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Abstract. In this paper, we investigate the dynamics and the global
exponential stability of the Hopfield Neural network with time-varying
delay and variable coefficients. For this purpose, the activation functions
are assumed to be globally Lipschitz continuous. The properties of norms
and the contraction principle are adjusted to ensure the existence as
well as the uniqueness of the the pseudo almost automorphic solution.
Then by employing suitable analytic techniques, global attractivity of
the unique pseudo almost automorphic solution is established.
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1 Introduction

In the past two decades, neural networks has been received considerable atten-
tion, and there have been extensive research results presented about the stability
analysis of neural network and its applications (See, e.g., [5], [2], [11], [12]). In
particular, the stability research related to Hopfield neural networks have been
extensively studied and developed in recent years since it has been widely used
to model many of the phenomena arising in areas such as signal processing,
pattern recognition, static image processing, associative memory, especially for
solving some difficult optimization problems, we refer the reader to ([7], [8], [2],
[10], [13]) and the references cited therein. As we all know, many phenomena in
nature have oscillatory character and their mathematical models have led to the
introduction of certain classes of functions to describe them. Such a class form
pseudo almost periodic functions which a natural generalization of the concept
of almost periodicity. Recently, the concept of almost automorphic functions has
widely been used in the investigation of the existence of almost automorphic
solutions of various kinds of evolution equations ([3], [4], [9], [10], [13]). Some
fundamental properties of almost periodic functions are not verified by them
almost automorphic functions, as example the property of uniform continuity.
Consequently, the research for the solutions almost automorphic for dynamic
systems are more complicated. It should be mentioned that the criteria obtained
in this paper extend or improve the results given in [1] since the delays τj (.) and
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the neuron firing rate di (.) are time-varying. Further, our goal in this paper is
to study the pseudo almost automorphic solution of Hopfield model (1.1).

2 Preliminaries: The Functions Spaces

Let BC(R,Rn) denote the set of bounded continued functions from R to R
n.

Note that (BC(R,Rn), ‖.‖) is a Banach space where ‖.‖ denotes the sup norm
‖f‖∞ := sup

t∈R

‖f (t)‖ .

Definition 1. A continuous function f : R −→R
n is said to be almost auto-

morphic if for every sequence of real numbers (s′n)n∈N there exists a subsequence
(sn)n∈N such that for each t ∈ R

g(t) := lim
n→∞ f(t+ sn), lim

n→∞ g(t− sn) = f(t).

Denote by AA(R,Rn) the collection of all almost automorphic functions R → R
n.

The notation PAA0 (R,R
n) stands for the spaces of functions

PAA0 (R,R
n) =

⎧
⎨

⎩
f ∈ BC (R,Rn) / lim

T→+∞
1

2T

T∫

−T

‖f(t)‖ dt = 0

⎫
⎬

⎭
.

Definition 2. A function f : R → R
n is called pseudo-almost automorphic if it

can be decomposed as f = g+ϕ, where g ∈ AA(R,Rn) and ϕ ∈ PAA0(R
n,Rn).

The class of all such functions will be denote by PAA(R,Rn).

Remark 1. The function t �−→ sin
(

1
π−sin t−sinπt

)
+ 1

1+t2 shows that the set

of pseudo-almost automorphic functions contains stictly the almost automor-
phic and the pseudo almost periodic functions. It should be mentionned that
PAA(R,Rn) is a translation invariant closed subspace of BC(R,Rn) containing
the constant functions. Furthermore, PAA(R,Rn) = AA(R,Rn)⊕PAA0(R,R

n).

