
N. Mana, F. Schwenker, and E. Trentin (Eds.): ANNPR 2012, LNAI 7477, pp. 24–35, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Incremental Learning by Message Passing
in Hierarchical Temporal Memory

Davide Maltoni1 and Erik M. Rehn2

1 Biometric System Laboratory, DEIS - University of Bologna, Italy
davide.maltoni@unibo.it

2 Bernstein Center for Computational Neuroscience, Berlin, Germany
erik.m.rehn@gmail.com

Abstract. Hierarchical Temporal Memory is a biologically-inspired framework
that can be used to learn invariant representations of patterns. Classical HTM
learning is mainly unsupervised and once training is completed the network
structure is frozen, thus making further training quite critical. In this paper we
develop a novel technique for HTM (incremental) supervised learning based on
error minimization. We prove that error backpropagation can be naturally and
elegantly implemented through native HTM message passing based on Belief
Propagation. Our experimental results show that a two stage training composed
by unsupervised pre-training + supervised refinement is very effective. This is
in line with recent findings on other deep architectures.

Keywords: HTM, Deep architectures, Backpropagation, Incremental learning.

1 Introduction

Hierarchical Temporal Memory (HTM) is a biologically-inspired pattern recognition
framework fairly unknown to the research community [1]. It can be conveniently
framed into Multi-stage Hubel-Wiesel Architectures [2] which is a specific subfamily
of Deep Architectures [3-4]. HTM tries to mimic the feed-forward and feedback
projections thought to be crucial for cortical computation. Bayesian Belief
Propagation is used in a hierarchical network to learn invariant spatio-temporal
features of the input data and theories exist to explain how this mathematical model
could be mapped onto the cortical-thalamic anatomy [5-6]. A comprehensive
description of HTM architecture and learning algorithms is provided in [7], where
HTM was also proved to perform well on some pattern recognition tasks, even though
further studies and validations are necessary.

One limitation of the classical HTM learning is that once a network is trained it is
hard to learn from new patterns without retraining it from scratch. In other words a
classical HTM is well suited for a batch training based on a fixed training set, and it
cannot be effectively trained incrementally over new patterns that were initially
unavailable. In fact, every HTM level has to be trained individually, starting from the
bottom: altering the internal node structure at one network level (e.g. coincidences,
groups) would invalidate the results of the training at higher levels. In principle,
incremental learning could be carried out in a classical HTM by updating only the

 Incremental Learning by Message Passing in Hierarchical Temporal Memory 25

output level, but this is a naive strategy that works in practice only if the new
incoming patterns are very similar to the existing ones in terms of "building blocks".
Since incremental training is a highly desirable property of a learning system, we
were motivated to investigate how HTM framework could be extended in this
direction.

In this paper we present a two-stage training approach, unsupervised pre-training
+ supervised refinement, that can be used for incremental learning: a new HTM is
initially pre-trained (batch), then its internal structure is incrementally updated as new
labeled samples become available. This kind of unsupervised pre-training and
supervised refinement was recently demonstrated to be successful for other deep
architectures [3]. The basic idea of our approach is to perform the batch pre-training
using the algorithms described in [7] and then fix coincidences and groups throughout
the whole network; then, during supervised refinement adapt the elements of the
probability matrices ܅۱۾ (for the output node) and ۱۵۾ (for the intermediate nodes)
as if they were the weights of a MLP neural network trained with backpropagation.
To this purpose we derived the update rules based on the descent of the error function.
Since the HTM architecture is more complex than MLP, the resulting equations are
not simple; further complications arise from the fact that ܅۱۾ and ۱۵۾ values are
probabilities and need to be normalized after each update step. Fortunately we found a
surprisingly simple (and computationally light) way to implement the whole process
through native HTM message passing. Our initial experiments show very promising
results. Furthermore, the proposed two-stage approach not only enables incremental
learning, but is also helpful for keeping the network complexity under control, thus
improving the framework scalability.

2 Background

An HTM has a hierarchical tree structure. The tree is built up by ݊௟௘௩௘௟௦ levels (or
layers), each composed of one or more nodes. A node in one level is bidirectionally
connected to one or more nodes in the level above and the number of nodes in each
level decreases as we ascend the hierarchy. The lowest level, ࣦ଴, is the input level and
the highest level, ࣦ௡೗೐ೡ೐೗ೞିଵ, with typically only one node, is the output level. Levels
and nodes in between input and output are called intermediate levels and nodes. When
an HTM is used for visual inference, as is the case in this study, the input level
typically has a retinotopic mapping of the input. Each input node is connected to one
pixel of the input image and spatially close pixels are connected to spatially close
nodes. Refer to Figure 1 of [10] for a graphical example of HTM.

