
Chapter 3
Rugged and Elementary Landscapes

Konstantin Klemm and Peter F. Stadler

Abstract The landscape of an optimization problem combines the fitness (or cost)
function f on the candidate set X with a notion of neighborhood on X , typically
represented as a simple sparse graph. A landscape forms the substrate for local
search heuristics including evolutionary algorithms. Understanding such optimiza-
tion techniques thus requires insight into the connection between the graph structure
and properties of the fitness function.

Local minima and their gradient basins form the basis for a decomposition of
landscapes. The local minima are nodes of a labeled graph with edges providing
information on the reachability between the minima and/or the adjacency of their
basins. Barrier trees, inherent structure networks, and funnel digraphs are such
decompositions producing “coarse-grained” pictures of a landscape.

A particularly fruitful approach is a spectral decomposition of the fitness function
into eigenvectors of the graph Laplacian, akin to a Fourier transformation of a real
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function into the elementary waves on its domain. Many landscapes of practical and
theoretical interest, including the Traveling Salesman Problem with transpositions
and reversals, are elementary: Their spectral decomposition has a single non-zero
coefficient. Other classes of landscapes, including k-satisfiability (K-SAT), are
superpositions of the first few Laplacian eigenvectors. Furthermore, the ruggedness
of a landscape, as measured by the correlation length of the fitness function, and
its neutrality, the expected fraction of a candidate’s neighbors having the same
fitness, can be expressed by the spectrum. Ruggedness and neutrality are found
to be independently variable measures of a landscape. Beyond single instances of
landscapes, models with random parameters, such as spin glasses, are amenable to
this algebraic approach.

This chapter provides an introduction into the structural features of discrete
landscapes from both the geometric and the algebraic perspective.

3.1 Introduction

The concept of a fitness landscape originated in the 1930s in theoretical biology
[75, 76] as a means of conceptualizing evolutionary adaptation: A fitness landscape
is a kind of potential function on which a population moves uphill due to the
combined effects of mutation and selection. Thus, natural selection acts like hill
climbing on the topography implied by the fitness function.

From a mathematical point of view, a landscape consists of three ingredients:
a set X of configurations that are to be searched, a topological structure T on X

that describes how X can be traversed, and a fitness or cost function f W X ! R
that evaluates the individual points x 2 X . This generic structure is common to
many formal models, from evolutionary biology to statistical physics and operations
research [5, 26, 40, 41]. The topological structure T is often specified as a move
set, that is, as a function N W X ! P.X/ specifying for each configuration x 2 X

the subset N.x/ � X of configurations that are reachable from x. Usually, the
move set is constructed in a symmetric way, satisfying x 2 N.y/ ” y 2 N.x/.
The configuration space or search space .X;T/ becomes an undirected finite graph
G in this case. Then for each x 2 X , the degree of x is given by deg.x/ D jN.x/j.
We say that G is d -regular for non-negative integer d if deg.x/ D d for all x 2 X .

Without losing generality we assume that optimization strives to find those x 2 X

for which f .x/ is small. Thus, f is interpreted as energy (or fitness with negative
sign), and we are particularly interested in the minima of f . A configuration x 2 X

is a local minimum if f .x/ � f .y/ for all y 2 N.x/. By M we denote the set of all
local minima of the landscape. A local minimum Ox 2 M is global if, for all y 2 X ,
f . Ox/ � f .y/.

The Traveling Salesman Problem (TSP) [22], see Fig. 3.1, may serve as an
example. Given a set of n vertices (cities, locations) f1; : : : ; ng and a (not necessarily
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Fig. 3.1 A small instance (a) of the Traveling Salesman Problem with illustration of three different
move types (b)–(d) described in the main text

symmetric) matrix of distances or travel costs dij, the task is to find the permutation
(tour) � that minimizes the total travel cost

f .�/ D
nX

iD1

d�.i/;�.iC1/ (3.1)

where indices are interpreted modulo n. A landscape arises by imposing a topo-
logical structure on the set Sn of permutations, i.e., by specifying a move set that
determines which tours are adjacent. Often the structure of the problem suggests
one particular move set as natural, while others might look quite far-fetched.
In principle, however, the choice of the move set is independent of the function f .
For the TSP, for instance, three choices come to mind:

1. Exchange (Displacement) moves relocate a single city to another position in the
tour

.1; : : : ; i; i C 1; i C 2; : : : j; j C 1; : : : ; n/

7! .1; : : : ; i; i C 2; : : : j; i C 1; j C 1; : : : ; n/ :

See Fig. 3.1b.
2. Reversals cut the tour in two pieces and invert the order in which one half is

transversed.

