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Abstract. In the present work we showed that together with improved stability
the Intrinsic Plasticity (IP) tuned Echo State Network (ESN) reservoirs possess
also better clustering abilities that opens a possibility for application of ESNs in
multidimensional data clustering. The revealed ability of ESNs is demonstrated
first on an artificially created data set with known in advance number and
position of clusters. Automated procedure for multidimensional data clustering
was proposed. It allows discovering multidimensional data structure without
specification in advance the clusters number. The developed procedure was
further applied to a real data set containing concentrations of three alloying
elements in numerous steel compositions. The obtained number and position of
clusters showed logical from the practical point of view data separation.

Keywords: Echo State Network, Intrinsic Plasticity, stability, data clustering.

1 Introduction

Designed to be as close as possible to biological brain structure artificial recurrent
neural networks (RNNs) are a large and varied class [8]. Although they have a lot of
applications, there are problems with their supervised training arising from their
recurrent structure. Aimed at solving these problems, “reservoir computing”
approaches aroused that greatly facilitated the practical application of RNNs [8]. The
key idea is that a RNN (named reservoir) can be randomly generated and can remain
unchanged during the training and running phases. The only trainable is the RNN
readout that is linear combination of current reservoir neurons states and hence could
be trained faster. An extensively investigated and developed branch of reservoir
computing is called “Echo state network™ (ESN) [3, 8]. It incorporates a randomly
generated recurrent reservoir with sigmoid nonlinearities of neurons outputs (usually
hyperbolic tangent). The only restriction is that such reservoir has to have “echo state
property” meaning that the effect of its previous state and input to its output should
vanish gradually in time, i.e. the reservoir possesses stable behavior. Since the ESN

A.E.P. Villa et al. (Eds.): ICANN 2012, Part I, LNCS 7552, pp. 571-578] 2012.
© Springer-Verlag Berlin Heidelberg 2012



572 P. Koprinkova-Hristova and N. Tontchev

reservoir structure is randomly generated, there are no universal recipes for its
generation [8] and all works in this direction are task dependent. The usual
recommendation for achieving the echo state property is to generate a reservoir
weight matrix with spectral radius below one. However as it was mentioned in many
works [8] this condition will not guaranty ESN stable behavior in general.

Since it is well known that any stable stationary state has a local maximum of
entropy [4], it can be expected that maximization of entropy at the ESN reservoir
output could be related to increasing of its stability. There are several works
proposing ESN reservoir improvement related to entropy maximization [9, 11] and
motivated by known biological mechanisms of changing neural excitability according
to the distribution of the input stimuli [10]. In both cases it was proposed to use a bias
term that will move the operating point of the system in the desired direction. In [10]
the authors proposed a gradient method named Intrinsic Plasticity (IP) training for
adjusting the biases as well as of an additional gain term aimed at achieving the
desired distribution of reservoir output.

In our previous work [7] it was shown that in fact IP training achieves balance
between maximization of entropy at the ESN reservoir output and its concentration
around the pre-specified mean value. The simulation investigations with different
random reservoirs showed that the IP improvement stabilizes even initially unstable
reservoirs. Theoretical stability investigations showed that stabilization was achieved
by squeezing of the neurons nonlinearities working sectors. During investigations
why and how IP reservoir improvement influences its stability we observed another
interesting effect: the reservoir neurons equilibrium points are not only moved but
also are concentrated in several regions. Then question aroused: is it possible to use
this effect for clustering purposes too? Indeed many well known RNNs used for data
classification [1, 5, 6] relay on unsupervised learning procedures that minimize given
energy function in search of correspondent to data structure adjustment of network
equilibrium states. In [12] for the first time it was proposed to use ESN in image
classification to “draw out” silent underlying features of the data. These extracted
features were used further as inputs to a feedforward neural network classifier. Here
we exploit the same reservoir ability but looking from another perspective: we
consider combinations between steady states of each two neurons in the reservoir as
numerous two-dimensional projections of the original multidimensional data fed into
ESN input. These low dimensional projections can be used next for easier data
clustering. Although the idea to apply designed for time series modeling ESN to static
vectors clustering can appear odd, it is actually consistent with other dynamic neural
architectures. As an example can be mentioned neural systems possessing multi-stable
attractors that perform temporal integration aimed at discrimination between multiple
alternatives [2].

