

A.E.P. Villa et al. (Eds.): ICANN 2012, Part I, LNCS 7552, pp. 113–120, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Large-Scale Spiking Neural Network Accelerator
for FPGA Systems

Kit Cheung1, Simon R. Schultz2, and Wayne Luk1

1 Department of Computing,
2 Department of Bioengineering,

Imperial College London
{k.cheung11,s.schultz,w.luk}@imperial.ac.uk

Abstract. Spiking neural networks (SNN) aim to mimic membrane potential
dynamics of biological neurons. They have been used widely in neuromorphic
applications and neuroscience modeling studies. We design a parallel SNN
accelerator for producing large-scale cortical simulation targeting an off-the-
shelf Field-Programmable Gate Array (FPGA)-based system. The accelerator
parallelizes synaptic processing with run time proportional to the firing rate of
the network. Using only one FPGA, this accelerator is estimated to support
simulation of 64K neurons 2.5 times real-time, and achieves a spike delivery
rate which is at least 1.4 times faster than a recent GPU accelerator with a
benchmark toroidal network.

Keywords: Spiking neural networks, simulation, FPGA.

1 Introduction

Despite the vast amount of anatomical and functional knowledge of the brain, the
complete picture of how higher cognitive function emerges from neuronal and
synaptic dynamics still eludes us. Large-scale simulation is useful in this regard, since
we can investigate how such functions emerge from deterministic simulation.

There are previous attempts to simulate large number of neurons. Izhikevich
investigates the mammalian thalamo-cortical system (106 neurons with 5×108
synapses) [1], Blue Brain employs highly biologically precise models (106 neurons)
[2]. IBM focuses on the computing power and mainframe infrastructure (1.6×109
neurons with 8.87×1012 synapses) [3]. However, the availability, cost and energy
consumption of such supercomputers can be a concern. The interest in customized
platforms for neural network simulation has therefore been growing, resulting in
platforms such as SpiNNaker targeting a network of microprocessor chips [4], NeMo
targeting GPU [5], and FACETS targeting custom VLSI chip and silicon wafers [6].

This work, building on an earlier proof of principle [7], involves designing a large-
scale SNN accelerator employing Izhikevich spiking neuron model. One contribution
of this work is a module capable of efficient parallel weight distribution. We utilize
on-chip memory to store frequently accessed variables in this module, such that most
of the memory bandwidth is used to access neuronal parameters and synaptic data.

114 K. Cheung, S.R. Schultz, and W. Luk

A major challenge of devising an efficient SNN accelerator concerns the memory
storage and access patterns. When simulating a cortical neural network, the main
memory holds primarily the synaptic data since one neuron typically receives 1000 to
10000 synapses from other neurons. As a result, SNN calculation is a memory-intensive
task and the efficiency of an SNN accelerator heavily depends on the time spent on
accessing neuronal parameters and synaptic weight data. We design a memory storage
and access scheme for synaptic data using a simple yet effective method.

This accelerator also makes use of the fact that only a small percentage of neurons
are firing (sparse firing) at any given time. Our event-driven hardware architecture
accesses synaptic weight only when its presynaptic neuron fires, thus reduce the
required running time for weight distribution to be linear to the firing rate.

A prototype node with a single FPGA is implemented to investigate the proposed
design, where the FPGA is configured as a stream processor. This accelerator is
designed such that multiple FPGAs can be easily concatenated to produce a parallel
FPGA network efficiently, allowing a large network to be simulated in real time.

In short, the novelty and merits demonstrated in this work are:

 A module capable of efficiently distributing synaptic weights in parallel
 A simple and efficient memory storage and access scheme
 An event-driven and fully pipelined approach for simulating SNN

2 Background

2.1 Previous Work

The history of employing electronics to implement spiking neurons dates back to
1989 when Carver Mead used analog VLSI to implement neuromorphic devices [9].
Since then FPGA technology has been used to implement neuron-parallel networks.
Although FPGA-based soft processors produce high throughput and is biologically
plausible [10], the network size is constrained by the hardware resources available
and hence they are not suitable for large-scale simulation.