.1; : : : ; i; i C 1; i C 2; : : : ; k � 2; k � 1; k; : : : n/

7! .1; : : : ; i; k � 1; k � 2; : : : ; i C 2; i C 1; k; : : : n/ :

See Fig. 3.1c.
3. Transpositions exchange the location of a single city

.1; : : : ; i � 1; i; i C 1; : : : ; k � 1; k; k C 1 : : : n/

7! .1; : : : ; i � 1; k; i C 1; : : : ; k � 1; i; k C 1; : : : n/ :

See Fig. 3.1d.
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3.2 Ruggedness

The notion of rugged landscapes dates back to the 1980s, when Stuart Kauffman
began to investigate these structures in some detail [32]. The intuition is simple.
Once the landscape is fixed by virtue of the move set, optimization algorithms
making local moves w.r.t. this move set will “see” a complex topography of
mountain ranges, local optima, and saddles that influences their behavior. The more
“rugged” this topography, the harder it becomes for an optimization algorithm based
on local search to find the global optimum or even a good solution. Ruggedness can
be quantified in many ways, however [29]:

1. The length distribution of down-hill walks, either gradient descent or so-called
adaptive walks, is easily measured in computer simulations but is hard to deal
with rigorously, see, e.g., [37].

2. Richard Palmer [45] proposed to call a landscape f rugged if the number of local
optima scales exponentially with some measure of system size, e.g., the number
of cities of a TSP. The distribution of local optima is in several cases accessible
by the toolkit of statistical mechanics, see e.g. [50].

3. Barrier trees give a much more detailed view compared to local optima alone.
Gradient walks are implicitly included in barrier tree computations. Section 3.3
of this chapter reviews barrier trees and other concise representations of land-
scapes.

4. Correlation measures capture landscape structure in terms of the time scales on
which the cost varies under a random walk. These involve algebraic approaches
with spectral decomposition, which are the topic of Sects. 3.4 and 3.5.

3.3 Barriers

Optimization by local search or gradient walks is guaranteed to be successful in
a landscape with a unique cost minimum. In all other cases, variations of local
search are more suitable [14,33] when they accept inferior solutions to some extent.
Then the walk eventually overcomes a barrier to pass over a saddle and enters the
basin of an adjacent – possibly lower – local minimum. In this section we formalize
the notions of walks, barriers, saddles, basins, and their adjacency. They form the
basis of coarse-grained representations of landscapes. These representations “live”
on the set of local minima M which is typically much smaller than the set of
configurations X .

We review four such representations. Inherent structure networks contain com-
plete information about adjacency of the gradient walk basins of the local minima.
Barrier trees describe for each pair of local minima the barrier, i.e., the increase in
cost to be overcome in order to travel between the minima. The funnel digraph
displays the paths taken by an idealized search dynamics that takes the exit at
lowest cost from each basin. Valleys were recently introduced to formalize the
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Fig. 3.2 Graphical representations of local minima and saddles for the TSP instance of Fig. 3.1
under transpositions. (a) Local minima (circles) and direct saddles between their basins (y-axis
not drawn to scale). The inherent structure network is the complete graph because a direct saddle
exists for each pair of minima. In the illustration, however, saddles at a cost above 1,400 have been
omitted. (b) The barrier tree for the same landscape. An inner node (vertical line) of the barrier
tree indicates the minimal cost to be overcome in order to travel between all minima in the subtrees
of that node. In (a), the direct saddles relevant for the construction of the barrier tree are drawn as
filled rectangles. (c) Local minima are those TSP tours without neighboring tours (configurations)
of lower cost. Note that this depends on the move set: Under reversals rather than transpositions,
the two rightmost configuration are adjacent. (d) In the funnel digraph, an arc a ! b indicates that
the lowest direct saddle from minimum a leads to minimum b

landscape structure implied by adaptive walks. Figure 3.2 serves as a comprehensive
illustration throughout this section.

3.3.1 Walk and Accessibility

For configurations x; y 2 X , a walk from x to y is a finite sequence of
configurations w D .w0; w1; ; : : : ; wl / with w0 D x, wl D y, and wi 2 N.wi�1/ for
all i 2 f1; 2; : : : ; lg. By Pxy we denote the set of all walks from x to y. We say that
x and y are mutually accessible at level � 2 R, in symbols

x " � # y ; (3.2)
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if there is a walk w 2 Pxy such that f .z/ � � for all z 2 w. The saddle height or
fitness barrier between two configurations x; y 2 X is the smallest level at which x

and y are mutually accessible,

f Œx; y� D minf� 2 Rjx " � # y g : (3.3)

The saddle height fulfills the ultrametric (strong triangle) inequality. Namely, for all
configurations x; y; z 2 X

f Œx; z� � maxff Œx; y�; f Œy; z�g : (3.4)

because the set of walks from x to z passing through y is a subset of Pxz.