2.1 Information Flow

In an HTM the flow of information is bidirectional. Belief propagation is used to pass
messages/information both up (feed-forward) and down (feedback) the hierarchy as
new evidence is presented to the network. The notation used here for belief
propagation (Figure 1.a) closely follows Pearl [8] and is adapted to HTMs by George
[9]:

26 D. Maltoni and E.M. Rehn

Fig. 1. a) Notation for message passing between HTM nodes. b) Graphical representation of the
information processing within an intermediate node.

• Evidence coming from below is denoted ݁ି. In visual inference this is an image or
video frame presented to level ࣦ଴ of the network.

• Evidence from the top is denoted ݁ା and can be viewed as contextual information.
This can for instance be input from another sensor modality or the absolute
knowledge given by the supervisor training the network.

• Feed-forward messages passed up the hierarchy are denoted ૃ and feedback
messages flowing down are denoted ૈ.

• Messages entering and leaving a node from below are denoted ૃି and ૈି
respectively, relative to that node. Following the same notation as for the evidence,
messages entering and leaving a node from above are denoted ૃା and ૈା.

When the purpose of an HTM is that of a classifier, the feed-forward message of the
output node is the posterior probability that the input ݁ି belongs to one of the
problem classes. We denoted this posterior as ܲሺݓ௜|݁ିሻ, where ݓ௜ is one of ݊௪
classes.

2.2 Internal Node Structure and Pre-training

HTM training is performed level by level, starting from the first intermediate level.
The input level does not need any training, it just forwards the input. Intermediate
levels training is unsupervised and the output level training is supervised. For a
detailed description, including algorithm pseudocode, the reader should refer to [7].

For every intermediate node (Figure 1.b), a set ࡯, of so called coincidence-patterns
(or just coincidences) and a set, ࡳ, of coincidence groups, have to be learned. A
coincidence, ܋௜ , is a vector representing a prototypical activation pattern of the node’s
children. For a node in ࣦଵ, with input nodes as children, this corresponds to an image
patch of the same size as the node’s receptive field. For nodes higher up in the
hierarchy, with intermediate nodes as children, each element of a coincidence, ܋௜ሾ݄ሿ,
is the index of a coincidence group in child ݄. Coincidence groups, also called

a) b)

 Incremental Learning by Message Passing in Hierarchical Temporal Memory 27

temporal groups, are clusters of coincidences likely to originate from simple
variations of the same input pattern. Coincidences found in the same group can be
spatially dissimilar but likely to be found close in time when a pattern is smoothly
moved through the node’s receptive field. By clustering coincidences in this way,
exploiting the temporal smoothness of the input, invariant representations of the input
space can be learned [9]. The assignment of coincidences to groups within each node
is encoded in a probability matrix ۱۵۾; each element ܲܩܥ௝௜ ൌ ܲ൫܋௝|܏௜൯ represents the
likelihood that a group, ܏௜, is activated given a coincidence ܋௝. These probability
values are the elements we will manipulate to incrementally train a network whose
coincidences and groups have previously been learned and fixed.

The output node does not have groups but only coincidences. Instead of
memorizing groups and group likelihoods it stores a probability matrix ܅۱۾, whose
elements ܲܥ ௝ܹ௜ ൌ ܲ൫܋௝|ݓ௜൯ represents the likelihood of class ݓ௜ given the
coincidence ܋௝. This is learned in a supervised fashion by counting how many times
every coincidence is the most active one (the winner) in the context of each class. The
output node also keeps a vector of class priors, ܲሺݓ௜ሻ, used to calculate the final class
posterior.

2.3 Feed-Forward Message Passing

Inference in an HTM in conducted through feed-forward belief propagation (see [7]).
When a node receives a set of messages from its ݉ children, ૃି ൌ ሼ ૃଵି , ૃଶି , … , ૃ௠ିሽ,
a degree of certainty over each of the ݊௖ coincidence in the node is computed. This
quantity is represented by a vector ܡ and can be seen as the activation of the node
coincidences. The degree of certainty over coincidence ݅ is

ሾ݅ሿܡ ൌ ߙ · ௜ሻ܋|ሺ݁ି݌ ൌ ቐ ݁െሺԡ܋௜െૃିԡଶ ⁄ଶߪ ሻ, ݂݅ ݁݀݋݊ ݈݁ݒ݈݁ ൌ 1ෑ ௝ૃି ௜ሾ݆ሿ൧௠௝ୀଵ܋ൣ , ݂݅ ݁݀݋݊ ݈݁ݒ݈݁ ൐ 1 (1)

where ߙ is a normalization constant, and σ is a parameter controlling how quickly the
activation level decays when ૃି deviates from ܋௜.

