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Abstract. In the present work we showed that together with improved stability 
the Intrinsic Plasticity (IP) tuned Echo State Network (ESN) reservoirs possess 
also better clustering abilities that opens a possibility for application of ESNs in 
multidimensional data clustering. The revealed ability of ESNs is demonstrated 
first on an artificially created data set with known in advance number and 
position of clusters. Automated procedure for multidimensional data clustering 
was proposed. It allows discovering multidimensional data structure without 
specification in advance the clusters number. The developed procedure was 
further applied to a real data set containing concentrations of three alloying 
elements in numerous steel compositions. The obtained number and position of 
clusters showed logical from the practical point of view data separation. 
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1 Introduction 

Designed to be as close as possible to biological brain structure artificial recurrent 
neural networks (RNNs) are a large and varied class [8]. Although they have a lot of 
applications, there are problems with their supervised training arising from their 
recurrent structure. Aimed at solving these problems, “reservoir computing” 
approaches aroused that greatly facilitated the practical application of RNNs [8]. The 
key idea is that a RNN (named reservoir) can be randomly generated and can remain 
unchanged during the training and running phases. The only trainable is the RNN 
readout that is linear combination of current reservoir neurons states and hence could 
be trained faster. An extensively investigated and developed branch of reservoir 
computing is called “Echo state network” (ESN) [3, 8]. It incorporates a randomly 
generated recurrent reservoir with sigmoid nonlinearities of neurons outputs (usually 
hyperbolic tangent). The only restriction is that such reservoir has to have “echo state 
property” meaning that the effect of its previous state and input to its output should 
vanish gradually in time, i.e. the reservoir possesses stable behavior. Since the ESN 
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reservoir structure is randomly generated, there are no universal recipes for its 
generation [8] and all works in this direction are task dependent. The usual 
recommendation for achieving the echo state property is to generate a reservoir 
weight matrix with spectral radius below one. However as it was mentioned in many 
works [8] this condition will not guaranty ESN stable behavior in general. 

Since it is well known that any stable stationary state has a local maximum of 
entropy [4], it can be expected that maximization of entropy at the ESN reservoir 
output could be related to increasing of its stability. There are several works 
proposing ESN reservoir improvement related to entropy maximization [9, 11] and 
motivated by known biological mechanisms of changing neural excitability according 
to the distribution of the input stimuli [10]. In both cases it was proposed to use a bias 
term that will move the operating point of the system in the desired direction. In [10] 
the authors proposed a gradient method named Intrinsic Plasticity (IP) training for 
adjusting the biases as well as of an additional gain term aimed at achieving the 
desired distribution of reservoir output. 

In our previous work [7] it was shown that in fact IP training achieves balance 
between maximization of entropy at the ESN reservoir output and its concentration 
around the pre-specified mean value. The simulation investigations with different 
random reservoirs showed that the IP improvement stabilizes even initially unstable 
reservoirs. Theoretical stability investigations showed that stabilization was achieved 
by squeezing of the neurons nonlinearities working sectors. During investigations 
why and how IP reservoir improvement influences its stability we observed another 
interesting effect: the reservoir neurons equilibrium points are not only moved but 
also are concentrated in several regions. Then question aroused: is it possible to use 
this effect for clustering purposes too? Indeed many well known RNNs used for data 
classification [1, 5, 6] relay on unsupervised learning procedures that minimize given 
energy function in search of correspondent to data structure adjustment of network 
equilibrium states. In [12] for the first time it was proposed to use ESN in image 
classification to “draw out” silent underlying features of the data. These extracted 
features were used further as inputs to a feedforward neural network classifier. Here 
we exploit the same reservoir ability but looking from another perspective: we 
consider combinations between steady states of each two neurons in the reservoir as 
numerous two-dimensional projections of the original multidimensional data fed into 
ESN input. These low dimensional projections can be used next for easier data 
clustering. Although the idea to apply designed for time series modeling ESN to static 
vectors clustering can appear odd, it is actually consistent with other dynamic neural 
architectures. As an example can be mentioned neural systems possessing multi-stable 
attractors that perform temporal integration aimed at discrimination between multiple 
alternatives [2]. 

