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Abstract. We propose an associative learning model using reward
modulated spike-time dependent plasticity in reinforcement learning
paradigm. The task of learning is to associate a stimulus pair, known
as the predictor — choice pair, to a target response. In our model, a
generic architecture of neural network has been used, with minimal as-
sumption about the network dynamics. We demonstrate that stimulus-
stimulus-response association can be implemented in a stochastic way
within a noisy setting. The network has rich dynamics resulting from its
recurrent connectivity and background activity. The algorithm can learn
temporal sequence detection and solve temporal XOR problem.

Keywords: Spiking neural networks, Associative learning, Spike-time
dependent plasticity, Reinforcement learning.

1 Introduction

Numerous experimental findings have emphasised the importance of temporal
correlations between pre- and postsynaptic spikes on the efficacy of synaptic
changes. The Hebbian-based temporal synaptic plasticity known as spike-time
dependent plasticity (STDP) essentially says that a synapse is strengthened if
a presynaptic neuron fires before its postsynaptic neuron and is supressed if
the presynaptic neuron fires after the postsynaptic neuron [I], [9]. There are
so-called third signals (for example neurotransmitter concentrations) that are
used as mediators relating the synaptic plasticity mechanism at the cellular
level and its contribution to the adaptive changes at the behavioural level [2],
[3]. Dopamine (DA) has been identified as one such signal, and plays a role in
reward acquisition mechanisms [4]. It has been found that DA contributes to
enhancing the long-term potentiation (LTP) and long-term depression (LTD)
of synapses [3]. The release of the dopamine causes an increase in the delivery
of one of the protein subunits to the cell membrane, consequently enhancing
responsiveness to other neurotransmitters.

In the context of STDP based learning, the causal relationships between pre-
and postsynaptic neurons are reinforced only when there is a reward. By having
the selective synapse reinforcement, potentiation leads to reduced variability of
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the output and depression through negative reward leads to increased variabil-
ity of the networks behaviour [5]. Among popular works of learning with reward
modulated STDP is [6]. In the original reinforcement learning proposed by [6],
learning only involves association of a stimulus to a response group. The network
has fixed synaptic transmission delay of 1 ms. The experiment demonstrated
plausible and promising result in learning with modulated STDP implementa-
tion. The work has proven that, reinforcement signal known as the dopamine
signal can selectively enhance synaptic changes proposed by the standard STDP
rule. In the reported experiment, reinforcement to different target response is
implemented in batch. Initially the network was rewarded for the first response
group, then after successive trials, the reward was changed to the second group.
This somehow offers a challenge for learning with multiple input-output map-
pings with correlated spike train as competition between outputs is higher.

Inspired by the algorithm proposed in [6], we explore the ability of reward
modulated STDP in tasks that require stimulus-stimulus-response association.
Reinforcement of paired stimuli (i.e. predictor — choice pair) to a target response
is based on a reward signal derived from a reward policy whose parameter is the
firing rate of a response group. The reward signal, modelled after the role of
dopamine signal in the brain, enhances the amount of potentiantion (or depres-
sion) caused by STDP. We expand Izhikevich’s experiment [6] by presenting in-
put (i.e. stimulus pair) to a network randomly in a system with multiple outputs.
We also implement depression of synaptic weights through negative rewarding
and network with synaptic transmission delay parameter that provides more
richer temporal dynamics. The results reveal the practicality of our learning rule
in training a stochastic network to associate delayed paired stimuli with a re-
sponse in tasks with multiple input-output mappings. Furthermore, the network
can also learn temporal sequences within appropriate range of ISI.

2 Neural Network Dynamics

The proposed network model is a recurrent spiking network consisting of 800
excitatory and 200 inhibitory spiking neurons. The connectivity between neurons
is random and sparse. Each synaptic connection, from neuron i to j, is defined
by two parameters: a weight w;; and a synaptic transmission delay d;;. In our
model, the delay is a random integer between 1 to 20 ms. Neurons are divided
into subpopulations of stimulus groups (S), response groups (R), non-selective
neurons (NN.S) and inhibitory pool (I H). For clarity in discussions, we divide the
network into two modules; Response module and Input module (see Fig. 1).

