)

N

)
, output x = (x1, x2) ∈ X .
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– SampR∗(pk): pick x1
R←− J(N)\QR(N), x2

R←− {±1}, output x = (x1, x2) ∈
X\V .

Let H = (H, SK, PK,X, V, Y, α) be a corresponding projective hash family,
where SK = ZN , Y = {±1}. For sk = r and x = (x1, x2), Hsk(x) = y is

defined as when r2 = pk output
( f(r)

N

)
else output x2

( f̄(r)
N

)
, where f , f̄ are the

polynomials output by Q(N, u,R, x1).
Let P be an IB-HPS for M associating H, which consists of four algorithms

as below:

– Setup(κ): run Gen(κ) to obtain two primes (p, q), compute N = pq, pick u
R←−

J(N)\QR(N), set mpk = (N, u), msk = (p, q). The identity set I is {0, 1}∗
and IHF is a function from {0, 1}∗ to J(N). σ(msk, pk) is constructed as: let
a ∈ {0, 1} be the unique choice for which uapk ∈ QR(N), let {r1, r2, r3, r4}
be the labeling of the four square-roots of uapk so that r1 < r2 < r3 < r4

(in Z) and r1 = −r4, r2 = −r3, choose r R←− {r1, r2}.
– KeyGen(msk, id): compute pk = IHF(id), output sk = α(msk, pk).
– Pub(id, x, w): compute pk = IHF(id), for x = (x1, x2), run Q(N, u, pk, x1) to

obtain a polynomial g, output y =
( g(w)

N

)
.

– Priv(sk, x): suppose sk = r for id and x = (x1, x2), compute pk = IHF(id),

run Q(N, u, pk, x1) to obtain polynomials f , f̄ . If r2 = pk output y =
( f(r)

N

)
,

else output y = x2
( f̄(r)

N

)
.

As shown in [11], the above IB-HPS is smooth and anonymous.

6.5 Anonymous IB-HPS Based on the DLWE Assumption

We now describe an anonymous IB-HPS based on the DLWE assumption, which
can be viewed as the backbone of the IBE scheme presented in [27].

Let M be a subset membership problem based on the LWE assumption.
Gen(κ) generates global public parameters A with trapdoor S and a function
f indexed by A, outputs an instance description Γ = (X,V,W, PK,R) of M,
where X = Zn

q ×Zq, W = Zn
q , PK = Zn

q , V = {(AT s+x, v) ∈ X : s ← Zn
q ,x ←

χm, v ← Zp}, R = {((p, s), v) ∈ X ×W : ((AT s + x, v), s)}. Note that Vpk and
Rpk for all pk ∈ PK are same in this case. For simplicity we write V and R for
short. SampR and SampR∗ are defined as follows:

– SampR(pk): pick s
R←− Zn

q , x
R←− χm, v

R←− Zq, compute p = AT s+ x ∈ Zm
q ,

output x = (p, v).

– SampR∗(pk): pick p
R←− Zm

q and v
R←− Zq, output x = (p, v).

Let H = (H, SK, PK,X, V, Y, α) be a corresponding projective hash family,
where SK = Zm, Y = Z2 ×Zq. For sk = e and x = (p, v), we define Hsk(x) = y
as y = 1 if |v − pkT s| ≤ q−1

4 and y = 0 otherwise.
Let P be an IB-HPS for M associating H, which consists of four algorithms

as below:



158 Y. Chen et al.

Setup(κ): run Gen(κ) to generate A ∈ Zn×m
q a with trapdoor S ⊂ Λ⊥(A, q)

according to the trapdoor generation algorithm of [27]. The mpk is A and the
msk is S. The identity set I is {0, 1}∗ and the identity mapping function is
IHF : {0, 1}∗ → Zn

q . The inversion of α is constructed as σ(S, pk) = f−1
A (pk)

using the preimage sampler with S.
KeyGen(msk, id): compute pk = IHF(id), generate a private key sk = σ(S, pk).
Pub(id, x, w): compute pk = IHF(id), parse x = (p, v), if |v − pkT s| ≤ q−1

4 then
set y = 1 else set y = 0.
Priv(sk, x): parse sk = e, x = (p, v), if |v − eTp| ≤ q−1

4 then output y = 1 else
output y = 0.

As shown in [27], the above IB-HPS is smooth and anonymous.

7 Conclusion

In this paper, we reformulated the paradigm of IB-HPS in a fine-grained manner,
and formally introduced a new property named anonymity for it. We gave four
different constructions of anonymous IB-HPS based on a variety of assumptions.
As one important application, we defined the leakage-resilient anonymity of IBE
schemes, and showed how to construct leakage-resilient anonymous IBE schemes
through anonymous IB-HPS in a generic way. As another promising application,
we defined leakage-resilient anonymity of PEKS schemes, and showed how to
construct leakage-resilient anonymous PEKS schemes via anonymous IB-HPS
(using the BDOP IBE-to-PEKS transform [2] as the stepping stone). Due to
space limit, we include this part in the full version of this paper.
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Abstract. The notion of identity-based signature scheme (IBS) has
been proven useful in some scenarios where relying on the validity of the
certificates is impractical. Nevertheless, one remaining inherent problem
that hinders the adoption of this cryptographic primitive in practice is
due to the key escrow problem, where the private key generator (PKG)
can always impersonate the user in the system. In 2010, Yuen et al.
proposed the notion of IBS that does not suffer from the key escrow
problem. Nevertheless, their approach relies on the judge who will later
blame the malicious PKG when such a dispute occurs, assuming that the
PKG is willing to collaborate. Although the approach is attractive, but
unfortunately it is impractical since the malicious PKG may just refuse
to collaborate when such an incident happens. In this paper, we propose
a new escrow-free IBS, which enjoys three main advantages, namely key
escrow free, practical and very efficient. We present a generic intuition as
well as an efficient instantiation. In our approach, there is no judge in-
volvement required, as the public can determine the malicious behaviour
of PKG when such an incident happens. Further, the signature size of our
instantiation is only two group elements, which outperforms the existing
constructions in the literature.

Keywords: identity-based signature, key escrow, efficiency, practicality.

1 Introduction

Due to the practical deployment of traditional public key infrastructure (PKI),
Shamir [14] introduced the concept of identity-based (ID-based) cryptosystem
with the main aim to eliminate the necessity to verify the validity of the certifi-
cates. In an ID-based cryptosystem, the public key of a user can be any arbri-
trary string, such as an email address. An entity called the private key generator

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 161–174, 2012.
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(PKG) then computes the private keys from a master secret for the users. This
property avoids the use of certificates and associates an implicit public key (user
identity) to each user within the system. One only needs to know the recipient’s
identity in order to send an encrypted message to him. It avoids the complicated
and costly certificate (chain) verification for the authentication purpose. In the
case of signature, verification takes only the identity together with the message
and signature pair as input and executes the algorithm directly. (In contrast
to traditional PKI, whereas an additional certification verification algorithm is
needed. That is equivalent to the process of two signatures verification.) Identity-
based signature is a good solution to shorten the time for the overall signature
verification and the size of the signature.

However, as the PKG generates and holds the secret key for all users, a com-
plete trust must be placed on the PKG. Nonetheless, this may not be desirable
in a real world scenario, where a malicious PKG can sell users’ keys or pretend
any user to sign messages or decrypt ciphertexts without being confronted in
a court of law. This problem is referred to as the key escrow problem, which
is an inherent problem in the ID-based cryptosystem. This problem has been
seen as the main stumbling block of the adoption of ID-based cyptosystem in
practice, especially in the scenario where having a complete trust on the PKG
is unrealistic.

Some researchers proposed other crytposystems to solve the key escrow prob-
lem. They use a combination of identity-based cryptosystem and public-key in-
frastructure. Certificateless cryptosystem [1], certificate-based cryptosystem [7],
self-certificated cryptosystem [8] and self-generated-certificate public key cryp-
tosystem [12] are some examples of such solutions. In these systems, a user pos-
sesses a user public key and a user secret key, together with his identity-based
secret key computed by the PKG. The user secret key protects the user from
the key escrow problem. However, these systems are no longer identity-based.
That is, the encryptor or the verifier has to know the user public key in addi-
tion to the user identity. In other words, the original advantage of identity-based
cryptography has been lost.

For those pure identity-based cryptosystems, Boneh and Franklin [4] proposed
using multiple PKGs to solve the problem of key escrow. Their idea is to let the
master secret key jointly computed by a number of PKGs, such that no single
PKG has the knowledge of it. However, this approach only partially solves the
problem. It also requires an extra infrastructure and communication overhead.
A user needs to run the key extraction protocol with different PKGs which is
inefficient and inconvenient. Maintaining multiple PKGs is also impractical for
a commercially used infrastructure.

Goyal [9] proposed the concept of accountable authority identity-based en-
cryption (A-IBE) to reduce the trust in the PKG. The PKG helps the user to
compute his identity-based secret key without knowing it. If the PKG computes
another set of secret key by himself and reveals it to other parties, this key will
be different from the user’s original secret key. Therefore the PKG can be caught
when revealing the secret key as the user’s original secret key is the evidence.
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However, malicious PKG is still able to sell a signed message or decrypted ci-
phertext without being caught. Goyal et al. [10] later enhanced the model by
proposing the concept of a black-box A-IBE. In the enhanced model, if a PKG
sells a decoder box which can decrypt ciphertexts, he will be caught in a trace
algorithm.

The above solutions only deal with identity-based encryption. On the orthog-
onal direction, Yuen et al. [16] proposed an escrow-free identity-based signature
scheme, which makes the notion of ID-signature very interesting. Their scheme
requires a judge to blame the malicious PKG. It also requires the PKG to pro-
vide some secret information to the judge. If the PKG does not cooperate, the
judge cannot output any evidence to blame the PKG. It seems the logic is quite
impractical, since if the PKG is malicious, most likely it will not cooperate with
the judge.

1.1 Contribution

In this paper, we propose a new escrow-free identity-based signature scheme.
It is presented in twofold. We first provide a generic intuition, followed by an
efficient instantiation. Our scheme enjoys the following advantages:

1. It is key escrow free. That is, any malicious PKG who pretends to be any
user1 to sign a message can be detected.

2. Different from [16], our scheme does not require any judge. Any verifier can
detect the malicious behaviour of the PKG given a signature generated by a
user and another signature generated by the PKG, who pretends to be that
user. Hence, it is indeed very practical2.

3. In terms of efficiency, our signature size contains only two group elements,
while the scheme in [16] requires at least three group elements. Hence, our
scheme outperforms the other existing schemes in the literature.

Organization. The rest of this paper is organized as follows. In Sec. 2, we
review the syntax of an identity-based signature and present a formal definition
for escrow-free identity-based signatures (or EF-IBS, for short). We present our
construction in Sec. 3, followed by security analysis. In Sec. 4, we demonstrate

1 We should stress that the “framed user” in this notion is any user who has extracted
his/her private key via the extraction protocol. The definition will not capture any
bogus user created by the PKG, while this user may not even exist in the system.
Therefore, the protection against the key escrow is provided to users who have ex-
trated their private keys. In practice, the user who has conducted the extraction
protocol may receive a physical evidence, which can be used to prove to public in
the case of PKG misbehaviour. Nevertheless, this is outside the system and we do
not deal with this in the description of our scheme.

2 Here we use the term practical to describe systems whose functionalities depends
on realistic assumptions while the term efficient is reserved to describe systems with
high efficiency.



164 Y. Zhang et al.

the practicality of our scheme by showing various timing of the implementa-
tion. Comparison with existing identity-based signature schemes are shown in
Section 5. We conclude our paper in Sec. 6.

2 Syntax

An EF-IBS is a tuple of five algorithms/protocols, namely, Gen, Ext, Sign, Verify,
Blame. The first four algorithms are the same as a regular IBS except Ext is now
an interactive protocol between the PKG and the user. We introduce a public
algorithm called Blame which allows the public to determine if the PKG has
created a signature on behalf of an honest user.

(param,msk) ← Gen(1λ): On input security parameter λ, this algorithm out-
puts the public parameter param for the system as well as the master secret
key msk for the PKG. We assume param is an implicit input to all the algo-
rithms/protocols below.

(dID) ← ExtUser(ID)⇐⇒ExtPKG(msk, ID): This is a pair of interactive algo-
rithms ExtUser and ExtPKG between the user and the PKG. The identity ID
of the user is a common input to both parties. The PKG has an additional
input msk. Upon successful completion of the protocol, the user obtains a
secret key dID with respect to the identity ID.

(σ) ← Sign(ID, dID,m) : This algorithm outputs a signature σ on message m
with respect to identity ID.

(1/0) ← Verify(ID, σ,m) : This algorithm verifies a signature σ on message m
with respect to identity ID.

(1/0) ← Blame(ID, σ,m, σ′,m′) : Given a message-signature pair (m,σ) from
an honest signer with identity ID, this algorithm outputs 1 if and only if
(m′, σ′) is created by the PKG and m �= m′.3

Correctness. As in IBS, EF-IBS should satisfy correctness. That is, signatures
signed by honest signers are verified to be valid.

2.1 Security Requirements

A EF-IBS should possess the standard requirement for signatures as unforge-
ability together with additional requirements described below.

We use the term non-slanderability to describe the requirement that the ma-
licious PKG should not be able to create a signature on an honest user’s behalf
without being detected by the algorithm Blame. On the other hand, we use the
term non-framability to describe the requirement that a malicious user should

3 The conditionm 	= m′ was added because in case the signature scheme is not strongly
unforgeable, it might be feasible to construct another message-signature pair (m,σ∗)
given a pair (m,σ).
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not be able to create two signatures such that the Blame algorithm would output
1. The former protects the user and discourages the PKG from signing on the
user’s behalf. The latter protects the PKG so that it will not be falsely held ac-
countable for the user-created signatures. We formalise the security requirements
with the following games adapted from [16].

Game Unforgeability. The following game between a challenger C and an ad-
versary A formally captures the requirement of existential unforgeability against
adaptive chosen ID and message attacks.

Setup C invokes Gen(1k) and obtains (param,msk). param is given to A.
Query A is allowed to make the following queries:

– Extraction Query. A submits an identity ID and engages C as a user. C
runs ExtPKG(msk, ID).

– Signature Query. A submits a message m and an identity ID. If C does
not has a secret key dID with respect to ID, it creates one by invok-
ing (dID) ← ExtUser(ID)⇐⇒ExtPKG(msk, ID). Next, it computes (σ) ←
Sign(ID, dID,m). σ is returned to A.

Output A submits (σ∗, ID∗,m∗) and wins if and only if
1. 1 ← Verify(ID∗, σ∗,m∗).
2. A has not submitted a Signature Query with input (m∗, ID∗).
3. A has not submitted an Extraction Query with input ID∗.

Definition 1 (Unforgeability). A scheme is unforgeable if no PPT adversary
wins the above game with non-negligible probability.

Game Non-slanderability. The following game between a challenger C and
an adversary A formally captures the requirement of non-slanderability.

Setup C invokes Gen(1k) and obtains (param,msk). Both param and msk are
given to A.

Query A is allowed to made the following queries:
– PKG-Extraction Query. A submits an identity ID and engages C. C plays
the role of a user and runs ExtUser(ID) to obtain dID.

– Signature Query. A submits a message m and an identity ID that has
been submitted to PKG-Extraction Query. C computes (σ) ← Sign(ID,
dID, m). σ is returned to A.

Output A submits (σ∗, ID∗,m∗) and wins if and only if
1. 1 ← Verify(ID∗, σ∗,m∗).
2. A has submitted a Signature Query with input (m, ID∗) and obtains σ.
3. 0 ← Blame(ID∗, σ,m, σ∗,m∗) and m �= m∗.

Definition 2 (Non-slanderability). A scheme is non-slanderable if no PPT
adversary wins the above game with non-negligible probability.
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Game Non-frameability. The following game between a challenger C and an
adversary A formally captures the requirement of non-frameability.

Setup C invokes Gen(1k) and obtains (param,msk). param is given to A.

Query A is allowed to made the following queries:

– Extraction Query. A submits an identity ID and engages C as a user. C
runs ExtPKG(msk, ID).

– Signature Query. A submits a message m and an identity ID. If C does
not has a secret key dID with respect to ID, it creates one by invok-
ing (dID) ← ExtUser(ID)⇐⇒ExtPKG(msk, ID). Next, it computes (σ) ←
Sign(ID, dID,m). σ is returned to A.

Output A submits (ID∗, σ∗,m∗, σ′,m′) and wins if and only if

1. 1 ← Verify(ID∗, σ∗,m∗), 1 ← Verify(ID∗, σ′,m′).
2. m∗ �= m′ and A has never submitted signature query with input (·, ID∗).
3. 1 ← Blame(ID∗, σ′,m′, σ∗,m∗).

Definition 3 (Non-frameability). A scheme is non-frameable if no PPT ad-
versary wins the above game with non-negligible probability.

3 Our Construction of EF-IBS

In this section, we present our construction. We first describe the intuition behind
our construction and in particular, the technique to achieve escrow-freeness.
Then, we discuss a high-level description of our scheme. Finally, we present our
construction followed by the security analysis.

3.1 Intuition of EF-IBS

The rationale is that there are exponentially many possible dID for each identity
ID, and that the PKG does not know what is the actual dID obtained by an
honest user. At the same time, the dID is not re-randomizable. That is, given one
dID, it is impossible to create another dID without the master secret key. Each
signature contains a component which is a one-way function of the underlying
dID. Thus, signature created by different dID’s are different. At the same time,
since the PKG does not know the actual dID, the signature created by the PKG
will be different to a signature created by the honest user.

On the other hand, an honest PKG would only create one dID to the user
for each identity. Any user will only receive one dID and it is computationally
infeasible to derive another. Thus, if there exists two signatures that uses dif-
ferent dID, it must be the case that the PKG is dishonest. In practice, when an
honest user observes a signature that is not created by himself, he can show that
the PKG is dishonest by creating another signature. Anyone observing the two
signatures are created using different dID would be convinced that it is the PKG
that is dishonest.
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3.2 Overview of Our Construction of EF-IBS

Our construction starts with the well-known generic construction of IBS from
normal digital signatures [2]. Let S = (Gen′, Sign′,Verify′) be a normal digital
signature scheme. It can be used to construct an IBS as follows. The PKG invokes
Gen′ to create param and msk, which is merely the public and private key of an
instance of S. To create a secret key of identity ID, the PKG invokes Gen′ again
and create another instance of public and private key, say, yID, xID. Then the
PKG creates a signature σID using his master secret key which is a signature
on “message” yID||ID. The value (σID, yID, xID) is returned to the user as his
secret key.

To create a signature on message m, the user creates a signature σm on m
using his xID. The overall identity-based signature is defined as (σID, yID, σm).
By verifying σm as a valid signature under “public key” yID and that σID is a
valid signature on yID||ID under “public key” param, the validity of the IBS can
be asserted.

We make the observation that if yID is created by the user instead of the PKG,
the PKG cannot obtain the secret value xID. Each identity-based signature will
be associated with a unique value yID and that signatures created by the PKG
will be different to the signatures created by the user. This instantiates the idea
discussed in the previous section and would yield an escrow-free IBS.

However, one problem remains. Specifically, any scheme created following the
above idea would have size of two digital signatures plus one public key. Thus,
it will be inferior to the existing IBS by default. We tackle this issue based on
the technique in aggregate signatures. Recall that an IBS consists of three parts,
namely, σm, σID, yID. We made the observation that the first two parts are both
digital signatures of the same type. Thus, if we can employ an aggregate signature
in the construction so that these two components can be aggregated into a single
signature, then the final construction can be as efficient as any existing IBS
(which consists of two elements). Indeed, we only require aggregate signatures
that supports sequential aggregation since it is always the case that the PKG
creates σID followed by the creation of σm from the user. In the following, we
use the aggregate signature from Boneh et al. [5] to realize our construction of
EF-IBS.

3.3 Our Construction of EF-IBS

Following the idea described in Section 3.2, we describe our EF-IBS. For simplic-
ity, we choose to present our scheme in the symmetric pairing setting, though
we expect it could be adapted to asymmetric pairing readily.

Gen: On input security parameter λ, the PKG generates two groups G, GT of
prime order p such that p is of λ-bit and that there exists a bilinear pairing
ê : G × G → GT . It picks a generator g ∈R G, a random value x ∈R Zp

and computes Y = gx. It also chooses a hash function H : {0, 1}∗ → G. It
publishes param := (ê,G,GT , p, g, Y,H). The master secret key msk is (x).
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Ext: User with identity ID ∈ {0, 1}λ engages the PKG in the following protocol.
We assume there exists an external mechanism for the PKG to verify that
the user is the legitimate owner of this identity ID. Furthermore, the PKG
would not proceed if the value of U received in the first step has been seen
before.

1. User randomly chooses u ∈R Zp, computes U = gu and sends U to the
PKG.

2. The PKG computes V = H(U ||ID)x and returns V to the user.

3. The user stores (u, V ) as his secret key dID.
4. The PKG stores the value of U and would reject any further Ext request

with value U .

Sign: User with identity ID and secret key dID = (u, V ) creates a signature on
message m ∈ {0, 1}λ as follows. User computes W = H(m)u and U = gu.4

Next, the user computes S = VW . The signature σm on messagem is parsed
as (S,U).

Verify: To verify a signature (S,U) on message m with respect to identity ID,
the verifier outputs 1 if and only if the following equation holds (and 0
otherwise):

ê
(
g, S
) ?
= ê
(
U,H(m)

)
ê
(
Y,H(U ||ID)).

Blame: Given a valid signature (S,U) from an honest user with identity ID on
messagem and another message-signature pair

(
m′, (S′, U ′)

)
, this algorithm

outputs 1 if and only if U �= U ′ and 0 otherwise.

3.4 Security Analysis

We first state the well-known computational Diffie-Hellman Assumption.

Definition 4 (CDH Assumption). Let G = 〈g〉 be a cyclic group of prime
order p. The Computational Diffie-Hellman Assumption states that given a tuple
g, ga, gb for some a, b ∈R Zp, it is computationally infeasible to compute the value
gab.

Regarding the security of our construction, we have the following theorem.

Theorem 1. Our construction of EF-IBS possesses Unforgeability, Non-slan-
derability and Non-frameability under the CDH assumption in the random oracle
model.

We prove the security of our scheme through three lemmas, one for each security
requirement.

Lemma 1 (Unforgeability). If there exists a PPT A that wins Game Unforge-
ability, we show how to construct a PPT S that breaks the CDH assumption.

4 U could be stored as part of the secret key to speed up the signature generation
process.
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Proof. Let ê : G×G → GT be a bilinear map such that G = 〈g〉 of prime order
p where p is of λ-bit. We show how to construct a PPT S that violates the CDH
assumption. S is given ga, gb and its goal is to output the value gab. Let q1, q2 be
the number of hash queries made by A to the hash oracle H with input length
λ and 2λ respectively. Let q3 be the number of distinct identities that appear in
the signature query.

Setup S randomly picks α ∈R Zp and computes Y = (ga)α. The public key
is set as param = (ê,G,GT , p, g, y,H), where H is treated as a random
oracle. Note that S does not know the master secret key, which has a value
of aα. S randomly picks three indexes î ∈ {1, . . . , q1}, ĵ ∈ {1, . . . , q2} and

�̂ ∈ {1, . . . q3}.
Query We show how S answers the various queries made by A.

– Hash Query. For the i-th query with input mi ∈ {0, 1}λ, S randomly
picks ri ∈R Zp. If i �= î, return gri . Otherwise, return (gb)ri . Likewise,
for the j-th query with input Ij ∈ {0, 1}2λ, S randomly picks sj ∈R Zp.

If j �= ĵ, return gsj . Otherwise, return (gb)sj .
– Extraction Query. A submits an identity ID and a value U . If U ||ID = Iĵ ,
S aborts. Otherwise, S replies (ga)αsj where Ij = U ||ID.

– Signature Query. For the �-th query, if � = �̂, denote A’s input by m
and ID. S sets U = gaβ for a random value β ∈R Zp and invokes a hash
query such that H(U ||ID) = gsj . Locate the index i such that m = mi

(one of the input to the hash query). If m = mî, S aborts. Otherwise, it

returns (ga)βri(ga)sjα. On the other hand, if � �= �̂, (again, let m and ID
be the input of A), S randomly picks a value u, computes U = gu and
made one hash query such that H(U ||ID) = gsj . It returns the signature
as (S,U) such that S = H(m)u(ga)αsj .

Output A submits (S∗, U∗, ID∗,m∗) such that

1. ê(g, S∗) = ê(U∗, H(m∗))ê(Y,H(U∗||ID∗)).
2. A has not submitted a Signature Query with input (m∗, ID∗).
3. A has not submitted an Extraction Query with input ID∗.
With probability (q1−1)(q2−q)

q1q2
, S does not abort and with non-negligible prob-

ability, one of the following is true:

1. H(U∗||ID∗) = (gb)sĵ and H(m∗) = gri; or
2. U∗ = U ′ = gaβ and H(m∗) = (gb)rî and H(U∗||ID∗) = (gb)sĵ ; or
3. U∗ = U ′ = gaβ and H(m∗) = (gb)rî and H(U∗||ID∗) = gsj .

In case (1), S computes gab as (S∗(U∗)−ri)
1

αs
ĵ . In case (2), S computes gab

as (S∗)
1

βri+αsj . In case (3), S computes gab as (S∗(ga)−αsj )
1

βri .
Case (1) happens with probability q1−1

q1q2
, case (2) happens with probability

1
q1q2

and case (3) happens with probability q2−1
q1q2

. �

Lemma 2 (Non-slanderability). If there exists a PPT A that wins Game
Non-slanderability, we show how to construct a PPT S that breaks the CDH
assumption.
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Proof. Let ê : G×G → GT be a bilinear map such that G = 〈g〉 of prime order
p where p is of λ-bit. We show how to construct a PPT S that violates the CDH
assumption. S is given ga, gb and its goal is to output the value gab. Let q1, q2 be
the number of hash queries made by A to the hash oracle H with input length
λ and 2λ respectively. Let q3 be the number of PKG-Extraction Queries.

Setup S randomly picks x ∈R Zp and computes Y = gx. The public key is set
as param = (ê,G,GT , p, g, y,H), where H is treated as a random oracle. The
master secret key msk is x. The value of param and x are both given to A.
S randomly picks two indexes î ∈ {1, . . . , q1} and ĵ ∈ {1, . . . , q3}.

Query We show how S answers the various queries made by A.
– Hash Query. For the i-th query with input mi ∈ {0, 1}λ, S randomly
picks ri ∈R Zp. If i �= î, return gri . Otherwise, return (gb)ri . For any H
query with input of length 2λ-bit, S returns with a random element of
G.

– PKG-Extraction Query. A submits an identity ID. For the j-th query
such that j �= ĵ, S randomly picks a value uj ∈R Zp, computes Uj = guj ,

sends it to A and obtains V . For j = ĵ, S sends Uj = ga to A.
– Signature Query. For signature query involving ID that has been submit-
ted to j-th PKG-Extraction Query such that j �= ĵ, S knows the secret
key related to ID and thus replies the query properly. If ID is involved
with the ĵ-th PKG-Extraction query, S aborts if the message m to be
signed is the input to the î-th query. Otherwise, it can compute S as
VW where W = (gb)ji .

Output With probability q1−1
q1

, S does not abort and A submits (S∗, U∗, ID∗,
m∗) such that there exists a Signature Query of which the return values is
(S,U, ID,m) and that U∗ = U . Further, with probability at least 1/q1q3,

U = Uĵ and m∗ = mî and S computes gab as (S∗H(U∗||ID)−x)
1
r
î . �

Lemma 3 (Non-frameability). If there exists a PPT A that wins Game Non-
frameability, we show how to construct a PPT S that breaks the CDH assump-
tion.

Proof. Let ê : G×G → GT be a bilinear map such that G = 〈g〉 of prime order
p where p is of λ-bit. We show how to construct a PPT S that violates the CDH
assumption. S is given ga, gb and its goal is to output the value gab. Let q1, q2 be
the number of hash queries made by A to the hash oracle H with input length
λ and 2λ respectively.

Setup S randomly picks α ∈R Zp and computes Y = (ga)α. The public key is
set as param = (ê,G,GT , p, g, y,H), where H is treated as a random oracle.
Note that S does not know the master secret key, which has a value of aα.
S randomly picks an index ĵ ∈ {1, . . . , q2}.

Query We show how S answers the various queries made by A.
– Hash Query. For the i-th query with input length λ, S randomly picks
a value ri and return gri . For the j-th query with input Ij ∈ {0, 1}2λ, S
randomly picks sj ∈R Zp. If j �= ĵ, return gsj . Otherwise, return (gb)sj .
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– Extraction Query. A submits an identity ID and a value U . If U ||ID = Iĵ ,
S aborts. Otherwise, S replies (ga)αsj where Ij = U ||ID.

– Signature Query. For each query, A submits a messagem and an identity
ID. S aborts if U ||ID = Iĵ for some U . Otherwise, S randomly gener-
ates U = gu (if it has not done so before) and retrieves sj such that
H(U ||ID) = gsj . It then computes S as (ga)αsjH(m)u. Note that A is
not allowed to query signatures on the identity it is going to attack.

Output With probability q2−1
q2

, S does not abort and A submits (S∗, U∗, ID∗,
m∗) and (S′, U ′, ID∗, m′) such that U∗ �= U ′ and m �= m′. With probability
at least 2/q2, U

∗||ID∗ = Iĵ or U ′||ID∗ = Iĵ . Without loss of generality,

assume U∗||ID∗ = Iĵ . S locate i such that H(m∗) = gri and computes

gab = (S∗U∗−ri)
1

αsj . �

4 Complexity Analysis

This section aims to analyze the efficiency of the EF-IBS algorithm in terms of
time complexities.

4.1 Empirical Analysis

The complexities of the five algorithms/protocols are independent of the number
of users in the system. Our system is extremely efficient in Gen, Ext, Sign and
Blame. The former three algorithms/protocols involve only one modular expo-
nentiation of a cyclic group for the participants. Verify is the slowest operation
which involves 3 pairing operations. As for space complexity, users are required
to store the secret key dID, which consists of one element in G and one element
in Zp. For efficiency consideration, the user will also store an extra group element
(the element U). Signature size is short and consists of 2 elements per signature.

A breakdown of time complexity of the five protocols into the number of
pairing operations and exponentiations in various groups is shown in Table 1.

Table 1. Empirical Complexities

Operation Gen Ext(User) Ext(PKG) Sign Verify Blame

EXP in G 1 1 1 1 0 0
Pairing 0 0 0 0 3 0

4.2 Experimental Results

We estimate the performance of EF-IBS by measuring the time cost of various
basic operations based on the pairing-based library (version 0.5.12)5 and bench-
mark the performance of our system. The experimental result was produced

5 http://crypto.stanford.edu/pbc/

http://crypto.stanford.edu/pbc/
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through 10 test runs. The test machine was a Acer 3820TzG with 2.8GHz Intel I
5-520 CPU and 4GB of Ram running Ubuntu 10.01 with kernel 2.6.338/8. Two
settings are investigated, namely, symmetric pairing and asymmetric pairing.
Note that if symmetric pairing (Type A pairing) is to be employed, group ele-
ments are of size 512 bits. Furthermore, hashing to point is slow and the cost it
takes is similar to that of a pairing operation. On the other hand, if asymmetric
pairing (type D pairing, using parameter d62003-159-158.param)G1×G2 → GT

is to be employed, short representation of group elements is only possible in G1.
Group order p in this setting is of 158 bit and elements in G1 are of size 159 bit
only. However, operations in group G2 are slow. Our results is shown in Table 2

Our benchmark should give an accurate estimation on the actual performance
of our construction.

Table 2. Experimental Results

Symmetric Pairing (Type A) Asymmetric Pairing (Type D)

Exponentiations 5.4 ms 2.16 (G1) / 10.1 (G2) ms
Pairing 6.25 ms 9.4 ms

Hash to point 11 ms 0.2 (G1) / 46.02 (G2) ms
Size of group elements 64 bytes 20 (G1) / 60 (G2) bytes

5 Comparison

We compare various IBS schemes with our proposed scheme, in terms of efficiency
and security features. We choose the escrow-free IBS from [16], and other efficient
non escrow-free IBS. The result is summarized in Table 3.

Table 3. Comparison of different IBS

Scheme Signature Escrow Security Sign Verify

Sizea Free Model Computationb Computationb

Yuen et al. [16] 3 � ROM 1 E 4 P
(using BLS [6])c

Yuen et al. [16] 6 � standard 1 E 4 P + 2 E
(using BB [3])c

Hess [11] 2 × ROM 2 E 2 P + 2 E

Waters [15,13] 3 × standard 3 E 3 P

Our proposed scheme 2 � ROM 1 E 3 P
a The unit for signature size is group element.
b When we come across the computation of sign and verify, we use E to represent
an exponentiation and P to represent a pairing. Other operations such as hashing
and modulus addition are negligible.

c Yuen et al. [16] provides a generic construction for escrow-free IBS scheme. We
divide the comparison into using BLS [6] scheme for random oracle model and
using BB [3] scheme for standard model, which are the shortest signature schemes
in the literature for the corresponding models.
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6 Conclusion

In this work, we presented a generic construction of escrow-free identity-based
signature as well as an efficient instantiation. In contrast to the prior work due
to Yuen et al. [16], our scheme is very practical, since it allows the public to de-
termine whether the PKG has behaved maliciously given the evidence produced
by the honest user. Further, our instantiation is very efficient since the signature
size only comprises two group elements, which outperforms the existing schemes
in the literature. We further provided a complexity analysis based on empirical
results as well as experimental results.

Acknowledgement. This work is supported by National Natural Science Foun-
dation of China (Grant No: 61003232).

References

1. Al-Riyami, S.S., Paterson, K.G.: Certificateless Public Key Cryptography. In: Laih,
C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 452–473. Springer, Heidelberg
(2003)

2. Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Iden-
tification and Signature Schemes. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 268–286. Springer, Heidelberg (2004)

3. Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004)

4. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In:
Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001)

5. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted
Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS,
vol. 2656, pp. 416–432. Springer, Heidelberg (2003)

6. Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing.
In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer,
Heidelberg (2001)

7. Gentry, C.: Certificate-Based Encryption and the Certificate Revocation Problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003)

8. Girault, M.: Self-certified Public Keys. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 490–497. Springer, Heidelberg (1991)

9. Goyal, V.: Reducing Trust in the PKG in Identity Based Cryptosystems. In:
Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 430–447. Springer, Heidel-
berg (2007)

10. Goyal, V., Lu, S., Sahai, A., Waters, B.: Black-box Accountable Authority Identity-
Based Encryption. In: ACM Conference on Computer and Communications Secu-
rity, pp. 427–436. ACM (2008)

11. Hess, F.: Efficient Identity Based Signature Schemes Based on Pairings. In: Ny-
berg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 310–324. Springer,
Heidelberg (2003)



174 Y. Zhang et al.

12. Liu, J.K., Au, M.H., Susilo, W.: Self-Generated-Certificate Public Key Cryptogra-
phy and Certificateless Signature/Encryption Scheme in the Standard Model. In:
ASIACCS 2007, pp. 273–283. ACM Press (2007)

13. Paterson, K.G., Schuldt, J.C.N.: Efficient Identity-Based Signatures Secure in the
Standard Model. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS,
vol. 4058, pp. 207–222. Springer, Heidelberg (2006)

14. Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely,
G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer,
Heidelberg (1985)

15. Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In:
Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer,
Heidelberg (2005)

16. Yuen, T.H., Susilo, W., Mu, Y.: How to Construct Identity-Based Signatures with-
out the Key Escrow Problem. Int. J. Inf. Sec. 9(4), 297–311 (2010)



Perfect Keyword Privacy in PEKS Systems

Mototsugu Nishioka

HITACHI, Ltd., Yokohama Research Laboratory, Japan
mototsugu.nishioka.rc@hitachi.com

Abstract. This paper presents a new security notion, called perfect
keyword privacy (PKP), for non-interactive public-key encryption with
keyword search (PEKS) [5]. Although the conventional security notion
for PEKS guarantees that a searchable ciphertext leaks no information
about keywords, it gives no guarantee concerning leakage of a keyword
from the trapdoor. PKP is a notion for overcoming this fatal deficiency.
Since the trapdoor has verification functionality, the popular concept of
“indistinguishability” is inadequate for capturing the notion of keyword
privacy from the trapdoor. Hence, our formalization of PKP depends
on the idea of formalizing a perfectly one-way hash function [10,11].
We also present IND-PKP security as a useful notion for showing that a
given PEKS scheme has PKP. Furthermore, we present PKP+ and IND-
PKP+ as enhanced notions of PKP and IND-PKP, respectively. Finally,
we present several instances of an IND-PKP or IND-PKP+ secure PEKS
scheme, in either the random oracle model or the standard model.

1 Introduction

Much attention has been paid to encryption systems that go beyond tradi-
tional public-key encryption (PKE) systems, such as identity-based encryption
(IBE) [6,13,17], public-key searchable encryption [5,19], attribute-based encryp-
tion (ABE) [16], and functional encryption (FE) [7]. This paper deals with non-
interactive public-key encryption with keyword search (PEKS), which is first
presented in [5]. The PEKS provides a simple but useful mechanism to cryp-
tographically protect data while keeping it available for search. For example,
Alice can generate a searchable ciphertext corresponding to her selected key-
word using Bob’s public key. She then stores the ciphertext to a server. Bob can
generate another key, called a trapdoor, corresponding to his selected keyword
by using own secret key. Bob then sends the trapdoor to the server. The server
can test whether or not the keywords corresponding to the ciphertext and the
trapdoor are identical, and Bob can receive the ciphertext from the server only
when the test is passed. In an email system, the server could be a gateway that
forwards emails from Alice to Bob’s portable terminal, depending on his selected
keywords, such as “urgent” or “the next business meeting”.

The conventional security for PEKS, called IND-PEKS-CKA security (cf. Def-
inition 2), requires that the searchable ciphertext does not leak any information
about the keyword. This security, however, gives no guarantee about leakage of
the keyword from the trapdoor. Indeed, there exist PEKS schemes, such as the

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 175–192, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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statistical consistent scheme presented in [1], that are IND-PEKS-CKA secure
but the trapdoor includes the keyword itself. This could bring serious problems
in many systems. For instance, in the above example, the malicious server (or
gateway) could collect the keywords selected by Bob from the given trapdoors
and use them to analyze his activities. The privacy of keywords from the trapdoor
has been discussed in the symmetric-key setting [14] and the interactive public-
key setting [9]. On the other hand, to solve a similar problem in symmetric-key
predicate encryption, Shen, Shi, and Waters [18] presented a security notion,
predicate privacy, to ensure that tokens reveal no information about the en-
coded query predicate. Subsequently, Blundo, Iovino, and Persiano [4] presented
a predicate encryption scheme with partial public key, and defined a token se-
curity to ensure the privacy of a pattern vector from a token. To the best of
our knowledge, however, there has been no discussion of the leakage of keywords
from trapdoors within the framework of PEKS, which is a non-interactive and
“total” public key setting.

1.1 Contributions

This paper presents a new security notion for PEKS, called perfect keyword
privacy (PKP), to protect the privacy of a keyword from an adversary having
both the trapdoor and the ciphertext of the underlying keyword. For formalizing
PKP, the well-known concept of “indistinguishability” is inadequate. This is
because a trapdoor has verification functionality; that is, when a keyword and
trapdoor are given, one can easily verify whether the trapdoor corresponds to
the keyword (see Section 3.1 for details). Therefore, we have applied the idea of
formalizing a perfectly one-way hash function (POWHF) [10,11].

Next, we present IND-PKP security as a useful notion for showing that a given
PEKS scheme has PKP. The IND-PKP security can be defined in a game-based
manner, whereas PKP is defined in a simulation-based manner. As compared
with IND-PEKS-CKA security, IND-PKP security is a more extensive notion
in the sense that it can ensure the privacy of a keyword from not only the ci-
phertext but also the trapdoor. Concerning the privacy of the keyword from
only the ciphertext, however, IND-PKP security is a strictly weaker notion than
IND-PEKS-CKA security. We demonstrate this by giving an instance of a PEKS
scheme that is IND-PKP secure but not IND-PEKS-CKA secure (cf. Remark 7).
Thus, PKP and IND-PKP security are independent notions from IND-PEKS-
CKA security. Therefore, for higher security in PEKS, both IND-PEKS-CKA
and IND-PKP securities are required. We also present PKP+ and IND-PKP+
security notions to enhance the PKP and IND-PKP security notions, respec-
tively, from the viewpoint of search pattern privacy; that is, when two trapdoors
are given, it is hard to guess whether they correspond to the same keyword.

Lastly, we give several instances of PEKS schemes that are IND-PKP se-
cure or IND-PKP+ secure, in addition to being IND-PEKS-CKA secure. In
Section 4.1, we describe the general methodology for constructing IND-PKP se-
cure PEKS schemes. By using this methodology, in Section 4.2 we present a
PEKS scheme that is IND-PEKS-CKA and IND-PKP secure in the standard
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model. In Section 4.3, we present a PEKS scheme that is IND-PEKS-CKA and
IND-PKP secure in the random oracle (RO) model, by direct construction. This
scheme is based on the PEKS scheme in [5] and requires no computational as-
sumptions for achieving IND-PKP security. In Section 4.4, we present a PEKS
scheme that is IND-PEKS-CKA and IND-PKP+ secure in the RO model.

1.2 Related Works

Numerous works on searchable encryption have been presented so far. In this
section, we briefly describe only prior works that are specifically related to this
paper. In particular, we concentrate on the public-key setting.

Boneh, Di Crescenzo, Ostrovsky, and Persiano [5] first presented the frame-
work of PEKS. They formally defined its security and presented concrete schemes
with this security. They also showed a general transformation from anonymous
IBE to PEKS. Abdalla et al. [1] defined consistency in PEKS and gave an
improved transformation from anonymous IBE to PEKS that guarantees consis-
tency. They also introduced three extensions of the established notions: anony-
mous HIBE, PKE with temporary keyword search, and IBE with keyword search.
Bellare, Boldyreva, and O’Neill [3] presented an efficiently searchable encryption
(ESE) system to enable fast data search (i.e., logarithmic time in the database
size) in outsourced databases. The ESE system utilizes a “tag”, which can be
generated in a deterministic manner both from the plaintext and from the cor-
responding ciphertext, as an index for search. Specifically, the server computes
the tag of a ciphertext to be stored in the database and uses the tag to store
the ciphertext appropriately in a data structure. The client computes and sends
its tag to the server and receives any matches and associated data. They also
presented an ESE scheme, called “Hash-and-Encrypt” encryption scheme, and
showed that it is PRIV secure in the RO model when the underlying encryption
scheme is IND-CPA secure. Unlike the trapdoor in the PEKS system, an ESE
tag can be computed without a secret key. Therefore, ESE always allows data
searches by anyone who can access the server. Moreover, its security depends on
only the ciphertext, because the tag can be computed from it. Thus, the ESE
system essentially has a different structure from that of PEKS, and it is outside
the scope of this paper. Camenisch, Kohlweiss, Rial, and Sheedy [9] presented an
extended notion of PEKS, called public-key encryption with oblivious keyword
search (PEOKS), in which a user can obtain the trapdoor from the secret key
holder without revealing the keyword. They constructed a PEOKS scheme by
using a committed blind anonymous IBE scheme based on the anonymous IBE
scheme in [8]. In PEOKS, however, the trapdoor is generated in an interactive
manner. In contrast, our goal in this paper is to define and achieve security for
guaranteeing the privacy of the keyword from the trapdoor, within the frame-
work of PEKS (i.e., trapdoors are generated in a non-interactive manner). Boneh,
Sahai, and Waters [7] presented a general framework for FE, and showed that
existing encryption concepts, such as ABE and PE, can be expressed as partic-
ular functionalities of FE. They also discussed the formal security definition for
FE. They showed that the natural indistinguishability game-based definition is
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inadequate for certain functionalities since trivially insecure constructions may
satisfy it. They hence presented a simulation-based security in which one getting
the secret key reveals no information other than the result of decryption when the
ciphertext is given. However, although simulation-based security can be achieved
in the random oracle model, for a quite simple functionality (the functionality
corresponding to IBE), it cannot be achieved even in the non-programmable
random oracle model. Since PEKS can also be considered as a special case of
FE, the security in [7] is applicable to PEKS. Both game-based security and
simulation-based security, however, have the goal of achieving privacy of a key-
word from a ciphertext, and they give no guarantee concerning keyword leakage
from a trapdoor.

2 Preliminaries

We say that a function f : N → [0, 1] is negligible if, for every constant c > 0,
there exists an integer kc such that f(k) ≤ k−c for all k ≥ kc. For a group G,
G∗ denotes a set G\{1G}, where 1G is an identity element of G. For a finite set
S, x← S denotes the operation of picking an element uniformly from S. We use
x, x′ ← S as shorthand for x ← S ; x′ ← S. If A is a probabilistic algorithm,
then y ← A(x1, x2, . . . ; r) is the result of running A on inputs x1, x2, . . . and
coins r. We let y ← A(x1, x2, . . . ) denote the experiment of picking r at random
and letting y to be A(x1, x2, . . . ; r). The notation Pr[x1 ← S1; x2 ← S2; . . . :
p(x1, x2, . . . )] denotes the probability that the predicate p(x1, x2, . . . ) is true
after the ordered execution of x1 ← S1, x2 ← S2, and so on. If α is neither an
algorithm nor a set then x← α is a simple assignment statement. For a random
variable X, [X] denotes a set {x | Pr[X = x] > 0}, and ||X|| denotes a value
maxx∈[X]{Pr[X = x]}. E(X) denotes the expectation of X, and x← X denotes
selection of a random sample from X; thus, Pr[x ← X] = Pr[X = x]. We use
x, x′ ← X as shorthand for x← X ; x′ ← X. The random variablesX and Y are
independent if Pr[X = a∧Y = b] = Pr[X = a] ·Pr[Y = b] for any a, b ∈ {0, 1}∗.
A probability ensemble is a sequence X = {Xk}k∈N of random variables Xk.
We say that X is well-spread if ||Xk|| is negligible in k. The d-composite bilinear
group generator G is a PPT algorithm that takes a security parameter k as input
and outputs (p1, . . . , pd,G,GT , e), where pi are prime numbers with pi > 2k, G

and GT are multiplicative cyclic groups with order N =
∏d

i=1 pi, and e is a map
from G×G to GT , called a bilinear map, with the following properties:

1. Computable: There is an efficient algorithm to compute e(g, h) for any g, h ∈
G.

2. Bilinear: e(gx, gy) = e(g, g)xy for any g ∈ G and any x, y ∈ ZN .
3. Non-degenerate: If g is a generator of G then e(g, g) is a generator of GT .

In particular, the 1-composite bilinear group generator is simply called a bilinear
group generator. For an integer m dividing N , Gm denotes the subgroup of G
with order m. Then, e(x, y) = 1G for any x ∈ Gm and any y ∈ Gn when m and
n are coprime. This is called the “orthogonality property”.
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Definition 1. A non-interactive public-key encryption with keyword search
(PEKS) scheme consists of the following polynomial-time randomized algorithms:

– KG(1k): Takes a security parameter k, and generates a public/secret key pair
(PK, SK). Here, the keys include the information about the keyword space
KSPk.

– Td(SK,w): For SK and a keyword w ∈ KSPk, produces a trapdoor Tw.
– PEKS(PK,w): For PK and w ∈ KSPk, produces a searchable ciphertext Cw

of w.
– Test(PK,Cw, Tw′): For PK, Cw = PEKS(PK,w), and Tw′ = Td(SK,w′),

where w,w′ ∈ KSPk, outputs 1 if w = w′. Otherwise, outputs 0 with an
overwhelming probability1.

The security of PEKS is defined against an active attacker who is able to obtain
a trapdoor Tw for any keyword w of his choice, to ensure that a PEKS(PK,w)
does not reveal any information about w unless Tw is available [5].

IND-PEKS-CKA Security. LetΠ = (KG,Td,PEKS,Test) be a PEKS scheme,
and let A = (A1,A2) be a probabilistic polynomial-time (PPT) adversary. We
then consider the following experiment.

Experiment Expind:peksA,Π (k)

(PK, SK)← KG(1k) ; (w0, w1, σ) ← ATd(SK,·)
1 (1k, PK)

b← {0, 1} ; Cwb
←PEKS(PK,wb) ; b

′←ATd(SK,·)
2 (1k, PK, σ, w0, w1, Cwb

)
If b = b′ then return 1 else return 0.

Here, w0, w1 ∈ KSPk and w0 �= w1, σ is a string representing the configuration
of A1 at its quitting point, and A is prohibited from asking for the trapdoors
w0 or w1. The advantage of A in the above experiment is defined as

Advind:peksA,Π (k) =

∣∣∣∣Pr [Expind:peksA,Π (k) = 1
]
− 1

2

∣∣∣∣ .
Definition 2. We say that a PEKS scheme Π is indistinguishable against a
chosen-keyword attack (CKA), briefly, IND-PEKS-CKA secure, if Advind:peksA,Π (k)
is negligible for any A.

3 Perfect Keyword Privacy

3.1 Definition

The IND-PEKS-CKA security (in Definition 2) guarantees the privacy of the
keyword from a searchable ciphertext. It does not, however, guarantee any se-
curity concerning leakage of the keyword from the trapdoor. For example, in
[1], a PEKS scheme with statistical consistency is presented and shown to be

1 This property is called computational consistency in [1]. In this paper, we call it
“consistency” for brevity.
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IND-PEKS-CKA secure under the BDH assumption. That scheme is designed,
however, so that the trapdoor includes the keyword itself. To overcome this
deficiency, we present a new security notion, perfect keyword privacy (briefly,
PKP), for a PEKS to ensure the privacy of the keyword from both the trapdoor
and the searchable ciphertext. In this section, we present a formal definition of
PKP. In formulating security against information leakage, the natural, popular
concept that comes to mind is “indistinguishability”. We first explain why in-
distinguishability is inadequate for defining PKP. We now consider the following
game based on indistinguishability.

1. For (PK, SK) ← KG(1k), the adversary receives the public key PK and is
allowed to access to the trapdoor oracle Td(SK, ·).

2. In the challenge phase, the adversary submits two keywords, w0, w1, and
receives a target trapdoor Twb

= Td(SK,wb) for a randomly chosen b ∈
{0, 1}. The adversary can continuously make queries to the trapdoor oracle
Td(SK, ·), except for querying w0 or w1.

3. In the guess phase, the adversary finally outputs b′∈{0, 1} as its guess for b.

It is then required that no PPT adversary can guess the challenge bit b with a
non-negligible advantage. There exists an adversary, however, that can guess b
with an overwhelming probability in the above game. After receiving the trap-
door Twb

in Step 2, the adversary computes Cwi = PEKS(PK,wi) for each
i = 0, 1 and outputs b′ ∈ {0, 1} such that Test(Twb

, Cwb′ ) = 1. Then, from the
consistency of PEKS, the probability Pr[b = b′] is overwhelming.

Our formalization of PKP depends on an idea of formalizing a POWHF
[10,11]. Informally, we say that a PEKS scheme has PKP if there is no efficient
way to guess the keyword w from the given trapdoor Tw and ciphertext Cw other
than the “select and test” method; in other words, the adversary selects a key-
word w′ in an arbitrary manner and tests whether Test(Tw,PEKS(PK,w

′)) = 1
holds. If the test is passed, the adversary decides that w = w′. In our definition,
the “select and test” method is formalized by an oracle Ow, called a test oracle,
in the ideal system: for a query (keyword) w′, Ow responds with 1 if w = w′;
otherwise, it responds with 0. Note that one may think that the oracle Ow should
be defined so that it outputs 0 with an overwhelming probability when w �= w′

because Definition 1 adopts computational consistency. It can easily be shown,
however, that this difference does not affect Definition 3.

