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Abstract. Probabilistic graphical modeling via Hybrid Random Fields
(HRFs) was introduced recently, and shown to improve over Bayesian
Networks (BNs) and Markov Random Fields (MRFs) in terms of com-
putational efficiency and modeling capabilities (namely, HRFs subsume
BNs and MRFs). As in traditional graphical models, HRFs express a
joint distribution over a fixed collection of random variables. This paper
introduces the major definitions of a proper dynamic extension of regu-
lar HRFs (including latent variables), aimed at modeling arbitrary-length
sequences of sets of (time-dependent) random variables under Markov as-
sumptions. Suitable maximum pseudo-likelihood algorithms for learning
the parameters of the model from data are then developed. The resulting
learning machine is expected to fit scenarios whose nature involves dis-
covering the stochastic (in)dependencies amongst the random variables,
and the corresponding variations over time.

Keywords: Probabilistic graphical model, Hidden Markov model, Hy-
brid Random Field, Sequence Classification.

1 Introduction

Probabilistic graphical models [9] have long been one of the hot topics in ma-
chine learning. The most popular instances are represented by directed graphical
models, or Bayesian Networks (BNs) [10], and by undirected graphical models,
namely Markov Random Fields (MRFs) [7]. Albeit intriguing and long-studied,
BNs and MRF's present some drawbacks due to their very mathematical nature,
and to certain limitations of the corresponding training algorithms [5]. In par-
ticular, the class B of (in)dependence structures that can be modeled via BN,
and the class M of (in)dependence structures that can be modeled via MRF's
are such that BN M # @, B € M, and M ¢ B. In other words, there are
(in)dependence structures over any given set of random variables which can be
modeled via BNs but not via MRFs, and vice-versa. Furthermore (and, possibly
even more relevant in the computer science perspective), established learning and
inference algorithms for BNs and MRFs present high computational complex-
ity as the number of variables increases. Incidentally, no learning algorithm for
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MRFs has qualified as a standard reference so far. These are some of the reasons
why real-world applications of BNs and MRFs have been somewhat limited to
date. In [3], a new probabilistic graphical model was introduced with the aim of
overcoming such drawbacks of traditional paradigms. The model, known as the
Hybrid Random Field (HRF), was proven to subsume the modeling capabilities
of both BNs and MRF's, meaning that the class H of (in)dependence structures
that can be modeled via HRFs is such that B C H and M C H [2]. Moreover,
HRFs come with clearly defined, efficient learning algorithms, that are empiri-
cally shown to yield models that (i) are at least as good as those obtained via
BNs or MRFs, and that (ii) reduce the computational burden of learning (w.r.t.
BNs and MRFs) to a dramatic extent [4].

HRFs, as well as traditional probabilistic graphical models (in particular,
BNs and MRFs), assume a fixed set of random variables (whose joint probabil-
ity distribution is actually modeled). Nonetheless, it is a fact that a number of
real-world applications involve time-varying phenomena, presenting themselves
in the form of (long, and often variable-length) sequences of time-dependent
outcomes of a given set of random variables. Examples include a variety of prob-
lems in acoustic/speech processing (e.g., speech recognition, speaker identifica-
tion, word-spotting, emotion recognition, etc.), video processing, bioinformatics
(prediction of secondary and tertiary structure from observation of the primary
structure of sequences of amino-acids, inference of functional properties from the
primary structure, a variety of tasks in genomics and proteomics, etc.), natural
language/document processing, etc. For this reason, interest in the development
of dynamic extensions (i.e., suitable for sequential data) of the standard graph-
ical models began to flourish in the scientific community. The most popular
approach is represented by the dynamic BNs, proposed in [6]. It is noteworthy
that standard hidden Markov models (HMMs) [11], which have long been ap-
plied to several amongst the aforementioned scenarios, can be shown to be a
particular case of dynamic BNs [2]. Dynamic extensions of MRFs can be con-
ceived, as well, although such extensions are not popular for the time being, and
no training/inference algorithm has qualified as a standard so far. An alternative
approach to the problem is the conditional random field (CRF) [8] which, under
slightly different assumptions, found positive application to some of the tasks at
hand, especially natural language and document processing.

