
Natural Computing Series

Yossi Borenstein
Alberto Moraglio Editors

Theory and
Principled
Methods for
the Design of
Metaheuristics

Natural Computing Series

Series Editors: G. Rozenberg
Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink

Leiden Center for Natural Computing

Advisory Board: S. Amari G. Brassard K.A. De Jong C.C.A.M. Gielen
T. Head L. Kari L. Landweber T. Martinetz Z. Michalewicz M.C. Mozer
E. Oja G. Păun J. Reif H. Rubin A. Salomaa M. Schoenauer
H.-P. Schwefel C. Torras D. Whitley E. Winfree J.M. Zurada

For further volumes:
http://www.springer.com/series/4190

http://www.springer.com/series/4190

Yossi Borenstein � Alberto Moraglio
Editors

Theory and Principled
Methods for the Design
of Metaheuristics

123

Editors
Yossi Borenstein
VisualDNA
London
United Kingdom

Series Editors
G. Rozenberg (Managing Editor)

Th. Bäck, J.N. Kok, H.P. Spaink
Leiden Center for Natural Computing
Leiden University
Leiden, The Netherlands

A.E. Eiben
Vrije Universiteit Amsterdam
The Netherlands

Alberto Moraglio
University of Birmingham

School of Computer Science
Birmingham
United Kingdom

ISSN 1619-7127 Natural Computing Series
ISBN 978-3-642-33205-0 ISBN 978-3-642-33206-7 (eBook)
DOI 10.1007/978-3-642-33206-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013956610

c� Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com

For Aloe, Annette, and Shlomo—Y.B.

For Fumiyo, Giuseppina, and
Giuseppe—A.M.

Foreword

I was very happy and excited when I was invited to write a foreword for the book
“Theory and Principled Methods for the Design of Metaheuristics” by Alberto
Moraglio and Yossi Borenstein. There are several reasons for this.

Firstly, the focus of the book—bridging the gap between theory and practice—
is an exceptionally important and timely topic in the field of metaheuristics and is
one that is very dear to me. Despite numerous attempts to change this, by and large
theoreticians and practitioners live on different planets. Often theoretical studies
on metaheuristics are hardly applicable to real-world problems: so why should
practitioners take notice? Conversely, understanding theoretical results requires
some discipline and effort, and I must say that practitioners, often unjustifiably, do
not think that what they can learn from theory is worth the investment of their time,
when in fact it is. My feeling is that this book will be an important reference in this
area from which both theoreticians and practitioners can learn much.

Secondly, I was really impressed with the list of contributors to this edited
book. This includes many of the most influential and respected researchers on
metaheuristics. This book is a fantastic fusion of their collective knowledge. In
terms of both contributions to the science and engineering of metaheuristics and
inspiration for future researchers and practitioners, this book appears to have been a
resounding success.

Finally, not too long ago, both Alberto and Yossi were doctoral students under
my supervision. They were both exceptionally good students—independent thinkers
with sharp minds and a strong motivation and will. It is both very satisfying and
a source of inspiration for me to see them actively working with a number of
world-class researchers on casting light on some of the most difficult yet crucially
important issues in metaheuristics and much beyond, at a time when my own will is
faltering.

I am sure I will learn a lot from studying this volume in detail, and I am sure
many others, practitioners and theoreticians alike, can gain much from doing the
same—Yossi and Alberto, thank you for having put together such a high-profile and
inspiring volume.

Colchester, Essex, UK Riccardo Poli

vii

Preface

Metaheuristics and evolutionary algorithms in particular are adaptable optimization
frameworks that are routinely and successfully applied to hard real-world problems.
Intuitively, they seem to capture some fundamental biological property which makes
them inherently good general problem solvers. At the same time, the informal way
in which metaheuristics are defined and tailored to each problem can lead to various
misconceptions. More than anything else, their successful application is often the
outcome of a long trial-and-error process to identify a good problem-specific design
followed by extensive parameter tuning. Ideally, theoretical studies should rectify
this situation by explaining how, when, and why metaheuristics work and providing
guidelines for their successful design and optimal parameter choice. However, the
challenge is huge: mathematical analysis requires time and effort even for very
simple scenarios, whereas in practice problems as well as algorithms are quite com-
plex and subject to rapid change. The different motivations—practical applications
vs. mathematical analysis—lead to distinct subcommunities with different research
cultures which rarely communicate with one another.

The dialog between theory and practice is very important to us. We organized a
workshop at Parallel Problem Solving from Nature (PPSN) on this subject and later
edited a special issue of the Evolutionary Computation Journal (ECJ). Our study is
theoretical, but we always made an effort to identify and promote potential practical
applications. In this book, rather than focusing on our own work, we collected
several theoretical and principled methods that when strung together we believe
indicate a viable route towards bridging theory and practice. The book outlines
the contribution of current theoretical work to practical problems, points to various
theoretical approaches that have the potential to have a real impact on practice in the
future, and, at the same time, provides principled methods that can be applied now
to make empirical work more rigorous. It is divided into four themes: the first three
are related to theory and the last one to practice.

ix

x Preface

The Story Told in the Book

The wildest dream of those working with metaheuristics is to have a single universal
search algorithm that could be applied unchanged to any problem and that would
always deliver the optimal solution, efficiently. Claims along this line have been
made in the past about genetic algorithms. It is clear, nowadays, that such an
algorithm does not exist. One of the roles of theory is to defy claims of the sort.
In the section “Theory for Drawing the Line,” we give two examples of theoretical
results that show what is not possible.

Results such as the no-free-lunch theorems show that it is necessary to make a
compromise between the class of problems that a search algorithm is applied to and
its overall expected performance. The most common counterargument to no-free-
lunch theorems is that problems of practical interest are a very small subclass of all
possible problems, and commonly used metaheuristics do well exactly on this class.
This argument, however, begs the question of what really accounts for an interesting
problem. In the section “Relevant Scope of Problems,” we give three examples for
possible ways of defining formally general classes of real-world problems.

The requirement to match problem class and search algorithm can be also looked
at the other way around. Given a not too large rigorously defined class of problems,
in principle it could be possible to design a search algorithm that is provably good
for this class. In the section “Top-Down Principled Design of Search Algorithms,”
we give three examples of works that pursue this line of investigation.

The outline of a theory given above (i.e., formally defining an interesting general
class of problems and then, accordingly, developing an optimal search algorithm for
this class) has the potential to be the ultimate tool for practitioners. In principle,
once the practitioner identifies a problem as a specific case of a more general
class, he/she will have a choice of different optimal search algorithms designed
for that class with guaranteed expected optimization time. Unfortunately, it is very
challenging to find a balance between a class of problems which is broad enough
to be practically interesting and yet is focused enough to admit an efficient search
algorithm. Therefore, it is difficult to estimate when such a vision will become a
practicable reality.