Perfect Keyword Privacy. Let Π = (KG,Td,PEKS,Test) be a PEKS scheme.
Let X = {Xk}k∈N be a probability ensemble such that [Xk] = KSPk. From now
on, unless otherwise indicated, we assume that X is well-spread and independent
from key generation (cf. Remarks 1 and 2). X determines the distribution of
keywords; that is, when the security parameter k is given, the keyword w is
given as a random sample from Xk. Let P = {Pk}k∈N be a predicate family,
where Pk is an efficiently computable predicate over [Xk]. Let A and B be PPT
algorithms. We then define the following experiments. See Section 2 for other
notations and conventions.
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Experiment Exppkp:realA,Π,X ,P(k) Experiment Exppkp:idealB,Π,X ,P(k)
w ← Xk ; (PK, SK)← KG(1k) w← Xk ; (PK, SK)← KG(1k)
Tw ← Td(SK,w) ; Cw ← PEKS(PK,w) z ← BOw,Td(SK,·)(1k, PK)

z ← ATd(SK,·)(1k, PK, Tw, Cw) If z = Pk(w) then return 1
If z = Pk(w) then return 1 else return 0. else return 0.

Definition 3. We say that a PEKS scheme Π has perfect keyword privacy
(PKP) with respect to X if for any P and A, there exists a negligible function
negl and B such that

Pr
[
Exppkp:realA,Π,X ,P(k) = 1

]
≤ Pr
[
Exppkp:idealB,Π,X ,P(k) = 1

]
+ negl(k) (1)

for all k ∈ N. We also say that Π has PKP if it has PKP with respect to any X .

Remark 1. In Definition 3, the probability ensemble X is given independently
from the key generation of the PEKS scheme. This setting is very significant for
obtaining a useful notion, IND-PKP security, to achieve PKP (see the proof of
Theorem 1). From a practical viewpoint, we think that this is a natural setting
in the real world. Generally, public keys are not used as keywords because they
are large, meaningless phrases, whereas other identifiers, such as a user’s name
and email address, are usually used to designate a person.

Remark 2. Definition 3 is meaningful even if X is not well-spread. However,
without loss of generality, we can assume that the probability ensemble X is
well-spread when defining the privacy of the keyword from the trapdoor. As
described at the beginning of this section, if the trapdoor is given, the adversary
can always verify whether it corresponds to his own chosen keyword. From this
fact, in (1) we can exclude the case of choosing w ∈ [Xk] such that Pr[Xk = w]
is non-negligible. Notice that the number of keywords appearing with a non-
negligible probability is polynomially bounded in k.

Remark 3. In Definition 3, only a single tuple of the trapdoor and ciphertext is
given to the adversary A. In Section 3.2, we present a notion, IND-PKP security,
and use it to show that a given PEKS scheme has PKP. From a hybrid argument
[2], we can show that (single-target) IND-PKP security implies multi-target IND-
PKP security. Thus, IND-PKP security implies multi-target PKP.

Remark 4. Concerning the privacy of a keyword from only the searchable ci-
phertext, IND-PEKS-CKA security gives strictly stronger security than that of
PKP. In Remark 7, we demonstrate this by presenting a PEKS scheme that is
IND-PKP secure (cf. Section 3.2) but not IND-PEKS-CKA secure. On the other
hand, there exist PEKS schemes, such as the scheme in [1] described above, that
are IND-PEKS-CKA secure but do not have PKP. Thus, PKP is a separate secu-
rity notion from IND-PEKS-CKA security; that is, PKP and IND-PEKS-CKA
security are independent of each other. Hence, for higher security in a PEKS sys-
tem, both IND-PEKS-CKA security and PKP are required. Note that strictly
speaking, the above results on separation and comparison are true under some
computational complexity assumptions because they are required for achieving
the securities of the instances.
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We expect that the idea of PKP will be applied in FE systems to ensure the
privacy of a key from a secret key (see [7] for the detail of FE); since FE is
a generalized concept of many other primitives, such as IBE, PE, and ABE,
this idea is also applicable to those primitives. Informally, we say that an FE
scheme for a functionality F over (K,X) has perfect key privacy if a secret key
skk corresponding to the key k ∈ K leaks no information about k, beyond the
information obtained from the oracle OF (k,·), where for the query x, OF (k,·)
returns F (k, x). If OF (k,·) gives only trivial information2, like Ox in PEKS, then
this notion will give meaningful security in an FE system. We leave a detailed,
formal discussion to subsequent works.

3.2 How to Achieve PKP

In this section, we present a useful notion, called IND-PKP security, to show
that a given PEKS scheme has PKP. The IND-PKP security can be defined
in a game-based manner, whereas we defined PKP above in a simulation-based
manner. The IND-PKP security can be regarded as a strictly stronger notion
than PKP from the viewpoint of the strength relation between the cryptographic
assumptions for achieving these securities (cf. Remark 6).

IND-PKP Security. Let X = {Xk}k∈N be a probability ensemble, and let
Π = (KG,Td,PEKS,Test) be a PEKS scheme. Let A be a PPT algorithm, called
IND-PKP adversary. We then define the following experiment (cf. Remark 3).

Experiment Expind-pkpA,Π,X (k)

w0, w1 ← Xk ; b← {0, 1} ; (PK, SK), (PK ′, SK ′) ← KG(1k)
Tw0 ← Td(SK,w0) ; Cw0 ← PEKS(PK,w0)
T ′
wb

← Td(SK ′, wb) ; C
′
wb

← PEKS(PK ′, wb)

b′ ← ATd(SK,·),Td(SK′,·)(1k, PK, Tw0 , Cw0 , PK
′, T ′

wb
, C′

wb
)

If b = b′ then return 1 else return 0.

The advantage of A in the above experiment is defined as

Advind-pkpA,Π,X (k) =

∣∣∣∣Pr [Expind-pkpA,Π,X (k) = 1
]
− 1

2

∣∣∣∣ ,
and b ∈ {0, 1} is called a challenge bit.

Definition 4. We say that a PEKS scheme Π is IND-PKP secure with respect
to X if Advind-pkpA,Π,X (k) is negligible for any A. We also say that Π is IND-PKP
secure if it is IND-PKP secure with respect to any X .

Theorem 1. If the PEKS scheme Π = (KG,Td,PEKS,Test) is IND-PKP se-
cure, then it has PKP.

2 For example, F (k, x) represents a result of execution of certain program Pk for input
x. Pk outputs a meaningful string only for particular x, whereas it outputs ⊥ for
other input. It is easy to find such particular x from k but difficult to find it from
skk.
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Proof. Let X = {Xk}k∈N be a well-spread probability ensemble. We show that
if the PEKS scheme Π is IND-PKP secure with respect to X , then it has PKP
with respect to X . For an IND-PKP adversary A, we define

ρ
(1)
A,Π,X (k)=Pr

[
(PK, SK), (PK ′, SK ′)←KG(1k) ; w←Xk ; Tw←Td(SK,w) ;

Cw ← PEKS(PK,w) ; T ′
w ← Td(SK ′, w) ; C′

w ← PEKS(PK ′, w) :

ATd(SK,·),Td(SK′,·)(1k, PK, Tw, Cw, PK
′, T ′

w, C
′
w) = 1
]
,

ρ
(2)
A,Π,X (k) = Pr

[
(PK, SK), (PK ′, SK ′) ← KG(1k) ; w,w′ ← Xk ;

Tw ← Td(SK,w) ; Cw ← PEKS(PK,w) ; T ′
w′ ← Td(SK ′, w′) ;

C′
w′ ←PEKS(PK ′, w′) : ATd(SK,·),Td(SK′,·)(1k, PK, Tw, Cw, PK

′, T ′
w′ , C′

w′) = 1
]
.

Then we have

2 · Advind-pkpA,Π,X (k) =
∣∣∣ρ(1)A,Π,X (k)− ρ

(2)
A,Π,X (k)

∣∣∣ . (2)

We now suppose that Π does not have PKP with respect to X = {Xk}k∈N.
Then from Definition 3, there exists a predicate family P = {Pk}k∈N and a PPT
algorithm B such that for any PPT algorithm C,

ρ(k) = Pr
[
Exppkp:realB,Π,X ,P,t(k) = 1

]
− Pr
[
Exppkp:idealC,Π,X ,P (k) = 1

]
(3)

is non-negligible. We now consider a PPT algorithm C (in the ideal system) that
works as follows:

1. Select a random sample w′ ← Xk and make a trapdoor query w′ to ob-
tain the trapdoor Tw′ . Generate a searchable ciphertext of w′ by Cw′ ←
PEKS(PK,w′).

2. Run B on input (1k, PK, Tw′, Cw′), and output the corresponding response
of B. If B makes trapdoor queries then respond to them by using C’s trapdoor
oracle.

This completes the description of C. Moreover, for each w ∈ [Xk], we define

ζw;B(k) = Pr
[
(PK, SK)← KG(1k) ; Tw ← Td(SK,w) ;

Cw ← PEKS(PK,w) : BTd(SK,·)(1k, PK, Tw, Cw) = 1
]
.

Let Si
Pk

denote a set {w ∈ [Xk] | Pk(w) = i}, for each i ∈ {0, 1}. Then, since Xk

is independent from the key generation, we have

Pr
[
Exppc:realB,Π,X ,P(k) = 1

]
=
∑

w∈S1
Pk

Pr[Xk = w] · ζw;B(k)

+
∑

w∈S0
Pk

Pr[Xk = w] · (1− ζw;B(k)), (4)
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Pr
[
Exppc:idealB,Π,X ,P(k) = 1

]
=
∑

w∈S1
Pk

Pr[Xk = w] ·
∑

w′∈[Xk]

Pr[Xk = w′] · ζw′;B(k)

+
∑

w∈S0
Pk

Pr[Xk=w] ·
∑

w′∈[Xk]

Pr[Xk=w
′] · (1− ζw′;B(k)).

(5)

Let Zk be a random variable over [0, 1] = {a ∈ R | 0 ≤ a ≤ 1} such that
Pr[Zk = ζw;B(k)] = Pr[Xk = w]. Then, from (3), (4), and (5), we have

ρ(k) =
∑

w∈S1
Pk

Pr[Xk = w] ·
(
ζw;B(k)−

∑
w′∈[Xk]

Pr[Xk = w′] · ζw′;B(k)

)

−
∑

w∈S0
Pk

Pr[Xk = w] ·
(
ζw;B(k)−

∑
w′∈[Xk]

Pr[Xk = w′] · ζw′,B(k)

)

≤
∑

w∈[Xk]

Pr[Xk = w] ·
∣∣∣∣∣∣ζw;B(k)−

∑
w′∈[Xk]

Pr[Xk = w′] · ζw′,B(k)

∣∣∣∣∣∣
= E(|Zk − E(Zk)|) ≤

√
E(Z2

k)− E(Zk)2. (6)

Let A∗ be an IND-PKP adversary such that for a given input (1k, PK, Tw,
Cw, PK

′, T̄ , C̄), where (T̄ , C̄) is (T ′
w, C

′
w) or (T ′

w′ , C′
w′), it runs B twice and

outputs 1 only when B(1k, PK, Tw, Cw) = B(1k, PK ′, T̄ , C̄) = 1. Then we have

E(Z2
k) = ρ

(1)
A∗,Π,X (k) and E(Zk)

2 = ρ
(2)
A∗,Π,X (k). (7)

From (2), (6), and (7), we finally have

ρ(k)2 ≤
∣∣∣ρ(1)A∗,Π,X (k)− ρ

(2)
A∗,Π,X (k)

∣∣∣ = 1

2
Advind-pkpA∗,Π,X (k).

This contradicts the assumption that Π is IND-PKP secure.

3.3 Additional Notions

In Section 4.3, we present an IND-PKP secure PEKS system in which the trap-
door is generated in a deterministic manner. In this system, when two trapdoors
are given under the same secret key, one can easily guess whether they cor-
respond to the same keyword. Thus, IND-PKP security cannot assure “search
pattern privacy”, in general. In this section, we address this issue.

Search Pattern Privacy. Let X = {Xk}k∈N be a probability ensemble, and
let Π = (KG,Td,PEKS,Test) be a PEKS scheme. Let A be a PPT algorithm,
called a SPP adversary. We then define the following experiment.
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Experiment ExpsppA,Π,X (k)

w0, w1 ← Xk ; b← {0, 1} ; (PK, SK)← KG(1k)
Tw0 ←Td(SK,w0) ; Twb

←Td(SK,wb) ; b
′ ← ATd(SK,·)(1k, PK, Tw0 , Twb

)
If b = b′ then return 1 else return 0.

The advantage of A in the above experiment is defined as

AdvsppA,Π,X (k) =

∣∣∣∣Pr [ExpsppA,Π,X (k) = 1
]
− 1

2

∣∣∣∣ ,
and b ∈ {0, 1} is called a challenge bit.

Definition 5. We say that a PEKS scheme Π has search pattern privacy
(briefly, SPP) if AdvsppA,Π,X (k) is negligible for any A and X .

Definition 6 (PKP+ and IND-PKP+). We say that a PEKS scheme has
PKP+ if it has both PKP and SPP. We also say that a PEKS scheme is IND-
PKP+ secure if it is IND-PKP secure and has SPP.

Remark 5. In Definition 5, it is essential that the adversary cannot see the ci-
phertexts Cw0 and Cw1 . If either of these is given, the adversary can easily guess
b by running the test algorithm. Thus, in a real system, SPP is meaningful in
a situation in which there is no ciphertext corresponding to the search keyword
(although the searcher has multiple trapdoors corresponding to the underlying
keyword). In our definition of SPP, the adversary is not allowed to choose the
keywords w0, w1. This is because we regard SPP as an additional notion for PKP
to strengthen the privacy of keywords.

4 PEKS Schemes with Perfect Keyword Privacy

As described in Remark 4, concerning the privacy of a keyword from only a
searchable ciphertext, IND-PKP security ensures strictly weaker security than
that of IND-PEKS-CKA security. Therefore, for higher security in PEKS, we
present several instances of a PEKS scheme that is IND-PKP secure or IND-
PKP+ secure, in addition to being IND-PEKS-CKA secure. As much as we
possible, we looked for appropriate instances in existing schemes and modified
them if necessary.

4.1 General Methodology

Before giving concrete instances, we describe a general methodology for achieving
IND-PKP security in PEKS schemes. We first introduce the notion of a secure
injective-function generator.

Definition 7. The injective-function generator is a pair of PPT algorithms I
and G such that (1) I takes a security parameter k as input and outputs λk ∈
{0, 1}∗, and (2) G takes λk as input and outputs an injective function π : Yλk

→
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Zλk
, where Yλk

and Zλk
are sets uniquely determined from λk. We say that the

injective-function generator (I,G) is secure if for any well-spread probability
ensemble X = {Xk}k∈N with [Xk] ⊆ Yλk

, and any PPT algorithm B,

AdvsifB,I,G,X (k) =
∣∣∣∣Pr[λk ← I(1k) ; π, π′ ← G(λk) ; x0, x1 ← Xk ;

b← {0, 1} ; b′ ← B(1k, π, π′, π(x0), π′(xb)) : b = b′
]
− 1

2

∣∣∣∣
is negligible.

An example of a secure injective-function generator is given in Section 4.2. Next,
we describe how to convert a PEKS scheme into an IND-PKP secure PEKS
scheme by using a secure injective-function generator. The essential point of the
conversion is that the secure function generator yields a fresh injective function
for each user, and the trapdoor and ciphertext are created from the keyword’s
function value. Let Π = (KG,Td,PEKS,Test) be a PEKS scheme, and let (I,G)
be an injective-function generator such that for λk ← I(1k), G(λk) outputs an
injective function from KSPk to KSPk. We then define a PEKS scheme Π∗ =
(KG∗,Td∗,PEKS∗,Test∗) as follows.

– KG∗(1k) outputs (PK∗, SK∗)= ((PK, λk, π), (SK, λk, π)) for (PK, SK) ←
KG(1k), λk ← I(1k), and π ← G(λk), where λk is a common parameter for
all users in this system.

– Td∗(SK∗, w) outputs Tπ(w) ← Td(SK, π(w)).
– PEKS∗(PK∗, w) outputs Cπ(w) ← PEKS(PK, π(w)).
– Test∗ is identical with Test.

Theorem 2. In the PEKS scheme Π∗, we have the following results.

(a) If (I,G) is secure, then Π∗ is IND-PKP secure.
(b) If Π is IND-PEKS-CKA secure, then Π∗ is IND-PEKS-CKA secure.

The proof of Theorem 2 is given in the full version of this paper. The above
methodology is simple and useful although some additional assumption may be
required for secure function generator. This methodology however cannot guar-
antee SPP in Π∗. The brute force approach (under a constraint) for obtaining an
IND-PKP+ secure PEKS scheme Π∗ by using a secure injective-function gener-
ator (I,G) is as follows. KG∗ creates (PK∗, SK∗) = ((PK, λk, π1, . . . , πn), (SK,
λk, π1, . . . , πn)) for (PK, SK) ← KG(1k), λk ← I(1k), and π1, . . . , πn ← G(λk).
Td∗(SK,w) has a counter, and it outputs T ∗

w = Tπi(w) if this is the i-th execu-
tion for the same keyword w. PEKS∗(PK,w) outputs C∗

w = (Cπi(w))1≤i≤n. It
can readily be shown that if (I,G) is a secure injective-function generator and
the adversary is restricted to making at most n trapdoor queries to the same
keyword, then Π∗ is IND-PKP+ secure. We do not know of a general methodol-
ogy for obtaining an IND-PKP+ secure PEKS scheme without restriction. This
problem remains open. Note that obviously, we can obtain a similar result to
Theorem 2 when applying an RO generator (i.e., π is an RO in the above Π∗)
instead of a secure injective-function generator (cf. Proposition 5).
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4.2 Instance 1

In this section, we present a concrete instance of a PEKS scheme that can be
obtained by the methodology described in Section 4.1. This instance is based on
the Gentry IBE scheme [15] and the conversion [1] from the IBE scheme to the
PEKS scheme. The resulting scheme is both IND-PKP and IND-PEKS-CKA
secure in the standard model. Let G be a bilinear group generator. We define
an injective function generator (G,G) as follows: For I = (p,G,GT , e) ← G(1k),
G(I) picks a primitive element ξ ∈ Z∗

p at random and outputs a function π such
that π(x) = ξx for x ∈ Zp. Since ξ is a primitive element, π is injective. The
following assumption can be seen as a variant of the Decisional Diffie-Hellman
(DDH) assumption.

Assumption I. We say that G satisfies Assumption I if for any well-spread
probability ensemble X = {Xk}k∈N with [Xk] ⊆ Zp, and any PPT algorithm B,∣∣∣∣Pr[I = (p,G,GT , e) ← G(1k) ; x0, x1 ← Xk ; ξ1, ξ2 ← PRIM(p) ;

b← {0, 1} ; b′ ← B(1k, I, ξ1, ξ2, ξx0
1 , ξxb

2 ) : b = b′]− 1

2

∣∣∣∣
is negligible, where PRIM(p) is a set of all primitive elements in Zp.

From the definitions, the following proposition is clear.

Proposition 1. If G satisfies Assumption I, then (G,G) is secure.

Let (G,G) be the injective-function generator mentioned above. We then de-
fine the PEKS scheme Π1 = (KG,Td,PEKS,Test) as follows.

– KG(1k): For a security parameter k, run G and G to obtain I = (p,G,GT , e)
← G(1k) and π(x) = ξx ← G(I). Pick g, h ∈ G∗ and α ∈ Zp at random, set
PK = (I, π, g, g1 = gα, h) and SK = α, and output (PK, SK), where (I, g)
are common parameters for all users in this system.

– Td(SK,w): To generate a trapdoor for a keyword w ∈ Zp under the secret

key SK, pick a random rw ∈ Zp and output Tw = (rw , hw=(hg−rw)
1

α−π(w) ).
Note that the same rw is used for the same keyword w.

– PEKS(PK,w): To encrypt a keyword w under the public key PK, pick ran-
dom s ∈ Zp and R ∈ GT , and output Cw = (R, C1 = gs1g

−sπ(w), C2 =
e(g, g)s, C3 = R · e(g, h)−s).

– Test(PK, Tw, Cw): Using the notation in the description of Td and PEKS, if
R = C3 · e(C1, hw)C

rw
2 then output 1; otherwise, output 0.

The Gentry IBE scheme is shown to be anonymous and IND-ID-CPA secure
under the truncated decision ABDHE assumption (see [15] for details). There-
fore, from Theorem 4.2 in [1] and Theorem 2. (b), Π1 is IND-PEKS-CKA secure
under the same assumption, and it is computationally consistent. In addition,
from Proposition 1 and Theorem 2. (a), Π1 is IND-PKP secure under Assump-
tion I. However, Π1 is not IND-PKP+ secure because the trapdoor in Π1 is
uniquely determined per the keyword. An instance of a PEKS scheme that is
both IND-PEKS-CKA and IND-PKP+ secure is given in Section 4.4.
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4.3 Instance 2

In this section, we present an efficient PEKS scheme that is IND-PKP and IND-
PEKS-CKA secure in the RO model, without depending on a secure injective-
function generator in its construction. To achieve IND-PKP security, this
instance requires no cryptographic assumption beyond those for achieving IND-
PEKS-CKA security. This scheme is based on the PEKS scheme proposed in
[5], with slight modification. Let G be a bilinear group generator. We begin by
describing the PEKS scheme Π2 = (KG,Td,PEKS,Test) associated with G.
– KG(1k): For a security parameter k, run G to obtain (p,G,G1, e) ← G(1k),

and select a ∈ Zp and g ∈ G∗ (i.e., g is a generator of G) at random. Set
PK = (p, g,G,G1, e, g, h= ga, H1, H2) and SK = (PK, a), where H1 and
H2 are hash functions, and (p,G,G1, e, g,H1, H2) are common parameters
for all users in this system, and output (PK, SK).

– Td(SK,w): As a trapdoor for a keyword w ∈ {0, 1}∗ under the secret key
SK = (PK, a), output Tw = H1(PK||w)a ∈ G.

– PEKS(PK,w): To encrypt a keyword w under the public key PK, pick a
random r ∈ Zp and output Cw = (C1 = gr, C2 = H2(e(H1(PK||w), hr))).

– Test(PK,Cw, Tw): Using the notation in the description of Td and PEKS, if
H2(e(Tw, C1)) = C2, then output 1; otherwise, output 0.

The consistency of the above PEKS scheme is shown in [1]. As compared to the
original scheme, the input to H1 includes a public key in Π2. This modification
does not collapse the IND-PEKS-CKA security of the scheme because it can be
seen as the original PEKS scheme with a special keyword form. Therefore, like
the original scheme, this scheme can be shown IND-PEKS-CKA secure in the
RO model under the BDH assumption [5]. Interestingly, IND-PKP security of
Π2 can be shown only under the RO assumption (i.e., without a computational
assumption).

Proposition 2. Suppose that H1 and H2 are ROs. For any probability ensem-
ble X = {Xk}k∈N and any IND-PKP adversary A against Π2 that makes at
most qH1(k) queries to H1 and at most qt(k) trapdoor queries when the security
parameter k is given,

Advind-pkpA,Π2,X (k) ≤ 2(qt(k) + qH1(k)) · ||Xk||+ 2−k (k ∈ N).

The proof of Proposition 2 is given in the full version of this paper.

Remark 6. From Definition 3, the original PEKS scheme in [5] is shown directly
to has a PKP under the RO assumption. This is because in the trapdoor, the
keyword is hidden by the RO H1, and the ciphertexts can be created from
the trapdoor. However, it will be impossible to show the IND-PKP security of
this scheme only under the RO assumption. If the DDH assumption (on G) is
added, then the scheme is shown to be IND-PKP secure. In this sense, IND-
PKP security can be regarded as a strictly stronger notion than PKP. On the
other hand, if H1 and H2 are freshly chosen in each key generation (not used as
common parameters), then the original scheme is shown to be IND-PKP secure
only under the RO assumption.
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4.4 Instance 3

As described in Section 3.1, achievement of both IND-PEKS-CKA and IND-
PKP+ securities can be considered as the highest security in a PEKS system.
Unfortunately, we could not find an appropriate instance within any existing
schemes (even allowing for slight modification). We then present a new PEKS
scheme that is IND-PKP+ and IND-PEKS-CKA secure in the RO model. Let
G3 be a 3-composite bilinear group generator. We begin by describing the PEKS
scheme Π3 = (KG,Td,PEKS,Test) associated with G3.

– KG(1k): For a security parameter k, run G3 to obtain I = (p1, p2, p3,G,GT , e)
← G3(1

k) and set N = p1p2p3. Pick gi ∈ G∗
pi

(1 ≤ i ≤ 3) and R2 ∈ Gp2

at random. Set PK = (N,G,GT , e, g2, g3, g=g1R2, H) and SK = (PK, g1),
where H is a hash function from {0, 1}∗ to Gp1 , and output (PK, SK).

– Td(SK,w): To generate a trapdoor of a keyword w ∈ {0, 1}∗ under the
secret key SK, pick s ∈ Zp1 and R3, S3 ∈ Gp3 at random, and output Tw =
(T1 = gs1R3, T2 = H(w)sS3).

– PEKS(PK,w): To encrypt a keyword w under the public key PK, pick r ∈
ZN and Y2, Z2 ∈ Gp2 at random, and output Cw = (C1 = grY2, C2 =
H(w)rZ2).

– Test(PK,Cw, Tw): Using the notation in the description of Td and PEKS, if
e(T1, C2) = e(T2, C1), then output 1; otherwise, output 0.

From the orthogonality property, the completeness and consistency of Π3 can
readily be verified. To show the security of Π3, we introduce the following as-
sumptions.

Assumption II. We say that G3 satisfies Assumption II if for any PPT algo-
rithm B,

AdvA-2
A,G3

(k) =

∣∣∣∣ Pr[ I ← G3(1
k) ; N ← p1p2p3 ; gi ← G∗

pi
(1 ≤ i ≤ 3) ;

X0, X1 ← Gp1 ; s, s′ ← ZN ; R3, S3, R
′
3, S

′
3 ← Gp3 ; b← {0, 1} ;

b′ ← B
(
1k, N,G,GT , e, g1, g2, g3, (g

s
1R3, X

s
0S3), (g

s′
1 R

′
3, X

s′
b S

′
3)
)

: b = b′
]
− 1

2

∣∣∣∣
is negligible.

Assumption III. We say that G3 satisfies Assumption III if for any PPT al-
gorithm B,

AdvA-3
A,G3

(k)=

∣∣∣∣Pr[I←G3(1
k) ; N←p1p2p3 ; gi←G∗

pi
(1 ≤ i ≤ 3) ; α, β ← Z∗

N ;

X0, X1 ← Gp1 ; r ← ZN ; R2, Y2, Z2 ← Gp2 ; g ← g1R2 ; b← {0, 1} ;

b′←B
(
1k, N,G,GT , e, g2, g3, g

α
1 , g

β
1 , g

αβ
1 , g,X0, X1, (g

rY2, X
r
bZ2)
)
: b = b′

]
− 1

2

∣∣∣∣
is negligible.
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Assumption IV. We say that G3 satisfies Assumption IV if for any PPT algo-
rithm B,

AdvA-4
A,G3

(k) =

∣∣∣∣ Pr[ I ← G3(1
k) ; N ← p1p2p3 ; h0, h1 ← (GT )p1 ; α, β ← Z∗

N ;

b← {0, 1} ; b′ ← B
(
1k, N,G,GT , e, h0, h1, h

α
b , h

β
b , h

αβ
b

)
: b = b′

]
− 1

2

∣∣∣∣
is negligible.

It can readily be shown that if G3 satisfies Assumption II then it also satisfies
the DDH assumption over (GT )p1 . Thus, Assumption II is a stronger assumption
than the DDH assumption over (GT )p1 . Assumption IV is presented to explain
the position of Assumption III but with a simpler representation. Proposition 3
says that Assumption III is a stronger assumption than Assumption IV its proof
is straightforward and left to the reader.

Proposition 3. If G3 satisfies Assumption III, then it also satisfies Assumption
IV.

Proposition 4. Suppose that H is an RO. For any probability ensemble X =
{Xk}k∈N and any SPP adversary A that makes at most qH(k) queries to H
and at most qt(k) trapdoor queries when the security parameter k is given, there
exists a PPT algorithm B such that

AdvsppA,Π3,X (k) ≤ AdvA-2
B,G2

(k) + 2(qH(k) + qt(k)) · ||Xk|| (k ∈ N).

Proposition 5. Suppose that H is an RO. For any probability ensemble X =
{Xk}k∈N and any IND-PKP adversary A against Π3 that makes at most qH(k)
queries3 to H and at most qt(k) trapdoor queries when the security parameter k
is given,

Advind-pkpA,Π3,X (k) ≤ 2(qH(k) + qt(k)) · ||Xk|| (k ∈ N).

Proposition 6. Suppose that H is an RO. For any IND-PEKS-CKA adversary
A against Π3 that makes at most qH(k) queries to H when the security parameter
k is given, there exists a PPT algorithm B such that

Advind:peksA,Π3
(k) ≤ (qH(k) + 1)(qH(k) + 2) · AdvA-3

B,G3
(k) (k ∈ N).

The proofs of Propositions 4, 5, and 6 are given in the full version of this paper.
The open problem is to construct a PEKS scheme that is IND-PKP+ secure and
IND-PEKS-CKA secure, either in the standard model or the RO model, under
reasonable assumptions.

3 In the PEKS scheme Π3, H cannot be used as a common parameter for all users
because Π3 depends on a composite bilinear map. Hence, an IND-PKP adversary
can make queries to bothH andH ′. For simplicity, we assume that the total numbers
of queries to both H and H ′ is written by qH(k).



Perfect Keyword Privacy in PEKS Systems 191

Remark 7. We now consider a PEKS scheme that is identical with Π3 except
that the searchable ciphertext of w is given by Cw = (C1 = gr, C2 = H(w)r).
From a similar discussion to that for Proposition 5, it can be shown that this
PEKS scheme is IND-PKP secure; however, it is not IND-PEKS-CKA secure.
This is because for a given target ciphertext Cwb

= (C1, C2), an adversary can
easily guess the challenge bit b by outputting b′ ∈ {0, 1} such that e(g, C2) =
e(C1, H(wb′ )). This instance demonstrates the separation between the IND-PKP
and IND-PEKS-CKA securities.

5 Postscript

We have introduced new security notions for PEKS systems, namely PKP, IND-
PKP, PKP+, and IND-PKP+, which take account of the privacy of a keyword
from a trapdoor. We have also showed that these notions ensure strictly weaker
security with respect to keyword leakage from only the ciphertext, as compared
to IND-PEKS-CKA security. Accordingly, for achieving higher security in PEKS,
we have presented several instances of a PEKS scheme that is IND-PKP or
IND-PKP+ secure, in addition to being IND-PEKS-CKA secure. From a prac-
tical viewpoint, however, we have no corroboration that either IND-PKP or
IND-PKP+ security is insufficient to ensure the privacy of a keyword from a ci-
phertext. We expect that the underlying notion and PRIV security [3] give equal
security levels, because they are defined for the situation in which the target key-
words are chosen from a well-spread distribution, and the (guessing) adversary
cannot see them. We are sure that it is easier to design efficient IND-PKP (or
IND-PKP+) secure PEKS schemes than it is to design efficient IND-PEKS-CKA
secure PEKS schemes. Indeed, we can use secure injective-function generators to
achieve IND-PKP security, and it is easy to design practical injective-function
generators that are secure under reasonable assumptions.
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Abstract. In this paper, we present an efficient ciphertext-policy at-
tribute based encryption (CP-ABE) scheme with “short” ciphertext and
a key-policy attribute based encryption (KP-ABE) scheme with “short”
key for monotone access structures (MAS) which are fully secure in
the standard model over composite order bilinear groups. We obtain
our schemes by using a simple “encoding technique”, representing the
monotone access structure by their minimal sets only, thereby obtaining
schemes whose ciphertext size or key size depends on number of mini-
mal sets. Most of the recent CP-ABE/KP-ABE schemes have ciphertext
size or key size roughly of the order of the size of the monotone span
program (MSP) or the number of attributes. Consequently, our schemes
will, in general, have shorter ciphertext or shorter key. To illustrate, we
give examples of MAS where the number of minimal sets is constant
whereas the size of the corresponding MSP is linear in the number of at-
tributes. Using similar ideas, we show how to obtain a CP-ABE scheme
with constant size key and a Hierarchical (H) KP-ABE scheme with
constant size ciphertext for arbitrary access structures (not necessarily
monotone) which are also fully secure in the standard model under three
static assumptions over composite order bilinear groups. To date, for all
general policies, the decryption cost is polynomial in the number of qual-
ified rows in the span programs. But in all of our proposed schemes, the
decryption cost is contant for general access structures.

Keywords: Attribute Based Encryption, Ciphertext-Policy, Key-Policy.

1 Introduction

Identity-Based Encryption (IBE) [1, 5] allows a sender to encrypt a message for
an identity without access to a public key certificate. One drawback of IBE is
that a sender encrypts a message for a particular recipient and not for a group of
recipients. Thus IBE is still coarse-grained. In many distributed systems, a secret
data may be accessible to different users depending upon their positions in these
settings. Recently functional encryption has been introduced as a more sophisti-
cated solution to handle the generic access policy in many distributed systems,
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where an encryptor allows the secret key holder to “conditionally decrypt” the
ciphertext. More precisely, the ciphertext or the messageM (resp. key) is associ-
ated with a predicate or a function, say f and the key (resp. ciphertext) is labeled
with a set of attributes or a solution vector A of f and the decryption algorithm
outputs the messageM if and only if f(A) = 1. Functional encryption is catego-
rized into two classes, one is ABE (sometimes called payload hiding or message
hiding) and the other is Predicate Encryption (PE) (called attribute hiding).
Sahai and Waters [8] first proposed the concept of attribute-based encryption,
a new type of IBE scheme called Fuzzy Identity-Based Encryption in which, an
identity was viewed as a set of descriptive attributes. Consequently, Goyal et al.
[9] introduced the idea of a more general Key-policy ABE system where a policy
(represented by an access tree) is associated with the key and a set of attributes
with the ciphertext. However, the construction of a CP-ABE, where the policy
is associated with the ciphertext and a set of attributes with the key, was left
open. Finally, Bethencourt et al. [11] came up with a ciphertext-policy ABE
construction. In both the schemes the policy was taken to be a monotone access
structure, more precisely an access tree and the encrypting data are shared at
a fine-grained level. R.Ostrovsky et al. [13] first introduced a KP-ABE scheme
that can handle non-monotone access structures over attributes and they showed
how the user’s private key is associated with any access formula over attributes.
The key idea of their scheme was converting a non-monotone access structure
over attributes to a monotone access structure over attributes and their nega-
tion. Subsequently, a variety of ABE [10, 12, 15, 20–22] has been proposed all of
which (except [22]) were shown to be selectively secure.

Lewko et al. [22] are the first who proposed a CP-ABE scheme and a KP-ABE
scheme using monotone span programs (MSP), both of which were fully secure
in the standard model over composite order bilinear groups. In their schemes,
either ciphertext size (in case of CP-ABE) or key size (in case of KP-ABE)
was polynomial in size of monotone span program and the number of pairing
computations in the decryption algorithm in both the schemes was polynomial
in the number of qualified rows in monotone span program to compute the target
vector.

Okamoto and Takashima [24] proposed KP-ABE and CP-ABE schemes for
non-monotone access structures which are fully secure under a standard assump-
tion, the decisional linear (DLIN) assumption, in the standard model over prime
order bilinear groups. In [24], either the ciphertext size or the key size is polyno-
mial in the number of rows in the non-monotone span program and the number
of pairing computations in the decryption algorithm in both the schemes is poly-
nomial in the number of qualified rows in the non-monotone span program for
computing the target vector.

Brent Waters [26] proposed three efficient selectively secure CP-ABE con-
structions using MSP in the standard model under three different hardness as-
sumptions in prime order bilinear groups. In his schemes, the ciphertext size was
either polynomial in the size of the monotone span program or some factor times
the size of the monotone span program and the number of pairing computations
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in the decryption algorithm is polynomial in the number of qualified rows in the
monotone span program.

Recently, Attrapadung et al. [28] proposed a KP-ABE scheme for non-
monotone access structures with constant size ciphertext which is selectively se-
cure in the standard model over prime order bilinear group. To get this scheme,
they constructed a certain class of identity based broadcast encryption (IBBE)
schemes and identity-based revocation (IBR) mechanisms. They also employed
the technique of R.Ostrovsky et al. [13] to convert the non-monotone access
structure to monotone access structure with negative attributes. The key size in
their scheme is polynomial in size of the monotone span program. The number
of exponents in the decryption algorithm is polynomial in number of qualified
rows in the monotone span program to compute the target vector.

In most of the access control systems, the secret data are stored in a dis-
tributed fashion across many servers. The same (even different) encrypted data
are accessed by many legitimate users on the same server at a time. To get faster
accessibility of the secret data, the constant time decryption algorithms are al-
ways welcome. To the best of our knowledge, our ABE schemes are the only
schemes which take constant time on decryption for general policies.

There is a close relation between linear secret sharing scheme (LSSS) and
monotone span program. The existence of an efficient LSSS for a specific mono-
tone access structure is equivalent to the existence of a smallest monotone span
program for the characteristic function of that monotone access structure (see
[4]). V.Nikova et al. [6] gave a theoretical lower bound for any monotone span
program using some linear algebraic machineries. Informally, the size of a mono-
tone span program is at least the size of the critical set of minimal sets for the
corresponding monotone access structure plus the size of the critical set for the
minimal sets of the dual of the access structure minus one (see [6] and section 2).
Using this lower bound, we show that there exist some classes of monotone access
structures for which the size of monotone span program is at least polynomial
in the number of attributes in the access structure, but the number of minimal
sets in the access structures is constant (see section 2.1). It is not known if there
is any explicit relation between the size of an access structure and the size of
the smallest span program computing it. Since the size of a smallest monotone
span program for the characteristic function of a monotone access structure is
equivalent to the size an efficient LSSS realizing that access structure, for get-
ting the exact size of a small span program, we have to look at existing efficient
LSSS. Most of [18, 23, 26, 27] used the techniques of generalized secret sharing
and monotone functions due to J.Benaloh et al. [2]. For threshold policy, the
size of the MSP is linear in the number of attributes but the number of minimal
sets may be exponential (say, in case of (n, n/2)-threshold policy) in the number
of attributes. Informally, for other monotone policies, where the threshold func-
tionality can not be applied, the size of the monotone span programs are the
sum of the frequencies of all attributes present in the corresponding minimal sets
(see monotone circuit construction in [3] which is an explication of [2]). Hence
for such policies, the size of the monotone span programs is at least the number



196 T. Pandit and R. Barua

of minimal sets. In such cases, our CP-ABE or PK-ABE schemes would have
shorter ciphertext or shorter key size.

Our Contribution

– We propose a CP-ABE scheme for monotone access structures which has
ciphertext of polynomial size in the number of minimal sets and with con-
stant number of bilinear pairing computations during decryption. If |B| is
the number of minimal sets, then in our CP-ABE, the size of cipher-text is
2|B|+ 2 and key size is polynomial in the number of associated attributes.
The number of bilinear pairing computations is 3 during decryption.

– We also present a CP-ABE scheme for non-monotone access structures with
constant size key which has constant number of bilinear pairing computations
during decryption.

– Further, we propose a KP-ABE scheme for monotone access structures which
has key of polynomial size in the number of minimal sets and constant num-
ber of bilinear pairing computations and constant number of exponent com-
putations during decryption and which is fully secure in the standard model.

– Finally, we present a hierarchical (H)KP-ABE scheme for non-monotone
access structures with constant size key, has a constant time bilinear compu-
tations and constant number of exponent computations during decryption
and which is fully secure in the standard model.

All our schemes have been shown to be fully secure in the standard model over
composite order bilinear groups. In table1[1-4], we give the comparisons between
our schemes and the existence schemes.

Our Technique Since any monotone access structure is uniquely represented by
its minimal sets of, by adopting the idea of Emura et al. [20], we build a simple
technique to give an efficient ABE scheme for monotone access structures. It is
as follows.

– The secret key components of a user are labeled with associated attributes.
– The ciphertext components are labeled with the minimal sets in the mono-

tone access structure Γ .
– For an authorized member of Γ , her set of attributes must be a superset of

a minimal set, say S, of Γ .
– To get the message, she pools her key components labeled with the attributes

from S and ciphertext components labeled by the minimal set S in the
decryption algorithm.

By a similar technique, we give an ABE scheme either with constant size key
or constant size ciphertext for non-monotone access structures. The idea is as
follows.
1 The description of all the symbols in table [2,3,4] are found at the bottom of the
table 1. Since a HKP-ABE scheme is nothing but KP-ABE scheme with a delegate
algorithm, when we compare our HKP-ABE scheme with the existence KP-ABE
schemes, we just ignore the delegate algorithm like in table 4
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– All the secret key components labeled with the attributes from an autho-
rized set in a non-monotone access structure are multiplied to get a single
component. A user cannot extract the the individual components from this
single component.

– The ciphertext components are labeled with the authorized sets of the non-
MAS Γ .

– For an authorized member, her set of attributes must be a member, say S,
of Γ .

– To get the message, she pools a constant number of key components and
ciphertext components labeled with S in the decryption algorithm

Note. The above techniques are described in terms of CP-ABE. To understand
the techniques for KP-ABE, just interchange the role of the access policy and
the set of attributes.

2 Preliminaries

Definition 1 (Access Structure). Let P = {P1, P2, ..., Pn} be a set of at-
tributes. A collection Γ ⊂ 2P is said to be monotone if Γ is closed under su-
perset, i.e, if ∀ B,C: if B ∈ Γ and B ⊂ C, then C ∈ Γ . An access structure
(respectively, MAS) is a collection (respectively, monotone collection) Γ of non-
empty subsets of P, i.e., Γ ⊂ 2P \ {∅}. The members of Γ are called authorized
sets, and the sets not in Γ are called unauthorized sets.

Definition 2 (Minimal set of a Monotone Access Structure). Let Γ be a
monotone access structure over the set of attributes P. Then B ∈ Γ is a minimal
authorized set if ∀A ∈ Γ \ {B}, we have A �⊂ B. The set of all minimal sets in
Γ is called the basis of Γ .

Definition 3 (Dual of an Access Structure). The dual access structure Γ⊥

of an access structure Γ , defined on P, is the collection of sets A ⊂ P such that
P \A = Ac /∈ Γ .
Definition 4 (Critical Set of Minimal Sets). [6] Let B = {X1, X2, .., Xr}
be the set of minimal sets of an access structure Γ . Let H ⊂ B be a subset of the
set of minimal sets. We say that a subset H ⊂ B is a critical set of minimal sets
for B, if every Xi ∈ H contains a set Bi ⊂ Xi, |Bi| ≥ 2, such that the following
two conditions are satisfied.

– The set Bi uniquely determines Xi in the set H. That is, no other set in H
contains Bi.

– For any subset Y ⊂ Bi, the set SY = ∪Xj∈H,Xj∩Y �=∅(Xj \ Y ) does not
contain any member of B.

Theorem 1. [6] Let Γ be an access structure and Γ⊥ be its dual, let H be a
critical set of minimal sets for Γ and let H⊥ be a critical set of minimal sets for
Γ⊥. Then the size of any monotone span program M computing Γ is bounded
from below by |H|+ |H⊥| − 1.
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2.1 Example

In this section, we explore some examples of monotone access structures such
that the number of minimal sets is constant but the size of the monotone span
program computing the access structure is at least polynomial in the number of
attributes.

Example 1. Let P = {P1, P2, ..., Pn} be a set of attributes. Let B = {X1 =
{P1, P2}, X2 = {P3, ..., Pn}} be the set of minimal sets for a monotone access
structure Γ . Then it is easy to check thatH = B. Now, the set of minimal sets for
the dual of Γ is B⊥ = {{P1, P3}, ..{P1, Pn}, {P2, P3}, .., {P2, Pn}}. Then we can
find a critical setH⊥ for Γ⊥ as {{P1, P3}, ..., {P1, Pn}}. So by the above theorem,
the size of the monotone span program computing Γ is at least 2+ (n− 2)− 1 =
n− 1 = O(n).

Example 2. Let P = {P1, P2, ..., Pn} be a set of attributes. Let B = {X1 =
{P1, ...Pn/2} , X2 = {Pn/2+1, ..., Pn}} be the set of minimal sets for a monotone

access structure Γ . Then we can find a critical set H⊥ for Γ⊥ as {{P1, Pn/2}, ...,
{P1, Pn}}. So by the above theorem, the size of the monotone span program
computing Γ is at least 2 + (n/2)− 1 = n/2 + 1 = O(n).

Example 3. Let P = {P1, P2, ..., Pn} be a set of attributes. Let B = {X1 =
{P1, ...Pn/3} , X2 = {Pn/3+1, ..., P2n/3}, X3 = {P2n/3+1, ..., Pn}} be the set of
minimal sets for a monotone access structure Γ . Then we can find a critical set
H⊥ for Γ⊥ as {{P1, Pn/3+1, P2n/3+1}, ..., {P1, Pn/3+1, Pn}}. So the size of the
monotone span program computing Γ is at least 3+(n/3)−1 = n/3+2 = O(n).

Similarly, one can choose constant number of different size minimal sets for a
monotone access structure, where the minimal sets may intersect but the size of
the monotone span program will be at least O(n).

Note. Thus if one uses such MAS, our schemes will have either short ciphertext
or short key.

2.2 CP-ABE

A CP-ABE consists of four probabilistic polynomial time (in short PPT) algo-
rithms which are following:

– Setup(1λ,U) It takes a security parameter 1λ and a universe of attributes
U as input and it outputs public parameters Pp and a master secret key Msk.

– KeyGen(Msk,A): It takes as input the master secret key Msk and a set of
attributes A and outputs a secret key SkA.

– Encrypt(Pp,Γ ,M) The algorithm takes public parameter Pp, an access struc-
ture Γ over the universe of attributes U and a message M as input and
outputs a ciphertext CtΓ such that a user whose set of attributes satisfies
the access structure Γ , can extract the message M . The ciphertext CtΓ
implicitly contains the access structure Γ .

– Decrypt(CtΓ ,SkA) It takes as input a ciphertext CtΓ corresponding to an
access structure Γ and a secret key SkA associated with a set of attributes
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A. If the set of attributes A satisfies the access policy Γ , then the algorithm
outputs the message M of the corresponding ciphertext CtΓ

2.3 Security Definition for CP-ABE

We now formalize the full (adaptive) security model against chosen plaintext at-
tacks (CPA) for CP-ABE. This is a game denoted by GameReal between a chal-
lenger C and an adversaryA. We define the game GameReal in the following way.

– Setup C runs the Setup algorithm on input a security parameter 1λ and
a universe of attributes U to generate public parameters Pp and a master
secret key Msk. The challenger C starts the interaction with the adversary A
by giving the public parameter Pp.

– Phase 1 The adversaryA queries the challenger C for the secret keys labeled
with the sets of attributes A1, A2, .., Al.

– Challenge Phase The adversary gives two equal length messages M0 and
M1 and an access structure Γ ∗ such that it is not satisfied by the queried
sets of attributes A1, A2, ..., Al. The challenger randomly chooses a bit b from
{0, 1} and encrypts the message Mb using the access structure Γ ∗ and gives
the challenge ciphertext CtΓ∗ to the adversary A

– Phase 2 The adversary A again queries the challenger C for the secret keys
labeled with the sets of attributes Al+1, Al+2, .., Aq with the restriction that
no Ai satisfies the access structure Γ

∗. The challenger returns the secret key
by running the KeyGen algorithm.

– Guess The adversary outputs a guess b̂ for b.

The advantage AdvAGameReal
(λ) of the adversary A in GameReal is defined by

|Pr(b̂ = b)− 1/2|
Definition 5. A CP-ABE scheme is said to be fully secure if for all PPT adver-
sary A, the advantage AdvAGameReal

(λ) is a negligible function of λ in GameReal.

Remark. If we interchange the role of the access policy and the set of attributes,
we get the definition of KP-ABE scheme and KP-ABE security very similar to
the above. (see in Appendix A in [22])

2.4 Composite Order Bilinear Groups and Complexity Assumptions

D.Boneh et al. first introduced composite order bilinear groups in [7]. We define
a composite order bilinear groups generator G as an algorithm which takes input
λ as a security parameter and outputs a description I of a composite order
bilinear groups G. In this case, I consists of (N = p1p2p3,G,GT , e), where
p1, p2, p3 are three distinct primes and G and GT are cyclic groups of order N
and e : G×G → GT is a map such that

1. (Bilinear) ∀g, h ∈ G, a, b ∈ ZN , e(g
a, hb) = e(g, h)ab

2. (Non-degenerate) ∃g ∈ G such that e(g, g) has order N in GT
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Let Gp1 ,Gp2 and Gp3 respectively denote the subgroups of G of order p1, p2
and p3. Let hi ∈ Gpi and hj ∈ Gpj be arbitrary elements with i �= j, then
e(hi, hj) = 1. This property is called orthogonal property of Gp1 ,Gp2 ,Gp3 (for
details see [23]).

We use the complexity assumptions due to Lewko et al. [23] to prove the full
security of our CP-ABE and KP-ABE constructions in the standard model over
composite order bilinear groups and the assumptions are described below:

Assumption 1 (Subgroup decision problem for 3 primes). Choose a com-
posite order bilinear group generatorG.Define the following distribution :I = (N =
p1p2p3, G,GT , e) ← G(1λ) and then choose random g ∈ Gp1 , X3 ∈ Gp3 and set
D = (I, g,X3). Choose random T1 ∈ Gp1p2 , T2 ∈ Gp1 . Now the advantage of an
algorithm A in breaking Assumption 1 is defined by

AdvA1 (λ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|
Definition 6. We say that Assumption 1 holds for G if for all PPT Adversary
A, AdvA1 (λ) is a negligible function of λ.

Assumption 2. Pick a composite order bilinear group generator G. Define
the following distribution : I = (N = p1p2p3, G,GT , e) ← G(1λ) and then
choose random g ∈ Gp1 , X1X2 ∈ Gp1p2 , X3 ∈ Gp3 , Y2Y3 ∈ Gp2p3 and set
D = (I, g,X1X2, X3, Y2Y3). Choose random T1 ∈ G, T2 ∈ Gp1p3 . Now the ad-
vantage of an algorithm A in breaking Assumption 2 is defined by

AdvA2 (λ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|
Definition 7. We say that Assumption 2 holds for G if for all PPT Adversary
A, AdvA2 (λ) is a negligible function of λ.

Assumption 3. Pick a composite order bilinear group generator G. Define
the following distribution : I = (N = p1p2p3,G,GT , e) ← G(1λ) and then
choose random α, s ∈ ZN , g ∈ Gp1 , X2, Y2, Z2 ∈ Gp2 , X3 ∈ Gp3 and set
D = (I, g, gαX2, X3, g

sY2, Z2). Let T1 = e(g, g)αs. Choose random T2 ∈ GT .
Now the advantage of an algorithm A in breaking Assumption 3 is defined by

AdvA3 (λ) = |Pr[A(D,T1) = 1]− Pr[A(D,T2) = 1]|
Definition 8. We say that Assumption 3 holds for G if for all PPT Adversary
A, AdvA3 (λ) is a negligible function of λ.