The goal of the paper lies in attempting a first, formal definition of a proper
dynamic extension of the standard HRF. As seen shortly, the definition involves
latent random variables (in addition to the observable quantities) allowing for
the modeling of (arbitrary length) sequences of sets of (time-dependent) ran-
dom variables under Markov assumptions. Consequently, the resulting model is
suitable for the recognition of sequential patterns as well, relying on the same
classification strategy used in HRFs [2].

Suitable maximum pseudo-likelihood algorithms for learning (e.g., estimating
the parameters of the resulting model) from a data sample are proposed, too. The
model is expected to inherit the nice theoretical and computational properties
of its static counterpart (the regular HRF), in particular as regards the positive
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comparison with respect to dynamic BNs and MRFs. In so doing, the practitioner
is provided eventually with an alternative, effective tool for facing application
tasks whose nature involves discovering the stochastic (in)dependencies amongst
random variables and the corresponding variations over time. Although no ex-
periments are presented herein, the companion paper [1] reports on comparative
simulation results which corroborate the expectations empirically. The topic of
structure learning in the novel graphical model is covered in [I], too.

The remains of the paper stretch out according to the following structure. Sec-
tion [2 states the formal definition of the proposed model, by referencing to the
original definition of HRF, and draws some preliminary conclusions on its mod-
eling capabilities. Section [3] contextualizes properly the problem of learning from
data, outlining the fundamental quantities involved in the calculations required
in order to develop learning algorithms and the basic recursive scheme used in the
following developments. Section [3.1] relies on these notions for coming up with
a viable algorithmic solution to the problem of learning the parameters char-
acterizing the different probabilistic distributions which constitute the model.
Finally, Section [4] draws some preliminary conclusions.

2 Definitions

A broad-sense definition of HRFs is given in [2]. The reader is referred to the
latter for all basic concepts of standard HRFs which are relevant to this pa-
per. The modularity of an HRF is the property of factorizing the overall joint
probability of its random variables in terms of a product of local probabilistic
quantities defined at the level of the individual BNs embraced by the very defini-
tion of HRF. Noteworthily, modularity can be deduced as a property holding for
HRF's defined accordingly [2]. A strict-sense, simpler definition can thence be de-
vised, which roughly goes as follows: an HRF is a collection of Bayesian networks
which possess the modular property (see, e.g., [3]). In this paper, for simplic-
ity and coherence with the proposed algorithms, the strict-sense definition of
HRF is assumed (without loss of generality). That said, we can give a definition
of the novel dynamic probabilistic graphical model for sequences in the follow-
ing terms. The model is referred to as the dynamic hybrid random field (DHRF).

Definition: a dynamic HRF DH is a tuple DH = (X, S, 7, F,a, H) where

1. X is a set of (observable) random variables X7, ..., X,. Outcomes of the
random variables depend on time t = 1,..., T, that is we will write X;(¢)
whenever we need to make the dependency explicit.

2. S is a set of @ latent radom variables, S = {S1,...,S¢}. It is assumed
that sequences of such latent variables are responsible for the generation of
sequences of outcomes of the observable variables, and that the variables in
S can be thought of as the states of a discrete-time Markov chain (latent
Markov assumption). We write ¢; to denote the state of the Markov chain
at time t for t =0,...,T.
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3. 7 is a probability distribution of the initial latent variables, i.e. 7 = {Pr(S; |
t =0),5; € S}, where ¢ is the discrete time index. For instance, if the
Markov chain over S may equally-likely start with any latent variable, then
m is uniform over S. Contrariwise, if a certain S; can never occur at time
t =0, then 7(S5;) =0, etc.

4. F C Sis the set of final states, i.e. the latent variables which can legitimately
generate sets of outcomes of the observable variables at time 7' (namely, at
the end of sequences).

5. a is a probability distribution that characterizes the (allowed) transitions
between latent variables, that is a;; = {Pr(S; at time t | S; at time t —
1),8; € 5,5; € S} where the transition probabilities a;; are assumed to
be independent of time t. Note that the definition is meaningful due to the
latent Markov assumption.

