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Abstract. Spiking neural networks (SNN) aim to mimic membrane potential 
dynamics of biological neurons. They have been used widely in neuromorphic 
applications and neuroscience modeling studies. We design a parallel SNN 
accelerator for producing large-scale cortical simulation targeting an off-the-
shelf Field-Programmable Gate Array (FPGA)-based system. The accelerator 
parallelizes synaptic processing with run time proportional to the firing rate of 
the network. Using only one FPGA, this accelerator is estimated to support 
simulation of 64K neurons 2.5 times real-time, and achieves a spike delivery 
rate which is at least 1.4 times faster than a recent GPU accelerator with a 
benchmark toroidal network. 
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1 Introduction 

Despite the vast amount of anatomical and functional knowledge of the brain, the 
complete picture of how higher cognitive function emerges from neuronal and 
synaptic dynamics still eludes us. Large-scale simulation is useful in this regard, since 
we can investigate how such functions emerge from deterministic simulation. 

There are previous attempts to simulate large number of neurons. Izhikevich 
investigates the mammalian thalamo-cortical system (106 neurons with 5×108 
synapses) [1], Blue Brain employs highly biologically precise models (106 neurons) 
[2]. IBM focuses on the computing power and mainframe infrastructure (1.6×109 
neurons with 8.87×1012 synapses) [3]. However, the availability, cost and energy 
consumption of such supercomputers can be a concern. The interest in customized 
platforms for neural network simulation has therefore been growing, resulting in 
platforms such as SpiNNaker targeting a network of microprocessor chips [4], NeMo 
targeting GPU [5], and FACETS targeting custom VLSI chip and silicon wafers [6]. 

This work, building on an earlier proof of principle [7], involves designing a large-
scale SNN accelerator employing Izhikevich spiking neuron model. One contribution 
of this work is a module capable of efficient parallel weight distribution. We utilize 
on-chip memory to store frequently accessed variables in this module, such that most 
of the memory bandwidth is used to access neuronal parameters and synaptic data. 
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A major challenge of devising an efficient SNN accelerator concerns the memory 
storage and access patterns. When simulating a cortical neural network, the main 
memory holds primarily the synaptic data since one neuron typically receives 1000 to 
10000 synapses from other neurons. As a result, SNN calculation is a memory-intensive 
task and the efficiency of an SNN accelerator heavily depends on the time spent on 
accessing neuronal parameters and synaptic weight data. We design a memory storage 
and access scheme for synaptic data using a simple yet effective method. 

This accelerator also makes use of the fact that only a small percentage of neurons 
are firing (sparse firing) at any given time. Our event-driven hardware architecture 
accesses synaptic weight only when its presynaptic neuron fires, thus reduce the 
required running time for weight distribution to be linear to the firing rate. 

A prototype node with a single FPGA is implemented to investigate the proposed 
design, where the FPGA is configured as a stream processor. This accelerator is 
designed such that multiple FPGAs can be easily concatenated to produce a parallel 
FPGA network efficiently, allowing a large network to be simulated in real time. 

In short, the novelty and merits demonstrated in this work are: 

 A module capable of efficiently distributing synaptic weights in parallel 
 A simple and efficient memory storage and access scheme 
 An event-driven and fully pipelined approach for simulating SNN 

2 Background 

2.1 Previous Work 

The history of employing electronics to implement spiking neurons dates back to 
1989 when Carver Mead used analog VLSI to implement neuromorphic devices [9]. 
Since then FPGA technology has been used to implement neuron-parallel networks. 
Although FPGA-based soft processors produce high throughput and is biologically 
plausible [10], the network size is constrained by the hardware resources available 
and hence they are not suitable for large-scale simulation. 

A few projects have demonstrated the feasibility of implementing large-scale SNN 
accelerator on GPUs. Our work is comparable to a GPU accelerator [5] since the 
systems have similar functionality and target network size. Such accelerators optimize 
for local connectivity of neurons and show good performance over other GPU and 
CPU implementations. 