3.3.2 Barrier Tree

Equipped with these concepts, let us return to the consideration of local minima.
When restricting arguments to elements of M , the saddle height f W M � M ! R
still fulfills the ultrametric inequality and thereby induces a hierarchical structure on
M [47]. To see this, we use the maximum saddle height

m D maxff Œ Ox; Oy�j Ox; Oy 2 M g (3.5)

of the whole landscape to define a relation on M by

Ox � Oy W, f Œ Ox; Oy� < m : (3.6)

If all local minima are pairwise non-adjacent, � is an equivalence relation on M .
Its transitivity follows directly from the ultrametric inequality for the saddle height.
Unless jM j D 1, there is at least one pair of minima that are not related. Therefore
the relation � generates a partitioning of M into at least two equivalence classes.
The argument may then be applied again to each class containing more than one
element. This recursion of the partitioning into equivalence classes generates the
barrier tree. Its leaves are the singleton classes, i.e., the minima themselves. Each
inner node stands for a (sub-)partitioning at a given saddle height.

Barrier trees serve to reveal geometric differences between landscapes, e.g.,
by measuring tree balance [63]. Figure 3.3 shows an example for the number
partitioning problem [22]. Standard “flooding” algorithms construct the barrier tree
by agglomeration rather than division because the minima and saddle heights are
not known a priori. By scanning the configurations of the landscape in the order
of increasing fitness, local minima are detected and joined by an inner tree node
when connecting walks are observed [52, 73]. Barrier trees can be defined also for
degenerate landscapes where the assumption of non-adjacent local minima is not
fulfilled [17].
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Fig. 3.3 Barrier trees of two fitness landscapes of the same size. Left tree: an instance of the
number partitioning problem of size N D 10. Right tree: an instance of the truncated random
energy model. The trees obtained for the two types of landscapes are distinguishable by measures
of tree imbalance [63]

3.3.3 Basins and Inherent Structure Network

More detailed information about the geometry in terms of local minima is captured
by basins and their adjacency relation. A walk .w0; w1; : : : ; wl / is a gradient walk
(or steepest descent) if each visited configuration wi is the one with lowest fitness
in the closed neighborhood of its predecessor,

f .wi / D minff .x/jx 2 N.wi�1/ [ wi�1g; 1 � i � l : (3.7)

From each starting configuration w0, a sufficiently long gradient walk encounters a
local minimum wl 2 M . If the encountered minimum g.x/ is unique given a starting
configuration x 2 X of a gradient walk, this defines a mapping g W X ! M . In the
case that neighbors with lowest fitness are not unique, ambiguity of gradient walks is
resolved by an additional, e.g., lexicographic ordering on X . The basin or gradient
basin of a local minimum Ox is the set B. Ox/ D g�1. Ox/ of configurations from which
a gradient walk leads to Ox. Each basin is non-empty because it contains the local
minimum itself. Since each configuration x 2 X is in the basin of exactly one local
minimum g.x/, basins are a partitioning of the set X of configurations.

The interface between two local minima Ox; Oy 2 M is the set

I. Ox; Oy/ D f.x; y/jx 2 B. Ox/; y 2 B. Oy/; x 2 N.y/g (3.8)



48 K. Klemm and P.F. Stadler

containing all pairs of adjacent configurations shared between the basins. The direct
saddle height between Ox and Oy is

hŒ Ox; Oy� D min fmaxff .x/; f .y/gj.x; y/ 2 I. Ox; Oy/g : (3.9)

Direct saddle height is lower bounded by saddle height,

hŒ Ox; Oy� � f Œ Ox; Oy� (3.10)

for all Ox; Oy 2 M with non-empty interface. A member of the interface .x; y/ 2
I. Ox; Oy/ is a direct saddle (between Ox and Oy) if its cost is the direct saddle height
maxff .x/; f .y/g D h. Ox; Oy/.

