
Chapter 7
The Bayesian Search Game

Marc Toussaint

Abstract The aim of this chapter is to draw links between (1) No Free Lunch
(NFL) theorems which, interpreted inversely, lay the foundation of how to design
search heuristics that exploit prior knowledge about the function, (2) partially
observable Markov decision processes (POMDP) and their approach to the problem
of sequentially and optimally choosing search points, and (3) the use of Gaussian
processes as a representation of belief, i.e., knowledge about the problem. On the
one hand, this joint discussion of NFL, POMDPs and Gaussian processes will
give a broader view on the problem of search heuristics. On the other hand this
will naturally introduce us to efficient global optimization algorithms that are well
known in operations research and geology (Gutmann, J Glob Optim 19:201–227,
2001; Jones et al., J Glob Optim 13:455–492, 1998; Jones, J Glob Optim 21:345–
383, 2001) and which, in our view, naturally arise from a discussion of NFL and
POMDPs.

7.1 Introduction

We consider the problem of optimization, where an objective function f W X ! R
is fixed but unknown and an algorithm has to find points in the domain X which
maximize f .x/. In this paper we take the view that search is a problem of navigating
through belief space. With “belief” we denote our current knowledge about the
objective function represented in terms of a probability distribution over problems
(functions). In principle, Bayes’ rule tells us how to update this belief state when we
explore a new search point and thereby gain new knowledge about the objective
function. In that sense, repeatedly querying search points generates a trajectory
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through belief space—and efficient search means to “navigate” through belief space
in a goal-directed manner. For instance, navigating with the goal to gain information
about the objective function, or with the goal to reach a belief that implies certainty
about the location of the optimum of the objective function.

In this view, the problem of optimization can be framed as a partially observable
Markov decision process problem just in the same way as standard navigation
problems. The POMDP formulation naturally ties in with an alternative formulation
of the No Free Lunch (NFL) theorem: In the next section we present such a
formulation which is equivalent to the one in [5] but, instead of relying on classical
notions like “closed under permutation”, is formulated in terms of the structure of
the function prior P.f /. In a sequential search process, this prior is updated to
become a new posterior P.f j observations/ after each exploration of a search point
and observation of the corresponding function value. This posterior is the belief state
in the corresponding POMDPs. Therefore, the POMDP framework directly implies
the optimal policy in the case that NFL conditions do not hold.

Clearly, for most relevant cases the optimal search policy is infeasible to
compute. However, when making strong assumptions about the prior belief—that
is, our initial knowledge about the objective function—and approximating optimal
planning with optimal 1- or 2-step look-ahead planning, then such algorithms
become tractable. An example is search in continuous spaces when the prior belief
is a Gaussian process. The resulting approximate optimal search algorithms are of
high practical relevance and have a long history in operations research and geology
(e.g., under the name of kriging) [2, 6, 7].

The material covered in this chapter is complementary to the survey on (approx-
imately) optimal search algorithms in Chap. 6. In particular, Chap. 6 gives an
explicit introduction to kriging, while the focus of this chapter is on the alternative
formulation of NFL, how this ties in with the POMDP approach to optimal search
policies, and a basic demonstration of a truly planning (2-step look-ahead) search
policy in the case of Gaussian processes.

In the following section we present an alternative formulation of a general NFL
result that is equivalent to the one presented in [5]. Section 7.3 briefly introduces
the most relevant notions of POMDPs. Section 7.4 then draws the relation between
POMDPs and optimization. We interpret optimization as a “Bayesian search game”
and discuss the belief update when we acquire new observations during search.
In Sect. 7.5 we define some simple heuristic policies to choose new search points
based on the current belief, including one that would be optimal for a two-step
horizon problem. Finally, in Sect. 7.6 we discuss the use of Gaussian processes as
belief representation, as was done before in the context of kriging [2, 6, 7], and
illustrate the resulting optimization algorithms on some examples. The reader may
experience the idea of search using Gaussian processes by literally playing the
Bayesian search game (competing with a Gaussian processes-based search policy),
using the implementation given at the author’s webpage.1

1http://userpage.fu-berlin.de/mtoussai/07-bsg/

http://userpage.fu-berlin.de/mtoussai/07-bsg/
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7.2 Yet Another Formulation of NFL

Let us begin with a simple formulation of No Free Lunch (NFL) [16]. Roughly
speaking, NFL theorems specify conditions under which “informed search”—
that is, picking search points better than random—is impossible. These issues are
intimately linked to the conditions under which generalization in learning theory is
possible—which we discuss briefly below. The point in specifying such conditions
is that (1) one should never try to write an efficient search algorithm when NFL
conditions hold, and (2) the NFL theorems should give a hint on how to design a
search algorithm when these conditions do not hold.

