
Stochastic Techniques in Influence Diagrams

for Learning Bayesian Network Structure

Michal Matuszak1 and Jacek Miȩkisz2

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,
Chopina 12/18, 87–100 Torun, Poland

gruby@mat.umk.pl
2 Institute of Applied Mathematics and Mechanics, University of Warsaw,

Banacha 2, 02–097 Warsaw, Poland
miekisz@mimuw.edu.pl

Abstract. The problem of learning Bayesian network structure is well
known to be NP–hard. It is therefore very important to develop effi-
cient approximation techniques. We introduce an algorithm that within
the framework of influence diagrams translates the structure learning
problem into the strategy optimisation problem, for which we apply the
Chen’s self–annealing stochastic optimisation algorithm. The effective-
ness of our method has been tested on computer–generated examples.

Keywords: Bayesian Networks, Structure Learning, Chen Adaptive
Optimisation, Influence Diagrams.

1 Introduction

Bayesian networks represent probabilistic relationships among given variables.
They are built on directed acyclic graphs (DAG) in which nodes represent ran-
dom variables (ovals in our figures below) and direct edges between nodes repre-
sent the probabilistic dependencies between them. Conditional probabilities for
variables are stored in conditional probability potentials (or tables) attached to
dependent nodes.

There are two basic learning problems in Bayesian networks: learning the
structure of a graph and learning the conditional probability potentials. It is
fairly easy to learn parameters of a given DAG (see [6,8,9,12]). One approach is
to compute frequencies that are optimal with respect to the maximum likelihood
estimation (MLE). Here we focus on the task of learning the structure of a
DAG from a given dataset. It has many important applications in various fields
like classification and variable selection, and bioinformatics, where it is used for
locating gene regulatory pathways (check [9] for more applications).

Learning Bayesian network structure is NP–hard even for networks with two
parents [4]. Chow and Liu [5] showed that trees can be learned in a polynomial
time but it has been shown in [7] that even learning 2–polytrees is an NP–hard
problem. A polytree is a DAG with the property that if the directions on edges
are ignored, it results in an undirected graph with no cycles.

A.E.P. Villa et al. (Eds.): ICANN 2012, Part I, LNCS 7552, pp. 33–40, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

34 M. Matuszak and J. Miȩkisz

There are many learning algorithms (see [6,8,9,12]) for building structure of
Bayesian networks. Generally, they can be divided into three main groups: con-
straint based algorithms, search and score techniques, and hybrid

methods which combine the first two methods. The constraint based algorithms
perform a study of the dependence and independence relationships among vari-
ables of the Bayesian network. They are performed by conditional independence
tests. For large enough datasets, χ2 or G2 tests can be performed and for the
smaller ones exact tests could be done. Main problems of those algorithms are:
the time complexity of the independence tests, unreliable results of the indepen-
dence tests, and also the fact that the most widely used algorithms require an
existence of a faithful graph [9].

The search and score techniques attempt to find a graph structure that maxi-
mizes the value of a given scoring function. A brief description of these techniques
is provided in the next section.

An influence diagram is an extension of a Bayesian network. They both are
built on DAG’s and consist of chance nodes, while influence diagrams also have
decision and utility nodes. They not only provide tools for a probabilistic infer-
ence but also provide a language for sequential decision making problems, where
there is a fixed order among the decisions.

In [3], a simple stochastic optimisation algorithm for the traveling salesman
problems (TSP) has been proposed. Then in [11], Chen’s ideas have been sub-
stantially extended in order to construct an algorithm for solving general in-
fluence diagrams. It shows a strong performance in optimal transport problems
[10]. In this paper, we translate the structure learning problem into the one in-
volving influence diagrams and we show that it can be solved with an extended
version of the algorithm presented in [11].

2 Learning Bayesian Networks Structure

Formally, a Bayesian network is a pair (G, θ), where G = (C,E) is a directed
acyclic graph (DAG), C = {X1, . . . , Xn} consists of n random variables, E repre-
sents direct dependencies between variables, and θ represents a set of parameters
for each variable in C, which defines their conditional probability distributions.
Each random variable Xi has values in a finite domain Ki.

The problem of learning a Bayesian network structure is given as follows:
For a set of random variables C = {X1, . . . , Xn} and a database of m cases
M = {M1, . . . ,Mm}, where each case contains observations of all variables in C,
i.e. Mi = (x1, . . . , xn)

T is a vector of instances of variables X1, . . . , Xn, find a
DAG (that is a set of directed edges) which best matches M .

As stated before, we focus our attention on search and score techniques.
A search space of possible DAG’s grows super–exponentially [14], so testing all
possible DAG patterns is computationally unfeasible. Scoring functions can be
divided into two main classes: Bayesian scoring functions such as K2, the mu-
tual information test (MIT), the Bayesian Dirichlet test and its variants (BD,
BDe, BDeu), and information-theoretic scoring functions such as the log

Stochastic Techniques in Influence Diagrams 35

likelihood (LL), the Bayesian information criterion (BIC), and the Akaike infor-
mation criterion (AIC).