6. H is a set of HRFs over X, H = {H1,...,Hg}, where H, is uniquely asso-
ciated with g-th latent variable S, such that the joint emission probability
b(X) = P(X1,..., X, | Sq) is modeled via HRF H, over X, independently
of time ¢, and we assume that the probability distribution of X(¢) is indepen-
dent of the probability of X(¢') (for all ¢’ # t) given the latent variable (emis-
ston Markov assumption). In this definition, bearing in mind the definition
of HRF, it turns out that H, is a set of Bayesian networks BNy 1,..., BNy
(with directed acyclic graphs Gy 1,...,Gq.n) such that:

(a) each BN, ; contains X; plus a subset Rq(X;) of X\ {X;}, namely the
set of relatives of X; in BN ;;

(b) for each X;, P(X;|X\ {Xi,q}) = P(X;|MB,:(X;)), where MB,;(X;)
is the set containing the parents, the children, and the parents of the

children of X; in G, ; (namely, the Markov blanket of X; in BN ;).
The Markov assumption holding in HRF's is referred to as the observable

Markov assumption in the present framework.

Note that the overall DHRF can be thought of as a probabilistic graphical model
over the set of random variables S U X. Nonetheless, this definition allows for
separate sets of BNs (i.e., different HRFs) for each latent variable, meaning that
it does not extend regular HRF's to sequences by defining them as sets of dynamic
Bayesian networks in a straightforward manner.

This definition is flexible and provides us with useful and efficient algorithmic
tools rooted in traditional hidden Markov models (HMM). Before developing an
algorithm for parameter learning in DHRFSs, it is noteworthy to observe some
fundamental properties regarding the modeling capabilities of DHRFs. Let D
be the class of (in)dependence structures that can be represented via DHRFs.
First of all, a DHRF with a single latent variable reduces implicitly to a regular
HRF. Thence, H C D. Furthermore, since B C H and M C H (as we pointed
out in Section [Il), we have also B C D and M C D. Given the fact that dynamic
BNs (hence, including standard HMMs) are specialized instances of BNs, an
immediate consequence of the reasoning is that DHRFs subsume the modeling
capability of dynamic BNs (and, of HMMs). Following similar arguments, it
is immediately seen that DHRFs subsume also any dynamic extensions (under
Markov assumption) of Markov random fields.
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3 Parameter Learning

Let DH be a DHRF and let O = 01,03, ...,Or be a training sequence of out-
comes of the observable variables, i.e. Oy = (z1,...,2,) fort = 1,...,T. Training
algorithms can be devised by exploiting a recursive scheme which is similar (to
some extent) to the popular forward-backward procedures for HMMs [11].

The training criterion function is the (pseudo-)likelihood P*(O|DH), as in reg-
ular probabilistic graphical models (see [2] for a justification of why the pseudo-
likelihood is used instead of the bare likelihood criterion). We define the (pseudo)
forward terms

Ozt(i) = P(Ol, ...,Ot,qt = SZ|DH) (1)

which can be recursively computed as
a¢(i) = biy Z ajiog—1(7) (2)
J

where b; ; denotes the emission probability of observation O; given i-th latent

variable. We say that the forward step of the following algorithms is the recur-

sive computation of the a’s according to Equation 21 Note that P(O|DH) =
Q .

> iy o (1),

Also, the (pseudo) backward terms are defined as:

Bi(j) = P(Ot41, ..., Orl|qe = S, DH) (3)
which are recursively computed as
— initialization:
N 1if S, € F
Pr(i) = {O otherwise. (4)
— recursion:

Q
Bi(j) =Y ajibi(Org1)Biga (i) for t =T = 1,7 =2, ..., 1and 1 < j < Q (5)

=1

We refer to this recursive computation as the backward step of the following
algorithms. We then define the quantity

(%) = P(q: = S;|O, DH) (6)
and we can write

o P(qt = SZ,O|DH) P(Ol, ...,Ot,qt = Si,OtJrl, ,OT|DH)

7(i) = P(ODH) P(O|DH) (™)

— P(017~-~7Ot7Qt = Si|DH)P(Ot+17'“7OT‘Ola "'aOtvqt = SZ7DH) (8)
P(O|DH)
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_ P(Ox1, ..., O, qt = SilDH)P(O¢+1, ..., Orlqr = Si, DH) )
P(O|DH)