We suggest that FPGA technology is a better choice for implementing SNN accelerator 
than microprocessors and GPUs. SpiNNaker, A microprocessor-based architecture, adopts 
a distributed approach such that a single microprocessor is responsible for processing a 
number of neurons. Their system implements a ‘virtual network’ which can be 
customized. The synaptic data are distributed such that a large amount of data has to be 
sent across the microprocessor network which complicates communication. 

A centralized approach is used in a number of GPU [4] and FPGA [11] 
implementations where data are stored in a centralized storage of main memory. Although 
GPUs have a high memory bandwidth to off-chip memory which is an advantage in 
memory-intensive SNN calculation, their on-chip memory to store frequently accessed 
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data is small in size. Contemporary FPGAs have several megabytes of on-chip memory, 
which we have utilized to store accumulated postsynaptic current. The main memory can 
then be used mainly for accessing neuronal parameters and synaptic weights. 

2.2 General Procedure of SNN Simulation 

SNN is a type of neural network widely adopted in studying neural computation using 
spikes, an abstracted form of action potential, as the means of communication 
between neurons. This work adopts the Izhikevich model [8] for modeling neurons 
which is computationally efficient, while sufficiently precise to produce various 
dynamics. In each time step, the membrane potential variable v and recovery variable 
u are changed according to equation (1a), (1b) and (1c).  ݒሶ ൌ ଶݒ0.04 ൅ ݒ5 ൅ 140 െ ݑ ൅ ܫ ൅ (1a) ܰݏ

ሶݑ ൌ ܽሺܾݒ െ ሻ (1b)ݑ

݂݅ሺݒ ൐ 30ሻ then ݒ ൌ ܿ , else ݑ ൌ ݑ ൅ ݀ (1c)

In the above equations, a, b, c and d are the parameters describing the dynamics of the 
neuron while v and u are the membrane potential and membrane recovery variable of 
the neuron respectively. I is the incoming postsynaptic current into the neuron. We 
used a delta function in the current implementation (i.e. adding the synaptic weight 
directly to v). N is a normally distributed random number to mimic random 
fluctuation in synapse, and s represents the magnitude of the fluctuation. 

To simulate a network of Izhikevich neurons:  

Step 1. For each time step all the neurons are updated according to equation above; 
Step 2. If a neuron fires, the list of synapse data (i.e. postsynaptic neuron index, 

synaptic weight, axonal delay) of this neuron are accessed from memory 
Step 3. Synaptic current cache I accumulates synaptic weight to a slot according to 

the postsynaptic neuron index 

We design a module capable of parallelizing the access, distribution and accumulation 
of synaptic weight described in step 2 and 3. 

3 Design 

Fig. 1 shows the overall architecture of the design. The two main modules, neuron 
module and weight distribution module, correspond to neuron state update (step 1) 
and weight accumulation (step 2 and 3) respectively, and are connected together by a 
FIFO storing indices of fired neurons and a controller. The design is fully pipelined 
hence processing time is reduced. This design has a number of novel features. First, 
our weight distribution module parallelizes access, distribution and accumulation of 
synaptic values concurrently. Second, synaptic data are arranged in consecutive RAM 
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locations, thus a single access returns data for a number of synapses. Third, a simple 
and efficient event-driven architecture is implemented using FIFO queues. 

The neuron module is a pipelined implementation of equation (1). It takes the 
postsynaptic current I accumulated from the previous time step as input and outputs 
indices of the fired neurons. The equation parameters are streamed into the module 
every cycle. The neuron model used in neuron module can easily be changed to other 
neuron models (e.g. integrate-and-fire). Several neuron modules can be employed to 
parallelize neuron state update should the updating becomes bottleneck of the design. 

