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Abstract. In this paper, we study a Tikhonov-type regularization for restricted
Boltzmann machines (RBM). We present two alternative formulations of the
Tikhonov-type regularization which encourage an RBM to learn a smoother
probability distribution. Both formulations turn out to be combinations of the
widely used weight-decay and sparsity regularization. We empirically evaluate
the effect of the proposed regularization schemes and show that the use of them
could help extracting better discriminative features with sparser hidden activation
probabilities.
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1 Introduction

Restricted Boltzmann machines (RBM) play an important role in deep learning. In
many deep neural networks each layer of the network is pre-trained as if it were an
RBM, and it has been empirically shown to facilitate training the whole network (see,
e.g., [10,8]).

It is common to use a stochastic gradient method for training RBMs. Both con-
trastive divergence learning [12] and approximate maximum-likelihood learning (see,
e.g., [21]), two of the most popular learning methods, are based on the stochastic gradi-
ent method.

One important research direction in using the stochastic gradient method for RBMs
is to design a regularization term. For instance, one of the most naive, but widely-
used, regularization methods called weight-decay regularizes the growth of parameters
in order to avoid overfitting and to stabilize learning. Another completely different reg-
ularization technique introduced in [14] forces learning to result in an RBM that gives
sparser hidden activations given visible data.

Along this line of research, we investigate a Tikhonov-type regularization (see, e.g.,
[1,9]) by which we refer to regularizing the derivative of either an approximating func-
tion or a function related to it. In this paper, two different formulations of the Tikhonov-
type regularization for RBMs are derived. We found that both formulations appear as
a combination of weight-decay and sparsity regularization, and present an empirical
evaluation on their effect in training RBMs.

Recently, a form of Tikhonov-type regularization was successfully applied to auto-
encoders, which are closely related to RBMs [22], in [18,17] to explicitly encourage
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hidden variables to be invariant to (small) deformation of input representations. It was
done by regularizing the squared derivative of a latent variable with respect to an input
variable, which makes it a modified form of Tikhonov-type regularization.

2 Restricted Boltzmann Machines

The restricted Boltzmann machine is a stochastic neural network with a bipartite struc-
ture such that each visible neuron is connected to all the hidden neurons and each hidden
neuron is connected to all the visible ones [20].

We define a log-probability assigned to a given visible vector v by an RBM as:

log p(v | θ) = f(v | θ) +
Nh∑

j=1

log

(
1 + exp

(
cj +

Nv∑

i=1

wij
vi
σ2

))
− logZ(θ), (1)

where v and h are a column vector and a binary column vector representing the state
of the visible and hidden neurons, and parameters θ = (W,b, c,σ) include weights
W = [wij ]Nv×Nh

, biases b = [bi]Nv×1, c = [cj]Nh×1 and standard-deviations σ =
[σi]Nv×1. Nv and Nh are the numbers of visible and hidden neurons, respectively.Z(θ)
denotes the normalizing constant which is intractable and it can be calculated by sum-
ming exponentially many terms.

Function f(v | θ) in (1) indicates a contribution of visible neurons’ biases to an
energy of an RBM. f(v | θ) together with σi decides whether a visible neuron may
have a binary value or a continuous real value.

When f(v | θ) = b�v, it requires a visible neuron to have either 0 or 1, making
a standard binary RBM [20]. In this case each σi is set to 1. On the other hand, each

visible neuron can have a continuous real value when f(v | θ) = −∑Nv

i=1
(vi−bi)

2

2σ2
i

,

and each σi can either be set to a pre-defined value or learned [2,10]. We call this model
a Gaussian-Bernoulli RBM (GRBM).

Given a training set {v(n)}Nn=1 an RBM can be trained by maximizing log-likelihood.
The maximization is usually done by the stochastic gradient method, and in this paper,
we use the recently introduced method of the enhanced gradient [4] together with par-
allel tempering [3,7].

2.1 Regularization for Restricted Boltzmann Machines

There are a number of regularization techniques that are widely used.
One most widely used technique is weight-decay regularization. Training an RBM

with the weight-decay regularization maximizes the following objective function:

L(θ)− βw

2

∑

ij

w2
ij , (2)

where L(θ) and βw are the log-likelihood function and the regularization constant,
respectively 1.