The inherent structure network .M; H/ [13] is defined as a graph with node
set M and edge set H D ff Ox; OygjI. Ox; Oy/ ¤ ;g. An edge thus connects the local
minima Ox and Oy if and only if there is a path from Ox to Oy that lies in the union of
basins B. Ox/ [ B. Oy/. The saddle heights f Œ Ox; Oy� can be recovered from the inherent
structure network by minimizing the maximum values of the direct saddle height
hŒ Op; Oq� encountered along a path in .M; H/ that connects Ox and Oy. We remark,
finally, that some studies use the term “direct saddle” to denote only the subset of
direct saddles for which hŒ Ox; Oy� D f Œ Ox; Oy�, i.e., which cannot be circumvented by
a longer but lower path in .M; H/ [17,61]. Exact computation of inherent structure
networks requires detection of all direct saddles and is thus restricted to small
instances [66]. Efficient sampling methods exist for larger landscapes, e.g. by [38].

For the example in Fig. 3.2, the inherent structure network is the complete graph:
All basins are mutually adjacent. Remarkable graph properties, however, have been
revealed when studying the inherent structure networks of larger energy landscapes
of chemical clusters [13], spin-glass models [7], and NK landscapes [66]. Compared
to random graphs, the inherent structure networks have a large number of closed
triangles (“clustering”), modular structure, and broad degree distributions, often
with power law tails.

3.3.4 Funnel

Besides barrier tree and inherent structure network, another useful graph represen-
tation is the funnel digraph .M; A/ [34]. Here, a directed arc runs from Ox to Oy if the
basins of Ox and Oy have a non-empty interface and

h. Ox; Oy/ D minfh. Ox; Oz/jf Ox; Ozg 2 Eg : (3.11)

Thus from each local minimum Ox an arc points to that neighboring local minimum
Oy that is reached by the smallest direct saddle height. The node Ox has more than one
outgoing arc if more than one neighboring basin is reached over the same minimal
directed saddle height.
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The definition is motivated by stochastic variants of local search such as
Metropolis sampling [39] and simulated annealing [33]. Under the assumption
that the search exits a basin via its lowest saddle with the largest probability, the
most likely sequences of visits to basins are the directed paths of the funnel digraph.
It serves to make precise the concept of a funnel [23, 43, 74]. A local minimum Ox is
in the funnel F.Oz/ � M of a global minimum Oz if there is a directed path from Ox to
Oz on the funnel digraph. Thus the funnel contains all those local minima from which
iterative exits over the lowest barrier eventually lead to the ground state [34].

In the funnel digraph for the small TSP instance in Fig. 3.2c,d, we see that the
funnel consists of the basins of the global minimum itself (cost 1294) and of the
highest local minimum (cost 1389) while the basins of the other three minima
are outside the funnel. Numerical studies with the number partitioning problem [22]
indicate that funnel size tends to zero for large random instances [34].

3.3.5 Valleys

Adaptive walks generalize gradient walks by accepting any fitness-improving steps.
We say that x 2 X is reachable from y 2 X if there is an adaptive walk from y

to x. A valley [61] is a maximal connected subgraph of X such that no point y … W

is reachable from any starting point x 2 W . In contrast to basins, valleys do not
form a hierarchy but rather can be regarded as a community structure of X , see,
e.g., [20]. Instead, they overlap in the upper, high-energy, parts of the landscape,
where adaptive walks are not yet committed to a unique local minimum. The parts
of gradient basins below the saddle points linking them to other basins therefore are
valleys. Conversely, entire gradient basins are always contained in valleys.

The exact mutual relationships among the barrier trees, basins, inherent structure
networks, valleys, etc., are still not completely understood, in particular in the
context of degenerate landscapes.

3.4 Elementary Landscapes

3.4.1 Graph Laplacian

In the previous section we have taken a geometric or topological approach to
analyzing and representing a landscape. The alternative is to adopt an algebraic point
of view, interpreting the landscape as a vector of fitness values. The neighborhood
structure N on the set X of configurations, which index the fitness vector, also needs
an algebraic interpretation. In this contribution we only deal with graphs whose
edges are defined by the (symmetric) move set N W X ! P.X/. The most natural
choice thus are the adjacency matrix A (with entries Axy D 1 if x and y are adjacent,
i.e., y 2 N.x/, and Axy D 0 otherwise) and the incidence matrix H. The latter has
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entries Hex D C1 if x is the “head end” of the edge e, Hex D �1 if x is the “tail
end” of e, and Hex D 0 otherwise. (The assignment of head and tail to each edge is
arbitrary.) The basic idea of algebraic landscape theory is to explore the connections
between the fitness function f and these matrix representations of the search space,
and to use combinations the these algebraic object to derive numerical descriptors
of landscape structure [49].