3 The Model

Let us consider the following GHNNs

⎧
⎨

⎩

ẋi (t) = −di (t)xi (t) +
n∑

j=1

aij (t) fj (xj (t)) + bij (t) gj (xj (t− τj (t))) + Ii (t)

xi (t) = ψi (t) ,−τ ≤ t ≤ 0, 1 ≤ i ≤ n.
(1.1)

where n denotes the total number of units in the GHNNs, xi (t) corresponds to the
state of the i−th unit at time t; di (·) > 0 represents the neuron firing rate, f (xj (t))
and g (xj (t− τj)) denote the outpouts of the j−th unit at time t and (t− τj) re-
spectively; aij (·) and bij (·) denote the connection weights between the j−th unit
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and the i−th unit with which the i−th unit at time t and (t− τj (t)) respectively.
The function Ii (t) is an external input on the i−th unit at time t. τj (t) denotes the
transmission delay along the axon of the j−th unit and 0 ≤ τj (t) .
(H1) For all 1 ≤ i ≤ n, the functions di (·) > 0.
(H2) For all 1 ≤ i, j ≤ n, the functions di (·) , aij (·) , bij (·) and Ii (·) ∈ PAA(R,R).
(H3) The functions fj (·) and gj (·) are pseudo almost automorphic and satisfy

the Lipschitz condition, i.e., there are constants L
fj
j > 0, L

gj
j > 0 such that for

all x, y ∈ R and for all 1 ≤ j ≤ n, one has

|fj (x)− fj (y)| ≤ L
fj
j |x− y| , |gj (x)− gj (y)| ≤ L

gj
j |x− y| .

(H4) Denote a+ij = maxt∈R aij (t) , b
+
ij = maxt∈R bij (t) , d̃i = mint∈R d̃i (t) , d̃ =

min1≤i≤n d̃i and r = max1≤i≤n

⎡

⎣

n∑

j=1

L
fj
j a+

ij+
n∑

j=1

b+ijL
gj
j

d̃

⎤

⎦ < 1.

4 Existence and Uniqueness of Pseudo Almost
Automorphic Solution

In this section, we establish some results for the existence, uniqueness of pseudo
almost automorphic solution of the model (1.1).

Lemma 1. If ϕ, ψ ∈ PAA(R,R), then ϕ× ψ ∈ PAA(R,R).

Lemma 2. ([15]) (PAA(R,Rn), ‖·‖) is a Banach space.

Following along the same lines as in the proof of ([1]) it follows that:

Lemma 3. If f (·) ∈ PAA(R,Rn) then f (· − h) ∈ PAA(R,Rn) where h is a
fixed constant.

Theorem 1. Suppose that assumptions (H1), (H3) and (H3) hold. Define the
nonlinear operator Γ by: for each x ∈ PAA(R,Rn)

(Γx)(t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t∫

−∞
e
−

t∫

s
d1(ξ)dξ

[
n∑

j=1

a1j (s) fj(xj (s)) + b1j (s) gj(xj (s− τj (s)))

]

ds

...

t∫

−∞
e
−

t∫

s
dn(ξ)dξ

[
n∑

j=1

anj (s) fj(xj (s)) + bnj (s) gj(xj (s− τj (s)))

]

ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Then Γ maps PAA(R,Rn) into itself.

Theorem 2. Suppose that assumptions (H1) − (H3) hold. Then the GHNNs
(1.1) has a unique pseudo almost automorphic solution in the region

B =

{

ψ ∈ PAA(R,Rn), ‖ψ − ϕ0‖ ≤ r ‖I‖∞
d̃ (1− r)

}

,
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where

ϕ0 (t) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

t∫

−∞
exp

(

−
t∫

s

d1 (ξ) dξ

)

I1 (s) ds

...

...
t∫

−∞
exp

(

−
t∫

s

dn (ξ) dξ

)

In (s) ds

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Proof. Clearly, B is a closed convex subset of PAA(R,Rn) and one has ‖ϕ0 (t)‖ =

max1≤i≤n supt∈R

∥
∥
∥
∥
∥
∥

t∫

−∞
e
−

t∫

s

di(ξ)dξ
Ii (s) ds

∥
∥
∥
∥
∥
∥
≤ ‖I‖∞

d̃
. Therefore, for any ϕ ∈ B by

using the estimate just obtained, we see that

‖ϕ‖ ≤ ‖ϕ− ϕ0‖+ ‖ϕ0‖ ≤ r ‖I‖∞
d̃ (1− r)

+
‖I‖∞
d̃

=
‖I‖∞
d̃ (1− r)

.