For the time being, it is therefore necessary to embrace an experimental approach
to the application of metaheuristics to specific problems. Nonetheless, existing
theory can be a guide for good practice. The section “Principled Practice” is
about reasoned and systematic approaches to setting up experiments, metaheuristic
adaptation to the problem at hand, and parameter settings. We give three examples
of such works.

Preface xi

Overview of the Chapters

Theory for Drawing the Line

Knowing what is not possible avoids tempting but hopeless lines of research. The
first two contributions present theoretical results that were developed as a response
to empirical attempts to chase chimeras.

In the first chapter, “No Free Lunch Theorems: Limitations and Perspectives of
Metaheuristics,” Christian Igel reviews the no-free-lunch theorems for search and
optimization, and their implications for the design of metaheuristics are discussed.
The no-free-lunch theorems show that it is not possible to develop a black-box
search algorithm that is universally better than any other on every problem. Search
algorithms must be tailored to the problem class at hand using prior knowledge to
deliver good performance.

Fabien Teytaud and Olivier Teytaud consider in the second chapter, “Conver-
gence Rates of Evolutionary Algorithms and Parallel Evolutionary Algorithms,”
a large family of search algorithms that uses comparisons rather than absolute
fitness values in the selection process. The focus on comparisons—even without
considering specific classes of problems—is sufficient to demonstrate advantages
in terms of robustness and, at the same time, drawbacks in terms of diminished
performance. Practical implications of these results for evolutionary algorithms on
parallel machines are discussed.

Relevant Scope of Problems

In order to design a “better than random search” algorithm, it is necessary to
restrict the scope of the problems one considers. If the scope is too large, the
gain in performance may be not practically relevant. If the scope is too narrow,
the search algorithm may not be of any general interest (other than to the very
specific problem at hand). If the scope excludes real-world problems, it will not be
interesting, even if it encompasses a fairly large number of problems and it works
substantially better than other algorithms on this class of problems. The scope needs
to be defined rigorously; this will make it possible to: avoid improper claims, be a
starting point for devising search algorithms matching it, and serve as a starting
point to prove general results (on the performance of search algorithms) on this
class of problems. The following three contributions describe research attempting
to identify interesting classes of problems.

In Chap. 3, “Rugged and Elementary Landscapes,” Konstantin Klemm and Peter
F. Stadler provide an introduction to the structural features of discrete fitness
landscapes from both the geometric and the algebraic perspectives. In particular, the
chapter focuses on elementary landscapes, which are a class of fitness landscapes
that encompass several important real-world problems.

xii Preface

In Chap. 4, “Single-Funnel and Multi-funnel Landscapes and Subthreshold-
Seeking Behavior,” Darrell Whitley and Jonathan Rowe introduce the classes of
single-funnel and multi-funnel landscapes. These classes of problems are quite
large; however, they capture the characteristics of many typical real-world problems.
They show that a simple subthreshold-seeker algorithm performs provably better
than random search on these classes.

Chapter 3 introduces an important class of problems but without devising a better
than random search algorithm for that class. Chapter 4 provides such an algorithm
for a very large class of problems; however, the size of this class limits the potential
performance of the algorithm. In Chap. 5 “Black-Box Complexity for Bounding the
Performance of Randomized Search Heuristics,” Thomas Jansen considers more
specific classes of problems and provides optimal randomized search heuristics
for those problems. This chapter highlights the importance of focusing on specific
classes of problems. It also exemplifies, using the notion of black-box complexity,
how one can theoretically prove optimality for black-box algorithms (and hence
make any attempts to design better algorithms redundant).

Top-Down Principled Design of Search Algorithms

The features of the class of problems considered can be used to derive in a principled
way search algorithms that, exploiting these properties, reach the best possible
(average) result on the considered class. For example, for a strictly unimodal fitness
landscape, we might want to use a steepest-descent local search algorithm. This way,
we take advantage of the special feature of this problem—that any local optimum
reached from any starting point is the global optimum. The first two contributions
illustrate how to derive a search algorithm that is optimally matched in a certain
sense with a probabilistic class of functions. Rather than considering an explicit
class of problems, the third contribution shows how the well-known Covariance
Matrix Adaptation Evolution Strategy (CMA-ES) was derived by exploiting a
desirable property of such class.

In Chap. 6, “Designing an Optimal Search Algorithm with Respect to Prior
Information,” Olivier Teytaud and Emmanuel Vazquez consider three approaches
to derive an optimal search algorithm for a class of functions: experimentation (i.e.,
parameter tuning), a mathematical approach based on reinforcement learning, and
a simplified version of the latter with more reasonable computational cost based on
Gaussian processes.

In Chap. 7, “The Bayesian Search Game,” Marc Toussaint draws links between
no-free-lunch theorems that, interpreted inversely, lay the foundation of how to
design search heuristics that exploit prior knowledge about the function, partially
observable Markov decision processes and their approach to the problem of sequen-
tially and optimally choosing search points, and the use of Gaussian processes as a
representation of belief, i.e., knowledge about the problem.

In Chap. 8, “Principled Design of Continuous Stochastic Search: From Theory
to Practice,” Nikolaus Hansen and Anne Auger derive the well-known covariance

Preface xiii

matrix adaptation evolution strategy, which has been shown to work very well in
continuous optimization occurring in practice. They show how this algorithm was
developed based only on a few fundamental principles—namely, maximal entropy,
unbiasedness, maintaining invariance, and, under these constraints, exploiting all
available information and solving simple functions reasonably fast.

Principled Practice

The literature is rich with an ever-increasing number of new metaheuristics that have
demonstrated, one way or another, their potential usefulness. Albeit, metaheuristics
are far from being plug-and-play friendly: Given a problem, one has initially to
choose which metaheuristic to use. Then, as metaheuristics are not ready-made
search algorithms, it is necessary to spend a considerable amount of time on
adapting the operators for the particular problem domain and tuning the parameters.
The final three contributions suggest how to address these more practical issues in a
reasoned and systematic way.

In Chap. 9, “Parsimony Pressure Made Easy: Solving the Problem of Bloat in
GP,” Riccardo Poli and Nicholas Freitag McPhee use Price’s theorem to characterize
mathematically the size evolution of programs and to derive theoretical results that
show how to practically and optimally use the parsimony pressure method to achieve
complete control over the growth of the programs in a population.

In Chap. 10, “Experimental Analysis of Optimization Algorithms: Tuning and
Beyond,” Thomas Bartz-Beielstein and Mike Preuss present a tutorial on method-
ological approaches for experimental research in evolutionary computation and
metaheuristic optimization.

