
A Rule Chaining Architecture

Using a Correlation Matrix Memory

James Austin, Stephen Hobson, Nathan Burles, and Simon O’Keefe

Advanced Computer Architectures Group,
Department of Computer Science,

University of York,
York, YO10 5GH, UK

{austin,stephen,nburles,sok}@cs.york.ac.uk
http://www.cs.york.ac.uk

Abstract. This paper describes an architecture based on superimposed
distributed representations and distributed associative memories which
is capable of performing rule chaining. The use of a distributed repre-
sentation allows the system to utilise memory efficiently, and the use
of superposition reduces the time complexity of a tree search to O(d),
where d is the depth of the tree. Our experimental results show that
the architecture is capable of rule chaining effectively, but that further
investigation is needed to address capacity considerations.

Keywords: rule chaining, correlation matrix memory, associative mem-
ory, distributed representation, parallel distributed computation.

1 Introduction

Rule chaining is commonly used in artificial intelligence, for searching a set of
rules to determine if there is a path from the starting state to the goal state.
This paper presents the Associative Rule Chaining Architecture (ARCA), which
performs rule chaining using correlation matrix memories (CMMs)—a type of
simple associative neural network [1]. Biologically inspired systems can provide
effective alternatives to classical systems. Rule chaining is thought to be per-
formed by the brain, and so an approach that uses neural networks has the
potential to efficiently solve this problem.

This work, for the first time, introduces a method where data is stored in a
distributed representation throughout the process, which provides an efficient
use of memory and greater possibility for fault tolerance than a local represen-
tation [2]. The CMMs form a state machine, as in previous work on Parallel
Distributed Computation [3], and are able to store multiple states in a single
vector using the distributed representation. The approach given here builds on
work undertaken by Kustrin and Austin [4], which showed a simple reasoning
system operating in a fully distributed manner.

A.E.P. Villa et al. (Eds.): ICANN 2012, Part I, LNCS 7552, pp. 49–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.cs.york.ac.uk


50 J. Austin et al.

1.1 Rule Chaining

Rule chaining may be approached using forward chaining or backward chaining;
the choice of which to use is application specific. The approach we describe here
uses forward chaining, although there is no reason that the same techniques
could not be used to implement backward chaining.

In forward chaining, starting with an initial set of conditions, all of the rules
are searched to find one for which the antecedents match the conditions. The
consequents of that rule can then be added to the current state, and the state
is checked to decide if the goal has been reached. If the goal state is not yet
reached, then the system will iterate. Finally, if all of the branches have been
searched without finding the goal state, then the search will complete as a failure.
A common way to implement such a search would be with depth-first search.
This technique has time complexity O(bd), where b is the branching factor and
d is the depth of the tree. Our technique offers the possibility of significantly
improving on this complexity.

1.2 Correlation Matrix Memories (CMMs)

The CMM is a simple neural network consisting of a single layer of weights, where
the input and output neurons are fully connected. In this work a sub-class of
CMMs is used, known as binary CMMs [5], where these weights are binary.

Binary CMMs use simple Hebbian learning [6]. Learning to associate one
binary vector with another is thus an efficient operation, and requires only local
updates to the CMM. This training is formalised in Equation 1, where M is the
resulting CMM (matrix of weights), x is the set of input vectors, y is the set of
output vectors, and n is the number of training pairs.

M =

n∑

i=1

xT
i yi (1)

A recall operation is performed as shown in Equation 2. It is essentially a matrix
multiplication between the transposed input vector and the CMM. The matrix
multiplication produces a non-binary output vector, to which a threshold func-
tion f must be applied in order to produce the final output vector.

y = f(xTM) (2)

There are various thresholding functions that may be applied during recall. The
choice of which function to use depends on the application, and on the data
representation used. Willshaw thresholding is used in ARCA, where any output
bit with a value at least equal to the (fixed) trained input weight is set to one [5]
(the weight of a vector is the number of bits within it that are set to one).