Let us prove that the operator Γ is a self-mapping from B to B. In fact, for any

ϕ ∈ B, we have ‖(Γϕ)(t)− ϕ0(t)‖ ≤ r‖I‖∞
d̃(1−r)

, which implies that (Γϕ) ∈ B. Next,
we prove the mapping Γ is a contraction mapping of B. In view of (H3), for any
ϕ, ψ ∈ B , we have

‖(Γϕ)(t)− (Γψ)(t)‖ = max
1≤i≤n

sup
t∈R

∥
∥
∥
∥
∥
∥

t∫

−∞
e
−

t∫

s

di(ξ)dξ

⎧
⎨

⎩

n∑

j=1

aij (s) fj(ϕj (s))

+

n∑

j=1

bij (s) gj(ϕj (s− τj (s)))

+

n∑

j=1

bij (s) gj(ϕj (s− τj (s)))

−
n∑

j=1

aij (s) fj(ψj (s)) +

n∑

j=1

bij (s) gj(ψj (s− τj (s)))

∥
∥
∥
∥
∥
∥

≤ max
1≤i≤n

sup
t∈R

⎡

⎢
⎢
⎣

n∑

j=1

Lf
j |aij (t)|+

n∑

j=1

Lg
j |bij (t)|

d̃

⎤

⎥
⎥
⎦ ‖ϕ− ψ‖

which proves that Γ is a contraction mapping. Consequently, Γ possess a unique
fixed point x∗ ∈ B that is Γ (x∗) = x∗ . Hence, x∗ is the unique pseudo almost
automorphic solution of (1.1) in B.
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5 The Global Attractivity of the paa Solution

Let x∗ (·) = (x∗
1 (·) , · · · , x∗

n (·))T the pseudo almost automorphic solution of the-

orem 1 and x (·) = (x1 (·) , · · · , xn (·))T be an arbitrary solution of (1.1) . So, one
has

ẋ∗
i (t) = −di (t)x∗

i (t) +
n∑

j=1

[
aij (t) f

(
x∗
j (t)

)
+ bij (t) g

(
x∗
j (t− τj (t))

)]
+ Ii (t)

and

ẋi (t) = −di (t)xi (t) +
n∑

j=1

[aij (t) f (xj (t)) + bij (t) gj (xj (t− τj (t)))] + Ii (t) .

Let us pose for all 1 ≤ i ≤ n, zi (·) = xi (·)− x∗
i (·) . Consequently, we obtain

⎧
⎨

⎩

żi (t) = −di (t) zi (t) +
n∑

j=1

aij (t)Fj (zj (t)) +
n∑

j=1

bij (t)Gj (xj (t− τj (t)))

zi (t) = θi (t) ,−r ≤ t ≤ 0, 1 ≤ i ≤ n.
(1.2)

where for all 1 ≤ i, j ≤ n,

Fj (zj (·)) = fj (xj (·))− fj
(
x∗j (·)

)
, Gj (zj (·)) = gj (xj (·))− gj

(
x∗j (·)

)

and θi (·) = ψi (·)−x∗i (·) . Clearly, the pseudo almost automorphic solution x∗ (·)
of system (1.1) is global attractivity if and only if the equilibrium point O of
system (1.2) is global attractivity. So let us study the global attractivity of the
equilibrium point O for system (1.2).

Theorem 3. Suppose that assumptions (H1)− (H4) hold, then the equilibrium
point O of the nonlinear system (1.2) is global attractive.