There are many alternative formulations of NFL theorems; a standard one for
optimization is [16]. In [5] we presented a general formulation which specifies con-
ditions on the probability distribution over the objective function. The formulation
we present here is equivalent to the one in [5] but more naturally leads to the notion
of beliefs, POMDPs and Bayesian search. The specific formulation and proof we
give here are, to our knowledge, novel—but only a minor variant of the existing
formulations; see [5] for a more extensive discussion of existing NFL formulations.

Let X be a finite or continuous search space. We call elements in X sites. Assume
a search algorithm is applied on a function f W X ! Y sampled from P.f /. We
write fx for the function value of f at site x. A non-revisiting algorithm iteratively
samples a new site xt and gets in return an observation yt D fxt . We formalize an
algorithm A as a search distribution P.xt j x0Wt�1; y0Wt�1IA/ conditioned on previ-
ous samples and their observed values, and the initial search distribution P.x0IA/,
with zero probability of revisitation, xt 2 x0Wt�1 ) P.xt j x0Wt�1; y0Wt�1IA/ D 0.
All this defines a stochastic process of the search algorithm interacting with the
objective function, as summarized by the joint distribution

P.f; x0WT ; y0WT IA/

D P.f / P.y0 j x0; f / P.x0IA/

TY

tD1

P.yt j xt ; f / P.xt j x0Wt�1; y0Wt�1IA/ :

(7.1)

Theorem 7.1. In this setting, a basic NFL theorem reads

9h W Y ! R s.t.

8 finite subsets fx1; ::; xKg � X W P.fx1 ; ::; fxK / D
KY

kD1

h.fxk
/ (7.2)

” 8A; 8T W P.y0WT IA/ D
TY

iD0

h.yi / (independent of A) (7.3)
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The condition (7.2) on the left simply says that P.f / factorizes identically,2 which
means that every fx is mutually independent from every other fx0 —nothing can be
learnt about fx0 from fx . The “for-all-finite-subsets” formulation we used is typical
for continuous X and in analogy to the definition of Gaussian processes (see below).
Additionally, the condition (7.2) says that every marginal distribution h.fxk

/ (we
called h W Y ! R histogram of function values in [5]) is identical, independent
of the site xk . In other terms, the function values are identically independently
distributed (independently refers to different sites x). Hence, no algorithm can
predict the observation at a new site based on previous samples better than with a
constant marginal that ignores previous samples and the location of the site. The
inevitable result is that the function values an algorithm observes are a random
sequence independent of the algorithm itself.

Proof. We first show Eq. (7.2) ) Eq. (7.3): Up to some total time t we have the
random variables f , x0Wt , y0Wt . Their joint is given by Eq. (7.1). Here, P.yt j xt ; f / is
the probability of observing a value yt when sampling at point xt , given the function
is f . This could account for noisy function evaluations, but for simplicity here we
simply assume P.yt j xt ; f / D ıyt ;fxt

. Given this joint, we find

P.yt j x0Wt�1; y0Wt�1IA/

D
X

xt 2X

h X

f

P.yt j xt ; f / P.f j x0Wt�1; y0Wt�1/
i

P.xt j x0Wt�1; y0Wt�1IA/

D
X

xt 2X

P.fxt Dyt j x0Wt�1; y0Wt�1/ P.xt j x0Wt�1; y0Wt�1IA/

D
X

xt 2X

h.yt / P.xt j x0Wt�1; y0Wt�1IA/ D h.yt / : (7.4)

The last line used the fact that the algorithm is non-revisiting and that P.f /

factorized, such that P.fxt D yt j x0Wt�1; y0Wt�1/ D P.fxt D yt / D h.yt /. (For X

continuous we need to replace summations by integrals.) This means that a newly
sampled function value yt is independent of the algorithm A and of the history
x0Wt�1; y0Wt�1. By induction over t D 0; 1; : : : we get the right-hand side (RHS),
Eq. (7.3).