A few projects have demonstrated the feasibility of implementing large-scale SNN
accelerator on GPUs. Our work is comparable to a GPU accelerator [5] since the
systems have similar functionality and target network size. Such accelerators optimize
for local connectivity of neurons and show good performance over other GPU and
CPU implementations.

We suggest that FPGA technology is a better choice for implementing SNN accelerator
than microprocessors and GPUs. SpiNNaker, A microprocessor-based architecture, adopts
a distributed approach such that a single microprocessor is responsible for processing a
number of neurons. Their system implements a ‘virtual network’ which can be
customized. The synaptic data are distributed such that a large amount of data has to be
sent across the microprocessor network which complicates communication.

A centralized approach is used in a number of GPU [4] and FPGA [11]
implementations where data are stored in a centralized storage of main memory. Although
GPUs have a high memory bandwidth to off-chip memory which is an advantage in
memory-intensive SNN calculation, their on-chip memory to store frequently accessed

 A Large-Scale Spiking Neural Network Accelerator for FPGA Systems 115

data is small in size. Contemporary FPGAs have several megabytes of on-chip memory,
which we have utilized to store accumulated postsynaptic current. The main memory can
then be used mainly for accessing neuronal parameters and synaptic weights.

2.2 General Procedure of SNN Simulation

SNN is a type of neural network widely adopted in studying neural computation using
spikes, an abstracted form of action potential, as the means of communication
between neurons. This work adopts the Izhikevich model [8] for modeling neurons
which is computationally efficient, while sufficiently precise to produce various
dynamics. In each time step, the membrane potential variable v and recovery variable
u are changed according to equation (1a), (1b) and (1c). ݒሶ ൌ ଶݒ0.04 ൅ ݒ5 ൅ 140 െ ݑ ൅ ܫ ൅ (1a) ܰݏ

ሶݑ ൌ ܽሺܾݒ െ ሻ (1b)ݑ

݂݅ሺݒ ൐ 30ሻ then ݒ ൌ ܿ , else ݑ ൌ ݑ ൅ ݀ (1c)

In the above equations, a, b, c and d are the parameters describing the dynamics of the
neuron while v and u are the membrane potential and membrane recovery variable of
the neuron respectively. I is the incoming postsynaptic current into the neuron. We
used a delta function in the current implementation (i.e. adding the synaptic weight
directly to v). N is a normally distributed random number to mimic random
fluctuation in synapse, and s represents the magnitude of the fluctuation.

To simulate a network of Izhikevich neurons:

Step 1. For each time step all the neurons are updated according to equation above;
Step 2. If a neuron fires, the list of synapse data (i.e. postsynaptic neuron index,

synaptic weight, axonal delay) of this neuron are accessed from memory
Step 3. Synaptic current cache I accumulates synaptic weight to a slot according to

the postsynaptic neuron index

We design a module capable of parallelizing the access, distribution and accumulation
of synaptic weight described in step 2 and 3.

3 Design

Fig. 1 shows the overall architecture of the design. The two main modules, neuron
module and weight distribution module, correspond to neuron state update (step 1)
and weight accumulation (step 2 and 3) respectively, and are connected together by a
FIFO storing indices of fired neurons and a controller. The design is fully pipelined
hence processing time is reduced. This design has a number of novel features. First,
our weight distribution module parallelizes access, distribution and accumulation of
synaptic values concurrently. Second, synaptic data are arranged in consecutive RAM

116 K. Cheung, S.R. Schultz, and W. Luk

locations, thus a single access returns data for a number of synapses. Third, a simple
and efficient event-driven architecture is implemented using FIFO queues.