 

Fig. 1. Overall architecture of accelerator showing the connection between the two main 
modules (neuron module and weight distribution module), the weight distribution controller 
and off-chip DRAM (double-bordered) 

The weight distribution controller is the intermediate component between the two 
main modules in the design. It translates indices of fired neurons queued in the input 
FIFO into memory addresses and data size for accessing the required synaptic data. 
The accessed synapses have the fired neuron as their common presynaptic neuron (i.e. 
a fan-out design). The controller calls the weight distribution module on demand for 
each fired neuron index in the FIFO, such that the processing time which is dominated 
by weight distribution would be proportional to the firing rate of the network.  

The weight distribution module processes the synaptic weights in parallel. The 
module consists of a number of branches, each of which corresponds to one synapse 
and most of them are actively accumulating synaptic weights when the synaptic data 
packets arrive. The number of branches in the module is equal to the number of 
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synaptic data packets received from DRAM in one cycle. Each branch consists of a 
multiplexor, an adder and one or more blocks of on-chip Block RAM (BRAM) to 
accumulate the postsynaptic current I.  

The accumulated current I is stored in BRAM for the weight distribution module to 
access I efficiently. The neurons in the network are assigned to a location in one of 
the BRAMs in the branches. In GPU-based accelerators, it takes a significant amount 
of bandwidth to send data back-and-forth between the accelerator and the main 
memory to access I, thus FPGAs have an advantage in reducing memory bandwidth. 
Using the current design, the network size is constrained by the available BRAM size 
on the FPGA, but the architecture can be further developed such that I is stored in 
main memory and only a fraction of I is stored in BRAM at any point in time. 

It is easy to scale up the current design to enable a large network to be simulated in 
parallel on a number of FPGAs. A multi-node implementation can be achieved by 
connecting the FIFOs into a systolic array using communication bus between FPGAs 
where indices of fired neurons are transmitted across FPGAs at a fast rate. 

4 Implementation 

This work targets an off-the-shelf computing node provided by Maxeler, with 4 
Virtex6 SX475T FPGA (40nm process) as the main computing element. The platform 
has 96GB off-chip DDR3 DRAM with 38.4 GB/s memory bandwidth, and 
synchronous on-chip BRAM of 4.6MB in each FPGA. For the current implementation 
only one FPGA is used, but the work can be extended to use all the 4 FPGAs. The 
platform is configured as a stream processor thus allows us to implement a fully 
pipelined design. The vendor also provides high-level design tools which translate 
Java description of hardware resource and functions into low level VHDL, thus 
simplifying the implementation work. The platform has designated data paths 
connecting all the FPGAs in a ring to provide high-speed inter-FPGA connections, 
thus suits our need to implement a multi-FPGA network previously described. 

4.1 Weight Distribution Module 

Fig. 2 illustrates the architecture for the weight distribution module. It has three 
incoming synapse data per cycle and the same number of branches. The module 
receives the synaptic weight and postsynaptic destination for a number of cycles, and 
distributes the data to the BRAMs through the MUXs as shown in Fig. 2. The 
synaptic data are organized in memory such that no two synaptic data will be routed 
to the same branch. A read is first performed in the BRAM, and is added to the new 
incoming weight and written back to the same address. 

In the current design, approximately 1M slots can be accommodated in the BRAM, 
thus effectively allowing a network with 500K neurons to be simulated on one FPGA 
(memory blocks need to store both It and It+1). To incorporate propagation delay 
which is currently not implemented, the maximum size of the network will be equal to 
500K divided by the maximum delay in the network. Thus I can be considered to 
swap to DRAM if the network size of maximum delay is large, which costs extra 
resource usage to build the memory interface. 
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Fig. 2.  Weight distribution module with 3 input synapse data per cycle. In this example 
neuron 1 connects to neurons 2, 3, 7, 8 and 9 in the network, and neuron 1 is fired in the last 
time step. The graph shows the configuration to accumulate w31, w81 and w91 in the first cycle. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 3. Memory layout for synaptic data. Black areas represent occupied memory space storing 
synaptic data packets. In the x-axis of the graph, the packets are arranged according to its target 
branch index instead of its actual location for easy understanding. 