Proof. First, let us prove that the solution of system (1.2) are uniformly bounded.
In other words, there existsM > 0 such that for all t ≥ 0 one has ‖z(t)‖ ≤M. By
the assumption (H4), 1− r > 0. So for any given continuous function θ (·) , there
exists a large number M > 0, such that ‖θ‖ < M and (1− r)M > 0. Let κ a
real number, κ < 1. We shall prove that for all t ≥ 0, ‖z(t)‖ ≤ κM. Suppose the

contrary, then there must be some t′ > 0, such that

{‖z(t′)‖ = κM
‖z(t)‖ < κM, 0 ≤ t ≤ t′

In view of (H3) , (H4) and the equation (1.2), we have

‖z (t′)‖ ≤ max
1≤i≤n

⎧
⎨

⎩
|θi (0)| e

−
t′∫

0

di(u)du
+

t′∫

0

e
−

t′∫

s

di(u)du×
⎛

⎝
n∑

j=1

aij (s)L
f
j |zj (s)|+ bij (s)L

g
j |zj (s− τj (s))|

⎞

⎠ ds

⎫
⎬

⎭
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≤ max
1≤i≤n

⎧
⎪⎪⎨

⎪⎪⎩

e−d̃it
′
+

⎛

⎜
⎜
⎝

n∑

j=1

a+ijL
f
j + b+ijL

g
j

d̃i

⎞

⎟
⎟
⎠

(
1− e−dit

′)

⎫
⎪⎪⎬

⎪⎪⎭

hM

< hM

which gives a contradiction. Consequently, for all t ≥ 0, ‖z(t)‖ ≤ κM. Let us
take κ −→ 1, then for all t ≥ 0, ‖z(t)‖ ≤ M. Thus, there is a constant σ ≥ 0,
such that lim sup

t−→+∞
‖z(t)‖ = β. It follows that ∀ε > 0, ∃t2 < 0, such that

(∀t, t ≥ t2 =⇒ ‖z(t)‖ ≤ (1 + ε)β) .

So,

żi (t) + di (t) zi (t) =
n∑

j=1

aij (t)Fj (zj (t)) +
n∑

j=1

bij (t)Gj (xj (t− τj (t)))

≤
n∑

j=1

|aij (t)| |Fj (zj (t))|+
n∑

j=1

|bij (t)| |Gj (xj (t− τj (t)))|

≤ max
1≤i≤n

⎛

⎝
n∑

j=1

a+ijL
f
j + b+ijL

g
j

⎞

⎠ (1 + ε)β.

So, throug the integration, we obtain the inequality

|zi (t)| ≤ |θi (0)| e
−

t∫

0
di(u)du

+

{

max
1≤i≤n

(
n∑

j=1

a+ijL
f
j + b+ijL

g
j

)

(1 + ε)β

} t∫

0

e
−

t∫

s
di(u)du

ds

≤ ‖θ‖ e−dit +

⎧
⎨

⎩
max
1≤i≤n

⎛

⎝
n∑

j=1

a+ijL
f
j + b+ijL

g
j

⎞

⎠ (1 + ε)β

⎫
⎬

⎭

t∫

0

e−di(t−s)ds

≤ ‖θ‖ e−dit +

⎧
⎪⎪⎨

⎪⎪⎩

max
1≤i≤n

⎛

⎜
⎜
⎝

n∑

j=1

a+ijL
f
j + b+ijL

g
j

di

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

(1 + ε)σ
(
1− e−dit

)

In particular,

lim sup
t−→+∞

‖z(t)‖ ≤ lim sup
t−→+∞

max
1≤i≤n

[
‖θ‖ e−d̃it

+

⎧
⎪⎪⎨

⎪⎪⎩

max
1≤i≤n

⎛

⎜
⎜
⎝

n∑

j=1

a+ijL
fj
j + b+ijL

gj
j

d̃i

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

(1 + ε)β
(
1− e−dit

)

⎤

⎥
⎥
⎦

= [r (1 + ε)σ] .
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In other words, β ≤ r (1 + ε)β . Passing to limit when ε −→ 0, we obtain
β (1− r) ≤ 0. By condition (H4) , we obtain σ = 0 which imply that

lim
t−→+∞ ‖z(t)‖ = lim

t−→+∞ ‖xi (t)− x∗
i (t)‖ = 0

and consequently the proof of this theorem is completed.