The paper is constructed as follows: first the revealed effect of IP training is
demonstrated on artificially created data sets whose number and position of clusters
are known in advance; next an automated procedure for multidimensional data
clustering was proposed that allows discovering structure of multidimensional data
sets without specification in advance the clusters number; finally, in order to
demonstrate capability of clustering of unclearly separated regions, the proposed
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procedure was applied to a real data set containing quantities of three alloying
elements in different steel alloys types. The obtained number and position of clusters
showed logical from the practical point of view data separation.

2 Problem Statement

2.1  Echo State Networks and IP Improvement of Reservoir

The ESN reservoir dynamics is described as follows [3]:
r(k)= freS(Wmu(k)+Wresr(k—l)) (1)

Here, u(k) is the network input vector with size n,, r(k) - reservoir neurons states
vector with size n,; W' and W'¢S are n,xn, and n.xn, matrices that are

randomly generated and are not trainable. The neurons in the reservoir have a simple

sigmoid output function /¢S that is usually hyperbolic tangent.
The IP reservoir improvement proposed in [10, 11] is gradient descent procedure
that minimizes the Kullback-Leibler divergence:

D))= o 27| o

Dy is a measure for the difference between the actual p(r) and the desired p,(r)
probability distribution of reservoir neurons output r. Since the commonly used
transfer function of neurons is the hyperbolic tangent, the proper target distribution
that maximizes the information at the output according to [10] is the Gaussian one. It
is also recommended to use zero mean Gaussian distribution with desired variance ¢
so that IP training will tend to concentrate the reservoir outputs around chosen mean
(i.e. zero) and squeeze it into the interval [-3 o, 3 d]. In order to achieve those effects
two additional reservoir parameters - gain a and bias b (both vectors with n,. size) -

are introduced as follows:
1{1)= 7S diag @ "ulk) + diag(aW¥ "1l 1) b )

The IP training is procedure that adjusts vectors a and b using gradient descent.

2.2  Effect of IP Training on ESN Equilibrium States

The equilibrium state of reservoir r, for a constant input u,. can be determined as

follows:
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r,= tanh(diag(a)Winuc +diag(a)W” esre + bj 4)

So if b=0 and u,=0, the equilibrium will be at the origin of the reservoir state space

coordinate system. Otherwise it will be moved in dependence on the values of input
u. and bias b vectors. Since the input weights matrix remains constant, the first term

in the brackets will be also constant for constant inputs (#, =const.). Thus we can

consider it together with the bias term as common bias for a given input vector:
r,= tanh(diag(a)W resre +b, ), b, = diag(a)Wmuc +b (5)

Hence the reservoir equilibrium will be different for different input vectors.
Moreover, if the input vectors are close in the input space, they will result in close
equilibrium points in the reservoir state - a fact that could be exploited for clustering
purposes. Since the connections matrices are randomly generated, the reservoir
equilibrium states will vary randomly within the hyperbolic tangent output interval,
i.e. [-1 +1]. After IP improvement they will be squeezed into the interval determined
by chosen variance o of Gaussian distribution, i.e. [-3 6,43 ¢]. Hence we can
suppose that overall IP training will probably lead to an ordered distribution of
reservoir neurons equilibrium states.

3 Our Clustering Procedure

The above considerations motivated the experiment described below. It could be
extended to multi-dimensional spaces but in order to be able to present results clearly
our example is three dimensional one. Our experiment is as follows:

- Several clearly separated data clusters (shown on Figure 1 below) were
generated in three dimensional unit cube space.

- Random ESN reservoir was generated and each data point was fed into its
input many times while the reservoir achieves corresponding to this data
equilibrium state.

- IP training procedure was applied by presenting all generated data and again
the new reservoir equilibriums were determined for each data point from the
data set.

- Two dimensional plots of all possible combinations between reservoir neurons
equilibriums scaled within interval [-1 +1] were generated in order to see if
there is any change of their positions.

Figure 2 presents an example of positions of several chosen neurons from our ESN
reservoir before and after its IP tuning. It can be clearly seen that before IP training
equilibrium points in two dimensional state spaces could not be clearly separated into
different clusters. However, after IP training they appeared separable.

It is obvious that not all possible combinations of two neurons outputs give the
same clear picture as can be seen from that figure. We can consider each couple of
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Fig. 2. Scaled equilibrium states of reservoir neurons before and after IP training

neurons as different “point of view projection” of multidimensional input space onto
the two dimensional space of each couple of neurons equilibriums. However, question
arises how to use this effect for clustering purposes?