In the last contributed chapter entitled “Formal Search Algorithms + Problem
Characterizations = Executable Search Strategies,” Patrick D. Surry and Nicholas
J. Radcliffe present a principled way to derive search operators for nonstandard
solution representations which also takes into account the structure of the problem
at hand.

London, UK Yossi Borenstein
July 2012 Alberto Moraglio

Acknowledgements

We would like to express our gratitude to the following referees who gave their time
and energy to review the chapters of the book ensuring their quality:

Dimo Brockhoff Per Kristian Lehre
Ying-Ping Chen Guanzhou Lu
Marco Chiarandini Yusuke Nojima
Cecilia Di Chio Pietro Oliveto
Tobias Friedrich Mike Preuss
Mario Giacobini Ramon Sagarna
Mario Graff Jonathan Shapiro
Li Hui Terence Soule
Christian Igel Peter F. Stadler
Thomas Jansen Olivier Teytaud
Colin Johnson Marc Toussaint
Bryant A. Julstrom Carsten Witt
Yong-Hyuk Kim Yourim Yoon
Dario Landa-Silva

xv

Contents

1 No Free Lunch Theorems: Limitations and Perspectives
of Metaheuristics . 1
Christian Igel

2 Convergence Rates of Evolutionary Algorithms
and Parallel Evolutionary Algorithms . 25
Fabien Teytaud and Olivier Teytaud

3 Rugged and Elementary Landscapes . 41
Konstantin Klemm and Peter F. Stadler

4 Single-Funnel and Multi-funnel Landscapes
and Subthreshold-Seeking Behavior . 63
Darrell Whitley and Jonathan Rowe

5 Black-Box Complexity for Bounding the Performance
of Randomized Search Heuristics . 85
Thomas Jansen

6 Designing an Optimal Search Algorithm with Respect
to Prior Information . 111
Olivier Teytaud and Emmanuel Vazquez

7 The Bayesian Search Game. 129
Marc Toussaint

8 Principled Design of Continuous Stochastic Search: From
Theory to Practice . 145
Nikolaus Hansen and Anne Auger

9 Parsimony Pressure Made Easy: Solving the Problem
of Bloat in GP . 181
Riccardo Poli and Nicholas Freitag McPhee

xvii

xviii Contents

10 Experimental Analysis of Optimization Algorithms:
Tuning and Beyond . 205
Thomas Bartz-Beielstein and Mike Preuss

11 Formal Search Algorithms + Problem Characterisations =
Executable Search Strategies . 247
Patrick D. Surry and Nicholas J. Radcliffe

List of Contributors

Anne Auger INRIA Saclay – Île-de-France, Orsay, France

Thomas Bartz-Beielstein Faculty of Computer Science and Engineering Science,
Institute of Computer Science, Cologne University of Applied Sciences, Cologne,
Germany

Nikolaus Hansen INRIA Saclay – Île-de-France, Orsay, France

Christian Igel Department of Computer Science, University of Copenhagen,
Copenhagen, Denmark

Thomas Jansen Department of Computer Science, Aberystwyth University,
Aberystwyth, UK

Konstantin Klemm Bioinformatics Group, Department of Computer Science,
Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig,
Germany

Nicholas Freitag McPhee Division of Science and Mathematics, University of
Minnesota, Morris, MN, USA

Riccardo Poli School of Computer Science and Electronic Engineering, University
of Essex, Colchester, Essex, UK

Mike Preuss Algorithm Engineering, Department of Computer Science, TU
Dortmund, Dortmund, Germany

Nicholas J. Radcliffe Stochastic Solutions Limited, Edinburgh, UK
Department of Mathematics, University of Edinburgh, Edinburgh, UK

Jonathan Rowe Department of Computer Science, University of Birmingham,
Birmingham, UK

Peter F. Stadler Bioinformatics Group, Department of Computer Science, Inter-
disciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany

xix

xx List of Contributors

Fraunhofer Institut für Zelltherapie und Immunologie, Leipzig, Germany
Department of Theoretical Chemistry, University of Vienna, Wien, Austria
Santa Fe Institute, Santa Fe, NM, USA

Patrick D. Surry Portrait Software, Boston, MA, USA

Fabien Teytaud TAO, Inria Saclay IDF, LRI, University Paris-Sud, Paris, France

Olivier Teytaud TAO, Inria Saclay IDF, LRI, University Paris-Sud, Paris, France

Marc Toussaint Machine Learning & Robotics Lab, Free University of Berlin,
Berlin, Germany

Emmanuel Vazquez Department of Computer Science and Information Engineer-
ing, National University of Tainan, Tainan, Taiwan
SUPELEC, Gif-sur-Yvette, France

Darrell Whitley Department of Computer Science, Colorado State University,
Fort Collins, CO, USA

Chapter 1
No Free Lunch Theorems: Limitations
and Perspectives of Metaheuristics

Christian Igel

Thus not only our reason fails us in the discovery of the ultimate
connexion of causes and effects, but even after experience has
informed us of their constant conjunction, it is impossible for us
to satisfy ourselves by our reason, why we should extend that
experience beyond those particular instances, which have fallen
under our observation. We suppose, but are never able to prove,
that there must be a resemblance betwixt those objects, of which
we have had experience, and those which lie beyond the reach of
our discovery. (David Hume, 1739 [10, 14])

Abstract The No Free Lunch (NFL) theorems for search and optimization are
reviewed and their implications for the design of metaheuristics are discussed.
The theorems state that any two search or optimization algorithms are equivalent
when their performance is averaged across all possible problems and even over
subsets of problems fulfilling certain constraints. The NFL results show that if
there is no assumption regarding the relation between visited and unseen search
points, efficient search and optimization is impossible. There is no well-performing
universal metaheuristic, but the heuristics must be tailored to the problem class at
hand using prior knowledge. In practice, it is not likely that the preconditions of
the NFL theorems are fulfilled for a problem class and thus differences between
algorithms exist. Therefore, tailored algorithms can exploit structure underlying the
optimization problem. Given full knowledge about the problem class, it is, in theory,
possible to construct an optimal algorithm.