We now show the inverse Eq. (7.2) ( Eq. (7.3): To show :(7.2)) :(7.3) let
fx1; ::; xKg for which P.fx1 ; ::; fxK / does not identically factorize. We distinguish
two cases: (i) In the case that the marginals are not identical (h depends on the site) it
is clear that two algorithms that pick two different sites (with different marginals h)
as the first search point will have a different P.y0/—and the RHS (7.3) is violated.
(ii) If all marginals P.fx1/ D h.fx1/ are the same but P.fx1 ; ::; fxK / does not

2On true subsets � X , but not all subsets � X . This weaker condition ensures that also the (
holds; see proof for details.
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factorize, then at least one conditional P.fx1 j fx2 ; ::; fxK / 6D h.fx1/ is different
from the marginal. Two algorithms that deterministically first pick x2; ::; xK and
then, depending on the conditional P.fx1 j fx2 ; ::; fxK / will pick either x1 or an
outside point in X n fx1; ::; xKg (here we need the real subset fx1; ::; xKg � X

rather than the � X ) will have a different P.yK/ than random search—and the
RHS (7.3) is violated.

To link to more traditional presentations: The left-hand side, LHS (7.2), is
related to sets of functions which are closed under permutation. In particular,
associating equal probability to functions in a set closed under permutation leads
to independent and identically distributed function values at different points. The
LHS (7.2) is equivalent to the so-called strong NFL conditions in [5]. Further, one
usually assumes some criterion C that evaluates the quality of an algorithm A by
mapping the sequence y0Wt of observed values to a real number. Obviously, if P.y0Wt /
is independent of the algorithm, then so is

P
y0Wt

P.y0Wt / C.y0Wt /. In traditional
terms this means, averaged over all functions (in terms of P.f /), the quality of
an algorithm is independent of the algorithm. For instance, every algorithm is as
good as random search.

A note on continuous spaces: The LHS condition (7.2) is interesting in the
case of continuous search spaces, which touches deeply into the notion of well-
defined measures over functions in continuous space. Naively, the LHS condition
(7.2) describes something like a Gaussian process with a zero covariance function,
C.x; x0/ D 0 for any x 6D x0. At first sight there seems to be no problem in
defining such a distribution over functions also in continuous space, in particular
because the definition of a Gaussian process only makes reference to function value
distributions over finite subsets of the domain. However, [1] make the point that
this “zero-covariance” Gaussian process is actually not a proper Lebesgue measure
over the space of function. This means any P.f / which fulfils the LHS (7.2) is not
a Lebesgue measure. Inversely, if we assume that P.f / is a Lebesgue measure—
and [1] imply that this is the only sensible definition of measure over functions in
continuous space—then it follows that NFL does not hold in continuous domains.

A note on generalization in statistical learning theory: The NFL theorem, as we
formulated it, is closely related to the issue of generalization: Can the algorithm
generalize knowledge gained from sites x1WT �1 to a new site? NFL says that this is
not possible without assumptions on the underlying function. On the surface this
seems to contradict the classical foundation of statistical learning theory, stating
that generalization to “new” data is possible without making assumptions about the
underlying function. The origin of this seeming contradiction is simply the use of
the word “new data” in both contexts. The prototypical setup in statistical learning
theory considers a joint distribution P.X; Y / D P.Y jX/ P.X/ from which data
f.xi ; yi /gN

iD0 was sampled i.i.d. In that context, a “new” data point x� is one that is
equally sampled from the same source P.X/ as the previous data—without ruling
out revisitation of the same site. Statements on generalization roughly state that,
in the limit of large N , generalization to new data is possible. If the domain X is
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finite, the limit of large N implies that new data points are likely to coincide with
previously observed sites and the possibility of generalization is obvious. If the
domain is continuous, the chance to revisit exactly the same site is zero and it seems
that revisitation is not an issue and NFL holds—however, as we discussed in the
previous section, w.r.t. standard Lebesgue measures over functions, NFL does not
hold in continuous spaces.

7.3 Some Background on POMDPs

Our formulation of NFL states that, assuming a fully factored distribution over
functions, any search algorithm will have the same expected performance. Inversely
this implies that when we assume a non-factored distribution over functions—which
we call function prior—then the algorithm has at least a chance to exploit previous
observations x0Wt ; y0Wt to decide “intelligently” (better than random search) about the
next sample xtC1.