If the node is an intermediate node, it then computes its feed-forward message ૃା
which is a vector of length ݊௚ and is proportional to ݌ሺ݁ି|ࡳሻ, where ࡳ is the set of all
coincidence groups in the node and ݊௚ the cardinality of ࡳ. Each component of ૃା is

 ૃାሾ݅ሿ ൌ ߙ · ௜ሻ܏|ሺ݁ି݌ ൌ ෍ ௝௜ܩܥܲ · ሾ݆ሿ௡೎௝ୀଵܡ (2)

where ݊௖ is the number of coincidences stored in the node.
The feed-forward message from the output node, the network output, is the

posterior class probability and is computed in the following way:
 ૃାሾܿሿ ൌ ܲሺݓ௖|݁ିሻ ൌ ߙ · ෍ ܥܲ ௝ܹ௖ · ܲሺݓ௖ሻ · ሾ݆ሿ௡೎௝ୀଵܡ (3)

where ߙ is a normalization constant such that ∑ ૃାሾܿሿ௡ೢ௖ୀଵ ൌ 1.

28 D. Maltoni and E.M. Rehn

2.4 Feedback Message Passing

The top-down information flow is used to give contextual information about the
observed evidence. Each intermediate node fuses top-down and bottom-up
information to consolidate a posterior belief in its coincidence-patterns [9]. Given a
message from the parent, ૈା, the top-down activation of each coincidence, ܢ, is

ሾ݅ሿܢ ൌ ߙ · ܲሺ܋௜|݁ାሻ ൌ ෍ ௜௞ܩܥܲ · ૈାሾ݇ሿૃାሾ݇ሿ௡೒௞ୀଵ (4)

The belief in coincidence ݅ is then given by:
ሾ݅ሿܔ܍۰ ൌ ߙ · ܲሺ܋௜|݁ି, ݁ାሻ ൌ ሾ݅ሿܡ · ሾ݅ሿ (5)ܢ

The message sent by an intermediate node (belonging to a level ࣦ௛, ݄ ൐ 1) to its the
children, ૈି, is computed using this belief distribution. The ݅௧௛ component of the
message to a specific child node is

ૈିሾ݅ሿ ൌ ෍ ೕ܋ܫ ቀ܏௜ሺ௖௛௜௟ௗሻቁ · ሾ݆ሿ௡೎ܔ܍۰
௝ୀଵ ൌ ෍ ෍ ೕ܋ܫ ቀ܏௜ሺ௖௛௜௟ௗሻቁ · ሾ݆ሿܡ · ௝௞ܩܥܲ · ૈାሾ݇ሿૃାሾ݇ሿ௡೒

௞ୀଵ
௡೎

௝ୀଵ (6)

where ܋ܫೕሺ܏௜ሺ௖௛௜௟ௗሻሻ is the indicator function defined as

௜ሺ௖௛௜௟ௗሻ൯ ൌ܏ೕ൫܋ܫ ቊ1, ݂݅ ݌ݑ݋ݎ݃ ௜ሺ௖௛௜௟ௗሻ܏ ݏ݅ ݐݎܽ݌ ݂݋ ,௝0܋ ݁ݏ݅ݓݎ݄݁ݐ݋ (7)

The top-down message sent from the output node is computed in a similar way:
 ૈିሾ݅ሿ ൌ ෍ ෍ ௜ሺ௖௛௜௟ௗሻ൯܏ೕ൫܋ܫ · ሾ݆ሿܡ · ܥܲ ௝ܹ௖ · ܲሺݓ௖|݁ାሻ௡೎௝ୀଵ௡ೢ௖ୀଵ (8)

Equation 6 and 8 will be important when we, in the next section, show how to
incrementally update the ۱۵۾ and ܅۱۾ matrices to produce better estimates of the
class posterior given some evidence from above.

3 Htm Supervised Refinement

This section introduces a novel way to optimize an already trained HTM. The algorithm,
called HSR (Htm Supervised Refinement) shares many features with traditional
backpropagation used to train multilayer perceptrons and is inspired by weight fine-
tuning methods applied to other deep belief architectures [3]. It exploits the belief
propagation equations presented above to propagate an error message from the output
node back through the network. This enables each node to locally update its internal
probability matrix in a way that minimizes the difference between the estimated class
posterior of the network and the posterior given from above, by a supervisor.

