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Abstract. In this paper we study the robustness of our CAD system,
since this is one of the main factors that determine its quality. A CAD
system must guarantee consistent performance over time and in various
clinical situations. Our CAD system is based on the extraction of features
from the mammographic image by means of Independent Component
Analysis, and machine learning classifiers, such as Neural Networks and
Support Vector Machine. To measure the robustness of our CAD system
we have used the digitized mammograms of the USF’s DDSM database,
because this database was built by digitizing mammograms from four
different institutions (four different scanner) during more than 10 years.
Thus, we can use the mammograms digitized with one scanner to train
the system and the remaining to evaluate the performance, what gives
us a measure of the robustness of our CAD system.
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1 Introduction and Purpose

The goal of a CAD system is to be able to analyze an image and indicate the
location of possible lesions, if any. But also, there are several factors that should
provide a CAD system to detect and diagnose masses in mammograms, such as:
high sensitivity to detect the largest possible number of cancers, high specificity
to reduce the number of false positives per image, acceptable call rate, early
detection to increase the chances of survival, low processing time and robustness
[1]. That is, the system must guarantee consistent performance along time and
in various clinical situations. We have designed and implemented a CAD system
to detect and classify masses in mammograms. We have used the USF’s DDSM
database [2] to train and test our CAD system.

The DDSM contains mammograms obtained from examinations between Oc-
tober 1988 and February 1999 in four different clinical sites: Massachusetts Ge-
neral Hospital (MGH) in Boston, Wake Forest University School of Medicine
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(WFU) in North Carolina, Sacred Heart Hospital in Pensacola (SH), Florida, and
Washington University School of Medicine in St. Louis Medical Center (WU).
These mammograms were digitized using four different scanners: DBA M2100
ImageClear with a resolution of 42μm, Howtek with a resolution of 43.5μm,
Lumisys 200 laser with a resolution of 50μm and Howtek MultiRAD 850 with
a resolution of 43.5μm. With that we can get an idea of the heterogeneous
that is the used dataset. But, to normalize and avoid this heterogeneity in the
used dataset we use the calibration curves which are available of each scanner
to obtain the mammographic images in optical densities. In that way, at least
in theory, we will have all dataset normalized in the same conditions. But the
number of prototypes regarding to each class digitized with each scanner can
be very different considering a scanner, or other. And, also, the way in which
were indicated the ground truth over the mammograms could be very differ-
ent [3], because of the long period of time (more than 10 years) during which
was built the DDSM database. That is, in the DDSM database we can see dif-
ferent styles when the radiologists indicate the lesions on mammograms. First,
because, surely, many radiologists were involved, and in addition, because it was
done considering informed mammograms of four different institutions.

We propose a system to detect masses in mammograms as a two-class pattern
recognition problem (mass or normal tissue), but, in our proposed approach, no
modelling has been used. In contrast, we have used features extraction based
on Independent Component Analysis (ICA), for its ability to obtain a basis
functions adapted to the problem, especially to the natural images [4,5]. Thus,
we have obtained some basis functions (basis images) to expand the original
image (original patch), where the coefficients of this expansion will be used to
form the input vectors to the classifiers.

The rest of our paper is organized as follows. Section 2 introduces the general
concepts of feature extractions, the classifiers and the dataset used in our expe-
riments. Section 3 includes a description of our methodology. Section 4 describes
our results. Finally, Section 5 presents the main conclusions of this work.

2 Methods

In this section, we provide a brief description of the mammogram database uti-
lized. Additionally we describe the procedure implemented to build a set of mass
prototypes and the main characteristics of the selected image feature extractor.
Finally, we provide a short description of the used classifiers.

2.1 Data and Prototype Creation

The Digital Database for Screening Mammography [2] is a resource available to
the mammographic image analysis research community. Contains a total of 2,620
cases. Each case provides four screening views, mediolateral oblique (MLO) and
craniocaudal (CC) projections of left and right breasts. Therefore, the database
has a total of 10,480 images.
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Cases are categorized in four major groups: normal, cancer, benign and benign
without callback.