2.5 CP-ABE Scheme with Short Ciphertext for MAS

In this section, we present our efficient CP-ABE scheme using very a simple en-
coding technique and is fully secure in the standard model over composite order
bilinear groups. In this construction, the size of the group is N = p1p2p3, prod-
uct of three distinct primes and we frequently use the elements of the subgroup
Gp1 for encoding the policy and the set of attributes and we use the random
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elements of Gp3 to randomize the key and ciphertext but we do not incorporate
the elements of Gp2 . We use the dual system proof technique of Brent Waters
[19] which requires the concept of semi-functional key and ciphertext and we use
the elements of Gp2 to construct such key and ciphertext. In this construction,
a monotone access structure over a universe of attributes is represented by set
of minimal sets. We use the notation [m] for the set {i ∈ N : 1 ≤ i ≤ m}

Setup(1λ,U). The setup algorithm runs the composite order bilinear groups
generator G(1λ) to get a random composite order bilinear groups descriptor,
I = (N = p1p2p3,G,GT , e) with known factorization of N (p1, p2, p3 are distinct
primes). It chooses random elements g ∈ Gp1 , X3 ∈ Gp3 and random exponents
a, α ∈ ZN and chooses random ti ∈ ZN for each attribute i ∈ U and sets Ti = gti .
The public parameters are Pp = [N, g, ga, Y = e(g, g)α, (Ti)i∈U ] and the master
secret key is Msk = [α,X3].

KeyGen(Pp,Msk,A). It chooses random r ∈ ZN ;R0, R
′ ∈ Gp3 . For each at-

tribute i ∈ A, the algorithm chooses random Ri ∈ Gp3 and outputs the secret
key

SkA = [K0 = gα+arR0,K
′ = grR′,Ki = Ti

rRi, ∀i ∈ A]
Encrypt(Pp,B,M). Here B is the set of minimal sets for a monotone access
structure Γ . Let B = {A1, A2, ..., Am}, where Ai ⊂ U ∀i ∈ [m] and m is the size
of B. The encryption algorithm chooses random s ∈ ZN and si ∈ ZN for each
i ∈ [m]. The algorithm returns the ciphertext

CtB =
[B, C0 =MY s, C1 = gs, (C1,i = gsi)i∈[m],

(
C2,i = gas

( ∏
j∈Ai

Tj
)si)

i∈[m]

]
Decrypt(CtB , SkA). Suppose A satisfies the access structure Γ , generated by B,
then A must be a superset of a minimal set in B. Let Aj ⊂ A for some j ∈ [m].
Then it computes

e(C2,j ,K
′)/
(
e(C1,K0).e(C1,j ,

∏
i∈Aj

Ki)
)
= e(g, g)−αs

The algorithm outputs C0.e(g, g)
−αs =M

2.6 The Security Proof of CP-ABE Scheme for MAS

Suppose a PPT adversary A makes q number of key queries, then our proof of
security considers a sequence of 2q + 3 games between an adversary A and a
challenger C. Our proof employs the dual system technique of Brent Water [19]
and for that we need to construct the semi-functional ciphertext and key. We use
the orthogonal property of Gp2 to generate the semi-functional ciphertext and
key. Any legitimate normal key and legitimate semi-functional key can decrypt
the semi-functional ciphertext and normal ciphertext respectively. But when a
legitimate semi-functional key decrypts a semi-functional ciphertext, it gives a
random element in GT . The semi-functional key and ciphertext are given below:
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Table 1. Comparison with our CP-ABE for MAS

Decryption Cost
Schemes Security Assumption Ciphertext Size Key Size Pairing Exponent

LOST[22] Adaptive Assmp 1,2,3 (2l + 1)|G| O(|A|φ) O(I) O(I)
OT[24] Adaptive DLIN O(lφ)|G| O(|A|φ) O(Iφ) O(I)
BW[26] Schm1 Selective d-p-BDHE (2l + 1)|G| O(|A|) O(I) O(I)
BW[26] Schm2 Selective d-BDHE (l + 1)|G| O(|A|φ) O(I) O(I)
Our CP-ABE Adaptive Assmp 1,2,3 (2|B| + 1)|G| O(|A|) 3 None

A= set of attributes in a user’s key; l = #rows in a span program (M, ρ); |B| =
#minimal sets in MAS; φ =maximum # of times an attribute can be associated with
the rows of a MSP; I= minimum #rows labeled by user’s attributes to compute the
target vector; d = #sub universe id; Pairing and Exponent respectively denote the
#pairing and #exponent computations in G and GT ; n =maximum #attributes used
in encryption. Since in all the schemes in the tables have one GT element, so we only
mention the number of elements of G in the ciphertext. We use d-p-BDHE, Assmp and
schm for d-parallel BDHE, Assumption and scheme respectively.

Semi-functional Key. We will consider two forms of semi-functional key. The
first one is semi-functional key of type 1 and has the following distribution. Let A
be a set of attributes for which a semi-functional key will be constructed. Choose
random t, d, r, zi ∈ ZN , g2 ∈ Gp2 , R0, R

′, Ri ∈ Gp3 for each i ∈ A. Finally the
type 1 key is

SkA = [K0 = gα+argd2R0,K
′ = grgt2R

′,Ki = Ti
rgzi2 Ri]

The other one is semi-functional key of type 2 whose distribution is same as type
1 except the key components K ′ and Ki do not contain any Gp2 part.

Semi-functional Ciphertext. Let B be the basis of a monotone access struc-
ture Γ . Let B = {A1, A2, ..., Am}, where Ai ⊂ U ∀i ∈ [m] and m is the size of
the basis B. Then choose random s, c, c′ ∈ ZN , g2 ∈ Gp2 and si ∈ ZN for each
i ∈ [m]. The semi-functional ciphertext is

CtB =
[B, C0 = MY s, C1 = gsgc2, (C1,i = gsi)i∈[m],

(
C2,i = gas

( ∏
j∈Ai

Tj

)sigc′2 )
i∈[m]

]
Note that if a legitimate semi-functional key decrypts a semi-functional cipher-
text, we will get an extra term e(g2, g2)

tc′−cd

In the sequence of 2q+3 games, the first game is GameReal which is the real
CP-ABE security game described in section 2.3 and the second game is Game0,
where all the keys are normal but the ciphertext is semi-functional. For for k = 1
to q, we define the next consecutive games are as follow.

Gamek,1. The challenge ciphertext is semi-functional. The first k − 1 keys are
semi-functional of type 2, kth key is semi-functional of type 1 and the remaining
keys are normal.

Gamek,2. The challenge ciphertext is semi-functional. The first k keys are semi
functional of type 2 and the remaining keys are normal.
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Finally in the last game GameFinal, all the keys are semi-functional of type
2 and the ciphertexts are semi-functional but the challenge message is masked
with a random element of GT .

Lemma 1. Suppose there exists a PPT algorithm A with AdvAGameReal
−

AdvAGame0
= ε. Then there exist a PPT algorithm S with advantage ε in breaking

Assumption 1.

Proof. We establish a PPT algorithm S, called Simulator, which takes the pa-
rameters, (I, g,X3, T ) of the Assumption 1 from the challenger C and depending
on the distribution of T, S simulates either GameReal or Game0.

Setup. S constructs the public parameters Pp in the following way. S chooses
random a, α ∈ ZN and ∀i ∈ U, ti ∈ ZN and sets Ti = gti and starts interaction
with the adversary A by giving

Pp = [N, g, ga, Y = e(g, g)α, (Ti)i∈U ]

and S keeps the master key Msk = [α,X3]

Key Query Answering. S handles the A’s key queries by running KeyGen
algorithm, since he has the master Msk.

Challenge Phase. S receives two challenge messages M0,M1 and a challenge
basis B∗ from the adversary A. S chooses random Mb ∈ {M0,M1}. Let B∗ =
{A0, A1, ..., Am}, where each Ai ⊂ U . S chooses random si ∈ ZN and gives the
challenge ciphertext CtB∗ to A
CtB∗ =

[
C0=Mb.e(g

α, T ), C1=T,
(
C1,i = gsi

)
i∈[m]

,
(
C2,i = T a

( ∏
j∈Ai

Tj
)si)

i∈[m]

]
This completes the simulation of algorithm S

Now suppose that T ∈ Gp1p2 . Then T can be written as T = gsg2
c for some

s, c ∈ ZN . Then C0 =Mb.Y
s, C1 = gsg2

c,C1,i = gsi and C2,i = gas
(∏

j∈Ai
Tj
)si

gac2 for each i ∈ [m]. Here we implicitly set c′ = ac. Since a modulo p1 is
uncorrelated from a modulo p2 by Chinese Remainder Theorem, so CtB∗ is a
properly distributed semi-functional ciphertext and therefore if T ∈ Gp1p3 , S
simulates Game0 for A.

Similarly if T ∈ Gp1 , S simulates GameReal for A. This concludes the proof
of the lemma. ��
Lemma 2. Suppose there exists a PPT algorithm A with AdvAGamek−1,2

−
AdvAGamek,1

= ε. Then there exist a PPT algorithm S with advantage ε in break-
ing Assumption 2.

Proof. We establish a PPT algorithm S which takes the parameters, (I, g,
X1X2, X3, Y2Y3, T ) of the Assumption 2 from the challenger C and depending
on the distribution of T, S simulates either Gamek−1,2 or Gamek,1.

Setup. S constructs the public parameters Pp in the following way. S chooses
random a, α ∈ ZN and ∀i ∈ U, ti ∈ ZN and sets Ti = gti and starts interaction
with the adversary A by giving
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Pp = [N, g, ga, Y = e(g, g)α, (Ti)i∈U ]

and S keeps the master key Msk = [α,X3]
For both the games, the challenge ciphertext is semi-functional, the first (k−1)

keys are semi-functional of type 2 and the last (q − k) keys are normal. For the
game Gamek,1, the k

th key is semi-functional of type 1 and for Gamek−1,2, it is
normal.

Key Query Answering. S handles the first k− 1 key queries by the following
way: Let A be a query set of attributes. S chooses random h, r ∈ ZN , R0, R

′, Ri ∈
Gp3 for each i ∈ A and S answers the key of type 2

SkA = [K0 = gα+ar(Y2Y3)
hR0,K

′ = grR′,Ki = T r
i Ri, ∀i ∈ A]

It is easy to check that SkA is properly distributed semi-functional key of type
2.

To answer the kth query, the simulator S uses T and answers the kth key as

SkA = [K0 = gαT aR0,K
′ = TR′,Ki = T tiRi, ∀i ∈ A]

Now suppose that T ∈ G. Let the Gp1p2 part of T be grg2
t for some r, t ∈

ZN . Here we implicitly set zi = t.ti and d = ta. So the key SkA is a semi-
functional key of type 1. Note that a modulo p1 and ti modulo p1 are uncorrelated
respectively from a modulo p2 and ti modulo p2 by Chinese Remainder Theorem.
Similarly if T ∈ Gp1p3 , the key is normal.

The simulator S handles the last q − k key queries by running KeyGen algo-
rithm, since he has the master key Msk.

Challenge Phase. S receives two challenge messages M0,M1 and a challenge
basis B∗ from the adversary A. S chooses random Mb ∈ {M0,M1}. Let B∗ =
{A0, A1, ..., Am}, where each Ai ⊂ U . S chooses random si ∈ ZN and gives the
challenge ciphertext CtB∗ to A

CtB∗ =
[
C0 =Mb.e(g

α, X1X2), C1 = X1X2,(
C1,i = gsi

)
i∈[m]

,
(
C2,i = (X1X2)

a
( ∏
j∈Ai

Tj
)si)

i∈[m]

]
The semi-functional key in kth query and the semi-functional ciphertext are
properly distributed except that the exponent c′ = ac modulo p2 of g2 in C2,i part
of the ciphertext is correlated with a modulo p2 in the K0 part of the key. So if a
legitimate semi-functional key of type 1 decrypts the semi-functional ciphertext,
it will provide a valid messageM because tc′−cd = tac−cat = 0 modulo p2. But
the adversary is not provided any keys whose labeled sets of attributes satisfy
the target policy.

Therefore if T ∈ G, S simulates Gamek,1 for A and if T ∈ Gp1p3 , S simulates
Gamek−1,2 for A. This concludes the proof of the lemma. ��
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Lemma 3. Suppose there exists a PPT algorithm A with AdvAGamek,1
−

AdvAGamek,2
= ε. Then there exist a PPT algorithm S with advantage ε in break-

ing Assumption 2.

Proof. We establish a PPT algorithm S which takes the parameters, (I, g,
X1X2, X3, Y2Y3, T ) of the Assumption 2 from the challenger C and depending
on the distribution of T, S simulates either Gamek,1 or Gamek,2.

Setup. S constructs the public parameters Pp in the following way. S chooses
random a, α ∈ ZN and ∀i ∈ U, ti ∈ ZN and sets Ti = gti and starts interaction
with the adversary A by giving

Pp = [N, g, ga, Y = e(g, g)α, (Ti)i∈U ]

and S keeps the master key Msk = [α,X3]
For both the games, the challenge ciphertext is semi-functional, the first (k− 1)
keys are semi-functional of type 2 and the last (q − k) keys are normal. For the
game Gamek,1, the k

th key is semi-functional of type 1 and for Gamek,2, it is
semi-functional of type 2.

Key Query Answering. S handles the first k− 1 key queries by the same way
as in the lemma 2. Now to answer the kth query, the simulator S uses T and
answers the kth key as

SkA = [K0 = gαT aR0(Y2Y3)
h,K ′ = TR′,Ki = T tiRi, ∀i ∈ A]

Note that the Gp2 part of the K0 part of the key is randomized by (Y2Y3)
h. It is

easy to check that if T ∈ G, the kth is of semi-functional of type 1 and similarly
if T ∈ Gp1p3 , the key is of type 2. The simulator S handles the last q − k key
queries by running KeyGen algorithm, since he has the master key Msk.

The challenge semi-functional ciphertext is generated exactly the same way as
in the lemma 2. Since the Gp2 part of the key is perfectly random, no legitimate
semi-functional key decrypts the semi-functional ciphertext. So if T ∈ G, the
kth key is properly distributed semi-functional key of type 1 and therefore it
simulates GameK,1 for A and if T ∈ Gp1p3 , the key is properly distributed of
type 2 and therefore it simulates GameK,2 for A. This concludes the proof of
the lemma. ��
Lemma 4. Suppose there exists a PPT algorithm A with AdvAGameq,2

−
AdvAGameFinal

= ε. Then there exist a PPT algorithm S with advantage ε in
breaking Assumption 3.

Proof. We establish a PPT algorithm S which takes the parameters, (I, g,X3, g
α

X2, g
sY2, Z2, T ) of the Assumption 3 from the challenger C and depending on

the distribution of T, S simulates either Gameq,2 or GameFinal.

Setup. S constructs the public parameters Pp in the following way. S chooses
random a ∈ ZN and ∀i ∈ U, ti ∈ ZN , Ri ∈ Gp3 and sets Ti = gti and starts
interaction with the adversary A by giving

Pp = [N, g, ga, Y = e(g, gαX2) = e(g, g)α, (Ti)i∈U ]
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For both the games, the keys are semi-functional and in Gameq,2, the ciphertext
is semi-functional and in the game GameFinal, it is almost the semi-functional
except C0, where the challenge message is masked with a random element from
GT

Key Query Answering. S handles key queries by the following way: Let A be a
query set of attributes. S chooses random g2 ∈ Gp2 , r ∈ ZN and R0, R

′, Ri ∈ Gp3

for each i ∈ A and answers the key

SkA = [K0 = gαX2(g
a)rZr

2R0,K
′ = grR′,Ki = T r

i Ri, ∀i ∈ A]
This shows that the key SkA is properly distributed.

Challenge Phase. S receives two challenge messages M0,M1 and a challenge
basis B∗ from A. S chooses randomMb ∈ {M0,M1}. Let B∗ = {A0, A1, ..., Am},
where each Ai ⊂ U . S chooses random si ∈ ZN and gives the challenge ciphertext
CtB∗ to A

CtB∗ =
[
C0 =Mb.T, C1 = gsY2,(

C1,i = gsi
)
i∈[m]

,
(
C2,i = (gsY2)

a
( ∏
j∈Ai

Tj
)si)

i∈[m]

]
If T = e(g, g)αs, CtB∗ is exactly semi-functional ciphertext and therefore S
simulates the game Gameq,2 for the adversary A. Similarly if T is a random
element from GT , then S simulates the game GameFinal. This concludes the
proof of the lemma. ��
Theorem 2. If Assumptions 1,2 and 3 hold, then our CP-ABE scheme for MAS
is fully secure.

Proof. If Assumption 1,2 and 3 hold, then by the lemma 1, lemma 2, lemma
3, lemma 4 and hybrid arguments over the sequence of games, we have that
the real security game GameReal is indistinguishable from the game GameFinal.
Since in game GameFinal, the challenge message Mb is masked with a random
element fromGT , the value of b is theoretically hidden from the view of adversary
A. Hence by the security definition 5, the adversary A has at most negligible
advantage in breaking our CP-ABE scheme. ��

2.7 KP-ABE Scheme with Short Key for MAS

Now we present our efficient KP-ABE scheme using the same technique as in
the CP-ABE scheme and which is also fully secure in the standard model over
composite order bilinear groups. In our KP-ABE construction, all the algorithms
are almost the same as that of CP-ABE construction but we interchange the role
of the access policy and the set of attributes i.e, the secret keys are labeled with
monotone access structures and ciphertext is associated with a set of attributes.
Like the CP-ABE scheme, we represent the monotone access structure by the
set of minimal sets to reduce the key size. In this construction, we refer to the
setup algorithm in section 2.5.



Efficient Fully Secure Attribute-Based Encryption Schemes 207

KeyGen(Pp,Msk,B). Here B is the set of minimal sets for a monotone access
structure Γ . Let B = {A1, A2, ..., Am}, where Ai ⊂ U ∀i ∈ [m] and m is the size
of B. The KeyGen algorithm chooses random r, r̂1, r̂2 ∈ ZN such that r = r̂1+ r̂2,
R0, R1, R1,i, R2,i ∈ Gp3 and ri ∈ ZN for each i ∈ [m]. The algorithm returns the
secret key

SkB = [K0 = gα+arR0,K1 = gr̂1R1, (K1,i = griR1,i)i∈[m],

(K2,i = gar̂2
( ∏
j∈Ai

Tj
)ri
R2,i)i∈[m]]

Encrypt(Pp,A,M). It chooses a random s ∈ ZN . It outputs the ciphertext
corresponding to the set of attributes A

CtA =
[
A,C0 =MY s, C1 = gs, C2 = gas, C3,i = T s

i , ∀i ∈ A
]

Decrypt(CtA, SkB). Suppose A satisfies the monotone access structure Γ , gen-
erated by B, then it must be a superset of a minimal set in B. Let Aj ⊂ A for
some j ∈ [m]. Then it computes

e(K1, C2)e(
K2,j

K0
, C1)/e(K1,j,

∏
i∈Aj

C3,i) = e(g, g)−αs

The algorithm outputs C0.e(g, g)
−αs =M

Theorem 3. If Assumptions 1, 2 and 3 hold, then our KP-ABE scheme for
MAS is fully secure. (The proof is given in Appendix A)

3 Extending to Non-Monotone Access Structures

In section 2.5 and 2.7, we constructed our efficient CP-ABE scheme and KP-
ABE scheme for monotone access structures using their minimal sets representa-
tion. Using similar technique for the entire non-MAS, we construct a HKP-ABE
scheme with constant size ciphertext and a CP-ABE scheme with constant size
key for non-MAS.

3.1 CP-ABE Scheme with Constant Size Key for Non-MAS

In this construction, a non-monotone access stricture over the universe of at-
tributes is represented by the set of authorized sets in the non-monotone access
structure. We refer to the setup algorithm in section 2.5.

KeyGen(Pp,Msk,A). It chooses random r ∈ ZN , R0, R
′, R ∈ Gp3 . It outputs

the secret key

SkA = [K0 = gα+arR0,K
′ = grR′,K =

(∏
i∈A

Ti
)r
R]
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Table 2. Comparison with our KP-ABE for MAS

Decryption Cost
Schemes Security Assumption Ciphertext Size Key Size Pairing Exponent

LOST[22] Adaptive Assmp 1,2,3 O(|A|φ)|G| O(l) O(I) O(I)
OT[24] Adaptive DLIN O(|A|φ)|G| O(lφ) O(Iφ) O(I)
ALD[28] Selective n-DBDHE 3|G| O(ln) 3 O(In)
Our KP-ABE Adaptive Assmp 1,2,3 (2|A|+ 1)|G| 2|B| + 2 3 None

Encrypt(Pp,Γ,M). Here Γ is a non-monotone access structure. Let Γ = {A1, A2,
..., Am}, where Ai ⊂ U ∀i ∈ [m] and m is the size of the non-monotone access
structure Γ . The encryption algorithm chooses random s ∈ ZN and si ∈ ZN for
each i ∈ [m]. The algorithm returns the ciphertext

CtΓ =
[
Γ,C0 =MY s, C1 = gs, (C1,i = gsi)i∈[m],

(
C2,i = gas

( ∏
j∈Ai

Tj
)si)

i∈[m]

]
Decrypt(CtΓ , SkA). Suppose A satisfies the non-monotone access structure Γ ,
then A ∈ Γ i,e. A = Aj for some Aj ∈ Γ . Then it computes

e(C2,j ,K
′)/
(
e(C1,K0).e(C1,j ,K

)
= e(g, g)−αs

The algorithm outputs C0.e(g, g)
−αs =M

Theorem 4. If Assumptions 1,2 and 3 hold, then our CP-ABE scheme for non-
MAS is fully secure.

Proof. The security proof of CP-ABE scheme for non-MAS can be derived in a
straightforward way from the security proof of CP-ABE scheme for MAS with
minor modification. The minor modification is that in the simulation of CP-ABE
for MAS, the key components Ki for each attribute i ∈ A are just multiplied to
get a single key component K =

∏
i∈AKi. ��

3.2 Hierarchical KP-ABE Scheme with Constant Size Ciphertext
for Non-MAS

Hierarchical KP-ABE schemes for general monotone access structures have been
proposed in [9, 29], where the monotone access structures were presented by ac-
cess trees or monotone span programs. In this paper, we first give the delegation
for any access structures (not necessarily monotone). Let Γ and Γ̂ be two access
structures over the universe of attributes U . We say that Γ̂ is a delegation of Γ ,
in notation Γ̂ ≺ Γ if Γ̂ ⊂ Γ . A HKP-ABE scheme consists of five efficient algo-
rithms (Setup, Encrypt, KeyGen, Decrypt, Delegate). The semantics of Setup,
Encrypt, KeyGen and Decrypt are identical to those given for KP-ABE and the
delegation algorithm has the following semantics.
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Table 3. Comparison with our CP-ABE for Non-MAS

Decryption Cost
Schemes Security Assumption Ciphertext Size Key Size Pairing Exponent

OT[24] Adaptive DLIN O(lφ)|G| O(|A|φ) O(Iφ) O(I)
Our CP-ABE Adaptive Assmp 1,2,3 (2|Γ |+ 1)|G| 3 3 None

Delegate(Pp,SkΓ ,Γ ,Γ̂ ). It takes as input public parameters Pp, access struc-
tures Γ and Γ̂ over the universe of attributes U with Γ̂ ≺ Γ , a secret key SkΓ
for Γ and outputs a secret key SkΓ̂ for Γ̂ .

3.3 Full Security Definition of HKP-ABE

Our security definition follows the security definition of [17] and our security
experiment is denoted by GameDelegate. The advantage of a PPT adversary
A in the security game GameDelegate is the absolute difference of the winning
probability against the challenger C and 1/2. The game GameDelegate consists of
Setup Phase, Key Query Phase and Challenge Phase. Precisely, all these phases
are given below.

– Setup C runs the Setup algorithm on input a security parameter 1λ and a
universe of attributes U to generate public parameters Pp and master secret
key Msk. The challenger C starts the interaction with the adversary A by
giving the public parameter Pp.

– Phase 1. Key query consists of three different phases (algorithms), Create,
Delegate and Reveal. C answers these queries in the following way. C chooses
a set R of private keys and initializes it to ∅.
• Create. A makes a create query by specifying the access structure Γ
over the universe of attributes U . In response, C creates a key for Γ by
running the KeyGen algorithm on input Msk and Γ . The challenger C
adds the key SkΓ to the set R and gives to A a reference to it, not the
actual key SkΓ .

• Delegate. A specifies a reference to a key SkΓ in the set R and an
access structure Γ̂ such that Γ̂ ≺ Γ . In response, C makes a key for Γ̂
by executing the Delegate algorithm on input Pp, SkΓ , Γ and Γ̂ . C adds
this key skΓ̂ to the set R and gives to A a reference to it, not the actual
key SkΓ .

• Reveal. To make a reveal query, A specifies a reference to a key SkΓ in
the set S and the challenger C gives to the adversaryA the corresponding
secret key SkΓ and removes it from R.

– Challenge Phase. The adversary gives two equal length messages M0 and
M1 and a set of attributes A∗ such that it does not satisfy the revealed
access structures. The challenger randomly chooses a bit b from {0, 1} and
encrypts the message Mb using the set of attributes A∗ and gives the chal-
lenge ciphertext CtA∗ to the adversary A
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– Phase 2. Repeat phase 1 with the restriction that no revealed access struc-
ture Γ is satisfied by the set of attributes A∗.

– Guess. The adversary A outputs the guess b̂ for b.

The advantage AdvAGameDelegate
(λ) of the adversaryA in GameDelegate is defined

by |Pr(b̂ = b)− 1/2|
Definition 9. A HKP-ABE scheme is said to be fully secure if for all PPT
adversary A, the advantage AdvAGameDelegate

(λ) is a negligible function of λ in
GameDelegate.

3.4 HKP-ABE Construction

Like CP-ABE scheme for non-monotone access structures, we represent the non-
MAS by the set of authorized sets. We refer to the setup algorithm in section 2.5.

KeyGen(Pp,Msk,Γ ). Here Γ is a non-monotone access structure. Let Γ = {A1,
A2, ..., Am}, where Ai ⊂ U ∀i ∈ [m] and m is the number of authorized sets in
Γ . The KeyGen algorithm chooses random r, r̂1, r̂2 ∈ ZN such that r = r̂1 + r̂2,
R0, R1, R1,i, R2,i ∈ Gp3 and ri ∈ ZN for each i ∈ [m]. The algorithm returns the
secret key

SkΓ = [K0 = gα+arR0,K1 = gr̂1R1, (K1,i = griR1,i)i∈[m],

(K2,i = gar̂2
( ∏
j∈Ai

Tj
)ri
R2,i)i∈[m]]

Encrypt(Pp,A,M). It chooses a random s ∈ ZN . It outputs the ciphertext
corresponding to the set of attributes A

CtA =
[
A,C0 =MY s, C1 = gs, C2 = gas, C =

(∏
i∈A

Ti
)s]

Decrypt(CtA, SkΓ ). Suppose A satisfies the non-monotone access structure Γ ,
then A ∈ Γ i,e. A = Aj for some Aj ∈ Γ . Then it computes

e(K1, C2)e(
K2,j

K0
, C1)/e(K1,j, C) = e(g, g)−αs

The algorithm outputs C0.e(g, g)
−αs =M

Delegate(Pp,SkΓ ,Γ ,Γ̂ ). Here Γ̂ ≺ Γ . Let |Γ | = l and |Γ̂ | = l̂ and SkΓ =
[K0,K1, (K1,i)i∈[l], (K2,i)i∈[l]]. The delegate algorithm chooses random r̄, r̄1, r̄2 ∈
ZN such that r̄1 + r̄2 = r̄ and r′i ∈ ZN for each i ∈ [l̂]. The algorithm returns
the delegate key

SkΓ̂ = [K̂0 = K0.g
ar̄, K̂1 = K1.g

r̄1 , (K̂1,i = K1,i.g
r′i)i∈[l̂],

(K̂2,i = K2,i.g
ar̄2
( ∏
j∈Ai

Tj
)r′i)i∈[l̂]]
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Table 4. Comparison with our HKP-ABE for Non-MAS

Decryption Cost
Schemes Security Assumption Ciphertext Size Key Size Pairing Exponent

OT[24] Adaptive DLIN O(|A|φ)|G| O(lφ) O(Iφ) O(I)
ALD[28] Selective n-DBDHE 3|G| O(ln) 3 O(In)
Our HKP-ABE Adaptive Assmp 1,2,3 3|G| 2|Γ |+ 2 3 None

Theorem 5. If Assumptions 1, 2 and 3 hold, then our HKP-ABE scheme for
non-MAS is fully secure. (The proof is given in Appendix B)

4 Conclusions

In this paper, we have presented a fully secure CP-ABE (resp. KP-ABE) scheme
with short ciphertext (resp. key) for monotone access structures using simple
“encoding technique”. By using a similar idea, we proposed a CP-ABE scheme
with constant size key and a HKP-ABE scheme with constant size ciphertext
for non-monotone access structures which are fully secure in the standard model
over composite order bilinear groups. In all the schemes the number of pairing
and exponent computations in the decryption algorithm is constant.
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A The Security Proof of KP-ABE Scheme for MAS

The proof technique for KP-ABE scheme is almost the same as that of CP-ABE
and for which we need the description of semi-functional keys and ciphertext
and are given below:

Semi-functional Key. Like CP-ABE, we also consider two forms of semi-
functional key. Let B be the basis of a MAS with |B| = m. Choose random
d, d1, d2, r, r̂1, r̂2 ∈ ZN such that r = r̂1 + r̂2, g2 ∈ Gp2 , R0, R1, R1,i, R2,i ∈ Gp3

and ri ∈ ZN for each i ∈ [m]. The distribution of type 1 key is the following.

SkB = [K0 = gα+arR0g2
d,K1 = gr̂1R1g2

d1 , (K1,i = griR1,i)i∈[m],

(K2,i = gar̂2
( ∏
j∈Ai

Tj
)ri
R2,ig2

d2)i∈[m]]

The distribution of type 2 key is same as type 1 except the key components
K1,K1,i and K2,i do not contain any Gp2 part.

Semi-functional Ciphertext. Let A be a set of attributes. Then choose ran-
dom s, c, c′ ∈ ZN , g2 ∈ Gp2 and ci ∈ ZN for each i ∈ A. The semi-functional
ciphertext is

CtA =
[
A,C0 =MY s, C1 = gsgc2, C2 = gasgc

′
2 , C3,i = Ti

sg2
ci∀i ∈ A]

Note that if a legitimate semi-functional key decrypts a semi-functional cipher-
text, we will get an extra term e(g2, g2)

cd2+c′d1−cd

The number of games between the challenger C and the adversary A in the
security proof of KP-ABE is 2q + 3 as in case of CP-ABE. The description of
games and the proof techniques are almost the same as that of CP-ABE and
that is why we only state the lemmas and theorem and skip the proofs.

Lemma 5. Suppose there exists a PPT algorithm A with AdvAGameReal
−

AdvAGame0
= ε. Then there exist a PPT algorithm S with advantage ε in breaking

Assumption 1.

Lemma 6. Suppose there exists a PPT algorithm A with AdvAGamek−1,2
−

AdvAGamek,1
= ε. Then there exist a PPT algorithm S with advantage ε in break-

ing Assumption 2.
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Lemma 7. Suppose there exists a PPT algorithm A with AdvAGamek,1
−

AdvAGamek,2
= ε. Then there exist a PPT algorithm S with advantage ε in break-

ing Assumption 2.

Lemma 8. Suppose there exists a PPT algorithm A with AdvAGameq,2
−

AdvAGameFinal
= ε. Then there exist a PPT algorithm S with advantage ε in

breaking Assumption 3.

Theorem 6. If Assumptions 1, 2 and 3 hold, then our KP-ABE scheme is fully
secure.

Proof. The proof follows from the lemma 5, lemma 6, lemma 7 and lemma 8 ��

B The Security Proof of Our HKP-ABE for Non-MAS

The security proof of HKP-ABE for non-MAS will be followed very similar way
from that of KP-ABE in Appendix A. The proof of HKP-ABE involves all the
games in KP-ABE, plus one extra game GameDelegate which is the experiment
in the security definition of HKP-ABE defined in section 3.3. In GameReal, all
the queries of the adversary are answered by running KeyGen algorithm but in
GameDelegate, the key queries and the delegate queries are answered by executing
the KeyGen and the Delegate algorithm respectively. Since in Appendix A, we
show that under Assumption 1, 2 and 3, the game GameReal and GameFinal

are indistinguishable and all the adversaries A has at most negligible advantage
in GameFinal, so to complete the security proof of our HKP-ABE, we need only
to prove the following lemma.

Lemma 9. GameReal and GameDelegate are indistinguishable.

Proof. The only difference between GameReal and GameDelegate is the delegate
key query answering. In case of delegate key query, the challenger C answers
to the adversary A in GameDelegate by running the Delegate algorithm which

takes Pp, SkΓ , Γ, Γ̂ as input, where Γ̂ ≺ Γ and in GameReal, C answers to A
by using the keyGen algorithm which takes Msk, Γ as input. Since the Delegate
algorithm re-randomizes the key components, so in both the case the secret key
SkΓ̂ corresponding to Γ̂ have the same distribution. This concludes the proof of
the lemma. ��

C Discussion

Our ABE schemes can be treated as small universe constructions, where the size
of public parameters is linear in the size of the universe of attributes. It is also
possible to give a large universe construction using our techniques, where all the
elements of Z∗

p1
can be used as attributes but the size of public parameters is

linear in n, a parameter which denotes the maximum number of attributes used
in encryption. By applying a collision-resistant hash function H : {0, 1}∗ → Z∗

p1
,

we can allow to use arbitrary string as attributes. Instead of using Ti associated
with attribute i, we use a function T : Zp1 → Gp1 based on a n degree polynomial
as in [9] and [8].



Symmetric Inner-Product Predicate Encryption

Based on Three Groups

Masayuki Yoshino1,2, Noboru Kunihiro2, Ken Naganuma1, and Hisayoshi Sato1

1 Hitachi, Ltd.
{masayuki.yoshino.aa,ken.naganuma.dn,hisayoshi.sato.th}@hitachi.com

2 The University of Tokyo
masayuki.yoshino@it.k.u-tokyo.ac.jp, kunihiro@k.u-tokyo.ac.jp

Abstract. This paper presents the first symmetric-key inner-product
predicate encryption scheme based on three groups. The performance
of predicate encryption schemes based on hidden subgroup problems
depends on the number of hidden subgroups and this number should
be optimized. The scheme presented here satisfies the selective security
model under a non-interactive assumption where the number of terms
does not depend on the number of adversarial queries. It is therefore
as secure as the symmetric predicate scheme proposed by Shen et al.,
which is based on four groups, under a simpler assumption. Using three
hidden groups instead of four, it has a message space more than 33%
wider and is more resistant to integer factoring attacks with moderate
security parameters. The available techniques for converting encryption
schemes using composite-order bilinear groups into schemes using prime-
order groups are applicable to our scheme. Compared with the previous
scheme using the conversion techniques, our prime-order group instan-
tiation is asymptotically more than 33% faster and has ciphertexts and
tokens that are asymptotically 25% smaller.

Keywords: symmetric predicate encryption, subgroup decision prob-
lem, public cloud infrastructure.

1 Introduction

Progress in networking technology and an increase in the demand for comput-
ing resources have prompted many organizations to outsource their computer
environments. This has resulted in a new computing model, often called cloud
computing, that can be roughly categorized as private or public. In a private
cloud the infrastructure is owned and managed by the user and is located on-
premise: access to the user’s data is under the user’s control. In a public cloud
the infrastructure is owned and managed by a service provider and is located off-
premise: access to a user’s data is not under the user’s control and can potentially
be granted to untrusted parties.

Moving user data to a public cloud provider such as Google, Microsoft, or
Amazon enables the user to avoid the costs of building and maintaining cloud in-
frastructure and instead simply pay for using the services offered by the provider.
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The users of public clouds can access their data anytime from anywhere and do
not need to worry about data backups, but this convenience is associated with
significant security and privacy risks.

Traditional encryption schemes provide access control in all-or-nothing man-
ner: data encrypted using a key can be decrypted only by the key owner. This
rigid security does not meet the needs of public cloud users. In a line of re-
search beginning with the work of Sahai and Waters [34], a number of researches
have asked how to implement more complex access policies in ciphertexts or
token queries. The result is the notion of functional encryption [9], which is a
new way of giving functionality to encrypted data while keeping the data con-
fidential. One of the most important functional encryption schemes is predicate
encryption [23, 36]. Informally, a predicate encryption scheme lets the owner of
a master secret key issue tokens that allows users to learn whether ciphertexts
are associated with the token but keeps the token content (called the predicate)
hidden. in most predicate encryptions, the technical barriers to data access are
broken by using pairing operations on bilinear groups [2, 23, 25–28, 36, 38].

Predicate encryption schemes may encourage to the implementation of secure
cloud computing in public cloud infrastructures. A public-key setting is appro-
priate for multiple-user applications such as e-mail services [6] and broadcast
services [10], but its security is weaker than that of a symmetric-key setting. As
pointed out in [33, 36], an adversary can use public keys to encrypt any plain-
text and evaluate a token query to learn whether the ciphertext is associated
with that token. Thus he can acquire information about the content of a token.
A symmetric-key setting, on the other hand, is appropriate for single-user ap-
plications and is more secure. Some secure symmetric-key schemes have been
proposed for simple applications such as remote storage services [16] and private
database services [20, 32] as shown in Figure 1.

To make more expressive token queries such as equality checks of conjunction,
disjunction and their combinations, Shen, Shi, andWaters proposed a symmetric-
key encryption scheme for inner-product predicates [36]. Their scheme, here called
the SSW scheme, uses bilinear groups, which are significant obstacles to practical
implementation. Its security is based on a variant of the subgroup decision assump-
tion. This assumption implies that it is infeasible to factor a composite order of the
bilinear group. Such large composite-order groups, however, result in a heavy load
of group operations, markedly reducing the efficiency of the SSW scheme. Free-
man [18] andLewko [24] therefore proposed techniques converting composite-order
groups with hidden subgroups into prime-order groups, which do not require the
assumption of integer factorization infeasibility.

user

ciphertext

cloud server database

token
check

(result from the check func.)

Fig. 1. Single-user application of symmetric predicate encryption schemes
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Despite these conversion techniques, symmetric predicate encryption schemes
still face practical problems, one of which is that the converted SSW scheme
using d-bit prime groups generates 8d(n + 2)-bit ciphertext, where n is the di-
mensionality of the vector space representing plaintexts and predicates. Unfor-
tunately, this ciphertext is much larger than the ciphertext generated by simple
functional encryption schemes such as [17, 37]. A second problem, long running
time, may be more serious. After receiving a token, a computer calls d-bit pair-
ing operations (4n+ 2) times to verify a relation of a ciphertext and the token.
The heavy computational load penalizes the performance of most applications
of symmetric predicate encryptions. The running time for the check procedure
is predominantly due to the heavy load of pairing operations, so fewer calls to
paring operation would be preferred.

1.1 Our Motivation and Contribution

Cryptography may contribute to the security of cloud computing in the public
environment, but, there is a well-known trade off between security and efficiency.
Researchers have proposed several predicate encryption schemes based on secu-
rity models with a strict restrictions on queries: adversaries cannot freely query
ciphertexts or tokens if there is an obvious relation with a challenge [8, 16, 11, 25].
In applications actually using cryptosystems, however, there is no such restriction
[32]. Server administrators (or intruders) thus can break the indistinguishability
by learning a relation between ciphertext and token queries. Secure token query
techniques such as PIR [14, 29] and oblivious RAM [20, 31] can provide perfect
security (even administrator cannot learn anything in theory), but their compu-
tational cost is impractically high. We therefore think that practical efficiency is
one of the most interesting aspects of predicate encryption.

This paper presents the first encryption schemes for inner-product predicates
in symmetric-key settings that is based on a bilinear group consisting of three
hidden subgroups. The performance of predicate encryption schemes based on
hidden subgroup problems depends on the number of hidden subgroups, and an
efficient scheme can be obtained by optimizing the number of subgroups. This
paper presents a symmetric predicate encryption scheme satisfying the selective
security model under a non-interactive assumption where the number of terms
does not depend on the number of adversarial queries. The means our proposed
scheme, which is based on three groups, is as secure as the SSW scheme based
on four. Having one less group, the proposed scheme has a message space more
than 33% wider. Furthermore, the proposed scheme uses a bilinear group whose
composite order is more resistant to integer factoring algorithms than that of
the SSW scheme. Taking advantage of the techniques introduced by [18, 24] to
convert encryption schemes using composite-order bilinear groups into schemes
using prime-order groups, our prime-order group instantiation has ciphertexts
and tokens that are asymptotically 25% smaller than those of the converted SSW
scheme and it performs all processes more than 33% faster than that scheme
does.
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1.2 Related Work

Predicate Encryption: An important research direction is to construct pred-
icate encryption schemes that are as expressive as possible, with the ultimate
goal being to handle all polynomial-time predicates. Predicate encryption for
inner products was presented by Katz, Sahai, and Waters [23] as a fine-grained
notion of encryption that covers identity-based encryption [3, 4, 7, 15, 19, 22, 35],
hidden-vector encryption [2, 11] and attribute-based encryption [1, 21, 25, 30, 34,
38]. The relation of inner-product queries covers a wide class of predicates such
as those used in conjunction, subset, and range queries on encrypted data [11]
as well as in disjunction and CNF/DNF formulas [23]. The security (attribute-
hiding and payload-hiding) model of the predicate encryptions when an ad-
versary requests only token queries and chooses a ciphertext as a challenge
has been discussed informally. The public-key predicate encryption scheme was
proven to be selectively attribute-hiding [23]. Adaptively attribute-hiding pred-
icate schemes were later studied in [25, 27, 28].

Prime-Order Group Instantiation:Most predicate encryption schemes make
use of bilinear groups of composite order. In order to create more efficient ver-
sions of the cryptosystems originally requiring composite-order bilinear groups,
both Freeman [18] and Lewko [24] gave ways for converting systems requiring
composite-order groups to systems using prime-order groups. The performance
of the converted versions, such as their running time and their ciphertext and to-
ken sizes, depends on the original number of hidden subgroups of the composite-
order bilinear groups. Converted cryptosystems requiring fewer subgroups may
perform better in terms of ciphertext size and running time.

1.3 Organization

The rest of this paper is organized as follows: the notations and the security
model are defined in Section 2. The mathematical background is introduced in
Section 3. The proposed scheme is given in Section 4 and its security proof is
given in Section 5. A variant of the proposed scheme is considered in Section 6.

2 Definitions

We briefly review definitions of a general framework for tokens on encrypted data
[36]. Let Σ be a finite set of binary strings. A predicate f over Σ is a function
f : Σ → {0, 1}. Let F be a set of predicates over a finite set of binary strings Σ.
In this paper we say that x ∈ Σ satisfies the predicate f iff f(x) = 1.

2.1 Predicate Encryption in Symmetric-Key Setting

Definition 1. A symmetric-key predicate encryption (SK-PE) scheme for the
class of predicates F over the set of attributes Σ consists of the following prob-
abilistic polynomial-time algorithms.
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– Setup(1λ): Takes a security parameter 1λ as input and outputs a public
parameter and a secret key SK.

– Encrypt(SK, x): Takes a secret key SK and a plaintext x ∈ Σ as input and
outputs a ciphertext CT .

– GenToken(SK, f): Takes a secret key SK and a description of predicate
f ∈ F as input and outputs a token TK.

– Check(CT, TK): Takes a token TK and a ciphertext CT as input and
outputs either 0 or 1. The boolean value indicates the value of the predicate
f evaluated on the underlying plaintext x.

– Correctness. For correctness, this paper requires the following conditions.

• If f(x) = 1, then Check(CT, TK) = 1.

• If f(x) �= 1, then Check(CT, TK) = 0 with provability 1 − ε(λ) and ε
is a negligible function.

2.2 Security Model

Selective security in a public-key setting was first described by [13], and selective
security in a symmetric-key setting was first described by [36]. These concepts
have been used in [3],[5],[10],[12],[37].

This section introduces a selective security model for an SK-PE, which was
defined by Shen, Shi, and Waters [36]. They described a query game in which an
adversary A given a set of tokens and ciphertexts tries to get information about
any of the predicates or the plaintexts. The game proceeds as follows.

– Setup: The challenger C runs Setup(1λ) and gives the adversary A a public
parameter. A outputs a bit d = 0 indicating a ciphertext challenge and two
plaintexts x0, x1 ∈ Σ, or a bit d = 1 indicating a token challenge and two
descriptions of predicates f0, f1 ∈ F .

– Phase 1: A adaptively outputs one of the following two queries.

• On the ith ciphertext query, A requests a ciphertext and outputs a
plaintext xi ∈ Σ subject to the restriction that, for a token challenge,
f0(xi) = f1(xi). (In a ciphertext challenge, such a restriction for ci-
phertext queries is not required.) C responds with the corresponding
ciphertext CTi ← Encrypt(SK, xi).

• On the ith token query, A requests a token and outputs a predicate
fi ∈ F subject to the restriction that, for a ciphertext challenge, fi(x0) =
fi(x1). (In a token challenge, such a restriction for token queries is not re-
quired.) C responds with the corresponding token TKi ← GenToken(SK,
fi).

– Challenge: A outputs the bit d ∈ {0, 1} indicating a ciphertext challenge
or a token challenge. C flips a random coin b ∈ {0, 1} and outputs one of the
following two challenges.

• C gives CT∗ ← Encrypt(SK, xb) to A.

• C gives TK∗ ← GenToken(SK, fb) to A.
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– Phase 2: A continues to adaptively query ciphertexts CTi and tokens TKi,
subject to the same restriction as in Phase 1. C responds with the corre-
sponding ciphertexts CTi ← Encrypt(SK, xi) and the corresponding tokens
TKi ← GenToken(SK, fi).

– Guess: A returns a guess b′ ∈ {0, 1} of the random coin b.

One might consider this security model similar to attribute-hiding against cho-
sen plaintext attacks (AH-CPA) [25, 28], but, there are at least two distinctive
differences: in this security game A can issue two kinds of queries (in Phases 1
and 2), while in the AH-CPA game the adversary can issue only token queries.
Furthermore, in this security game A can choose a ciphertext or a token as a
challenge, while in the AH-CPA game the adversary can use only a ciphertext
as a challenge.

For our proof of security it will be useful to introduce the concepts of token
indistinguishability (token IND) and ciphertext indistinguishability (ciphertext
IND), which respectively correspond to the predicate privacy and plaintext pri-
vacy that Shen, Shi, and Waters defined using token challenges and ciphertext
challenges in their selective single challenge security game [36]. We renamed
their definitions to highlight indistinguishability of token challenges and cipher-
text challenges in the selective security game.

Definition 2. (Token IND) A symmetric-key predicate encryption scheme has
token indistinguishability if for a token challenge the advantage of any polynomial-
time adversaryA in winning the selective challenge game is negligible in the secu-
rity parameter λ.

Definition 3. (Ciphertext IND) A symmetric-key predicate encryption scheme
has ciphertext indistinguishability if for a ciphertext challenge the advantage
of any polynomial-time adversary A in winning the selective challenge game is
negligible in the security parameter λ.

3 Background and Assumption

Bilinear groups of composite order were first described by Boneh, Goh, and Nis-
sim [8]. We briefly review some facts about the bilinear groups whose composite
order has only three factors and then state an assumption to prove the security
of our scheme. For simplicity, we assume in Sections 3–5 that the pairing ê is
symmetric (ê : G×G → GT ).

3.1 3-Factor-Based Composite-Order Bilinear Groups

Let G denote a composite-order bilinear group generator algorithm that takes as
input a security parameter λ and outputs a tuple (p1, p2, p3,G,GT , ê) where p1,
p2, p3 are distinct primes, G and GT are three cyclic groups of order N = p1p2p3,
and the pairing ê : G×G → GT satisfies the following properties.
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– Bilinearity: ∀g,∀ h ∈ G, a, b ∈ ZN , ê(g
a, hb) = ê(g, h)ab

– Nondegeneracy: For any g ∈ G, if ê(g, h) = 1 for all h ∈ G, then g = 1.

We assume that group operations in G and GT as well as the bilinear map ê
can be computed in polynomial time. The notations G1, G2, and G3 denote
the subgroups of G having orders p1, p2, and p3. The following facts about
composite-order bilinear groups will be used in this paper.

– ê(a1, a2)= ê(a2, a3)= ê(a3, a1)=1 with a1∈ G1, a2∈ G2, a3∈ G3.
– a, b ∈ GN are uniquely represented as a = a1a2a3, b = b1b2b3 where a1, b1 ∈

G1, a2, b2 ∈ G2 and a3, b3 ∈ G3. Then ê(a, b) = ê(a1, b1) · ê(a2, b2) · ê(a3, b3).

3.2 Our Assumption

The security of our scheme relies on only a non-interactive assumption; that is,
the number of parameters given to adversaries is static (constant size) and does
not depend on the number of adversarial queries. The assumption is new but we
justify it in Appendix A by proving that it holds in the generic model of bilinear
groups.

Assumption 1. Given a bilinear group generator G such that for i = 1, 2, 3 the
output groups Gi are of prime order pi using the following experiment

1. (p1, p2, p3,G,GT , ê) ← G(1λ)
2. N ← p1p2p3, g1

R←− G1, g2
R←− G2, g3

R←− G3

3. P ← (N,G, GT , ê)

4. D←(g1, g
a1
1 g2, g

b1
2 g

c1
3 , g

c2d
3 , gd3 , g

d2

3 , g
a2
1 g

c1d
3 )

with a1, a2
R←− Zp1 , b1

R←− Zp2 , c1, c2, d
R←− Zp3

5. T0 ← ga3
1 g

c2
3 , T1 ← ga3

1 g
b2
2 g

c2
3 with a3

R←− Zp1 , b2
R←− Zp2

and given that the advantage of an adversary A in distinguishing T0 from T1
with the parameters (P , D) is defined as

AdvA := |Pr[A(P,D, T0)] = 1− Pr[A(P,D, T1)] = 1|
for any polynomial-time adversary A the advantage AdvA is negligible in the
security parameter λ.

Note that in our assumption the naming of subgroups is not significant: the
assumption is the same if the subgroups are renamed such as G1 ↔ G3.

4 Construction

The goal of this section is to construct an SK-PE scheme that supports inner
product queries and that uses bilinear groups whose composite order has only
three factors. In Section 6 we will introduce the corresponding construction using
prime-order bilinear groups.
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4.1 Intuition for the Construction

In our scheme, each ciphertext is associated with a secret vector
→
x representing a

plaintext, and each token corresponds to a secret vector
→
y describing a predicate.

The scheme must check whether
→
x · →

y= 0 (mod N) and reveal nothing else

about
→
x and

→
y .

We use the observation that, for inner product queries, ciphertexts and tokens
play symmetric roles: a token and a ciphertext each encode a vector, and the
inner product 〈x, y〉 is commutative. One way to interpret this observation is to
view a ciphertext and a token as symmetric. Our approach is therefore to design
the ciphertext and the token in such a way that they are complementarily sym-
metric so that we can leverage the token IND proven for our main construction
to achieve ciphertext IND as well.

4.2 Our Construction of an SK-PE Scheme

At a high level the subgroups of G will be used as follows: G2 will be used to
encode the vectors

→
x and

→
y in the ciphertexts and tokens. The inner product

〈→x,→y〉 in G2 will be computed using the bilinear map. Elements of G3 will be
used in the ciphertexts for masking terms in G2, and elements of G1 will be used
in the tokens for masking terms in G2.