Partial observable Markov decision processes (POMDP) give us a clear descrip-
tion of how an optimal (fully Bayes-rational) algorithm would choose the next
sample point based on previous observations. The point in referring to POMDPs
will not be that we will in practice be able to design fully Bayes-optimal search
algorithms—this is in any realistic case computationally infeasible. However, the
POMDP framework provides us with two important aspects: First the notion of
a belief, which can be shown to subsume all the information from the history of
observations x0Wt ; y0Wt that is necessary to make optimal decisions. And second, the
POMDP framework provides us with promising approximate decision heuristics,
for instance, iteratively using the optimal two-step look-ahead strategy as an
approximation to the optimal T -step look-ahead for a problem of horizon T , as
is discussed in detail in Sect. 7.5.

We briefly introduce POMDPs and the notion of beliefs in POMDPs here. For
more details see [9]. A POMDP is a stochastic model of the interaction of an
agent with an environment where the agent does not fully observe the state st of
the environment but only has access to (“partial”) observations yt . For every time
step t the environment is in state st , the agent chooses an action atC1, the world
transitions into a new state according to a conditional probability P.stC1 j atC1; st /,
and the agent gets a new observation according to P.ytC1 j stC1; atC1/.

Since each single observation yt gives only partial information about the state,
it is in general suboptimal for the agent to use only yt to decide on an action atC1.
A better alternative for the agent would be to take the full history .y0Wt ; a0Wt / as
input to choose an action—since this provides all the information accessible to the
agent at the time this, in principle, supports choosing optimal actions. However,
it can be shown [9] that a sufficient alternative input to choose optimal actions is
the posterior distribution P.st j y0Wt ; a0Wt /. This should not be a surprise: given the
Markovian structure of the world itself, if the agent would have access to the state
st then optimal policy would map st directly to atC1. If, as in POMDPs, the agent



7 The Bayesian Search Game 135

y1 y2

b0 b1 b2

a1 a2

s0 s1 s2 R

aT

sT

Fig. 7.1 Dynamic Bayesian network for the stochastic process of a (belief-based) agent interacting
within a POMDP—for simplify in the case of finite horizon and final reward only

does not have access to st , then the state posterior P.st j y0Wt ; a0Wt / provides all the
information about st accessible to the agent, i.e., that can be inferred from previous
observations and actions.

The state posterior is also called the belief bt D P.st j y0Wt ; a0Wt /. To summarize,
Fig. 7.1 illustrates the stochastic process of a (belief-based) agent interacting within
a POMDP as a dynamic Bayesian network. The environment is described by
the state transition probabilities P.stC1 j atC1; st /, the observation probabilities
P.yt j st ; at /, and the initial state distribution P.s0/. The agent is described (in the
belief-based case3) by the policy � W bt 7! atC1 that maps the current belief state to
the action. In each step, after executing action atC1 and observing ytC1, the agent
updates the belief using Bayes’ rule:

btC1.stC1/ D P.stC1 j y0WtC1; a0WtC1/

/ P.ytC1 j stC1; y0Wt ; a0Wt / P.stC1 j y0Wt ; a0Wt /

D P.ytC1 j stC1; at /
h X

st

P.stC1; st j y0Wt ; a0Wt /
i

D P.ytC1 j stC1; at /
X

st

P.stC1 j st ; at / bt .st / (7.5)

This equation is called belief update. The prior belief b0.s0/ is initialized with the
initial state distribution P.s0/.

7.4 From NFL to Beliefs and the Bayesian Search Game

Table 7.1 summarizes how one can draw a relation between the problem of
optimization and POMDPs. The action at of the agent/algorithm correspond to the
next site xt that the algorithm explores. The state st of the environment corresponds
to the unknown underlying function f —a difference here is that in POMDPs the

3Alternatives to represent agent policies are, for instance, finite state controllers [11].
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Table 7.1 Translation of the search game as a partially observable
Markov decision process