All cases in the DDSM database were reported by experienced radiologists pro-
viding various BIRADS parameters (density, assessment and subtlety), BIRADS
abnormality description and proven pathology. For each abnormality identified,
the radiologists draw free form digital curves defining ground truth regions. We
use these regions to define squared regions of interest (ROIs) for use as proto-
types of mass. Each DDSM case includes additional information such as patient
age, date of study and digitization or digitizer’s brand.

The DDSM database contains 2,582 mass prototypes including benign and
malignant masses. Some of them were located on the border of the mammograms.
Consequently, only 2,324 prototypes could be considered, namely, those which
might be taken centered in a square without stretching. Some mass prototype
examples are shown in Figure 1.
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Fig. 1. Mass samples for each shape and margin combination. Each ROI has been
resized to a common size of 128 × 128 pixels. Mammogram case and view is located
under each ROI.

Regions of Interest. Ground truth regions are defined in the database by a
chain code which generates a free hand closed curve. We use the chain code
to determine the smallest square region of the mammogram that includes the
manually defined region. Therefore, if the mass is located near one edge of the
mammogram, this procedure may not be able to obtain a squared region from



130 A. Garćıa-Manso et al.

Fig. 2. Ground truth region defined by radiologist (red solid line) and considered ROI
(purple box) on a DDSM mammogram

the image and the mass is discarded as a valid prototype. Figure 2 shows the
ground truth region coded by the radiologist (red solid line) and the area to be
used as ROI (purple box).

USF’s DDSM mammograms were digitized with four different scanners for
which optical density calibration and spatial resolution are known [2]. Three
scanners provide a linear optical response and the fourth one of logarithmic
type. To eliminate the dependence of the origin of each digitized mammogram, all
obtained ROIs were converted to optical density using the referenced calibration
parameters.

The generated regions have different sizes but the selected image feature ex-
tractor needs to operate on regions with the same size. So, we need to reduce
the size of the selected regions to common sizes. The reduction of ROIs to a
common size has demonstrated to preserve mass malignancy information [6,7,8].
To determine the optimum region size, we resized each ROI to two sizes: 32×32,
64× 64 pixels. We also tried other sizes such as 128× 128 pixels, but the perfor-
mance obtained with this size was not better than that obtained with the two
smaller sizes, whereas the computation time was much greater. Resizing has been
carried out using the bilinear interpolation algorithm provided by the OpenCV
library [9].

2.2 Independent Component Analysis

The original motivation of ICA is to solve problems known as blind source sepa-
ration(BBS). These problems consist in the following: suppose that we have n
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signals. The objective is to develop the signals registered by the sensors (xi) as
a linear combination of n sources (sj), in principle unknown [10].

xi =

n∑

j=1

aijsj

The goal of ICA is to estimate the mixture matrix A = (aij), along with the
sources sj. The ICA model supposes that the observed signals are a linear trans-
formation of hidden sources: x = A · s. In general, the mixture matrix A is
invertible, so we have:

x = A · s ⇒ s = W · x with W = A−1

It is important to remark that:

– The key of ICA estimation is to suppose that hidden sources (s) are non-
gaussian and statistically independent.

– We cannot determine the variances (energies) of the independent compo-
nents.

• Therefore, the magnitudes of the si can be freely normalized.
• We cannot determine the order of the independent components.

We can use this technique for feature extraction since the components of x can
be regarded as the characteristics representing the objects (patterns) [10]. We
have used the FastICA algorithm [11] proceeding as follows:

– We start with N samples (patches, N vectors of dimension p) forming the
patches matrix (x) where each row is a patch (i), therefore, the dimensions
of this matrix are N × p.

– First, the data are centered by subtracting their averages. That is, to each
element is subtracted the mean of its column (m = E {x}) so as to make
(x) a zero-mean variable, which implies that s is zero-mean as well. After
estimating the mixing matrix (A = (aij)) with centered data, we can com-
plete the estimation by adding the mean vector of s back to the centered
estimates of s. The mean vector of s is given by A−1m.

