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Abstract. In the paper we deal with the NP-complete problem of minimization 
a quadratic form of N binary variables. The minimization approach based on 
extensive random search is considered. To increase the efficiency of the 
random-search algorithm, we vary the attraction area of the deepest minima of 
the functional by changing the matrix T it is based on. The new matrix M, called 
mix-matrix, is a mixture of T and T2. We demonstrate that such a substitution 
brings about changes of the energy surface: deep minima displace very slightly 
in the space (the Hemming distance of the shift is of about 0.01*N ), they 
become still deeper and their attraction areas grow significantly. At the same 
time the probability of finding close to optimal solutions increases abruptly (by 
2-3 orders of magnitude in case of a 2D Ising model of size 12×12 and in case 
of dense instances of size 500). 

Keywords: quadratic optimization, binary optimization, combinatorial 
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1 Introduction 

The goal of this paper is to improve the efficiency of a random search procedure used 
to solve binary minimization problems.  

It is well known that there is no polynomial algorithm for solving this problem, i.e., 
it is impossible to find a global minimum in polynomial time (the problem is NP-
hard).  Attempts are usually made to improve the efficiency of the random search 
procedure by modifying the dynamics of a descent over the landscape [1–3] described 
by ( )E S . In contrast to this approach, we propose not to change the dynamics of 

landscape descent but rather to transform the energy landscape itself so as to increase 
the radius of the attraction domain of the global minimum (and of other minima 
comparable in depth with the global one).  

In previous work [4], we consider the simplest transformation, namely, the raising 
of T  to the power 2,3,...k = . This approach was found to be fairly productive: due 

to the landscape transformation, the spectrum of found minima is strongly shifted 
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towards the deep side and the probability of finding the global minimum increases by 
310  times, but it turned out to be not reliable. 
In present paper, we suggest to use a mix-matrix M , i.e., a mixture of  T  and 2T . 

We claim that this yields a more reliable approach.  
The efficiency of the algorithm proposed is rigorously substantiated only for 

“random” matrices, whose elements generated as independent random variables. The 
application of the algorithm to matrices of other types is heuristic. Later on the 
experimental results will be given for matrices of two types: uniform matrices and 
matrices of 2D Ising model. 

2 Problem Definition and Minimization Procedure  

The standard statement of the binary minimization problem is as follows. Given an 
N N×  matrix T , find an N -dimensional configuration vector mS , 1mis = ± , 

1, 2,...,i N= , that minimizes the energy functional ( )E S : 

 
2

1 1

1
( )

N N

ij i j
i jT

E S T s s
Nσ = =

= −   (1) 

where Tσ  is the standard deviation of the matrix elements ijT . Functional (1) can be 

symmetrized. For this reason, without loss of generality, we assume that the matrix ijT  

is symmetric and its diagonal elements are zero ( 0iiT = ).  

The minimization procedure is based on the (asynchronous) dynamics of Hopfield 
model. It can be described as follows. A start configuration S  is chosen and then it is 
locally improved by flipping single unstable neurons. This procedure is sequentially 
applied to all the neurons until the network converges to a stable state mS .  

NP-complete problems are known to have a huge number of local minima. In order 
to find a global one we have to use the random search, i.e.: given an arbitrarily initial 
state of the network, the nearest local minimum is found and this procedure is 
repeated until a minimum with an acceptable depth is found.  

3 Preliminaries 

Before transforming the energy landscape, we repeat the basic relations (described in 
detail in [4-6]) associated with the depth of the global (local) minimum, which 
underlie the subsequent argument. 

The first relation is a constraint on the depth of the minimum. Let 0S  be the 

configuration corresponding to the global minimum 0 0( )E E S= . We extract from T  

the term 0T  that is responsible for the formation of this minimum: 

 0 1 0 0 0 0, TT T T T r S Sσ += + =  (2) 
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The weight 0r  is found from the condition that the elements of 0T  and 1T  do not 

correlate. Calculating the covariance of the matrix elements and setting it equal to 
zero, we obtain approximately 0 0E r= − . 

It was shown in [4-6] that any vector mS  is a minimizer of functional (1) if its 

weight mr  is larger than the critical value 1.35 /cr N≈ . This assertion is concerned 

primarily with the point 0S , which by definition is a minimizer of functional (1) and 

satisfies the relations 

 0 01 , 1,c c c cr r E E E r≥ ≥ ≥ ≥ − = −  

The second necessary relation obtained in [6] is that, as the depth of minimum 0E  

increases, its width increases as well and, accordingly, the probability of finding this 

minimum grows as ( )2 2
0 0( ) ~ exp /cP E NE E− . 