Our main construction is an SK-PE where the set of attributes is Σ = (ZN )n

and the class of predicates is F = {f→
y |

→
y∈ (ZN )n} with f→

y (
→
x) = 1 iff 〈→x,→y〉 = 0

(mod N). We now describe our scheme in detail calling it SK-PE-1.

– Setup(1λ): The setup algorithm first produces (p1, p2, p3,G,GT , ê) by run-
ning G(1λ) with G = G1 × G2 × G3. It then picks generators g1, g2, and g3
of G1,G2, and G3. It chooses q1,i, q2,i ∈ Zp1 and r1,i, r2,i ∈ Zp3 uniformly at
random for i = 1 to n. The public parameter is N (= p1p2p3,G,GT , ê). The
secret key SK is the generators g1, g2, g3, the prime-orders p1, p2, p3, and the
random numbers {q1,i, q2,i, r1,i, r2,i}ni=1.

– Encrypt(SK,
→
x): Let

→
x= (x1, · · · , xn) with xi ∈ ZN . The encryption algo-

rithm chooses S ∈ Zp1 , α1, α2 ∈ Zp2 , U1,i, U2,i ∈ Zp3 for i = 1 to n, U1 ∈ Zp1 ,
and U2 ∈ Zp2 uniformly at random. It outputs the ciphertext

CT :=

( {C1,i = g
Sq1,i
1 gα1xi

2 g
U1,i

3 }ni=1, {C2,i = g
Sq2,i
1 gα2xi

2 g
U2,i

3 }ni=1,
)

C1 = gS1 , C2 = gU1
1 gU2

2

∏n
i=1 g

−U1,ir1,i−U2,ir2,i
3

– GenToken(SK,
→
y): Let

→
y= (y1, · · · , yn) with yi ∈ ZN . This algorithm

chooses T ∈ Zp3 , β1, β2 ∈ Zp2 , V1,i, V2,i ∈ Zp1 for i = 1 to n, V1 ∈ Zp2 ,
and V2 ∈ Zp3 uniformly at random. It then outputs the token

TK :=

( {K1,i = g
V1,i

1 gβ1yi

2 g
Tr1,i
3 }ni=1, {K2,i = g

V2,i

1 gβ2yi

2 g
Tr2,i
3 }ni=1,

)
K1 =
∏n

i=1 g
−V1,iq1,i−V2,iq1,i
1 · gV1

2 gV2
3 ,K2 = gT3
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– Check(CT, TK): This algorithm outputs 1 iff
∏n

i=1{ê(C1,i,K1,i) ê(C2,i,
K2,i)} ê(C1,K1)ê(C2,K2) = 1.

Correctness

n∏
i=1

ê(C1,i,K1,i)ê(C2,i,K2,i) · ê(C1,K1)ê(C2,K2)

=
n∏

i=1

ê(g
Sq1,i
1 gα1xi

2 g
U1,i

3 , g
V1,i

1 gβ1yi

2 g
Tr1,i
3 )

n∏
i=1

ê(g
Sq1,i
1 gα2xi

2 g
U2,i

3 , g
V2,i

1 gβ2yi

2 g
Tr2,i
3 )

·ê(gS1 , gV1
2 gV2

3

n∏
i=1

g
−V1,iq1,i−V2,iq1,i
1 ) · ê(gU1

1 gU2
2

n∏
i=1

g
−U1,ir1,i−U2,ir2,i
3 , gT3 )

=
n∏

i=1

ê(g
Sq1,i
1 , g

V1,i

1 ) ·
n∏

i=1

ê(gα1xi
2 , gβ1yi

2 ) ·
n∏

i=1

ê(g
U1,i

3 , g
Tr2,i
3 )

·
n∏

i=1

ê(g
Sq1,i
1 , g

V2,i

1 ) ·
n∏

i=1

ê(gα2xi
2 , gβ2yi

2 ) ·
n∏

i=1

ê(g
U2,i

3 , g
Tr2,i
3 )

·
n∏

i=1

ê(gS1 , g
−V1,iq1,i−V2,iq1,i
1 ) ·

n∏
i=1

ê(gT3 , g
−U1,ir1,i−U2,ir2,i
3 )

= ê(g2, g2)
(α1β1+α2β2)〈→x ,

→
y 〉

The above expression evaluates to 1 if 〈→x,→y〉 = 0 (mod N), and the probability

that it does not evaluate to 1 is extremely high if 〈→x,→y〉 �= 0 (mod p2). The above

expression would reveal a non-trivial factor of N if 〈→x,→y〉 �= 0 (mod p2), so the

probability of 〈→x,→y〉 �= 0 (mod p2) muse be negligible. If 〈→x,→y〉 �= 0 (mod p2),
the probability of α1β1 + α2β2 = 0 (mod p2) is negligible because α1, α2, β1,

β2
R←− Zp2 .

Our scheme SK-PE-1 uses duplicate encoding of the ciphertext (C1,i, C2,i) and
the token (K1,i,K2,i), and these two parallel subsystems are similar to parallel
subsystems in the KSW scheme and the SSW scheme [23, 36].

Analysis. A predicate encryption scheme based on bilinear groups needs to
use a large number of groups if it is to resist integer factorization attacks, and
one might want to implement an SK-PE scheme based on a smaller number of
groups without using the conversion techniques introduced by [18, 24]. SK-PE-1,
which is based on only three groups, provides a message space more than 33%
wider than the SSW scheme does because it uses one fewer groups. It is also resis-
tant to integer factoring attacks with moderate security parameters because the
performance of elliptic curve factorization depends on the number of nontrivial
factors.
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5 Security Proof for SK-PE-1

This section describes a sequence of hybrid security games demonstrating that
when SK-PE-1 is used the ciphertexts and tokens reveal no unintended informa-
tion about what they describe (plaintexts and predicates).

5.1 Proof Intuition

SK-PE-1 is designed so that ciphertexts and tokens are symmetric, so the most
challenging aspects of providing a proof of SK-PE-1 security are showing token
IND and ciphertext IND. We do this in a way similar to that done by Katz, Sahai,
and Waters [23]. We use a sequence of hybrid games where a challenge token will
be encrypted with one vector in the first subsystem and with another vector in
the second subsystem. Let (

→
w,

→
z ) denote a token encrypted using vector

→
w in the

first subsystem ({K1,i}ni=1) and vector
→
z in the second subsystem ({K2,i}ni=1).

To prove that the challenge token associated with
→
w corresponding to (

→
w,

→
w) is

indistinguishable from the challenge token associated with
→
z corresponding to

(
→
z ,

→
z ), we use a series of games demonstrating that (

→
w,

→
w) # (

→
w,

→
0), (

→
w,

→
0) #

(
→
w,

→
z ), (

→
w,

→
z ) # (

→
0 ,

→
z ), and (

→
0 ,

→
z ) # (

→
z ,

→
z ).

5.2 Sequence of Hybrid Games

A security game for selective security offers the adversary a choice of predicates
or plaintexts as challenges and gives the adversary a number of ciphertexts and
tokens. To prove token IND, we use the following restriction: the adversary can
query only tokens.

Theorem 1. If G satisfies Assumption 1, SK-PE-1 has token IND.

Proof. (Proof sketch.) To prove that SK-PE-1 has token IND, we use a sequence
of hybrid games in which all ciphertexts and tokens are generated properly at
query phases and only challenge tokens are differently defined (for clarity here,
the differences between two consecutive games are surrounded with frames).

Game 1:

TK =

( {K1,i = g
V1,i

1 gβ1wi
2 g

Tr1,i
3 }ni=1, {K2,i = g

V2,i

1 gβ2wi
2 g

Tr2,i
3 }ni=1,

)
K1 =

∏n
i=1 g

−V1,iq1,i−V2,iq1,i
1 gV1

2 gV2
3 , K2 = gT3

Game 2:

TK =

( {K1,i = g
V1,i

1 gβ1wi
2 g

Tr1,i
3 }ni=1, {K2,i = g

V2,i

1 g
Tr2,i
3 }ni=1 ,

)
K1 =

∏n
i=1 g

−V1,iq1,i−V2,iq1,i
1 gV1

2 gV2
3 , K2 = gT3

Game 3:

TK =

( {K1,i = g
V1,i

1 gβ1wi
2 g

Tr1,i
3 }ni=1, {K2,i = g

V2,i

1 gβ2zi
2 g

Tr2,i
3 }ni=1 ,

)
K1 =

∏n
i=1 g

−V1,iq1,i−V2,iq1,i
1 gV1

2 gV2
3 , K2 = gT3

Game 4:

TK =

( {K1,i = gVi
1 gTri

3 }ni=1 , {K2,i = g
V2,i

1 gβ2zi
2 g

Tr2,i
3 }ni=1,

)
K1 =

∏n
i=1 g

−V1,iq1,i−V2,iq1,i
1 gV1

2 gV2
3 , K2 = gT3

Game 5:

TK =

( {K1,i = gVi
1 gβ1zi

2 gTri
3 }ni=1 , {K2,i = g

V2,i

1 gβ2zi
2 g

Tr2,i
3 }ni=1,

)
K1 =

∏n
i=1 g

−V1,iq1,i−V2,iq1,i
1 gV1

2 gV2
3 , K2 = gT3
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If G satisfies Assumption 1, one can respectively prove token IND between Games
1 and 2, Games 2 and 3, Games 3 and 4, and Games 4 and 5. We describe all
details in Lemmas 1, 2, and 3 in the Appendix B. Thanks to these lemmas, the
adversaryA cannot distinguish Game 1 from Game 5, each of which is generated
from the challenge description of predicates

→
y and

→
z . ��

In SK-PE-1, the tokens and ciphertexts in the subgroups G1, G2, G3 are clearly
symmetric: they are formed symmetrically. The G2 subgroup has the same form
in both the ciphertext and the token, and the G1 and G3 subgroups masking
the elements in G2 mirror each other. Thus the proof of the ciphertext IND of
SK-PE-1 is almost the same as the proof of the token IND. The only difference
between them is that the challenge query is a ciphertext instead of a token.

Theorem 2. If G satisfies Assumption 1, SK-PE-1 has ciphertext IND.

Proof. The tokens and the ciphertexts of SK-PE-1 are formed symmetrically. So
Assumption 1 lets us convert the sequence of security game proving Theorem 1 to
a sequence proving ciphertext IND by simply renaming the subgroups G1 ↔ G3.
The ciphertext IND thus is proven in the same way that the token IND was
proved.

��
Thanks to Theorem 1 and Theorem 2, the following proposition holds.

Proposition 1. If G satisfies Assumption 1, SK-PE-1 is selectively secure.

Proof. We have already proved Theorem 1 (that SK-PE-1 has token IND) and
Theorem 2 (that SK-PE-1 has ciphertext IND). If the adversary A has advan-
tage ε in breaking token IND or ciphertext IND, then the simulator B also has
the same advantage ε in breaking Assumption 1. This completes the proof of
Proposition 1.

��
6 Prime-Order Group Instantiation

The construction introduced in Section 4 uses the fact that if each element g,
h belongs to distinct prime-order subgroups, then ê(g, h) = 1. To create more
efficient versions, this section introduces a construction taking the pairing on the
composite-order groups to be any nontrivial linear combination of the pairings
on the prime-order groups, for which both Freeman and Lewko have given ways
[18, 24]. We call this construction as SK-PE-2.

6.1 Our Assumption for a 3-Cancelling Bilinear Group

This subsection prepares the way for instantiating our second scheme by using
prime-order groups with an asymmetric paring that makes it more efficient than
SK-PE-1, which was instantiated with a symmetric paring requiring supersingu-
lar curves (details are described in [18]).

We introduce a 3-cancelling bilinear group generator algorithm G3c that takes
as input a security parameter λ and outputs a description of abelian group G,
H , GT . We assume that this description permits efficient group operations and
random sampling in each group.
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Definition 4. ([18]) Let P be a prime-order bilinear group generator. Define
G3c to be a bilinear group generator that on input λ does the following:

1. (p,G1,G2,GT , ê) ← P(1λ),
2. G = G3

1, H = G3
2, GT = GT ,

3. g1, g2, g3
R←− G1, h1, h2, h3

R←− G2,

4. choose x, y, z, u, v, w
R←− Zp s.t.

{−xv − xw − yu+ yw + zu+ zv �= 0,
xv − xw − yu+ yw + zu− zv �= 0.

5. Define the subgroups G1 = 〈(g1, gx1 , gu1 )〉, G2 = 〈(g2, gy2 , gv2)〉,
G3 = 〈(g3, gz3 , gw3 )〉, H1=〈(hzv−yw

1 ,hw−v
1 ,hy−z

1 )〉,
H2=〈(hzu−xw

2 ,hw−u
2 ,hx−z

2 )〉, H3=〈(hyu−xv
3 ,hv−u

3 ,hx−y
3 )〉.

6. Define e : G×H → Gt by e((g, g
′, g′′)(h, h′, h′′)) := ê(g, h)ê(g′, h′)ê(g′′, h′′).

7. Output the tuple (G,G1, G2, G3, H,H1, H2, H3, Gt, e).

The inequalities in Step 4 guarantee that Gi and Hi are linearly independent,
which implies the pairing e is non-degenerate. That is,

– G # G1 ×G2 ×G3 and H # H1 ×H2 ×H3

– e(gi, hj) = 1 with gi ∈ Gi, hj ∈ Hj and i �= j.

6.2 Our Construction of SK-PE Using Prime-Order Groups

We introduce the procedure using a bilinear group generator G3c with an asym-
metric pairing. We streamline the setup function by computing ciphertexts in G
and tokens in H . Since secret keys are used to form ciphertexts and tokens, we
generate two keys: one will be in G and the other in H .

– Setup(1λ): The setup algorithm first runs G3c(1
λ) to produce N (:= lcm(p1,

p2, p3), G, G1, G2, G3, H , H1, H2, H3, GT , e) and then picks generators
g1, g2, g3, h1, h2, h3 of G1, G2, G3, H1, H2, H3. It chooses q1,i, q2,i ∈ Zp1 ,
r1,i, r2,i ∈ Zp3 uniformly at random for i = 1 to n. The public parameter
is (N,G,H,GT , e). The secret key SK is the generators g1, g2, g3, h1, h2, h3
and the random numbers {q1,i, q2,i, r1,i, r2,i}ni=1.

– Encrypt(SK,
→
x): Let

→
x= (x1, · · · , xn) with xi ∈ Zp2 . The encryption algo-

rithm chooses S ∈ Zp1 , α1, α2 ∈ Zp2 , U1,i, U2,i ∈ Zp3 for i = 1 to n, U1 ∈ Zp1

U2 ∈ Zp2 uniformly at random. It outputs the ciphertext

CT :=

( {C1,i = g
Sq1,i
1 gα1xi

2 g
U1,i

3 }ni=1, {C2,i = g
Sq1,i
1 gα2xi

2 g
U2,i

3 }ni=1,
)

C1 = gS1 , C2 = gU1
1 gU2

2

∏n
i=1 g

−U1,ir1,i−U2,ir2,i
3

– GenToken(SK,
→
y): Let

→
y= (y1, · · · , yn) with yi ∈ Zp2 . This algorithm

chooses T ∈ Zp3 , β1, β2 ∈ Zp2 and V1,i, V2,i ∈ Zp1 for i = 1 to n, V1 ∈ Zp2 ,
V2 ∈ Zp3 uniformly at random. It then outputs the token

TK :=

( {K1,i = h
V1,i

1 hβ1yi

2 h
Tr1,i
3 }ni=1, {K2,i = h

V2,i

1 hβ2yi

2 h
Tr2,i
3 }ni=1,

)
K1 = hV1

2 h
V2
3

∏n
i=1{h−V1,iq1,i−V2,iq1,i

1 },K2 = hT3
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Fig. 2. SK-PE-2 and the SSW schemes compared in terms of pairing operation calls
in the Check function (left) and ciphertext size (right)

– Check(CT, TK): This algorithm outputs 1 iff
∏n

i=1{e(C1,i,K1,i) e(C2,i,
K2,i)} e(C1,K1)e(C2,K2) = 1.

The cancelling property of the componentwise pairing e implies that the Check

function outputs e(g2, h2)
(α1β1+α2β2)〈→x→

y 〉. If 〈x, y〉 = 0, then we obtain 1; other-
wise, there is an extremely high probability that we obtain random elements ofG2.

Analysis. The number of elements required for the prime-order group instantia-
tions is exactly proportional to the original number of hidden subgroups required
for the composite-order bilinear group instantiations. SK-PE-2 using d-bit prime
groups generates 6d(n + 2)-bit ciphertext and requires d-bit pairing operations
(3n + 2) times in the Check function. Figure 2 shows number of pairing oper-
ations in left side and size of ciphertexts and tokens of SK-PE-2 and the SSW
scheme in right side. As a consequence, SK-PE-2 is asymptotically more than
33% faster than the SSW scheme requiring four groups, and its ciphertexts and
tokens are asymptotically 25% smaller than those of the SSW scheme requiring
four groups.
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A Validation of Assumption 1

This section proves the soundness of Assumption 1 by showing that it holds in
generic bilinear groups of composite order.

This section considers cyclic bilinear groups of composite order N , where
N =
∏m

i=1 pi is the product of m distinct primes. Each element g ∈ G can be
written as g = ga1

1 g
a2
2 . . . gam

m where ai ∈ Zpi and gi denotes some fixed generator
of the subgroup of order pi. We can therefore represent each element g ∈ G as
an m-tuple (a1, . . . , am). We use the same representation with elements in the
target group GT for the paring ê: G×G → GT .

In an experiment involving the generic group, we will describe an algorithm
with a set of elements generated at random according to some distribution.
These random variables use capital letters that are each chosen independently
and uniformly at random from the approximation. That is, a random element
of G would be described as (X1, . . . , Xm), where each Xi is chosen uniformly
from Zpi . We say a random variable expressed in this way has degree t if the
maximum degree of any variable is t. Random variables taking values in GT are
expressed in the same way but using bracket notation.

Given random variables X , A1, . . ., A� over the same group, X is said to be
dependent on {Ai} if there exist γi ∈ Z∗ such that X =

∑
i γiAi, where equality

refers to equality in terms of the underlying formal variables. If no such γi exists,
then X is said to be independent of {Ai}.

Given a random variable A = (X1, . . . , Xm), when we say that an algorithm
is given A we mean that random x1, . . . , xm are chosen appropriately and the
adversary is given (the handle for) the element (x1, . . . , xm).

Theorem 3. [23] Let N =
∏m

i=1 pi be a product of distinct primes, each greater
than 2n. Let {Ai}, T0, T1 be random variables over G, and let {Bi} be random
variables over GT , where all random variable have degree at most t.

Let S ← {i|ê(T0, Ai) �= ê(T1, Ai)}. Say each of T0 and T1 is independent of
{Ai}, and furthermore that for all k ∈ S it holds that ê(T0, Ak) is independent
of {Bi} ∪ {ê(Ai, Aj)} ∪ {ê(T0, Ai)}i�=k. Then given any algorithm A issuing at
most q instructions and having advantage δ, the algorithm can be used to find a
non-trivial factor of N with at least δ −O(q2t/2n).

We now show how to apply Theorem 3 of [23] to prove that our assumption hold
in the generic group model.

Assumption 1. Using the notations of Theorem 3, Assumption 1 may be written
as: A1 = (1, 0, 0), A2 = (a1, 1, 0), A3 = (0, b1, c1), A4 = (0, 0, c2d), A5 = (0, 0, d),
A6 = (0, 0, d2), A7 = (a2, 0, c1d), T0 = (a3, 0, c2), T1 = (a3, b2, c2). Note that
under Assumption 1 no element in GT is given to the adversary, {Bi} is thus ∅.
It is not difficult to see that both T0 and T1 are independent of {Ai}. We thus
give a description of independence on GT . Using the notation of Theorem 3, we
have S = {2, 3} since only A2 and A3 have non-zero second elements in G.

Considering T0 first, we obtain the following tuples: ê(T0, A2) = [a1a3, 0, 0],
ê(T0, A3) = [0, 0, c1c2]. It is clear that ê(T0, A2) is independent of anything else,
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since an element in GT whose first component contains a1a3 cannot be generated
any other way. Similarly, ê(T0, A3) is independent of anything else, since an
element in GT whose third component contains c1c2 cannot be generated. Thus,
the above two elements satisfy the independence requirement of Theorem 3.
Exactly analogous arguments apply for the case of T1.

B A Sequence of Hybrid Games among Games 1 – 5

This section proves that SK-PE-1 satisfies Definition 2 (token IND). Using a
sequence of hybrid games, Game 1–5 are proven to be indistinguishable.

Lemma 1. If G satisfies Assumption 1, Game 1 and Game 2 are computation-
ally indistinguishable.

Proof. We build a simulator B that tries to break Assumption 1. The simulator
B uses an adversary A that tries to distinguish Game 1 from Game 2. If A
has advantage ε in distinguishing Game 1 from Game 2, then B has the same
advantage ε in breaking Assumption 1.

Fix an adversaryA. The simulator B is given an instance of Assumption 1: the
public parameter (N ,G,GT , ê) along with the elements (g1, g

a1
1 g2, g

b1
2 g

c1
3 , g

c2d
3 , gd3 ,

gd
2

3 , g
a2
1 g

c1d
3 ), and an element Tb = ga3

1 g
bb2
2 gc23 where a random bit b ∈ {0, 1} and

a1, a2, a3
R←− Zp1 , b1, b2

R←− Zp2 , c1, c2, d
R←− Zp3 , g1

R←− G1, g2
R←− G2, g3

R←− G3.

Setup: A is given the public parameter and outputs description of two chal-
lenge predicates

→
w,

→
z∈ (ZN)

n to B. B gives the predicates
→
w,

→
z to the challenger

C, and generates random numbers {q1,i, q2,i}ni=1, {r1,i}ni=1, {r′2,i}ni=1
R←− ZN .

Phase 1 (token): B receives description of predicate
→
y= 〈y1, . . . , yn〉 from A.

B generates elements T ′, β1, β2, {V ′
1,i}ni=1, {V ′

2,i}ni=1, V
′
1 , V

′
2

R←− ZN respectively
and outputs the following token for A:

K1,i = g
V ′
1,i

1 (ga1
1 g2)

β1yi(gd
2

3 )T
′r1,i = g

V1,i

1 gβ1yi

2 g
Tr1,i
3

K2,i = g
V ′
2,i

1 (ga1
1 g2)

β2yi(gd3)
T ′wi(gd

2

3 )T
′r′2,i = g

V2,i

1 gβ2yi

2 g
Tr2,i
3

K1 =

n∏
i=1

(
K

−q1,i
1,i K

−q2,i
2,i

)
(gb12 g

c1d
3 )V

′
1 (gd3)

V ′
2 = g

−∑n
i=1(V1,iq1,i+V2,iq1,i)

1 gV1
2 gV2

3

K2 = (gd
2

3 )T
′
= gT3

with T = d2T ′, V1,i = β1a1yi + V ′
1,i, V2,i = β2a1yi + V ′

2,i, r2,i = d−1wi + r′2,i,
V1 = b1V

′
1−β1
∑n

i=1 q1,iyi−β2
∑n

i=1 q2,iyi, V2 = c1dV
′
1 +dV

′
2−T (
∑n

i=1 q1,ir1,i+∑n
i=1 q2,ir2,i).
Note that V1,i, V2,i for i = 1 to n and V1, V2 are uniformly distributed in ZN .

Thus, distribution of token in Phase 1 is completely the same as that of the real
token defined in Section 4.
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Phase 1 (ciphertext): B receives plaintext
→
x= 〈x1, . . . , xn〉 from A subject

to the restriction of token challenge: 〈→x, →
w〉 = 〈→x,→z 〉. B generates elements

S, α′
1, α

′
2, {U ′

1,i}ni=1, {U ′
2,i}ni=1, U

′
1, U

′
2

R←− ZN respectively and outputs the fol-
lowing ciphertext for A:

C1,i = (g1)
Sq1,i(gb12 g

c1
3 )α

′
1xi(gd3)

U ′
1,i = g

Sq1,i
1 gα1xi

2 g
U1,i

3 .

C2,i = (g1)
Sq2,i(gb12 g

c1
3 )α

′
2xi(gd3)

U ′
2,i = g

Sq2,i
1 gα2xi

2 g
U2,i

3 .

C1 = gS1 .

C2 =

n∏
i=1

(
gd

2

3

)−U ′
1,ir1,i

n∏
i=1

(
gd

2

3

)−U ′
2,ir

′
2,i

n∏
i=1

(
gd3
)−U ′

2,iwi · (ga1
1 g2)

U ′
1g

U ′
2

1

= g
a1U

′
1+U ′

2
1 g

U ′
1

2 g
−∑n

i=1 U1,ir1,i−
∑n

i=1 U2,i(r
′
2,i+d−1wi)

3

= gU1
1 gU2

2 g
−∑n

i=1(U1,ir1,i+U2,ir2,i)
3 .

with α1 = b1α
′
1, α2 = b1α

′
2, {U1,i = d2U ′

1,i + c1α
′
1xi}ni=1, {U2,i = d2U ′

2,i +
c1α

′
2xi}ni=1, U1 = a1U

′
1 + U ′

2, U2 = U ′
1.

U1,i, U2,i for i = 1 to n and U1, U2 are uniformly distributed in ZN . Thus,
distribution of ciphertext in Phase 1 is completely the same as that of the real
ciphertext.

Challenge: B receives query of challenge token from A. Given the challenge
query for Assumption 1: Tb = ga3

1 g
bb2
2 gc23 with a random bit b ∈ {0, 1} and ran-

dom numbers a3
R←− Zp1 , b2

R←− Zp2 , c2, d
R←− Zp3 . B generates random numbers

β1, β2, {V ′
1,i}ni=1, {V ′

2,i}ni=1, V
′
1 , V

′
2

R←− ZN respectively and output challenge token
for A.

K1,i = g
V ′
1,i

1 (ga1
1 g2)

β1wi(gc2d3 )r1,i = g
V1,i

1 gβ1wi

2 g
Tr1,i
3

K2,i = (Tb)
wig

V ′
2,i

1 (gc2d3 )r
′
2,i = g

V ′
2,i+a3wi

1 gbb2wi
2 g

c2d(d
−1wi+r′2,i)

3 = g
V2,i

1 gβ2wi

2 g
Tr2,i
3

K1 = gc2d3 = gT3

K2 =
n∏

i=1

(
K

−q1,i
1,i K

−q2,i
2,i

)
(gc2d3 gb12 )V

′
1 g

V ′
2

3 = g
−∑n

i=1(V1,iq1,i+V2,iq1,i)
1 gV1

2 gV2
3

with c2d = T , β2 = bb2, {V1,i = V ′
1,i+ a1β1wi}ni=1, {V2,i = V ′

2,i + a3wi}ni=1, V1 =

b1V
′
1 −
∑n

i=1(β1q1,i + β2q1,i)wi and V2 = TV ′
1 + V ′

2 − T
∑n

i=1 (q1,ir1,i + q1,ir2,i).

By examining the projections of the components of the challenge ciphertext in
the groups G1, G2 and G3, it can be verified that when T1 = ga3

1 g
b2
2 g

c2
3 is given,

the challenge token is distributed exactly as in Game 1, whereas if T0 = ga3
1 g

c2
3

is given, the challenge token is distributed exactly as in Game 2.

Phase 2 (token/ciphertext): B behaves the same as Phase 1.
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Guess: B receives the guess b′ from A and outputs the same guess b′ to C.

Clearly, if the adversary A has advantage ε in distinguishing Game 1 from Game
2, then the simulator B also has the same advantage ε in breaking Assumption
1. This completes the proof of Lemma 1.

��
Lemma 2. If G satisfies Assumption 1, Game 2 and Game 3 are computation-
ally indistinguishable.

Proof. We build a simulator B using an adversary A, which tries to distinguish
Game 2 from Game 3.

The simulator B is given an instance of Assumption 1: the public parameter
(N , G, GT , ê) along with the elements (g1, g

a1
1 g2, g

b1
2 g

c1
3 , gc2d3 , gd3 , g

d2

3 , g
a2
1 g

c1d
3 ),

and an element Tb = ga3
1 g

bb2
2 gc23 where a random bit b ∈ {0, 1} and random

numbers a1, a2, a3
R←− Zp1 , b1, b2

R←− Zp2 , c1, c2, d
R←− Zp3 , g1

R←− G1, g2
R←− G2,

g3
R←− G3.

Setup: A is given the public parameter and outputs description of two chal-
lenge predicates

→
w,

→
z∈ (ZN)

n to B. B gives the predicates
→
w,

→
z to the challenger

C, and generates random numbers {q1,i, q2,i}ni=1, {r1,i}ni=1, {r′2,i}ni=1
R←− ZN .

Phase 1 (token): B receives description of predicate
→
y= 〈y1, . . . , yn〉 from A.

B generates elements T ′, β1, β2, {V ′
1,i}ni=1, {V ′

2,i}ni=1, V
′
1 , V

′
2

R←− ZN respectively
and outputs the token similar with the case of Lemma 1 for A. The difference
in Phase 1 (token) between Lemma 1 and Lemma 2 is that B implicitly sets r2,i
such that r2,i = d−1zi + r′2,i for i = 1 to n.

Phase 1 (ciphertext): B receives plaintext
→
x= 〈x1, . . . , xn〉 from A subject

to the restriction of token challenge: 〈→x, →
w〉 = 〈→x,→z 〉. B generates random num-

bers S, α1, α2, {U ′
1,i}ni=1, {U ′

2,i}ni=1, U
′
1, U

′
2

R←− ZN respectively and outputs the
ciphertext similar with the case of Lemma 1 for A. The difference in Phase 1
(ciphertext) between Lemma 1 and Lemma 2 is that B implicitly sets r2,i such
that r2,i = d−1zi + r′2,i for i = 1 to n.

Challenge: B receives query of challenge token from A. Given the challenge
query for Assumption 1: Tb = ga3

1 g
bb2
2 gc23 with a random bit b ∈ {0, 1} and ran-

dom numbers a3
R←− Zp1 , b2

R←− Zp2 , c2, d
R←− Zp3 . B generates random numbers

β1, β2, {V ′
1,i}ni=1, {V ′

2,i}ni=1, V
′
1 , V

′
2

R←− ZN respectively and output challenge token
for A.
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K1,i = g
V ′
1,i

1 (ga1
1 g2)

β1wi(gc2d3 )r1,i = g
V1,i

1 gβ1wi

2 g
Tr1,i
3

K2,i = (Tb)
zig

V ′
2,i

1 (gc2d3 )r
′
2,i = g

V ′
2,i+a3zi

1 gbb2wi
2 g

c2d(d
−1zi+r′2,i)

3 = g
V2,i

1 gβ2zi
2 g

Tr2,i
3

K1 = gc2d3 = gT3

K2 =

n∏
i=1

(
K

−q1,i
1,i K

−q2,i
2,i

)
(gc2d3 gb12 )V

′
1 g

V ′
2

3 = g
−∑n

i=1(V1,iq1,i+V2,iq1,i)
1 gV1

2 gV2
3

with c2d = T , β1 = bb2, {V1,i = V ′
1,i+a1β1wi}ni=1, {V2,i = V ′

2,i+a3β2zi}ni=1, V1 =

b1V
′
1−
∑n

i=1(β1q1,iwi+β2q1,izi) and V2 = TV ′
1 +V

′
2 −T
∑n

i=1 (q1,ir1,i + q1,ir2,i).
By examining the projections of the components of the challenge ciphertext in

the groups G1, G2 and G3, it can be verified that when T0 = ga3
1 g

c2
3 is given, the

challenge token is distributed exactly as in Game 2, whereas if T1 = ga3
1 g

b2
2 g

c2
3 is

given, the challenge token is distributed exactly as in Game 3.

Phase 2 (token/ciphertext): B behaves the same as Phase 1.

Guess: B receives the guess b′ from A and outputs the same guess b′ to C.
Clearly, if the adversary A has advantage ε in distinguishing Game 3 from

Game 2, then the simulator B also has the same advantage ε in breaking As-
sumption 1. This completes the proof of Lemma 2.

Lemma 3. If G satisfies Assumption 1, Game 3 and Game 5 are computation-
ally indistinguishable.

Proof. SK-PE-1 is symmetric with respect to the roles of elements in G1 and
G3. Thus, the proof that Game 3 and Game 4 are indistinguishable exactly
parallels the proof of Lemma 2, while the proof that Game 4 and Game 5 are
indistinguishable exactly parallels the proof of Lemma 1.

��
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1 Introduction

1.1 Background

In recent years, cloud computing is spreading rapidly and widely due to ad-
vance in computer and telecommunication technology. In cloud computing, we
outsource not only data but also processing to cloud servers.

The users cannot carry out investigations into the cause of security incidents
and the measures for preventing the recurrence of such incidents because the
users cannot know how cloud providers manage their servers. Therefore, we need
the measures for preventing the leakages before sending data to the cloud servers.
However, traditional encryption schemes prevent not only the leakages but also
the conveniences like searches. There are encryption schemes which enable us to
search without decryption. These schemes are called searchable encryption and
attract a great deal of attention.

There exist symmetric searchable encryption schemes and asymmetric ones.
The asymmetric ones can be used when it is difficult for us to share a secret key
securely as we send an e-mail. On the other hand, we can use symmetric ones if
and only if we can share a secret key securely, for example, when we share files in
the same organization. However, the symmetric ones can be executed faster than
asymmetric encryption in general. Therefore, we focus on symmetric searchable
encryption in this work.

An information flow of searchable encryption schemes is shown in Figure 1.
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Fig. 1. Flow of Searchable Encryption

1. A data owner shares a key with data searchers before encryption.
2. The data owner specifies the keywords KwA which represent the contents of

the file.
3. The data owner computes indexes IdxA of KwA. “Index” means a data

structure which enables the server to perform an encrypted keyword search
if and only if the server obtains a corresponding trapdoor that is explained
later.

4. The data owner sends encrypted data CA and IdxA to a server.
5. The server registers CA and IdxA to the database.
6. The data searcher computes trapdoors TdB of keywords KwB. “Trapdoor”

means a data structure which enables the data searcher to query the keyword
the data searcher wants to search in the server without revealing it.

7. The data searcher sends TdB to the server.
8. The server searches indexes in the database by using TdB and returns the

result to the data searcher.

IdxA,TdB do not reveal KwA,KwB to the server. Therefore, we can retrieve
data without letting the server know the keywords.

The types of searches are as follows.

Equality search. The keywords which match the query completely hit.
Prefix search. The keywords which contain the query in the head hit.
Suffix search. The keywords which contain the query in the tail hit.
Partial matching search. The keywords which contain the query anywhere

hit.
Wildcard search. The keywords which match any character other than wild-

card characters hit. Wildcard characters represent any characters.
Fuzzy keyword search. The keywords within a certain edit distance from the

query hit.
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Full-text search. We search the full content of a document for specified several
keywords.

Relational database search. We search a relational database for some values
(keywords, numbers, and so on). We usually use a query language like SQL
in this search.

1.2 Motivation

The searches for plaintexts such as search engines, searches in the computer,
searches for e-mails in a mailbox are realized in various ways and very conve-
nient. However, the available types of searches in searchable encryption schemes
have been restricted because the server searches hidden plaintexts for hidden
keywords. Therefore, our motivation is to enable to compare keywords in the
trapdoor per character with the hidden keyword in the index to realize more
advanced searches.

1.3 Related Works

Song et al. proposed the first practical searchable symmetric encryption scheme
in 2000 [15]D This scheme supports only equality search and thus is not so
convenient. After that, many searchable symmetric encryption schemes were
proposed [2,6,7,17]. These schemes aim to enhance the situations where they
are usable or to improve security and do not support any method other than
equality search.

In recent years, Li et al. proposed the first searchable encryption scheme which
supports a fuzzy keyword search [11]. This scheme is based on wildcard realized
by enumerating keywords like “?apple”, “?pple”, ..., and “apple?” for “apple”.
However, we cannot use any other wildcard patterns than prepared patterns for
fuzzy keyword search because this wildcard is realized by whole keyword match
as equality search. Furthermore, we cannot search any keyword other than those
which are enumerated by the data owner.

Boneh et al. proposed the first searchable asymmetric encryption scheme [4].
Abdalla et al. proposed anonymous IBE [1] and mentioned the relationship to
searchable asymmetric encryption scheme. After that, many searchable asym-
metric encryption schemes were proposed [5]. Sedghi et al. proposed a search-
able asymmetric encryption scheme which supports wildcard search [14]. This
scheme support a fixed wildcard search as our scheme and is realized with bilin-
ear pairing. In symmetric key settings, we can execute symmetric key encryp-
tion schemes or hash functions faster than asymmetric key encryption schemes
in general. However, there is no searchable symmetric encryption scheme which
supports general wildcard searches.

Goh proposed a searchable symmetric encryption scheme for full-text search
with Bloom filter [8] and Watanabe et al. proposed a searchable symmetric
encryption scheme for relational database with Bloom filter [16]. These schemes
use Bloom filter for efficiency.
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1.4 Challenging Issues

After the first searchable encryption scheme was proposed, many searchable
encryption schemes were proposed. As an example, consider the wildcard search
like “2011/??/??” to find the dates from “2011/01/01” to “2011/12/31”. These
schemes make data searchers enumerate all possible keywords like “2011/01/01”,
“2011/01/02”, ..., and “2011/12/31” or the data owner enumerates all possible
patterns the data searcher may query. In this case, the data searcher has to
enumerate 365 keywords because we know wildcard characters represent the
dates. However, the data searcher has to enumerate more keywords when the
data searcher cannot know what wildcard character can be because we have to
enumerate all possible characters.

We can perform search by testing whether any character other than wildcard
characters matches if we can compare not keywords but characters. Therefore,
our challenging task is designing a searchable encryption which supports searches
based on character comparison in a secure manner.

1.5 Our Contribution

In this work, we propose a searchable symmetric encryption scheme which sup-
ports searches based on the comparison per character. In this paper, we call this
search position-specific keyword search.

This search brings us the following advantages:

– We can realize wildcard search efficiently. For example, in [11], we can per-
form a search for “2011/??/??” by comparing any character other than wild-
card characters. In this example, we need 365 trapdoors with the traditional
searchable symmetric encryption schemes but only one trapdoor with our
scheme.

– We can also realize the wildcard-based fuzzy keyword search proposed by
Li et al. [11] efficiently. Given keyword length � and edit distance d, we can
decrease index data size from O(�d) to O(1).

– We can realize partial matching search with a few indexes because the data
searcher can ignore characters other than specified characters. We can realize
it with a single index, but we can realize it efficiently if we put the same number
of indexes as the length of the specified keyword. For example, we can performa
partial matching search for “dog” by sending several trapdoors “dog”, “?dog”,
..., “?...?dog”when a single index “housedog” is put in the cloud servers. In this
search, given the upper bound of the keyword length u and the keyword length
�, the number of trapdoors thatmust be sent to the cloud server is u−�. On the
other hand, we can perform a partial matching search for “dog” by sending a
single trapdoor if eight indexes “housedog”, “ousedog”, “usedog”, ..., “g” are
put in the cloud servers because the indexes contain “dog”. Another example
is the indexes for “doggy”. In this example, we put five indexes “doggy”, ...,
“y”, in the cloud server and we can also perform a partial matching search for
“dog” by sending a single trapdoor because “doggy”matches “dog”by ignoring
characters other than specified characters.
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Table 1. Comparison of Search Functions

Name Key Search type

our scheme symmetric searches with specified characters
Song et al’s scheme [15] symmetric equality search
Li et al.’s scheme [11] symmetric fuzzy keyword search

Z-IDX [8] symmetric full-text search
Watanabe et al.’s scheme [16] symmetric relational database search

PEKS [4] asymmetric equality search
Sedghi et al.’s scheme [14] asymmetric wildcard search

We can execute our scheme faster than asymmetric ones because we do not
need complex computations like pairing used by asymmetric ones. Furthermore,
we can perform searches efficiently without testing all indexes on the server side
as explained in Section 5.1.

In our construction, we use pseudo-random functions for security improve-
ment. The pseudo-random functions can conceal the information because no
efficient algorithm can distinguish an output of pseudo-random functions from
an output of random functions. We also use the Bloom filter to decrease the data
size of the output of pseudo-random functions because pseudo-random functions
needs some bits (e.g., 256 bits with HMAC-SHA256) for a single input, but one
Bloom filter with the same length can contain multiple outputs of pseudo-random
functions.

Note that Goh’s scheme [8] and Watanabe et al.’s scheme [16] already use the
Bloom filter only for an index, whereas we use the Bloom filter not only for an
index but also for a trapdoor. We cannot apply this our technique to the Goh’s
original scheme and Watanabe et al.’s scheme, so the data size of the trapdoor
cannot be decreased. Although we can apply this our technique to Goh’s second
scheme described in the appendix of [8], its applicability was not mentioned in
[8] and the security proof of the second scheme was not given explicitly in [8].

1.6 Comparison with Existing Works

Let the keyword length be �, and edit distance d for fuzzy keyword search.
We show the comparison of search functions in Table 1, and the comparison

of data size and run time to generate an index and a trapdoor with Goh’s
scheme, Song et al.’s scheme and Li et al.’s scheme in Table 2. In Table 2, “single
index” and “single trapdoor” are two methods described in Section 1.5. Note that
although we show the orders of the index data size in Table 2 together, these
orders have the different meanings because an index of Goh’s scheme consists of
multiple keywords, and an index of our scheme consists of a single keyword.

We can see the decrease in data size and run time compared with exist-
ing schemes in Table 2. In particular, we can decrease the index size in the
fuzzy keyword search. Since our scheme is not designed for full-text search,
Goh’s scheme is more space- and computation-efficient than our scheme when we
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Table 2. Efficiency Comparison

Data size Run time
Type of search Name Index Trapdoor Index Trapdoor

equality search
our scheme O(1) O(1) O(�) O(�)

Song et al’s scheme [15] O(�) O(�) O(�) O(�)
Goh’s scheme [8] O(1) O(1) O(n) O(1)

fuzzy keyword
search

our scheme O(1) O(�d) O(�) O(�d+1)
Song et al’s scheme [15] — — — —

Li et al’s scheme [11] O(�d) O(�d) O(�d) O(�d)

partial matching
search

our scheme (single index) O(1) O(u) O(�) O(u�)
our scheme (single trapdoor) O(�) O(1) O(�2) O(�)

Song et al’s scheme [15] — — — —
Li et al’s scheme [11] — — — —

(�: keyword length, d: edit distance, u: upper bound of keyword length, n: number of
keywords in one file).

perform a full-text search. However, our scheme is more space-efficient than the
existing schemes when we perform more complex search like a fuzzy keyword
search. c

2 Preliminaries

Notations

We use the following notations in this paper.

Symmetric set difference. We define a symmetric set difference A � B as
A�B = (A−B) ∪ (B −A).

Random number. x
R← S denotes random variable x chosen at random from

the set S.
The number of elements. We use |A| to denote the number of elements in A
String concatenation. a ‖ b denotes concatenation of two strings a, b.
Character. w[n] denotes n-th character in string w.
Logical operations. Given two logical values a, b, a ∧ b denotes the logical

AND between a and b, and a ∨ b denotes the logical OR between a and b.

Pseudo-random Functions

A pseudo-random function is computationally indistinguishable from a random
function. To be more specific, we call a function f : {0, 1}n × {0, 1}s → {0, 1}m
which has the following features as (t, ε, q)-pseudo-random function.

– Given an input x ∈ {0, 1}n and a key sk ∈ {0, 1}s, f(x, sk) can be computed
efficiently.

– For any t time oracle algorithm A with at most q adaptive queries,
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|Pr[Af(·,sk) = 0|sk R← {0, 1}s]−Pr[Ag = 0|g R← {F : {0, 1}n → {0, 1}m}]| < ε.

In this paper, we use a keyed hash function like HMAC-SHA256 where the key
sk is shared among a data owner and data searchers.

Symmetric Key Encryption

We use Π = (Setup(1λ), Enc(sk, ·), Dec(sk, ·)) to denote a symmetric key en-
cryption scheme. Given a security parameter λ, Setup(1λ) outputs a secret key.
Given a secret key sk, Enc(sk, ·) andDec(sk, ·) are an encryption and decryption
scheme with sk.

Bloom Filter

Bloom filter [3] is space-efficient probabilistic data structure. Bloom filter has
a false positive. It means that Bloom filter may output true even if it does not
have the element to be checked. On the other hand, Bloom filter does not have
a false negative. It means the element is guaranteed not to be in Bloom filter if
Bloom filter outputs false.

Bloom filter is denoted as m-bit array with address from 1 to m. First, this
bit array is initialized with 0. To add an element to Bloom filter, we compute k
addresses a1, a2, ..., ak with k hash functions h1, h2, ..., hk first. Then, we make
the bits corresponding to the addresses be 1. To determine if Bloom filter has
the element, we also compute k addresses a′1, a

′
2, ..., a

′
k. Then, we check if all bits

corresponding to the addresses are 1. We can know with certain error rate that
the element is in the Bloom filter if and only if all bits are 1. We can also without
error know the element is not in Bloom filter if some bits are 0.

Search Expression

In this paper, we express a position-specific keyword search as a DNF logical
formula p = (p(1,1) ∧ ... ∧ p(1,m1)) ∨ ... ∨ (p(n,1) ∧ ... ∧ p(n,mn)). In this formula,
p(i,j)(i ∈ [1, n], j ∈ [1,mi]) denotes the logical formula which compares the
character in the specified position, and let w[x] = c denote a comparison which
checks if x-th character of w is c.

We call this formula p as search expression in this paper.
For example, the search expression p to perform an equality search for either

keyword “dog” or “cat” is as follows:

f = ((w[1] = “d”) ∧ (w[2] = “o”) ∧ (w[3] = “g”) ∧ (w[4] = null))

∨((w[1] = “c”) ∧ (w[2] = “a”) ∧ (w[3] = “t”) ∧ (w[4] = null))

File Identifier

File identifier means the unique name of a file. We can use an absolute path for
the file, a universal unique identifier (UUID) [10], and so on. We can use any
type of file identifier.
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3 Proposed Scheme

We use one Bloom filter to store all characters of one keyword. We also use
pseudo-random functions when we add a character to Bloom filter and symmetric
key encryption scheme to encrypt data for the search results. We can use any
secure symmetric key encryption scheme.

We have to specify an upper bound u of the keyword length before use.
Note that each keyword is terminated with a null which denotes a null symbol.

null denotes the end of the keyword and is used for the query including the end
of the keyword.

This scheme has the following four algorithms.

KeyGen(1λ) Given a security parameter λ, output a secret key sk
R← {0, 1}λ.

Trapdoor(sk, p) Given a secret key sk and a search expression p, output a trap-
door for p. Let p = p1∨ ...∨pn, pi = (p(i,1)∧ ...∧p(i,mi)), where p(i,j) denotes
a comparison which checks if w[x(i,j)] = c(i,j). We use T = {T1, ..., Tn} to
denote a trapdoor for p. We can compute Ti for i ∈ [1, n] as follows.
1. Initialize a Bloom filter Ti.
2. For each term p(i,j) for j ∈ [1,mi], given p(i,j) denotes a comparison

which checks if w[k] = c, add a concatenated string k ‖ c to the Bloom
filter Ti.

BuildIndex(sk,FIDw, w) Given a secret key sk, a file identifier FIDwCand a
keyword w, compute an index I = {II , III} for w as follows.

1. Initialize a Bloom filter II.
2. For each character w[i] for i ∈ [1, |w|], add a concatenated string i ‖ w[i]

to II.
3. Let the number of pseudo-random functions used for the Bloom filter

II be k. Pick (u − |w|) · k random values and set the respective bits
of the Bloom filter to 1. This operation is equivalent to an insertion of
u − |w| random characters, where u − |w| is the difference between the
actual length and the upper bound, into the Bloom filter. We have this
operation to prevent the number of 1’s in II from revealing the length
of the keyword w.

4. Choose a random value rd
R← {0, 1}λ. This value is used to randomize

III.
5. Encrypt a collection of a file identifier FIDw, a keyword w, and rd with

a symmetric key encryption scheme as III = Enc(sk,FIDw ‖ w ‖ rd).
This value is used to query the file and to check if the search result is
correct. rd randomizes III to hide the equality of the keyword.

6. Output the index I = {II, III}.
This algorithm is executed as many times as the number of keywords.

SearchIndex(T, I) Given a trapdoor T for a certain keyword and an index I,
search the indexes in which all bits set to 1 in trapdoor are 1 and output the
search result III in the index I.
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We describe the information flow of this scheme as follows.

1. Those who share files share a key generated by KeyGen before using this
scheme.

2. A data owner encrypts a file with Enc. The data owner specifies keywords
and computes indexes of them with BuildIndex.

3. The data owner sends the encrypted file and index.
4. A server stores them in the database.
5. A data searcher computes a trapdoor for a specified keyword with Trapdoor.
6. The data searcher sends it to the server.
7. The server searches with SearchIndex and returns the result.

We describe the concrete examples of the outputs of BuildIndex and Trapdoor
in Appendix B that will help understand our scheme intuitively.

Optimization

We can use a linear search to execute SearchIndex. However, we can achieve
more efficient search with a binary tree search because we do not have to test
all indexes in a binary tree search. See Appendix C for the details.

Determining Suitable Parameters for Bloom Filter

We have to determine the length of Bloom filter m and the number of pseudo-
random functions k before use. Given the maximum number of characters n and
the acceptable possibility of false-positive fp, we can determine these parameters
as follows [8]:

k = − log2 fp,m =
kn

ln 2
(1)

4 Security Analysis

4.1 Security Model

The security model we use is based on IND-CKA [8]. We define the indistin-
guishability of keywords. Although Z-IDX [8] creates indexes from the set of
keywords, our scheme creates indexes from one keyword. We call this security
model IND-CPSKA1 to make the difference clear.

This security model is defined by the following game between a challenger C
and an adversary A as follows. We say that an adversary A (t, ε, q)-breaks our
scheme if AdvA is at least ε after A takes at most t time and query trapdoors to
C q times. We say that the symmetric searchable encryption I is (t, ε, q)-IND-
CPSKA secure if there is no adversary who can (t, ε, q)-break I.
1 IND-CPSKA denotes Indistinguishability under Chosen Position-Specific Keyword
Attack.
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Setup. C creates a set S of q pairs of position and character, and gives this to
A D A chooses some subsets S∗, that is, keywords from S and gives this to
C. After receiving S∗, C runs KeyGen to generate a secret key Kpriv, and C
computes the indexes for all subsets of S∗ with BuildIndex. Finally, C gives
all indexes and related subsets S∗ to A after computing all indexes. We note
that the correspondence relation between the indexes and S∗ is unknown to
A.

Query. A can query trapdoor Tx for word x to C. For each index I, A can
execute SearchIndex for Tx, I to tell whether I matches x.

Challenge. A picks nonempty two subsets V0, V1 ∈ S∗ such that |V0 − V1| �= 0,
|V1 − V0| �= 0 and |V0| = |V1|. Here, A must not have queried C for the trap-
door of any character in V0�V1. A cannot query any trapdoor for a character
in V0�V1. A gives V0 and V1 to C. C chooses b from {0, 1} at random. C com-
putes BuildIndex(Vb,Kpriv) to get an index corresponding to Vb and gives it
back to A. After C gives the challenge (i.e., BuildIndex(Vb,Kpriv)) to A, A
cannot query any trapdoor for any character x ∈ V0 � V1 to C.

