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Abstract. In this paper, multiple piecewise linearizations of a nonlinear process in 
different operating points are used within a Kalman filter bank which computes 
the conditional probabilities of various hypotheses that are modeled by the filters. 
State estimates provided by the Kalman Filters and local model parameters are 
weighted using conditional probabilities and then used within the predictive con-
trol framework. The proposed strategy is tested on the complex model of styrene 
polymerization process. 

1   Introduction 

Processes in the chemical industry usually exhibit nonlinear behavior. The nonli-
nearities arise from the dynamics in chemical reactions, thermodynamic relation-
ships, etc. Such processes are relatively complex and difficult to control. Several 
methods have been mainly used for predictive control of these processes. The first 
one is based on the direct use of nonlinear models [1] and involves the online so-
lution of a higher order nonlinear optimization problem with constraints, which is 
usually computationally expensive and may even be unable to guarantee a feasible 
solution for real-time control. Another method is to use local linearization ap-
proach for representing a nonlinear plant by applying an off-line estimated global-
ly nonlinear and locally linear model to solve a Quadratic Programming (QP) 
problem online in order to obtain optimal control. A global process model is 
formed by blending of a number of local models which have been identified over 
the operating range of the process. Multiple model networks have been more or 
less independently developed in different disciplines like neural networks, fuzzy 
logic, statistics and artificial intelligence with different names such as local model 
networks, Takagi -Sugeno fuzzy models or neuro-fuzzy models [2],[3]. 

In Continuous Stirred Tank Reactor (CSTR) the product properties are rarely 
measured accurately on-line, thus much effort has been put to the development of 
model-based estimation and control techniques. Multivariable nonlinear quadratic 
dynamic matrix control strategy was applied in [4] to control the polymerization 
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process. Both parameter and states of the process are estimated using the Extended 
Kalman Filters (EKF) and multivariable nonlinear quadratic dynamic matrix con-
trol is applied for control of number molecular weight (NAMW). In [5] linear pa-
rameter varying (LPV) model which interpolates second order output error models 
is used to represent the polymerization process. Maner et al. in [6] presented an 
MPC algorithm based on second-order Volterra models where the model parame-
ters are obtained by discretizing the bilinear Taylor series approximation of the 
fundamental model. In the paper predictive control is based on a mixture distribu-
tion of state-space models [7] with probabilities estimated with a  Kalman filter 
bank.     

2   Multiple Model Estimation 

The primary feature of Multiple Model Adaptive Estimation (MMAE) is a bank of 
Kalman filters operating in parallel, using vectors of measurements y and control 
commands u as their input. Each Kalman filter has the same structure based on the 
linearized description of the process (Fig. 1). The model is assumed to be linear 
and of the form:  

   

x(k +1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
 (1)

 

Fig. 1 Multiple Model Adaptive Estimation scheme 



Multiple Model Predictive Control of a Styrene Polymerization Process 145
 

Output of each KF is weighted by its corresponding conditional probability 
based on the measurement history. At every sampling period, each of these Kal-
man filters is producing its estimate of the state and residual. The idea is that the 
model with well-behaved residuals contains the parameters that best matches true 
parameters of the system. Testing the hypothesis which model is the correct one is 
evaluated in the hypothesis testing block. The initial probability of each hypothe-
sis being correct is distributed evenly:  

  
α

i
(0) = 1/ M  (2)

The output prediction is given by the mixture of conditional probability density 
functions: 

  
p( y(k) u(k)) = α

i
p

i
( y k( )u(k))
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  (3)

where 
 
α

i
  are the probabilities of each model being the correct one and  

normalized to 1. 
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The predictive conditional probability density functions ip  are  given by the  

state-space model as: 

p
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i

x(k) u(k)( ) (5)

where
  
pi x(k) u(k)( )  is the state-estimate provided by the i-th  Kalman filter. One 

step of the Kalman filter can be written as: 
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The conditional probability density function for known measurement noise has 
normal distribution [7] and can be computed using:  
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The estimate of variance can be updated with  exponential forgetting with factor 
ϕ   as: 

  
σ

ei
2 (k +1) =

S
i
2 (k +1)

υ(k +1)
 (8)

where variables 2
iS   and   υ(k +1)  are updated at each step: 

  

Si
2 (k +1) = ϕ Si

2(k) + rT r

1+ Ci Pi (k +1)Ci








υ(k +1) = ϕ(υ(k) +1)

 (9)

3   Description of the Styrene Polymerization Process 

The proposed control strategy is tested on the model of the free radical solution 
polymerization of styrene in a jacketed CSTR. The reactor is controlled around the 
low conversion stable steady-state point. Two controlled variables are considered: 
number average molecular weight ( 1y ) and reactor temperature ( 2y ). The initiator 

flow ( 1u ) and the cooling flow rate ( 2u ) were selected as manipulated variables. 