Our goal is to minimize the expected quadratic difference between the network
output posterior given the evidence from below, ݁ି, and the posterior given the
evidence from above, ݁ା. For this purpose we employ empirical risk minimization
resulting in the following loss function:

,ሺ݁ିܮ ݁ାሻ ൌ 12 ෍ ൫ܲሺݓ௖|݁ାሻ െ ܲሺݓ௖|݁ିሻ൯ଶ௡ೢ௖ୀଵ (9)

 Incremental Learning by Message Passing in Hierarchical Temporal Memory 29

where ݊௪ is the number of classes, ܲሺݓ௖|݁ାሻ is the class posterior given the evidence
from above, and ܲሺݓ௖|݁ିሻ is the posterior produced by the network using the input as
evidence (i.e., inference). The loss function is also a function of all network
parameters involved in the inference process. In most cases ݁ା is a supervisor with
absolute knowledge about the true class ݓ௖כ , thus ܲሺݓ௖כ|݁ାሻ ൌ 1.

To minimize the empirical risk we first find the direction in which to alter the
node probability matrices to decrease the loss and then apply gradient descent.

3.1 Output Node Update

For the output node which does not memorize coincidence groups, we update
probability values stored in the ܅۱۾ matrix, through the gradient descent rule:

Ԣ௞௦ܹܥܲ ൌ ܥܲ ௞ܹ௦ െ ߟ ܥ߲ܲܮ߲ ௞ܹ௦ ݇ ൌ 1. . ݊௖, ݏ ൌ 1. . ݊௪ (10)

where ߟ is the learning rate. The negative gradient of the loss function is given by:
 െ ܥ߲ܲܮ߲ ௞ܹ௦ ൌ െ 12 ෍ ܥ߲߲ܲ ௞ܹ௦ ൫ܲሺݓ௖|݁ାሻ െ ܲሺݓ௖|݁ିሻ൯ଶ௡ೢ௖ୀଵ ൌ
 ൌ ෍ ൫ܲሺݓ௖|݁ାሻ െ ܲሺݓ௖|݁ିሻ൯ ߲ܲሺݓ௖|݁ିሻ߲ܲܥ ௞ܹ௦௡ೢ௖ୀଵ

which can be shown (see Appendix A of [10] for a derivation) to be equivalent to:

 െ ܥ߲ܲܮ߲ ௞ܹ௦ ൌ ሾ݇ሿܡ · ܳሺݓ௦ሻ (11)

ܳሺݓ௦ሻ ൌ ܲሺݓ௦ሻ݌ሺ݁ିሻ ቌܲሺݓ௦|݁ାሻ െ ܲሺݓ௦|݁ିሻ െ ෍ ܲሺݓ௜|݁ିሻሺܲሺݓ௜|݁ାሻ െ ܲሺݓ௜|݁ିሻሻ௡ೢ

௜ୀଵ ቍ (12)

where ݌ሺ݁ିሻ ൌ ∑ ∑ ሾ݆ሿܡ · ܥܲ ௝ܹ௜௡೎௝ୀଵ · ܲሺݓ௜ሻ௡ೢ௜ୀଵ . We call ܳሺݓ௦ሻ the error message for

class ݓ௦ given some top-down and bottom-up evidence.

3.2 Intermediate Nodes Update

For each intermediate node we update probability values in the ۱۵۾ matrix, through
the gradient descent rule:

Ԣ௣௤ܩܥܲ ൌ ௣௤ܩܥܲ െ ߟ ௣௤ܩܥ߲ܲܮ߲ ݌ ൌ 1. . ݊௖, ݍ ൌ 1. . ݊௚ (13)

For intermediate nodes at level ࣦ௡೗೐ೡ೐೗ೞିଶ (i.e., the last but the output level) it can be
shown (Appendix B of [10]) that:

 െ ௣௤ܩܥ߲ܲܮ߲ ൌ ሿ݌ሾܡ · ૈொାሾݍሿૃାሾݍሿ (14)

where ૈொା is the child portion of the message ૈொି sent from the output node to its
children, but with ܳሺݓ௦ሻ replacing the posterior ܲሺݓ௦|݁ାሻ (compare Eqs. 15 and 8):

30 D. Maltoni and E.M. Rehn

 ૈொିሾݍሿ ൌ ෍ ෍ ௤ሺ௖௛௜௟ௗሻ൯܏ೕ൫܋ܫ · ሾ݆ሿܡ · ܥܲ ௝ܹ௖ · ܳሺݓ௖ሻ௡೎௝ୀଵ௡ೢ௖ୀଵ (15)