These relations suggest the direction of improving the efficiency of the random 
search algorithm: the energy landscape (1) has to be transformed so as to increase the 
depth of the global minimum and accordingly to increase the probability of finding it.  

4 The Algorithm 

In this section we describe the proposed minimization algorithm. The main idea 
underlying the algorithm is the transformation of energy landscape of the functional. 
The surface described by the quadratic form ( )E S  can be transformed only by 

transforming the underlying matrix.  
Let’s introduce the mix-matrix M : 
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1
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z
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M

TT σσ
+−=  (3) 

(where 2T  is obtained by raising T  to the second power and setting the diagonal 
elements equal to zero, Tσ  and T2σ  are the standard deviations of matrices T  and 

2T  respectively) and substitute it into (1). Changing the parameter z  from 0  to 1 , 

we pass from the matrix T  to 2T . Accordingly, the landscape described by ( )E S  is 

transformed into that described by:  
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1
( )
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E S M s s
Nσ = ≠

= −   (4) 

where  Mσ  is the standard deviation of ijM . Obviously, under the landscape 

transformation, the global minimum is shifted in space and its depth and the width of 
the attraction domain change as well.  
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Now we can propose the following minimization algorithm. 
Firstly, we choose a value z , construct the mix-matrix (3) and accordingly the 

functional ( )zE S . Then we start the minimization procedure consisting of two steps: 

─ At the first step, a descent over ( )zE S  is performed and a configuration zmS  is 

found that minimizes ( )zE S .  

─ The second step involves correction, namely, from the point zmS , we descend over 

( )E S  to the nearest minimum mS  of ( )E S .  

The descent over landscape is performed as described above (see Section 2). 
In previous work [4] we consider the simplest transformation, namely, when 

kM T= , 2,3,4,5k = . It was shown that the optimal value of power is 3k = . In this 

case the probability of finding global minima increases by 3  orders of magnitude for 
the most part (about 70%  of instances). But sometimes (the rest 30% ) it may 
decrease up to zero due to vanishing a minimum near 0S .  

The proposed in present paper mix-matrix (3), i.e., a mixture of T  and 2T , yields 
a more reliable approach. 

We will show that at 0.5z ≈  the proposed transformation leads to significant 
increase of the global minimum depth, while the shift from the minimum is smaller 
(1 2%−  of N ) than  in case 3M T= ( 3%  of N ). 

5 Correctness of the Algorithm  

5.1 The Deepening of the Minima 

Let us show that the landscape transformation leads to a deeper minimum. Consider 
the energy 0 0( )z zE E S=  at the point 0S . Following (2), the mix-matrix M  is 

represented as 

 
2 2

0 1 0 0 1 1 0 1

2

(1 )
T T

T T T T T T T T
M z z

σ σ
+ + + +

= − +  

In view of  0 1 0 0S T S + =  and 2 2 2(1 )
M

z zσ = − + , we then derive from (4) that in the 

limit of 1N >> , 0zE  can be viewed as a normally distributed quantity with the mean 

value 0zE  and the relatively small noise R  of standard deviation 1/R Nσ = . The 

ratio: 

 0 0

2 2
0
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zE z z N r

E z z

− +
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− +
 (5) 
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shows how many times the average value of the modified functional at point 0S  more 

than the initial functional value at the same point. Taking into account 0 1.35Nr ≈ , it 

is obvious that at any value of z expression (5) is larger than unit, hence when 
1N >>  one can be sure that the minimum becomes deeper. Fig. 1 confirms this. The 

largest deepening ( 0 01.6zE E≈ ) is observed at 0.6z ≈ . 

5.2 The Shift of the Minima 

Under the landscape transformation the mean shift can be represented as  

 d N P= ⋅ ,  

where ( )
0 0Pr{ 0 | 0}z

i i i iP s h s h= < >  is the probability that the directions of the spin 

0is  and the local field ( )z
ih  do not coincide. Omitting the unnecessary constants, the 

value ( )
0

z
i is h can be represented as  
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Therefore, P  is expressed in terms of the error function: 
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= − Φ
Φ   (6) 

where ( )Φ ⋅  is the probability integral and  
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Note that at 0z =  the functional 0 ( )zE S= coincides with initial ( )E S  and therefore the 

shift is absent, this agrees ( 0d N P= ⋅ = ) with (7).  
The formula (6) describes a monotone increase of the minimum shift with growing 

z  in view of enlarging functional transformation. This corresponds to a common 
sense and is proved by experiment (see fig. 2). 

Expressions (5)–(6) suggest the following conclusions. With a high probability, the 
landscape transformation leads to deeper minima and, as a result, to a higher 
probability of finding them. Moreover, the depth increase (5) is larger for a larger  
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Fig. 1. The decrease of energy in the point 

0S (global minimum) due to energy landscape 

transformation (mix-matrix with 2T ). The 
dashed line is theoretical (5). Other lines are 
experimental for 50 random instances with 
uniform matrices.  