The paper is constructed as follows: first the revealed effect of IP training is 
demonstrated on artificially created data sets whose number and position of clusters 
are known in advance; next an automated procedure for multidimensional data 
clustering was proposed that allows discovering structure of multidimensional data 
sets without specification in advance the clusters number; finally, in order to 
demonstrate capability of clustering of unclearly separated regions, the proposed 
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procedure was applied to a real data set containing quantities of three alloying 
elements in different steel alloys types. The obtained number and position of clusters 
showed logical from the practical point of view data separation. 

2 Problem Statement 

2.1 Echo State Networks and IP Improvement of Reservoir 

The ESN reservoir dynamics is described as follows [3]: 
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Here, u(k) is the network input vector with size nu, r(k) - reservoir neurons states 

vector with size nr; Win and Wres are unrn ×  and rnrn ×  matrices that are 

randomly generated and are not trainable. The neurons in the reservoir have a simple 

sigmoid output function fres that is usually hyperbolic tangent. 
The IP reservoir improvement proposed in [10, 11] is gradient descent procedure 

that minimizes the Kullback-Leibler divergence: 
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DKL is a measure for the difference between the actual p(r) and the desired pd(r) 
probability distribution of reservoir neurons output r. Since the commonly used 
transfer function of neurons is the hyperbolic tangent, the proper target distribution 
that maximizes the information at the output according to [10] is the Gaussian one. It 
is also recommended to use zero mean Gaussian distribution with desired variance σ 
so that IP training will tend to concentrate the reservoir outputs around chosen mean 
(i.e. zero) and squeeze it into the interval [-3 σ, 3 σ]. In order to achieve those effects 
two additional reservoir parameters - gain a and bias b (both vectors with nr size) - 

are introduced as follows: 
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The IP training is procedure that adjusts vectors a and b using gradient descent. 

2.2 Effect of IP Training on ESN Equilibrium States 

The equilibrium state of reservoir re for a constant input uc can be determined as 

follows: 
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So if b=0 and uc=0, the equilibrium will be at the origin of the reservoir state space 

coordinate system. Otherwise it will be moved in dependence on the values of input 
uc and bias b vectors. Since the input weights matrix remains constant, the first term 

in the brackets will be also constant for constant inputs (uc =const.). Thus we can 

consider it together with the bias term as common bias for a given input vector: 
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Hence the reservoir equilibrium will be different for different input vectors. 
Moreover, if the input vectors are close in the input space, they will result in close 
equilibrium points in the reservoir state - a fact that could be exploited for clustering 
purposes. Since the connections matrices are randomly generated, the reservoir 
equilibrium states will vary randomly within the hyperbolic tangent output interval, 
i.e. [-1 +1]. After IP improvement they will be squeezed into the interval determined 
by chosen variance σ of Gaussian distribution, i.e. [-3 σ, +3 σ]. Hence we can 
suppose that overall IP training will probably lead to an ordered distribution of 
reservoir neurons equilibrium states. 

3 Our Clustering Procedure 

The above considerations motivated the experiment described below. It could be 
extended to multi-dimensional spaces but in order to be able to present results clearly 
our example is three dimensional one. Our experiment is as follows: 

- Several clearly separated data clusters (shown on Figure 1 below) were 
generated in three dimensional unit cube space. 

- Random ESN reservoir was generated and each data point was fed into its 
input many times while the reservoir achieves corresponding to this data 
equilibrium state. 

- IP training procedure was applied by presenting all generated data and again 
the new reservoir equilibriums were determined for each data point from the 
data set. 

- Two dimensional plots of all possible combinations between reservoir neurons 
equilibriums scaled within interval [-1 +1] were generated in order to see if 
there is any change of their positions. 

Figure 2 presents an example of positions of several chosen neurons from our ESN 
reservoir before and after its IP tuning. It can be clearly seen that before IP training 
equilibrium points in two dimensional state spaces could not be clearly separated into 
different clusters. However, after IP training they appeared separable. 

It is obvious that not all possible combinations of two neurons outputs give the 
same clear picture as can be seen from that figure. We can consider each couple of  
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Fig. 1. Artificially generated five clusters data set 
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Fig. 2. Scaled equilibrium states of reservoir neurons before and after IP training 

neurons as different “point of view projection” of multidimensional input space onto 
the two dimensional space of each couple of neurons equilibriums. However, question 
arises how to use this effect for clustering purposes? 