POMDP Bayesian search game

World state st Objective function f

Action at Choice of search point xt

Observation yt Function value yt D f .xt�1/

Belief state bt D P.st j y0Wt ; a0Wt / Belief bt D P.f j y0Wt ; x0Wt /

environment state is manipulated by actions, whereas in search exploring a site
xt does not change the function f of the environment. But as in a POMDP, the
environment state f is not fully observable. Only a partial observation P.yt j f; xt /

is accessible to the agent/algorithm depending on the site it explores.
As in POMDPs, the belief bt .f / captures all information about the state f that

is accessible to the algorithm. The P.f / defined in the previous section provides
the prior belief b0.f / WD P.f /; in Eq. (7.4) we also referred to the posterior belief
at time t ,

bt .f / WD P.f j x0Wt ; y0Wt / : (7.6)

NFL says that if the prior belief factorizes in identical marginals, then there is no
way to derive a smart sampling heuristic from this belief. The reason is that in
the NFL case the belief cannot be updated in a useful way. Why is this? Given
a new observation yt at xt we can update the belief in the sense that now we
explicitly know the function value at xt —but we cannot update the belief about
function values at yet unexplored sites because the NFL conditions do not allow us
to generalize to unexplored sites. Hence the belief over yet unexplored sites always
remains i.i.d. with marginals h.y/.

Inversely, the belief is a generic and exhaustive way to capture all of what we
can possibly know about the underlying function given the observations made so
far. In particular, when NFL condition (7.2) does not hold, then an observation yt at
some site xt tells us something about the function at other sites. The belief state is
an exact description of this information about yet unexplored sites.

The stochastic search processes of a belief-based algorithm, which pick new
search points based on a policy �t W bt�1 7! xt , can be depicted as the dynamic
Bayesian network (DBN) as in Fig. 7.2. This process can be viewed as a (single-
player) game: The game starts with the player picking a specific prior belief b0

over the space of functions, and with the environment choosing a specific function
f from some function prior P.f /. For simplification, we assume that the player
is informed on P.f / such that his prior belief coincides with the function prior,
b0.f / D P.f /. This initialization of the game corresponds to the first two nodes
on the left in the DBN.

In the first time step, it will use the policy �t W bt�1 7! xt to pick a first site at
time x1 D �1.b0/. The environment responds by returning the function evaluation
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x1 x2 y2y1

R

xT

b1 b2

Fig. 7.2 The dynamic Bayesian network describing the search game. f is a function sampled
from P.f /. bt is a belief over functions that the player maintains; it is initialized deterministically
to b0 D P.f /. xt � �t .bt / is the player’s sample action at time t , and yt D f .xt / the evaluation
feedback

y1 D f .x1/. The player updates its belief as in Eq. (7.5). Since in our case the
function f is not influenced by the action xt the belief update simplifies to

bt .f / D P.f j x0Wt ; y0Wt /

/ P.yt j f; x0Wt ; y0Wt�1/ P.f j x0Wt ; y0Wt�1/

D P.yt j xt ; f / bt�1.f / (7.7)

The game continues like that until, at some final deadline T , a reward R is emitted
depending only on the last sample.

Drawing the connection to POMDPs does not directly lead to new efficient solu-
tion methods. However, some simple facts from POMDPs also help us understand
the problem of search better: (1) We know that the optimal policy in POMDPs
is a deterministic function from beliefs to actions. This notion of optimality in
POMDPs is very general and implies optimal solutions to the so-called exploration-
exploitation problem [12] or strategies to gain information for later payoff. Clearly,
such strategies are also relevant in the context of search. (2) A POMDP can be
reformulated as a Markov decision process (MDP) with world state Qst D .st ; bt /—
that is, when we think of the tuple .st ; bt / as the new (embedding) world state.
This also implies that optimal policies can be found by computing a value function
V.st ; bt / over this embedding space. Note that this value function is a function over
the space of distributions—and thereby of extremely high complexity. Point-based
value iteration methods follow this approach by exploiting a sparse structure of the
value function [9].

7.5 Belief-Based Search Policies

In this section we consider some basic heuristic policies to choose the next search
point based on the current belief. For simplicity we consider a finite horizon T where
the reward is exactly the function value f .xT / 2 R of the last site. The objective
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is then: Find a policy �t W bt 7! xtC1 (different for each t) that maximizes the
expectation of f .xT /.