C. Igel (�)
Department of Computer Science, University of Copenhagen, Universitetsparken 5,
2100 Copenhagen, Denmark
e-mail: igel@diku.dk

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__1,
© Springer-Verlag Berlin Heidelberg 2014

1

mailto:igel@diku.dk

2 C. Igel

Table 1.1 All possible functions f0; 1g2 ! f0; 1g, which will be used as examples throughout
this chapter

.x1; x2/ f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

.0; 0/ 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

.0; 1/ 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

.1; 0/ 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

.1; 1/ 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

fantasy algorithm

specialized algorithm

random search w/o replacement

pe
rf

or
m

an
ce

m
ea

su
re

space of functions
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

Fig. 1.1 Distribution of algorithm performance over a discrete space of problems. For random
search without replacement the average performance on a function is shown. A performance profile
such as depicted for the “fantasy algorithm” is not possible if the space has the property of being
closed under permutation (e.g., as in the case of the problems shown in Table 1.1)

1.1 Introduction

Metaheuristics such as evolutionary algorithms, simulated annealing, swarm algo-
rithms, and tabu search are general in the sense that they can be applied to any
objective (target of fitness) function f W X ! Y, where X denotes the search space
and Y a set of totally ordered cost-values. The goal of designing metaheuristics is
to come up with search or optimization methods that are superior to others when
applied to instances of a certain class of problems. In this chapter, we ask under
which conditions can one heuristic be better than another at all and we derive
answers based on the No Free Lunch (NFL) theorems.

Example 1.1. Let us consider all objective functions mapping from some finite
domain X to some finite set of values Y, for example, those given by all functions
f0; 1g2 ! f0; 1g listed in Table 1.1. Figure 1.1 depicts the performance of three
algorithms over this set of functions. Performance could, for example, be measured
in terms of the number of objective function evaluations needed to find the optimum

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 3

or by the quality of the best solution found in m steps (or by any other measure
consistent with the definition given in the next section). The baseline is given by
the average performance of a random search algorithm that picks search points
uniformly at random without replacement (i.e., every point is visited only once).
A highly specialized algorithm – which has been developed for many years based
on extensive domain knowledge – may have a performance profile as indicated by
the triangles. It performs extremely well on a very few problems, but very badly on
all the others. Now, would it not be great to come up with an algorithm that performs
well, in particular, better than random search, across all problems as indicated by
the circles in Fig. 1.1? Could this be achieved by designing a metaheuristic using
principled methods? Unfortunately, the answer to these questions is no.

The NFL theorem for optimization – and we do not want to distinguish between
search and optimization in this chapter – roughly speaking, states that all non-
repeating search algorithms have the same mean performance when averaged
uniformly over all possible objective functions f W X ! Y [6, 7, 21, 24, 35, 36].
In practice, of course, algorithms need not perform well on all possible functions,
but only on a subset that arises from the application at hand.

In this chapter, we discuss extensions and implications of this fundamental
result. In the next section, we introduce the basic notation and formally state the
original NFL theorem as well as some of its refinements, in particular NFL results
for restricted problem classes [20, 28, 29]. Section 1.3 discusses the optimization
scenario underlying these theorems. Section 1.4 studies how many problem classes
fulfill the prerequisites for a NFL result and if these problem classes are likely to
be observed in real-world applications. It ends with a discussion of the Almost NFL
theorem [6]. In the more research-oriented Sect. 1.5 the link between optimization
problems and Markov decision processes is established, and it is shown how
to construct optimal algorithms in this framework. Finally, the main results are
summarized and further general conclusions are drawn.

1.2 The NFL Theorem for Search

In the following, we first fix the notation before we state the basic NFL theorem and
its extensions.

1.2.1 Basic Definitions

Let us assume a finite search space X and a finite set of cost-values Y. Let F be the
set of all objective functions f W X ! Y to be optimized (also called target, fitness,
energy, or cost functions). NFL theorems make statements about non-repeating
search algorithms (referred to as algorithms) that explore a new point in the search

4 C. Igel

performance measure

non-repeating black-box search algorithm a

target function

Fig. 1.2 Scheme of the optimization scenario considered in NFL theorems. A non-repeating
black-box search algorithm a chooses a new exploration point in the search space depending on the
sequence Tm of the already visited points with their corresponding cost-values. The target function
f returns the cost-value of a candidate solution as the only information. The performance of a

is determined using the performance measure c, which is a function of the sequence Y.f; m; a/

containing the cost-values of the visited points

space depending on the history of previously visited points and their cost-values.
Non-repeating means that no search point is evaluated more than once. Let the
sequence Tm D h.x1; f .x1//; .x2; f .x2//; : : : ; .xm; f .xm//i represent m pairs of
different search points xi 2 X, 8i; j W xi 6D xj and their cost-values f .xi / 2 Y. An
algorithm a appends a pair .xmC1; f .xmC1// to this sequence by mapping Tm to a
new point xmC1 with xmC1 6D xi for i D 1; : : : ; m.

We assume that the performance of an algorithm a after m � jXj iterations with
respect to a function f depends only on the sequence

Y.f; m; a/ D hf .x1/; f .x2/; : : : ; f .xm/i

of cost-values the algorithm has produced. Let the function c denote a performance
measure mapping sequences of cost-values to the real numbers. Figure 1.2 depicts
the optimization scenario assumed in NFL theorems.

Example 1.2. In the case of function minimization a performance measure that
returns the minimum cost-value in the sequence could be a reasonable choice.
Alternatively, the performance measure could return the number of objective
function evaluations that were needed to find a search point with a cost-value below
a certain threshold.

In general, one must distinguish between an algorithm and its search behavior.
For finite X and Y and thus finite F, there are only finitely many different non-
repeating, deterministic search behaviors. For a given function f , there exist only
jXjŠ=.jXj � m/Š different search behaviors corresponding to the possible orders
in which the search points can be visited. In practice, two algorithms that always
exhibit the same search behavior (i.e., produce the same sequence Tm given the
same function f and number of steps m) may differ, for example, in their space and
run-time requirements (see Sect. 1.3.1).

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 5

Example 1.3. Given some function f W f0; 1g2 ! f0; 1g, there are 12 possible
search behaviors for two-step search resulting in the following sequences:
h..0; 0/; f ..0; 0///; ..0; 1/; f ..0; 1///i, h..0; 0/; f ..0; 0///; ..1; 0/; f ..1; 0///i,
h..0; 0/; f ..0; 0///; ..1; 1/; f ..1; 1///i, h..0; 1/; f ..0; 1///; ..0; 0/; f ..0; 0///i,
h..0; 1/; f ..0; 1///; ..1; 0/; f ..1; 0///i, h..0; 1/; f ..0; 1///; ..1; 1/; f ..1; 1///i,
h..1; 0/; f ..1; 0///; ..0; 0/; f ..0; 0///i, h..1; 0/; f ..1; 0///; ..0; 1/; f ..0; 1///i,
h..1; 0/; f ..1; 0///; ..1; 1/; f ..1; 1///i, h..1; 1/; f ..1; 1///; ..0; 0/; f ..0; 0///i,
h..1; 1/; f ..1; 1///; ..0; 1/; f ..0; 1///i, h..1; 1/; f ..1; 1///; ..1; 0/; f ..1; 0///i.