Finally, it can be shown that this generalizes to all levels of an HTM, and that all
intermediate nodes can be updated using messages from their immediate parent. The
derivation can be found in Appendix C of [10]. In particular, the error message from
an intermediate node (belonging to a level ࣦ௛, ݄ ൐ 1) to its child nodes is given by:

ૈொିሾݍሿ ൌ െ ෍ ෍ ௤ሺ௖௛௜௟ௗሻ൯܏ೕ൫܋ܫ · ௧௙ܩܥܲ · ௧௙ܩܥ߲ܲܮ߲
௡೒

௙ୀଵ
௡೎

௧ୀଵ ൌ ෍ ෍ ௤ሺ௖௛௜௟ௗሻ൯܏೟൫܋ܫ · ௧௙ܩܥܲ · ሿݐሾܡ · ૈொାሾ݂ሿૃାሾ݂ሿ௡೒
௙ୀଵ

௡೎
௧ୀଵ (16)

These results allow us to define an efficient and elegant way to adapt the probabilities
in an already trained HTM using belief propagation equations.

3.3 HSR Pseudocode

A batch version of HSR algorithm is provided hereafter.

HSR(࣭)
{ for each training example in ࣭
 { Present the example to the network and do inference (eqs. 1,2,3)

 Accumulate
డ௅డ௉஼ௐೖೞ values for the output node (eqs. 11,12)

 Compute the error message ૈொି (eq. 15)

 for each child of the output node:

 call BackPropagate(child, ૈொା) (see function below)
 }

 Update ܅۱۾ by using accumulated
డ௅డ௉஼ௐೖೞ (eq. 10)

 Renormalize ܅۱۾ such that for each class ݓ௦, ∑ ܥܲ ௞ܹ௦௡೎௞ୀଵ ൌ 1
 for each intermediate node

 { Update ۱۵۾ by using accumulated డ௅డ௉஼ீ೛೜ (eq. 13)

 Renormalize ۱۵۾ such that for each group ܏௤, ∑ ௣௤௡೎௣ୀଵܩܥܲ ൌ 1
 }
}

function BackPropagate(node, ૈொା)
{ Accumulate

డ௅డ௉஼ீ೛೜ values for the node (eq. 14)

 if (node level > 1)

 { Compute the error message ૈொି (eq. 16)

 for each child of node:
 call BackPropagate(child, ࣊ொା)
 }
}

By updating the probability matrices for every training example, instead of at the end
of the presentation of a group of patterns, an online version of the algorithm is
obtained. Both batch and online versions of HSR are investigated in the experimental
section. In many cases it is preferable for the nodes in lower intermediate levels to
share memory, so called node sharing [7]. This speeds up training and forces all the
nodes of the level to respond in the same way when the same stimulus is presented at

 Incremental Learning by Message Passing in Hierarchical Temporal Memory 31

different places in the receptive field. For a level operating in node sharing, ۱۵۾
update (eq. 13) must be performed only for the master node.

4 Experiments

To verify the efficacy of the HSR algorithm we performed a number of experiments
on the SDIGIT dataset [7]. SDIGIT patterns (16×16 pixels, grayscale images) are
generated by geometric transformations of prototypes called primary patterns. The
possibility of randomly generating new patterns makes this dataset suitable for
evaluating incremental learning algorithms. By varying the amount of scaling and
rotation we can also control the problem difficulty.

With ࣭௦ௗ௜௚௜௧ ்௥௔௜௡݊ۃ, ,௫௠௜௡ݏ ,௫௠௔௫ݏ ,௬௠௜௡ݏ ,௬௠௔௫ݏ ݊ we denote a set of ۄ௠௔௫ݎ
patterns, including, for each of the 10 digits, the primary pattern and further ሺ݊ 10⁄ ሻ െ 1 patterns generated by simultaneous scaling and rotation of the primary
pattern according to random triplets ݏۃ௫, ,௬ݏ ௫ݏ ,ۄݎ א ሾݏ௫௠௜௡, ௬ݏ ,௫௠௔௫ሿݏ א ሾݏ௬௠௜௡, ݎ ,௬௠௔௫ሿݏ א ሾെݎ௠௔௫, ,݊ۃ௫௠௔௫ሿ. The creation of a test set ࣭௦ௗ௜௚௜௧ ்௘௦௧ݎ ,௫௠௜௡ݏ ,௫௠௔௫ݏ ,௬௠௔௫ݏ ,௬௠௜௡ݏ starts by translating each of the 10 ۄ௠௔௫ݎ
primary pattern at all positions that allow it to be fully contained in the 16×16 window
thus obtaining ݉ patterns; then, for each of the ݉ patterns, ሺ݊ 10⁄ ሻ െ 1 further
patterns are generated by transforming the pattern according to random triplets ݏۃ௫, ,௬ݏ ݉ the total number of patterns in the test set is then ;ۄݎ ൈ ݊/10. Examples of
generated patterns are shown in Figure 2.