Here we will use a modification of the Cooper–Herskovits likelihood (belonging
to the Bayesian scoring class) [6] for a DAG G and a dataset M with P (G) as a
prior probability of G. It has the following form,

P (G,M) = P (G)×
n∏

k=1

|φk|∏

j=1

(sk − 1)!

(skj + sk − 1)!

sk∏

l=1

αkjl! (1)

where sk is a number of states of the variable Xk, φk is a variable describing
joint configurations of variables in π(Xk) (π(Xk) denotes the set of parents of
Xk), |φk| is a number of states of φk, and αkjl is a number of cases in M in which
Xk is at the l–th state and φk is at the j–th state. Also skj =

∑sk
l=1 αkjl .

The evaluation of a broad spectrum of scoring functions can be found in [2].
It is stated there that there are only small differences between various scoring
functions and all of them behave in a similar way (only the BIC score was
clearly the worst). Thus, we use the K2 metric [6] which is a slight modification
of the Cooper–Herskovits likelihood from Eq. 1. Its objective is to find the most
probable network structure, with a given data set, which maximizes the posterior
probability distribution. It assumes a uniform prior P (G) and instead of P (G,M)
uses log(P (G,M)).

3 The Algorithm

Now we give a formal description of our algorithm. Let us assume that a set of
chance variables C = {X1, . . . , Xn} and a database of cases M = {M1, . . . ,Mm}
are given. Both objects are fixed during the execution of the algorithm. In ad-
dition, to each chance variable Xi ∈ C a decision node Di is attached. Decision
nodes play crucial role in the algorithm. During the optimization procedure, they
unfold a structure, that is a set of directed edges E of the Bayesian network.
Our algorithm is based on an extension of ideas from [3,11].

If nodes ordering is not given, then each decision node Di has n states. First
n − 1 states describe available connections with chance variables C \ Xi and
the n−th state is used during the optimization process and is applied to disable
connections of further children. The proposed algorithm does not require a node
ordering, however, it may benefit from a predetermined ordering as the search
space will be reduced.

For each decision node Di, a randomised policy τi is attached. It assigns prob-

abilities to all possible decisions that may be taken, with τ
Xj

i standing for the
probability of adding a direct edge from Xi to Xj . In the course of the opti-
misation process, these randomised policies evolve and include an (sub)optimal
structure of the network. The initial choice of τi can be either uniform or heuris-
tic. In the uniform choice, all decisions are equiprobable and in the heuristic
case, some additional knowledge is provided allowing us to make a good first
guess about the optimal structure. For example if we know that an edge is more

36 M. Matuszak and J. Miȩkisz

probable than others starting from the same node, then we can increase it’s
probability and thus making the edge appear with a higher probability in the
optimization procedure. If we have a knowledge that some edges exist in the
network, then we can add them as permanent edges and they will always be
included in the network structure.

[Permanent edge condition] During the iterative procedure, the randomised
policies should converge to Dirac deltas which results in an almost determin-
istic selection of edges. It means for the node Xi ∈ C, that if

1− τ
Xj

i < ε (2)

for some node Xj �= XNone and a small fixed ε, a direct edge Xi → Xj will
be added to E. However, if Xj = XNone, then Xi is permanently removed
from active nodes, resulting in no further addition of children. This does not
however restricts its possibility of being a child.
It is possible that two (or more) decisions are equiprobable and then τi is
almost a uniform distribution over them, while the probabilities of other
decisions are near 0. Therefore, if Eq. 2 is not satisfied after a fixed number
of stepsQ, we should randomly choose a decision (that is a vertex to connect)
according to the probability distribution τi and if decision XNone is drawn,
then we deactivate Xi, and in other cases we add a direct edge Xi → Xj to
E.

Each decision node has also an active field with states {enabled, disabled} which
describe whether the node is subject to the optimization procedure. At the ini-
tialization of the algorithm, all nodes are active. When node’s optimization is
over (see permanent edge condition), then it becomes passive and it can not be
reactivated.
The algorithm works as follows.

1. Set the iteration counter j = 0.
2. Attach and initialize decision nodes as described above.
3. Generate an instance of the network:

(a) If predefined edges are given, include them in the network and follow the
actions from permanent edge condition.

(b) Select randomly (with a uniform distribution without replacement) an
active node Di.

(c) According to the distribution τi draw a new vertex Xh and if Xh �=
XNone and a direct edge from Xi to Xh preserve acyclicity of the graph,
then add that edge.

(d) Go back to Step 3b until each active node is chosen.
4. Select randomly (with a uniform distribution) an active node Di and denote

its state as h0. It is an index that can be used to select the h0–th chance
node (Xh0) or h0–th decision node (Dh0).