In the Response module, each excitatory response group, e.g. R+,,, is con-
nected to its inhibitory pool, e.g. R—,,. The inhibitory pool provides inhibition
to its competitor group(s) through negative synaptic connections. The synaptic
strength from an inhibitory pool of a response group to excitatory neurons in its
competitor is set to -4.0 (not plastic). Each excitatory neuron in the response
module has 50% of postsynaptic neurons from its inhibitory pool, and 50% of
postsynaptic neurons consisting of neurons from the same excitatory response
group and/or excitatory neurons in the input module.
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For synaptic connections in the Input module, each excitatory neuron has
random connections to 100 neurons from the whole population (of 1000 neu-
rons, p = 0.1), and each inhibitory neuron in this module is connected to 100
excitatory neurons from the whole population. For all experiments described in
this paper, the number of neurons in each R+, R— and S+ is 100, 50 and 50
respectively.

Response module

Input module

Fig. 1. Recurrent spiking network with subpopulations of stimulus groups (S), response
groups (R: R4+ and R_), non-selective neurons (NS) and inhibitory pool (IH). Lines
end with open circle show excitatory connection, and lines end with solid circle indicate
inhibitory connection. (Please see text for details).

2.1 The Spiking Network Model

The spiking properties of each neuron are modelled as in 1-3 as proposed by [7],

[8]:

v/ = 0.040% + 50 + 140 —u + T (1)
v = a(bv —u) (2)
if v>430 mV, then u + u+d,v < c. (3)

where v, u, and I describe the neuron membrane potential, the recovery variable,
and the input current (and the synaptic input), respectively, while a-d are the
model parameters.

After the spike reaches its peak vpeqr= +30 mV, the membrane voltage and
the recovery variable are reset according to (3). For learning initialisation, the
membrane potential, v is set to -60.0 mV. The value is above the resting po-
tential, ¢ = -65.0 mV, that assumes some initial activity prior to learning. In
our model, like in Izhikevich’s original, all excitatory neurons are regular spiking
(RS) type and all inhibitory are fast spiking (FS) type neurons (details of neuron
spiking properties can be found in [§]).
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3 Synaptic Plasticity

Following the standard STDP rule as suggested in [6], for each fired neuron,
we find the last spike timing of each of its presynaptic neurons. The synaptic
efficacy is reinforced if the presynaptic neuron fires before its postsynaptic (+ve
part of the STDP curve), and depressed otherwise (-ve part of the STDP curve).
The magnitude of change is given by the following rule (4):

— At
Ace ' if At>0
Awstap, = ., - 4

tp {A_ei it At <0 )

where At = tpost — tpre, parameters 74 (7_) are the millisecond-scale time con-
stants, and A4 (A_) represents the maximum of the change, Aws.qp , when At
is approaching 0. In our model the choice of the parameters is as follows: 7, =
7- =20ms, A, = 0.1, and A_ = 0.15.

For every time step of 10 ms, weight update is applied to excitatory-excitatory
and excitatory-inhibitory synapses whilst inhibitory-to-excitatory synapses are
kept fixed. The weight update rule [5], [6] holds:

Aw(t) = [a+r(t)] 2(t) . (5)

The change of the synaptic weight Aw(t) is dependent on a reward signal r(t),
derived from (6), and an eligibility trace z(t), where z;;(t) is the sum of weight
changes w;; of presynaptic neuron ¢ to postsynaptic neuron j, proposed by STDP.
« is an activity-independent increase of synaptic weight. Assuming F; as the
intensity of firings of a desired response group R;, in a time interval, and F} is
the highest firing rate of non-target groups, i # j, the derivation of reinforcement
signal r(t) from the reward policy O(F), is given by:

Q(F):T(t): 1—Fj/Fi if Fj <F7;<2Fj (6)
~0.1 if F,<F,

Every millisecond, r decreases by 0.995xr, and for every synaptic weight update,
z decreases by 0.99 x z. To avoid infinite growth of weights and change of weight
sign, weights are kept to be in the range between 0 to 4 mV. [

3.1 Learning Protocols

From the population of 1000 neurons, we select n non-overlapped groups, .S,,, of
50 excitatory neurons each. Each group represents a stimulus. Another m exclu-
sive groups, R,,, of 100 excitatory neurons each are selected as response groups.
In a learning simulation with a number of trials, in the first 100-ms window