Response. A outputs b′ to guess b. The advantage A obtains is defined as
AdvA = |Pr[b = b′]− 1/2|.

4.2 Security Proof

Theorem 1 Given the number of pseudo-random functions k, our scheme is
(t, ε, q/k)-IND-CPSKA secure if f is a (t, ε, q)-pseudo-random function.

Proof. We can prove this theorem as the proof in [8].
We prove this theorem using its contrapositive. Suppose our scheme is not

(t, ε, q/k)-IND-CPSKA secure, that is, there is an algorithm A which (t, ε, q/k)-
breaks our scheme. Then we show we can construct the algorithm B which
distinguishes whether f is a pseudo-random function or a random function. Given
x ∈ {0, 1}n, B can use an oracle Of which outputs f(x) ∈ {0, 1}s for unknown
function f . B evaluates f with a query to Of whenever computing any four index
algorithms.

The algorithm B makes the simulation for A as follows.

Setup. B chooses a set S of q/k pairs of position and character from {0, 1}n at
random and sends it to A. A returns a collection S∗ of polynomial numbers
of subsets. For each subset D of S∗, B assigns a file identifier FIDD and gets
IFIDD

by computing BuildIndex for FIDD. B gives all indexes and related
subsets S∗ to A after computing all indexes. We note that correspondence
relation between the indexes and S∗ is unknown to A.

Query. B computes Trapdoor for x and returns a trapdoor Tx for x.
Challenge. A picks nonempty subset V0, V1 ∈ S∗ such that |V0 − V1| �= 0,

|V1 − V0| �= 0 and |V0| = |V1|. A cannot query any trapdoor for a character
in V0 � V1 to B. A gives V0 and V1 to B. B chooses b from {0, 1} and a file
identifier Vid at random. B computes BuildIndex to get IVb

and gives IVb

to A. The challenge to A is to guess b. A cannot query any trapdoor which
contains any character x ∈ V0 � V1.
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Response. A outputs b′ finally. B outputs 0 if b = b′, that is, f is a pseudo-
random function. Otherwise, B outputs 1.

B takes at most t time because A takes at most t time. B sends at most q queries
to Of because there are only q/k characters, A creates at most q/k queries, and
B creates k queries for A’s single query.

Finally, according to the following lemmas, B has advantage greater than ε
to determines if the unknown function f is a pseudo-random function or f is a
random-function because we have the following equation:

|Pr[Bf(·,k) = 0|k R← {0, 1}s]− Pr[Bg = 0|g R← {F : {0, 1}n → {0, 1}s}]| ≥ ε

This contradicts the assumption of pseudo-random functions.
Therefore, our scheme is (t, ε, q/k)-IND-CPSKA secure if f is a (t, ε, q)-pseudo

random function.

Lemma 1. |Pr[Bf(·,k) = 0|k R← {0, 1}s] − 1
2 ]| ≥ ε if f is a pseudo-random

function.

Lemma 2. Pr[Bg = 0|g R← {F : {0, 1}n → {0, 1}s}] = 1
2 if g is a random

function.

Proof. Lemma 1 is obvious because B simulates C completely in an IND-CPSKA
game if f is a pseudo-random function.

We prove Lemma 2. We have to consider only Challenge subsets V0, V1 because
other subsets in S do not reveal any information about the Challenge subsets.

Without loss of generality, assume that V0 � V1 has two characters x, y such
that x ∈ V0, y ∈ V1 and A guesses b with advantage δ. Given f(z), it means that
A can determine if z = x or z = y with advantage δ, that is, A can distinguish
the output of a random function f with advantage δ. However, if f is a random
function, A cannot distinguish the output, so we have δ = 0. Therefore, A can
guess b with the probability of at best 1/2. Finally, we proved Lemma 2. ��

4.3 Limitation

In this scheme, the trapdoor is divided into the clauses. Therefore, the server
can know the search result of each clause. For example, in an equality search
for “dog” or “cat”, the server cannot know the plaintext “dog” and “cat”, but
the server can know the search result for “dog” and the search result for “cat”
respectively.

This limitation exists in many of the existing works as well as this work. For
example, Goh’s scheme [8] generates a trapdoor per keyword and the server
can know the search result for each keyword. Similarly, Li et al.’s scheme [11]
generates a trapdoor set per keyword and the server can know the search result
for not only each keyword but also each clause.
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5 Evaluation

Given a bit length of Bloom filter m, an index consists of m-bit Bloom filter and
III in I. Given the number of terms divided by disjunctions in the search expres-
sion n�, the size of trapdoor is n�m bits because it has n� Bloom filters. Given
the total number of characters in all keywords �m, the execution of BuildIndex
needs O(�m) time because we have to compute O(�m) pseudo-random functions.
Similarly, given the number of terms in search expression nt, the execution of
Trapdoor needs O(nt) time.

5.1 Implementation

We implemented our scheme with fuzzy keyword search [11] on a 2.8 GHz In-
tel Core 2 Duo CPU. We used 256-bit Bloom filter, symmetric key encryp-
tion scheme AES [12], and keyed hash function HMAC-SHA256 [9,13]. HMAC-
SHA256 can be used as distinct pseudo-random functions as f(sk, x), fi(sk, x) =
f(sk, i ‖ x).

The run time for BuildIndex is shown in Figure 2 and the run time for Trap-
door is shown in Figure 3. EnumerateKeywords is an algorithm to enumerate
keywords proposed by Li et al. We can see in the figure that the larger the key-
word length becomes, the more time we need, and our scheme is unsuitable for
very long keyword. However, it is not a practical problem because a keyword
does not often have a large number of characters.

We implemented SearchIndex in the following two ways.

Method 1. This method is based on complete search with a relational database
SQLite. The server stores indexes divided into 64 bits. Trapdoor is also
divided into 64 bits. Given divided indexes Idx1, ..., Idxn and trapdoors
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Td1, ...,Tdn, a query for the trapdoor can be constructed as ((Idx1&Td1) =
Td1) ∧ ... ∧ ((Idx1&Tdn) = Tdn). We divide indexes and trapdoors because
the maximum length SQLite can compute AND operation is 64 bits. This is
an implementation problem. We do not have to divide indexes and trapdoors
if the database supports AND operation of larger bits.

Method 2. This method is based on binary tree search. Each bit of indexes
corresponds to a link of the tree. The leaf node has the search result. In
this method, we construct a binary tree from the indexes generated with the
same key. This search is realized by following the link recursively. We can
ignore the link of 0 corresponding to the bit of 0. See Appendix C for the
details. Therefore, we do not have to go through the whole tree, and we can
achieve more efficient search than the sequential exhaustive search.

A fuzzy keyword search with 6-byte keyword on the database which has 1,000,000
keywords takes 44 seconds on average when we use Method 1. However, it takes
only 280 milliseconds on average when we use Method 2.

5.2 Bloom Filter Parameters v.s. False-Positive Rate

We performed an experiment to clarify how the Bloom filter parameters affect
the false-positive rate. In this experiment, we used HMAC-SHA256 [9,13], and
the number of pseudo-random functions is 3 (fixed).

We performed this experiment as follows. First, we generate a random keyword
kwidx and generate an index Idxkwidx

for kwidx. Next, we generate another
random keyword kwtd (kwidx �= kwtd) and generate a trapdoor Tdkwtd

. Finally,
we check if Idxkwidx

matches Tdkwtd
. If Idxkwidx

matches Tdkwtd
, this result is

a false-positive because kwidx �= kwtd.
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We show the result of this experiment in Figure 4. In this figure, the x-axis is
a keyword length of kwidx and kwtd, the y-axis is a false-positive rate, and the
graph legends are the bit lengths of the Bloom filter.

This figure shows that an m-bit Bloom filter is effective with small false-
positive rates up to m-byte keyword.

6 Conclusion

In this work, we proposed a searchable symmetric encryption scheme which
supports a variety of searches by enabling comparison per character as searches
for plaintexts. We implemented our scheme and we confirmed that our scheme
can be performed on both of client and server in practical time.

Our future work is to find a scheme which creates a single index for the mul-
tiple keywords or single trapdoor for multiple terms divided by the disjunctions
to decrease data size, run time or information obtained by the server.
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A Pseudocode

We show the algorithms of our scheme with pseudocodes.
In these algorithms, we use m to denote the bit length of a Bloom filter and

k to denote the number of pseudo-random functions.
In Algorithm 2, the search expression se is denoted as

((x(1,1), c(1,1)), ..., (x(1,m1), c(1,m1))), ..., ((x(n,1), c(n,1)), ..., (x(n,mn), c(n,mn)))
in order to denote it as an array. For example, ((1, d), (2, o), (3, g), (4, null)) de-
notes an equality search for “dog” only in this section. |se| denotes the number
of elements of the array se.

B Execution Example of Proposed Scheme

We describe the concrete examples of the outputs of BuildIndex and Trapdoor
in this section. Suppose that Alice outsources data and Bob searches data. Alice
specifies “dog” to denote the content of the file. Bob searches “dog” by an
equality search. The bit length of the Bloom filters is 16 bits, the number of
pseudo-random functions is 2, and the upper bound of the keyword length is 5.
Suppose that they share these parameters.

1. First, Alice executes KeyGen and sends sk to Bob in a secure manner.
2. Alice executes BuildIndex as follows:
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Algorithm 1. BuildIndex

Require: w is a keyword to build an index.
Ensure: (BF, c) is an index for w.

Initialize a bit array BF with zeros.
for i = 1 to |w| do

for j = 1 to k do
p← fj(i ‖ w[i]).
BF [p]← 1.

end for
for j = 1 to (u− |w|) · k do

Pick rd ∈ [1, |BF |] at random.
BF [rd]← 1.

end for
end for
Encrypt FIDw ‖ w ‖ rd and assign it to c.
Return (BF, c).

Algorithm 2. Trapdoor

Require: se is a search expression to generate a trapdoor.
Ensure: t is a trapdoor for se.

t← {}.
for i = 1 to |se| do

Initialize a bit array BFi with zeros.
for j = 1 to |se[i]| do

for h = 1 to k do
p← fh(se[i][j][1] ‖ se[i][j][2]).
BFi[p]← 1.

end for
end for
Append BFi to t.

end for
Return t.

Algorithm 3. SearchIndex

Require: td is a trapdoor and idx is an index.
Ensure: Output ‘true’ if idx matches trapdoor, otherwise return ‘false.’

for i = 1 to m do
if td[i] = 1 and idx[i] = 0 then

Return ‘false.’
end if

end for
Return ‘true.’
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(a) Alice creates a 16-bit Bloom filter. The Bloom filter is 0000000000000000
at this point.

(b) Alice computes two pseudo-random functions for the respective charac-
ters of “1 ‖ d”, “2 ‖ o”, “3 ‖ g”C“4 ‖ null”. Suppose that Alice obtains
6, 2 for “1 ‖ d”, 12, 4 for “2 ‖ o”, 5, 13 for “‖ g” and 2, 9 for “4 ‖
null”. Alice sets the respective bits to 1. The resultant Bloom filter is
0101110010011000 at this point. Alice picks two random values because
(u− |w|) · k = (5− 4) · 2 = 2. Suppose that Alice obtains 15 and 4. Alice
sets the respective bits to 1. The final Bloom filter is 0101110010011010
at this point. This value is II.

(c) Alice picks random value rd and computes III = Enc(sk,FIDw ‖ w ‖ rd).

3. Alice sends I = (II, III) to the server.

4. Bob executes Trapdoor to perform an equality search. The search expression
is (w[1] = “d”) ∧ (w[2] = “o”) ∧ (w[3] = “g”) ∧ (w[4] = null). This search
expression means that the searched keyword equals to “dog” including the
terminal symbol. Bob computes two pseudo-random functions for the respec-
tive characters of “1 ‖ d”, “2 ‖ o”, “3 ‖ g”C“4 ‖ null”. These values are the
same as those Alice computed. Bob sets the respective bits to 1. The Bloom
filter is 0101110010011000 at this point.

5. Bob sends this value to the server.

6. The server searches the indexes in which all bits set to 1 in trapdoor are 1
and returns the search result III in the index I to Bob. This was generated
by Alice in Step 2.

7. Bob decrypts III and confirms whether the original keyword is “dog”.

8. Bob queries the file whose identifier is FIDw .

9. The server returns the queried file.

The trapdoor in the example contains the termination character. Therefore, even
if Alice registers “doggy”, “doggy” does not hit and only “dog” hits because
w[4] �= null. Therefore, Bob can perform an exact equality search.

In this example, although we achieve an equality search, we can achieve a
wildcard search for “d?g” by computing pseudo-random functions of “1 ‖ d”, “3
‖ g”, “4 ‖ null” in Step 4. On the other hand, we can achieve a fuzzy keyword
search by an enumeration proposed by Li et al. [11]. When we perform a fuzzy
keyword search for “dog” with an edit distance 1, the data searcher Bob enu-
merates “?dog”, “?og”, “d?g”, “do?”, “dog?”, and Bob executes Trapdoor for
each search expression. When we perform a fuzzy keyword search with longer
edit distance, we increase the number of wildcard characters like “??dog”. In Li
et al.’s scheme, the user who computes an index also has to enumerate possi-
ble keywords and prepare corresponding indexes. However, our scheme does not
require the data owner to enumerate the keywords for a fuzzy keyword search
when the data owner computes an index.
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C Example of Binary Tree Search

We show an example of the binary search tree in Fig. 5. In this example, the
tree has four indexes 001, 011, 101 and 110 (i.e., the length of a Bloom filter is
three here). The leaf node has the search result.

Suppose that the server receives a trapdoor 101. The server can perform a
search as follows:

1. From the root node, follow the link of 1.
2. Follow the link of 0.
3. Follow the link of 1.
4. Obtain the search result from the leaf node corresponding to 101.
5. Go back to the node of Step 2, and follow the link of 1 because the second

bit of the trapdoor 101 is 0.
6. Finish the search since there is no more link to follow.
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Abstract. Recently, Hamburg improved the notion of spatial encryp-
tion by presenting a variant called doubly-spatial encryption. As a gen-
eralization of the spatial encryption, the doubly-spatial encryption is
more powerful and expressive. More useful cryptography systems can be
built from it, such as attribute-based encryption, etc. However, the only
presented doubly-spatial encryption scheme can only be proved to be
selectively secure.

In this paper, we primarily focus on the full security of doubly-spatial
encryption. A doubly-spatial encryption scheme has been proposed. We
apply the dual system methodology proposed by Waters in the secu-
rity proof. Our scheme can be proved adaptively secure under standard
assumptions, the decisional linear assumption and the decisional bilin-
ear Diffe-Hellman assumption, over prime order groups in the standard
model. Our scheme is the first fully secure construction of doubly-spatial
encryption. As an independent interest, we also propose a fully secure
spatial encryption with weak anonymity and constant ciphertext size in
the composite order group settings.

1 Introduction

In 2008, Boneh and Hamburg [1] proposed a general framework for construct-
ing identity-based and broadcast crypto systems, which they called General-
ized Identity-Based Encryption (GIBE). As an important instance of the GIBE
framework, the spatial encryption scheme can be used to construct a host of
efficient IBE-like schemes: multicast IBE, broadcast hierarchical IBE, predicate
encryption, multiple authorities IBE and so on. In a spatial encryption scheme,
encryption policies are vectors in an affine space Zn

p and roles of the secret key
are affine subspaces. The decryption succeeds when the affine subspace of the
secret key contains the vector of a encryption policy. The delegation relation %
on roles is defined by subspace inclusion.

Recently, Hamburg [7] first proposed the notion of doubly-spatial encryption.
Doubly-spatial encryption is a generalization of spatial encryption, but it is more
expressive than spatial encryption. In the doubly-spatial encryption scheme, the
encryption policies are affine subspaces in Zn

p instead of vectors. And the secret
key can decrypt the ciphertext if its affine subspace intersects with the affine
subspace of the ciphertext. As mentioned in [7], many useful crypto systems
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can be implemented by doubly-spatial encryption scheme, such as attribute-
based encryption [13,6], threshold-based encryption [5], all-but-one signatures
[7], etc. Spatial encryption can be embedded in doubly-spatial encryption. But
the construction of doubly-spatial encryption is not so efficient as spatial encryp-
tion, since the length of the ciphertext is not constant. The only construction
of doubly-spatial encryption [7] is proven to be selectively secure under some
unnatural assumptions.

Related Work. Boneh and Hamburg [1] proposed the first selectively secure spa-
tial encryption. The first fully secure spatial encryption scheme was proposed
by [11]. The construction [11] was based on the three composite order bilin-
ear groups and proven fully secure under three non-standard assumptions over
composite order bilinear groups. Recently, Hamburg [7] proposed an adaptively
secure scheme based on some static assumptions over prime order groups, but
the assumptions are still non-standard. [7] also proposed the first doubly-spatial
encryption with selective security. Chen et al. [3] obtained a fully secure spatial
encryption scheme under DBDH and DLIN assumptions in prime order groups.
But how to construct fully secure doubly-spatial encryption schemes using nat-
ural assumptions is still a problem that needs to solve.

Waters [14] introduced the dual system encryption to overcome the limitations
of partitioning. And later, dual system encryption used in [8,12,10,9] to obtain
adaptive security for IBE, HIBE, and ABE systems.

Our Contributions. In this paper, we construct first fully secure doubly-spatial
encryption scheme. And we use dual system encryption technique introduced by
Waters [14] in the proof. The security of our scheme depends on neither some
non-standard assumptions [7] nor the assumptions over composite order pairing
groups [11], but two standard assumptions: DLIN and DBDH, in the standard
model. Our scheme is the first fully secure construction. This paper solves the
problem brought forward by Hamburg in [7]. Finally, we also propose a fully
secure spatial encryption with weak anonymity in the composite order group
which is a product of four primes such as G = Gp1 ×Gp2 ×Gp3 ×Gp4. The weak
anonymity is proposed by [7] where the decryption algorithm is required to take
the policy of the ciphertext (vectors in spatial encryption) as input. We will give
the definition of the weak anonymity in Sec. 3.2 The scheme can also achieve
constant-size ciphertext.

Our Techniques. Our doubly-spatial encryption scheme is based on Waters’ tag-
based IBE [14]. In the construction, we extend the “two-equation revocation”
technique of [9] to “n-equation revocation”. We create each ciphertext with a
uniformly distributed tag and each secret key with a uniformly distributed tag,
too. The decryption algorithm will not work if the tag of the secret key and
the tag of ciphertext has some relations. While in the actual simulation from
normal secret key to semi-functional secret key, the tags created by simulator
are linear dependent. The simulator can create the semi-functional secret keys of
all affine spaces in the vector space. All the semi-functional secret keys can not
decrypt the challenged ciphertext, even if the affine spaces of the semi-functional
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secret keys contain the challenged vector due to the setting of tags. With the
linear relationship of the tags, the simulation can process successfully. But this
relationship is information theoretically hidden to the adversary.

Our second scheme is based on fully secure anonymous HIBE [2] in the com-
posite order group setting. In the construction, we require a composite order
group whose order is a product of four primes and three assumptions based
on the group which are proposed in [2]. Intuitively, the reason the scheme can
achieve weak anonymity is that the vector of the ciphertext is blinded by some
random elements in Gp4 .

2 Preliminaries

2.1 Notations and Affine Space

For any vector x = (x1, . . . , xn) ∈ Zn
p , and any element g of a group G, gx stands

for the vector of group elements (gx1 , . . . , gxn) ∈ Gn. For x,v ∈ Zp, we denote
their inner product as 〈x,v〉 := ∑n

i=1 xivi. Given gx and v, (gx)v := g〈x,v〉 is
computable without knowing x. x · v stands for their component-wise product,
and we denote gx · gv := gx·v.

For any vector x ∈ Zn
p and any matrix M ∈ Zn×n

p (w.l.o.g., we consider M
as a phalanx in this paper), we define the affine subspace S(M,x) ⊆ Zn

p by

S(M,x) := {x+M� · y | y ∈ Zn
p}. If these elements M� · y are all unique, we

have S(M,x) = Zn
p and we say that S(M,x) is an n-dimensional affine subspace.

It is a basic theorem from linear algebra that the dimension of an affine subspace
S(M,x) is the rank of M .

If S(M′,x′) ⊆ S(M,x), we must have M′ = M ·T and x′ = x+M� · y for
some (efficiently computable) matrix T ∈ Zn×n

p and y ∈ Zn
p .

2.2 Bilinear Groups and Complexity Assumptions

We present a few facts related to groups with efficiently prime and computable
order bilinear maps. We define them by using a group generator G, an algorithm
which takes a security parameter κ as input and outputs a description of a bi-
linear group G. G outputs (N = p1 . . . pn,G,GT , e) where p1, . . . , pn are distinct
primes, G and GT are cyclic groups of order N , and and e be a bilinear map,
e : G×G → GT such that e(g, g) �= 1 for g and for any u, v ∈ ZN , it holds that
e(gu, gv) = e(g, g)uv. We say that G is a bilinear group if the group operation in
G and the bilinear map e : G×G → GT are both efficiently computable. Notice
that the map e is symmetric since e(gu, gv) = e(g, g)uv = e(gv, gu). When N
only has one prime factor p, we call it prime order bilinear groups. Otherwise,
it is composite order bilinear groups.

We let Gp1 , . . . ,Gpn denote the subgroups of order p1, . . . , pn in G respectively.
Furthermore, for a, b, c ∈ {1, p1, . . . , pn} we denote by Gabc the subgroup of order
abc.

We define the Decisional Bilinear Diffie-Hellman (DBDH ) and Deci-
sional Linear (DLIN ) assumptions in the prime order groups as follows.
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Definition 1. The DBDH problem in (G,GT , e) is, given elements (g, gc1, gc2 ,
gc3 , T ) ∈ G4 × GT with random exponents c1, c2, c3 ∈ Zp to decide whether
T = e(g, g)c1c2c3 or a random choice of GT .

Definition 2. The DBDH problem in (G,GT , e) is, given elements (g, f, ν, gc1,
f c2 , T ) ∈ G6 with random generators g, f, ν ∈ G and exponents c1, c2 ∈ Zp to
decide whether T = νc1+c2 or a random choice of G.

Next, we give three complexity assumptions in the composite order group set-
tings where the group order is a product of 4 primes. All the three assumptions
are static (not dependent on the depth of the hierarchy or the number of queries
made by an attacker). They were proposed by [2] and can be proved in the
generic group model if finding a nontrivial factor of the group order is hard.

Definition 3. The assumption 1 in (N = p1p2p3p4,G,GT , e) is, given elements
(N, g1, g3, g4, A1A2, B2B3), where g1, A1 ∈ Gp1 , A2, B2 ∈ Gp2 , A3, g3 ∈ Gp3 , g4 ∈
Gp4 are random choices, to decide whether T in Gp1p2p3 or in Gp1p3 .

Definition 4. The assumption 2 in (N = p1p2p3p4,G,GT , e) is, given elements
(N, g1, g2, g3, g4, g

α
1A2, g

s
1B2, g

r
2, A

r
2), where α, s, r ∈ ZN , g1 ∈ Gp1 , g2, A2, B2 ∈

Gp2 , g3 ∈ Gp3 , g4 ∈ Gp4 are random choices, to decide whether T = e(g1, g1)
αs

or a random choice of GT .

Definition 5. The assumption 3 in (N = p1p2p3p4,G,GT , e) is, given elements
(N, g1, g2, g3, g4, U, U

sA24, U
r, A1A4, A

r
1A2, g

r
1B2, g

s
1B24), s, r ∈ ZN , g1, U,A1 ∈

Gp1 , g2, A2, B2, D2, F2 ∈ Gp2 , g3 ∈ Gp3 , g4, A4, B4, D4 ∈ Gp4 , A24, B24, D24 ∈
Gp2p4 , T2 ∈ Gp1p2p4 are random choices, to decide whether T = As

1D24 or a
random choice of Gp1p2p4 .

3 Doubly-Spatial Encryption

Below, we give the definition of doubly-spatial encryption and its security model.

3.1 Algorithms of Doubly-Spatial Encryption

A doubly-spatial encryption system is a quite expressive GIBE contribution that
it can be embed many other GIBEs inside. Both the encryption policies and roles
are the affine subspaces in the vector space Zn

p . A role can satisfy a police if and
only if corresponding affine subspaces intersect. We note that the doubly-spatial
encryption degenerates to the spatial encryption when the encryption policies
are restricted to vectors. A doubly-spatial encryption scheme consists of four
polynomial time algorithms described as follows:

– Setup(λ, n): The algorithm takes as input a security parameter λ and a
space dimension n. It returns public parameters PP and a master secret key
Msk = SKΓ .
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– Delegate(PP,V1, SKV1 ,V2): The delegation algorithm takes as input the
secret key SKV1 for an affine vector subspace V1 and outputs the secret key
SKV2 for another affine vector subspace V2, where V2 ⊆ V1.

– Enc(PP,W,m): The encryption algorithm encrypts a message m under an
affine vector subspace W ⊆ Γ and outputs a ciphertext CTW.

– Dec(PP,CTW, SKV,W): The decryption algorithm takes as input the secret
key SKV to decrypt the ciphertext CTW. Decryption succeeds if W∩V �= ∅,
and it outputs the plaintext m.

Remarks. We omit the key generation algorithm since we can create it as a
special delegation process. That is,

KeyGen(PP,V,Msk) = Delegate(PP, Γ, SKΓ ,V)

3.2 Full Security of Doubly-Spatial Encryption

Our security definition captures semantic security and weak anonymity for the
doubly-spatial encryption system by means of the following game between an
adversary and a challenger.

– Setup(λ, n): The challenger runs the algorithm Setup(λ, n) and sends pub-
lic parameters PP to the adversary.

– Phase I: An adaptively A makes repeated key queries of one of three types:
1. Create: The adversary A submits delegation queries of V ⊆ Γ to the

challenger, who runs the delegation algorithm Delegate(PP, Γ,
SKΓ ,V), but does not give it to A. It instead adds the key to the set S
and gives the adversary a reference to it.

2. Delegate: The adversaryA specifies a key SKV in the set S and an affine
vector space V′ ⊆ V. In response, the challenger runs the delegation
algorithm Delegate(PP,V, SKV,V

′). It adds this key to the set S and
again gives the attacker only a reference to A, not the actual key.

3. Reveal: The adversaryA specifies a key SKV in the set S. The challenger
gives this key to the attacker and removes it from the set S. We note
that the attacker need no longer make any delegation queries for this
key because it can run the delegation algorithm on the revealed key for
itself.

Challenge: The adversary A submits two messages m0,m1 and two affine
vector subspaces W0,W1 for challenge. We require that the adversary has
not been given a decryption key whose affine vector subspace intersects with
the challenged affine subspaces for the doubly-spatial encryption case, that
is, W0∩V = ∅ or W1∩V = ∅ for all reveal queries of V in Phase I. The chal-
lenger chooses a random μ ∈ {0, 1}, runs the algorithm Enc(PP,Wμ,mμ),
and returns the resulting challenge ciphertext CT∗ to the adversary.

– Phase II: The second query phase is exactly like the first one, except that
the adversary may not issue delegation queries for affine subspaces that
intersect with W1 or W2.

– Guess: The adversary outputs a guess μ′ ∈ {0, 1} and wins if μ′ = μ.
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We define the advantage of the adversary A in attacking a doubly-spatial en-
cryption scheme Π as AdvDSE

A,Π (κ) := |Pr[μ′ = μ]− 1/2|.

Definition 6. A doubly-spatial encryption scheme Π is adaptively secure if no
PPT adversaries have at most non-negligible advantage in winning the above
game.

Non-anonymity. The above game enforces weak anonymity: not only is the
adversary unable to determine any properties of the message mμ based on the
ciphertext, he is also unable to determine any properties of the policy Wμ. To
model the non-anonymous security, we can add the constraint that W0 = W1.

We also note that the anonymity we define above is weak anonymity [7], which
means that the decryption algorithm should take as input the encryption policy
of the ciphertext, and otherwise it is strong anonymity.

4 Fully Secure Doubly-Spatial Encryption

In this section, we propose a fully secure non-anonymous doubly-spatial encryp-
tion based on Waters tag-based IBE [14]. Our construction is not so efficient
as the analogous spatial encryption constructions [3,7,11], because the length of
the ciphertext depends on the dimension of the affine space.

– Setup(λ, n): The setup algorithm takes input a security parameter λ. It first
chooses bilinear groups (G,GT ) of prime order p > 2λ and an n-dimensional
affine space Γ = Zn

p . Next, it randomly chooses generators g, v, v1, v2 ∈ G,
α, α0, α1, . . . , αn, a1, a2, b ∈ Zp. Let α = (α1, . . . , αn). It publishes the public
parameters

PP =

(
Γ, g, gβ , w = gα0 , Z = e(g, g)αa1b, gα, ga1 , ga2 , gb, gba1 ,
gba2 , τ1 = v · va1

1 , τ2 = v · va2
2 , T1 = τb1 , T2 = τb2

)
Then the master secret key is (gα, ga1α).

– KeyGen(PP,V,Msk): The algorithm takes input an affine subspace V =
S(M,x) and a master secret key. It randomly chooses r1, r2, z1, z2,
tagV ∈ Zp, tagV ∈ Zn

p and computes

D1 = gαa1 · vr, D2 = g−α+z1 · vr1 , D3 = g−bz1 ,
D4 = vr2 · gz2 , D5 = g−bz2 , D6 = gbr2 , D7 = gr1 ,

K0 = gr1(〈x,α〉+α0tagV+β), K = gr1(M
�α+α0tagV)

Output the secret key as SKV = (D1, . . . , D7,K0,K, tagV, tagV).

– Delegate(PP,V1, SKV1 ,V2): The algorithm takes input two affine subspaces
V1 = S(M1,x1), V2 = S(M2,x2) and a secret key of the affine sub-
space V1 parsed as (D1, . . . , D7,K0,K, tagV1 , tagV1). Since V2 ⊆ V1, we
must have M2 = M1 · T and x2 = x1 + M�

1 · y for some efficiently
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computable matrix T and vector y ∈ Zn
p . We can then compute a key

K ′
V2

= (D′
1, . . . , D

′
7,K

′
0,K

′, tagV2 , tagV2) as follows:

D′
1 = D1, D

′
2 = D2, D

′
3 = D3, D

′
4 = D4, D

′
5 = D5, D

′
6 = D6, D

′
7 = D7,

K ′
0 = K0 ·Ky = gr1(〈x2,α〉+α0tagV2+β),K′ = KT�

= gr1(M
�
2 α+α0tagV2

)

where the tag values are tagV2 = tagV1+〈M�
1 ·y, tagV1〉, tagV2 = T� ·tagV1 .

In addition, we need to re-randomize the new secret key. To do this, it
randomly picks r′1, r

′
2, z

′
1, z

′
2 ∈ Zp and computes

D′′
1 = D′

1 · vr
′
1+r′2 = gαa1 · vr′′ , D2 = D′

2 · gz
′
1 · vr′1+r′2

1 = g−α+z′′
1 · vr′′1 ,

D′′
3 = D′

3 · g−bz′
1 = g−bz′′

1 , D′′
4 = D′

4 · vr
′
1+r′2

2 · gz′
2 = vr

′′
2 · gz′′

2 ,

D′′
5 = D′

5 · g−bz′
2 = g−bz′′

2 , D′′
6 = D′

6 · gbr
′
2 = gbr

′′
2 , D′′

7 = D′
7 · gr

′
1 = gr

′′
1 ,

K ′′
0 = K ′

0 · gr
′
1(〈x2,α〉+α0tagV2+β) = gr

′′
1 (〈x1,α〉+α0tagV2+β),

K′′ = K′ · gr′1(M�
2 ·α+α0tagV2

) = gr
′′
1 (M�

2 ·α+α0tagV2
)

where z′′1 = z1 + z′1, z′′2 = z2 + z′2, r′′1 = r1 + r
′
1, r

′′
2 = r2 + r′2, r′′ = r+ r′1 + r′2.

And it outputs SKV2 = (D′′
1 , . . . , D

′′
7 ,K

′′
0 ,K

′′, tagV2 , tagV2).
– Enc(PP,W,m): Given a message m ∈ GT and an affine subspace W =
S(M,x), the encryption algorithm randomly chooses s1, s2, t, tagc ∈ Zp,
tagc ∈ Zn

p and computes

C0 = m · Zs2 , C1 = gb(s1+s2), C2 = gba1s1 , C3 = ga1s1 ,

C4 = gba2s2 , C5 = ga2s2 , C6 = τs11 · τs22 , C7 = T s1
1 · T s2

2 · w−t,

E1 = (gα0·tagc+〈x,a〉+β)t, E2 = gt, E3 = (gα0tagc+M�·a)t

And outputs CTW = (C0, C1, . . . , C7, E1, E2,E3, tagc, tagc).
– Dec(PP,CTW, SKV′ ,W): Given a ciphertext parsed as CTW = (C0, C1,
. . . , C7, E1, E2,E3, tagc, tagc) and a secret key of the affine subspace V′

parsed as (D1, . . . , D7,K0,K, tagV′ , tagV′), if V′ ∩ W �= ∅, there exits a
vector x∗ ∈ V′ ∩ W. Then we can efficiently find y,y′ such that x∗ =
x + M� · y = x′ + (M′)� · y′, where W = S(M,x),V′ = S(M′,x′). If
〈tagV′ ,y′〉+ tagV′ − (tagc + 〈tagc,y〉) �= 0, it then recovers

φ1 =
( 5∏

j=1

e(Cj , Dj)
)
·
( 7∏

j=6

e(Cj , Dj)
)−1

= e(g, g)αa1bs2 · e(g, w)r1t

φ2 =

(
e(Ky′

K0, E2)

e(E3
yE1, D7)

) 1
〈tag

V′ ,y′〉+tag
V′−(tagc+〈tagc,y〉)

= e(g, w)r1t

It finally recovers the plaintext asm = C0 ·φ2 ·φ−1
1 ; Otherwise, the algorithm

aborts and returns ⊥.
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Theorem 1. The doubly-spatial encryption construction is non-anonymous fully
secure under the DLIN and DBDH assumptions.

Proof. The proof uses the dual system methodology introduced in [14], which
involves ciphertexts and private keys that can be normal or semi-functional.

– Semi-functional ciphertexts are generated by first computing a normal ci-
phertext CTx = (C0, C1, . . . , C7, E1, E2,E3, tagc, tagc). Then it chooses a
random x ∈ Zp. It sets C

′
0 = C0, C

′
1 = C1, C

′
2 = C2, C

′
3 = C3, E

′
1 = E1, E

′
2 =

E2,E
′
3 = E3, tag

′
c = tagc, tag

′
c = tagc, leaving these elements and the tag

unchanged. It then sets

C′
4 = C4 · gba2x, C′

5 = C5 · ga2x, C′
6 = C6 · va2x

2 , C′
7 = C7 · vba2x

2

The semi-functional ciphertext is CT′
x = (C′

0, C
′
1, . . . , C

′
7, E

′
1, E

′
2,E

′
3,

tag′c, tag′
c).

– Semi-functional secret keys are generated by first computing a normal se-
cret key SKV = (D1, . . . , D7,K0,K, tagV, tagV). Then it chooses a random
γ ∈ Zp. It sets D′

3 = D3, D
′
5 = D5, D

′
6 = D6, D

′
7 = D7,K

′
0 = K0,K

′ =
K, tag′

V
= tagV, tag

′
V

= tagV, leaving these elements and the tags un-
changed. It then sets

D′
1 = D1 · g−a1a2γ , D′

2 = D2 · ga2γ , D′
4 = D4 · ga1γ

The semi-functional secret key is SK′
V = (D′

1, . . . , D
′
7,K

′
0,K

′, tag′
V
, tag′

V
).

The proof proceeds with a game sequence starting from GameReal, which is
the actual attack game. We suppose A make q reveal key queries in total. The
following games are defined below.

Game0 is the real attack game but the challenge ciphertext is semi-functional.
Gamek (for 1 ≤ k ≤ q) is identical to Game0 except that the first k secret key

reveal queries are answered by semi-functional secret keys.
Gameq+1 is as Gameq but the challenge ciphertext is a semi-functional encryp-

tion of a random element of GT instead of the actual plaintext.
We prove the indistinguishability between two consecutive games under some

assumptions below. The sequence ends in q+1, where the challenge ciphertext is
independent of the challenger’s bit μ, hence any adversary has no advantage. ��
Lemma 1. If DLIN is hard, Game0 is indistinguishable from GameReal.

Lemma 2. For any 1 ≤ k ≤ q, if an adversary A can distinguish Gamek from
Gamek−1, we can build a distinguisher for the DLIN problem.

Lemma 3. Suppose that there exists an adversary A that makes at most q
queries and |Gameq − Gameq+1| = ε. Then we can build a distinguisher for the
DBDH problem.

Due to space considerations the proof of these lemmas above is given in the full
version of this paper.
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5 Spatial Encryption with Weak Anonymity

[3,4] use a fully secure and anonymous IPE scheme as a building block to con-
struct a fully secure with anonymity but without constant-size ciphertexts. The
ciphertext size incurs linearly with the dimension of the subspace for the encryp-
tion policy.

In this section, we propose a fully secure spatial encryption achieving weak
anonymity and constant-size ciphertext at the same time in composite order bi-
linear groups setting. In addition, the distribution of the secret keys produced by
delegation are independent of the path taken. That is, all keys for a given affine
space come from the same distribution, no matter how they were delegated. The
scheme can be seen as a transform from anonymous-HIBE [2] to spatial encryp-
tion. We describe our construction of the weakly anonymous spatial encryption
scheme.

– Setup(λ, n): The setup algorithm chooses a bilinear group G with order
N = p1p2p3p4 and an n-dimensional affine space Γ = Zn

N . It randomly
chooses α, a0 ∈ ZN ,a = (a1, . . . , an) ∈ Zn

N , g, h ∈ Gp1 , X3 ∈ Gp3 and
X4, Y4 ∈ Gp4 . It then outputs public parameters and master key as

PP := (Γ,N,X3, X4, g
a0Y4, g, g

a1 , . . . , gan , e(g, g)α), Msk := (ga0 , α).

– KeyGen(PP,V,Msk): On input an affine subspace V = S(M,x) and a
master secret key, it randomly chooses r, r′ ∈ ZN , R0, R1, R

′
0, R

′
1 ∈ Gp3 and

Q = (Q1, . . . , Qn),Q
′ = (Q′

1, . . . , Q
′
n) ∈ Gn

p3
. It then outputs the secret key

SKV = (K0,K1,E = (E1, . . . , En),K
′
0,K

′
1,E

′ = (E′
1, . . . , E

′
n)) by comput-

ing

K0 = gr · R0, K1 = gα+r(a0+〈a,x〉) ·R1, E =
(
gM

�·a)r ·Q
K ′

0 = gr
′ ·R′

0, K ′
1 = gr

′(a0+〈a,x〉) ·R′
1, E′ =

(
gM

�·a)r′ ·Q′

Note that, SKV is composed by two sub-keys. The first sub-key, (K0,K1,E),
is used to decrypt, the second, (K ′

0,K
′
1,E

′), is used to delegate.
– Delegate(PP,V1, SKV1 ,V2): The algorithm takes input two affine subspaces

V1 = S(M1,x1), V2 = S(M2,x2) and a secret key parsed as SKV1 =
(K0,K1,E,K

′
0,K

′
1,E

′). Since V2 ⊆ V1, we haveM2 = M1·T and x2 = x1+
M�

1 · y for some matrix T and vector y ∈ Zn
N . It randomly chooses r1, r2 ∈

ZN , R0, R1, R
′
0, R

′
1 ∈ Gp3 and Q = (Q1, . . . , Qn),Q

′ = (Q′
1, . . . , Q

′
n) ∈ Gn

p3
.

Then compute a key SKV2 = (K2,0,K2,1,E2,K
′
2,0,K

′
2,1,E

′
2) as follows:

K2,0 = K0(K
′
0)

r1 ·R0, K2,1 = K1 ·Ey · (K ′
1 · (E′)y)r1 · R1,

K ′
2,0 = (K ′

0)
r2 · R′

0, K ′
2,1 = (K ′

1 · (E ′)y)r2 ·R′
1,

E2 = (E · (E′)r1)T
� ·Q, E′

2 = ((E ′)r2)T
� ·Q′

– Enc(PP,x,m): Given a message m ∈ GT and a vector x ∈ Zn
N , the encryp-

tion algorithm randomly chooses s ∈ ZN and Z,Z ′ ∈ Gp4 . Then computes
the ciphertext CTx = (C,C0, C1) as

C = m · e(g, g)αs, C0 = gs · Z ′, C1 = (ga0Y4 · g〈a,x〉)s · Z
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– Dec(PP, SKV,CTx): Given a ciphertext parsed as CTx = (C,C0, C1) and a
secret key parse as SKV = (K0,K1,E,K

′
0,K

′
1,E

′), if x ∈ V = S(M,x′), we
can efficiently find y such that x = x′ +M� · y. Then it computes

e(g, g)αs =
e(C0,K1E

y)

e(C1,K0)

and recovers the message as m = C/e(g, g)αs.

Theorem 2. The construction above is fully secure under the Assumption 1, 2, 3.

Due to space considerations the proof is given in the full version of this paper.
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Abstract. Malicious insider security of authenticated key exchange
(AKE) protocol addresses the situation that an AKE protocol is se-
cure even with existing dishonest parties established by adversary in
corresponding security experiment. In the eCK model, the EstablishParty
query is used to model the malicious insider setting. However such strong
query is not clearly formalized so far. We show that the proof of posses-
sion assumptions for registering public keys are of prime importance to
malicious insider security. In contrast to previous schemes, we present
an eCK secure protocol in the standard model, without assuming im-
practical, strong, concurrent zero-knowledge proofs of knowledge of se-
cret keys done to the CA at key registration. The security proof of our
scheme is based on standard pairing assumption, collision resistant hash
functions, bilinear decision Diffie-Hellman (BDDH) and decision linear
Diffie-Hellman (DLIN) assumptions, and pseudo-random functions with
pairwise independent random source πPRF [12].

Keywords: one-round authenticated key exchange, pairing, insider
security.

1 Introduction

Many critical applications rely on the existence of a confidential channel estab-
lished by authenticated Key Exchange (AKE) protocols over open networks.
In contrast to the most prominent key exchange protocol is the Diffie-Hellman
protocol [7] which is vulnerable to the existence of an active adversary (i.e.
man-in-the-middle attacks), a secure AKE should be secure against an active
adversaries. Over the last decade, the security of AKE against active attacks
has been developed increasingly in stronger models. In this paper, we consider
PKI-based two party AKE protocol in presence of adversary with strong capa-
bilities. LaMacchia, Lauter and Mityagin [8] recently presented strong security
definitions for two-pass key exchange protocol, which is referred as eCK security
model. Since the introducing of eCK model, many protocols (e.g. [12,18,10,11])
have been proposed to provide eCK security. But most of those protocols are
proven under random oracle model.

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 264–275, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Public Key Registration and EstablishParty Query. In the original
eCK model [8], the public key registration was considered from three situations:
(i) honest key registration, (ii) proof of knowledge (POK) key registration, and
(iii) arbitrary key registration. In the security experiment, the above cases are
simulated differently by the challenger. As for the honest key registration, all
public keys are generated honestly by challenger, and for the other two cases
the public keys might be chosen by adversary. In the latter literatures, the
EstablishParty query was introduced to model such chosen public key attacks,
that might relate to attacks like unknown key share (UKS) attacks [4], etc. In
the security experiment, each registered corrupted party by EstablishParty query
is controlled by the adversary, which can be used to interact with honest parties
in sessions.

We notice that the EstablishParty query has not been clearly formalized so
far, where no POK assumption for key registration is addressed by this query.
In particular, different POK assumptions would result in different type of ad-
versaries in the security experiment, that would impact the proof simulation,
in particular for the proof without random oracles. General speaking, there are
two major POK assumptions: knowledge of secret key (KOSK) assumption and
plain public key (PPK) assumption. The KOSK assumption (e.g. used in [9]),
that requires each party provides the certification authority (CA) with a proof
of knowledge of its secret key before the CA certifies the corresponding public
key. While implementing the (KOSK) assumption, it is assumed that there ex-
ists either efficient knowledge extractor (satisfying requirement in [1]), or the
adversary simply hands the challenger corresponding secret keys. The another
assumption is the plain public key (PPK) assumption (following the real-world
standards PKCS#10 [13]) that nothing more is required than in any usage of
public-key cryptography, where the proof of possession might be implemented
by having the user send the CA a signature (under the public key it is attempt-
ing to get certified) of some message that includes the public key and the user
identity. On the contrary, the private keys, of dishonest parties registered under
PPK assumption, might be only known by adversary, nor by the challenger. As
pointed out by Mihir Bellare and Gregory Neven in [2], the KOSK assumption
can’t be implemented by the proof based on plain public key (PPK) assump-
tion, and the PPK assumption is much cheaper and more realistic than KOSK
assumption.

While designing and analysing eCK protocol against chosen public key at-
tacks, corresponding POK assumption should be explicitly modeled by
EstablishParty query. Recently Moriyama and Okamoto (MO) presented an eCK-
secure key exchange protocol [11] in the standard model. However, as a negative
example, an appropriate POK assumption is never clearly made in the proof
of MO protocol. In particular, the MO protocol can’t be proven secure with-
out KOSK assumption. Since under PPK assumption, if the long-term keys of
test oracle (e.g. owned by party Â) are not corrupted and set in terms of a
DDH challenge instance, then the challenger is unable to simulate the session
key of other oracles of Â which have dishonest peer (e.g. party Ĉ) established by
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adversary. Because computing the long-term shared key involving parties Â and
Ĉ is a CDH hard problem for the challenger. Also, it still left out the task of for-
mally justifying a claim on how to implement the abstract KOSK assumption for
MO protocol. Therefore we are motivated to clearly formalize the EstablishParty
query and strive to seek eCK secure protocol against chosen public key attacks
without KOSK assumption and NAXOS tricks in the standard model.

Potential Threat on leakage of Secret Exponent. Besides the leak-
age of long-term and ephemeral private keys modeled by eCK model, a ‘well’
designed protocol should resist with the compromise of other session key related
secret information, even though such compromise is not normally expected. A
noteworthy instance is the leakage of ephemeral intermediate exponent (e.g., the
a1+a3α in MO protocol), due to the up-to-date side-channel attacks. Such kind
of leakage has been studied by Sarr et al. [15,14] based on HMQV protocol.
In particular, as pointed by Yoneyama et al. [20], the leakage of intermediate
exponent of Okamoto protocol [12] and MO protocol (in two different sessions)
would result in exposure of long-term keys. Therefore one should take care of
those intermediate exponents while designing protocols, even though it is hard
to prove the security on resilience of such leakage (as claimed in [20]). Moreover,
the ephemeral secrets that can be revealed in the eCK model, should be clearly
specified by each protocol based on appropriate implementation scenario. Note
that if the protocol is executed in a computer infected with malware, then all
secret session states (including those intermediate exponents mentioned above)
might be exposed.

1.1 Contribution

In this paper, we clarify the EstablishParty query in terms of different type of POK
assumptions. We present an eCK secure AKE protocol in the standard model,
that is able to resist with chosen public key attacks based on only plain public
key registration assumption and without NAXOS trick. The security of pro-
posed protocol is based on standard pairing assumption, collision resistant hash
functions, bilinear decision Diffie-Hellman (BDDH) and decision linear Diffie-
Hellman (DLIN) assumptions, and pseudo-random functions with pairwise in-
dependent random source πPRF [12]. Not surprisingly, one must pay a small
price for added security with one paring operation. However our protocol can be
implemented in a group where DDH problem is easy.

We show that the internal computation algorithm really matters for the secu-
rity of a protocol. From our construction approach, we illustrate an example on
how to mitigate the threat due to leakage of intermediate exponents, for which
exponents involve only long-term secrets. In order to relieve the consequences
of such leakage, we adapt a generic strategy: first blind those intermediate ex-
ponents using uniform random value (e.g. the ephemeral private keys) and next
remove the random value after completing corresponding exponential operation.1

1 This would mitigate the attacks described in [14,20], when the secret intermediate
exponent is exposed somehow.
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Our approach can also be applied to improve the MO protocol [11] or Okamoto
protocol [12] in a similar way.

1.2 Related Work

In the first eCK security model introduced by LaMacchia, Lauter and Mitya-
gin [8], they model the insider security by allowing adversary to register arbitrary
public keys without proving knowledge of the corresponding secret key, which
was formalized by EstablishParty query in later literatures.

Since then many eCK secure protocols, e.g. [8,12,10,15,14], have been correctly
proven under the malicious insider setting. But most of them are only provable
secure with the help of random oracles. Although the protocol [12] by Okamoto
is eCK secure in the standard model without KOSK assumption, this protocol
heavily relies on the NAXOS trick. Even though the NAXOS trick hides the
exponent of the ephemeral public key, it might be leaked because of the up-
to-date side-channel attacks. Therefore, a lot of works [11,18] are motivated to
propose eCK-secure key exchange protocols without the NAXOS tricks.

Sarr et al. [15], recently described some potential threats on HMQV due to the
leakage of secret intermediate exponent (i.e. the x+aD, whereD = H(Â, B̂,X)).
Namely, if such intermediate exponents in different sessions are identical, the ad-
versary can obtain the secret signature in the target session. In the later, Sarr et
al. [14] strengthened the eCK model by allowing the adversary to learn certain
intermediate results while computing the session key, under specific implemen-
tation environment wherein a tamper-proof device is involved to store long-term
keys while session keys are used on an untrusted host machine. The seCK model
was further studied by Yoneyama et al., in recent work [20]. They pointed out
errors in the security proofs of SMQV and FHMQV [14] on leakage of inter-
mediate computations. Unfortunately, their results also showed that there is no
scheme has been provably secure in the seCK model.

2 Preliminaries

Notations. We let κ denote the security parameter and 1κ the string that consists
of κ ones. Each party has a long-term authentication key which is used to prove
the identity of the party in an AKE protocol. We let a ‘hat’ on top of a capital
letter denotes an identifier of a participant, without the hat the letter denotes the
public key of that party, and the same letter in lower case denotes a private key.
For example, a party Â is supposed to register its public key A = ga at certificate
authority (CA) and keeps corresponding long-term secret key skA = a privately.
Let [n] = {1, . . . , n} ⊂ N be the set of integers between 1 and n. If S is a set, then
a ∈R S denotes the action of sampling a uniformly random element from S.

To construct our scheme, we need standard security notions of pseudo-random
functions (PRF), pseudo-random functions with pairwise independent random
sources (πPRF), collision resistant hash functions, the Bilinear Decision Diffie-
Hellman (BDDH) and Decision Linear Diffie-Hellman (DLIN) assumptions. These
are detailed in the full version [19].
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3 AKE Security

In this section we present the formal security model for two party PKI-based
authenticated key exchange (AKE) protocol. While modeling the active adver-
saries, we provide with an ’execution environment’ following an important line
of research [5,8,17] dates back to Bellare and Rogaway [3]. We will use the frame-
work as in [17] with slight modification.

ExecutionEnvironment. Assume there exist a fixed number of parties {P1, . . . , P�}
for � ∈ N, where each party Pi ∈ {P1, . . . , P�} is a potential protocol participant
and each party has a long-term key pair (pki, ski) ∈ (PK,SK) corresponds to its
identity i, where {PK,SK} are keyspaces of long-term keys. To model several se-
quential and parallel executions of the protocol, each party Pi is modeled by a col-
lection of oracles π1i , . . . , π

d
i for d ∈ N. Each oracle πsi represents one single process

that executes an instance of the protocol. All oracles π1i , . . . , π
d
i representing party

Pi have access to the same long-term key pair (pki, ski) of Pi and to all public keys
pk1, . . . , pk�. Moreover, each oracle πsi maintains a separate internal state

– a variable Φ storing the identity j of an intended communication partner Pj ,
– a variable Ψ ∈ {accept, reject},
– a variable K ∈ K storing the session key used for symmetric encryption

between πsi and party PΦ, where K is the keyspace of the protocol.
– and some additional temporary state variable st (which may, for instance,

be used to store ephemeral Diffie-Hellman exponents or other intermediate
values).

