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Abstract. This key note considers fitness landscapes and their use for understand-
ing evolutionary dynamics in natural and artificial biological systems. Landscape
paradigms are meanwhile ubiquitous in several branches of science. This intro-
ductory overview discusses concepts, issues and application with a main focus on
evolutionary biology and evolutionary computation.

Introductory Overview

The origin of the complexity and beauty of living structures and processes is the
product of evolutionary dynamics. The fundamental Darwinian ideas of evolution
in connection with genetic coding offer an explanatory framework for these devel-
opments of biological systems. Main elements of this framework are an inheritable
genetic coding that allows to pass on abilities and features of the living beings, their
survival and reproduction success depending on these abilities and features and an
uneven distribution of the success due to (possible changing) environmental condi-
tions. In this context, one of the core questions is how the genetic make-up (roughly
to the equated with genotype), the abilities and features (approximated as pheno-
type) and the survival and reproduction success (expressed as fitness) interrelated
with each other. An attempt to capture these interrelations are fitness landscapes. In
evolutionary biology they are used as a mathematical framework for understanding
evolutionary dynamics. In engineering and computer science the Darwinian ideas
of evolution found application in optimization and modelling tools using evolution-
ary computation techniques. Also here, for studying and analyzing these algorithms
fitness landscapes are useful. So, the main focus is on finding and/or creating real-
istic fitness landscapes, on analyzing and visualization tools for fitness landscapes,
on how fitness landscapes can help to understand working principles of evolution-
ary computation techniques, and on how these landscapes can be used to reflect
complex evolutionary dynamics.

A (static) fitness landscape ΛS can be expressed by [4, 13]

ΛS = (X,n, f ), (1)
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where X is a configuration space, n(x) is a neighborhood structure that assigns to ev-
ery x∈X a set of (more or less distant) neighbors, and f (x) :X→R is a fitness func-
tion that gives to every x ∈ X a proprietary quantity to be interpreted as a ’quality’
information. In other words, the configuration space in connection with the neigh-
borhood structure expresses a (possibly multi–dimensional) ’location’, while the
fitness is an orthogonal projection from location, defining an ’elevation’ or ’height’
and at the same time giving a location its most important property. Fitness is usu-
ally considered a single parameter but it seems perfectly possible to have a height
measure with several dimensions.

The origin and character of configuration space, neighborhood structure and fit-
ness function differ, naturally, in evolutionary biology and evolutionary computa-
tion. In evolutionary biology, the configuration space is made up by the genotypes
of the biological system under study [17, 3]. The genotype characterizes the genetic
make–up of a generic individual. It comprises of the sum (or union) of all genetically
possible individuals and hence is the total genetic information. The neighborhood
of a genotypical location is usually defined by the property of which genotypes can
mutate from one to another [3]. Assigning fitness to each element of the genotyp-
ical space requires additional considerations. Up until recently, this question was
answerable only purely theoretical and also requires to define an intermediate level
between genotype and fitness, the phenotypical space. The reason for that is that it
is complicated or even infeasible to assign a fitness value to the ’microscopic’ geno-
type. Fitness, at least in any sensible biological sense, is connected to longevity
and fertility and ultimately to reproduction success of a specific individual. Such a
phenotypical individual can be thought of as an instance of the generic individual
specified by a genotype. Hence, such a fitness landscape ΛS is, strictly speaking, the
product of a genotype–to–phenotype–to–fitness mapping and such landscapes have
been the subject of much theoretical work on evolutionary dynamics [2, 15, 14, 8, 9].
However, some recent studies have shown that a direct experimental approach to
construct fitness landscapes and analyze possible evolutionary pathways is possi-
ble [7, 5]. These results have led to a renewed interest in the framework of fitness
landscapes as for the first time the question of the predictability of real evolutionary
processes became addressable.

There is a fine but important conceptional difference in the approach to fitness
landscapes in evolutionary biology and evolutionary computation. The main focus
in evolutionary biology is to look for what fitness landscapes origin if we employ
methods to extract its structure and topology from real biological data and what
conclusions about the working and the outcome of the evolutionary process can
be drawn from these landscapes. In evolutionary computation the main focus is
on search for topological features in a landscape that is given by the optimization
problem under study. This can be related to the question of how an evolutionary
algorithm (an artificial model mimicking a simplified version of natural evolutionary
processes) interacts with the landscape and what behavior and performance can be
expected in the search.
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In evolutionary computation, therefore, the configuration space is made up by
the search space obtained from encoding all possible solutions of the optimization
problem. The neighborhood structure is a consequence of the search space and
hence the objects to be optimized over, but also of the genetic operators the evolu-
tionary search employs [4]. If the search space is metric (as for instance if the search
space elements are real or integer numbers, and the genetic operators act on these
numbers), then the neighborhood structure is inherent by the ordering of numbers.
If the search space is not metric (or can have several different kinds of metrics),
the neighborhood structure needs to be defined additionally. Examples are binary
coding, where the neighborhood structure can be a Hamming distance of different
length, or tree representation where the neighbors of a branch differ by a (smaller or
larger) variation in a subtree.

As discussed so far, fitness landscapes in both evolutionary biology and evolu-
tionary computation have the same base and are an attempt to answer similar or
highly related questions. If, as a special case, we consider the configuration space
as two–dimensional and the neighborhood structure continuously metric, we end
up with the fitness landscape metaphor frequently depicted: that of a mountain-
ous region with peaks, valleys, ridges and plateaus, see Fig. 1. It appears almost
a little surprising that such a rather naive picture has meaning in branches of sci-
ences as illustrious as physics, biology and informatics. Interestingly, landscape
paradigms are closely related to conceptualization of behavior that is usually re-
lated to complexity [10, 1]. The main motivation to employ a landscape approach
is that it offers a framework for a computational treatment. This treatment becomes
geometrically interpretable in a meaningful way for the aforementioned simple two–
dimensional case, but there is a multitude of ways to employ landscape measures or
visualization methods that are applicable for any given configuration space dimen-
sion [8, 9, 16, 6].



8 H. Richter

The fitness landscape approach presented here has been applied to different kinds
of problems in both evolutionary biology and evolutionary computation, and yields
understanding of evolutionary dynamics. I think that the recent progresses and find-
ings might be the beginnings for further developments that promise to address even
more fundamental questions about the working and the outcome of evolutionary
processes.
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