! In Izhikevich paper a incoming single spike over a weight w leads to an increase of
the membrane potential of w mV —hence units of connection strength are measured
in mV.
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time, the network only experiences background activity that we stimulate an ar-
bitrary neuron with 20 pA current (super-threshold current). For each learning
trial, in the presence of the background activity, we randomly select a stimulus
pair, e.g. predictor = Sy and choice = Sy, with a target response, e.g. A and
stimulate all 50 neurons within each stimulus with a super-threshold current, i.e.
20 pA at time ¢, and t,,1 157 for a predictor S; and choice Sy, respectively. The
inter-stimulus interval (IST) is an experimental parameter in the range of 10 - 50
ms. From the onset of a choice pattern, within a 20-ms time window, we count
the number of spikes in the response groups, A and B. The response group with
highest number of spikes is considered as the winner. The next trial starts after a
delay of 100 ms after the offset of each response interval. We reward the network
based on the number of spikes in A and B within the 20-ms interval following
the reward policy in 6. Every learning task is repeated with 10 different network
simulations that each simulation takes 20 mins.

There are 2 phases of synapse reinforcement. In the first phase, a reward
signal is produced for the number of spikes in the target response inhibitory
group within 10 ms of the response interval from the onset of a choice. This
is to strengthen the synapses from a triggered stimulus pair to its postsynap-
tic neurons in the target response inhibitory group for lateral inhibition to its
competitor group(s). In the second phase, the same mechanism is applied for re-
inforcement of the excitatory response groups but based on the number of spikes
within 20 ms. In addition, winner-take-all strategy is implemented in both phases
through biased random excitatory signals to the winner of response groups for
each phase, if the winner = target response. The training performance is com-
puted based on the percentage of number of correct response over number of
trials averaged by 10 simulations (i.e. 10 different networks).

For a test phase, we run a simulation consisting of a number of trials for 200
ms each. The testing result shows the average of performance (i.e. correct recall
rate of learned pairs) over 100 trials. For every trial, the network with the same
background activity as during the training gets stimulated with a superthreshold
current of 20 pA applied onto the tested predictor at some random time, ¢,
in between 100-120 ms. The stimulation on choice group proceeds after the
predictor group depending on the ISI. The number of spike counts within the
20-ms response interval (starts from the onset of the choice) is used to compute
a winning response.

4 Simulation Results

We have run a series of simulations with various predictor — choice pairing
strategies. We began training a network with exclusive stimulus groups, i.e.
Pair — Response = {(So,51) — A, (S2,53) — B,(S4,S5) = A, (Ss,S7) — B}
with ISI=10 ms. The averaged performance was achieved with correct recall rate
of 94.08% and 99.75%, for training and testing respectively.

For network stimulation, we delivered a 1-ms pulse super threshold current
to all neurons in the selected groups so that each of them fired almost immedi-
ately. At the early phase of learning, in addition to the background activity, the
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activation of neurons was only due to coincident firings evoked by those stim-
ulated neurons. By frequently stimulating predictor — choice pairs, and firings
that follow the pre-then-post order rule of the STDP, the synaptic connections
from those 50 neurons in the paired groups to the fired postsynaptic neurons
become eligible for potentiation (see Fig. 2). When there is no reward, i.e. DA
= 0.0, after some period of time, the eligibility trace decays to zero, resulting in
only small potentiation. In such case, as the LTD window of STDP is greater
than the LTP window, the amount of the potentiation is compensated by the
STDP depression mechanism. On the other hand, if there is a reward, i.e. in-
crement (decrement) of DA value, the amount of potentiation (depression) can
be enhanced. Therefore, rewarding mechanism based on conditional response
reinforces connections to a target response group, A or B.
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Fig.2. An example of spike raster plot of a learning (left) at the early phase, and
(right) after 150 seconds, within 500 ms time window. Neurons in the response group
A (# 501-600) and group B (# 601-700) are encapsulated in the solid and dashed
boxes, respectively.