The neuron module is a pipelined implementation of equation (1). It takes the
postsynaptic current I accumulated from the previous time step as input and outputs
indices of the fired neurons. The equation parameters are streamed into the module
every cycle. The neuron model used in neuron module can easily be changed to other
neuron models (e.g. integrate-and-fire). Several neuron modules can be employed to
parallelize neuron state update should the updating becomes bottleneck of the design.

Fig. 1. Overall architecture of accelerator showing the connection between the two main
modules (neuron module and weight distribution module), the weight distribution controller
and off-chip DRAM (double-bordered)

The weight distribution controller is the intermediate component between the two
main modules in the design. It translates indices of fired neurons queued in the input
FIFO into memory addresses and data size for accessing the required synaptic data.
The accessed synapses have the fired neuron as their common presynaptic neuron (i.e.
a fan-out design). The controller calls the weight distribution module on demand for
each fired neuron index in the FIFO, such that the processing time which is dominated
by weight distribution would be proportional to the firing rate of the network.

The weight distribution module processes the synaptic weights in parallel. The
module consists of a number of branches, each of which corresponds to one synapse
and most of them are actively accumulating synaptic weights when the synaptic data
packets arrive. The number of branches in the module is equal to the number of

 A Large-Scale Spiking Neural Network Accelerator for FPGA Systems 117

synaptic data packets received from DRAM in one cycle. Each branch consists of a
multiplexor, an adder and one or more blocks of on-chip Block RAM (BRAM) to
accumulate the postsynaptic current I.

The accumulated current I is stored in BRAM for the weight distribution module to
access I efficiently. The neurons in the network are assigned to a location in one of
the BRAMs in the branches. In GPU-based accelerators, it takes a significant amount
of bandwidth to send data back-and-forth between the accelerator and the main
memory to access I, thus FPGAs have an advantage in reducing memory bandwidth.
Using the current design, the network size is constrained by the available BRAM size
on the FPGA, but the architecture can be further developed such that I is stored in
main memory and only a fraction of I is stored in BRAM at any point in time.

It is easy to scale up the current design to enable a large network to be simulated in
parallel on a number of FPGAs. A multi-node implementation can be achieved by
connecting the FIFOs into a systolic array using communication bus between FPGAs
where indices of fired neurons are transmitted across FPGAs at a fast rate.

4 Implementation

This work targets an off-the-shelf computing node provided by Maxeler, with 4
Virtex6 SX475T FPGA (40nm process) as the main computing element. The platform
has 96GB off-chip DDR3 DRAM with 38.4 GB/s memory bandwidth, and
synchronous on-chip BRAM of 4.6MB in each FPGA. For the current implementation
only one FPGA is used, but the work can be extended to use all the 4 FPGAs. The
platform is configured as a stream processor thus allows us to implement a fully
pipelined design. The vendor also provides high-level design tools which translate
Java description of hardware resource and functions into low level VHDL, thus
simplifying the implementation work. The platform has designated data paths
connecting all the FPGAs in a ring to provide high-speed inter-FPGA connections,
thus suits our need to implement a multi-FPGA network previously described.

4.1 Weight Distribution Module

Fig. 2 illustrates the architecture for the weight distribution module. It has three
incoming synapse data per cycle and the same number of branches. The module
receives the synaptic weight and postsynaptic destination for a number of cycles, and
distributes the data to the BRAMs through the MUXs as shown in Fig. 2. The
synaptic data are organized in memory such that no two synaptic data will be routed
to the same branch. A read is first performed in the BRAM, and is added to the new
incoming weight and written back to the same address.

In the current design, approximately 1M slots can be accommodated in the BRAM,
thus effectively allowing a network with 500K neurons to be simulated on one FPGA
(memory blocks need to store both It and It+1). To incorporate propagation delay
which is currently not implemented, the maximum size of the network will be equal to
500K divided by the maximum delay in the network. Thus I can be considered to
swap to DRAM if the network size of maximum delay is large, which costs extra
resource usage to build the memory interface.