1 The weight-decay may be applied to visible and hidden biases, as we have done in this paper.
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Another widely used technique, called sparsity regularization, regularizes the av-
erage activation probability of each hidden neuron. An RBM trained using the sparsity
regularization is commonly referred to as sparse RBM (sRBM) [14]. Sparse RBMs have
been popular due to the fact that an RBM with low average hidden activation probabil-
ities can extract better discriminative features than non-regularized RBMs (see, e.g.,
[16,5]). In [14], the sRBM was introduced by modifying the objective function to

L(θ)− βs

2

Nh∑

j=1

(
ρ− 1

N

N∑

n=1

p(hj | v(n), θ)

)2

, (3)

where ρ and βs are a target average activation of each hidden neuron and the regular-
ization constant, respectively.

3 Tikhonov Regularization for Restricted Boltzmann Machines

In this section, we present two possible formulations of the Tikhonov-type regulariza-
tion for RBMs. We refer to them as TYPE-1 and TYPE-2 formulations, respectively.

3.1 TYPE-1 and TYPE-2 Regularizations

One basic approach of the Tikhonov-type regularization is to minimize

β

2
Ep(v)

[‖∇vy(v)‖2
]
, (4)

when the task is to approximate some function y(v) (see, e.g., [1,9]) of inputs v. Here,
β is a regularization parameter. p(v) can be defined by a set of training samples or be
approximated by a probabilistic model.

Intuitively, by minimizing the derivative of the approximating function, Eq. (4) keeps
the function smooth around training samples or around regions of high probability. In
other words, it makes function y(v) more invariant to (small) deformations of v.

Under this intuition, it is natural to use as the approximating function y(v) the prob-
ability density function p(v) learned by an RBMs. Thus, the RBM model distribution
is regularized to be smoother.

After replacing y(v) with Eq. (1), we get the following TYPE-1 regularization term:

J1 =
β

2
Ep(v)

[
Nv∑
i=1

(
∂

∂vi
log p(v | θ)

)2
]
≈ β

2N

N∑
n=1

Nv∑
i=1

(
∂f(v(n) | θ)

∂vi
+

Nh∑
j=1

wij

σ2
i

h
(n)
j

)2

,

where v(n) is either an empirical sample or a sample drawn from the model distribution2

and h
(n)
j is a short-hand notation for p(hj = 1 | v(n), θ).

2 In the experiments, we used the samples from the model distribution which are readily avail-
able when computing the gradients.
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Instead, we may formulate the Tikhonov-type regularization by regularizing the
derivative of another function. From Eq. (1) it is apparent that an RBM is a special-
case of product-of-experts models [12], which implies that a probability given to v by
an RBM consists of contributions from experts which, in the case of RBMs, are hidden
neurons. Hence, it is reasonable to regularize each contribution of a hidden neuron by
minimizing the derivative of the logarithmic conditional probability distribution of each
hidden neuron log p(hj | v, θ)3.

The TYPE-2 Tikhonov regularization is then formulated to minimize the following
term:

J2 =
β

2
Ep(v)

⎡

⎣
Nv∑

i=1

Nh∑

j=1

(
∂

∂vi
log h

(n)
j

)2
⎤

⎦ ≈ β

2N

N∑

n=1

Nv∑

i=1

Nh∑

j=1

(
wij

σ2
i

h
(n)
j

)2

. (5)

In the case of a standard binary RBM, it is easy to see that the derivatives in both for-
mulations are not well-defined as v is a binary vector. However, we can simply assume
that p(v | θ) has a domain of RNv instead, which is obviously followed by p(hj | v, θ)
having the same domain4.

The idea behind this choice is that a probability distribution defined by a binary RBM
is constructed by taking values of all v such that each component of v is restricted to
be either 0 or 1. Hence, we make the distribution defined by the RBM smoother by
smoothing another continuous distribution with the same probability density function.