Here we propose the following decision: since the IP training forces reservoir output 
to distribute according pre-specified Gaussian distribution, we decided to observe the 
obtained equilibrium states distributions. Left part of Figure 3 shows probability density 
distributions of equilibrium states of ten chosen neurons from our IP trained ESN 
reservoir. As it can be seen, each neuron output distribution is combination of several 
Gaussian distributions. Stars on the figure mark local maxima on the distribution curves 
that correspond to the local Gaussian distribution. Hence we can suppose that neurons 
with bigger number of maxima separate data into bigger number of clusters. So if we 
choose two dimensional projections formed by neurons with biggest number of 
probability distribution maxima, we can obtain clearest separation of data. 

Here we propose the following algorithm for two dimensional projections choice: 

- Calculate probability density distribution of all neurons equilibriums; 
- Find number of local maxima of each probability density distribution; 
- Choose neurons with higher number of local maxima in their probability 

density distributions; 
- Choose two dimensional projections for all possible combinations between 

these selected neurons for data clustering; 

Right side of the Figure 3 presents chosen by our algorithm best two dimensional 
projection from the numerous projections from Figure 2, i.e. projection obtained by  
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Fig. 3. Probability density distributions of several neurons in the reservoir (left) with local 
maxima marked by stars and chosen two dimensional projection (right) 

neurons number 1 and 7 that have probability distributions with higher number of 
local maxima. As it is clearly seen, the chosen projection separates clearly five 
clusters of the original data set. 

4 Real Data Clustering Experiment 

Next we apply our clustering procedure to a real data set. It consists of 91 steel alloy 
compositions. Each data point contains concentrations of three main alloying 
elements: carbon (C), silicone (Si) and manganese (Mn) in percents (%). They can be 
separated naturally into three groups according to concentrations of Si and Mn. Tables 
1 and 2 below summarize the data of the two smaller data groups. The rest of 91 data 
belong to the third biggest cluster. 

Left part of Figure 4 presents all 91 data points in three dimensional space. The red 
squares correspond to the data from Table 1, the green circles – to the data from Table 
2 and the blue circles – to the third data cluster. 

Right part of the Figure 4 presents chosen by our procedure two dimensional 
projection of the data obtained after IP training of ESN and application of the proposed 
projection selection algorithm. The red (squares), blue (dots) and green (circles) marks 
correspond to the data from the three clusters separated in the left part of the figure. 

Black stars (left) and squares (right) represent the clusters centers obtained by 
subtractive fuzzy clustering procedure. Original data are separated into 4 clusters 
while projected once – in 3 clusters that correspond better to the logical separation of 
our data set, although the red squares cluster center is moved towards the blue dots 
cluster due to restricted number of data in the red squares cluster. 

Table 1. Class one (marked by 5 red squares): Mn≥1.6% 

No C, % Si, % Mn, % 
1 0.35 0.27 1.6 
2 0.45 0.27 1.6 
3 0.305 0.27 1.6 
4 0.36 0.27 1.75 
5 0.4 0.27 1.6 
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Table 2. Class two (marked by 10 green circles): Si≥1.05 

No C, % Si, % Mn, % 

1 0.355 1.25 0.95 
2 0.41 1.4 0.45 
3 0.2 1.05 0.95 
4 0.315 1.05 0.95 
5 0.38 1.2 0.45 
6 0.25 1.05 0.95 
7 0.31 1.05 0.95 
8 0.33 1.2 0.45 
9 0.305 1.05 1.15 
10 0.34 1.25 0.9 
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Fig. 4. Three-dimensional presentation of 91 steel compositions (left) and their separation into 
three clusters (right) 

5 Conclusions  

We showed experimentally that together with improved stability the Intrinsic 
Plasticity (IP) tuned Echo State Network (ESN) reservoirs possess also better 
clustering abilities that naturally opens the possibility to apply them for 
multidimensional data clustering. Based on investigated effect of IP improvement of 
ESN reservoir we propose a procedure for multidimensional data clustering. It allows 
discovering multidimensional data structure without specification in advance the 
clusters number. The developed procedure was applied also to a real data set 
containing different steels three alloying elements concentrations. The obtained 
number and position of clusters showed logical from the practical point of view data 
separation. 

Our idea can easily be extended to more than 2-dimensional data projection by 
using more than two reservoir neurons. The idea of using neurons density 
distributions for projections discrimination needs further refinement since we 
observed strong dependence of obtained number of maxima on the bandwidth of used 
kernel-smoothing window. All these topics will be subject of our future work. 
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