118 K. Cheung, S.R. Schultz, and W. Luk

Fig. 2. Weight distribution module with 3 input synapse data per cycle. In this example
neuron 1 connects to neurons 2, 3, 7, 8 and 9 in the network, and neuron 1 is fired in the last
time step. The graph shows the configuration to accumulate w31, w81 and w91 in the first cycle.

Fig. 3. Memory layout for synaptic data. Black areas represent occupied memory space storing
synaptic data packets. In the x-axis of the graph, the packets are arranged according to its target
branch index instead of its actual location for easy understanding.

4.2 Memory Layout of Synaptic Data

The synaptic memory space consists of synaptic data packets stored in consecutive
addresses in the DRAM (Fig. 3). Each packet has a total of 32 bits, where synaptic
weight occupies 16 bits, branch index uses 6 bits (up to 64 branches) and location
index uses 10 bits (up to 1024 BRAM locations). A map is used to translate the
neuron index to the I location when the synaptic data are loaded into DRAM. Neurons
are randomly assigned a location in the BRAMs in the current implementation.

DRAM

I1
t+1

I2
t+1

I3
t+1

I4
t+1

Accumulated
postsynaptic

current I stored
in BRAMs

Synaptic weight

0 - 1

2 0 1

w21 w71 -

w31 w81 w91

Cycle 2
Cycle 1

to MUX select

MUX0 MUX1 MUX2

+

2 0 1

Branch index

I5
t+1

I6
t+1

I7
t+1

I8
t+1

I9
t+1

I10
t+1

I11
t+1

I12
t+1

++

Location index

1 2 -

2 3 0

BRAM write is
delayed to wait
for adder output

2
3

0

to BRAM address

Neuron 1

Neuron 2

Neuron 3

…

48 synapse data

index of fired neuron
Cycles to process
determined by the
most occupied target
branch

row of packets are
sent sequentially to
the accelerator
starting from the
smallest address

0

20

40

60

80

100

memory address

Weight distribution controller

Weight distribution module

 A Large-Scale Spiking Neural Network Accelerator for FPGA Systems 119

The synaptic data are arranged in DRAM such that they occupy consecutive
memory space, with a constraint that no two neurons target the same branch in a
single fetch. This process is done on the fly when the data streams into the memory
during initialization. The proportion of the empty area in Fig. 3 causes overhead when
accumulating synaptic weights. So one possible optimization is to shuffle the position
of neurons in the BRAMs such that neurons in branches that are heavily accessed are
swap to branches with less workload, and thus effectively reduce the overhead.

5 Results

We build a prototype of the accelerator at 100MHz to estimate the resource utilization
(Table 1) and latency. Over half of the resources are used to support memory interface
and other peripheries. The accelerator itself uses only a small amount of resources.

To evaluate the performance, we use a toroidal network [5] with various sizes (p)
and various degrees of sparseness of synaptic connectivity (σ). The network has
1024×p neurons, each neuron making 1000 synaptic connections to its neighbouring
neurons. The network fires at approximately 7Hz under all conditions.

Table 1. Resource utilization of accelerator prototype with 48 branches

Neuron Modules LUTs FFs BRAMs DSPs

1 73593 (24.7%) 81896 (13.8%) 252 (23.7%) 10 (0.5%)
2 80212 (27.0%) 90669 (15.2%) 268 (25.1%) 20 (1%)

We estimate the spike delivery rate, suggested as a measure of performance [5]

(Fig. 4, left), using a 48-branch and 2-neuron-module design using one FPGA. The
measure is used since the firing rate and synapses vary for different networks. Unlike
related work [5], the sparseness of synaptic connection does not affect the
performance of our architecture. The accelerator achieves throughput of 1.39G/1.17G
spikes/s for spike delivery rate, enabling 6 times/2.5 times speedup with respect to
real time for 32K/64K neuron simulation. The performance is bound by memory
bandwidth, thus there will not be a large performance gain if higher clock rate is used.