Often we are not interested in statements that assume that each function in F is
equally likely to be the objective function. Instead, we want to make statements
that refer to problem classes. A reasonable general working definition of a problem
class is:

Definition 1.1 (Problem Class). Given a finite search space X and a finite set of
cost-values Y, a problem class can be defined by a probability distribution pF over
the space F of all possible objective functions f W X ! Y, where pF.f / is the
probability that f 2 F is the objective function faced by an algorithm.

In the special case that all functions that have a non-zero probability of being the
target function are equally likely, we can identify a problem class by the subset
F � F with f 2 F) pF.f / D 1=jF j > 0.

1.2.2 The NFL Theorem

The original and most popular version of the NFL theorem for optimization was
formally stated and proven by Wolpert and Macready in 1995 [35, 36] It can be
expressed as:

Theorem 1.1 (NFL Theorem [36]). For any two algorithms a and b, any k 2 IR,
any m 2 f1; : : : ; jXjg, and any performance measure c

X

f 2F
ı.k; c.Y.f; m; a/// D

X

f 2F
ı.k; c.Y.f; m; b/// : (1.1)

Herein, ı denotes the Kronecker function (ı.i; j / D 1 if i D j , ı.i; j / D 0

otherwise). Proofs can be found in [21, 27, 35, 36]. Equation (1.1) implies

X

f 2F
c.Y.f; m; a// D

X

f 2F
c.Y.f; m; b// (1.2)

for any two algorithms a and b, any m 2 f1; : : : ; jXjg, and any performance
measure c.

6 C. Igel

This proves that statements such as “averaged over all functions, my search
algorithm is the best” are misconceptions. Radcliffe and Surry were among the first
who appreciated and discussed this theorem [24]. Without rigorous proof, the basic
NFL result was stated already earlier by Rawlins in 1991 [25].

When looking at the proof of the NFL theorem, it implies the following
statements (see [33]):

Corollary 1.1. For any m 2 f1; : : : ; jXjg and any performance measure c we
have:

1. For any two algorithms a and b, for each fa 2 F it holds

c.Y.fa; m; a// D k) 9fb 2 F W c.Y.fb; m; b// D k : (1.3)

2. For any two algorithms a and b and any subset of functions F � F with
complement F c D F n F it holds

X

f 2F

c.Y.f; m; a// >
X

f 2F

c.Y.f; m; b//)

X

f 2F c

c.Y.f; m; a// <
X

f 2F c

c.Y.f; m; b// : (1.4)

The first statement says that for any function fa 2 F, there is a function fb 2 F

on which algorithm b has the same performance as algorithm a on fa. That is, if
my algorithm outperforms your algorithm on some function, then there is also an
objective function on which your algorithm outperforms mine. And if my algorithm
outperforms yours on some set of benchmark problems, then your algorithm is better
than mine averaged over the remaining problems.

1.2.3 The Sharpened NFL Theorems

Theorem 1.1 assumes that all possible objective functions in F are equally likely.
Given that it is fruitless to design a metaheuristic for all possible objective functions,
the question arises under which constraints can the average performance of one
algorithm be better than another when the average is taken only over a subset
F � F. This is a relevant scenario if the goal is to develop metaheuristics for certain
(e.g., “real-world”) problem classes.

The NFL theorem has been extended to subsets of functions with the property of
being closed under permutation (c.u.p.) Let � W X ! X be a permutation of X. The
set of all permutations of X is denoted by ˘.X/. A set F � F is said to be c.u.p.
if for any � 2 ˘.X/ and any function f 2 F the function f ı � is also in F . In
[27, 28] the following result is proven:

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 7

Theorem 1.2 (Sharpened NFL Theorem [27, 28]). If and only if F is c.u.p., then
for any two algorithms a and b, any k 2 IR, any m 2 f1; : : : ; jXjg, and any
performance measure c

X

f 2F

ı.k; c.Y.f; m; a/// D
X

f 2F

ı.k; c.Y.f; m; b/// : (1.5)

This is an important extension of Theorem 1.1, because it gives necessary and
sufficient conditions for NFL results for subsets of functions.

Example 1.4. Consider again the mappings f0; 1g2 ! f0; 1g, denoted by f0,
f1, : : : ; f15 as shown in Table 1.1. Then ff1; f2; f4; f8g and ff0; f1; f2; f4; f8g are
examples of sets that are c.u.p. The set ff1; f2; f3; f4; f8g is not c.u.p., because some
functions are “missing”. These missing functions include f5, which results from f3

by switching the elements .0; 1/ and .1; 0/.

Example 1.5. Theorem 1.1 tells us that on average all algorithms need the same
time to find a desirable, say optimal, solution – but how long does it take? The
average number of evaluations needed to find an optimum (the mean hitting time)
depends on the cardinality of the search space jXj and the number n of search
points that are mapped to a desirable solution. As the set of all functions where
n search points represent desirable solutions is c.u.p., it is sufficient to compute the
average time to find one of these points for an arbitrary algorithm, which is given
by .jXj C 1/=.n C 1/ [17] (a proof for n D 1 is given in Chap. 5).

In Theorems 1.1 and 1.2 it is implicitly assumed that each function in F

and F , respectively, has the same probability to be the target function, because the
summations in Eqs. (1.1) and (1.5) average uniformly over the functions. However,
it is more realistic to assume that different functions can have different probabilities
to be the target function. In this more general case, a problem class is described by
a probability distribution assigning each function f its probability pF.f / to be the
objective function.

To derive results for this general scenario it is helpful to introduce the concept of
Y-histograms. A Y-histogram (histogram for short) is a mapping h W Y ! IN0

such that
P

y2Y h.y/ D jXj. The set of all histograms is denoted by H. Any
function f W X ! Y implies a histogram hf .y/ D jf �1.y/j that counts the
number of elements in X that are mapped to the same value y 2 Y by f . Herein,
f �1.y/ returns the preimage fxjf .x/ D yg of y under f . Further, two functions
f and g are called h-equivalent if and only if they have the same histogram. The
corresponding h-equivalence class Bh � F containing all functions with histogram
h is termed a basis class. It holds:

Lemma 1.1 ([18]). Any subset F � F that is c.u.p. is uniquely defined by a union
of pairwise disjoint basis classes. Bh is equal to the permutation orbit of any
function f with histogram h, i.e., 8f 2 F W Bhf

D S
�2˘.X/ff ı �g.