_ a (1) B4 (i)
Ziwm%:sﬁwbﬂ>
Z] 1 Oét( )ﬁt( )
where the emission Markov assumption was used to rewrite eq.[§ in the form of
eq.[@ Put into words, v:(7) can thus be calculated from the o’s and ’s during
the backward step. Finally, we define:

(10)

(i,7) = P(gt = Si, qe41 = S5 | O, DH) (12)
ie.
. P(gs = Si,q421=95;,0 | DH
§u(i,j) = o Pt(BIDH)j N (13)
— P(gr = Si, 141 = S;, O|DH)
T y@ Q (14)
> Zj:l P(g = Si, qt41 = S;,0|DH)
(i) aijbj(Op41)Bev1(5) (15)

S S an(D)aishi(Oren) B ()
which is computed during the backward step for t = 7,7 —1,...;1, where 1 <
i,j < Q.

It is seen that the following properties hold true:
C (i) = ZJ 1 &4, )
Zt 1 V¢ (7) represents the expected number of instances of the latent variable
Si durlng the generation of the observed sequence O
Zt 1 'yt( ) is the expected number of transitions starting from variable S;
(to any other variable)

4. Z?;l &:(4, 7) is the expected number of transition that occur from S; to S;

l\D)—‘

w

Thus, an algorithm for re-estimating the probabilistic quantities involved in the
deﬁnltlon of the DHRF DH and yielding a new (more accurate) DHRF DH
involves the following formulas:

i = 71(i)

G = Sim &)

U X @)
which yield the re-estimation of initial and transition probabilities. The calcula-
tions accomplished so far underly the structure learning algorithm presented in
the companion paper [I], as well. As regards re-estimation of the HRFs within
the DHRF, an ad-hoc algorithm for parameter learning is covered in the next
section.

(from properties 3 and 4)
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3.1 Learning the Parameters of the HRFs within the DHRF

In this Section we propose a solution to the problem of learning the condi-
tional probability tables (CPTs) [2] of the Bayesian networks modeling the local
conditional distributions for each HRF H;,...,Hg associated with the latent
variables. That is, for each latent variable ¢ = 1,...,Q and for each observable
variable X;, the task is to learn the parameters of the conditional distribution
P(X;|q,mbq (X)), for each state mb,,; of the variables in MB, ;, where MB, ;
is the Markov blanket [2] (in H,) for i-th observable variable and g-th latent vari-
able. This requires that the structure of H, has been previously fixed, i.e. that
the directed acyclic graph (DAG) G,; associated in H, with each variable X
has been specified (the issue of learning an adaptive structure which is not fixed
and pre-defined is covered in the companion paper [I]). In order to learn the
parameters of each BN, ; from the training sequence O = Oq, O3, ..., Or, we use
the technique described below. In order to denote the parents of node X; in H,
we will use the notation P.A4(X;), rather than using PA, ;(X;), since indexing
the DAG only makes sense in the specific context of HRFs.

Let us assume that each observation O;, j = 1,...,T, is an n-dimensional
vector (xlj ey xnj) of discrete values of the variables X7, ..., X,,. The simplest
case in parameter learning is the case of a variable X; having no parents in the
DAG within H,. In this case, we only need to estimate the absolute distribution
P(X;|q). For each value z;, of X;, our estimate reduces to the expected number
of observations of z;, along the observed sequence O while being in the latent
variable ¢, normalized by the expected number of presences in g, i.e.:

Zt,Ot‘k:zik TVt (q)
> ()

where the sums over ¢t are extended to ¢t = 1,...,T, Oy denotes the k-th

P(X; = ,]q) = (16)

observed variable at time ¢, and the notation P(X = z|q) refers to the new
(improved) estimate of P(X = zlq).