2 Associative Rule Chaining

The aim of this system is to perform rule chaining using superimposed repre-
sentations, and hence to reduce the time complexity of a tree search. The main



A Rule Chaining Architecture Using a Correlation Matrix Memory 51

Table 1. An example set of rules with a binary rule vector allocated to each, and
tokens with their binary representations

Rule Rule vector Token Binary representation
r0 : a → b 10100 a 1001000
r1 : a → c 01010 b 0100100
r2 : b → p 10001 c 0010001
r3 : c → q 01001 p 0100001

q 0010100

challenge is thus to maintain the separation of each state throughout the search,
without needing to separate out the distributed patterns.

As an example, consider a single CMM containing the rules given in Table 1.
In a conventional system, the search would evaluate each of these rules in turn.
When using a CMM, however, input of token a would match two rules simul-
taneously and result in both b and c being superimposed in the output. After
applying a threshold, the output would be 0110101—the superposition of vectors
b and c. However, given this encoding, this is ambiguous as it could instead be
the superposition of vectors p and q.

2.1 Architecture

To resolve this difficulty, each rule is assigned a unique “rule vector”, existing in
a separate vector space to the token vectors. ARCA separates the antecedents
and consequents of the rules into two CMMs, using the rule vector to connect
them. The basic rule chaining is performed by a simple state machine formed
with two CMMs, as shown in Fig. 1.

Input
Tokens

Antecedent
CMM

Intermediate
Rules

Consequent
CMM

Output
Tokens

Goal
Found?

Fig. 1. Block diagram of the Associative Rule Chaining Architecture (ARCA)

The first CMM is trained with the associations between the superimposed
antecedents of a rule and the rule vector. This means that the rule should fire if
the tokens in the head of each rule are present in an input.

To train the second CMM, a slightly more complex method is used. Firstly,
a tensor product (a matrix) is formed between the rule vector and the super-
imposed consequents of a rule. This tensor product is “flattened” into a vector
with a length equal to nr ∗nt where nr and nt are the lengths of a rule and token



52 J. Austin et al.

respectively. The associations between this tensor product and the rule vector
are then stored in the CMM. This means that when a rule fires from the an-
tecedent CMM, the consequent CMM will produce a tensor product containing
the output tokens bound to the rule that caused them to fire.

2.2 Recall

Fig. 2 shows the recall process performed on part of the continuing example. To
begin the recall, an initial state TPin is created by forming the tensor (outer)
product of any initial tokens with a rule vector. In the diagram we initialise the
search with two tokens b and c, bound to the appropriate rules.

TPin

r0

b

r1

c

r0

b

r1

c

TPrule

Antecedent
CMM

r0

r2

r1

r3

r0

r2

r1

r3

2 ∗ TPout1

C
o
n
se
q
u
en
t
C
M
M

r2

p

r2

p

2 ∗ TPout2

r3

q

r3

q

TPoutput
S
u
m

th
en

th
re
sh
o
ld

r2

p

r3

q

r2 + r3

p+ q

Fig. 2. A visualisation of the recall process within ARCA. The tensor products contain
different token vectors bound to rule vectors. Each column is labelled at the top with
the tokens contained within the column. The position of each column is defined by the
positions of the bits set to one in the rule vector to which the token is bound, and this
is labelled at the base of the column. The remainder of the tensor product consists
solely of zeros. The vector weight is 2, and hence each column appears twice.

The first stage of recall is now to determine which rules are matched by the
tokens in the current state. To do this, each column of TPin is recalled from
the antecedent CMM in turn. The result of each column recall is a vector that
contains the rule vectors representing any of the matched rules. The recalled
vectors form the columns of an intermediary tensor product TPrule.

To continue the recall, each column of TPrule is recalled from the consequent
CMM in turn. Remember that the result of a recall from the consequent CMM
is effectively a reshaped tensor product containing the consequents of a rule,
bound to the rule that fired them. Therefore each recalled column will result



A Rule Chaining Architecture Using a Correlation Matrix Memory 53

in an entire tensor product of equal dimensions to the original input—TPout1

and TPout2. Note that each of these tensor products will be recalled twice, once
for each column in TPrule. We wish to reduce these to a single tensor product
ready to iterate, and so we sum them to form a non-binary tensor product before
applying another threshold.