A convenient starting point is to consider the local variation of the fitness, e.g.,
in the form of fitness differences f .x/ � f .y/ between adjacent vertices y 2 N.x/.
The sum of the local changes

.Lf /.x/ WD
X

y2N.x/

.f .x/ � f .y// (3.12)

defines the Laplacian L as a linear operator associated with the graph on .X; N /

that can be applied to any function f on the nodes of the graph. When we imagine
a spatially extended landscape, e.g., the underlying graph being a lattice, .Lf /.x/

can be interpreted as the local “curvature” of f at configuration x. In particular, the
x-th entry of Lf is negative if x is a local minimum and .Lf /.x/ > 0 for a local
maximum.

Since L is a linear operator, it may also be seen as a matrix. In fact, L is intimately
related to both the adjacency and the incidence matrix: L D D � A, where D is
the diagonal matrix of vertex degrees deg.x/ WD P

y2X Axy, and L D HCH. The
Laplacian is thus simply a representation of the topological structure of the search
space.

3.4.2 Elementary Landscapes

Since L is a symmetric operator (on a finite-dimensional vector space), it can be
diagonalized by finding its eigenfunctions. Let us perform the diagonalization for
the simple and useful case that the graph is an n-dimensional hypercube with
node set X D f�1; C1gn and x 2 N.y/ if and only if x and y differ at exactly
one coordinate. For each set of indices I � f1; : : : ; ng, the Walsh functions are
defined as

wI .x/ D
Y

i2I

xi : (3.13)

Figure 3.4 gives an illustration for the three-dimensional case. The Walsh functions
form an orthogonal basis of R2n

. With a Walsh function of order jI j, each node of
the hypercube has n � jI j neighbors with the opposite value and I neighbors with
the same value. This amounts to

LwI D 2jI jwI : (3.14)
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I={} I={1} I={2} I={3}

I={1,2} I={1,3} I={2,3} I={1,2,3}

Fig. 3.4 The eight Walsh functions of the hypercube in dimension n D 3. Dark and light color of
nodes distinguishes the values C1 and �1

Each Walsh function wI is an eigenvector of L for eigenvalue 2jI j. Now consider a
2-spin glass as a landscape on the hypercube with the cost function

f .x/ D �
X

i;j

Jijxi xj (3.15)

with arbitrary real coefficients Jij. Since xi xj D wi;j .x/ for all x 2 X , we see that
f is a weighted sum of Walsh functions of order 2. Therefore f is an eigenvector
of the Laplacian with eigenvalue 2jI j D 4. This observation generalizes to p-spin
glasses and many other landscapes of interest.

It is convenient to consider landscapes with vanishing average fitness, i.e., instead
of f , we use Qf .x/ D f .x/ � Nf , where Nf D 1

jX j
P

x2X f .x/ is the average cost of
an arbitrary configuration. A landscape is elementary if the zero-mean cost function
Qf is an eigenfunction of the Laplacian of the underlying graph, i.e.,

.Lf /.x/ D
X

y2N.x/

h Qf .x/ � Qf .y/
i

D �k
Qf .x/ (3.16)

Since L D HCH, all eigenvalues are non-negative. In the following, they will be
indexed in non-decreasing order

0 D �0 � �1 � �2 � � � � � �jX j�1 : (3.17)
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Table 3.1 Examples of elementary landscapes

Problem Graph degree � Order Reference

p-spin glass Qn
2 n 2p p Definition

NAES Qn
2 n 4 2 [24]

Weight partitioning Qn
2 n 4 2 [24, 55]

GBP (constrained) Qn
2 n 4 2 [1]

Max cut Qn
2 n 4 2 [1]

Graph ˛-coloring Qn
˛ .˛ � 1/n 2˛ 2 [55]

XY-spin glass Qn
˛ .˛ � 1/n 2˛ 2 [21]

for ˛ > 2: Cn
˛ 2 8 sin2.�=˛/ 2 [21]

Linear assignment � .Sn;T/ n 1 [51]
TSP symmetric � .Sn;T/ n.n � 1/=2 2.n � 1/ 2 [9, 24]

� .Sn; J/ n.n � 1/=2 n 2 [9, 24]
� .An;C3/ n.n � 1/.n � 2/=6 .n � 1/.n � 2/ ? [9]

Antisymmetric � .Sn;T/ n.n � 1/=2 2n 3 [2, 55]
� .Sn; J/ n.n � 1/=2 n.n C 1/=2 O.n/ [2, 55]

Graph matching � .Sn;T/ n.n � 1/=2 2.n � 1/ 2 [55]
Graph bipartitioning J.n; n=2/ n2=4 2.n � 1/ 2 [24, 55, 57]

Qn
˛ is the n-fold Cartesian product of the complete graph K˛ , also known as a Hamming graph.