The problem the player is faced with is obviously a problem of planning ahead,
i.e., taking samples that allow him to learn as much as possible about f (shaping
its belief favorably) such that at the deadline T he is as well informed as possible
to pick the final sample. But what are computationally feasible policies in practice?
Let us define some basic policies here:

The k-step look-ahead policy: �k W bt 7! xtC1 is defined as the optimal policy
for picking xtC1 based on bt , assuming that the horizon T D t C k is k steps ahead.
For large k, computing this policy is infeasible. For k D 1 or k D 2 approximations
may be feasible.

The greedy policy: �kD1 is the one-step lookahead policy which picks the point
xtC1 that maximizes the predictive mean Oft .x/ D R

f
f .x/ bt .f / df , that is, the

mean function given the current belief bt ,

�kD1.bt / D argmaxx
Oft .x/ : (7.8)

Thereby, the greedy policy is the optimal policy for the final pick of xT based
on bT �1.

The two-step look-ahead: This policy �kD2 is

�kD2.bt / D argmaxxtC1

Z

ytC1

max
xtC2

OftC1.xtC2/ P.ytC1 j xtC1; bt / (7.9)

OftC1 D
Z

f

f .x/b.f I ytC1; xtC1; bt /df (7.10)

where b.f I ytC1; xtC1; bt / is the belief when updating bt with the new observations
according to Eq. (7.7). The term maxxtC2

OftC1.xtC2/ is the expected reward when
the greedy policy is applied in the next step. The integral over ytC1 accounts for all
possible outcomes (and corresponding belief updates) for the sample xtC1. In that
sense, the two-step look-ahead policy can imply explorative strategies: One might
want to pick xtC1 such that the outcome ytC1 contains crucial information for the
belief update such that the final (greedy) pick has maximal expected reward.

A simple exploration policy �explore is to always pick the site xtC1 that
maximizes the predictive variance O�t .x/2 D R

f Œf .x/ � Oft .x/�2bt .f /df of the
belief. This strategy aims at learning as much as possible about the function, but
neglects that we are interested in high function values and should thus learn as much
as possible about regions where we hope to find high function values.

A simple exploit-explore policy �EE is to pick the site xtC1 that maximizes
gt .x/ D Oft .x/C˛�t .x/, that is, a combination of the predictive mean and variance.
gt .x/ can be interpreted as an optimistic function value estimate: The value could
potentially be ˛ standard deviations above the current mean estimation.
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Another heuristic combining exploration and exploitation is the expected
improvement policy �EI. Let Yt D maxfy1WT g be the maximum value
observed so far. We can compute for each site x the expected improvement
qt .x/ D R

f
f .x/ıf .x/>Yt bt .f /df , where ı is the indicator function. This expected

improvement computes a mean value, as with Oft , but only over function values
greater than Yt .

7.6 Experiments with Gaussian Processes as Belief
Representation

The belief update in Eq. (7.7) is a simple equation, but for a concrete algorithm it
requires to represent a distribution over function space and be able to multiply the
likelihood term P.yt j xt ; f / to the belief to become a new belief. What is a family
of distributions over functions which we can be represented in computers and which
is conjugate (that is, if the old belief is an element of this family, then the updated
belief is also an element of this family)?

Gaussian processes [13] are such a family of distributions over continuous
functions. They can be defined as follows. Let f � GP.�; C / be a ran-
dom function sampled from a Gaussian process with mean function �.x/ and
covariance function C.x; x0/. Then, for any finite set of points fx1; : : : ; xN g,
the vector .f .x1/; : : : ; f .xN // is distributed joint Gaussian with mean vector
.�.x1/; : : : ; �.xN // and covariance matrix C.xi ; xj /, i; j D 1 : : : N . Since this
definition describes the behavior of random functions on finite subsets it fits nicely
with our formulation of NFL.

The covariance function C.x; x0/ is typically decaying with the distance
jx � x0j such that points close to each other are strongly correlated. This leads
to smooth functions. Often C.x; x0/ is chosen squared exponential C.x; x0/ D
�2 expf�.x � x0/2=2�2g C ıxDx0%2 with correlation bandwidth � (and observation
standard deviation %). Figure 7.3 displays a number of functions sampled
independently from a GP prior with constant mean �.x/ D 0 and bandwidth
� D 1

2
. This should illustrate what it means to assume such a prior: We believe a

priori that functions typically look like those in Fig. 7.3, in particular w.r.t. the type
of smoothness. (GPs are related to cubic splines, see [13].)