As can be seen in the diagram, any rule will appear in TPrule a number of
times equal to the weight of a rule vector. Thus, the consequents bound to that
rule will appear in the same number of TPouts. When these are summed, the
weight of a rule vector can therefore be used as a threshold to obtain the final
output—a single binary tensor product. Note that in the example we can observe
that TPoutput contains p : r2 and q : r3 (where “:” means “bound to”), precisely
the result we would expect.

The final stage of recall, before the system iterates, is to check whether the
search is completed. Firstly we can check whether any rules have been matched,
and therefore whether the search should continue. This is achieved by checking
whether TPoutput contains any non-zero values. If TPoutput consists solely of ze-
ros, then no rules have been matched and hence the search is completed without
finding a goal state.

If TPoutput is not empty, then we must check whether a goal state has been
reached. This is achieved by treating TPoutput as a CMM. The superposition
of the goal tokens is used as an input to this CMM, and the threshold set to
the product of the number of goal tokens and the weight of those tokens. If the
resulting binary vector contains a rule vector, then this indicates that this rule
vector was bound to the goal token and so we can conclude that the goal state
has been reached.

3 Time and Space Complexity

We have demonstrated that ARCA is able to search multiple branches of a tree
in parallel, while maintaining separation between them. This means that the
time complexity of a search becomes O(d), where d is the depth of the tree.
Contrasted with a depth-first approach with a time complexity of O(bd), where
b is the branching factor, this is a notable improvement.

On the other hand there is frequently a trade-off between time complexity
and space complexity, and this is no different in the case of ARCA. While a
depth-first search has space complexity of O(bd), comparison with ARCA is a
complicated issue. Although the space used by the system is constant through-
out operation, if insufficient space is initially allocated then the memories will
become saturated and recall will begin to fail. The space complexity can thus
be defined as the amount of memory required to perform an error free recall.
Unfortunately the storage capacity of a CMM cannot be easily predetermined
because of the distributed encoding; with further work we are aiming to improve
on our estimation, and so will be able to provide a more detailed comparison.
Finally, it should also be noted that as the size of a CMM increases, so does the
time required to perform operations on it.



54 J. Austin et al.

4 Experiments

In order to show ARCA working on search trees, and to determine at what
point the method fails, a number of experiments have been performed. ARCA
has been implemented in MATLAB, and applied to a variety of problems. For
each experiment a tree of rules was generated with a given depth d and maxi-
mum branching factor b. These rules were then learned by the system, and rule
chaining was performed on them.

The experiments have been performed over a range of values for d, b, and
the memory required to implement the CMMs in ARCA, E. This allows some
limited comparison between the system and a depth-first search.

Search trees were constructed in an iterative manner, beginning with the root
token, which was also used as the starting token for the recall process. Further
layers of the tree were then added, with the total number of layers being d. In
the simple case of b = 1, this produces a chain of rules A → B, B → C, etc.
In the case of b > 1, the number of children of a given node was uniformly
randomly sampled from the range [1, b]. This results in a tree with maximum
branching factor b which is more realistic than one in which all nodes have
exactly b children.

E is determined by the token and rule vector lengths nt and nr, with the
required memory being nrnt + n2

rnt. To simplify the experiment, the weight
of all vectors was set to log2 n (rounding down), where n is the vector length.
This value gives a sparse representation, and should provide good performance
in the CMMs [7]. For each value of d, b, and E, the following experiment was
performed:

1. Generate a rule tree with depth d and maximum branching factor b.
2. Train ARCA with the generated rules, with codes being generated by Baum’s

algorithm [2]. For each iteration, the starting Baum code was determined
randomly.

3. Take the root of the rule tree as the starting token, and select a token in the
bottom layer of the tree as the goal token.

4. Perform recall in ARCA with the given starting and goal tokens.
5. Note whether the recall was successful.
6. Repeat the previous steps 100 times.