8 C. Igel

Example 1.6. Consider the functions in Table 1.1. The Y-histogram of f1 contains
the value zero three times and the value one time, i.e., we have hf1.0/ D 3 and
hf1.1/ D 1. The mappings f1, f2, f4, f8 have the same Y-histogram and are
therefore in the same basis class Bhf1

D ff1; f2; f4; f8g. The set ff1; f2; f4; f8; f15g
is c.u.p. and corresponds to Bhf1

[Bhf15
.

The following ramification of the Sharpened NFL theorem (derived indepen-
dently in [19, 29], and [9] generalizing the results in [8]) gives a necessary and
sufficient condition for a NFL result in the general case of arbitrary distributions pF

over F:

Theorem 1.3 (Non-uniform Sharpened NFL Theorem [9,19,20,29]). If and only
if for all histograms h

f; g 2 Bh) pF.f / D pF.g/ ; (1.6)

then for any two algorithms a and b, any value k 2 IR, any m 2 f1; : : : ; jXjg, and
any performance measure c

X

f 2F
pF.f / ı.k; c.Y.f; m; a/// D

X

f 2F
pF.f / ı.k; c.Y.f; m; b/// : (1.7)

This observation is the “sharpest” NFL so far. It gives necessary and sufficient
conditions for NFL results for general problem classes.

1.3 The Preconditions in the NFL Theorem and the
Sharpened NFL Theorems

The NFL Theorems 1.1–1.3 consider a certain optimization scenario. In the
following, we discuss its basic preconditions.

1.3.1 Independence of Algorithmic Complexity

It is important to note that the NFL theorems make no assumptions about the space
and time complexity of computing the next search point. For example, it makes no
difference if the algorithm simply enumerates all elements of X or comes up with a
decision after running some complex internal simulation.

For many practical applications, it is indeed reasonable to assume that the time
needed to evaluate the fitness dominates the computational costs of computing the
next step and that memory requirements are not an issue. Still, this need not always
be true.

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 9

Example 1.7. The update of the strategy parameters in CMA-ES scales quadrat-
ically with the search space dimension ([13, 30], see Chap. 8). For extremely
high-dimensional fitness functions that can be evaluated quickly this may have a
significant impact on the run time (however, in most practical applications I dealt
with, the evaluation of the objective function was by far the dominating term).

This topic is discussed in more detail in Sect. 5.2.1, which demonstrates the
differences between algorithmic complexity and black-box complexity of search
algorithms.

1.3.2 Non-repeating Algorithms

Metaheuristics often do not have the non-repeating property. If a randomized algo-
rithm searches locally in discrete (or discretized) domains, the chance of resampling
a search point can be high even if the search space is huge. In evolutionary
algorithms, the variation operators that are used to generate a new solution based
on an existing one are often symmetric in the sense that the probability to generate
some solution x0 from x is equal to generating x from x0. Thus, there is always a
chance to jump back to an already visited point.

We can always turn a repeating search algorithm into a non-repeating one by
adding a look-up table for already visited points. The algorithm then internally uses
this look-up table and only evaluates the objective function (i.e., “makes a step”) for
previously unseen points. Of course, this increases the memory requirements of the
algorithm.

Example 1.8. Studies in which evolutionary algorithms searching a space of graphs
are turned into non-repeating algorithms by coupling them with a search-point
database are described in [16, 23].

1.3.3 Deterministic and Randomized Algorithms

In general, NFL results hold for deterministic as well as randomized algorithms.
A randomized search algorithm a can be described by a probability distribution
pa over deterministic search behaviors [6]: Every search behavior generated by a
single application of a randomized algorithm has a certain probability. The same
behavior could have been generated by some deterministic algorithm. One can view
the application of a randomized algorithm a as picking – according to a fixed,
algorithm-dependent distribution pa – a deterministic search behavior at random
and applying it to the problem (we view the deterministic algorithms as a subset

10 C. Igel

of the randomized algorithms having degenerated probability distributions). An
alternative way to see this is to think of drawing all realizations of random variables
required by a randomized search method at once prior to the search process and to
use these events as inputs to a deterministic algorithm (see Chap. 5 for a detailed
discussion of this issue).

Let the set A contain all deterministic search behaviors operating on F. The
performance of a randomized search algorithm a corresponds to the expectation
over the possible search behaviors A w.r.t. pa [22]:

�fc.Y.f; m; a//g D
X

a02A

pa.a0/c.Y.f; m; a0// (1.8)

For deterministic algorithms, the previous theorems not only state that the average
performance of two algorithms is the same across all functions, but also any statistic
– in particular the variance – of the performance values is the same. We can derive
a similar result for randomized algorithms. Let us assume that the conditions of
Theorem 1.3 are met. We consider two randomized algorithms described by pa and
pb and extend the NFL theorems using simple transformations:

X

f 2F
pF.f /

X

a02A

pa.a0/ı.k; c.Y.f; m; a0/// (1.9)

D
X

a02A

pa.a0/
X

f 2F
pF.f / ı.k; c.Y.f; m; a0///

„ ƒ‚ …
independent of a0

because of Theorem 1.3

for any
algorithm zD

X

f 2F
pF.f / ı.k; c.Y.f; m; z///

X

a02A

pa.a0/

D
X

f 2F
pF.f / ı.k; c.Y.f; m; z///

X

b02A

pb.b0/

reversing the
prev. argumentsD

X

f 2F
pF.f /

X

b02A

pb.b0/ı.k; c.Y.f; m; b0///

Equation (1.2) holds for randomized algorithms if we simply replace c.�/ by
�fc.�/g.1

1In general, this cannot be done in the theorems because
P

f 2F ı.k;
P

a0
2A pa.a0/

c.Y.f; m; a0/// ¤P
f 2F

P
a0

2A pa.a0/ı.k; c.Y.f; m; a0///.

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 11

1.3.4 Finiteness of Domain and Codomain

If optimization problems solved on today’s digital computers are considered, the
restriction to finite domains and codomains is no restriction at all. Still, NFL results
for continuous search spaces are very interesting from the theoretical point of view.
The reader is referred to [26] and [1] for different views on this topic as well as to
Chap. 7, which explains why assumptions on the Lebesgue measurability of pF play
a role when studying NFL in continuous search spaces.

1.3.5 Restriction to a Single Objective

The basic NFL theorems considers single-objective optimization. However, it also
holds for multi-objective (vector) optimization as proven in [5].

1.3.6 Fixed Objective Functions

The framework considered in this chapter does not include repeated game scenarios
in which the “objective function” for some agent can vary based on the behavior of
other agents as is the case in coevolutionary processes. For results and discussions
of NFL in such game-like scenarios the reader is referred to the work by Wolpert
and Macready presented in [37].