The internal state of each oracle is initialized to (Φ, Ψ,K, st) = (∅, ∅, ∅, ∅). At
some point during the protocol execution each party would generate the ses-
sion key according to the key exchange protocol specification when turning to
state (Ψ,K) = (accept,K) for some K, and at some point with internal state
(Ψ,K) = (reject, ∅) where ∅ denotes the empty string. We will always assume
(for simplicity) that K �= ∅ if an oracle has reached accept state.

An adversary may interact with these oracles by issuing the following queries.

– Send(πsi ,m): The adversary can use this query to send any message m of his
own choice to oracle πsi . The oracle will respond according to the protocol
specification, depending on its internal state. If the first message m = (&, j̃)
consists of a special symbol & and a value j̃ which is either ∅ or identity
j, then πsi will set Φ = j̃ and respond with the first protocol message. If
j̃ = ∅ then Φ will be set as identity j at some point according to protocol
specification. 2

– RevealKey(πsi ): Oracle πsi responds to a RevealKey-query with the contents
of variable K.

– StateReveal(πsi ): Oracle πsi responds the contents secret state stored in vari-
able st.

2 A protocol might be run in either pre- or post-specified peer model here [6].
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– EstablishParty(pkm, skm, Pm) This query registers an identity m(� < m < N)
and a static public/private key pair (pkm, skm) on behalf of a party Pm,
if one of the following conditions is held: (i) skm = ∅ and pkm ∈ PK, (ii)
skm ∈ SK and skm is the correct private key for public key pkm; otherwise
a failure symbol ⊥ is returned. Parties established by this query are called
corrupted or adversary controlled.

– Corrupt(Pi): Oracle π1i responds with the long-term secret key ski of party Pi.
After this query, oracles πsi can still be asked queries using the compromised
key ski.

– Test(πsi ): This query may only be asked once throughout the game. Oracle
πsi handles this query as follows: If the oracle has state Ψ = reject or
K = ∅, then it returns some failure symbol ⊥. Otherwise it flips a fair coin

b, samples a random element K0
$← K, sets K1 = K to the ’real’ session key,

and returns Kb.

We note that the exact meaning of the StateReveal must be defined for each
protocol separately, namely the content stored in the variable st during protocol
execution. In EstablishParty query, the private key skm corresponds to the proof
of knowledge assumptions for public key registration, which should be specified
in the security proof of each protocol. If skm = ∅ then the plain public key or
arbitrary key registration assumption is modeled, otherwise the knowledge of
secret key assumption is modeled.

Secure AKE Protocols. We first define the partnering of two oracles via matching
conversations that was first introduced by Bellare and Rogaway [3] in order to
define correctness and security of an AKE protocol precisely, and refined latter in
[17]. In the following let T s

i denote the transcript of messages sent and received
by oracle πsi . We assume that messages in a transcript T s

i are represented as
binary strings. Let |T s

i | denote the number of its messages. Assume there are

two transcripts T s
i and T j

t , where m := |T s
i | and n := |T t

j |. We say that T s
i is a

prefix of T t
j if 0 < m ≤ n and the first m messages in transcripts T s

i and T t
j are

pairwise equivalent as binary strings.

Definition 1. We say that a processes πsi has a matching conversation to oracle
πtj, if

– πsi has sent the last message(s) and T t
j is a prefix of T s

i , or
– πtj has sent the last message(s) and T s

i is a prefix of T t
j .

We say that two oracles πsi and πtj have matching conversations if πsi has a
matching conversation to process πtj, and vice versa.

Definition 2 (Freshness). Let πsi be a completed oracle held by an honest
party Pi with honest peer Pj , and both parties Pi and Pj are not registered by
EstablishParty query. Let πtj be a completed oracle, if it exists, such that πsi and πtj
have matching conversations. Then the oracle πsi is said to be fresh (unexposed)
if none of the following conditions holds:
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1. The adversary A either issued RevealKey(πsi ), or RevealKey(πtj) (if such πtj
exists).

2. If πtj exists, A either issued:
(a) Both Corrupt(Pi) and StateReveal(πsi ), or.
(b) Both Corrupt(Pj) and StateReveal(πtj).

3. If πtj does not exist, A either issued:
(a) Both Corrupt(Pi) and StateReveal(πsi ), or
(b) Corrupt(Pj).

Definition 3 (Security Experiment). In the experiment, the following steps
are performed:

1. The challenger implements the collection of oracles {πsi : i ∈ [�], s ∈ [d]}.
At the beginning of the experiment, the challenger generates � long-term key
pairs (pki, ski) for all i ∈ [�], and gives the adversary A all public keys
pk1, . . . , pk� as input.

2. A may issue polynomial number (in the security parameter κ) of queries
as described above in the execution environment, namely A makes queries:
Send, StateReveal, EstablishParty, Corrupt and RevealKey.

3. At some point, A issues a Test(πsi ) query on a fresh oracle πsi during the
experiment with only once.

4. At the end of the experiment, the A terminates with outputting a bit b′ as
its guess for bit b of Test query.

Security of AKE protocols is now defined by requiring that the protocol is a
secure AKE protocol, thus an adversary cannot distinguish the session key K of
a fresh oracle from a random key.

Definition 4 (Secure Authenticated Key Exchange Protocol). We say
an AKE protocol is secure in the security experiment as Definition 3, if for
all probabilistic polynomial-time (PPT) adversaries A and for some negligible
probability ε = ε(κ) in the security parameter hold that:

– If two fresh oracles πsi and πtj accept with matching conversations, then both
oracles hold the same session key K.

– When A returns b′ such that
• A has issued a Test query on an oracle πsi without failure, and
• πsi has internal state Φ = j, and
• πsi is fresh throughout the security experiment.

Then the probability that b′ equals the bit b sampled by the Test-query is
bounded by

|Pr[b = b′]–1/2| ≤ ε.

4 A Strong AKE Protocol without Random Oracles

In this section we present a pairing-based strong AKE protocol without random
oracles, which is informally depicted in Figure 1.



Strongly Authenticated Key Exchange Protocol 271

Â
skA =< a1, a2, a3, a4,

a5, a6, a7, a8 >
A1 = ga1

1 ga3 , A2 = ga2
2 ga3 ,

A3 = ga4
1 ga6 , A4 = ga5

2 ga6 ,
A5 = ga7

1 , A6 = ga8
2 ,

A7 = ga7+a8

B̂
skB =< b1, b2, b3, b4,

b5, b6, b7, b8 >
B1 = gb11 gb3 , B2 = gb22 gb3 ,
B3 = gb41 gb6 , B4 = gb52 gb6 ,

B5 = gb71 , B6 = gb82 ,
B7 = gb7+b8

x1, x2, x,∈R Z∗
p

X1 = gx1
1 , X2 = gx2

2 ,
X3 = gx1+x2 , X = gx

y1, y2, y ∈R Z∗
p

Y1 = gy11 , Y2 = gy22 ,
Y3 = gy1+y2 , Y = gy

−
X1, X2, X3, X, Â, B̂
−−−−−−−−−−−−−−−−→
←−−

Y1, Y2, Y3, Y, Â,
−−−−−−−−−−−−−

B̂,X1, X2, X3, X
(Y1, Y2, Y3, Y )? ∈ G4 (X1, X2, X3, X)? ∈ G4

sidÂ := (Â, B̂,X1, X2, X3, X
, Y1, Y2, Y3, Y )

sidB̂ := (Â, B̂,X1, X2, X3, X
, Y1, Y2, Y3, Y )

β := H(sidÂ) β := H(sidB̂)

σÂ := (B1B
β
3 )

x1+a7
x ·

(B2B
β
4 )

x2+a8
x ·(Y1B5)

a1+a4β
x ·

σB̂ := (A1A
β
3 )

y1+b7
y ·

(A2A
β
4 )

y2+b8
y ·(X1A5)

b1+b4β
y ·

(Y2B6)
a2+a5β

x ·(Y3B7)
a3+a6β

x ·Y (X2A6)
b2+b5β

y ·(X3A7)
b3+b6β

y ·X
σÂ := e(σÂ, h

x) σB̂ := e(σB̂ , hy)
k := F (σÂ, sidÂ) k := F (σB̂, sidB̂)

Fig. 1. The AKE Protocol without Random Oracles

Protocol Description. The AKE protocol takes as input the following building
blocks:

– Symmetric bilinear groups (G, g,GT , p, e), where the generator of group GT

is e(g, g) and along with another random generators g1, g2 and h of G.
– A collision resistant hash function H : {0, 1}∗ → Z∗

p,
– A pairwise independent pseudo-random function (πPRF) F , with index
{IGT , fGT } where IGT := {(U, V, α)|(U, V, α) ∈ G2

T × Zp} and
fGT := (U, V, α) → U r1+αr2V with (r1, r2) ∈R Z2

p.

Long-term Key Generation: on input the security parameter κ, the long-term
keys of each party Â is generated as following: Â selects long-term private keys
: (a1, a2, a3, a4, a5, a6, a7, a8) ∈R Z8

p, and compute the long-term public keys:
(A1, A2, A3, A4, A5, A6, A7) := (ga1

1 g
a3 , ga2

2 g
a3 , ga4

1 g
a6 , ga5

2 g
a6 , ga7

1 , g
a8
2 , g

a7+a8).

Protocol Execution

1. Upon activation a session (Â, B̂), the initiator Â performs the steps: (a)
Choose three ephemeral private keys x1, x2, x,∈R Z3

p; (b) Compute X1 :=
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gx1 , X2 := gx2 , X3 := gx1+x2 and X := gx; (c) Set session identifier sidÂ :=

(Â, B̂,X1, X2, X3, X); (d) Send (X1, X2, X3, X, Â, B̂) to B̂.

2. Upon receiving (X1, X2, X3, X, Â, B̂), the responder B̂ does the following:
(a) Verify that (X1, X2, X3, X) ∈ G4; (b) Choose three ephemeral private
keys y1, y2, y ∈R Z3

p ; (c) Compute Y1 := gy1 , Y2 := gy2 , Y3 := gy1+y2 and

Y := gy; (d) Set session identifier sidB̂ := (Â, B̂,X1, X2, X3, X, Y1, Y2, Y3, Y )

and compute β := H(sidB̂); (e) Compute σB̂ := (A1A
β
3 )

y1+b7
y ·(A2A

β
4 )

y2+b8
y

·(X1A5)
b1+b4β

y ·(X2A6)
b2+b5β

y ·(X3A7)
b3+b6β

y ·X and σB̂ := e(σB̂, h
y); (f) Com-

pute session key k := F (σB̂ , sidB̂) and erase all intermediate values; (g) Send

(Y1, Y2, Y3, Y, Â, B̂,X1, X2, X3, X) to Â.

3. Upon receiving (Y1, Y2, Y3, Y, Â, B̂,X1, X2, X3, X) does the following: (a)
Verify that exist a session identified by (Â, B̂,X1, X2, X3, X) and
(Y1, Y2, Y3, Y ) ∈ G4; (b) Update session identifier sidÂ := (Â, B̂,X1, X2,
X3, X, Y1, Y2, Y3, Y ), and compute β := H(sidÂ); (c) Compute σÂ :=

(B1B
β
3 )

x1+a7
x ·(B2B

β
4 )

x2+a8
x ·(Y1B5)

a1+a4β
x ·(Y2B6)

a2+a5β
x ·(Y3B7)

a3+a6β
x ·Y and

σÂ := e(σÂ, h
x); (d) Compute session key as k := F (σÂ, sidÂ) and erase all

intermediate values.

We assume, only the ephemeral private keys, i.e. (x1, x2, x) and (y1, y2, y)
would be stored as secret in the state variable st.3

Security Analysis. In the following, we show that the proposed protocol is an
eCK secure protocol in the sense of Definition 4.

Theorem 1. Suppose that the (t, q, εBDDH)-Bilinear DDH assumption and
(t, q, εDLIN)-Decision linear assumption hold in bilinear groups (G, g,GT , p, e), the
hash function H is (t, εCR)-secure, and a (t, επPRF)-secure πPRF family with index
{IGT , fGT } where IGT := {(U, V, α)|(U, V, α) ∈ G2 ×Zp} and fGT := (U, V, α) →
U r1+αr2V with (r1, r2) ∈R Z2

p, with respect to the definitions in Section 2. Then
the proposed protocol is a (t′, ε′)-eCK secure AKE as Definition 4.

Proof of Theorem 1. Due to space limitation, we here only provide the sketch
of the proof. We will present the details of the proof in the full paper [19].

In the security experiment, the adversary is allowed to query
EstablishParty(pkm, skm, Pm) with skm = ∅ while registering a public key pkm
for dishonest party Pm. Namely, we allow arbitrary public key registration.

In order to complete the proof of Theorem 1, we must provide the security
proofs for all freshness related cases as Definition 2:. However, applying the
Propositions 1 and 2 from [11], the security can be reduced to the following two
cases:

3 This can be achieved by performing the computation in steps 2(e) and 2(f) (resp.
steps 3(c) and 3(d)) on a smart card, where the long-term keys are stored. In this
case, the intermediate values would not be exposed due to e.g. malware attacks on
the PC, which we model with StateReveal query.
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– Case 1 (C1): There is an oracle πt
∗

B̂
held by B̂, such that πs

∗

Â
and πt

∗

B̂
have

matching conversations, and the adversary doesn’t issue Corrupt(Â) and
StateReveal(πt

∗

B̂
).

– Case 2 (C2): There is no oracle πt
∗

B̂
held by B̂, such that πs

∗

Â
and πt

∗

B̂
have

matching conversations, and the adversary doesn’t issue Corrupt(Â) and
Corrupt(B̂).

Proof of Case C1 (sketch): The proof proceeds in a sequence of games, fol-
lowing [16].

Game G1
0. This is the original eCK game with adversary A1 in Case C1.

Game G1
1. This game proceeds exactly as Game G1

0, but the simulator aborts
the game if it does not correctly guess the test oracle and its partner. Since the
challenger activates d oracles for each � parties. Then the probability that the
challenger guesses correctly the test oracle and its partner is at least 1/(�2d2).

Game G1
2. This game proceeds exactly like the previous game, except that we

replace the secret value σ∗ of test oracle and its partner oracle with a random
one. If there exists adversary A1 can distinguish game G1

2 from game G1
1, then

we can use it to construct an efficient algorithm B to solve the BDDH problem.

Game G1
3. We modify Game G1

2 to G1
3 by changing pseudo-random function F

to a truly random function RF for test oracle. Note that σ∗ is an independent
random value. Thus we can use the security of the PRF to argue that this game
is indistinguishable from Game G1

2.
Collecting the advantages from Game G1

0 to Game G1
3, we have that

ε′ ≤ �2d2 · (εBDDH + εPRF). (1)

Proof of Case C2 (sketch): Similarly, we proceed in Games G2
i with adversary

A2 for Case C2 as follows. Let S2
i be the event that the adversary wins the

security experiment in Game G2
i respectively.

Game G2
0. This is the original eCK game with adversary in Case C2.

Game G2
1. This game proceeds as the previous game, except that the simulator

aborts if the adversary completes an oracle πt
B̂
such that H(sid

(s∗)
Â

) = H(sid
(t)

B̂
)

and πt
B̂

has no matching conversation to test oracle. Hence we have for any

sid
(s∗)
Â

�= sid
(t)

B̂
(t ∈ [d]). When the event does occur, we can easily construct

algorithm that breaks the collision-resistant hash function H .

Game G2
2. The challenger proceeds as Game G2

1 but aborts the game if it does
not correctly guess the test oracle and its peer . Then the probability that the
challenger guesses correctly is at least 1/d�2.

Game G2
3. We modify game G2

2 to game G2
3 by changing the value of

e((B1B3
β)x1+a7 ·(B2B4

β)x2+a8 , h) in computation of secret material σÂ for ora-

cles of Â to (e(X1A5, B1B4
β)·e(X2A6, B2B5

β)·e(X3A7, B3B6
β))r , where r is an
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uniform random exponent of group generator h = gr which is chosen by simu-
lator. This change is possible, even if the party B̂ in the game is established by
adversary. Since the challenger knows the trapdoor r of h.

Game G2
4. This game proceeds as the previous game, except that we change the

DH tuple (g, g1, g2, A5, A6, A7) to a random tuple. If there exists adversary A2

which can distinguish game G2
4 from Game G2

3, then we can use it to construct
an efficient algorithm B to solve the DLIN problem.

Game G2
5. We modify Game G2

5 to G2
6 by changing πPRF function F to a truly

random function RF for test oracle. Due to the modifications of Game G2
3 and

G2
4, we first note that key secret σ

(s∗)
Â

and each the key secret σ
(t)

B̂
of oracle

πt
B̂

are pairwise independent. Therefore, we can use the security of the πPRF to

argue that this game is indistinguishable from Game G2
4.

Collecting the advantages from Game G2
0 to Game G2

5, we have that

ε′ ≤ εCR + �2d · (εDLIN + επPRF + 6/p) (2)

5 Conclusions

We have presented an efficient eCK-secure key exchange protocols without ran-
dom oracles (and without NAXOS trick), that the security against chosen public
key attacks based on the plain public key assumption (i.e. without KOSK as-
sumption). An open question here is how to construct an eCK secure protocol
without πPRF, we leave out this for future work.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful comments.
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Abstract. Authenticated key exchange (AKE) protocol is one of the

most widely used cryptographic primitives, and lots of protocols have

been proposed either in the certificate-based (cert-based) setting or in the

identity-based (id-based) setting. In practical applications, entities from

different settings may have the requirement to communicate with each

other. Though there are works concentrated on supporting either mul-

tiple certification authorities (CAs) or multiple key generation centers

(KGCs), very few papers have focused on the interoperability between

the two settings. Furthermore, existing approaches are still inadequate

in supporting parameters from different algebraic groups introduced by

multiple CAs and multiple KGCs.

In this paper, we focus on AKE protocols integrating cert-based set-

tings and id-based settings with varied groups, and propose an AKE

protocol where one entity is cert-based and the other is id-based, and

the parameters of both entities may come from different groups. An ex-

tended AKE security model of [6,22] is proposed to support multiple

KGCs and CAs. The proposed protocol is proved to be secure in the ex-

tended security model. Finally, we extend the protocol to achieve forward

secrecy and resistance to leakage of both ephemeral keys.

1 Introduction

AKE protocols enable two parties to generate a shared, cryptographically strong
key while communicating over an insecure network under the complete control of
an adversary. This kind of protocol is one of the most widely used cryptographic
primitives; indeed, agreement on a shared key is necessary for the realization of
“higher-level” tasks such as encryption and message authentication.

Diffie and Hellman [10] proposed the first key agreement protocol, which be-
came known as the Diffie-Hellman (DH) protocol. After that, many cert-based
variants [17,15,16,19] providing additional properties have been suggested. In
these protocols, both participants use public/private key pairs binding to their
certificates in the protocol for authentication and key establishment.

In 1984, Shamir [20] introduced identity-based technology to construct AKE
protocols. That is, both participants use identity-based asymmetric key pairs in

T. Takagi et al. (Eds.): ProvSec 2012, LNCS 7496, pp. 276–287, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the protocol for authentication and key establishment. Since then, researchers
proposed lots of id-based AKE protocols (e.g., [13,21,23,9,7,14]).

Apparently, both parties need to be the same type in almost all the above
key agreement protocols. However, in some cases, parties of different types may
also want to share a session key to communicate with each other. Consider the
situation that Alice has a certificate and wants to securely communicate with
an entity Bob who belongs to a company. After Alice sending a request, Bob
may either answer with a public key along with a certificate or inform that
“Bob” is part of an ID-based system. Their static keys may be generated by
different KGCs with different algebraic groups, or be bound to certificates issued
by different CAs. Chain and cross certifications allow users to trust different CAs
to interact. Similarly, there are methods to extend identity-based solutions across
multiple KGCs. However, very few works have been done on the interoperability
between the two settings.

A straightforward method to solve this problem is that parties register certifi-
cates from CAs as well as ask for id-based keys from KGCs to accommodate all
peers. However, this approach is not practical because there are multiple CAs
and multiple KGCs and maintaining one secret key for each CA and each KGC
needs a large amount of memory and maintenance costs. As a result, the inte-
grating protocols (i.e., one party of the protocol is cert-based and the other one
is id-based) are needed in this occasion.

One can design an integrating protocol using a Diffie-Hellman protocol to-
gether with the authenticators proposed by Canetti and Krawczyk [5], that is,
one authenticator with an id-based signature and the other with a cert-based
signature. The protocols using this approach are not resistant to leakage of
ephemeral keys. It is also possible to obtain an integrating protocol by using
the generic key encapsulation mechanisms (KEM) techniques proposed by Boyd
et al. [4]. In their construction, one of the KEMs can be id-based and the other
can be cert-based. However, to provide forward secrecy, the parties have to run
an extra ephemeral Diffie-Hellman protocol along with the basic protocol and it
is unclear whether ephemeral leakage resilience can be achieved.

In 2003, Chen and Kudla [8] introduced the concept of communication through
“different domains”, that is, the communicating parties’ keys are generated by
different KGCs, and proposed an id-based protocol that allows two parties to
communicate through “different domains”. They solved the problem when the
communicating parties are both id-based and their keys are generated by dif-
ferent KGCs. In 2005, McCullagh and Barreto [18] proposed a more efficient
construction to communicate through “different domains” like [8].

In 2011, Chatterjee, Menezes, et al. [6] proposed a generic three-pass key
agreement protocol based on a certain kind of trapdoor one-way function family,
and presented three cert-based instantiations. An interesting feature of their
discrete-log instantiation is that parties can use different groups (e.g., different
elliptic curves). However, they only considered the cert-based instantiations, and
did not discuss the extensions to id-based settings.
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Ustaoǧlu [22] proposed a collection of integrating protocols which requires
that the participants use parameters from the same algebraic group. Thus, the
protocols can not be used to multiple-CAs and multiple-KGCs when they use
parameters from different groups.

In 2012, Fujioka et al. [12] proposed a generic construction of AKE from a
KEM which can allow the initiator and the responder to use different KEMs
under different groups. However, if the randomnesses used in the KEM are com-
promised, the shared session key will be revealed. Although they use the output
of the twisted PRF trick as the randomness of KEMs to avoid the attacks caused
by leakage of ephemeral keys, but sometimes the PRF output may be compro-
mised as easy as ephemeral keys.

For the security models of AKE, traditional security models [2,3,1,5,16] don’t
consider the occasion when there are many KGCs and many CAs and partici-
pants of the protocol are from different settings. Ustaoǧlu [22] defined security
model for integrating protocols but actually there is only one KGC and one CA
in the model. Meanwhile, the traditional way [2,3,1] of capturing explicit authen-
tication is to use the event “no matching”, and is independent of the definition
of session key’s indistinguishability property. Usually, one have to prove the two
properties separately.

1.1 Our Contributions

In this paper, we first consider the security model of AKE with entities from
different settings, and extend the security model of [22] to capture multiple CAs
and multiple KGCs. Furthermore, we find that the traditional way of capturing
explicit authentication in key establishment protocols can be facilitated and
the approach to define explicit authentication in [6] can be more accurate. We
modify this model slightly to capture explicit authentication in an easier way
than the traditional way. The explicit authentication and the indistinguishability
of session key are defined together in our security model.

Next, we propose an explicitly authenticated key agreement protocol with one
party being id-based while the other being cert-based. The protocol is proved to
be secure in the extended model under reasonable assumptions, and satisfies the
demands of supporting multiple CAs and multiple KGCs. Thus, parties partici-
pating the protocol can use parameters from different groups. Furthermore, the
efficiency if the proposed protocol is comparable with other related works.

After that, we extend our protocol to achieve eCK variant security with higher
efficiency. The proposed integrating protocols can be used when parties are from
different settings using parameters of different groups. However, as protocols
proposed in [6], the basic protocol doesn’t have forward secrecy nor resistance to
leakage of both ephemeral keys. So we show how to extend the basic protocols
to achieve forward secrecy and resistance to leakage of both ephemeral keys. We
compare our protocols with related protocols in section 6.
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2 Preliminaries

Throughout, the following notations are used in this paper:

- G denotes a multiplicatively written cyclic group of prime order q1 generated
by G, |q1| is the bit length of q1; G∗ is the set of non-identity elements in G.

- The identity of a party A is denoted by Â (Â is supposed to contain A). If
Â �= B̂, we suppose that no substring of Â equals B̂.

- Let ê : G1 × G1 → GT be a bilinear pairing defined as in [7], where G1 is an
additive group of points over an elliptic curve of prime order q2, and GT is a
multiplicative subgroup of the multiplicative group of a finite field.

- H : {0, 1}∗ → {0, 1}λ, H1 : {0, 1}∗ → G1 are cryptographic hash functions.
- The symbol ∈R stands for “chosen uniformly at random in”.

Assumption 1 (GDHD). The DHD problem in a cyclic group G of prime

order q1 is the problem of determining gu/v, given g, gu, gv ∈R G. The gap DHD

(GDHD) assumption asserts that the DHD problem is intractable even when the

solver is given a Decision DHD (DDHD) oracle which, on input a quadruple

(h, ha, hb, hc), determines whether c ≡ a/b mod q1.

Assumption 2 (GBDH). Let P be a generator of G1, ê(P ,P) be a genera-

tor of GT . The BDH problem in group G1 of prime order q2 is the problem of

computing ê(P ,P)abc, given instance : (P , aP , bP , cP) for some a, b, c ∈ Z∗
q2 .

The gap BDH (GBDH) assumption asserts that the BDH problem is intractable

even when the solver is given a Decision BDH (DBDH) oracle which, on input

(P , aP , bP , cP , ê(P ,P)d), determines whether d ≡ abc mod q2.

3 Model

3.1 Our Security Model

Session and its Execution. The AKE security experiment involves multiple
honest parties and an adversary A connected via an unauthenticated network.
In our model, we identify a party P̂ with a probabilistic Turing machine. The set
of all parties is divided into two: CP (cert-based parties) and IP (id-based par-
ties). We suppose there are nCA ≤ LCA(|q|) CAs trusted by cert-based parties.
These CAs are identified with numbers 1, 2, . . . , nCA and every CA can estab-
lish nCert ≤ LCert(|q|) cert-based parties. In sum, there are n1 = nCA · nCert

cert-based parties. Meanwhile, there are nKGC ≤ LKGC(|q|) KGCs trusted by
id-based parties. These KGCs are identified with numbers 1, 2, . . . , nKGC and
every KGC can establish nID ≤ LID(|q|) id-based parties. Altogether, there are
n2 = nKGC · nID id-based parties. Here, LCA,LCert,LKGC ,LID are polynomi-
als. Certificates issued by different CAs and secret keys issued by different KGCs
may correspond to public keys in different groups. A session is an instance of the
considered protocol, run at a party. The adversary which is also a probabilistic
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polynomial time machine selects parties to execute sessions and selects an order
in which the sessions will be executed.

Session Creation. A session of P̂i (with peer P̂j) can be created with parame-

ters (P̂i, P̂j) or (P̂i, P̂j ,R, In), where In is an incoming message, supposed from

P̂j ; P̂i is the initiator if the parameter is (P̂i, P̂j), otherwise a responder.

Session Initiator. If P̂i is the session initiator then P̂i creates a separate ses-
sion state where session-specific short-lived data is stored, and prepares a reply
Out = (ePKP̂i

, OtherInfo), where ePKP̂i
is P̂i’s ephemeral public key, and

OtherInfo is additional data that the protocol may specify. The session is la-
beled active and identified via a (temporary and incomplete) session identifier
sid = (P̂i, P̂j , I, ePKP̂i

), P̂i ∈ {0, 1}∗ is the identity of the party executing the

session, P̂j is the identity of the other party participating, I means that P̂i is

the initiator of the protocol. The outgoing message is (P̂j , P̂i,R, Out).
Session Responder. If P̂i is the session responder, P̂i creates a separate session
state and prepares a reply Out that includes ePKP̂i

which is the ephemeral

public key of P̂i. The session is labeled active and identified via a session identifier
sid = (P̂i, P̂j ,R, ePKP̂i

, ePKP̂j
), where ePKP̂j

is the ephemeral public key in

the incoming message In. The outgoing message is (P̂j , P̂i, I, Out).
Session Update. A party P̂i can be activated to update a session via an incom-
ing message of the form (P̂i, P̂j , role, ePKP̂i

, ePKP̂j
, In), where role ∈ {I,R}.

Upon receipt of this message, P̂i checks that he owns an active session with iden-
tifier sid = (P̂i, P̂j , role, ePKP̂i

, ePKP̂j
). If ephemeral keys are chosen uniformly

at random from the appropriate domain, except with negligible probability P̂i

can own at most one such session. If no such session exists then the message is
rejected; otherwise P̂i follows the protocol specifications. Initiator P̂i can also be
activated to update a session with incomplete session identifier (P̂i, P̂j , I, ePKP̂i

)

with an incoming message of the form (P̂i, P̂j , I, ePKP̂i
, ePKP̂j

, In) where In

is any message specified by the protocol. In this case P̂i performs the required
validations before updating the session identifier to (P̂i, P̂j , I, ePKP̂i

, ePKP̂j
).

Completed Sessions. When the protocol specifies that no further messages
will be received, the session accepts a session key and marks itself as completed.

Aborted Sessions. A protocol may require parties to perform some checks on
incoming messages. For example, a party may be required to perform some form
of public key validation or verify a message authentication tag. If a party is acti-
vated to create a sessionwith an incomingmessage that does notmeet the protocol
specifications, then that message is rejected and no session is created. If a party is
activated to update an active sessionwith an incomingmessage that does notmeet
the protocol specifications, then the party deletes all information specific to that
session (including the session state and the session key if it has been computed) and
aborts the session. Abortion occurs before the session identifier is updated.
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Matching Sessions. If ephemeral keys are selected at random on a per-session
basis, session identifiers are unique except with negligible probability. Party P̂i

is said to be the owner of a session (P̂i, P̂j , role, ∗, ∗), where role ∈ {I,R}.
For a session (P̂i, P̂j , role, ∗, ∗) we call P̂j the session peer; P̂i and P̂j are re-
ferred to as the communicating parties. Let sid be a session with complete ses-
sion identifier (P̂i, P̂j , role, ePKP̂i

, ePKP̂j
). A session sid with session identifier

(P̂i, P̂j , role, ePKP̂i
, ePK

P̂j
) is said to be matching to sid if P̂i = P̂j , P̂j = P̂i,

role �= role, ePKP̂i
= ePK

P̂j
and ePKP̂j

= ePK
P̂i
. A session sid with in-

complete session identifier (P̂i, P̂j , I, ePKP̂i
) is matching to any session sid =

(P̂i, P̂j ,R, ePKP̂i
, ePK

P̂j
) with P̂i = P̂j , P̂j = P̂i and ePKP̂i

= ePK
P̂j
. Since

ephemeral keys are selected at random on a per-session basis, only sessions with
incomplete session identifiers can have more than one matching session.

Adversarial Capabilities. The adversary is allowed to make the following
oracle queries.

- Establish(party, type, i). type ∈ {0, 1} identifies the kind of the party,
type = 0 means the party to be established is cert-based, type = 1 means the
party is id-based. i denotes the identity of the corresponding CA or KGC.
For cert-based type, the adversary A registers a static key on behalf of a
party to the i-th CA; for id-based parties A register an identifier and obtain
the corresponding private key from the i-th KGC. As the adversary controls
communications, from then the party is supposed totally controlled by A. A
party against which this query is not issued is said to be honest.

- Send(sid,m). A sends any message m to session sid established by one
party. The oracle will respond according to the protocol description.

- SessionkeyReveal(sid). The adversary gets the session key of the session
sid after the session has completed via this query. If the session has not
completed, output ⊥.

- StaticKeyReveal(party). Adversary gets the long-term private key of the
party party without full control of the party.

- EphemeralKeyReveal(sid). This query returns the ephemeral exponent
chosen by the corresponding party of the specific session sid.

- MasterKeyReveal(KGC). The adversary obtains the master secret key
used by the KGC to generate private keys. Note that there may be lots of
KGCs, and we only obtain the secret key of the KGC being asked.

- Test(sid). This query can be asked by the adversary only once during the
game. After making this query, the challenger randomly chooses a bit b ∈
{0, 1}, if b = 0, he returns the real key, otherwise, he returns a random key
chosen uniformly from the session key space. The adversary wins the game
if he guesses correctly whether the key is random or not.

Security of AKE Protocols. We first define the session freshness notion. Test
queries can only be performed on fresh sessions.
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Remark: The adversary can obtain a static private key corresponding to an
identity either by explicitly querying for it or by obtaining the corresponding
KGC master private key. Taking the same method of [22], in the following def-
inition, we assume that RevealMasterKey(KGC) implies that RevealStaticKey
has been issued against the corresponding identities.

Definition 1 (Session Freshness). Let sid be a completed session held by a

party Â with other party B̂ , and both parties Â and B̂ are honest. Meanwhile,

B̂ supposedly engaged in a session sid∗, such that sid and sid∗ (if it exists)

are matching. Then the session sid is said to be fresh if none of the following

conditions hold:

1. A issues a SessionKeyReveal query on sid or sid∗(if sid∗ exists).

2. sid∗ exists and A issued one of the following:

– (a) Both StaticKeyReveal(Â) and EphemeralKeyReveal(sid).

– (b) Both StaticKeyReveal(B̂) and EphemeralKeyReveal(sid∗).
– (c) Both StaticKeyReveal(Â) and StaticKeyReveal(B̂).

– (d) Both EphemeralKeyReveal(sid) and EphemeralKeyReveal(sid∗).

3. sid∗ doesn’t exist and A issued one of the following:

– (a) EphemeralKeyReveal(sid).

– (b) StaticKeyReveal(B̂) before session sid completes.

Through the game, adversary makes all the queries defined above. At one point
he issues a Test query to a fresh session, after that he can also issue queries but
must insure that the test session remains fresh. The goal of the adversary A is to
guess a bit b′ such that b′ = b where b is the private bit involved in Test query.
The advantage of the adversary A is defined by AdvkP(A) = |2Pr[b′ = b]− 1|.

Definition 2. An AKE protocol P is secure if both the conditions hold,

1. If two honest parties complete matching sessions, except with negligible

probability, they both compute the same session key.

2. AdvkP (A) is negligible for any polynomially bounded adversary A.

3.2 Relations to Other Security Models

In many security models for AKE protocols, indistinguishability and mutual
authentication are usually defined separately. The traditional explicit authenti-
cation [2,3,1] can be expressed as “There should be no such fresh session that
the session completes, but has no partner session”.

In our definition, we use a different freshness definition to capture the property
of explicit authentication. That is, in 3(b), “if sid∗ doesn’t exist, StaticKeyReveal
(B̂) should not be issued before session sid completes”. This security model
captures explicit authentication and indistinguishability simultaneously.

To facilitate comparison, in the following proposition, we assume that the
adversary’s abilities and the definitions of matching sessions in our security
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model are the same as in the traditional model. And the main difference be-
tween the two models is the freshness definition in 3(b). That is, “A should
not issues StaticKeyReveal(B̂) before session sid completes” and “A should not
issues StaticKeyReveal(B̂)” relatively.

Claim. Our security definition implies the traditional “mutual authentication”

property.

In fact, if a key establishment protocol doesn’t have mutual authentication
property, a fresh and completed session without matching session exists. Without
loss of generality, we assume such a session is identified by sid with owner Â and
intended peer B̂ (It is easy for the adversary to find this session because it is the
adversary who makes all the queries). By the freshness definition in traditional
model, adversary A doesn’t issue StaticKeyReveal(B̂) query, and he chooses the
ephemeral key of B̂. However, sid is still fresh in our security model even though
A makes a StaticKeyReveal(B̂) query. Hence, if A tests the session sid, he can
output a guess correctly. Therefore, a protocol without mutual authentication
property in the traditional model can’t be secure in our security model.

4 Our Protocol

Without loss of generality, we use the Discrete Log setting for cert-based par-
ties. As summarized in [7], there are four types of pairings and two kinds of
extract algorithms in id-based setting. We choose the type1 parings to describe
the id-based parties, and take extract 1 algorithms as an example to present
the integrating protocol. The protocol can be easily extended to other types of
pairings and protocol of extract 2 algorithm case will be given in the full version.

Without loss of generality, we describe situations when the initiator (Â) is
id-based and the responder (B̂) is cert-based. The symmetric setting can be ex-
tended trivially. The following notations are used in our Extract 1 case protocol.

Algorithm 1 (Extract 1 [7]). Given the pairing parameters, an identity string

IDA for a user A, a hash-function H1 : {0, 1}∗ → G1, the master private key

s ∈ Z∗
q2 , and the master public key P0 = sP ∈ G1, the algorithm computes

QA = H1(IDA) ∈ G1 and dA = sQA ∈ G1. The values QA and dA will be used

as the public and private key pair corresponding to A’s identity IDA.

Let Â be an id-based party with public key QA and private key dA defined in
the above Extract 1 algorithm. Let B̂ be a cert-based party with private key
b ∈ Z∗

q1 and public key B satisfying B = gb. The protocol with Extract 1 case is
described in table 1. The detailed specification of protocol Π1 is as follows.

1. Â chooses x ∈R Z∗
q1 , computes X = Gx, XA = Bx, destroy x. Â sends

B̂, Â,R, XA to B̂ and initialize the session identifier to (Â, B̂, I, XA).
2. After receiving the message from Â, B̂ first verifies that XA ∈ G∗, then

chooses y ∈R Z∗
q2 , computes Y = ê(P0, yQA), YB = yP . After that, B̂ com-

putes X = (XA)
1/b, (κm, κ) = H(X,Y, Â, B̂,XA, YB). Compute tagB =
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Table 1. Protocol Π1: The Extract 1 case

Â(QA, dA) B̂(B, b)

x ∈R Z
∗
q1

, X = Gx, XA = Bx

Destroy x.

Initialize sid to (Â, B̂, I,XA)
B̂,Â,R,XA−−−−−−−−→ Verify that XA ∈ G∗

y ∈R Z
∗
q2

, Y = ê(P0, yQA), YB = yP
Compute X = (XA)1/b,

(κm, κ) = H(X, Y, Â, B̂,XA, YB)

tagB = MACκm (R, B̂, Â, YB , XA)

tagA = MACκm (I, Â, B̂,XA, YB),
Destroy y,X, Y and κm

Verify that YB ∈ G∗
1

Â,B̂,I,XA,YB,tagB←−−−−−−−−−−−−−− Set sid to (B̂, Â,R, YB , XA)
Compute Y = ê(YB , dA)

(κm, κ) = H(X, Y, Â, B̂, XA, YB)

tagB
?
= MACκm (R, B̂, Â, YB , XA)

tagA = MACκm (I, Â, B̂,XA, YB)

Update sid to (Â, B̂, I,XA, YB)
B̂,Â,R,YB,XA,tagA−−−−−−−−−−−−−−−→

accept κ, complete tagA
?
= MACκm (I, Â, B̂,XA, YB)

accept κ, complete

MACκm(R, B̂, Â, YB, XA), tagA = MACκm(I, Â, B̂,XA, YB), store tagA
and destroy y,X, Y, κm. Send Â, B̂, I, XA, YB, tagB to Â and set the ses-
sion identifier to (B̂, Â,R, YB, XA).

3. Receiving the message from B̂, Â computes Y = ê(YB , dA), (κm, κ) =
H(X,Y, Â, B̂,XA, YB), verifies tagB = MACκm(R, B̂, Â, YB, XA), if veri-
fication is passed, computes tagA = MACκm(I, Â, B̂,XA, YB), and sends
B̂, Â,R, YB , XA, tagA to B̂. After that Â updates the session’s session iden-
tifier to (Â, B̂, I, XA, YB), accepts κ, and completes the session.

4. B̂ verifies tagA = MACκm(I, Â, B̂,XA, YB), if the verification is passed, B̂
accepts κ and completes the session.

Theorem 1. Suppose that the GDHD assumption for G holds; the GBDH as-

sumption for G1,GT holds ; the MAC scheme is secure; H and H1 are random

oracles. Then the above key agreement protocol is secure in our security model.

The proof of this theorem will be given in the full version of the paper.

Remark: In 2010, Fiore and Gennaro [11] presented an id-based key agreement
protocol without pairings, which uses a new type of extract algorithm. Our
protocol can be easily extended to such kind of extract algorithm.

5 Forward Security and Resistance to Leakage of

Ephemeral Keys

Both protocols above have neither the properties of forward security nor resis-
tance to leakage of ephemeral keys of both sessions. In this subsection, we show
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Table 2. Protocol Π2: The Extract 1 case with enhanced security

Â(QA, dA) B̂(B, b)

x ∈R Z
∗
q , X = Gx, XA = Bx

π = H3(dA, r), Π = Gπ, S2 = Bπ

Destroy π, r.

Initialize sid to (Â, B̂, I,XA, Π)
B̂,Â,R,XA,Π−−−−−−−−−−→ Verify that XA, Π ∈ G∗

y ∈R Z
∗
q , Y = ê(S, yQA), YB = yP

Compute Y1 = Gy, S2 = Πb

Compute X = (XA)1/b, S1 = (X)y

(κm, κ) = H(X, Y, S1, S2,

Â, B̂, XA, Π, YB , Y1)

tagB = MACκm (R, B̂, Â, YB , Y1,
XA, Π), tagA = MACκm (I,

Â, B̂, XA, Π, YB , Y1)
Destroy y, y1, X, Y, S1, S2 and κm

Verify that YB ,∈ G∗
1 , Y1 ∈ G∗ Â,B̂,I,XA,Π,YB,Y1,tagB←−−−−−−−−−−−−−−−−−−− set sid to (B̂, Â,R, YB , Y1, XA, Π)

Compute Y = ê(YB , dA), S1 = Y x
1

(κm, κ) = H(X, Y,S1, S2,

Â, B̂,XA, Π, YB , Y1)
Verify tagB , Compute tagA

Update sid to

(Â, B̂, I,XA, Π, YB , Y1)
B̂,Â,R,YB,Y1,XA,Π,tagA−−−−−−−−−−−−−−−−−−−→ Verify tagA

accept κ, complete accept κ, complete

how to extend our protocol to be forward secure and resistant to leakage of both
ephemeral keys. The protocol Π2 is described in Table 2. Protocols in other
extract algorithm case can be easily extended to achieve the security properties
using the same method.

Here, we let |q1| = |q2| = q. In this precondition, G and G1 have the same
order, but they are still different groups: one is a multiplication group while the
other is a addition group. Situation of the case when the order of these two
groups are different can be easily extended.

Similar to [22], we can define the eCK variant of our security model. The
protocol Π2 can prove secure in the eCK variant model under the GDHD, GDH
and GBDH assumptions, which will be given in the full paper.

6 Comparisons with Related Protocols

In table 3, we compare our protocols with other related protocols in terms of com-
putation cost of id-based party (id− based) and cert-based party (cert− based)
respectively, and the scopes protocols can be used to support varied groups,
multi-CAs and multi-KGCs. We consider exponent (e), bilinear map operations
(p), multiplication operation of elliptic curve groups (m) and exponentiation in
GT (E) for computation cost. We use y or n to denote whether the protocol
supports varied-groups, multi-CAs, multi-KGCs or not.
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Table 3. The comparisons with integrating protocols

protocols party computation cost varied-groups multi-CAs multi-KGCs

SCK-3 [8] id − based(Â/B̂) 2P + 3m n n y

MB-3[18] id − based(Â/B̂) 1P + 3m n n y

B11 [22]
id − based(Â) 2P + 5m

n n n
cert − based(B̂) 2P + 4m

protocol Π1
id − based(Â) 1P + 2e

y y y
cert − based(B̂) 1P + 1e+ 2m

protocol Π2
id − based(Â) 1P + 5e

y y y
cert − based(B̂) 1P + 4e+ 2m

Table 3 shows that protocols Π1 have obvious advantage in computation cost.
The protocol Π2 is more efficient than the protocol in [22]. Besides, the partic-
ipants of our protocols can use parameters from different groups and get static
keys from different KGCs.

7 Conclusion and Future Work

In this paper we propose an explicitly authenticated key agreement protocol with
one party being identity-based and the other being certificate-based. Participants
of the protocol can use parameters from different groups. There can also be
multiple CAs issuing certification to certificate-based parties and multiple KGCs
generating static keys for identity-based parties. We extend the security models
of [6,22] to capture multiple CAs, multiple KGCs and explicit authentication.
The protocol’s security is proved in the extended model. We also extend the
protocol to be forward secure and resistant to leakage of both session’s ephemeral
keys. Comparison shows that our protocols satisfy higher demands for usability
and have comparable efficiency.
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Abstract. In this paper, we study property preservation capabilities
of several domain extension transforms for hash functions with respect
to multiple enhanced security notions. The transforms investigated in-
clude MD with strengthening padding (sMD), HAIFA, Enveloped Shoup
(ESh) and Nested Linear Hash (nLH). While the first two transforms
and their straightforward variants are among the most popular ones in
practical hash designs including several SHA-3 candidates, the last two
transforms (i.e. ESh and nLH) are mainly of a theoretical interest in
the analysis of multi-property-preservation (MPP) capabilities of hash
domain extenders. The security notions considered are the enhanced (or
strengthened) variants of the traditional properties (collision resistance,
second-preimage resistance, and preimage resistance) for the setting of
dedicated-key hash functions. The results show that most of these en-
hanced security notions are not preserved by the investigated domain
extenders. This might seem a bit disappointing from a provable security
viewpoint, that advocates MPP paradigm (i.e. the more properties pre-
served simultaneously by a transform the more popular is the transform
from a theoretical viewpoint); however, it is worth stressing that the mere
fact that a domain extender fails to preserve a property P does not im-
ply that a hash function built upon it is insecure. Rather, it just implies
that security of the hash function in the sense of the property P cannot
be deduced based on the assumption that the underlying compression
function possesses P.

Keywords: hash functions, security properties, domain extension,
multi-property-preservation.

1 Introduction

A cryptographic hash function converts a variable-length input message into a
short (typically) fixed-length digest, while providing some security properties.
Hash functions are used in a vast variety of cryptographic applications, both in
symmetric key and public key cryptosystems; for example, in message authenti-
cation codes and digital signatures. Designing multi-purpose cryptographic hash
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functions has turned out to be a challenging task; it has been considered for
decades [8, 7], yet remains a highly active and interesting area of research, tak-
ing a lot of effort from the cryptographic community to come up with a new
hash function standard through the current SHA-3 competition [13].

A major difficulty in designing a “secure” cryptographic hash function lies in
the fact that hash functions are often expected to satisfy several different security
properties depending on the security requirements of applications employing
them [14, 4, 1, 18]. In regard to security notions for cryptographic hash functions,
two theoretical aspects are of great interest; namely, formalization of security
notions and analysis of implications and separations between different properties
(there are a few works in this line of research, e.g. [9, 19, 15, 14, 18]), and study
of a property-preserving domain extension transforms or “modes of operation”.
The latter problem is further investigated in this paper.

The most well-known and widely-used domain extender is the strengthened
Merkle-Damg̊ard (s-MD) construction which is known to be a collision resis-
tance (Coll) preserving transform [7, 8]. Bellare and Rogaway [3] showed that
s-MD, despite preserving collision resistance, is unable to preserve the UOWHF
property [12] which is a weaker notion of security compared to the Coll prop-
erty. Bellare and Ristenpart in Asiacrypt 2006 [4] advocated designing domain
extension transforms in a way that they can simultaneously preserve multi-
ple security properties of the underlying compression function. Multi-property-
preserving (MPP) domain extension has been studies in several follow-up works,
e.g. [5, 1, 17].

Due to the “orthogonality of property preservation” [4], in general one cannot
use the mere fact that a domain extender preserves a given security property P to
deduce whether the extender can also preserve another weaker security property
P′ or another stronger security property P′′. To clarify this, note that Bellare
and Rogaway [3] showed that the s-MD transform, despite being able to preserve
the Coll property, is unable to preserve the notion of target collision resistance
(TCR) which is a weaker property than the Coll property. As another example,
Reyhanitabar, Susilo and Mu [16] showed that several TCR-preseving domain
extenders fail to preserve eTCR, which is a stronger security notion than the
TCR property. We also refer to [4] where it has been shown that the prefix-free
MD which is a random-oracle preserving transform [6] does not preserve the Coll
property.

Our Contribution. We investigate MPP capabilities of four domain extension
transforms with respect to the enhanced security properties of [18]; namely, we
analyze the Strengthened MD (sMD) [8, 7], HAIFA [2], Enveloped Shoup [5]
and Nested Linear Hash (nLH) [3, 16] domain extension transforms. Table 1
provides an overview of the MPP capabilities of these transforms, where the
unreferenced entries related to the enhanced (or “strengthened” [18]) security
properties are the results shown in this paper; namely, the (unreferenced) results
on strengthened collision-resistance (s-Coll), strengthened second-preimage re-
sistance (s-Sec), strengthened always Sec (s-aSec), strengthened everywhere Sec
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Table 1. Overview of the constructions and the properties they preserve. “Y” means
that the property is preserved by the construction; “N” means that it is not preserved.

Coll Sec aSec eSec Pre aPre ePre s-Coll s-Sec s-aSec s-eSec s-Pre s-aPre
sMD Y [7, 8] N [1] N [1] N [3] N [1] N [1] Y [1] Y N N N [16] N N
HAIFA Y [2] N [1] N [1] N [1] N [1] N [1] Y [1] Y N N N N N
ESh Y [5] N [17] N [17] Y [5] N [17] N [17] Y [17] N N N N [16] N N
nLH Y [3] N [1] N [1] Y [3] N [1] N [1] Y [1] Y N N Y [16] N N

(s-eSec a.k.a. eTCR), strengthened preimage resistance (s-Pre) and strength-
ened always Pre (s-aPre). We follow the nomenclature used in [18] for referring
to these security properties.

2 Preliminaries

Notations and Conventions. If X is a finite set, by x
$← X it is meant that

x is chosen from X uniformly at random. For a binary string M =M1||M2|| · · ·
||Mm, let M1...n denote the first n bits of M (i.e. M1|| · · · ||Mn) and |M | denote
its length in bits (where n ≤ m = |M |). Let x||y denote the string obtained
from concatenating string y to string x. Let 1m and 0m, respectively, denote a
string of m consecutive 1 and 0 bits, and 1m0n denote the concatenation of 0n

to 1m. The set of all binary strings of length n bits (for some positive integer
n) is denoted by {0, 1}n, the set of all binary strings whose lengths are variable

but upper-bounded by N is denoted by {0, 1}≤N
and the set of all finite binary

strings is denoted by {0, 1}∗. If S is a finite set we denote size of S by |S|. The
symbol ∧ denotes logical ‘AND’ operation, and the symbol ∨ denotes logical
‘OR’ operation. For a positive integer m, let 〈m〉b denotes binary representation

of m by a string of length exactly b bits. The operation M1 · · ·ML
b← M is

defined as follows. Let L = �|M |/b�; if |M | mod b = 0 then parse M into its
b-bit blocks M1 · · ·ML where |Mj| = b for 1 ≤ j ≤ L; otherwise parse M into
M1,M2, · · · ,ML−1,ML such that |Mj| = b for 1 ≤ j ≤ L − 1 and |ML| = |M |
mod b (i.e. the last block ML may be shorter than a normal block, though it is
still counted as a block).