Stochastic Techniques in Influence Diagrams 37

(a) If h0 corresponds to an existing edge (Xi → Xh0), then remove the edge.
(b) According to the probability distribution τi draw a new vertex Xh1 and

if Xh1 �= XNone, then add a direct edge from Xi to Xh1 . In other words,
during the search space step we can add or remove an edge.

(c) Accept the modification if the following conditions are met:
– a new vertex Xh1 is different from the current vertex Xh0 .
– a graph is acyclic.
– the weakly connected property is preserved i.e. the skeleton (undi-

rected graph obtained from replacing directed edges with undirected
ones) is connected. The property can be verified with using either
depth-first or breadth-first search algorithm.

else go to Step 4.

5. Evaluate the utility function U (j) using, for example, the K2 metric.
6. Check the permanent edge condition and if Xi → Xh1 has been added to

E, remove from the support of τi the decision to link to the node Xh1 and
from the support of τhi the decision to link to the node Xi . Reinitialize the
values of τi with the uniform distribution (or apply a predefined knowledge
to the distribution). For τh1 , normalize the weights (by dividing them by
their sum) to achieve a probability distribution.

7. IF j mod B �= 0 set
Δ := U (j) − U (j−1) (3)

then update the randomised policy like in the Chen’s algorithm,

τ
Xh1

i = exp(βΔ)τ
Xh1

i , (4)

and renormalise τi so that it remains a probabilistic distribution. The im-
portant parameter of the algorithm is constant β which describes the rate of
learning (larger β speeds up learning but decreases the optimization’s sta-
bility). β represents the noise level in the algorithm, it corresponds to the
inverse of the temperature in physical systems.

8. Set j = j + 1 and if there still exists an active node then:
– if j mod B = 0 return to Step 3. For small enough β the initial order of

Di has only a small impact on the algorithm. However, in rare situations
even for small β impact of the first selection of the nodes could cause
divergence of the algorithm. To resolve that issue and to allow for larger
values of β (which speed up the optimization) we implement restarting
after fixed number of steps i.e a new order of nodes is generated after B
steps.

– else return to Step 4

In Fig. 1, we present an application of our algorithm to a network with three
chance nodes: X1, X2, and X3. After the initialization phase the decision nodes
and randomised policies have been attached. The utility node U , which com-
putes the score function, has been added and connected with chance nodes.

38 M. Matuszak and J. Miȩkisz

(a) (b) (c)

Fig. 1. An example of the algorithm executed on a network with three chance nodes

In our example, no prior knowledge is available, thus the randomised policies
are represented by uniform distributions. All nodes are active and the algorithm
can proceed. An instance of the network is generated and during the iterative
procedure the search space of possible DAG’s is explored, and randomised poli-
cies τi are modified with the use of the Chen’s formula [3]. Fig. 1(a) presents the
network state after τX3

1 converged to 1. A permanent direct edge X1 → X3 is
added, the policies (τX3

1 and τX1
3) associated with it are deleted, τ1 is initialized

with the uniform distribution and weights in τ3 are renormalized.
In Fig. 1(b), τX3

2 converges to 1. A permanent direct edge X2 → X3 is added
and the policies τX3

2 , and τX2
3 are deleted. The only available policy in τ3 is

τXNone
3 so no further children can be connected to X3 and the decision node
D3 can be deactivated (excluded from the optimisation procedure). Weights in
τ1 are initialized with the uniform distribution and we return to the iterative
procedure. Fig. 1(c) presents the network status after τXNone

2 converged to 1,
so no edge is added and D2 is deactivated. The only possible edge that still can
be added is X1 → X2, but τXNone

1 also converged to 1, and D1 is deactivated.
All decision nodes are inactive, thus the algorithm stops and returns a set of
directed edges E.

4 Numerical Examples

The programme has been implemented in the language C++, with the implemen-
tation aimed so far mainly at algorithm evaluation purposes, it can be described
as careful but not fully performance–optimised.

We have selected two networks for numerical experiments: a simple Bayesian
network with 7 nodes and 7 edges (Fig. 2(a)) and ALARM network [1] which
contains 37 nodes and 46 edges (Fig. 2(b)). Each network has been used to
generate a database, which contains 100000 instances.