� .A; ˝/ is the Cayley graph of the group A with generating set ˝, where Sn and An denote
the symmetric and alternating groups, resp., T, J, and C3 are the transpositions, reversals, and
permutations defined by a cycle of length 3, resp. J.p; q/ is a Johnson graph.

First examples of elementary landscapes were identified by Grover and others
[9, 24, 55]. Table 3.1 lists some of them. Additional examples are discussed, e.g.,
by [36, 53, 54, 70]. In most cases, k is small: Qf lies in the eigenspace of one of the
first few eigenvalues of the Laplacian.

Lov Grover [24] showed that, if f is an elementary landscape, then

f . Oxmin/ � Nf � f . Oxmax/ (3.18)

for every local minimum Oxmin and every local maximum Oxmax. This maximum
principle shows that elementary landscapes are in a sense well-behaved: There are
no local optima with worse than average fitness Nf . A bound on the global maxima
in terms of the maximal local fitness differences can be obtained using a similar
argument [12]:

�
ˇ̌
f . Ox/ � Nf

ˇ̌ � deg. Ox/"� ; (3.19)

where "� D maxfx;yg2E jf .x/ � f .y/j is the “information stability” introduced
by [67].

The eigenvalues, �i , convey information about the underlying graph [42]. For
instance, G is connected if and only if �1 > 0. The value of �1 is often called the
algebraic connectivity of the graph G [16]. The corresponding eigenfunctions have
a particularly simple form: The vertices with non-negative (non-positive) values
of f are connected. More generally, a nodal domain of a function g on G is a
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maximal connected vertex set on which g does not change sign. A strong nodal
domain is a maximal connected vertex set on which g has the same strict sign, C
or �. The discrete version of Courant’s nodal domain theorem [6,10,15,46] asserts
that an eigenfunction f to eigenvalue �k (counting multiplicities) has no more than
k C 1 weak and k C mk strong nodal domains, where mk is the multiplicity of �k .
The theorem restricts ruggedness in terms of the eigenvalue. Intuitively, the nodal
domain theorem ascertains that the number of big mountain ranges (and deep sea
valleys) is small for the small eigenvalues of L.

There is, furthermore, a simple quantitative relationship between � and the
autocorrelation function of f of .X;X/ [55]. For a D-regular graph G, we have

r.s/ D .1 � �=D/s (3.20)

r.s/ is the autocorrelation function of f along a uniform random walk on
G [19, 68]. Similar equations can be derived for correlation measures defined in
terms of distances on G [55] and for non-regular graphs [3, 11, 62].

Whitley et al. [71] interpret the eigenvalue equation (3.16) as a statement on the
average fitness of the neighbors of a point,

hf ix D 1

deg.x/

X

y2N.x/

f .x/ (3.21)

and discuss some implications for local search processes. Local conditions for the
existence of improving moves are considered by [70].

3.4.3 Fourier Decomposition

Of course, in most cases, a natural move set T does not make f an elementary
landscape. In case of the TSP landscape, for example, transpositions and reversals
lead to elementary landscapes. One easily checks, on the other hand,

.Lf /.�/ D
X

i;j

�
d�.i/�.iC1/ C d�.iC1/;�.iC2/ C d�.j /�.j C1/

� d�.i/�.iC2/ � d�.j /�.iC1/ � d�.iC1/�.j C1/

�

D 2n.f .�/ � Nf / C nf .�/ �
nX

iD1

d�.i/�.iC2/

(3.22)

which is clearly not of the form a1f .�/ C a0 due to the explicit dependence of the
last term on the next-nearest neighbors w.r.t. � . Exchange moves therefore do not
make the TSP an elementary landscape.
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A Fourier-decomposition-like formalism can be employed to decompose arbi-
trary landscapes into their elementary components [28, 51, 69]:

f D a0 C
n�1X

k>0

akfk (3.23)

where the fk form an orthonormal system of eigenfunctions of the graph Laplacian
(Lfk D �kfk , and a0 D Nf is the average value of the function f ). Let us
denote the distinct eigenvalues of L by N�p, sorted in increasing order starting with
N�0 D �0 D 0. We call p the order of the eigenvalue N�p. The amplitude spectrum of
f W X ! R is defined by

Bp D
X

kW�kDN�p

jakj2
� X

k>0

jakj2 : (3.24)

By definition, Bp � 0 and
P

p Bp D 1. The amplitude measures the relative
contribution of the eigenspace of the eigenvalue with order p to the function f .
Of course, a landscape is elementary if and only if Bp D 1 for a single order and 0

for all others. For Ising spin-glass models, for example, the order equals the number
of interacting spins, Table 3.1.