– Then a whitening process is applied. This transformation consist in to un-
correlate the data so that their variances are equal to 1 and the covariance
matrix is the identity matrix. The dimension of this new whitening matrix
is p× p.

– To reduce the size of the input space is applied Principal Component Analy-
sis (PCA) [12], ordering the array of eigenvectors (whitening matrix) by its
eigenvalues from highest to lowest and discarding those with lower eigenvalue
that will be those with a smaller contribution the variance. Taking q (q < p)
first components we obtain the matrix KPCA of dimension (q × p).

– Now, taking as input this matrix and applying the ICA algorithm is obtained
the ICA transformation matrix of dimension (q × q).
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– Finally considering a new matrix (WT ), multiplication of the previous two
(WT = KT

PCA ·W (p× q)), in which each row is a vector of the new base,
q characteristics can be extracted of each original input (i) simply by multi-
plying the matrix WT for each of them.

c = i ·WT

Following this process we can express, as many other transformations (wavelets,
Gabor filters, ... [13]), the image (or a image patch) as a linear superposition of
some basis functions (basis images in our case) ai(x, y):

I (x, y) =

p∑

i=1

ai (x, y) ci (1)

Where the ci are image-dependent coefficients. This expression is similar to the
ICA model, and we can visualize this idea in Figure 3. In that way, estimating
a basis images using ICA, we could obtain a basis adapted to our data.

Fig. 3. Example ICA basis and expansion of two mass prototypes

In Figure 3, one can see an example of an ICA basis of 20 components that
operates on prototypes with dimension 64 × 64 pixels. In this figure, there are
20 components extracted by the ICA basis for two mass prototypes. Then one
can also see its subsequent expansion using the extracted coefficients and the
ICA basis of the form shown in Eq. 1. That is, we can decompose or expand our
image (I(x, y)) by using a base image (ai(x, y)) multiplied by coefficients (ci)
and adding the mean vector m = E {x} (not showed in the figure).

2.3 Classification Algorithm

The classification algorithm has the work of learning from data. Usually, a model
with excessive complexity leads to poor generalization results. In the learning
process is convenient to use, at least, two independent sets of patterns: one
for training and another for testing. Or, as in this work, we have used three
independent sets of patterns: one for training, one for avoid the overtraining
and another for testing [14]. We have used Neural Networks and Support Vector
Machine (SVM) [15] classifiers.
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Neural Networks (NN). We have used the classical feed-forward multilayer
perceptron with a single hidden layer and, a variant of Back-Propagation (BP)
algorithm named Resilient Back-Propagation (Rprop) [16] to adjust the weights.
Rprop is a local adaptive learning scheme performing supervised batch-learning
in multilayer perceptron with faster convergence than the standard BP algo-
rithm. The basic principle of Rprop is to eliminate the negative affect of the size
of the partial derivative on the update process. As a consequence, only the sing
of the derivative is considered to indicate the direction of the weight update [16].
The library of functions of the Stuttgart Neural Network Simulator environment
[17] were used to generate and train the NN classifiers. To avoid local minima
during the training process each setting was repeated four times changing ran-
domly the initial weights in the net. Furthermore, the number the neurons in
the hidden layer could change between 50 and 650 in steps of 50.

Support Vector Machines. The goal of SVM is to find a model (based on
the training prototypes) which is able to predict the class membership of the
prototypes of the test subset, based on the value of their characteristics.

Given a labeled training set of the form (xi,yi), i = 1, . . . , l where xi ∈ �n and

y ∈ {1,−1}l, the SVM algorithm requires the following optimization problem
to be solved:

minw,b,ξ
1

2
wTw + C

l∑

i=1

ξi

where yi
(
wTφ (xi) + b

) ≥ 1− ξi,

ξi ≥ 0 (2)

This algorithm works by projecting the training vectors xi onto a higher-dimen-
sional space than the original. The final dimension of this space depends on the
complexity of the input space. Thus SVM finds a linear separation by means of a
hyperplane with a maximal (i.e., optimal) margin of separation between classes
in this higher dimensional space.