Fig. 2. Example of SDIGIT patterns. Ten patterns for every class are shown.

Table 1 (reprinted from [7]) summarizes HTM performance on the SDIGIT
problem and compares it against other well know classification approaches. HTM
accuracy is 71.37%, 87.56% and 94.61% with 50, 100 and 250 training patterns,
respectively: our goal is to understand if accuracy can be improved by HSR
incrementally training. To this purpose we follow the procedure described below:

Generate a pre-training dataset ࣭଴ ൌ ௦࣭ௗ௜௚௜௧்௥௔௜௡ ൏ ݊, 0.70,1.0,0.7,1.0,40° ൐
Pre-train a new HTM on ࣭଴ (as in [7], leading to Table 1 results)

for each epoch ܧ௜ , ݅ ൌ 1. . ݊௘
{ Generate a dataset ௜࣭ ൌ ௦࣭ௗ௜௚௜௧்௘௦௧ ൏ 1000,0.60,1.1,0.6,1.1,45° ൐ (6,200 patterns)
 Test HTM on ௜࣭
 for each iteration ܫ௜ , ݅ ൌ 1. . ݊௜
 call HSR(௜࣭)
}
Test HTM on ࣭௡೐

32 D. Maltoni and E.M. Rehn

Table 1. HTM compared against other techniques on SDIGIT problem (reprinted from [7]).
Three experiments are performed with an increasing number of training patterns: 50, 100 and
250. The test set is common across the experiments and include 6,200 patterns. NN, MLP and
LeNet5 refer to Nearest Neighbor, Multi-Layer Perceptron and Convolutional Network,
respectively. HTM refers to a four-level HTM (whose architecture is shown in Figure 1 of
[10]).

 SDIGIT - test set: ௦࣭ௗ௜௚௜௧ ்௘௦௧ۄ°1000,0.60,1.10,0.60,1.10,45ۃ (6,200 patterns, 10 classes)

Training set Approach
Accuracy (%) Time (hh:mm:ss) Size

(MB) train test train test ࣭௦ௗ௜௚௜௧்௥௔௜௡
<50,0.70,1.0,0.7,1.0,40°>

1788 translated patterns

NN 100 57.92 < 1 sec 00:00:04 3.50
MLP 100 61.15 00:12:42 00:00:03 1.90
LeNet5 100 67.28 00:07:13 00:00:11 0.39
HTM 100 71.37 00:00:08 00:00:13 0.58 ࣭௦ௗ௜௚௜௧்௥௔௜௡

<100,0.70,1.0,0.7,1.0,40°>

3423 translated patterns

NN 100 73.63 < 1 sec 00:00:07 6.84
MLP 100 75.37 00:34:22 00:00:03 1.90
LeNet5 100 79.31 00:10:05 00:00:11 0.39
HTM 100 87.56 00:00:25 00:00:23 1.00 ࣭௦ௗ௜௚௜௧்௥௔௜௡

<250,0.70,1.0,0.7,1.0,40°>

8705 translated patterns

NN 100 86.50 < 1 sec 00:00:20 17.0
MLP 99.93 86.08 00:37:32 00:00:03 1.90
LeNet5 100 89.17 00:14:37 00:00:11 0.39
HTM 100 94.61 00:02:04 00:00:55 2.06

In our experimental procedure we first pre-train a new network using a dataset ࣭଴

(with ݊ patterns) and then for a number of epochs we generate new datasets ୧࣭ and
apply HSR. At each epoch one can apply HSR for more iterations, to favor
convergence. However, we experimentally found that a good trade-off between
convergence time and overfitting can be achieved by performing just two HSR
iterations for each epoch. The classification accuracy is calculated using the patterns
generated for every epoch but before the network is updated using those patterns. In
this way we emulate a situation where the network is trained on sequentially arriving
patterns.