For the simple Bayesian network with β = 0.001, ε = 0.01, B = 100 and the
number of iterations limited to Q = 500, a final network differs from the optimal

Stochastic Techniques in Influence Diagrams 39

(a) (b)

Fig. 2. (a) Simple Bayesian network; (b) ALARM network

0 50 100 150 200 250 300 350 400 450 500
−4.26

−4.24

−4.22

−4.2

−4.18

−4.16

−4.14

−4.12
x 10

5

iteration

K
2

(a)

0 5000 10000 15000
−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2
x 10

6

iteration

K
2

(b)

Fig. 3. Convergence of the algorithm for
(a) Simple Bayesian network and (b)
ALARM network

Table 1. Computational times (in
seconds)

Simple net ALARM net

K2 0.195 99

Chow–Liu 0.1 12

Our algorithm 0.9 917

one in K2 metric by 0.11% (for the Chow–Liu tree it is 0.73%, and for classical
K2 algorithm [6] it is 1%), and for the ALARM network with β = 9 × 10−6,
ε = 0.01, B = 250 and iterations limited to Q = 15000, the difference in K2
metric is 20% (16% for the Chow–Liu tree, and for classical K2 algorithm it is
33%).

In Fig. 3, we show the convergence of our algorithm, that is the maximization
of the K2 metric. In Table 1, we compare computational times of our and other
algorithms.

5 Conclusions

A new stochastic algorithm for finding Bayesian network structure has been
presented. Our method is based on an innovative application of Bayesian influ-
ence diagrams for structure optimization. The main advantage of the introduced
method is the use of an algorithm that can determine an optimal decision strat-
egy for a different problem. Numerical results indicate the correctness of the
presented algorithm. Although computational times of our algorithm are not
optimal (see Table 1) our results are competitive as compared to classical ones.

40 M. Matuszak and J. Miȩkisz

Acknowledgements. This research has been supported by the National Sci-
ence Centre grant 2011/01/ N/ST6/00573 (2011-2014). The authors gratefully
acknowledge the access to the PL–Grid1 infrastructure, that is co–funded by
the European Regional Development Fund as a part of the Innovative Economy
program. The work of M. Matuszak has also been supported by the European
Social Fund as a part of the Sub–measure 4.1.1 (National PhD Programme in
Mathematical Sciences).

References

1. Beinlich, I., Suermondt, H.J., Chavez, R.M., Cooper, G.F.: The ALARM moni-
toring system: a case study with two probabilistic inference techniques for belief
networks. In: Proceedings of the 2nd European Conference on Artificial Intelligence
in Medicine, pp. 247–256 (1989)

2. de Campos, L.M.: A scoring function for learning Bayesian networks based on mu-
tual information and conditional independence tests. Journal of Machine Learning
Research 7, 2149–2187 (2006)

3. Chen, K.: Simple learning algorithm for the traveling salesman problem. Phys. Rev.
E 55, 7809–7812 (1997)

4. Chickering, D.M.: Learning Bayesian networks is NP–complete, Learning from
Data: Artificial Intelligence and Statistics V, pp. 121–130. Springer (1996)

5. Chow, C.K., Liu, C.N.: Approximating discrete probability distributions with de-
pendence trees. IEEE Trans. Info. Theory 14(3), 462–467 (1968)

6. Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic
networks. Data Machine Learning 9, 309–347 (1992)

7. Dasgupta, S.: Learning polytrees. In: Proceedings of the Fifteenth Conference on
Uncertainty in Artificial Intelligence, pp. 131–141. Morgan Kaufmann, Stockholm
(1999)

8. Jensen, F.V., Nielsen, T.D.: Bayesian Networks and Decision Graphs, 2nd edn.
Springer (2007)

9. Koski, T., Noble, J.: Bayesian Networks: An Introduction. John Wiley & Sons,
Ltd. (2009)

10. Matuszak, M., Mi ↪ekisz, J., Schreiber, T.: Solving Ramified Optimal Transport
Problem in the Bayesian Influence Diagram Framework. In: Rutkowski, L., Ko-
rytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2012, Part II. LNCS (LNAI), vol. 7268, pp. 582–590. Springer, Heidelberg
(2012)

11. Matuszak, M., Schreiber, T.: A New Stochastic Algorithm for Strategy Optimisa-
tion in Bayesian Influence Diagrams. In: Rutkowski, L., Scherer, R., Tadeusiewicz,
R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2010, Part II. LNCS, vol. 6114, pp.
574–581. Springer, Heidelberg (2010)

12. Neapolitan, R.E.: Learning Bayesian Networks. Prentice Hall Series in Artificial
Intelligence. Pearson Prentice Hall (2004)

13. Peretto, P.: An Introduction to the Modeling of Neural Networks, Collection Aléa–
Saclay. Cambridge University Press (1992)

14. Robinson, R.W.: Counting unlabelled acyclic digraphs. In: Little, C.H.C. (ed.)
Combinatorial Mathematics V. Lecture Notes in Mathematics V, pp. 28–43.
Springer (1977)

1 http://www.plgrid.pl

http://www.plgrid.pl

	Stochastic Techniques in Influence Diagrams
for Learning Bayesian Network Structure
	Introduction
	Learning Bayesian Networks Structure
	The Algorithm
	Numerical Examples
	Conclusions
	References