It is a common approach to use GPs as a representation of the belief b for search
and optimization problems; in geology this method is also called kriging [2, 6, 7].
One often assumes that a single function evaluation is expensive (e.g., drilling a hole
to get a geological probe) and therefore extensive computational cost to evaluate a
policy is acceptable.

To demonstrate the use of Gaussian processes to represent beliefs we imple-
mented a Bayesian search game, which can be downloaded from the author’s
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Fig. 7.3 Ten sample functions from a Gaussian process prior with bandwidth � D 1
2

Table 7.2 Performance for different policies for finding the optimum of a function sampled from
a GP prior with bandwidth � D 1

2
, constrained to the search interval Œ�1; 1�. We measure the loss

as the difference between the last sampled value f .xT / and the true optimum of the function. The
algorithm is only allowed to take T D 10 (respectively, T D 5) samples. Mean and standard
deviation are given for 10,000 random functions

Policy Final loss for T D 10 Avg loss (T D 10) Final loss for T D 5 Avg loss (T D 5)

�kD1 0.632 ˙ 0.006 0.764 ˙ 0.006 0.648 ˙ 0.006 0.891 ˙ 0.006
�EE, ˛ D 1 0.051 ˙ 0.002 0.492 ˙ 0.003 0.254 ˙ 0.004 0.834 ˙ 0.005
�EE, ˛ D 2 0.0039 ˙ 0.0004 0.687 ˙ 0.002 0.256 ˙ 0.004 0.970 ˙ 0.004
�EE, ˛ D 4 0.0026 ˙ 0.0001 0.952 ˙ 0.003 0.296 ˙ 0.004 1.079 ˙ 0.004
�EI 0.0015 ˙ 0.0001 0.926 ˙ 0.003 0.299 ˙ 0.004 1.063 ˙ 0.005
�explore 0.0015 ˙ 0.0001 0.926 ˙ 0.003 0.303 ˙ 0.004 1.069 ˙ 0.005

webpage.4 Here we report on some quantitative experiments. We implemented the
policies �kD1, �kD2, �EE, �EI, �explore simply by evaluating the respective integrals
over a grid. This becomes expensive already for k D 2.

We performed some experiments with Gaussian process beliefs to illustrate and
evaluate the different policies defined in the previous section. The objective is to
find the optimum of a function sampled from a Gaussian process with bandwidth
� D 1

2
. The search is constrained to the interval Œ�1; 1�.

Table 7.2 displays the results when we allow the algorithms to take only T D 10

or T D 5 samples to find the optimum. The objective is the final loss: the difference
between the last sampled value f .xT / and the true optimum of the function. We also
report on the average loss during the T samples. Although this is not the objective
it indicates whether the algorithm tends to sample good points also in intermediate
steps.

4http://userpage.fu-berlin.de/mtoussai/07-bsg/

http://userpage.fu-berlin.de/mtoussai/07-bsg/
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Fig. 7.4 Ten sample functions from a Gaussian process prior with bandwidth � D 1 conditioned
on f .x/ D 0 for x D �0:9; 0; 0:9

Table 7.3 Performance for different policies for finding the
optimum of a function sampled from a GP prior illustrated
in Fig. 7.4. The algorithm is only allowed to take T D 2

samples. Mean and standard deviation are given for 10,000
random functions

Policy Final loss for T D 2

�kD1 0.0144 ˙ 0.0003
�EE, ˛ D 1 0.0116 ˙ 0.0002
�EE, ˛ D 2 0.0116 ˙ 0.0002
�EE, ˛ D 4 0.0116 ˙ 0.0002
�EI 0.0116 ˙ 0.0002
�explore 0.0116 ˙ 0.0002
�kD2 0.0095 ˙ 0.0002

For T D 10 we find that the expected improvement policy �EI and the simple
exploration policy �explore perform best. Both of them are rather exploratory, which
is evident also from the high average loss. In contrast, �EE with ˛ D 1 is less
exploratory, focuses on a (local) optimum earlier, leading to higher final loss but
lower average loss. For comparison we also tested for only T D 5, where the
greedier �EE with ˛ D 1 performs slightly better than the other policies.