This work uses a mathematical model of the styrene polymerization process 
shown in Fig. 2. The nonlinear process is modeled by the following differential 
equations: 
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Fig. 2 CSTR reactor 

where the rate constants are given as: 

  

k
i
= A

i
exp −E

i
/ T( ), i = d , p,t

P  =
2 fk

d
I 

k
t

,Q
t
= Q

i
+ Q

s
+ Q

m

 (11)

The goal of the control system is to drive the polymerization system to a new state 
to produce polymers with different number average molecular weights while keep-
ing the temperature at its setpoint. The kinetic parameters and thermodynamic pa-
rameters can be found in [5].   

4   State-Space Predictive Control 

The state-space model based predictive control is based on the time-invariant 
model:  

   

x(k +1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
 (12)

The model of the process is obtained at every sampling interval and its parameters 
are used for the entire prediction horizon Hp. The discrete model contains also the 
affine part that results from linearization around non-zero steady-state:  
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The pH -step ahead output prediction can be deduced:  
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(14)

The computation of a control law of MPC is based on minimization of the follow-
ing criterion: 

( ) ( )T

MPCJ u= − − + Δ Δ 
y w Q y w uR  (15)

where   ( )y k j k+
 is a j steps ahead prediction of the system, w(k + j) is a fu-

ture reference trajectory and ,Q R   are positive definite weighting matrices. The 

minimization of the criterion can be transformed into a quadratic programming 
problem: 

  
J

MPC
= uT Hu + fu  (16)

where matrix H and vector f are derived from model parameters given by 
(14)equation reference goes here. The quadratic problem is usually solved numer-
ically. As formulated, the nonlinear model predictive controller will exhibit steady 
– state offset in the presence of plant/model mismatch due to a lack of integral ac-
tion. To introduce an integral action to remove steady-state error an integrator 
state must be added to the system:   

  

v(k) = v(k −1) + (w(k) − y(k))

ξ(k) =
x(k)

v(k)













 (17)

System matrices (12) are updated as follows: 
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In order to minimize the augmented state   the cost criterion for MPC (22) is  
transferred to:   

( ) ( )T T T
MPCJ = − − + Δ Δ +

   
Y W Q Y W U R U X SX  (19)
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5   Implementation 

Multiple-model predictive control described in Section 4 is applied for control of 
the NAMW and temperature of CSTR. Three linear models were obtained through 
linearization in steady-state operating points for input signals 1u = 72,108 and 144 

l/h. The sampling period was set to 1h due to the dynamics of the process. In prac-
tice the NAMW is measured with sampling period of 30 minutes and the time  
delay of the measurement is also 30 minutes. The Kalman filter bank with these 

local models was constructed with initial condition x =

0.0784
3.3516

324.9078
305.6496

0.0004
19.4179

























 which  

corresponds to the third operating point. The initial estimate covariance matrix   
was chosen to be: 

410P I=  (22)

and saturation constraints in the manipulated variables are imposed to take into 
account the minimum/maximum aperture of the valve regulating the flow rates. 
The prediction horizon was set to 20 samples as a result of using different values  
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and comparing control performances. The weighting matrices Q,R,S associated 
with the error from set-point, control output increment and integrator gain were set 
to:  

  

Q = 0.0001 0
0 100









 , R = 10 0

0 10









 ,S(7,7) = 0.01,S(8,8) = 100  (23)

The results of a closed-loop simulation for a set-point changes from 51 494 to 64 
463 g/mol which corresponds to operating point #3 and #2 are shown in Fig. 3, 
where they are compared with the results obtained from the linear MPC controller 
and the nonlinear MPC controllers without the integral behavior. At t= 150h an 
disturbance is introduced by increasing the value of monomer flow-rate by 10%.  
model. The linear model is only valid in the vicinity of the operating point #3 and 
as the system is driven out this point the steady-state error increases. If both mod-
els of the system at the operating points are available and the current model is 
identified by Kalman filters correctly (Fig. 4) then the zero steady state-error can 
be obtained at the operating point #2. However, the system is not able to cope with 
the disturbance that is not included in the model. Zero off-set is reached when 
multiple models also contain augmented state.  

0 50 100 150 200 250
5

6

7

8
x 10

4

N
A

M
W

 [
g/

m
ol

]

0 50 100 150 200 250
323

324

325

326

T
 [

K
]

0 50 100 150 200 250
50

100

150

Q
i [

l/h
]

0 50 100 150 200 250
400

500

600

Q
c [

l/h
]

T [h]
 

Fig. 3 Closed loop simulation for transition control (black – reference, blue – linear MPC 
with single model, green - Multiple model MPC, red - Multiple model MPC with integrator 
state) 
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Fig. 4 Probability of each of the model during the closed loop simulation 

6   Conclusion 

In the paper, a multiple-model predictive control methodology is applied to a sty-
rene polymerization system. The correct model at the current sampling point is es-
timated using the residuals provided by a bank of Kalman filters. The obtained 
state is in the form of a mixture of states provided by the filters. The parameter of 
the linearized model and the states are then used within the predictive control ap-
proach for prediction of the future plant behavior. To remove steady-state error for 
model/plant mismatch an augmented state is added to the state space description.   
The simulations show that this type of predictive control can be applied to the sty-
rene polymerization system effectively. 
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