It is easy to see that both TYPE-1 and TYPE-2 can be seen as a combination of
the weight-decay and sparsity regularizations. Both terms decrease when the absolute
l2-norm of each weight and the average activation probability of each hidden neuron
decrease.

3.2 Optimization

A straightforward way to train an RBM with one of the two types of the Tikhonov-type
regularization is to optimize the regularization term together with the log-likelihood.
However, this approach makes it difficult to utilize the enhanced gradient which has
been shown to perform better than the traditional gradient [4]. Hence, we follow the
approach introduced in [14]. At each iteration, following the normal stochastic update
of the parameters using the enhanced gradient we update the parameters wij , bi and cj
again according to one of the regularization terms computed with the current minibatch.

4 Experiments

In this section we try to see the effect of the proposed regularization. From here on
we refer to an RBM trained using the proposed Tikhonov regularization as a regular-
ized RBM (rRBM). Note that in this paper we only focus on a standard RBM which
constraints each visible neuron to be binary. rRBMt1 and rRBMt2 indicate the TYPE-1

3 As noted earlier, a similar idea has been applied to auto-encoders in [18,17].
4 This assumption does not need to be made in case of RBMs with continuous visible neurons.
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and TYPE-2 regularization, respectively. Additionally, we tested the weight-decay and
sparsity regularization techniques in order to see how they perform differently com-
pared to the proposed Tikhonov-type regularization. They are denoted by wRBM and
sRBM, respectively.

We take a look at three metrics that can explain the effect of the proposed regulariza-
tion term. We trained RBMs with 500 hidden neurons on two different data sets which
are the handwritten digits (MNIST) [13] and the Caltech-101 Silhouettes [15]. As they
have been quite well studied previously, we can easily compare to results obtained by
other researchers.

Firstly, log-probabilities of test samples are checked. It may happen that the log-
probabilities become larger for the rRBMs, as smoothing could potentially decrease
the peaks around training samples systematically resulting in higher probability being
assigned to nearby test samples.

Secondly, we consider classification accuracies using the learned features from an
RBM, which indirectly suggests how discriminative extracted features are. In order to
see how discriminative features were, we did not fine-tune the already trained weights
of RBMs.

Additionally, in order to see how the proposed scheme biases a resulting model we
check the average hidden activation probabilities given test samples. It can be expected
that rRBMs will achieve higher sparsity.

For each data set we chose a regularization constant β through validation. We grid-
searched from 2−8 to 2−20 and estimated log-probabilities of validation samples. For
each grid point five RBMs were trained for a small number of epochs with different ran-
dom initializations, we considered their medians. Starting from a large β we logarithmi-
cally decreased it until the log-probabilities of validation samples stopped increasing or
decreasing significantly. Then, we chose the largest β with the converged performance
and sparsity.

We followed the same validation strategy to choose βw for RBMs trained using the
weight-decay regularization. For sparse RBMs, we chose the target sparsity ρ through
validation. ρ was grid-searched from 2−1 to 2−8, and ρ with the best log-probabilities
was chosen. The regularization constant βs was fixed to the inverse of the target sparsity,
as recommended by [14].

Finally, we chose 2−16 and 2−17 for MNIST with the TYPE-1 and TYPE-2, re-
spectively. For Caltech-101 Silhouettes, 2−17 was chosen for both formulations of the
Tikhonov-type regularization. βw for the weight-decay was chosen to be 2−14 and 2−11

for MNIST and Caltech-101 Silhouettes. 2−2 and 2−5 were chosen to be the target spar-
sity ρ for MNIST and Caltech-101 Silhouettes, respectively.

For initializing parameters, we followed the strategy recommended in [11]. Each
weight wij was drawn from a zero-mean normal distribution with its variance 1√

Nv+Nh
.

Visible biases b were set according to the training samples, and hidden biases c were
initialized to negative values (−4) in order to encourage sparse hidden activation
probabilities.