4.1 Training Configurations

We assessed the efficacy of the HSR algorithm for different configurations:

• batch vs online updating: see Section 3.3;
• errors vs all selection strategy: in errors selection strategy, supervised refinement

is performed only for ࣭௜ patterns that were misclassified by the current HTM, while
in all selection strategy is performed over all ࣭௜ patterns;

• learning rate ߟ: see Equations 10 and 13. One striking find of our experiments is
that the learning rate for the output node should be kept much lower than for the
intermediate nodes. In the following we refer to the learning rate for output node as ߟ௢ and to the learning rate for intermediate nodes as ߟ௜. We experimentally found
that optimal learning rates (for SDIGIT problem) are ߟ௢ ൌ 0.00005 and ߟ௜ ൌ0.0030.

 Incremental Learning by Message Passing in Hierarchical Temporal Memory 33

Figure 3.a shows the accuracy achieved by HSR over 20 epochs of incremental
learning, starting from an HTM pre-trained with ݊ ൌ 50 patterns. Accuracy at epoch
1 corresponds to the accuracy after pre-training, that is about 72%. A few epochs of
HSR training are then sufficient to raise accuracy to 93-95%. The growth then slow
down and, after 20 epochs, the network accuracy is in the range [97.0-98.5%] for the
different configurations. It is worth remembering that the accuracy reported for each
epoch is always measured on unseen data.

Fig. 3. a) HSR accuracy over 20 epochs for different configurations, starting with an HTM pre-
trained with ݊ ൌ 50 patterns. Each point is the average of 20 runs. b) HSR accuracy over 20
epochs when using an HTM pre-trained with 50, 100 and 250 patterns. HSR configuration is
batch, all. Here too HSR is applied two times per epoch. Each point is the average of 20 runs.
95% mean confidence intervals are plotted.

Training over all the patterns (with respect to training over misclassified patterns
only) provides a small advantage (1-2 percentage). Online update seems to yield
slightly better performance during the first few epochs, but then accuracy of online
and batch update is almost equivalent. Table 2 compares computation time across
different configurations.

Table 2. HSR computation times (averaged over 20 epochs). Time values refer to our C# (.net)
implementation under Windows 7 on a Xeon CPU W3550 at 3.07 GHz.

Configuration
HSR time

6200 patterns - 1 iteration
HSR time

1 pattern - 1 iteration
Batch, All 19.27 sec 3.11 ms

Batch, Error 8,37 sec 1.35 ms

Online, All 22.75 sec 3.66 ms

Online, Error 8.27 sec 1.34 ms

0,7

0,75

0,8

0,85

0,9

0,95

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Batch Errors
Batch All
Online All
Online Errors

70%

75%

80%

85%

90%

95%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

50

100

250

a) b)

Pre-training
patterns

Accuracy after
20 epochs

50 98.48%
100 99.72%
250 99.91%

34 D. Maltoni and E.M. Rehn

Applying supervised refinement only to misclassified patterns significantly reduces
computation time, while switching between batch and online configurations is not
relevant for efficiency. So, considering that accuracy of the errors strategy is not far
from the all strategy we recommend the errors configurations when an HTM has to
be trained over a large dataset of patterns.

4.2 HTM Scalability

One drawback of the current HTM framework is scalability: in fact, the network
complexity considerably increases with the number and dimensionality of training
patterns. All the experiments reported in [7] clearly show that the number of
coincidences and groups rapidly increases with the number of patterns in the training
sequences. Table 3 shows the accuracy and the total number of coincidences and
groups in a HTM pre-trained with an increasing number of patterns: as expected,
accuracy increases with the training set size, but after 250 patterns the accuracy
improvement slows down while the network memory (coincidences and group)
continues to grow markedly, leading to bulky networks. Figure 3.b shows the
accuracy improvement by HSR (batch, all configuration) for HTMs pre-trained over
50, 100 and 250 patterns. It is worth remembering that HSR does not alter the number
of coincidences and groups in the pre-trained network, therefore the complexity after
any number of epochs is the same for all the pre-trained HTMs (refer to Table 3). It is
interesting to see that HTMs pre-trained with 100 and 250 patterns after about 10
epochs reach an accuracy close to 100%, and to note that even a simple network (pre-
trained on 50 patterns) after 20 epochs of supervised refinement outperforms an HTM
with more than 10 times its number of coincidences and groups (last row of Table 3).

Table 3. Statistics after pre-training. The first three rows are consistent with Table III of [7].

Number of pre-training patterns Accuracy after pre-training Coincidence and groups
50 71.37% 7193, 675

100 87.56% 13175, 1185
250 94.61% 29179, 2460
500 93.55% 53127, 4215
750 96.97% 73277, 5569
1000 97.44% 92366, 6864

5 Discussion and Conclusions

In this paper we propose a new algorithm for incrementally training HTM with
sequentially arriving data. It is computationally efficient and easy to implement due to
its close connection to the native belief propagation message passing of HTM.