We denote a hash function by H : K ×M → {0, 1}n where K and M are
called the key space and message space, respectively, and n is a positive integer
s.t. log2|M| > n (this is to stress that H can compress). The keyspace K is a
non-empty set of strings which may be called keys, indexes or salts (depending
on the setting).

Definitions of Enhanced Security Notions. As usual in concrete-security
definitions, the resource parameterized function Advxxx

H (r) denotes the maximal
value of the adversarial advantage ( Advxxx

H (r) = maxA {Advxxx
H (A)} ) over all

adversaries A, against the xxx property of H , that use resources bounded by r.
For the six strengthened security notions, the advantage functions are defined
in Fig. 1.
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Advs-Coll
H (A) = Pr

[
K

$← K; (M,M ′,K ′) $← A(K) : (K, M) �= (K ′,M ′) ∧ HK(M) = HK′(M ′)
]

Advs-Sec[δ]
H (A) = Pr

[
K

$← K; M $← {0, 1}δ ;

K ′,M ′ $← A(K, M) : (K, M) �= (K ′,M ′) ∧ HK(M) = HK′(M ′)

]

Advs-aSec[δ]
H (A) = Pr

⎡
⎢⎣

(K, State) $← A1();

M
$← {0, 1}δ ;

K ′,M ′ $← A2(M,State) : (K, M) �= (K ′,M ′) ∧ HK(M) = HK′(M ′)

⎤
⎥⎦

Advs-eSec[δ]
H (A) = Pr

⎡
⎢⎣

(M,State) $← A1();

K
$← K;

K ′,M ′ $← A2(K, State) : (K, M) �= (K ′,M ′) ∧ HK(M) = HK′(M ′)

⎤
⎥⎦

Advs-Pre[δ]
H (A) = Pr

[
K

$← K; M $← {0, 1}δ ; Y ← HK(M);

K ′,M ′ $← A(K, Y ) : HK′(M ′) = Y

]

Advs-aPre[δ]
H (A) = Pr

⎡
⎢⎣

(K, State) $← A1();

M
$← {0, 1}δ ; Y ← HK(M);

K ′,M ′ $← A2(Y, State) : HK′(M ′) = Y

⎤
⎥⎦

Fig. 1. Definitions of the enhanced security notions for hash functions [18]

3 Our Target Domain Extenders

A domain extender transforms a compression function h : {0, 1}k ×{0, 1}n+b →
{0, 1}n to a hash function H : K ×M → {0, 1}n where the message space M
can be either {0, 1}∗ (in which case H is an arbitrary-input-length function) or

{0, 1}<2λ
(in which case H is a VIL function), for some positive integer λ (e.g.

λ = 64). A domain extension transform comprises two functions: an (injective)
padding function fp, and an iteration function fi. First, the padding function
fp : M → DI is applied to an input messageM ∈M to convert it to the padded
message fp(M) in a domain DI . Then, the iteration function fi : K × DI →
{0, 1}n uses the compression function h as many times as required, and outputs
the final hash value. The full-fledged hash function H : K × M → {0, 1}n is
obtained by combining the two functions; that is, H(K,M) = fi(K, fp(M)).

Padding Schemes. The padding functions, which are used by our target domain
extension transforms (namely, sMD, HAIFA, nLH, and ESh ) are defined in the
following, where 2λ is the maximum message length in bits (typically λ = 64).

Strengthening (a.k.a. suffix-free) Padding. This padding function is de-

fined as pads : {0, 1}<2λ → ⋃i≥1 {0, 1}ib where pads(M) =M ||10p|| 〈|M |〉λ and
p is the minimum number of 0’s required to make the padded message pads(M)
be of length ib bits, for a positive integer i. A variant of this strengthening
padding, which may be named as ‘Nested Strengthening’ or ‘Full-Final-Block
Strengthening’ and we denote it by pad∗s, is obtained when λ = b, i.e. when the
complete final block is merely used for length indication.
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HAIFA Padding. We note that our description of the HAIFA padding here
is different from the original definition in [2], as here, we aim to show that
HAIFA can be described by MD iteration combined with this specific padding.
More precisely, here we consider inclusion of the “number of bits hashed so
for” as part of the padding scheme before the iteration, while in [2] inclusion of
the number of bits hashed so for is considered as part of the iteration process.
Clearly, these are just two interpretations of how HAIFA works, and hence, as
far as the property-preservation analysis of the whole HAIFA construction as a
domain extender matters, these two representations are in fact equivalent. We
also note that, here we assume only a fixed-length digest and hence the padding
does not include the hash size.

The padding function for HAIFA can be defined as padHAIFA : {0, 1}<2λ →⋃
i≥1 {0, 1}ib where padHAIFA(M) is computed using the following algorithm:

1. M ′ ← M ||10p|| 〈|M |〉λ where p is the minimum number of 0’s required to
make the new messageM ′ be of length i(b−λ) bits, for some positive integer
i.

2. M ′
1 · · ·M ′

L
b−λ← M ′; i.e. parse M ′ into L blocks each of length b− λ bits.

3. Set #bits = 0 (where #bits denotes the number of bits hashed so far). Now,
for 1 ≤ j ≤ L− 1 do: #bits← #bits+ (b− λ) ; M ′′

j ←M ′
j || 〈#bits〉λ.

4. If M ′
L is a full padding block (i.e., the full original message was already

included in M ′
1 · · ·M ′

L−1) then M
′′
L ←M ′

L|| 〈0〉λ else M ′′
L ←M ′

L|| 〈|M |〉λ.
5. Return the padded message M ′′ =M ′′

1 · · ·M ′′
L.

Strengthened Chain Shift Padding. This padding function is defined as

padCSs : {0, 1}<2λ → ⋃i≥1 {0, 1}(i+1)b−n
where padCSs(M) = M ||10r|| 〈|M |〉λ

||0p, and parameters p and r are defined in the following two ways depending on
the block length b. If b ≥ n + λ then p = 0, otherwise p = b − n. Then r is the
minimum number of 0’s required to make the padded message padCSs(M) be
of length ib+ (b− n) bits, for a positive integer i.

Modes of Iteration. The iteration functions, used by our target domain ex-
tension transforms, namely, MD variants (including sMD, pre-MD, HAIFA),
nLH and ESh, are shown in Figure 2 where IV, IV1, and IV2 are some known
initial values ∈ {0, 1}n, and IV1 �= IV2; Lmax denotes the maximum allowed
message length in blocks after padding; L denotes the length (in blocks) of a
specific input message after padding applied.

Full-fledged Constructions. Given a compression function h : {0, 1}k ×
{0, 1}n+b → {0, 1}n, and some fixed initial values IV, IV1, and IV2 ∈ {0, 1}n
s.t. IV1 �= IV2, the full-fledged hash constructions obtained by using the target
domain extension transforms are defined as follows.

MD Variants. We say that a domain extension transform is an MD variant if it
uses MDh

IV for its mode of iteration together with its specific padding scheme.

– sMD [8, 7]: This transform defines a VIL hash function H : {0, 1}k ×
{0, 1}<2λ → {0, 1}n by H(K,M) =MDh

IV (K, pads(M)).
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MDh
IV : K ×⋃Lmax

i=1 {0, 1}ib → {0, 1}n, where K = {0, 1}k

Algorithm MDh
IV (K, M)

C0 = IV
for i = 1 to L do

Ci = hK(Ci−1||Mi)
return CL

IV hh h

M3 MLM1 M2

C2 C3 CL−1 CLC1 h

K KK K

IV hh h

M3 MLM1 M2

CLh

K3 KLK1 K2

LHh
IV : K ×⋃Lmax

i=1 {0, 1}ib → {0, 1}n, where K = {0, 1}kLmax

Algorithm LHh
IV (K1||K2|| · · · ||KL,M)

M1 · · ·ML
b←M

C0 = IV
for i = 1 to L do

Ci = hKi
(Ci−1||Mi)

return CL

EShh
IV1,IV2

: K ×⋃Lmax−1
i=1 {0, 1}ib+(b−n) → {0, 1}n, where K = {0, 1}k × {0, 1}ntmax

tmax = �log2(Lmax − 1)�+ 1, t = �log2(L− 1)�+ 1, ν(i) = max {x : 2x|i}

Algorithm EShh
IV1,IV2

(
(K, K0||K1|| · · · ||Kt−1),M

)

Kμ = Kt−1; M1 · · ·ML
b←M ; C0 = IV1

for i = 1 to L− 1 do
Ci = hK((Ci−1 ⊕Kν(i))||Mi)

CL = hK((IV2 ⊕K0)||(CL−1 ⊕Kμ)||ML)
return CL

IV1 h h

M1 M2

K KK1K0

h

ML−1

K KμKν(L−1)

b− n

ML

CLh

KK0

IV2

Fig. 2. From top to bottom: MD iteration [8, 7], LH iteration [3] and ESh [5]

– HAIFA [2]: This transform defines a VIL hash function H : {0, 1}k ×
{0, 1}<2λ → {0, 1}n by H(K,M) = MDh

IV (K, padHAIFA(M)). We note
that HAIFA can also handle variable length digests as shown in [2], but here
we assume that the hash size is fixed to n bits. The key K here is the same
as the “salt” S in [2].

nLH [3]. Here, we consider a variant of LH, denoted by nLH in this paper,
which combines the LH iteration with the full-final-block (nesting) strengthen-
ing which we denoted by pad∗s. The nLH domain extension transform defines a

VIL hash function H : K × {0, 1}<2λ → {0, 1}n by H
(
K1|| · · · ||KLmax ,M

)
=

LHh
IV

(
K1|| · · · ||KL, pad

∗
s(M)
)
where K = {0, 1}kLmax , Lmax denotes the maxi-

mum allowed message length in blocks (after applying pad∗s) and L denotes the
length of the input message M in blocks after padding.

ESh [5]. The VIL hash function H : K × {0, 1}<2λ → {0, 1}n is defined by
H
(
(K,K0|| · · · ||Ktmax−1),M

)
= EShhIV1,IV2

(
(K,K0|| · · · ||Kt−1), padCS(M)

)
in

which K = {0, 1}k × {0, 1}ntmax , tmax = �log2(Lmax − 1)� + 1, Lmax denotes
the maximum allowed message length in blocks (after applying padCS), t =
�log2(L)� and L denotes the length of the input message M in blocks after
padding. Note that, although the final block (after applying padCS) has only
b− n bits, it is still counted as a block.
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4 Analysis of the Transforms

4.1 Analysis of s-Coll Preservation

We show both negative and positive results with regard to preservation of s-Coll
by the four target transforms. Namely, Theorem 1 shows that ESh does not
preserve the s-Coll property and Theorem 2 shows that s-Coll is preserved by
sMD, HAIFA and nLH transforms.

Theorem 1. Let h : {0, 1}k×{0, 1}n+b → {0, 1}n be a (t, ε)−s-Coll compression
function, and IV1 and IV2 be any arbitrary fixed initial values ∈ {0, 1}n s.t.
IV1 �= IV2. The full-fledged VIL hash function H obtained by using ESh domain
extension transform is insecure in the sense of s-Coll property; i.e., there is an
efficient adversary that can break its s-Coll property with probability 1.

Proof. We construct an adversary A that has a (small) constant time complexity
and breaks the s-Coll property of H with probability 1. A works as follows.
After receiving the first key K from the challenger in the s-Coll game, A outputs
(M,M ′,K ′) as follows:

– A chooses M �= M ′ s.t. M = M1|| · · · ||ML−1 and M ′ = M ′
1|| · · · ||M ′

L−1

(where Mi ∈ {0, 1}b for 1 ≤ i ≤ L − 1). After applying the padding (where
b ≥ n + λ) we have padCSs(M) = M1|| · · · ||ML−1||10b−n−1−λ|| 〈(L− 1)b〉λ
and padCSs(M

′) = M ′
1|| · · · ||M ′

L−1||10b−n−1−λ|| 〈(L− 1)b〉λ. That is, the
inputs to ESh iteration function (see Fig. 2) will have the same last block as
ML =M ′

L = 10b−n−1−λ 〈(L− 1)b〉λ.
– A computes K ′ by putting all blocks of it the same as those of K except

the last key block (i.e. K ′
μ �= Kμ). The value of K ′

μ is computed as K ′
μ =

Kμ ⊕ CL−1 ⊕ C′
L−1 in order to cancel out the introduced difference in the

chaining variables CL−1 and C′
L−1 (related to the computation for M and

M ′, respectively). Clearly, this makes CL = C′
L, i.e. the pairs (K,M) and

(K ′,M ′) collide under H .

The above description was for the case that b ≥ n + λ. The attack descrip-
tion for the case that b < n + λ is quite similar. In this case padCSs(M) =
M1|| · · · ||ML−1||10b−λ−1|| 〈(L− 1)b〉λ ||0b−n and padCSs(M

′) =M ′
1|| · · · ||M ′

L−1

||10b−λ−1|| 〈(L− 1)b〉λ ||0b−n, hence, again the last blocks input to iteration func-
tion will be the same for two messages as ML+1 = M ′

L+1 = 0b−n. Therefore,
the difference between CL and C′

L can be canceled out by adjusting K ′
μ =

Kμ ⊕ CL ⊕ C′
L to make collision at the hash values (i.e. CL+1 = C′

L+1). ��

Theorem 2. Let h : {0, 1}k×{0, 1}n+b → {0, 1}n be a (t, ε)−s-Coll compression
function, and IV ∈ {0, 1}n be an arbitrary fixed initial value. The full-fledged
VIL hash construction obtained by using either of the sMD, HAIFA or nLH
domain extension transforms will be (t′, �, ε)−s-Coll where t′ = t − cThL. c is
a small constant, L is the number of blocks after padding a message of length �
bits, and Th denote the time for computing h.
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Proof (Sketch). The proof is a slight modification of the Coll-preservation proofs
for these domain extenders [8, 7, 2], using a simple reduction to transform any
adversaryA against the Coll property of the VIL hash functionH to an adversary
B against the Coll property of the underlying compression function h. The only
difference here for the case of s-Coll is that now an adversary attacking s-Coll
can also select a second key K ′ which may be different from the first key K
given as a challenge. That is, A after receiving a random key K may output
(K,M) �= (K ′,M ′) s.t.H(K,M) = H(K ′,M ′) (where �=maximum {|M |, |M ′|})
. Clearly, if K = K ′ (enforcing M �= M ′) then the reduction is the same as in
the case of Coll preservation. If K ′ �= K the reduction is quite similar; namely,
adversary B runs A by passing its own challenge key K to A, and after receiving
the colliding pair (K,M) and (K ′,M ′) from A, computes all the intermediate
results in computations of H(K,M) and H(K ′,M ′). Then starting from the
final hash value where the two pairs collide (and going backward) B searches for
the first position i where the corresponding (n + b)-bit messages or k-bit keys,
used in the computations of (K,M) and (K ′,M ′), are different from each other
and output these as a colliding pair (in the sense of s-Coll) for h. Figure 2 may
be helpful for verification of this, if needed. ��

4.2 Analysis of s-eSec Preservation

s-eSec (or eTCR) preservation capabilities of several domain extension trans-
forms (including ESh and nLH but not HAIFA) were first investigated in [16],
where it was shown that, except nLH, none of the other studied transforms can
preserve s-eSec. An issue with the nLH is that it has a linear key expansion in
the message length (i.e. |K| = Lk where L is the message length in blocks and k
is the key size for the underlying compression function). Mironov at FSE 2010
[10] provided an eTCR (s-eSec) preserving construction whose key expansion
is only logarithmic in the message length and hence improves upon the nLH.
Here, we study the e-eSec preservation capability of HAIFA. Theorem 3 shows
that HAIFA, similar to other variants of MD, does not preserve the s-eSec prop-
erty. To show this, we borrow a counterexample from [3] that was originally
used for the TCR (eSec) preservation analysis in [3] and later for eTCR (e-eSec)
preservation analysis in [16].

Theorem 3 (HAIFA does not preserve s-eSec). Let h : {0, 1}k×{0, 1}n+b

→ {0, 1}n be a (t, ε)−s-eSec compression function, s.t. b > k. Set the new

block length b′ = b − k and define a new compression function h′ : {0, 1}k ×
{0, 1}(n+k)+b′ → {0, 1}n+k

by

h′K(C1||C2||M) =

{
hK(C1||C2||M)||K if K �= C2

0n+k if K = C2

where K ∈ {0, 1}k , C1 ∈ {0, 1}n , C2 ∈ {0, 1}k ,M ∈ {0, 1}b′ (i.e., n + k is
the chaining variable length and b′ is the block length for h′). The compression
function h′ defined as above is (t′, ε′)−s-eSec, where ε′ = ε+2−k+1 and t′ = t−c,
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for a small constant c, but the VIL hash function obtained from it using the
HAIFA domain extension transform is completely insecure in the s-eSec sense.

Proof. It is known from [16] that h′ is (t′, ε′)−s-eSec (i.e. h′ inherits the s-
eSec property from h). It remains to show that the VIL hash function H :

{0, 1}k×{0, 1}<2λ → {0, 1}n obtained by applying HAIFA on h′, i.e.H(K,M) =

MDh′
IV (K, padHAIFA(M)) (where the initial value IV = IV1||IV2 ∈ {0, 1}n+k

is fixed and known) is completely insecure.
Adversary A = (A1, A2) attacking the e-eSec property of H works as follow.

A1 outputs M = 0b
′−λ and A2, on receiving the first key K, outputs a different

message M ′ = 1b
′−λ together with any arbitrary key K ′ s.t. K ′ �= IV2, as the

second key. Considering that the initial value IV = IV1||IV2 ∈ {0, 1}n+k
is fixed

before the adversary starts the attack and the key K is chosen at random by
the challenger, we have Pr [K = IV2] = 2−k. If K �= IV2 which is the case with
probability 1− 2−k then adversary succeeds in the s-eSec game as we have:

H(K, 0b
′−λ) =MDh′

IV (K, 0
b′−λ|| 〈b′ − λ〉λ ||10b

′−2λ−1|| 〈b′ − λ〉λ || 〈0〉λ)
= h′K
(
h′K(IV ||0b′−λ|| 〈b′ − λ〉λ)||10b

′−2λ−1|| 〈b′ − λ〉λ || 〈0〉λ
)

= h′K
(
hK(IV ||0b′−λ|| 〈b′ − λ〉λ)||K||10b′−2λ−1|| 〈b′ − λ〉λ || 〈0〉λ

)
= 0n+k

H(K ′, 1b
′−λ) =MDh′

IV (K
′, 1b

′−λ|| 〈b′ − λ〉λ ||10b
′−2λ−1|| 〈b′ − λ〉λ || 〈0〉λ)

= h′K′

(
h′K′(IV ||1b′−λ|| 〈b′ − λ〉λ)||10b

′−2λ−1|| 〈b′ − λ〉λ || 〈0〉λ
)

= h′K′

(
hK′(IV ||1b′−λ|| 〈b′ − λ〉λ)||K||10b′−2λ−1|| 〈b′ − λ〉λ || 〈0〉λ

)
= 0n+k

��

4.3 Analysis of s-Sec, s-aSec, s-Pre and s-aPre Preservation

In regard to preservation of these four strengthened variants of the second-
preimage and preimage resistance properties for a dedicated-key hash function,
we show a negative result stating that none of these properties can be provably
preserved by any of the sMD, HAIFA, nLH, or ESh transform. This is in line
with the previously known negative results about inability of these transforms
and many others [1, 17] to preserve the associated (weaker) notions of Sec, aSec,
Pre, and aPre. However, we note that orthogonality of property-preservation
implies that this should be verified directly and may not be deduced from the
previous results on the weaker notions.

Theorem 4. None of the s-Sec, s-aSec, s-Pre and s-aPre properties can be pre-
served by any of the sMD, HAIFA, nLH, or ESh domain extension transforms.
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We prove this theorem using Lemma 1 and Lemma 2. These lemmas show that
we can construct counterexample compression functions which are secure in the
sense of xxx ∈ {s-Sec, s-aSec, s-Pre, s-aPre} assuming that there exist any xxx-
secure compression function, but for which the full-fledged hash functions ob-
tained using the target domain extension transforms are completely insecure in
the sense of xxx ∈ {s-Sec[δ], s-aSec[δ], s-Pre[δ], s-aPre[δ]}, respectively, and for
any value of the parameter δ < 2λ (2λ is the maximum input message length in
bits). Construction of these counterexamples are inspired from similar ones in
[17] where they were used in study of the Sec, aSec, Pre and aPre preservation.

Lemma 1. Let h : {0, 1}k × {0, 1}n+b → {0, 1}n be a (t, ε)−xxx compression
function where xxx ∈ {s-Sec, s-aSec, s-Pre, s-aPre}. Define new compression

functions h′ : {0, 1}k × {0, 1}n+b → {0, 1}n+1
and h′′ : {0, 1}k × {0, 1}n+b →

{0, 1}n+1
by

h′K(M) =

{
1n+1 if M(n+b−λ+1)···(n+b) = 〈δ〉λ
hK(M)||0 otherwise

h′′K(M) =

{
1n+1 if M(n+b−λ+1)···(n+b) = 〈δ〉λ ∨M(n+b−λ+1)···(n+b) = 〈0〉λ
hK(M)||0 otherwise

.

The compression function h′ is (t−c, ε+2−λ)−xxx and h′′ is (t−c, ε+2−λ+1)−xxx
for any xxx ∈ {s-Sec,s-aSec, s-Pre, s-aPre} for which h is (t, ε)−xxx, respec-
tively. c is a small absolute constant.

Proof. The idea behind the construction of h′ and h′′ is that in all of the four
games defining the s-Sec, s-aSec, s-Pre, and s-aPre properties (see Fig. 1) the
first message M is chosen at random by the challenger; hence, the probability
of the event, denoted by Bad, where the last λ bits of M equal to a fixed λ-bit
string in the case of h′ or either of two fixed stings in the definition of h′′ is ,
respectively, 2−λ and 2−λ+1 (becoming negligible for a typical value of λ e.g.
λ = 64). The domain separation in the constructions of h′ and h′′ is achieved
by simply appending a constant bit with value 0 to the hash value hK(M) and
aims to force (second)preimages to belong to the same domain. It remains to
show that unless Bad happens, any adversary against an xxx property of h′ or
h′′ can be easily transformed to an adversary against the xxx property of h. The
reductions showing this for any xxx ∈ {s-Sec, s-aSec, s-Pre, s-aPre} are simple,
and hence in the following we only describe the reduction for one of the cases;
namely, we show that h′ inherits s-Sec from h. All the remaining reductions for
the other cases are quite similar and omitted here.

The case of h′ and xxx=s-Sec: Let A be an adversary attacking the s-Sec
property of h′, that has time complexity t′ and advantage ε′. We construct and
adversary B against the s-Sec property of h that has time complexity t = t′ + c
(for a small constant c) and advantage ε = ε′−2−λ. Adversary B on receiving the

key K and the first messageM (where K
$← {0, 1}k and M

$← {0, 1}n+b
) checks

whether the event Bad has happened, i.e. whether M(n+b−λ+1)···(n+b) = 〈δ〉λ
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or not. If Bad happened then B would abort; otherwise, it forwards K and M
to A, gets the second preimage M ′ and the second key K ′ from A for h′, and
outputs M ′ and K ′ as its own second preimage and key pair for h. We note that
if Bad does not happen, then according to the construction of h′ adversary B
wins the s-Sec game against h (i.e. we have (K,M) �= (K ′,M ′) and hK(M) =
hK′(M ′)) whenever A wins the s-Sec game against h′ (i.e. if (K,M) �= (K ′,M ′)
and h′K(M) = h′K′(M ′)). Hence, we have Pr[B wins]=Pr[A wins and Bad] ≥
Pr[A wins]-Pr[Bad ] = ε′ − 2−λ. The time complexity of B is that of A plus a
small constant time used for reading/writing and forwarding the messages. ��
Lemma 2. For any xxx ∈ {s-Sec[δ], s-aSec[δ], s-Pre[δ], s-aPre[δ]} and for any
value of the parameter δ < 2λ, there is an adversary with constant time complex-
ity that with probability 1 breaks the hash functions obtained by applying sMD,
nLH and ESh on the counterexample compression function h′ and the HAIFA
hash function constructed using the counterexample compression function h′′.

Proof. For the cases of sMD, nLH and ESh using h′, from the definitions of the
padding sachems for these transforms (see Section 3) and the construction of h′,
we have H(K,M) = 1n+1 for any arbitrary K ∈ K and any M ∈ {0, 1}δ (for
an arbitrary value of the parameter δ s.t. δ < 2λ). This is because, the last λ
bits of the padded message will encode the message length, i.e. |M | = δ, and
this forces h′ (applied to the final padded block in the iteration) to output the
constant value 1n+1. Hence, in s-Pre[δ] and s-aPre[δ] attacks adversary A just

outputs any arbitrary M ′ ∈ {0, 1}δ and K ′ ∈ K and always wins. Similarly, in
s-Sec[δ] and s-aSec[δ] attacks A simply outputs an arbitrary K ′ ∈ K and any

M ′ ∈ {0, 1}δ such that M ′ �=M message and always wins.
The case for HAIFA using h′′ is quite similar and we haveH(K,M) = 1n+1 for

any arbitrary K ∈ K and any M ∈ {0, 1}δ. This is because by the definition of
padHAIFA, the last λ bits of padHAIFA(M) is either 〈0〉λ (if it is a full padding
block) or 〈|M |〉λ (if it contains some message bits). Now, it is easy to see that
both of these cases will force the final application of the compression function
h′′ to output the constant value 1n+1 ��
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Abstract. Secret sharing has been used in multicast network coding
to transmit information securely in the presence of a wiretapper who is
capable of eavesdropping a bounded number of network edges. Typically
information-theoretic security against the wiretapper can be achieved
when multicasting a message by concatenating it with some random
symbols and representing them with a carefully chosen network code. In
this paper, we revisit a secret sharing approach to network codes. Par-
ticularly, we are concerned with whether or not a given network code is
secure. We derive a necessary and sufficient condition for a given network
code to be secure for a network coding instance. In comparison with pre-
vious work, our condition is more explicit in the sense that it is easier
to verify. Furthermore, we devise a precise algorithm to transform an
insecure network code into a secure one. Our algorithm achieves smaller
secure code alphabet size over previous work.

Keywords: Network coding, secret sharing, information-theoretic
security.

1 Introduction

As opposed to the standard routing technology that allows intermediate nodes
to simply copy and forward their incoming packets, network coding [1] enables
an intermediate node to encode received packets before forwarding them. One
consequence of this is that network coding can provide a higher throughput rate
than the standard copy-and-forward routing does. Particularly, in a multicast
network where multiple receivers demand all messages from the same source,
Li et al. [2] showed that one can achieve a maximal transmission rate at every
receiver through network coding. On the contrary, it seems hard to attain maxi-
mal capacity using the standard routing [1]. Moreover, network coding increases
the robustness of packet routing and has lower energy consumption [5]. This
makes network coding attractive to various applications, for example content
distribution, wireless network coding and so forth [6, 7, 9–12].

Security can be a major concern in a networking system and securing network
coding against both passive and active attacks is non-trivial at all. There has
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been a great deal of work on network coding security against an active adversary,
see for example [13–19]. In this paper, however, we focus on information-theoretic
security against a passive adversary, modeled as a wiretapper who eavesdrops
along a limited number of network links within a multicast network. Particularly,
we require that no information about a protected message is revealed to the
wiretapper. Note that this is a stronger requirement than a security model that
allows disclosure of partial information to the passive adversary [20, 21]. Putting
this into the context of securing a network code, our goal is to find an appropriate
network code such that the wiretapper has no way to deduce any information
about the original message. We achieve this using techniques from secret sharing
[28, 34, 35].

Succinctly, secret sharing is a concept that allows a dealer to share a secret
with multiple participants in an information-theoretically secure way against
the passive adversary. The dealer can achieve this using a secret sharing scheme
that performs the following: (i) computing a suitable function over the secret
concatenated with some random elements; and (ii) distributing as shares the
function output to multiple participants. The function is chosen by the dealer in
such a way that with the resultant shares, the participants share the secret while
ensuring information-theoretic security. Interestingly, there exists a natural con-
nection between secure network coding and secret sharing. This is uncovered
by Cai and Yeung [22] and further investigated by Feldman et al. [23]. Using
a secret sharing approach, transmission of a network code can be regarded as
a secret sharing scheme where all network edges (participants) share a message
(secret) originated from the source (dealer). A network code, in the form of a
function, is chosen by the source in order to compute shares as in a secret sharing
scheme. Informally, we say a network code is secure, if the function represent-
ing the associated network code is information-theoretically secure against the
adversary.

There exists another interesting approach in the literature that also addresses
information-theoretic security against the wiretapper in network coding. It is
called coset coding since it treats a secure network code as a combination of a
coset code [27] and a network code. This approach was introduced by Rouayheb
and Soljanin [24] and further developed by Silva and Kschischang [25]. How-
ever, as shown in [25], the construction proposed by Rouayheb and Soljanin is
equivalent to the above secret sharing approach. The only advantage of a coset
code over those presented in [22, 23] is that one can obtain a smaller secure code
alphabet size using the former approach. (We will revisit this point in Section
5.2). Furthermore, the code designed by Silva and Kschischang has been showed
to be not achieving perfect security [26].

Motivating Problems. In network coding security, we are concerned with the
security condition for a given network code. This is analogous to secret sharing
where it is essential to provide a security condition for a chosen function. On
this aspect, previous work [22, 23] simply adopts Shannon’s general condition
for perfect secrecy [8]. However, it is generally known that an entropy-based
condition is often too abstract, and thus, difficult to verify in practice.
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A natural and interesting question in securing network coding is how to make
a given network code secure. Cai and Yeung [22] and Feldman et al. [23] have
studied the feasibility of transforming an insecure network code into a secure
one. However, they have never provided an executable realization of their trans-
formation. Furthermore, Cai and Yeung derived an exponential lower bound (in
the size of edges wiretapped) on the required bandwidth for a secure network
code to achieve a maximally secure capacity. This is not very useful in practice.

In this work, we focus on addressing the above problems, which we will for-
mally define in Section 3.

Our Contributions. We first propose a new concept which we call k-threshold
secure matrix (see Definition 1). With this concept, we can then provide a suffi-
cient and necessary condition for a given network code to be secure for a network
coding instance (see Theorem 1). Our security condition is more explicit than
Shannon’s entropy-based condition. Consequently, it is easier to verify than that
adopted in [22, 23].

Further, we present a concrete algorithm that derives a secure network code
from a given network code. We also show that our required bandwidth is smaller
than Cai and Yeung’s bound. More importantly, we prove that our bandwidth
is as optimal as Rouayheb and Soljanin’s bound. Details on these results are
presented in Section 5. Note that we do not compare our results with those
by Feldman et al. [23], since the latter worked on smaller capacity and their
probability of realizing perfect security is less than 1.

We obtain our results by exploiting techniques from information theory and
secret sharing. Particularly, we realize linear transformation through linear al-
gebra to make a network code secure.

Organization. The remainder of the paper is organized as follows. Section 2
defines some concepts in network coding and its security, as well as secret sharing.
In Section 3, we formalize our motivating problems. In section 4, we introduce
the concept of k-threshold secure matrix and propose a condition to determine
whether or not a given network code is secure. Subsequently, in Section 5, we
present a concrete algorithm that is used to derive a secure network code. Lastly,
we conclude in Section 6.

2 Preliminaries

We first give some basic concepts and definitions related to network coding,
secure network coding, and secret sharing.

Security against k-Threshold Adversary. Suppose we are given a finite
field IFq, an original input x ∈ IFt

q, and a function W (x, r) : IFt
q × IFl

q → IFN
q .

Here r ∈ IFl
q is used as a random input for security consideration; and in our

settings where W is linear, we can easily write W (x, r) as (x, r)S with S being
an (t+ �)×N matrix and (x, r) being a concatenation of row vectors x and r .
Let also I ⊆ [N ] and SI represent the columns in S with indices restricted to I.
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We then say that S is secure against I if for all x, x′ ∈ IFt
q, we have that the

random variables (x, r)SI and (x′, r)SI are identically distributed. Naturally, we
say that S is secure against a k-threshold adversary if S is secure against I for
all I ⊆ [N ] with |I| ≤ k.

Network Coding. We consider a multicast network which is modeled as a unit
capacity directed graph G(V , E) with V its node set, E edge set, sG representing
the source node, TG denoting the set of sinks, n referring to the message length,
IFq being the finite field where symbols transmitted along network edges are
chosen from.

A network coding solution is a scheme, by which an arbitrarily generated mes-
sage m ∈ IFn

q can be multicast from the source to all the sinks simultaneously.1

More formally, a network coding solution is an assignment of |E| many functions
f(u,v), one for each edge (u, v) ∈ E , satisfying two properties below:

– For each edge (u, v), the symbol transmitted over (u, v) is the value of func-
tion f(u,v) applied to symbols flowing into node u (or the entire message
vector m in the case of u being the source node);

– For each sink v ∈ TG, if f(w,v) is applied to symbols flowing into (w, v) for
all w, it yields the original message vector m.

In linear network coding, each of the functions above are linear. If we regard
the original message m as a sequence of n symbols over IFq, by recursion, in
linear network coding, the function for each edge (u, v) is a linear function on
the original n symbols. We represent V(u,v) as the encoding vector for edge (u, v)
such that m · V(u,v) is the symbol carried over the edge (u, v).

A linear network code V for a network coding instance I= (G(V , E),n,N, q)
then consists of an encoding vector for each of the N edges, formally, V = {Ve :
e ∈ E}. It has been proved in [1, 2] that a linear network coding solution always
exists for I, as long as q ≥ |TG| (recall that TG is the sink set in G) and minimal
cut of G does not exceed n.

Unless otherwise indicated, from now on we refer to network coding as linear
network coding, and a network code as a linear network code.

Secure Network Coding. We now consider the security aspect of linear
network coding. We assume that an adversary can listen to transmissions over
up to k links of his choice.

We say a network coding solution is secure if an arbitrarily generated mes-
sage x ∈ IFt

q (t ≤ n necessarily [22, 24]) can be multicast from the source
to all the sinks, in a way that is information-theoretically secure against a k-
threshold adversary. A k-threshold secure network code for a network instance
I= (G(V , E),n,N, q) is then a network code for I that is secure against a k-
threshold adversary.

1 We don’t consider the timing issue within the network and thus assume that the
transmission across the entire network takes place in one unit time.
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(k, n,N)-Ramp Secret Sharing. A classic (k, n,N)-ramp secret sharing
scheme [36] is a secret sharing scheme where a dealer wants to share a secret
x ∈ IFn−k

q to N parties with two goals:

– Recoverability: This requires that any collaboration of at least n parties can
reconstruct x from their shares;

– Secrecy: This ensures that no collusion of at most k parties can gain any
information about x.

3 Problem Statement

We now illustrate a connection between secure network coding and classic ramp
secret sharing.

Firstly, it is obvious that they are connected with each other. To see why,
imagine there is a network coding scenario where a network code V is employed
to transmit a secret x ∈ IFn−k

q from the source through a network with N edges
and in the presence of a wiretapper who is capable of eavesdropping up to k
edges. A secure network coding under this situation is expected to achieve the
recoverability and secrecy goals mentioned before. From basic network coding
knowledge, any destination who receives n linearly independent vectors is able
to recover x. In other words, we can say that V is a valid network code for a
network coding instance I if V realizes recoverability in I. To achieve secrecy
with regards to x, it is sufficient that the network code V be a (k, n,N)-ramp
secret sharing scheme; and it is not hard to give a necessary condition for a
given network code to be secure for a given network coding instance. However,
it is hard to construct, or even to give a sufficient condition for a (k, n,N)-
ramp secret sharing scheme that is simultaneously also a valid network code
for a general network coding instance. The reason for this is that, for a general
network topology it is difficult to take care of the linear dependency of encoding
vectors between different edges, which is required, however, for all valid linear
network codes.

For the rest of the paper, therefore, as with [22] and [23], we assume that
V has been given as a valid network code for the underlying network coding
instance I. This way, we can restrict our concern to the security of a network
code constructed for an underlying network coding instance.

To our knowledge, the most studied (k, n,N)-ramp secret sharing schemes
are linear schemes where the share for each participant is computed by a lin-
ear function on the secret x appended with some random elements. To achieve
the required security, the function is chosen to be secure against a k-threshold
adversary. Following the connection between secure network coding and secret
sharing described above, one can make use of a suitable secret sharing scheme
to select a secure network code from a set of valid network codes. The following
scheme was adopted in [22, 23] to generate a secure network code V for the
network instance I:
Step 1: Choose a random vector r ∈ IFk

q and append r to the original message
x. We denote the resulting vector as X = (x, r).
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Step 2: From all valid network code candidates, choose a network code V such
that V is secure against a k−threshold adversary.

Step 3: Encode the vector X by transmitting along each link e the value XVe.

We call the method for constructing a secure network code using the above
scheme a secret sharing approach.

We remark that one crucial part in the secret sharing approach is how to
choose a proper V in Step 2 of the above scheme. Prior to choosing V , it is also
essential to determine whether or not a candidate V is secure. Cai and Yeung [22]
studied the maximally secure capacity case where t = n−k (the maximality was
proved in [22]). Their security condition was following closely Shannon’s general
condition for perfect secrecy [8], that is, a given network code V is secure if:

H(m|YA) = H(m) (1)

holds for all A ⊆E with |A| ≤ k, where H(X) denotes the entropy of random
variable X and YA represents the information intercepted by the adversary A
when V is employed. Similarly, Feldman et al. [23] also adopted the same security
condition as [22] in their work (although they considered the case with a lower
capacity).

In general, a candidate network code V may not be a k-threshold secure
network code for I. However, it has been proved in [22] that if q >

(
N
k

)
, there

exists a full rank n × n matrix T such that S = TV is a k-threshold secure
network code for I. This way, V becomes a secure network code for I, when the
source computes (x, r)T and uses it to represent a message (as compared to (x, r)
previously). Cai and Yeung also exhibited a sufficient constraint for T to make
V secure. Feldman et al. also showed that it is necessary to meet the sufficient
condition for T . However, none of them has given any concrete algorithm to find
a such a converter T .

We are now ready to state the problems that we intend to address in this
paper. Here we consider the maximally secure capacity case where t = n − k.
Given a network coding instance I= (G(V , E),n,N, q) and a network code V for
I, we are interested in solving the following:

Problem 1. Given a network code V , can one find an easier way than using (1)
above to determine whether or not V is a k-threshold secure network code for
I?
Problem 2. Can one lower the Cai and Yeung’s bound of q >

(
N
k

)
with regards

to T , as described above? More importantly, how can one construct a concrete
converter T such that S = TV is a k-threshold secure network code?

4 Security Condition for Network Codes

In this section, we give a solution to Problem 1.
Given a valid network code V for a network coding instance (G(V , E),q, k),

we first present the code as a full rank matrix (which we still call V ) that com-
prises column vectors (V T [e])e∈E . Henceforth, we will not distinguish between
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the vector and matrix representations of a network code. In what follows, we
define a concept called k-threshold secure matrix, which we subsequently use to
determine the security of V .

4.1 k-Threshold Secure Matrices

We denote the rank of a matrix S over IFq by rankq(S). Moreover, for ∀I ⊆ [N ],

we write SI as

[
SU
I

SL
I

]
where SU

I is the upper sub-matrix with size (n − k) × |I|
and SL

I the lower sub-matrix with size k × |I|.
Definition 1 (k−threshold secure matrix) Given n,N, k, IFq where k < n
and a full rank n×N matrix S, S is a k-threshold secure matrix over IFq if

rankq(SI) = rankq(S
L
I )

holds for all I ⊂ [N ] with |I| ≤ k.

We provide some examples of k-threshold secure matrices in Appendix A.

4.2 Determining Secure Network Codes

Theorem 1 below shows how one can verify if a network code is secure in a
straightforward manner using our concept of k-threshold secure matrices. Since
the latter is more explicit than the entropy-based condition shown in (1), our
theorem may be of independent interest.

Theorem 1. Given a network code V for a network coding instance I=
(G(V , E),n,N, q), with n denoting the minimal cut of G and N = |E|, V is
a k-threshold secure network code for I if and only if V is a k-threshold secure
matrix over IFq.

Proof. Let y0 ∈ Im(V ) = {(x, r)V : x ∈ IFn−k
q , r ∈ IFk

q}, x0 ∈ x and r0 ∈ r such
that y0 =

[
x0 r0
]
V. For x ∈ IFn−k

q and I ⊂ [N ], we let

RI(x, y0) = {r ∈ IFk
q :
[
x r
]
VI = y0I}.

By definition, VI is secure against I if and only if |RI(x
′, y0)| = |RI(x

′′, y0)| for
all x′, x′′ ∈ IFt

q where |RI(x
′, y0) > 0| and |RI(x

′′, y0)| > 0 for y0 ∈ Im(V ).
Since V is linear, it is easy to see that

RI(x, y0) = r0 +RI(x− x0, 0).

This implies that we have

|RI(x
′, y0)| = |RI(x

′′, y0)| ⇐⇒ |RI(x
′, 0)| = |RI(x

′′, 0)|
for x′, x′′ ∈ IFn−k

q , y0 ∈ Im(V ), and where |RI(x
′, y0)|,|RI(x

′′, y0)|,|RI(x
′, 0)|,

|RI(x
′′, 0)| > 0.
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Without loss of generality, we may assume VI has rank |I|; otherwise, we can
drop some rows that are linear combinations of others without affecting our
proof. Also, we know that the kernel of VI , denoted by ker(VI), has dimension
n− |I|.

Hence, writing VI =

[
V U
I

V L
I

]
with V U

I an (n− k)× |I| matrix and V L
I a k× |I|

matrix, we have

RI(x
′, 0) = {r ∈ IFk

q : x′V U
I + rV L

I = 0} and RI(0, 0) = {r : rV L
I = 0}.

It is clear that RI(0, 0) is a linear subspace in IFk
q of dimension rankq(V

L
I ). Thus

|RI(0, 0)| = qk−rankq(V
L
I ).

If r′ ∈ RI(x
′, 0) and r ∈ RI(0, 0), then r

′ + r ∈ RI(x
′, 0). Therefore,

|RI(x
′, r)| ≥ |RI(0, 0)| if |RI(x

′, 0)| > 0. (2)

Moreover,

ker(VI) = ∪x∈IFn−k
q

({x} ⊕RI(x, 0)).

Since the union is disjoint, one has

qn−|I| = |ker(VI)| =
∑

x∈IFn−k
q

|({x} ⊕RI(x, 0))| =
∑

x∈IFn−k
q

|RI(x, 0)|. (3)

Since VI is equally distributed, we have |RI(x, 0)| = |RI(0, 0)| for all x ∈ IFn−k
q .

Therefore, we have

qn−|I| = qn−kqk−rankq(V
L
I )

which implies that rankq(V
L
I ) = |I|.

On the other hand, if rankq(V
L
I ) = |I| then for any x ∈ IFn−k

q , we have that

VI
[
x r
]
= 0 ⇐⇒ xV U

I + rV L
I = 0 ⇐⇒ rV L

I = −xV U
I

always has a solution r ∈ IFk
q . Therefore, |RI(x, 0)| > 0. By (2) and (3), one has

qn−|I| ≥
∑

x∈IFn−k

|RI(x, 0)| ≥ qn−k|RI(0, 0)| = qn−kqk−|I|

This implies that

|RI(x, 0)| = |RI(0, 0)|, x ∈ IFn−k
q .

Therefore, we have that V is secure against I if and only if rankq(VI) = |I| =
rankq(V

L
I ). Restricting I such that |I| ≤ k and by the definition of a k-threshold

secure matrix, Theorem 1 follows. �
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5 Securing Network Codes

We now address Problem 2. It is worth mentioning that this problem was studied
in [23], where it is proved that, with some probability, the alphabet size can be
lowered by making t < n − k. However, since we consider a maximally secure
capacity t = n − k, we believe that it is more fundamental and meaningful to
try to improve the bound given in [22] instead. We defer the investigation of the
case when t < n− k to future work.

In what follows, we give a concrete algorithm that generates T , which in turn,
yields a sufficient condition to make V secure, and more interestingly, with a
smaller alphabet size than the bound in [22].

Before stating our theorem, we need to introduce some notation. For any sub-
indices J ⊆ {j1, · · · , jk+1}, let V J be a sub-matrix of V with rows matching J ,
and let V J

I be a sub-matrix of V J with columns matching indices I. We choose
I such that every k + 1 columns from V J

I are linearly independent. We set pJ,I
to be |I|, and let pJ be largest number of |I| so that each of the k + 1 columns
of V J

I are linearly independent. Let �n−k = max{pJ : J ⊂ [n], |J | = k + 1}. It is
then obvious that �n−k ≤ N − 1 and our theorem is as follows.

Theorem 2. For any given positive integers 1 ≤ k < n ≤ N and an n × N
full rank matrix V , there exists an n × n nonsingular matrix T , such that the
resulting S = TV is a k-threshold secure matrix if one of the following conditions
holds:

(i) k = 1 and q ≥ N = N1;

(ii) k ≥ 2and q ≥ max
{(

�n−i+1

i

)
, N : i = 2, · · · , k

}
= Nk. (Here, �n−i+1 will be

defined later in the proof and will be shown that �n−i+1 < N for all i.)

Proof. We use Q[i, c, j] to denote the elementary operation of multiplying
c ∈ IFq by the j-th row and then adding the result to the i-th row. We now prove
Theorem 2 by using the Mathematics Induction Principle as follows:

Case 1: when k = 1. Since V is a valid network code, we may, without loss of
generality, assume that V does not contain any column with all zero entries. By
the definition of 1−threshold secure matrix, it suffices to construct an n×n full
rank matrix T such that the n-th row of S = TV has no zero entries.

From elementary linear algebraic knowledge, if q ≥ N then there is an N ×N
invertible matrix P (right multiplying by P may reorder columns) and an n×n
invertible matrix Q (left multiplying by Q may reorder rows) such that

QV P = A =

⎡⎣A1

· · ·
An

⎤⎦ = [aij ],

where Aj represents the j-th row of A satisfying following properties;2 we then
have �n ≥ �n−1 ≥ · · · ≥ �s for some 1 ≤ s ≤ n such that

2 Note that Aj is a row vector containing N elements.



Revisiting a Secret Sharing Approach to Network Codes 309

–
∑n

i=s �i = N (where �i represents the number of non-zero entries in the i-th
row);

– an1, ..., an�n are non-zeros (here the n-th row is the row with the largest
number, i.e. �n, of consecutive nonzero entries and that are initialized at the
1-st position);

– aij �= 0 for s ≤ i < n and when 1 +
∑n

m=i+1 �m ≤ j ≤ ∑n
m=i �m (for the

i-th row, non-zero entries are consecutive, starting from a column indexed
by 1 +

∑n
m=i+1 �m);

– aij = 0 for i ≥ s and when j ≥ ∑n
m=i �m (for the i-th row, all entries are

zeros with indices starting from
∑n

m=i �m).

For the convenience of our proof, here we require that all the nonzero entries
be consecutive, although this is not necessarily so in actual realization (see our
transformation algorithm in Section 5.1). If �n = N and we let T = Q, then we
are done (where q ≥ N).

Otherwise (when �n < N), since q ≥ N , one can choose cn−1 �= 0 so that the
first �n + �n−1 entries of cn−1An−1 + An are non-zeros, while the other entries
are all zeros. Inductively, one can choose non-zero numbers cs, · · · , cn−1 so that
all entries of csAs + · · ·+ cn−1An−1 +An are non-zeros. Therefore, if we let

T = Q[n, cs, s] · · ·Q[n, cn−1, n− 1]Q,

then T is a nonsingular n×n matrix such that TV is a 1-threshold secure code.

Case 2: from k = k′ to k = k′ + 1. Given an n × n nonsingular matrix Qk′

such that for Qk′V =

[
C
D

]
where D is the lower k′ ×N sub-matrix and for any

I ⊂ [N ] with |I| ≤ k′, one has

rank((Qk′V )I) = rank(DI). (4)

Our task is to construct a Qk′+1 such that Qk′+1V =

[
A
B

]
satisfies

rank((Qk′+1V )I) = rank(BI) (5)

for ∀I ⊂ [N ], where |I| ≤ k′ + 1 and B is the lower (k′ + 1)×N sub-matrix.
If we can obtain Qk′+1, then T = Qk′+1. The construction of T follows and

the proof of Theorem 2 is completed.
Now the next task is to find Qk′+1. With the induction assumption from (4)

and without loss of generality, one may assume further that

rank(DI) = k′ if |I| = k′, and rank(Q′
kV )I = k′ + 1 if |I| = k′ + 1. (6)

Otherwise, one may drop those columns to obtain an n× n full rank matrix Q′

so that Qk′+1 = Q′Q′
k and (5) holds. This way, it is easy to see that, (5) remains

true after adding those removed columns back to Qk′+1V (by induction).
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So far the task has been on how to construct Q′ such that Qk′+1 = Q′Q′
k

and (5) holds, under the assumption from (6). For (5) to hold, it suffices that
we require any k′ +1 columns from Qk′+1V to be linearly independent. We now
work towards this goal.

From elementary linear algebra knowledge, we can find an N×N nonsingular
matrix P (right multiplying by P may reorder columns) such that

Q′
kV P =

[
Ã B̃
]
=

⎡⎢⎢⎢⎢⎢⎢⎣

Ã1

· · ·
Ãn−k′−1

B̃n−k′

· · ·
B̃n

⎤⎥⎥⎥⎥⎥⎥⎦ (7)

where B̃ is the lower (k′ +1)×N sub-matrix satisfying the following properties.
There exist positive integers �s, · · · , �n−k′ such that �s ≤ �s+1 ≤ · · · ≤ �n−k′ and∑n−k′

j=s �j = N . Moreover, we have

rank(B̃I) =

{
= k′ + 1 if I ⊂ [�n−k′ ] where |I| = k′ + 1;

< k′ + 1 if I �⊂ [�n−k′ ] where |I| = k′ + 1;
(8)

and for ∀ 1 ≤ j ≤ n− k′ − 1, it holds that

rank

⎡⎢⎢⎣
Ãj

· · ·
Ãn−k′−1

B̃

⎤⎥⎥⎦
I

=

{
k′ + 1, if I ⊂ [

∑n−k′

m=j �m] and |I| = k′ + 1

< k′ + 1, if I �⊂ [
∑n−k′

m=j �m] and |I| = k′ + 1
. (9)

Remark 1. From (8), we can infer that right multiplying by P realizes the swap-
ping of the (n − k′)-th row with a row (say y) from C, such that the new sub-
matrix consisting of y and the sub-matrix D has the largest number (denoted
as �n−k′) of columns where any k′ +1 columns are linearly independent. On the
other hand, (9) tells us that right multiplying by P realizes the swapping of s-th
row with a row (say z ) so that the new sub-matrix, formed as a union of z and
the last n− s rows from the current matrix, has the largest number (denoted as
�s) of columns where any (k′ + 1)− columns are linearly independent.