We independently trained RBMs five times with different parameters initializations.
Each RBM was trained for 200 epochs and 3000 epochs for MNIST and Caltech-101
Silhouettes, which amount to about 93,800 and 99,000 updates, respectively.
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Fig. 1. Log-probabilities, classification accuracies and average hidden activation probabilities of
test samples computed from the RBMs trained on MNIST and Caltech-101 Silhouettes with the
proposed Tikhonov regularization schemes (rRBMt1 and rRBMt2) and without it (RBM)

Log-probabilities were computed using a normalizing constant estimated using the
AIS [19]. A simple logistic classifier was trained on hidden activation probabilities to
compute classification accuracies. We used parallel tempering to sample from the model
distribution [7,3], and used the enhanced gradient and the adaptive learning rate, with
both an initial learning rate and an upper-bound set to 0.1, proposed in [2]. For each
experiment we decreased the learning rate proportionally to the inverse of the number
of updates for the last half of training.

4.1 Result

In Fig. 1, we see the log-probabilities and the classification accuracies of the test samples
and the average activation probabilities of the hidden neurons given the test samples.

The most obvious difference between the non-regularized RBM and the rRBMs is
the lower average hidden activation probabilities given test samples 5. As discussed
previously the proposed regularization schemes resulted in a model with sparser hidden
activation probabilities. It is also noticeable that TYPE-2 tends to bias a resulting model
to have sparser hidden activation probabilities even compared to the RBMs trained using
the TYPE-1 regularization or the RBMs trained with the weight-decay.

A general trend of extracting better discriminative features could be observed when
the RBMs were regularized with either the TYPE-1 or TYPE-2 schemes. It was espe-
cially obvious with the TYPE-2 regularization while the use of the TYPE-1 formulation
gave only marginal improvement over the non-regularized RBMs.

5 Inconsistently high or low average hidden activation probabilities achieved by the sparse
RBMs are due to the fact that the target sparsity ρ was chosen by the validation to be as
high as 2−2 = 0.25 for MNIST and as low as 2−5 = 0.0312 for Caltech-101 Silhouettes.
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On the other hand, it could be observed that the proposed regularization schemes
were not able to improve the resulting models’ generative performance. In the case
of MNIST, it could be seen that the better discriminative performance was achieved
with slight degradation in the log-probabilities of test samples. However, in the case of
Caltech-101 Silhouettes, we could observe that better generative models were learned
using the TYPE-1 scheme. It indirectly suggests that smoothing the overall probability
distribution (1) could potentially improve the generalization of the model by removing
highly peaked probability mass on training samples, while smoothing a contribution
from each hidden neuron does not necessarily help.

5 Discussion

We have presented two possible types of the Tikhonov-type regularization for train-
ing RBMs in this paper. Both the TYPE-1 and TYPE-2 schemes prefer an RBM to
learn a smoother probability distribution by minimizing the derivatives of either log-
probability distribution or log-conditional distribution of hidden neurons. It was shown
that both types were formulated as a combination of the weight-decay and sparsity reg-
ularizations which are widely used when training RBMs.

The experiments showed that both types were able to extract better discriminative
features with sparser hidden activation probabilities while marginally sacrificing the
generative capability of the resulting RBMs. The trend was more visible with the TYPE-
2 scheme, while it was not so apparent with the TYPE-1 regularization. However, we
were not able to see any significant performance improvement over other conventional
regularization techniques with binary RBMs.

We noticed through the validation step of the experiments that the regularization
constant β needs to be carefully chosen. Too large β overly simplified the distribution
learned by an RBM and failed to give a good fit of a training distribution. More thor-
ough investigation in choosing an appropriate regularization constant will need to be
done. Regardlessly, the proposed formulations of the Tikhonov regularization reduce
the number of hyper-parameters from at least three (ρ, βs, and βw) to one (β) against
using both the weight-decay and the sparse regularization together.

We tested the proposed regularization schemes with a standard, binary RBM only.
Both schemes, however, are not restricted to an RBM, but applicable to any other vari-
ant that can explicitly sum out hidden variables. One such variant is a GRBM which
replaces a binary visible neuron with a continuous, real-valued visible neuron. Another
possibility is a recently introduced spike-and-slab RBM [6]. It is natural to test the
proposed method with this model as a next step in future work.
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