Example 1. Let us consider the following Hopfield neural network

ẋi (t) = −di (t)xi(t) +
3∑

j=1

aij (t) fj(xj (t)) +

3∑

j=1

bij (t) gj(xj (t− τj (t)))

where ⎛

⎝
d1 (t)
d2 (t)
d3 (t)

⎞

⎠ =

⎛

⎝
3 + cos2 πt

7 + 2 cos
√
2t

5 + 2 sin
√
3t

⎞

⎠ =⇒ d̃ = 2

for all x ∈ R, for all t ∈ R, ∀1 ≤ j ≤ 3fj(t) = gj(t) = sin t, and

(aij) =

⎛

⎜
⎜
⎜
⎝

0, 2 cos t 0, 5 cos
(

1
2+sin t+sin

√
2t

)
+ 0,5

1+t2 0, 2 sin
(

1
1+sin t+sin

√
5t

)

0, 1 cos
√
3t 0, 3 cos

(
1

2+sin t+sin
√
3t

)
+ 0,2

1+t2 0, 2 cos
(

1
2+sin t+sin

√
2t

)

0, 2 sin
√
2t 0, 2 sin

(
1

2+sin t+sin
√
2t

)
+ 0,1

1+t2 0, 2 sin
(

1
2+sin t+sin

√
3t

)

⎞

⎟
⎟
⎟
⎠

(bij) =

⎛

⎜
⎜
⎜
⎝

0, 1 sin
√
2t 0, 2 cos

(
1

2+sin t+sin
√
2t

)
+ 0,1

1+t2 0, 1 sin
(

1
1+sin t+sin

√
5t

)

0, 2 cos
√
5t 0, 1 cos

(
1

2+sin t+sin
√
3t

)
+ 0,2

1+t2 0, 2 cos
(

1
2+sin t+sin

√
2t

)

0, 2 sin
√
3t 0, 1 sin

(
1

2+sin t+sin
√
2t

)
+ 0,1

1+t2 0, 1 sin
(

1
2+sin t+sin

√
3t

)

⎞

⎟
⎟
⎟
⎠

Ii (t) =

⎛

⎜
⎜
⎜
⎝

cos
(

1
2+sin t+sin

√
2t

)
+ 1

1+t2

sin
(

1
2+sin t+sin

√
2t

)
+ 2

1+t2

cos
(

1
2+sin t+sin

√
2t

)
+ 1

1+t2

⎞

⎟
⎟
⎟
⎠

=⇒ (
Ii
)

1≤i≤3
=

⎛

⎝
2
3
2

⎞

⎠ =⇒ β = 3. Then

r = max
1≤i≤n

sup
t∈R

⎡

⎢
⎢
⎢
⎣

3∑

j=1

L
fj
j |aij (t)|+

n∑

j=1

L
gj
j |bij (t)|

d̃

⎤

⎥
⎥
⎥
⎦

= max

3∑

j=1

a+ij + b+ij

d̃
= max

3∑

j=1

(
1.8

2
,
1.5

2
,
1.2

2

)

< 1.



24 F. Chérif

Therefore, all conditions of Theorem 2 are satisfied, then the delayed Hopfield
neural networks (1.1) has a unique pseudo almost automorphic solution in the
region

B = B(ϕ0, r) =

{

x ∈ PAA(R,R3), ‖ϕ− ϕ0‖ ≤ 0, 9× 3 + 0

2 (1− 0, 9)
= 0, 135

}

.
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