In some cases, landscapes are not elementary but at least exhibit a highly
localized spectrum. The landscape of the “Low-Autocorrelated Binary String
Problem”, for instance, satisfies Bp D 0 for p > 4 [44]. Quadratic assignment
problems are also superpositions of eigenfunctions of quasi-abelian Cayleygraphs of
the symmetric group with the few lowest eigenvalues [51]. A similar result holds for
K-SAT problems. An instance of K-SAT consists of n Boolean variables xi , and a
set of m clauses each involving exactly K variables in disjunction. The cost function
f .x/ measures the number of clauses that are satisfied. [64] showed that Bp D 0 for
p > K . Similar results are available for frequency assignment problems [72], the
subset sum problem [8], or genetic programming parity problems [35]. Numerical
studies of the amplitude spectra of several complex real-world landscapes are
reported in [4, 25, 51, 65]. A practical procedure for algebraically computing the
decomposition of a landscape into its elementary constituents is discussed in [8].
This approach assumes that f .x/ is available as an algebraic equation and that an
orthonormal basis ffkg is computable.

A block-model [70, 71] is a landscape of the form

f .x/ D
X

q2Q.x/

wq (3.25)

where Q is a set of “building blocks” with weights wq . The subset Q.x/ � Q

consists of the blocks that contribute to a particular state x. For instance, the TSP
is of this type: Q is the collection of intercity connections, and wq is their length.
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Necessary conditions for block models to be elementary are discussed, e.g., by [70].
Equation (3.25) can be rewritten in the form

f .x/ D
X

q2Q
wq#q.x/ (3.26)

where #q.x/ D 1 if q 2 Q.x/, and #q.x/ D 0 otherwise. They form a special case
of the additive landscapes considered in the next section.

3.5 Additive Random Landscapes

Many models of landscapes contain a random component. In spin-glass Hamiltoni-
ans of the general form

f .� / D
X

i1<i2<���<ip

ai1;i2;:::;ip �1�2 : : : �ip (3.27)

with n Ising spin variables �i D ˙1, the coefficients ai1;i2;:::;ip are usually
considered as random variables drawn from some probability distribution. Similarly,
the “thermodynamics” of TSPs can be studied with the distances wq in Eq. (3.25)
interpreted as random variables. [48,58] studied this type of model in a more general
setting motivated by Eq. (3.26).

Let #q W X ! R, q 2 I , be a family of fitness functions on X , where I is
some index set, and let cq , q 2 I , be independent, real-valued, random variables.
We consider additive random fitness functions of the form

f .x/ D
X

q2I

cq#q.x/ (3.28)

on G D .X;T/. The associated probability space is referred to additive random
landscape (a.r.l.) [48]. An a.r.l. is uniform if (1) the cq , q 2 I , are independently
and identically distributed (i.i.d.) and (2) there are constants b0 and b1 such thatP

x2V #q.x/ D jV jb0 and
P

x2V #q.x/2 D jV jb1 independent of q. An a.r.l. is
strictly uniform if, in addition,

P
q #q.x/ D b2 and

P
q #q.x/2 D b3 independently

of x 2 X .
For block models, #q.x/ D #q.x/2. Hence a block model is uniform if each

block is contained in the same number configurations and is strictly uniform if
in addition, jQ.x/j is independent of x. Furthermore, every a.r.l. with Gaussian
measure is additive. This follows immediately by the Karhunen-Loève theorem
[30], using the fact that uncorrelated jointly normal distributed variables are already
independent. Random versions of elementary landscapes, i.e., those with i.i.d.
Fourier coefficients, are of course also a.r.l.s.
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Maybe the most famous a.r.l.s are Kauffman’s NK landscape models. Consider
a binary “genome” x of length n. Each site is associated with a site fitness that
is determined from a set of K sequence positions to which position i is epistati-
cally linked. These state-dependent contributions are usually taken as independent
uniform random variables [31]. In order to see that an NK model is an a.r.l., we
introduce the functions

#i;y.i/.x/ D
jy.i/jY

kD0

ıy.i/k ;xk
(3.29)

where y.i/k denotes a particular (binary) state of position k in the epistatic
neighborhood y.i/ of i . In other words, #i;y.i/.x/ D 1 if the argument x coincides
on the K epistatic neighbors of i with a particular binary pattern y.i/. It is not hard
to check that NK models are strictly uniform [48].