This gives a success rate for recall in ARCA, for a given combination of d, b,
and E. A recall was defined as successful if and only if the goal token was found
at the correct depth (i.e. after d iterations of the system). In unsuccessful recall,
the system does not “fail” in a traditional manner. Often the system will arrive
at the desired goal erroneously, due to saturation of the CMMs causing extra
patterns not trained to be recalled (“ghosts”). In these cases, the recall was
determined to have been unsuccessful.

The graphs in Fig. 3 are contour plots showing the recall error rates for the
ARCA architecture for a given depth of search tree and memory requirement.
They clearly demonstrate that the ARCA system is capable of performing rule
chaining in a fully distributed, superimposed manner. However they also show



A Rule Chaining Architecture Using a Correlation Matrix Memory 55

Fig. 3. Contour plots showing the recall error performance for ARCAwhere the branch-
ing factor is 1 (top), 2 (middle), and 4 (bottom). Contours summarise the recall error
at various depths and memory requirements, effectively showing the percentage of re-
calls which are in error for a given size of CMM and depth of tree. Discontinuity in the
contours is caused by a change in the vector weight (selected as log2 n).



56 J. Austin et al.

a decrease in performance as the branching factor increases. This is to be ex-
pected given the explosion in the number of rules that occurs, and is similar
to that experienced by traditional methods such as depth-first search—leading
to their time complexity of O(bd). In this case, however, the explosion leads to
exponentially increasing memory requirements rather than running time.

5 Conclusions and Further Work

This paper has introduced a novel architecture capable of performing forward
chaining by examining multiple branches of a tree simultaneously. Experimenta-
tion has shown that the architecture is capable of rule chaining effectively, but
the capacity considerations warrant further investigation.

The choice of the length of vectors used to represent tokens and rules in ARCA
are very important, as these define the memory requirement. While both of these
values must be large enough to allow all of the tokens and rules in the system
to be represented, further work is required to understand the effect that varying
the lengths separately has on recall performance. In addition, the weight chosen
may not be optimal and so this needs further investigation.

Finally, in this examination of ARCA we have only considered the case where
each rule has a single symbol as the antecedent; arity one rules. This allowed a
clear and simple examination of the architecture, but the system will be extended
to handle multiple arity rules in further work. We are considering looking into
applying the technique to games, initially simple ones such as tic-tac-toe.

References

1. Kohonen, T.: Correlation Matrix Memories. IEEE Transactions on Computers, 353–
359 (1972)

2. Baum, E.B., Moody, J., Wilczek, F.: Internal Representations for Associative Mem-
ory. Biol. Cybernetics 59, 217–228 (1988)

3. Austin, J.: Parallel Distributed Computation in Vision. In: IEE Colloquium on
Neural Networks for Image Processing Applications, pp. 3/1–3/3 (1992)

4. Kustrin, D., Austin, J.: Connectionist Propositional Logic A Simple Correlation
Matrix Memory Based Reasoning System. In: Wermter, S., Austin, J., Willshaw,
D.J. (eds.) Emergent Neural Computational Architectures Based on Neuroscience.
LNCS (LNAI), vol. 2036, pp. 534–546. Springer, Heidelberg (2001)

5. Willshaw, D.J., Buneman, O.P., Longuet-Higgins, H.C.: Non-holographic Associa-
tive Memory. Nature 222, 960–962 (1969)

6. Ritter, H., Martinetz, T., Schulten, K., Barsky, D., Tesch, M., Kates, R.: Neural
Computation and Self-Organizing Maps: An Introduction. Addison Wesley, Red-
wood City (1992)

7. Palm, G.: On the Storage Capacity of Associative Memories. In: Neural Assemblies,
an Alternative Approach to Artificial Intelligence, pp. 192–199. Springer, New York
(1982)


	A Rule Chaining Architecture
Using a Correlation Matrix Memory
	Introduction
	Rule Chaining
	Correlation Matrix Memories (CMMs)

	Associative Rule Chaining
	Architecture
	Recall

	Time and Space Complexity
	Experiments
	Conclusions and Further Work
	References