1.3.7 Averaging Over All Search Behaviors and All
Performance Criteria

The NFL theorems rely on averages over all possible search behaviors and all
possible performance criteria. However, in practice we are most often concerned
with the comparison of a subset of algorithms A using a fixed performance measure
c and some fixed number of steps m. This scenario is considered in Focused NFL
theorems [32]. Given a set of algorithms A and a performance measure c and some
fixed number of steps m, Whitley and Rowe define a focus set as a set of functions on
which the algorithms in A have the same mean performance measured by c (after
m steps). The orbit of an objective function f is the smallest of these focus sets
containing f . It is important to note that focus sets need not be c.u.p.

Example 1.9. Assume we want to compare two deterministic algorithms a and
b run for m steps using performance measure c. Further, assume two objective

12 C. Igel

functions f1 and f2 with c.Y.f1; m; a// D c.Y.f2; m; b// and c.Y.f2; m; a// D
c.Y.f1; m; b//. Then ff1; f2g is clearly a focus set for A D fa; bg, c, and m –
regardless of whether ff1; f2g is c.u.p. or not.

For details about Focused NFL theorems the reader is referred to [32] and Chap. 4.

1.4 Restricted Function Classes and NFL

In this section we take a look at restricted function classes. First, we compute
the probability that a randomly chosen function class meets the conditions of the
NFL theorems. Then it is argued that there are certain restrictions that are likely to
constrain problem classes corresponding to “real-world” problems. It is shown that
these constraints are not compatible with the conditions of the NFL theorems. This
is an encouraging result for the design of metaheuristics. However, it is difficult to
evaluate heuristics empirically, because good performance on some functions does
not necessarily imply good performance on others – even if these functions seem to
be closely related. This is underlined by the Almost NFL theorem discussed at the
end of this section.

1.4.1 How Likely Are the Conditions for NFL?

The question arises whether the preconditions of the NFL theorems are ever fulfilled
in practice. How likely is it that a randomly chosen subset is c.u.p.? There exist
2.jYjjXj/ � 1 non-empty subsets of F, and it holds:

Theorem 1.4 ([18]). The number of non-empty subsets of YX that are c.u.p. is
given by

2.jXjCjYj�1
jXj

/ � 1 (1.10)

and therefore the fraction of non-empty subsets c.u.p. is given by

�
2.jXjCjYj�1

jXj
/ � 1

�.�
2.jYjjXj/ � 1

�
: (1.11)

Figure 1.3 shows a plot of the fraction of non-empty subsets c.u.p. versus the
cardinality of X for different values of jYj. The fraction decreases for increasing jXj
as well as for increasing jYj. More precisely, using bounds for binomial coefficients
one can show that Eq. (1.11) converges to zero doubly exponentially fast with
increasing jXj (for jYj > ejXj=.jXj � e/, where e is Euler’s number). For small
jXj and jYj the fraction almost vanishes.

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 13

10−5

10−10

10−15

10−20

10−25

fra
ct

io
n

of
su

bs
et

s
c.

u.
p.

10−30

10−35

10−40

1

1 2 3 4 5 6 7 8

Fig. 1.3 Fraction of subsets of objective functions that are closed under permutation (c.u.p.) of all
possible subsets depending on the number of search points and the number of possible objective
function values. The ordinate gives the fraction of subsets c.u.p. on logarithmic scale given the
cardinality jXj of the search space. The different curves correspond to different cardinalities of the
space of objective function values Y

Thus, the statement “I’m only interested in a subset F of all possible functions
and the precondition of the Sharpened NFL theorem is not fulfilled” is true with
a probability close to one if F is chosen uniformly at random and Y and X have
reasonable cardinalities.

The probability that a randomly chosen distribution over the set of objective
functions fulfills the preconditions of Theorem 1.3 has measure zero. This means
that in this general and realistic scenario the conditions for a NFL result almost
surely do not hold.

1.4.2 Structured Search Spaces and NFL

Although the fraction of subsets c.u.p. is close to zero for small search and cost-
value spaces, the absolute number of subsets c.u.p. grows rapidly with increasing
jXj and jYj. What if these classes of functions are the relevant ones in the sense that
they correspond to the problems we are dealing with in practice?

It can be argued that presumptions can be made for most of the functions relevant
in real-world optimization: First, the search space has some structure. Second, the
set of objective functions fulfills some constraints defined based on this structure.
More formally, there exists a non-trivial neighborhood relation on X based on
which constraints on the set of functions under consideration are formulated. Such
constraints include upper bounds on the ruggedness or on the maximum number of

14 C. Igel

local minima. Concepts such as ruggedness or local optimality require a notion of
neighborhood.

A neighborhood relation on X is a symmetric function n W X � X ! f0; 1g.
Two elements xi ; xj 2 X are called neighbors if n.xi ; xj / D 1. A neighborhood
relation is called non-trivial if 9xi ; xj 2 X W xi ¤ xj ^ n.xi ; xj / D 1 and
9xk; xl 2 X W xk ¤ xl ^ n.xk; xl / D 0. There are only two trivial neighborhood
relations, either every two points are neighbored or no points are neighbored. Non-
trivial neighborhood relations are not preserved under permutations, it holds:

Theorem 1.5 ([18]). A non-trivial neighborhood relation on X is not invariant
under permutations of X, i.e.,

9xi ; xj 2 X; � 2 ˘.X/ W n.xi ; xj / ¤ n.�.xi /; �.xj // : (1.12)

This result is quite general. Assume that the search space X can be decomposed
as X D X1�� � ��Xl , l > 1, and let a non-trivial neighborhood ni W Xi �Xi ! f0; 1g
exist on one component Xi . This neighborhood induces a non-trivial neighborhood
on X, where two points are neighbored if their i th components are neighbored with
respect to ni regardless of the other components. Thus, the constraints discussed
in the examples below need only refer to a single component. Note that the
neighborhood relation need not be the canonical one (e.g., the Hamming-distance
for Boolean search spaces). For example, if integers are encoded by bit-strings, then
the bit-strings can be defined as neighbored iff the corresponding integers are. The
following examples illustrate further implications of Theorem 1.5 [18].

Example 1.10. Consider a non-empty subset F � F where the co-domains of the
functions have more than one element and a non-trivial neighborhood relation exists.
If for each f 2 F it is not allowed that a global maximum is neighbored to a global
minimum (i.e., we have a constraint “steepness”), then F is not c.u.p. (because
for every f 2 F there exists a permutation that maps a global minimum and a
global maximum of f to neighboring points). An example of such a function class
is OneMax� as described in Sect. 5.5.