Here we propose the following decision: since the IP training forces reservoir output
to distribute according pre-specified Gaussian distribution, we decided to observe the
obtained equilibrium states distributions. Left part of Figure 3 shows probability density
distributions of equilibrium states of ten chosen neurons from our IP trained ESN
reservoir. As it can be seen, each neuron output distribution is combination of several
Gaussian distributions. Stars on the figure mark local maxima on the distribution curves
that correspond to the local Gaussian distribution. Hence we can suppose that neurons
with bigger number of maxima separate data into bigger number of clusters. So if we
choose two dimensional projections formed by neurons with biggest number of
probability distribution maxima, we can obtain clearest separation of data.

Here we propose the following algorithm for two dimensional projections choice:

- Calculate probability density distribution of all neurons equilibriums;

- Find number of local maxima of each probability density distribution;

- Choose neurons with higher number of local maxima in their probability
density distributions;

- Choose two dimensional projections for all possible combinations between
these selected neurons for data clustering;

Right side of the Figure 3 presents chosen by our algorithm best two dimensional
projection from the numerous projections from Figure 2, i.e. projection obtained by
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probabilty density dstibutions of nowrons steady states

Fig. 3. Probability density distributions of several neurons in the reservoir (left) with local
maxima marked by stars and chosen two dimensional projection (right)

neurons number 1 and 7 that have probability distributions with higher number of
local maxima. As it is clearly seen, the chosen projection separates clearly five
clusters of the original data set.

4 Real Data Clustering Experiment

Next we apply our clustering procedure to a real data set. It consists of 91 steel alloy
compositions. Each data point contains concentrations of three main alloying
elements: carbon (C), silicone (Si) and manganese (Mn) in percents (%). They can be
separated naturally into three groups according to concentrations of Si and Mn. Tables
1 and 2 below summarize the data of the two smaller data groups. The rest of 91 data
belong to the third biggest cluster.

Left part of Figure 4 presents all 91 data points in three dimensional space. The red
squares correspond to the data from Table 1, the green circles — to the data from Table
2 and the blue circles — to the third data cluster.

Right part of the Figure 4 presents chosen by our procedure two dimensional
projection of the data obtained after IP training of ESN and application of the proposed
projection selection algorithm. The red (squares), blue (dots) and green (circles) marks
correspond to the data from the three clusters separated in the left part of the figure.

Black stars (left) and squares (right) represent the clusters centers obtained by
subtractive fuzzy clustering procedure. Original data are separated into 4 clusters
while projected once — in 3 clusters that correspond better to the logical separation of
our data set, although the red squares cluster center is moved towards the blue dots
cluster due to restricted number of data in the red squares cluster.

Table 1. Class one (marked by 5 red squares): Mn>1.6%

No C,% Si, % Mn, %
0.35 0.27 1.6
0.45 0.27 1.6
0.305  0.27 1.6
0.36 0.27 1.75
0.4 0.27 1.6
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Table 2. Class two (marked by 10 green circles): Si>1.05

No C % Si, % Mn, %
1 0.355 1.25 0.95

2 0.41 1.4 0.45

3 0.2 1.05 0.95

4 0.315 1.05 0.95

5 0.38 1.2 0.45

6 0.25 1.05 0.95

7 0.31 1.05 0.95

8 0.33 1.2 0.45

9 0.305 1.05 1.15

10 0.34 1.25 0.9
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Fig. 4. Three-dimensional presentation of 91 steel compositions (left) and their separation into
three clusters (right)

5 Conclusions

We showed experimentally that together with improved stability the Intrinsic
Plasticity (IP) tuned Echo State Network (ESN) reservoirs possess also better
clustering abilities that naturally opens the possibility to apply them for
multidimensional data clustering. Based on investigated effect of IP improvement of
ESN reservoir we propose a procedure for multidimensional data clustering. It allows
discovering multidimensional data structure without specification in advance the
clusters number. The developed procedure was applied also to a real data set
containing different steels three alloying elements concentrations. The obtained
number and position of clusters showed logical from the practical point of view data
separation.

Our idea can easily be extended to more than 2-dimensional data projection by
using more than two reservoir neurons. The idea of using neurons density
distributions for projections discrimination needs further refinement since we
observed strong dependence of obtained number of maxima on the bandwidth of used
kernel-smoothing window. All these topics will be subject of our future work.
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