4.2 Memory Layout of Synaptic Data 

The synaptic memory space consists of synaptic data packets stored in consecutive 
addresses in the DRAM (Fig. 3). Each packet has a total of 32 bits, where synaptic 
weight occupies 16 bits, branch index uses 6 bits (up to 64 branches) and location 
index uses 10 bits (up to 1024 BRAM locations). A map is used to translate the 
neuron index to the I location when the synaptic data are loaded into DRAM. Neurons 
are randomly assigned a location in the BRAMs in the current implementation. 
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The synaptic data are arranged in DRAM such that they occupy consecutive 
memory space, with a constraint that no two neurons target the same branch in a 
single fetch. This process is done on the fly when the data streams into the memory 
during initialization. The proportion of the empty area in Fig. 3 causes overhead when 
accumulating synaptic weights. So one possible optimization is to shuffle the position 
of neurons in the BRAMs such that neurons in branches that are heavily accessed are 
swap to branches with less workload, and thus effectively reduce the overhead. 

5 Results 

We build a prototype of the accelerator at 100MHz to estimate the resource utilization 
(Table 1) and latency. Over half of the resources are used to support memory interface 
and other peripheries. The accelerator itself uses only a small amount of resources. 

To evaluate the performance, we use a toroidal network [5] with various sizes (p) 
and various degrees of sparseness of synaptic connectivity (σ). The network has 
1024×p neurons, each neuron making 1000 synaptic connections to its neighbouring 
neurons. The network fires at approximately 7Hz under all conditions. 

Table 1. Resource utilization of accelerator prototype with 48 branches 

Neuron Modules LUTs FFs BRAMs DSPs 

1 73593 (24.7%) 81896 (13.8%) 252 (23.7%) 10 (0.5%) 
2 80212 (27.0%) 90669 (15.2%) 268 (25.1%) 20 (1%) 

 
We estimate the spike delivery rate, suggested as a measure of performance [5] 

(Fig. 4, left), using a 48-branch and 2-neuron-module design using one FPGA. The 
measure is used since the firing rate and synapses vary for different networks. Unlike 
related work [5], the sparseness of synaptic connection does not affect the 
performance of our architecture. The accelerator achieves throughput of 1.39G/1.17G 
spikes/s for spike delivery rate, enabling 6 times/2.5 times speedup with respect to 
real time for 32K/64K neuron simulation. The performance is bound by memory 
bandwidth, thus there will not be a large performance gain if higher clock rate is used. 

 
 
 
 
 
 
 
 
 
 

Fig. 4. Estimation of spike delivery rate (left) and speedup with respect to real-time (right) vs 
network size, using 48 branches and 2 neuron modules under localized (σ = 32) and uniform 
synaptic connectivity conditions 

Our system

NeMo 
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Our accelerator is 1.4 times (localized connectivity) to 5.5 times (uniform 
connectivity) faster than the GPU NeMo accelerator (Tesla C1060 65nm process) in 
terms of spike delivery rate. However, our current accelerator does not support axonal 
delay and synaptic plasticity which require additional hardware resources.  

6 Conclusion 

This paper describes a spiking neural network accelerator capable of supporting large-
scale simulation using an FPGA-based system. We propose a scheme to efficiently 
parallelize the access and processing of synaptic weights in SNN. The accelerator 
shows high spike delivery throughput and outperforms a GPU accelerator. 

To achieve a more biologically realistic simulation, the current work needs to be 
extended to support axonal delay, spike-timing dependent plasticity and postsynaptic 
potential kernel. Future improvements of the current design include optimizing the 
memory to reduce overhead, increasing the parallelism of the design by using more 
hardware resources, and enhancing the efficiency of the memory bandwidth. 
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