Fig. 4. Estimation of spike delivery rate (left) and speedup with respect to real-time (right) vs
network size, using 48 branches and 2 neuron modules under localized (σ = 32) and uniform
synaptic connectivity conditions

Our system

NeMo

120 K. Cheung, S.R. Schultz, and W. Luk

Our accelerator is 1.4 times (localized connectivity) to 5.5 times (uniform
connectivity) faster than the GPU NeMo accelerator (Tesla C1060 65nm process) in
terms of spike delivery rate. However, our current accelerator does not support axonal
delay and synaptic plasticity which require additional hardware resources.

6 Conclusion

This paper describes a spiking neural network accelerator capable of supporting large-
scale simulation using an FPGA-based system. We propose a scheme to efficiently
parallelize the access and processing of synaptic weights in SNN. The accelerator
shows high spike delivery throughput and outperforms a GPU accelerator.

To achieve a more biologically realistic simulation, the current work needs to be
extended to support axonal delay, spike-timing dependent plasticity and postsynaptic
potential kernel. Future improvements of the current design include optimizing the
memory to reduce overhead, increasing the parallelism of the design by using more
hardware resources, and enhancing the efficiency of the memory bandwidth.

Acknowledgments. The research leading to these results has received funding from
European Union Seventh Framework Programme under grant agreement number
287804, 248976 and 257906. The support by the Croucher Foundation, UK EPSRC,
HiPEAC NoE, Maxeler University Program, and Xilinx is gratefully acknowledged.

References

1. Izhikevich, E.M., Edelman, G.M.: Large-scale model of mammalian thalamocortical
systems. PNAS 105, 3593–3598 (2008)

2. Markram, H.: The Blue Brain Project. Nat. Rev. Neurosci. 7, 153–160 (2006)
3. Ananthanarayanan, R., Esser, S.K., Simon, H.D., Modha, D.S.: The cat is out of the bag:

cortical simulations with 109 neurons, 1013 synapses. In: Proc. Conf. High Performance
Computing Networking, Storage and Analysis, pp. 1–12. ACM (2009)

4. Khan, M.M., Lester, D.R., Plana, L.A., Rast, A., Jin, X., Painkras, E., Furber, S.B.:
SpiNNaker: Mapping Neural Networks onto a Massively-Parallel Chip Multiprocessor. In:
Proc. IEEE International Joint Conference on Neural Networks (2008)

5. Fidjeland, A.K., Shanahan, M.P.: Accelerated simulation of spiking neural networks using
GPUs. In: Proc. IEEE International Joint Conference on Neural Networks (July 2010)

6. Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., Millner, S.: A wafer-scale
neuromorphic hardware system for large-scale neural modeling. In: Proc. IEEE Int. Conf.
Circuits and Systems, pp. 1947–1950 (2010)

7. Cheung, K., Schultz, S.R., Leong, P.H.W.: A parallel spiking neural network simulator. In:
Proc. Int’l Conf. on Field-Programmable Technology (FPT), pp. 247–254 (2009)

8. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural
Networks 14(6), 1569–1572 (2003)

9. Mead, C.: Analog VLSI and Neural Systems. Addison-Wesley (1989)
10. Maguire, L.P., McGinnity, T.M., Glackin, B., Ghani, A., Belatreche, A., Harkin, J.:

Challenges for large-scale implementations of spiking neural networks on FPGAs.
Neurocomputing 71(1-3), 13–29 (2007)

11. Moore, S.W., Fox, P.J., Marsh, S.J.T., Markettos, A.T., Mujumdar, A.: Bluehive – A
Field-Programable Custom Computing Machine for Extreme-Scale Real-Time Neural
Network Simulation. In: FCCM, pp. 133–140 (2012)

	A Large-Scale Spiking Neural Network Accelerator
for FPGA Systems
	Introduction
	Background
	Previous Work
	General Procedure of SNN Simulation

	Design
	Implementation
	Weight Distribution Module
	Memory Layout of Synaptic Data

	Results
	Conclusion
	References