The parameter C (C > 0) shown in the model is a penalty term to control the
error, and K(xi,xj) ≡ φ(xi)

Tφ(xj) is a kernel function to project the input data
onto to a higher dimensional space. We have used LibSVM [18] library in this

work with a radial basis function (RBF: K(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0)
as kernel function. To find the optimal configuration of the parameters in the
algorithm γ could change between −5 and 20 in step of 0.5 and the penalty
parameter C between -5 and 10, also, in steps of 0.5.

3 System

In this section, we provide a description of the main steps of our system. The first
task is to obtain the prototypes of masses and normal tissue. The prototypes of
masses are obtained as was explained in Section 2.1 and the prototypes of normal
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tissue were selected randomly from the normal mammograms. This normal tissue
prototypes were caught originally with sizes that randomly ranging from the
smallest to the largest of the sizes found in the DDSM database for masses.
Then, applying the FastICA algortithm [11] as is described in Section 2.2 and
using log cosh function to estimate neg-entropy were obtained the ICA basis
(ICA-based feature extractor). To obtain the optimal configuration of the system
were generated different ICA basis to extract different number of features (from
10 to 65 in steps of 5) from the original patches and, in addition, operating over
patches of different dimensions (as said before, 32× 32 and 64× 64).

We did a double training process, on the one hand, we trained NN classifiers
and, on the other hand, we trained SVM classifiers. After training process were
obtained the results shown in Figure 3, where can be seen the results obtained
over the test subsets in a 10-fold cross validation scheme. In that way, we find the
best configuration of the feature extractor. This study was made with a total of
5,052 prototypes: 1,197 of malignant masses, 1,133 of benign masses and 2,722
of normal tissue. We found that the optimal configuration for the ICA-based
feature extractor, for a NN classifier, was a feature extractor that operated on
prototypes of 64× 64 pixels extracting 10 components (average success 86.33%).
And, for a SVM classifier, the best configuration was for a feature extractor
that operated also on prototypes of 64 × 64 pixels extracting 15 components
(average success 88.41%). Therefore, the results shown in the following section
were obtained using these configurations for the ICA-based feature extractor in
each case.

4 Results

In this work, our main interest was to evaluate the robustness of our CAD sys-
tem. We have included all the prototypes of masses found in the DDSM which
could be obtained as a square shape without stretching them by determining the
smallest square region that includes the complete ground truth. The distribution
of prototypes is shown in Table 1. As can be seen in this table, the number of
prototypes on the learning and test sets is quite different depending on the con-
sidered scanner, being the most heterogeneous distribution for the DBA M2100
scanner. For this scanner, no prototypes were found of benign masses and the
number of prototypes of malignant masses is much lower than the normal tis-
sue prototypes in the learning set. This, as will be seen in the results, is a big
handicap to train the classifiers.

In Table 1 one can see that the number of normal tissue prototypes from a
DBA scanner is more than half of total normal tissue prototypes. This is due
to that in the DDSM database there are 12 volumes of normal mammograms
with different number of cases by each volume, with four mammograms by case.
From these 12 volumes 6 were digitized with a DBA scanner, among them, those
that have a bigger number of cases. Therefore, it seems clear that if we have
selected the normal tissue prototypes randomly from the normal mammograms
the number of prototypes from a DBA scanner should be, at least, the half of
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Fig. 4. Choosing the best configuration to the feature extractor. The top row shows
the results when we use a NN classifier, while the bottom row shows the results for a
SVM classifier. In both cases, prototypes of 32 × 32 first column and 64 × 64, second
column.

the total of normal tissue prototypes. On the other hand, the number of volumes
of “cancer” from a DBA scanner is only two and of “benign” zero. The number
of prototypes is more equilibrated for the rest of scanners.

The results, presented in Table 2, correspond to feature extractors based on
ICA described in the previous Section 3 for each classifier. As expected, the
most suitable distribution of prototypes is for overall results, since, as seen in
Table 1, the number of prototypes in the learning set is much greater than the
number of prototypes in the test set. And, in addition, the trained classifier
with this distribution can “learn” prototypes from all the scanners, while, the
trained classifiers with the other distributions only can learn prototypes from
one scanner. Anyway, in theory this should not affect to the results, because
the prototype images are transformed to optical density by using the scanner
calibration parameters provided by the USF’s DDSM database authors.