4.1 Learning Temporal Sequence

In the following experiments, we investigated the non-exclusivity of pattern pairs.
There were stimulus groups sharing the same predictor or choice with conflicting
responses. In such condition, there were unstable patterns that could be dragged
to the undesired attractor, e.g., (So, S1) — A and (Sp, S2) — B. To reduce too
high correlation in neural spike trains, the same stimulus group, say a predictor,
that was to be paired with different choices was allowed to have some probability
of non-overlapping neurons. For brevity, in group Sy consisting of 100 neurons, 50
neurons were selected randomly to be paired with 50 neurons from group S; (out
of 100 neurons, chosen randomly). Hence for two stimulus pairs, e.g. (Sp, S1) — 4
and (Sp, S2) — B, the predictor Sy may have a number of overlapping neurons
with some probability.

In this paper, we report three experiments of learning with non-exlusive groups
under three conditions. For condition with shared predictor in a learning set
of {(S0,51) = A,(So,S2) — B}, training and testing achieved 86.56% and
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85.40%, respectively. In learning with non-exclusivity and identical orthogonal-
ity, for stimulus pairs {(So, S1) = A, (So, S2) — B, (S1,S0) — B}, the results
were 76.99% for training and 73.73% for testing. We also trained the network
under a learning condition with non-exclusivity and asymmetrical difference in
a stimulus set of {(So, S1) — A4, (So, S2) — B, (S2,51) — A}. The performance
was higher when compared with learning under the other two conditions, 90.44%
and 94.40%, for training and testing, respectively.

4.2 XOR Benchmark

Here we tested whether our learning approach could successfully learn the XOR
problem. To perform a logic function task, we defined 4 distinct stimulus groups,
So, S1, S2, and S3. Sy (S1) and Sy (S3) represented the TRUE (FALSE) values
of the first (second) stimulus, respectively. Meanwhile, the response group A
represented a TRUE response and the response group B was considered a FALSE
response. Therefore for XOR problem the pattern pairs were as follows: Pair —
Response = {(So, S2) — B, (S0, S3) — A, (51,52) = A, (51,53) — B}.

For this problem, all stimulus pairs are unstable due to non-exclusivity with
shared predictor and choice having conflicting responses. This consequently may
result high competition in learning. Nevertheless, with lateral inhibition mech-
anism in our proposed algorithm and appropriate ISI (i.e. 10 ms), simulation
result indicates that a network with stochastic dynamics and minimal anatom-
ical constraints can also learn temporal logic functions with good performance
achieved at 81.88% and 79.53%, in training and testing respectively.

5 Conclusion

In this study, we demonstrate the ability of reward-modulated spike-time de-
pendent plasticity in pair associate learning tasks. In the network with random
connectivity, there are subpopulations of excitatory neurons that are selective
to certain stimuli. The network is presented with a predictor stimuli followed by
its paired choice with a certain inter-stimulus interval (ISI). The algorithm has
been successfully tested for temporal sequence learning with exclusive stimulus
groups as well as in a setting with overlap of patterns between stimulus groups.
Furthermore, the algorithm has also been verifed its performance in solving the
XOR problem. In learning with non-exclusive stimulus groups, greater influence
from a predictor is required to facilitate discrimination of target responses due
to correlation in neural spike trains. The optimal ISI for such learning condition
has been found at 10 ms.

To serve a goal-directed learning, our proposed algorithm integrates STDP
and firing rate. The firing rate is a parameter of a reward policy (6) that deter-
mines the adjustment value for synaptic changes proposed by STDP standard
rule. The reward policy function derives a reinforcement signal (i.e. the ad-
justment value) based on firing rate of a response group. In [6], learning only
applies positive reinforcement, for our case, the adjustment value represents the
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dopamine concentration variable that results in strong positive, weak positive
or negative reward signals. Higher firing rate of the target response group yields
stronger signal for synapse reinforcement. Therefore, rewarding mechanism is
based on modulation by the dopamine variable, where the increment/decrement
of its values enhances the potentiation or depression resulted by the STDP pro-
cess. Furthermore, we propose a lateral inhibition mechanism to improve learning
in a more competitive environment.

Learning is implemented with minimal assumption of the network dynamics.
The network with random activity does not have any prior knowledge regarding
the identity of learning signals. There is no need of so called ‘teacher signals’ as
in instructive learning approaches. Input stimulation is induced at certain time
only through perturbation to the network activity.
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