If �n−k′ = N , we are done (where q ≥ Nk′ and T = Qk′). Otherwise when
�n−k′ ≤ N − 1, we claim that there is a number c = cn−k′−1 ∈ IFq such that if

E :=

⎡⎢⎢⎣
cÃn−k′−1 + B̃n−k′

B̃n−k′+1

· · ·
B̃n

⎤⎥⎥⎦ (10)

then EI has full rank when q ≥ (�n−k′
k′+1

)
, where I ⊂ {1, · · · , �n−k′ + �n−k′−1} and

|I| ≤ k′+1. In fact, for I ⊂ {1, · · · , �n−k′ + �n−k′−1} where |I| = k′+1, we need
to prove there is indeed a c ∈ IFq such that
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det(EI) �= 0. (11)

Notice that

det(EI) = det(B̃I) + cdet
(⎡⎢⎢⎣

Ãn−k′−1

B̃n−k′+1

· · ·
B̃n

⎤⎥⎥⎦
I

)
= det(B̃I) + chI . (12)

By assumptions from (6), (8) and (9), there are at most
(�n−k′
k′+1

) − 1 integers

hI �= 0. Since q ≥ (�n−k′
k′+1

)
, we can always choose an integer c = cn−k′−1 �= 0

so that (11) holds when I ⊂ {1, 2, · · · , �n−k′}. On the other hand, when I ⊂
{1, · · · , �n−k′ + �n−k′−1} and I ∩ {�n−k′ + 1, · · · , �n−k′ + �n−k′−1} �= ∅, we have

hI �= 0 and det(DI) = 0. Therefore, when q ≥ (�n−k′
k′+1

)
, it is easy to see that there

always exists an integer c = cn−k′−1 so that det(EI) �= 0 with |I| = k′ + 1 and
I ⊂ {1, · · · , �n−k′ + �n−k′−1}.

Repeating the above process in a similar way, when q ≥ (�n−k′
k′+1

)
, there are

integers cs, · · · , cn−k′−1 such that

Q′Q′
kV P =: Q[n− k′, cs, s] · · ·Q[n− k′, cn−k′−1, n− k′ − 1]Q′

kV P =

[
Ã

B̃

]
satisfies det(B̃I) �= 0 for any I ⊂ {1, 2, · · · , N} with |I| = k′ + 1. We then set

T = Q′Q′
k and TV =

[
A
B

]
where det(B̃I) �= 0 for any I ⊂ {1, 2, · · · , N} with |I| = k′ + 1. We then add
the columns which we removed back in order to satisfy (6). The resulting new

matrix

[
A
B

]
still satisfies 5. Therefore, S = TV is a (k′ + 1)-threshold secure

matrix and thus is a (k′ +1)-threshold secure network code. This completes our
proof for Theorem 2. �

5.1 Our Transformation Algorithm

The proof of Theorem 2 above not only ensures the existence of T when q ≥ Nk,
but also provides an algorithm to construct T . We can find T by using the Math-
ematics Induction Principle as below.

Case 1: when k = 1. We find T in four steps as follow:

Step 1 – Exchange: We exchange the n-th row with a row containing the
largest number (denoted as �n) of nonzero entries. We denote this operation
as Q0

1 and the resulting matrix consists of {ξi}ni=1 (ξi is the i-th row). If
�n = N and let T = Q0

1, then we are done; otherwise, we proceed to Step 2
below.
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Step 2 – Sort: We sort the remaining rows in a following way:

(i) Initialize s to be n− 1.

(ii) Swap the s-th row with a row containing the largest number (denoted as
�s) of nonzero entries in terms of the column set where all the (s+1)-th
, . . . , n-th entries are zeros. If

∑n
i=s �i = N we exist this step and go

directly to Step 3.

(iii) Subtract s by 1.

Repeat (ii) and (iii) above until we exist from Step 2.

Step 3 – Find coefficients: We then find the coefficients cs, · · · cn−1 such that
ζn = ξn +

∑n−1
j=s cjξj has no zero entries.

Step 4 – Output T : We output T = Q[n, cs, s] · · ·Q[n, cn−1, n− 1]Q0
1.

Case 2: from k = k′ to k = k′ +1 (k′ ≤ (k− 1)). Given an n×n nonsingular
matrix Q′

k such that Qk′V is a k′-threshold secure matrix, our goal is to find a
Qk′+1 such that T = Qk′+1 is sufficient for k = k′ + 1 in terms of security.

Step 1 – Exchange: We exchange the (n− k′)-th row with a row (say y) sat-
isfying such the following property: the new sub-matrix, formed as a union
of y and the last k′ rows of Qk′V , has the largest number (denoted as �n−k′)
of columns where any k′ + 1 columns are linearly independent. We denote
this exchange operation by Q′. If �n−k′ = N and let T = Qk′+1 = Q′Qk′ ,
then we are done; otherwise, we go to Step 2 below.

Step 2 – Sort: We sort the remaining rows as follows:

(i) Initialize s to be n− k′ − 1.

(ii) Swap the s-th row with a row (say z) satisfying the following property:
the new sub-matrix, formed as a union of z and the last n− s rows from
the current matrix, has the largest number (denoted as �s) of columns

where any k′ +1 columns are linearly independent. If
∑n−k′

i=s �i = N , we
exit and go to Step 3.

(iii) Subtract s by 1.

Repeat (ii) and (iii) above until we exist from Step 2.

Step 3 – Find coefficients: We find the coefficients cs, · · · , cn−k′−1 for rows
indexed by s, · · · , n− k′ − 1 respectively, such that for

Q[n− k′, cs, s] · · ·Q[n− k′, cn−k′−1, n− k′ − 1]Q′Qk′V =

[
A
B

]
,

where B represents the last k′ + 1 rows, we have det(BI) �= 0 for any I ⊂
{1, 2, · · · , N} with |I| = k′ + 1.

Step 4 – Output T : We output T = Qk′+1 = Q[n − k′, cs, s] · · ·Q[n −
k′, cn−k′−1, n− k′ − 1]Q′Qk′ .

Combining Cases 1 and 2 above, we can find a T that gives us a sufficient
condition for V to be a k-threshold secure matrix.
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5.2 Efficiency Analysis

Bounds on q. We give a lemma that compares our bound with that of Cai and
Yeung [22], and Rouayheb and Soljanin [24].

Lemma 1. Our bound, defined as max
{(

�n−i+1

i

)
, N : i = 2, · · · , k

}
is indepen-

dent of the network edge size and dependent only on the information length and
the size of sink set. Thus, our bound is smaller than Cai and Yeung’ bound when
k ( N . Moreover, our bound is as optimal as Rouayheb and Soljanin’s bound.

The proof for Lemma 1 and further analysis are provided in Appendix B.

Time complexity. If we implement Step 3 of our transformation algorithm
shown in Section 5.1 (for both two cases) by randomly choosing elements from
IFq until the relevant requirements are satisfied, then the time complexity of the

algorithm is O
(
N
k

)
. This is equivalent to that of [22].

6 Conclusions

Building on the previous work by Cai and Yeung, and Feldman et al. we further
studied the application and connection of secret sharing to network coding se-
curity. Particularly, we defined a new concept called k-threshold secure matrix
that allows us to determine the security condition of a given network code for an
underlying network over a certain field. Moreover, we proposed a concrete algo-
rithm that transforms a network code into a secure one. Our algorithm achieves
the required optimal bandwidth as with the currently best available result in the
literature.
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tional Research Foundation of Singapore under Research Grant NRF-CRP2-
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A Examples of k-Threshold Secure Matrices

Let matrix S be a generator matrix for some IFq-linear code C(N,n).
Example 1. S satisfies that SL

I is a generator matrix for some maximum distance
separable (MDS) code [24, 27] C0(N, k,N − k + 1).

We claim that S shown in Example 1 is a k-threshold secure matrix. Indeed,
since C0 is an MDS code, then any k columns from SL

I are linearly independent
and thus full rank. This implies that S is a k−threshold secure matrix.

Example 2. More generally, there exist other examples of k-threshold secure ma-
trices if C0 is a IFq-linear code but not restricted to an MDS code. In fact, we
can construct a more general k−threshold secure matrix S in the following way.
Firstly, we observe that, as a generator matrix for an IFq-linear code C0(N, k),
SL
I can be described as follows:

SL
I =
[
Ik A B

]
where Ik denotes the identity matrix with rank k (over IFq) and A is a k×(n−k)
sub matrix. Secondly, we require that any k columns from [Ik A] or [A B] are
linearly independent. Note that, here, we do not rely on the linear independency
of k-tuple from [Ik B] for C0 to be an MDS code. Finally, we construct S as
follows:

S =

[
0 In−k D
Ik A B

]
such that for any 1 ≤ k′ < k and any I ′ ⊂ [1, ..., N − n] with |I ′| = k′:
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– if there exist not all zero constants ci1 , ..., cik′ such that
∑k′

j=1 cijBI′ is a
linear combination of some columns from Ik, then D is chosen in such a way

that with same constants ci1 , ..., cik′ and the same I ′ we have
∑k′

j=1(cijDI′) =
O.

– Otherwise, D is arbitrarily chosen.

S constructed as in Example 2 is always a k−threshold secure matrix. The proof
is omitted due to space constraints.

B Proof of Lemma 1

We give a comparison between our work and that of [22] and [23] in terms of
the required secure code alphabet size.

Since the general bound in [23] was derived in a network with a sacrificed ca-
pacity and its security is attained with a probability that is less than 1 (although
a high probability), here we look into only Cai and Yeung’s bound [22].

The bound derived in our approach is tighter than Cai and Yeung’s bound if

k ( N . The reason is that for k ≥ 2, our lower bound on q is max
{(

�n−i+1

i

)
, N :

i = 2, · · · , k
}
and we have

max
{(�n−i+1

i

)
, N : i = 2, · · · , k

}
< maxki=2

(
N

i

)
=

(
N

k

)
(if k ( N)

where
(
N
k

)
is Cai and Yeung’s lower bound. It is worth mentioning that in cases

where a large portion of column vectors from the code are linearly independent
from each other and thus �n−i+1 ( N , our bound is much tighter than Cai and
Yeung’s bound.

We would also want to point out that the condition above, k ( N , is easily
satisfied in reality, particularly in large-scaled networks. Since in most network
instances it holds that k < n ( N , especially in huge networks. Based on this,
we claim that we have a tighter bound than [22].

Further, we compare our bound against that of the coset coding approach.
Since [25] is not fully information-theoretically secure and the bound of [24] gives
a smaller code than Cai and Yeung’s bound, we compare ours with that of [24].
The smaller bound in [24] was obtained from a network code constructed in a
more efficient way [33, 31, 32]. In the more efficient network code construction,
the authors observed that all the network edges are classified into two parts:
encoding edges that employ coding operations on incoming links and forwarding
edges that can only forward incoming packets. A further observation made in [24]
was that the set of edges which the wiretapper might have access to consist of
encoding edges and edges leaving the source node. Combining with our definition
of �n−i+1 for all i, it is not hard to check that for each i, �n−i+1 is upper bounded
by the size of the union of encoding edges and edges leaving the source node.
Therefore, similarly to Corollary 1 in [24] where the alphabet size was shown as:
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q ≥ (
(
2t3|TG|2

k−1

)
+ |TG| ), we have that if V is provided in a same way as [24], we

reach a bound q ≥ maxki=2

(
2t3|TG|2

i

)
. In this way, the bound we derive is also

independent of the network edge size and only dependent on the information
length and the size of sink set and thus it is as optimal Rouayheb and Soljanin’s
bound. �
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Abstract. Traitor tracing is needed because some users in broadcast
encryption system may give out their decryption keys to construct pi-
rate decoders. Many codes based traitor tracing schemes were proposed.
However, as stated by Billet and Phan in ICITS 2008, they were lack-
ing in revocation ability. In this paper, we bring forward a codes based
tracing and revoking scheme. Revocation ability helps to disable identi-
fied traitors and users who fail to fulfill the payments in each broadcast,
so that the broadcast encryption system can be more practical. Based
on Park et al.’s public key broadcast encryption scheme, we embed col-
lusion secure code into each user’s decryption keys so as we can send
messages to a set of designated receivers while at the same time we can
recover information of codeword from the feedback of the pirate decoder
by employing Boneh and Naor’s traitor tracing method. Our scheme
achieves constant-size ciphertext which makes it suitable for situations
where bandwidth is precious. Our scheme is based on collusion secure
codes, and it can be extended to adopt other codes such as identifiable
parent property (IPP) codes. Our method presents an answer to the
problem left open by Billet and Phan.

Keywords: Broadcast encryption, collusion secure codes, copyright
protection, traitor tracing, user revocation.

1 Introduction

Broadcast encryption provides a convenient method to distribute digital content
to subscribers over an insecure broadcast channel so that only the qualified users
can recover the data. Broadcast encryption is quite useful and enjoys many
applications including pay-TV systems, distribution of copyrighted materials
such as DVD. Because some users (called traitors) may give out their decryption
keys to construct pirate decoders, the ability of traitor tracing is needed for
broadcast encryption system.

The first traitor tracing scheme against pirate decoders was presented by Chor,
Fiat and Naor in [12]. Since then, many traitor tracing schemes against pirate
decoders were proposed and they can be roughly classified into three categories.
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The first category is called combinatorial, as in [12,28,16,22]. These schemes
carefully choose some subsets of keys to be put in each decoder box. By analyz-
ing the keys used in a pirate decoder, it is possible to trace back to one of the
traitors. Another category is called algebraic, as in [20,6,23,21,14,8,9,17,25,26].
These schemes use algebraic method to assign private keys to users, and the
broadcasting can be done in public since public-key techniques are used. Collu-
sion secure codes based schemes can be regarded as the third category, which
combines ideas from the two previous classes. For instance, [19,10,2,7,3,11,29]
belong to this category. These schemes assign keys to each user according to
each bit of his/her codeword. By analyzing the keys used in each bit position,
the tracer can recover the codeword embedded in the decoder and trace back to
at least one of the traitors. However, it is pointed out in [3] that it is still an open
problem whether codes based traitor tracing scheme can achieve revocation. As
we observed, these codes based traitor tracing scheme mentioned above lacked
revocation ability.

Motivated by this problem, our paper mainly focuses on constructing codes
based traitor tracing scheme with revocation ability. Revocation ability is a useful
property in many circumstances. For instance, when traitors are found, it is
desirable to make them useless so as to disable the pirate decoders generated by
them. In many broadcast encryption based commercial applications, such as Pay-
TV system, it is necessary to find ways to make sure that only those consumers
who fulfill the payment are capable to recover the messages. So revocation ability
is needed to temporarily rule out the users in arrear with payment.

Our idea is inspired by Park et al.’s public key broadcast encryption scheme
[24] and Boneh and Naor’s traitor tracing scheme [7]. We carefully embed col-
lusion secure code into each user’s decryption key of Park et al.’s scheme, so as
we can take advantages of Park et al.’s scheme that the sender can send mes-
sages to a set of designated receivers. At the same time, we can make use of the
traitor tracing method by Boneh and Naor to recover information of embedded
codeword from the pirate decoder. The advantages of our scheme over previous
codes based schemes are that the ciphertext length is constant, and it achieves
revocation ability while previous codes based schemes did not. We also show
that our scheme is resistant to public collaboration attacks [4].

Public collaboration attacks were introduced in [4] as that traitors collaborate
in a public way. In other words, traitors do not secretly collude and they release
part of their private keys in a public place so that pirate maker can collect these
partial keys to build useful pirate decoders. Billet and Phan [4] show that such
type of attacks presents a real threat for subset cover based schemes (such as
[22]) and code based schemes (such as [19]). Each traitor remains anonymous
because a large number of users contain the same keys as those released in
public. The partial key is referred as decryption key for a specified subset in
subset cover based schemes and as decryption key for a single codeword bit
in code based schemes. There are several schemes [2,29,13,27] that are resistant
to such attacks. In schemes of [2,29,27], wildcarded identity based encryption [1]
are used to connect all separated parts of each user’s identity so the decryption
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key should be released as a whole in order for the key to be useful. Releasing
decryption key as a whole will immediately identify the traitor. In scheme of [13],
secret sharing skill is used to bind each user’s distinct identity to decryption keys
of subsets that it belongs to. Thus, releasing decryption key of any subset will
immediately identify the traitor. In our scheme, decryption key for each codeword
bit is embedded with user’s identity so each key is self-enforced.

The proposed scheme is proved secure under decisional v-mBDH assumption
and random oracle model. We show that it is easy to remove the random oracle in
the succeeding discussions. Finally, we describe some extensions to our scheme,
such as scheme based on identifiable parent property (IPP) codes [18] and scheme
against imperfect decoders.

2 Preliminaries

2.1 Collusion Secure Codes

We first review the definition of collusion secure codes required for constructing
our traitor tracing scheme. The definition is similar to that in [7].

– For a word w̄ ∈ {0, 1}L we write w̄ = w̄1 . . . w̄L, where w̄i ∈ {0, 1} is the ith
bit of w̄ for i = 1, . . . , L.

– Let W = {w̄(1), . . . , w̄(t)} be a set of words in {0, 1}L. We say that a word
w̄ ∈ {0, 1}L is feasible for W if for all i = 1, . . . , L there is a j ∈ {1, . . . , t}
such that w̄i = w̄

(j)
i . For example, if W consists of the two words (00

1
0

1
1

0
1

0
0),

then all words of the form [0 (10) 1 (01) 0] are feasible for W .
– For a set of words W ⊆ {0, 1}L we say that the feasible set of W , denoted
F (W ), is the set of all words that are feasible for W .

The collusion secure code can be denoted with a pair of polynomial time algo-
rithms (G, T ) defined as follows:

– Algorithm G, called a code generator, is a probabilistic algorithm that takes
a pair (N , ε) as input, where N is the number of words to output and
ε ∈ (0, 1) is a security parameter. The algorithm outputs a pair (Γ , TK).
Here Γ (called a code) contains N words in {0, 1}L for some L > 0 (called
the code length). TK is called the tracing key.

– Algorithm T , called a tracing algorithm, is a deterministic algorithm that
takes as input a pair (w̄∗, TK) where w̄∗ ∈ {0, 1}L. The algorithm outputs
a subset S of {1, . . . , N}. Informally, elements in S are accused of creating
the word w̄∗.

The collusion resistant property of collusion secure code (G, T ) is defined using
the following game between a challenger and an adversary. Let N be an integer
and ε ∈ (0, 1). Let C be a subset of {1, . . . , N}. Both the challenger and adversary
are given (N , ε, C) as input. Then the game proceeds as follows:

1. The challenger runs G(N , ε) to obtain (Γ , TK) where Γ = {w̄(1), . . . , w̄(N)}.
It sends the set W := {w̄(i)}i∈C to the adversary.

2. The adversary outputs a word w̄∗ ∈ F (W ).
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We say that the adversary A wins the game if T (w̄∗, TK) is empty or not

a subset of C. We denote Adv
A,G(N,ε),T,C
CR as the advantage that A wins the

collusion resistant game.
A collusion secure code (G, T ) is said to be fully collusion resistant if for all

polynomial time adversaries A, all N > 0, all ε ∈ (0, 1), and all C ⊆ {1, . . . , N},
we have Adv

A,G(N,ε),T,C
CR is negligible (less than ε).

A collusion secure code (G, T ) is said to be t-collusion resistant if for all poly-
nomial time adversaries A, all N > t, all ε ∈ (0, 1), and all C ⊆ {1, . . . , N} of

size at most t, we have Adv
A,G(N,ε),T,C
CR is negligible (less than ε).

Our readers can refer to [7] for known results on collusion secure codes. Ad-
ditionally, Boneh and Naor [7] also constructed δ-robust Boneh-Shaw codes in
order to trace high error-rate pirate decoders.

2.2 Bilinear Pairings and Complexity Assumption

We review the definition of bilinear pairings [5] and the decisional v-modified
Bilinear Diffie-Hellman assumption [24] in brief.
Bilinear Pairings: Let G be a (multiplicative) cyclic group of prime order p
and g is a generator of G. A one-way map e : G×G → GT is a bilinear pairing
if the following conditions hold.

– Bilinear: For all u, v ∈ G, and a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

– Non-degeneracy: e(g, g) �= 1, i.e., if g generates G, then e(g, g) generates GT .
– Computability: There exists an efficient algorithm for computing e(u, v),
∀u, v ∈ G.

The decisional v-Modified Bilinear Diffie-Hellman Assumption: The
decisional v-Modified Bilinear Diffie-Hellman (v-mBDH) problem [24] is: given

a tuple TP = (g, z, g1/(x+1), . . . , g1/(x+v), wg1/(x+1)2 , . . . , wg1/(x+v)2)∈ G2v+2

and a T ∈ GT as input, to decide whether T = e(w, z).
We say an algorithm B that outputs b ∈ {0, 1} has advantage ε in solving the

decisional v-mBDH problem in G if

|Pr[B(TP, e(w, z))] = 0| − |Pr[B(TP, T )] = 0| ≥ ε,

where the probability is taken over the random choices of w, z ∈ G, the random
choice of x in Zp, the random choice of T ∈ GT , and the random decision b of
B.

We say that the decisional v-mBDH assumption holds if no t-time algorithm
has advantage of at least ε in solving the decisional v-mBDH problem.

2.3 Protocol Model

The protocol model for our traitor tracing scheme consists of four algorithms
(Setup, Encrypt, Decrypt, Trace) described as follows.
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– Setup(1λ, N). It is a probabilistic algorithm that given 1λ and the number
of users in the systemN , outputs the public parameter PK, a secret trace-key
TK, and the private user-key SKu for each user u ∈ {1, . . . , N}.

– Encrypt(PK, S, TSK). It is a probabilistic algorithm that given the public
parameter PK, a set of designated receivers S and a temporary session key
TSK, a broadcast ciphertext header Hdr is generated. The messages are
symmetrically encrypted using the session key TSK to generate ciphertext
body C. We refer to the ciphertext length as the length of Hdr in which a
session key is protected and distributed by the traitor tracing scheme.

– Decrypt(SKu, S, Hdr, PK). It is an algorithm that given a broadcast ci-
phertext header Hdr, the set of designated receivers S and the set of private
keys SKu of user u, returns the recovered temporary session key TSK or ⊥.
TSK is used to decrypt the messages from ciphertext body C.

– TraceD(TK). It is an algorithm that given a pirate decoder D and private
trace-key TK, it queries decoder D as a black-box oracle and then outputs
a set of traitors T ⊆ {1, . . . , N}.

2.4 Security Requirements

– Correctness. Each honest user is able to recover the messages in normal
broadcasting, if he/she is included in the set of designated receivers.

– Semantic Security. The users cannot obtain any information of messages
encrypted in the broadcast ciphertext, if their identities are not included in
the specified receiver set.
The semantic security of the proposed traitor tracing scheme is defined us-
ing the following game between a challenger and an adversary. The game
proceeds as follows:
1. The challenger runs G(N , ε) to obtain (Γ , TK) where Γ = {w̄(1), . . . ,
w̄(N)} and w̄(i) is the codeword for user i. The challenger also generates
public parameters PK. It sends Γ and PK to the adversary.

2. The adversary selects a subset of {1, . . . , N}, denoted as C. The adver-
sary can query the challenger for decryption keys of the users in C. The
challenger generates the keys and gives them to the adversary.

3. The adversary submits two messages (m1, m0) and a set of users S for
challenging, with u∗ �∈ C for each u∗ ∈ S. In selective adversary model,
S should be submitted to the challenger at the beginning of the game.
The challenger chooses a fair coin b ∈ {0, 1} and encrypts mb using S as
the set of designated receivers. The ciphertext is sent to the adversary,
and the adversary is required to output a guessed bit b′.

If b′ = b, the adversary wins the game.
– Collusion Resistant. Collusion of users cannot produce a decoder that

cannot be traced to any of these users.
The collusion resistant property of the proposed traitor tracing scheme is
defined using the following game between a challenger and an adversary. Let
(G, T ) be a collusion secure code. Let N be an integer and ε ∈ (0, 1). Then
the game proceeds as follows:
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1. The challenger runs G(N , ε) to obtain (Γ , TK) where Γ = {w̄(1), . . . ,
w̄(N)} and w̄(i) is the codeword for user i. The challenger also generates
public parameters PK. It sends Γ and PK to the adversary.

2. The adversary selects a subset of {1, . . . , N}, denoted as C. The adver-
sary can query the challenger for decryption keys of the users in C. The
challenger generates the keys and gives them to the adversary.

3. The challenger selects receivers set S ⊆ {1, . . . , N} for which the decoder
can recover the messages, and asks the adversary to decrypt ciphertexts
for S a number of times. Finally the challenger recovers a codeword w̄∗.

We say that the adversary A wins the game if T (w̄∗, TK) is empty or not a
subset of C ∩ S.

– Public Collaboration Resistant. The property of public collaboration
resistance requires that the release of any partial key in public by any user
should lead to the detection of the identity of the corresponding user.

3 Tracing and Revoking Scheme Based on Collusion
Secure Codes

In this section, we present our collusion secure codes based traitor tracing and
revoking scheme with constant ciphertext. Revocation ability is achieved by
means of encrypting messages only to the set of designated receivers, so all other
users not in the set are revoked at current broadcasting. Constant ciphertext is
achieved by using the method of Boneh and Naor [7], where only one bit of the
codeword is used in each time of broadcasting.

3.1 The Scheme

Let G and GT be bilinear groups of some large prime order p and let e : G ×
G )→ GT be a bilinear map. We also assume that the messages are encrypted
symmetrically using the session key from GT . The traitor tracing scheme works
as follows:

– Setup(1λ, N). A trusted party, given 1λ and the number of users in the
system N , selects ε ∈ (0, 1) and runs collusion secure code generation algo-
rithm G(N , ε) to generate a pair (Γ , TK). The set Γ = {w̄(1), . . . , w̄(N)}
contains N codewords in {0, 1}L, where L is the codeword length. TK is
the tracing key for Γ . w̄(u) is assigned to user u, with 1 ≤ u ≤ N . A
random generator g ∈R G and a random element w ∈R G are selected.
H(·) : {1 . . . L}× {0, 1} → G is a collision resistant hash function (the selec-
tion is out of scope of this paper). A random x ∈ Zp is selected. gi = g1/(x+i)

is computed for each i = 1, . . . , N . The master public parameter PK is (G,
GT , p, g, g1, . . . , gN , e(w, g), H(·)). (x,w) are kept private. For each user
u ∈ {1, . . . , N}, a set of decryption keys is generated as:

du,i = w · (H(i, w̄
(u)
i ))

1
x+u · g 1

(x+u)2 , ∀i = 1, . . . , L.
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Each set of decryption keys SKu = (du,1, . . . , du,L) is transferred to the
corresponding user u over a secure and authenticated channel which is not
considered in this paper.

– Encrypt(PK, S, TSK). This algorithm is used for normal broadcasting.
Given the public parameter PK and a set of designated receivers S ⊆
{1, . . . , N}, the sender selects two random numbers s1, s0 ∈R Zp and sets K1

= e(w, g)s1 , K0 = e(w, g)s0 . Then the sender selects a position i ∈ {1, . . . , L}
and a random temporary session key TSK ∈ GT to generate the ciphetext
header Hdr as follows:

Hdr = (i, c1,1, c1,2, c1,3, c0,1, c0,2, c0,3)

= (i, (H(i, 1)
∏
j∈S

gj)
s1 , gs1 ,K1 ⊕ TSK,

(H(i, 0)
∏
j∈S

gj)
s0 , gs0 ,K0 ⊕ TSK).

(Hdr, S) are sent to all users. The messages are symmetrically encrypted
using the session key TSK to generate ciphertext body C, which is not dis-
cussed in details for brevity. We assume the employed symmetric encryption
scheme is secure enough so that we do not need to care about it.

– Decrypt(SKu, S, Hdr, PK). We assume that user u belongs to S. Parsing
the SKu as (du,1, . . . , du,L) and the ciphertext header Hdr as (i, c1,1, c1,2,

c1,3, c0,1, c0,2, c0,3), user u recovers Kb as follows (we use b to denote w̄
(u)
i

and h to denote H(i, b)):

Kb =
e(du,i
∏

j∈S,j �=u g
1

(x+u)(x+j) , cb,2)

e(cb,1, gu)

=
e(wh

1
x+u g

1
(x+u)2
∏

j∈S,j �=u g
1

(x+u)(x+j) , gsb)

e((h
∏

j∈S gj)
sb , g

1
x+u )

=
e(w, g)sb · e(hg 1

(x+u)
∏

j∈S,j �=u g
1

(x+j) , g
sb

x+u )

e((h
∏

j∈S gj)
sb , g

1
x+u )

=
e(w, g)sb · e(h∏j∈S g

1
(x+j) , g

sb
x+u )

e((h
∏

j∈S gj)
sb , g

1
x+u )

= e(w, g)sb ,

and then the temporary session key is recovered as TSK = Kb ⊕ cb,3. In
above equations, each value g1/(x+u)(x+j) can be computed from the public
parameter PK for all j(�= u) ∈ S as

g1/(x+u)(x+j) = g1/(j−u)
u · g1/(u−j)

j .

Then the temporary session key TSK is used to decrypt messages from the
ciphertext body.
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– TraceD(TK). Given a perfect pirate decoder D with complete decryption
keys, the trusted party queries decoder D as a black-box oracle. We say the
decoder is perfect if it will always decrypt well-formed ciphertext correctly
[7]. We assume that the captured decoder can recover the messages encrypted
for receivers set S ⊆ {1, . . . , N}. For i = 1, . . . , L, the sender selects a random
temporary session key TSK ∈R GT , another key KR ∈R GT (KR �= TSK),
two random numbers s1, s0 ∈R Zp. The sender sets K1 = e(w, g)s1 and K0

= e(w, g)s0 , and then generates the ciphetext header Hdr as follows:

Hdr = (i, c1,1, c1,2, c1,3, c0,1, c0,2, c0,3)

= (i, (H(i, 1)
∏
j∈S

gj)
s1 , gs1 ,K1 ⊕ TSK,

(H(i, 0)
∏
j∈S

gj)
s0 , gs0 ,K0 ⊕KR).

A message m is symmetrically encrypted using the session key TSK to gen-
erate ciphertext body C. (Hdr, S) and C are fed to the decoder as in normal
broadcasting. If the pirate decoder outputs m, the trusted party decides that
the decoder contains a codeword w̄∗ with w̄∗

i = 1. Otherwise, w̄∗
i = 0. When

the tracing on all positions (1, . . . , L) is completed, the recovered codeword
w̄∗ = (w̄∗

1 . . . w̄
∗
L) is put to the tracing algorithm of collusion secure code

T(w̄∗, TK) to obtain a set of traitors T ∩ S ⊆ {1, . . . , N}, with T = T(w̄∗,
TK).

3.2 Security Analysis

Correctness. The correctness is straightforward from the above detailed de-
scriptions.

Semantic Security. Theorem 1 is used to prove the semantic security of the
proposed traitor tracing scheme in which users outside the receiver set cannot
recover any information of messages encrypted in the ciphertext.

Theorem 1. Let G be a bilinear group of prime order p. For any positive integer
n, the proposed traitor tracing scheme is (t, ε, n)-secure against chosen plaintext
attacks under random oracle model assuming the decisional (t, ε, n)-mBDH
assumption holds in G.

Proof. Suppose that there exists a t-time adversary A with advantage ε (with
integer n) for the proposed scheme. We will construct a simulator B to solve
the decisional n-mBDH problem with the help of A. Suppose B is given deci-
sional n-mBDH problem as a tuple (g, z, g1/(x+1), . . . , g1/(x+n), wg1/(x+1)2 ,

. . . , wg1/(x+n)2)∈ G2n+2 and a T ∈ GT , and B should output 1 if T = e(w, z)
and 0 otherwise. B interacts with A as follows.

Init. Given 1λ and the number of users in the system N = n, B selects ε ∈ (0, 1)
and runs collusion secure code generation algorithm G(N , ε) to generate a pair
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(Γ , TK). The set Γ = {w̄(1), . . . , w̄(N)} contains N codewords in {0, 1}L, where
L is the codeword length. TK is the tracing key for Γ . w̄(u) is assigned to user
u, with 1 ≤ u ≤ N . B forwards Γ to A, and A outputs the set S∗ of users
that it intends to attack, where S∗ ⊂ {1, . . . , N}. A also submits two messages
(m1,m0) to B.

Setup. From the given decisional n-mBDH problem, B sets g1 = g1/(x+1), . . . ,
gN = g1/(x+N), e(w, g) = e(wg1/(x+1)2 , g)/e(g1/(x+1), g1/(x+1)). Public parame-
ter PK = (G, GT , p, g, g1, . . . , gN , e(w, g), H(·)) is forwarded to A, where H(·)
is controlled by B as random oracle.

KeyGen. For i = 1, . . . , L, B sets H(i, 1) = gti,1(
∏

j∈S∗ gj)
−1 and H(i, 0) =

gti,0(
∏

j∈S∗ gj)
−1, with random ti,1, ti,0 ∈R Zp. B records these values (ti,1, ti,0,

H(i, 1), H(i, 0), i = 1, . . . , L) for later usage. When A queries the decryption

keys for user u �∈ S∗, for i = 1, . . . , L B sets b = w̄
(u)
i and computes

du,i = wg
1

(x+u)2 · g
ti,b
x+u · (

∏
j∈S∗

g
1

(x+u)(x+j) )−1.

We notice that wg
1

(x+u)2 , g
1

x+u and g
1

(x+u)(x+j) can be obtained from the given

decisional n-mBDH problem. We can check that g
ti,b
x+u · (∏j∈S∗ g

1
(x+u)(x+j) )−1

= g
ti,b
x+u · (

∏
j∈S∗ g

1
x+u

j )−1 = H(i, b)
1

x+u . Thus, the decryption keys SKu =
(du,1, . . . , du,L) are of the valid form.

Challenge. B selects a position i ∈ {1, . . . , L} and a random temporary session
key TSK ∈ GT to generate the ciphetext header Hdr as follows:

1. selects random s1, s0 ∈R Zp;
2. sets K1 = T s1 , K0 = T s0 . Suppose z = gr for some unkown r ∈ Zp. If T =
e(w, z), we will have K1 = e(w, g)r·s1 and K0 = e(w, g)r·s0 ;

3. sets c1,1 = zs1·ti,1 , c0,1 = zs0·ti,0 . As we notice that,

(H(i, b)
∏
j∈S∗

gj)
r·sb = (gti,b(

∏
j∈S∗

gj)
−1
∏
j∈S∗

gj)
r·sb

= (gti,b)r·sb

= zsb·ti,b ,

for any b ∈ {0, 1};
4. sets c1,2 = zs1 = gr·s1 , c0,2 = zs0 = gr·s0 .

As we can see, if T = e(w, z), the ciphertext header

Hdr = (i, c1,1, c1,2, c1,3, c0,1, c0,2, c0,3)

= (i, zs1·ti,1 , zs1 ,K1 ⊕ TSK,

zs0·ti,0 , zs0 ,K0 ⊕ TSK)
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is a ciphertext header of the valid form as for the public parameter PK. TSK is
used to symmetrically encrypt a random message mx (x ∈R {0, 1}) to generate
the ciphertext body C. (Hdr, S, C) are sent to A.

Guess. A outputs a guessed x′ ∈ {0, 1} as the response to the challenge cipher-
text. If x′ = x, B decides that T = e(w, z) and outputs 1. Else, B outputs 0.

As we notice, if T = e(w, z), B generates a valid ciphertext header with tem-
porary session key TSK. Then, A will answer the right x′ with advantage ε. If T
is uniformly random from GT , the ciphertext header is also of valid form but the
temporary session key is unknown and an unknown message is encrypted, which
does not help A to guess the bit choice. So B can solve the decisional n-mBDH
problem with the same advantage ε. This concludes the proof of Theorem 1. ��
Collusion Resistance. Theorem 3 is used to prove that the proposed traitor
tracing scheme is t-collusion resistant, i.e., t colluding users cannot generate a
perfect pirate decoder that cannot be traced back to any of its creators. Before
proving Theorem 3, we firstly prove that t colluding users cannot decrypt the
ciphertext which is encrypted to a codeword bit outside the feasible set of their
codewords, basing on the security of general construction in [24] that has the
form of decryption keys similar to our scheme.

Theorem 2. The general construction described by Park et al. in [24] is seman-
tically secure.

We need this theorem to prove Lemma 1, which will be used to prove the collusion
resistant security of the proposed scheme. Our readers can refer to Theorem 1
of [24] for detailed proof.

Lemma 1. Assuming Theorem 2, t users (with a same value for a same tracing
position) colluding in our proposed scheme, cannot recover the message encrypted
for the other value of the same tracing position.

Proof. (Sketch) For simplicity, we suppose these t colluding users are {1, . . . , t},
and they are controlled by the adversary A. Without loss of generality, we sup-
pose each of these users holds a codeword with value 0 in tracing position i, and
they attempt to recover the message encrypted for value 1 in tracing position i.
If they have any advantage in doing so, we can construct B to break the semantic
security of general construction by Park et al. in [24]. What we need to do is to
invoke the semantic security game GameSS of general construction in [24] and
set H(i, 0) and H(i, 1) to distinct elements that are setup for different subsets
in GameSS. The sketch process is as follows:

Init. B submits V (V > k > 1) users to the challenger CH in GameSS .

Setup. Since the general construction in [24] can support subset of any size,
we suppose the V users are split by CH and put into k subsets. In these k
subsets, each subset contains s (s > t) users with some users not belonging to
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those V users. Without loss of generality, we suppose the first t users in subset
j (1 < j < k) are not included in the V users submitted in Init phase. CH
generates public key as

PK = (g, h1, . . . , hk, g1, . . . , gs) ∈ Gk+s+1.

B queries CH for decryption key of the first user in subset j, and B can
compute the value e(w, g) with the returned decryption key dj,1 as e(w, g) =
e(dj,1, g)/e(hj, g1)e(g1, g1). As for our game, the public parameter is (G, GT , p,
g, g1, . . . , gs, e(w, g), H(·)), where H(·) is controlled by B as random oracle. B
sets H(i, 0) = hj , and H(i, 1) = h1. B queries CH for decryption keys of the rest
of the first t users in subset j. CH should return valid keys for them, since they
do not belong to the V users submitted in Init phase. As we notice that, these
keys (for first t users in subset j) are of valid form in our scheme, so they can
serve as the decryption keys (for value 0 in tracing position i) of the t colluding
users in our game.

Challenge. CH sends (Hdr∗, K∗) to B with Hdr∗ = (zt1 , . . . , ztk , z)∈ Gk+1

and K∗ = T ∈ GT . B selects randomly r ∈R Zp, TSK ∈R GT and forwards
(i, zt1·r, zr,(K∗)r ⊕ TSK) to A as the challenge ciphertext header for value 1
in tracing position i. As we notice that, the ciphertext header is for h1, which
is set as H(i, 1) in our game. If T = e(w, z) in GameSS, the ciphertext header
is of valid form in our game for value 1 in tracing position i to a set of users
including the t users controlled by A.

Guess. B forwards the guessed bit of A to CH.
If A has any advantage in making the right guess, B has the same advantage

in breaking the semantic security game GameSS of general construction in [24].
Assuming Theorem 2, such advantage is negligible. ��
Theorem 3. The proposed traitor tracing scheme is t-collusion secure assuming
the scheme is semantically secure and the collusion secure code is t-collusion
secure.

Proof. The t-collusion resistant game of our proposed scheme is played between
a challenger B and an adversary A as described in Section 2.

Let (G, T ) be a collusion secure code. Let N be an positive integer and ε ∈
(0, 1). The challenger runsG(N, ε) to obtain (Γ , TK) where Γ = {w̄(1), . . . , w̄(N)}
and w̄(i) is the codeword for user i. The challenger also generates a proposed
traitor tracing scheme with public parameter PK. It sends Γ and PK to the
adversary. Then, the adversary selects a subset of {1, . . . , N}, denoted as C with
|C| ≤ t. The adversary can query the challenger for decryption keys of users in
C. The challenger generates the keys as in the proposed scheme and gives them
to the adversary.

When it is time for the challenger to query the adversary on decryptions,
for the tracing position i = 1, . . . , L, the challenger queries the adversary with
message m encrypted as in the tracing algorithm to a set S of receivers. There
are four cases for the decoder:
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– Case 1: The adversary does not hold any valid decryption key of users in
S. As we proved in Theorem 1, the adversary will always output a random
message other than m. The probability that the adversary outputs the right
message is at most 1/|M|, where |M| is the number of messages in the
message space. In this case, the tracer changes to another set to continue.
The tracer will be deceived with probability at most 1/|M|;

– Case 2: The adversary holds decryption keys for at least one user in S (these
users with decryption keys held by the adversary are denoted as SA, with SA

= S ∩ C), and all codewords of users in SA contain “1” in tracing position

i. That is to say, all w̄(j)(∀j ∈ SA) satisfy w̄
(j)
i = 1. Thus, the adversary

will always output m′ = m. The recovered bit w̄∗
i will always be 1. Since all

codewords of users in SA do not contain “0” in position i, the probability
that the adversary outputs m′ �= m is less than AdvASS , the probability that
the adversary breaks Lemma 1 (so as to break the semantic security game of
the general construction in [24]). As implied in Lemma 1, AdvASS is negligible;

– Case 3: The adversary holds decryption keys for at least one user in S (these
users are denoted as SA), and all codewords of users in SA contain “0” in

tracing position i. That is to say, all w̄(j)(∀j ∈ SA) satisfy w̄
(j)
i = 0. Thus, the

adversary will always output m′ �= m. The recovered bit w̄∗
i will always be

0. Since all codewords in SA do not contain “1” in position i, the probability
that the adversary outputs m is less than AdvASS , the probability that the
adversary breaks Lemma 1;

– Case 4: The adversary holds decryption keys for at least one user in S (these
users are denoted as SA), and codewords of users in SA contain both “0” and
“1” in tracing position i. No matter what message the adversary outputs (m
or others), w̄∗

i must be in the feasible set of all codewords corresponding to
SA.

We use WSA to denote the set of codewords corresponding to SA. Therefore,
the final recovered codeword w̄∗ ∈ F (WSA). From the assumption that collusion
secure code (G, T ) is t-collusion resistant, the probability that T (w̄∗, TK) is
empty or not a subset of SA is less than ε. Thus, the probability that the adver-
sary breaks the property of t-collusion resistance of our traitor tracing scheme
is less than (1/|M|)L + 2L ·AdvASS + ε. ��
As we notice that, when t = N , our proposed scheme is fully collusion resistant.

Public Collaboration Resistance As discussed in Section 1 that most codes
based traitor tracing scheme suffered from a kind of attack called public collab-
oration (Pirate 2.0) [4]. Now we take a look at the proposed scheme.

Theorem 4. The proposed scheme is public collaboration resistant.

Proof. If some user in the proposed scheme releases certain partial key in public,
it may release together its index u in the system, the key index of the released
partial key in its set of decryption keys and the corresponding codeword bit so
as that the partial key can be used immediately. If so, the traitor’s identity (its
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Table 1. Comparison with Previous Codes Based Works

Public
Key

Private
Key

Ciphertext
Length

Encryption
Computation

Decryption
Computation

Revocation Pirate 2.0
Resistant

[19] 2LG LZp 2LG L(2E+ 1M) L(1E+ 2M) No No
[10] 1G+

(L+1)GT

LZp+
LG

2G+ LGT LET+ 2M L(M+ 2P) No No

[7] 2LG LZp 1Zp+ 2G (2E+ 1M) (1E+ 2M) No No
[3] 2LG LZp u(1Zp+

2G)
u(2E+ 1M) u(1E+ 2M) No No

[11] (2L+1)G (L+2)Zp 2Zp+
(L+2)G

(3E+1M) (2E+2M) No No

[29] (L+2)G1

+2G2

1G1

+1G2

2LG1

+2G2+3Zp

2(L+1)E1

+2M +2E2

+2ET

(L-1)E1

+(L-1)M
+2P+1MT

No Yes

Ours (N+1)G
+1Zp

LG 1Zp +4G
+2GT

2(|S|+1)M
+4E+2ET

2(|S|-1)E+|S|M
+2P+1MT

Yes Yes

L: the length of codeword; |S|: the number of users in the set S of receivers;
N : the total number of users in the system;
u: the number of codeword positions used in encryption [3];
G: element in G; G1: element in G1; G2: element in G2; GT : element in GT ;
Zp: element in Zp; P: pairing in G ×G or G1 ×G2;
E: exponentiation in G; E1: exponentiation in G1; E2: exponentiation in G2;
M: multiplication (or division) in G; M1: multiplication (or division) in G1;
MT : multiplication (or division) in GT .

Table 2. Comparison with Previous Public Key Trace and Revoke Schemes

Public
Key

Private
Key

Ciphertext
Length

Number of
Revoked
Users

Encryption
Computation

Decryption
Computation

Collusion
Threshold

[14] O(R) O(1) O(R) ≤ R O(R) O(R) R

[9] O(
√
N) O(

√
N) O(

√
N) Unlimited O(|S|+√

N) O(|S|) No
Threshold

[27] O(logN) O(1) O(r log(N/r)
· logN)

Unlimited O(r log(N/r)
· logN)

O(logN) No
Threshold

Ours O(N) O(L) O(1) Unlimited O(|S|) O(|S|) Depends on
codes

L: the length of codeword; |S|: the number of users in the set S of receivers;
N : the total number of users in the system; r: the number of revoked users;
R: the revocation threshold in each broadcasting.

index u in the system) is exposed already. If not, the tracer can still find out the
traitor’s identity by 2LN rounds of computations. For all j = 1, . . . , L, b = 1, 0,
and u = 1, . . . , N , the tracer tests whether the following equation holds:

e(d∗, g) = e(w, g)e(H(j, b), gu)e(gu, gu),

where d∗ denotes the released partial key. If the equation holds for certain
(j, b, u), user with system index u will be accused for releasing this partial key.

Thus, the partial decryption key in our scheme is self-enforced so that our
scheme is resistant to public collaboration. ��
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3.3 Efficiency Analysis

In Table 1, we compare our scheme with previous codes based traitor tracing
schemes [19,10,7,3,11,29] on public key size, private key size, ciphertext length,
encryption computation, decryption computation, revocation ability and the
property of public collaboration resistance. We assume that all schemes use
collusion secure codes of a same length L. Since schemes in [7] and [3] did not
mention the public key encryption scheme used for each position, we suppose
both schemes use secure ElGamal encryption scheme over a cyclic group of order
p, where p is a large strong prime.

We show that our scheme achieves constant ciphertext length as schemes
in [7,3] did. Our scheme is resistant to public collaboration according to the
discussion in previous subsection.

Our scheme is also compared with previous public key trace and revoke
schemes, including threshold secret sharing based scheme [14], augmented broad-
cast encryption based scheme [9] and subset cover based scheme [27]. As we can
see in Table 2, our scheme achieves constant ciphertext while others do not.

4 Conclusion and Discussions

We present a codes based tracing and revoking scheme by combining Park et
al.’s public key broadcast encryption scheme [24] and Boneh and Naor’s traitor
tracing scheme [7], which presents an answer to the problem left open by Billet
and Phan [3].

Our scheme is proved secure under random oracle model, and the random
oracle can be removed by adding more elements in public parameters (discussed
in Appendix A.1).

Our scheme can also be extended to scheme based on IPP codes and scheme
against imperfect pirate decoders, and we discuss them in Appendix A.2 and
Appendix A.3.

We notice that our scheme is based on v-Modified Bilinear Diffie-Hellman
assumption [24] that is not well studied, which urges us to present codes based
tracing and revoking scheme based on standard complexity assumptions in future
work.
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A Extension Discussions

A.1 Removing Random Oracle

The proposed scheme is proved secure against chosen plaintext attacks in random
oracle model. Here, we show a method to remove the random oracle. What we
need to do is to remove the hash function H(·) and add 2L random elements
in G into public parameter as the values of hash function. The resulting public
parameter is of the length O(L +N).

A.2 Scheme Based on IPP Codes

As for a q-ary IPP code [15], let Θ = {Sym1, . . . , Symq} be the set containing
these q symbols. Then each user will receive a codeword from ΘL and the corre-
sponding set of decryption keys generated as described in the proposed scheme.
Each set of decryption keys is of the length O(qL).
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When in broadcasting, a tracing position i and a set S of receivers are selected.
The ciphertext header (encrypting a same temporary session key) will enable all
q symbols in position i instead of two symbols when using collusion secure codes.
The ciphertext is of the length O(q).

When in tracing, however, the ciphertext header will encrypt different tempo-
rary session keys for different symbols in position i, i.e., q distinct session keys
(TSK1, . . . , TSKq) are encrypted and TSKj is for Symj , j = 1, . . . , q. As for
the ciphertext body, a simple method is that q distinct messages (m1, . . . ,mq)
are encrypted and mj is for Symj, j = 1, . . . , q. If the pirate decoder out-
puts mj , the tracer decides that the decoder contains a codeword w̄∗ with
w̄∗

j = Symj. There are other methods to recover the codeword, and we will
not discuss them further for brevity. When the tracing on all positions is com-
pleted, the recovered codeword w̄∗ = (w̄∗

1 . . . w̄∗
L) will be input to the de-

coding (tracing) algorithm of IPP code, and a list of parent codewords are
obtained.

A.3 Scheme against Imperfect Pirate Decoders

As for imperfect pirate decoders [7] that will fail to decrypt well-formed ci-
phertext with a probability δ (0 ≤ δ < 1), Boneh and Naor described a so-
phisticated tracing method with the help of δ-robust fingerprinting codes [7].
Their method can also be modified and applied in our scheme to enable such
feature.

We assume thatM is the message space. i is the tracing position. S is the set of
receivers for which the captured decoder can decrypt the ciphertext. TSK1 is the
session key for value 1 in position i and TSK0 is for value 0. m is the message to
be encrypted. Hdr is the output header and C is the generated ciphertext body
using TSK1. We use (Hdr,C) ← TraceEnc(i, S, TSK1, TSK0,m) to denote
the computations in tracing algorithm, and use m′ ← D(S,Hdr, C) to denote
that decoder D outputs m′ on input (S,Hdr, C). For i = 1, . . . , L, the tracing
algorithm is defined as follows:

The tracer repeats the following steps λ lnL times:

m
R←− M;

TSK1
R←− GT ;

TSK0 = TSK1;

(Hdr,C) ← TraceEnc(i, S, TSK1, TSK0,m);

m′ ← D(S,Hdr, C).

Let pi be the fraction of times that m′ = m;
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The tracer repeats the following steps λ lnL times:

m
R←− M;

TSK1
R←− GT ;

TSK0
R←− GT , with (TSK0 �= TSK1);

(Hdr,C) ← TraceEnc(i, S, TSK1, TSK0,m);

m′ ← D(S,Hdr, C).

Let qi be the fraction of times that m′ = m. Define w̄∗
i ∈ {0, 1} as:

w̄∗
i =

⎧⎨⎩
1 if qi > 0
0 if qi = 0 and pi > 0
‘?’ otherwise

and w̄∗ = w̄∗
1 . . . w̄

∗
L. By using the δ-robust collusion secure code presented in [7]

we obtain a tracing scheme that can trace imperfect pirate decoders as long as

δ < (1/L)− (1/λ).

For details about tracing imperfect pirate decoders and constructing δ-robust
collusion secure codes, please refer to [7].

A.4 Subset Cover Based Traitor Tracing Method

Beside the codes based tracing method by Boneh and Naor, we have another
choice for our scheme, i.e., to use the subset cover based traitor tracing method
[22]. At first, the tracer specifies a set of receivers for which the pirate decoder can
decrypt the ciphertext. Then, the tracer randomly splits the set into two subsets
(roughly half the receivers) and chooses the subset for which the pirate decoder
can decrypt the ciphertext to continue. The process of tracing and splitting is
performed repeatedly until only one user remained and the decoder still can
decrypt. The remaining user is the traitor. As stated in [22], the subset cover
based traitor tracing method requires that the pirate decoder is available and
resettable.
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