In Table 2 one can see that when the number of prototypes in the learning
set is low (HOWTEK scanners) the performance with SVM classifiers is a little
better than with NN classifiers. This seems to agree with [19] where was made
a comparison of the performance and robustness of different types of classifiers
in different settings. In contrast, when the number of prototypes is large enough
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Table 1. Distribution of prototypes in learning and test sets, depending on the used
scanner and without considering the scanner (overall results). Along with the scanner’s
name appears the identification of the institution in which they were used.

Distribution of prototypes depending on the scanner.

Scanner Pathology Learning Test

HOWTEK 960 (MGH) Malignant 345 851
43.5µm/pixel Benign 485 648

linear calibration Normal 312 2410

HOWTEK MultiRAD 850 (WU) Malignant 107 1089
43.5µm/pixel Benign 154 979

linear calibration Normal 417 2305

DBA M2100 (MGH) Malignant 105 1091
42µm/pixel Benign 0 1133

logarithmic calibration Normal 1668 1054

LUMISYS 200 laser (WFU & SH) Malignant 639 557
50µm/pixel Benign 494 639

linear calibration Normal 325 2397

Malignant 1074 122
Overall Benign 1032 101

Normal 2440 282

Table 2. In this table the obtained results are shown. The learning set is divided into
two: the train subset and the validation (Val) subset, corresponding to the first the
80% and the second the 20% of the prototypes in the learning set.

Success results for discriminating Mass-Normal tissue

SVM classifier NN classifier
Scanner Learning (%) Test(%) Learning(%) Test(%)

Train(80%) Val(20%) Train(80%) Val(20%)

HOWTEK 960 96.38 93.89 75.29 95.40 89.52 71.22
HOWTEK MD850 98.71 91.91 82.71 87.27 80.88 80.56

DBA M2100 99.80 97.46 58.69 99.29 96.90 57.75
LUMISYS 94.17 90.75 71.72 94.68 88.01 76.62

Overall results 92.65 88.20 88.41 90.73 88.37 86.33

(LUMISYS scanner), the performance with NN classifiers seems to be a little
better than with SVM classifiers. However, considering overall results, the per-
formance is slightly better with SVM classifiers, which contradicts the previous
statement. Finally, when the number of prototypes is not enough (DBA scanner)
the performance for both classifiers is quite bad.
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5 Conclusions

This study about the robustness of our CAD system has been made using a very
heterogeneous dataset. Data (mammograms and reports) comes from four clini-
cal sites. The mammograms were digitized in three different institutions using, in
principle, four different scanners but the DBA scanner, used at MGH, was retired
due to continuing performance difficulties [20]. We can evaluate the performance
obtained in each case choosing as a reference the overall performance over the
test subset, because in this setting the learning set was formed by prototypes of
all scanner and the classifiers can learn prototypes of all them. Considering a
SVM classifier the differences in performance were: 14.8% for Howtek 960, 6.4%
for Howtek MD850, 33.6% for DBA and 18.8% for Lumisys. And considering a
NN classifier, 17.5% for Howtek 960, 6.6% for Howtek MD850, 33.1% for DBA
and 11.6% for Lumisys. Taking into account all was said about the DBA scanner,
we have to say that the results for this scanner are not conclusive. On the other
hand, the least variation in the performance is found for Howtek MD850 scanner
for both classifiers which could indicates that for this scanner had a good rep-
resentation of the entire dataset. For Howtek 960 the performance varitation is
higher for a SVM classifier and for Lumisys the performance variation is higher
for a NN classifier. Here, we can see that when the number of prototypes in the
learning set is large enough, the NN classifiers obtain a better generalization ca-
pabiltiy than the SVM classifiers. While, when the number of prototypes in the
learning set is low the generalization capability of the SVM classifiers is better
than with NN classifiers.
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