 

Fig. 2. The shift (in bits) of the global minimum 
as a function of z  (mix with 2T ).  The curves 
with error bars were obtained by experiment for 
two types of matrices: matrix with uniformly 
distributed elements (solid line) and 2D Ising 
matrices (dashed lines). The dash-dot line is 
theoretical (6). 

initial depth 0 0E r≈ . This means that the spectrum of minima found by the algorithm 

shifts considerably toward the global minimum. The spatial minima displacements 
caused by the transformation are relatively small: it follows from (6) that the smallest 
shifts are expected for the deepest minima. 

6 Results 

The efficiency of the two-step descent algorithm was verified for z  ranging from 0  
to 1  for matrices of size 100 500N = −  of two types:  

─ full matrices with random elements uniformly distributed within ( 1;1)− ; 

─ sparse matrices of 2-dimensional Ising model [2].  

During numerical experiments we built a mix-matrix for different values of z  from 
0  to 1  equally spaced with 0.05zΔ = . The results were averaged over 50 random 
instances of each size and type.  

Each experiment included 610runsN =  runs. Each run resulted in a local minimum. 

We chose two parameters to trace: the mean energy meanE of the minima found and the 

probability of finding a minimum in the interval of energy close to the global one 
[ 1; 0.99]E ∈ − − , where 1− corresponds to 0E . 

In experiments, we try to use not only the mix-matrix (3) but also analogous mix 
with 3T  . The numerical results are shown in figs. 3-4. 
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Fig. 3. The mean value meanE  of energy of local minima found with the proposed two-step 

algorithm. The solid lines are for mix-matrices with 2T . The dashed lines are for mix-matrices 
with 3T . The curves are drawn for two types of matrices: uniform matrices (on top) and 2d 
Ising matrices. The value of meanE is divided by the energy of global minimum 0E  and does not 

depend on the problem dimension N . 

 

 

Fig. 4. The common logarithm of the ratio of probabilities of hitting the energy interval 
[ 1, 0.99]E ∈ − − . The solid lines are for mix-matrices with 2T . The dashed lines are for mix-matrices 

with 3T . In the left panel the results for uniform matrices of 500N =  ( 5
1 3 10P −≈ ⋅ ). In the right 

panel the results for 2d Ising matrices of 144N =  (. 7
1 2.6 10P −≈ ⋅ ). Note,  that when z is too small, 

the algorithm does not find the global minimum in some instances, so the points are missed. 

Fig. 4 shows how many times increases the probability of finding minima with energy 
differed from the global one less than 1% . For demonstration purpose we chose the 
maximal possible problem dimensions, which we can cope with. For 2D Ising matrices 
the probability of finding minima of energy [ 1; 0.99]E ∈ − −  is not greater than 

7
1 3 10P −= ⋅  for 1212 ×=N . For uniform matrices the maximal dimension is 500N =  

(the probability 5
1 3 10P −= ⋅ ). The probability obtained with the proposed algorithm was 

denoted by newP . As we can see from fig. 4, the difference between newP  and 1P  turned 

out to be enormous – approximately 3 orders of magnitude. 

1lg( / )newP P

z
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An interesting fact is that for uniform matrices the 2T  and 3T  curves almost 
coincide (see. fig. 3-4), and they start to diverge when 0.7z >  only. For Ising 
matrices we have another picture: mix with 2T  prevails over mix with 3T  up to 

0.8z ≈  and after that vice versa .  
It can be also seen from fig. 4 that with increasing z  the dispersion rises, and this 

can lead to the instability of the algorithm, i.e., the transformation may change the 
search procedure for the worse in some cases.  

7 Conclusion 

In the paper a new approach for the problem of binary quadratic optimization was 
described. It allows improving the random search technique for finding the optimal 
and suboptimal solutions.  

The key parameter of the algorithm is the number (0, 1)z ∈ . Varying this 

parameter, we can change the depth and the attraction area of the global and other 
minima. We showed theoretically that the best choice of this parameter is 0.6z ≈ .  

The experiment showed a good correspondence to the theory. Indeed, at 0.7z =  
we significantly improved the random search and succeeded in decreasing the value 

0 0( ) /meanE E E− (difference between the mean energy of found minima and global 

one) by half. Due to the proposed method the probability of finding suboptimal 
solutions with energy differed from the optimum less than 1%  increases by 2.5  
orders of magnitude for (dense) uniform matrices of dimension 500N =  and by more 
than 3  orders for (sparse) matrices of Ising model of dimension 1212 ×=N . 
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