A more general case occurs in learning the conditional distribution of a node
X, in HRF #H, having parents P.A4(X;). In this case, we need to estimate a
distribution P(X;|paq(X;)) for each possible state paq(X;) of PA,(X;). For each
value z;, of X;, we will estimate these conditional probabilities from the training
sequence O as the expected number of occurrences of outcome z;, for observable
variable X; jointly with PA,(X;) = paq(X;) while being in latent variable g,
normalized by the expected number of occurrences of the outcome pay(X;) of
variables PA4(X;) while in ¢ :

BUX, = nalpag(X,)) = O P00 WD

2o P A (X0 =pag () 11(2)
The strategy proposed in Equations has to be accomplished over the
whole training set, i.e. not limited to an individual training sequences O (expec-
tations need to be estimated over all training sequences), as in regular HMMs.
Nonetheless, the technique suffers from the following problem. If a particular
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value z;, of X; is never observed in the training set, or if it is never observed
together with a particular configuration pa,(X;) of PA4(X;), then our estimate
of P(X; = x;,|q) (or of P(X; = i, |q, paq(X;))) will be zero. This result is not
acceptable in all cases where any event is possible, i.e. where every state of the
network can be observed in principle. A solution for this difficulty appeals to the
notion of an equivalent state-occurrence expectation, which we denote by N9,
It is the expected number of occurrences of latent variable S, over a theoretical
data sample which we assume to have been observed before the actual dataset.
In other words, it is the expected number of occurrences of S; over a prior sam-
ple. Within this prior sample, we assume to have observed any particular value
z;, of X; while in state ¢ for a number of times equal to p@ . N@ where p
stands for the prior probability that X; has value z;, while in latent variable q.
Going back to Equations [[6HI7, we revise them as follows:

Ztvot,k=$q‘,k Vt (q) + ng)N(q)

(18)

- 3100 =iy Py () =piag () V(0) Py NG,

P(X; = i, Jpa, (X)) = " o (19)
Dot P AL (X )=pag(X:) V¢(@) + Npa;

where Négz is a parameter related to N(@ in a way we will explain shortly. An

important question concerning Equations[I8HI9is what values we choose for the

parameters pz(.Z), N@ and N;ZZ. In typical applications we assign uniform prior

probabilities to the different values of each variable. Therefore, our choice for

pgg) will be the following:

(a) 1
4 = 20

where D; is the domain of variable X;. The value we assign to N (@) is instead:

N@ = max |D] (21)
1<i<n

An intuitive justification of Equation 2] appeals to two different aims. On the
one hand, we want to keep the equivalent state-occurrence expectation as small
as possible, so as to prevent prior probabilities from biasing learning too heavily.
On the other hand, we want the equivalent state-occurrence expectation to be
large enough to contain at least one occurrence for all values of each variable.
Therefore, the choice made in Equation 21l seems to be an optimal trade-off.

Given N@ | we define Négz as follows:
@ _ N (@

pa; — (22)

|Dpa,.

where Dp 4, , is the set of all possible states of P.A4(X;). As a result of Equation

q
i

. @ .
22 each value z;, of a non-root node X; is expected to be observed J|VD | times

i
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within the prior (i.e., equivalent) sample, where Jl\gq‘) > 1. To realize why ]‘VDM‘) >
1, we have to keep in mind that z;, is expected to be observed pgg) Nég: times

for each possible state pay(X;) of PA4(X;). In other words, we have that N

|Di| —
PN [Dpa,.l

4 Conclusions

As we said, probabilistic graphical models are a flexible, intriguing branch of ma-
chine learning. Traditional paradigms, being defined over fixed sets of random
variables, are suitable for modeling joint distributions within “static” scenar-
ios. A number of applications of the utmost interest, on the other hand, involve
sequential data. This requires the capability of modeling time-varying stochas-
tic (in)dependencies amongst random variables. The paper introduced a novel
probabilistic graphical model for the modeling of sequences of random variables.
Basically, its definition involves an underlying HMM structure combined with
state-specific HRF's. This formulation is quite general under the Markov assump-
tion, and subsumes dynamic Bayesian networks (including the traditional HMM
itself) and any dynamic extensions of Markov random fields (provided that the
time-dependencies satisfy Markov assumptions). An algorithm for learning the
parameters of DHRF's was given, as well. The companion paper [I] focuses on
the development of an algorithm for learning the structure of a DHRF, and
presents empirical evidence (in the form of computer simulations) which corrob-
orate the expectation that originally motivated the development of the present
framework, that is: (i) having a dynamic graphical model which subsumes the
capabilities of modeling (in)dependence structures offered by dynamic BNs and
MRFs, whilst (ii) reducing their computational burden to a dramatic extent.
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