An important observation in this context is that short-range spin-glass models
can be understood as a.r.l.s for which the p-spin eigenfunctions (of the Laplacian of
the Boolean hypercube)

#i1i2:::ip .� / D
pY

kD1

�ik (3.30)

take on the role of the characteristic functions f#j g. The coefficients are then taken
from a mixed distribution of the form �.c/ D .1 � 	/Gauss.0;s/.c/ C 	ı.c/. Thus
there is a finite probability p that a coefficient cj vanishes. In this setting one
can easily evaluate the degree of neutrality, i.e., the expected fraction of neutral
neighbors


.x/ D 1

jN.x/jE
�ˇ̌fy 2 N.x/ W f .x/ D f .y/gˇ̌� (3.31)

One finds


.x/ D 1

D

X

y2N.x/

	cy .x/ cy.x/ WD jfq 2 I j#q.x/ ¤ #q.y/gj (3.32)

which, for the case of the p-spin models can be evaluated explicitly as 
.x/ D
	.n�1

p�1/ [48]. The value of 
 can thus be tuned by 	, the fraction of vanishing
coefficients. On the other hand, the Laplacian eigenvalue and hence the algebraic
measures of ruggedness depend only on the interaction order p. Hence, ruggedness
and neutrality are independent properties of landscapes.

Elementary landscapes have restrictions on “plateaus”, that is, on connected
subgraphs on which the landscape is flat. In particular, Sutton et al. [64] show for
3-SAT that plateaus cannot contain large balls in G unless their fitness is close to
average. A more general understanding of neutrality in elementary landscapes is
still missing, however.
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Fig. 3.5 Empirically, the
number N of local optima
in many landscape scales
exponentially with system
size n. The values of
	 WD limn!1

1
n

logN.n/

can be estimated surprisingly
accurately by the correlation
length conjecture for
*-isotropic landscapes (�)
and nearly *-isotropic
landscapes (N) (Data
are taken from [58])

There is a close connection between the Fourier decomposition of a (random)
landscape and a “symmetry” property of random fields: Stadler and Happel [58] call
a random field *-isotropic if its covariance matrix C is a polynomial of the adjacency
matrix A of the underlying graph. The interest in this symmetry property arises from
the observation that *-isotropy is equivalent to three regularity conditions on the
distributions of the Fourier coefficients:

1. EŒak� D 0 for k ¤ 0.
2. CovŒak; aj � WD EŒakaj � � EŒak�EŒaj � D VarŒak�ıkj .
3. VarŒak� D VarŒaj � if 'k.x/ and 'j .x/ are eigenfunctions to the same eigenvalue

of the graph Laplacian.

In Gaussian case, *-isotropy also has an interpretation as a maximum entropy
condition: Gaussian random fields satisfying these three conditions maximize
entropy subject to the constraint of a given amplitude spectrum [56].

An interesting empirical observation in this context is the correlation length
conjecture [59]. It states that we should expect about one local optimum within
a ball B in G whose radius r is given by the distance covered by random walk of
length ` on G, where

` D
1X

sD0

r.s/ (3.33)

is the correlation length of the landscape. This simple rule yields surprisingly
accurate estimates of the number of local optima in isotropic and nearly isotropic
landscapes, see Fig. 3.5. The accuracy of the estimate seems to decline with
increasing deviations from *-isotropy [21, 44, 58].
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3.6 Outlook

Most of the theoretical results for fitness landscapes have been obtained for very
simple search processes, i.e., for landscapes on simple graphs. In the field of
genetic algorithms, on the other hand, the search operators themselves are typically
much more complex, involving recombination of pairs of individuals drawn from a
population. A few attempts have been made to elucidate the mathematical structure
of landscapes on more general topologies [18, 60, 61], considering generalized
versions of barrier trees and basins. A generalization of the Fourier decomposition
and a notion of elementary landscapes under recombination was explored in [62],
introducing a Markov chain on X that in a certain sense mimics the action of
crossover. In this formalism, a close connection between elementary landscapes and
Holland’s schemata [27] becomes apparent. It remains a topic for future research,
however, if and how spectral properties of landscapes can be formulated in general
for population-based search operators in which offsprings are created from more
than one parent.

Despite the tentative computational results that suggest a tight connection
between spectral properties of a landscape, statistical features of the Fourier
coefficients, and geometric properties such as the distribution of local minima, there
is at present no coherent theory that captures these connections. We suspect that
a deeper understanding of relations between these different aspects of landscapes
will be a prerequisite for any predictive theory of the performance of optimization
algorithms on particular landscape problems.
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