Finally, we also want to demonstrate the effect of two-step look-ahead planning.
It is not easy to find a problem class for which this policy performs better than
the others. Here is a slightly contrived example: We sampled random functions
from a GP prior with large bandwidth � D 1 (very smooth functions) which were
additionally conditioned on f .x/ D 0 at the sites x D �0:9; 0; 0:9. Figure 7.4
displays 10 random samples from this prior.

Table 7.3 displays the results for all policies with only T D 2—that is, the
algorithm only has one sample to learn as much as possible about the function
before placing the final sample, which decides on the final loss. First, we find that
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all algorithms �EE, �EI, �explore have the same performance. This is because they
all first sample the site x D �0:45 or x D 0:45, which have maximal entropy, and
then sample the last point using the greedy policy. Hence, they are all equivalent for
T D 2.

The two-step look-ahead policy behaves differently: It first samples a point very
near by x D 0 (approximately x D 0:05). The observation at this point implicitly
allows the algorithm to infer the slope of the true function around x D 0. This
implies a “better informed” GP posterior of the function, which has more certainty
about the function on both sides rather than only on one side of x D 0. As a
consequence, the final (greedy) pick of xT is better than with the other algorithms.

This rather contrived example demonstrates, on the one hand, the intricate
implications of lookahead strategies—how they pick points based on how their
knowledge for future picks is improved. On the other hand, the minimal differences
in performance and given that we had to construct such complicated scenarios to
demonstrate the advantage of a two-step look-ahead strategy argues against such
strategies. Note that �kD2 is computationally orders of magnitude slower than the
other policies.

7.7 Discussion

In this chapter we presented a discussion of three seemingly unconnected topics: No
Free Lunch, POMDPs, and Gaussian processes. However, we hope it became clear
that these topics are closely related.

NFL & Gaussian processes: In our formulation, the NFL condition (7.2) is that
the function prior identically factorizes on any finite subset fx1; ::; xKg � X . Only
if this condition is violated can we hope for an efficient search algorithm. Violation
of this constraint implies that function values on finite subsets are dependent—
a Gaussian process by definition describes exactly this correlation of values on
finite subsets. Therefore, in our view, a Gaussian process is a very natural and
simple model of the violation of NFL conditions. At this point one should note
that, although Gaussian processes are typically formulated for continuous X with
continuous covariance function, they can of course also be applied on discrete
spaces, e.g., with a covariance function depending on the Hamming distance or
other similarity measures.

NFL & POMDPs: The reason we discussed POMDPs in the context of NFL is that
the POMDP framework explicitly states what the optimal search algorithm would
be. In particular, the POMDP framework clarifies that the notion of a belief is a
sufficient representation of all the knowledge gained from previous explorations,
in the sense that the optimal algorithm can be viewed as a policy mapping from
the belief to a new search point. Generally, we do not want to over-stress the
discussion of truly optimal search algorithms. The POMDP framework formulated
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here leads to optimal search (given the assumption of the prior belief). Hutter [4]
has discussed universal optimality, where the role of the prior is replaced by a
complexity measure over algorithms (Solomonoff complexity). In both cases the
computational complexity of evaluating the optimal policy is exponential and the
key is to have good approximate policies. However, the notion of the belief leads
naturally to the existing literature on optimization using heuristics like the expected
improvement policy.

Let us also mention estimation of distribution algorithms (EDAs) [8]. It has been
argued before that EDAs implicitly learn about the problem by shaping the search
distribution [14]. From our perspective, EDAs (and also genetic algorithms) try to
perform two tasks at once with the search distribution: They use it to accumulate
information about the problem (representing where optima might be), and they use
it to describe the next sample point. The belief framework suggests to disentangle
these two issues: The belief is used to represent all knowledge and a separate policy
maps it to a new samples. From a Bayesian perspective the benefit is that there is no
loss in information in the belief update.

Finally, let us discuss related literature. Gutmann [2], Jones [7], and Jones
et al. [6] discuss global optimization using response surfaces (also called surrogates,
or kriging). Our Gaussian process search algorithm is an instance of such global
response surface modelling. However, this work has not made the connection to
POMDPs, NFL and look-ahead planning. Only the maximizing immediate measures
(figures of merit) like the expected improvement has been discussed in this context.

Another branch of research focuses on local models of the fitness function
[3, 10, 15]. These methods are very effective when many samples can be taken
(where a global model would become infeasible). However, look-ahead heuristic
or a well-defined Bayesian belief update has not been discussed in this context.
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