The term ܳሺݓ௦ሻ, the error message send from above to the output node (Eq. 12), is
the information that is propagated back through the network and lies at the heart of
the algorithm. Its interpretation is not obvious: the first part, ܲሺݓ௦|݁ାሻ െ ܲሺݓ௦|݁ିሻ,
the difference between the ground truth and network posterior, is easy to understand;
while the second part, െ ∑ ܲሺݓ௜|݁ିሻሺܲሺݓ௜|݁ାሻ െ ܲሺݓ௜|݁ିሻሻ௡ೢ௜ୀଵ , is more mysterious.
It is hard to give a good interpretation of this sum but from our understanding it arises

 Incremental Learning by Message Passing in Hierarchical Temporal Memory 35

due to the fact that we are dealing with probabilities. None of the parts can be
ignored; tests have shown that they are both important to produce good results.

There are some parameters which need tuning to find the optimal setup. In the
experiments presented in this paper two iterations per epoch were used, and the
optimal learning rate was found therefor. With more iterations a lower learning rate
would likely be optimal. The difference in suitable learning rate between the
intermediate and the output level is also an important finding and can probably be
explained by the fact that the ܅۱۾ matrix of the output node has a much more direct
influence on the network posterior. The output node memory is also trained
supervised in the pre-training while the intermediate nodes are trained unsupervised,
which might suggest that there is more room for fine tuning in the intermediate nodes.
We ran some experiments where we only updated ܅۱۾ in the output node: in this
case a small performance gain of a few percent has been observed.

In general HSR has proven to work very well for the SDIGIT problem and the
results give us reason to believe that this kind of supervised fine tuning can be
extended to more difficult problems. Future work will focus on the following issues:

• applying HSR to other (more difficult) incremental learning problems;
• check whether, for a difficult problem based on a single training set, splitting the

training set in two or more parts and using one part for initial pre-training and the
rest for supervised refinement, can lead to better accuracy and efficiency;

• extending HSR in order to also finely tune (besides ܅۱۾ and ۱۵۾) the structure of
level 1 coincidences ࡯ without altering their number. In fact, while higher level
coincidences are "discrete feature selectors" and therefore not applicable to
continuous gradient descent optimization, level 1 coincidences are continuous
features and their adaption could lead to further performance improvement.

References

1. George, D., Hawkins, J.: A Hierarchical Bayesian Model of Invariant Pattern Recognition
in the Visual Cortex. In: IJCNN (2005)

2. Ranzato, M., et al.: Unsupervised Learning of Invariant Feature Hierarchies with
Applications to Object Recognition. In: CVPR (2007)

3. Bengio, Y.: Learning Deep Architectures for AI. Foundations and Trends in Machine
Learning 2(1) (2009)

4. Jarrett, K., Kavukcuoglu, K., Ranzato, M., LeCun, Y.: What is the Best Multi-Stage
Architecture for Object Recognition? In: ICCV (2009)

5. George, D., Hawkins, J.: Towards a Mathematical Theory of Cortical Micro-circuits. PLoS
Computational Biology 5(10) (2009)

6. Lee, T.S., Mumford, D.: Hierarchical Bayesian inference in the visual cortex. Journal of
the Optical Society of America 20(7), 1434–1448 (2003)

7. Maltoni, D.: Pattern Recognition by Hierarchical Temporal Memory. DEIS TR (April
2011), http://bias.csr.unibo.it/maltoni/HTM_TR_v1.0.pdf

8. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufmann (1988)
9. George, D.: How the Brain Might Work: A Hierarchical and Temporal Model for Learning

and Recognition. Ph.D. thesis, Stanford University (2008)
10. Maltoni, D., Rehn, E.M.: Incremental Learning by Message Passing in Hierarchical

Temporal Memory. DEIS TR (May 2012),
http://bias.csr.unibo.it/maltoni/HTM_HSR_TR_v1.0.pdf

	Incremental Learning by Message Passing in Hierarchical Temporal Memory
	Introduction
	Background
	Information Flow
	Internal Node Structure and Pre-training
	Feed-Forward Message Passing
	Feedback Message Passing

	Htm Supervised Refinement
	Output Node Update
	Intermediate Nodes Update
	HSR Pseudocode

	Experiments
	Training Configurations
	HTM Scalability

	Discussion and Conclusions
	References