Example 1.11. Imposing an upper bound on the complexity of possible objective
functions can lead to function classes that are not c.u.p. Let us assume without
loss of generality minimization tasks. Then the number of suboptimal local minima
is often regarded as a measure of complexity of an objective function [31] (see
Sect. 1.4.3 for other notions of complexity). Given a neighborhood relation on X, a
local minimum can be defined as a point whose neighbors all have worse fitness. As
a concrete example, consider all mappings f0; 1g` ! f0; 1g not having maximum
complexity in the sense that they have less than the maximum number of 2n�1 local
minima w.r.t. the ordinary hypercube topology on f0; 1g`. For example, this set does
not contain mappings such as the parity function, which is one iff the number of
ones in the input bit-string is even. This set is not c.u.p. The general statement that
imposing an upper bound on the number of local minima leads to function classes
not c.u.p. can be formally proven using the following line of arguments. Let l.f /

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 15

be the number of local minima of a function f 2 F, and let Bhf
� F be the set of

functions in F with the same Y-histogram as f (i.e., functions where the number of
points in X that are mapped to each Y-value is the same as for f). Given a function f

we define lmax.f / D maxf 02Bhf
l.f 0/ as the maximal number of local minima that

functions in F with the same Y-histogram as f can possibly have. For a non-empty
subset F � F we define lmax.F / D maxf 2F lmax.f /. Let g.F / 2 F be a function
with l.g.F // D lmax.F / local minima and the same Y-histogram as a function in
F . Now, if the number of local minima of every function f 2 F is constrained to be
smaller than lmax.F / (i.e., maxf 2F l.f / < lmax.F /), then F is not c.u.p. – because
9f 2 F with the same Y-histogram as g and thus 9� 2 ˘.X/ W f ı � D g.

1.4.3 The Almost NFL Theorem

The results presented above are encouraging, because they suggest that for a
restricted problem class the NFL results will most likely not apply. However, this
does not promise a “free lunch”. For a problem class violating the conditions for
a NFL result, the average performance of two algorithms may differ. But this
difference may be negligible.

The performance on two functions, although they are similar according to
some reasonable similarity measure, may differ significantly. In particular, for any
function f on which algorithm a performs well, there may be many functions
on which it performs badly and that are similar to f in a reasonable sense. This
becomes clear from the Almost NFL (ANFL) theorem derived by Droste et al.[6],
which proves such statements for a particular scenario:

Theorem 1.6 (Almost NFL Theorem [6]). Let F be the set of objective functions
f W f0; 1gn ! f0; 1; : : : ; N � 1g for fixed positive integers n and N . For any
algorithm a operating on F and any function f 2 F there exist at least N 2n=3�1

functions in F that agree with f on all but at most 2n=3 inputs for which a does not
find their optimum within 2n=3 steps with probability bounded above by 2�n=3.

Exponentially many of these functions have the additional property that their
evaluation time, circuit size representation, and Kolmogorov complexity is only by
an additive term of O.n/ larger than the corresponding complexity of f .

The last sentence formalizes that extremely poor behavior can be expected on
functions which are similar to our reference (e.g., benchmark) function f . These
functions do not only coincide on 2n=3 inputs with f ; they also have a similar
complexity. Complexity can either be measured in the number of steps needed to
evaluate the objective function at a certain point (evaluation time), the length of the
shortest program implementing f (Kolmogorov complexity), or by the size of a
circuit representation of f (circuit size representation).

16 C. Igel

1.5 Search and Markov Decision Processes

If a problem class does not fulfill the assumptions for NFL, then there may be
differences in performance between algorithms on this class. The question arises:
What is then the best method given a problem class pF, a performance measure,
and a number of steps m? In the following, it is shown how to determine an optimal
algorithm using dynamic programming (DP) [15]. For a similar approach see [1]
and Chap. 6. However, it is not claimed that this way is efficient.

The problem of finding an optimal search algorithm can be transformed to a
finite horizon optimal control problem that can be solved by DP. In the context of
mathematical optimization for optimal control, DP is concerned with some discrete-
time dynamic system, in which at time t the state st of the system changes according
to given transition probabilities that depend on some action atC1 (I adopt a standard
formalism and use a for actions instead of algorithms in this section). Each transition
results in some immediate reward rtC1 (or, alternatively, immediate cost) [3]. The
dynamic system can be described by a finite Markov decision process:

Definition 1.2 (Finite MDP). A finite Markov decision process ŒS;A;P;R� (finite
MDP) is given by:

1. A finite set S of states;
2. A finite set of actions A, where A.s/ denotes the set of possible actions in state

s 2 S;
3. Transition probabilities Pa

ss0 D PrfstC1 D s0 j st D s; at D ag describing how
likely it is to go from s 2 S to s0 2 S when taking action a 2 A, and

4. Expected reward values Ra
ss0 D EfrtC1 j stC1 D s0; st D s; at D ag expressing

the expected reward when going from s 2 S to s0 2 S after taking action a 2 A.

The goal of a finite horizon problem2 is to find a policy $ W S ! A that
maximizes the accumulated m-step reward

Rm D
mX

t 0D1

rt 0 : (1.13)

Given ŒS;A;P;R� the optimal policy can be computed using established standard
techniques [2, 3].

Now we turn an optimization problem (as illustrated Fig. 1.2) into a finite MDP.
First, we need to fix some additional notation. The length of a sequence Tm D
h.x1; f .x1//; : : : ; .xm; f .xm//i is given by length.Tm/ D m. Adding an element
to a sequence is indicated by hx1; x2; : : : ; xni ˚ x0 D hx1; x2; : : : ; xn; x0i. Given

2It is also possible to map the optimization to an infinite horizon problem with appropriate
absorbing states.

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 17

TM , we denote the corresponding sequence and set of search points by X.Tm/ D
hx1; x2; : : : ; xmi and X.Tm/ D fx1; x2; : : : ; xmg, respectively, and the sequence of
cost values by Y.Tm/ D hf .x1/; f .x2/; : : : ; f .xm/i.

We define the set F.Tm/ of all functions that are compatible with Tm in F 2 F

by

F.Tm/ D fg j g 2 F ^ 8x 2 X.Tm/ W g.x/ D f .x/g (1.14)

The search MDP (S-MDP) given an optimization scenario can now be formalized
as follows:

Definition 1.3 (S-MDP). Given a problems class pF, a performance measure c,
and a number of steps m 2 f1; : : : ; jXjg, the search MDP (S-MDP) is defined by

1. S D set of all possible traces Tn with 0 � n � m;
2. A.s/ D X n X.s/;

3. Pa
ss0 D

8
<

:
0 X.s0/ ¤ X.s/ ˚ a
P

g2F.s0/

pF.g/
. P

h2F.s/

pF.h/ otherwise ;

4. Ra
ss0 D

(
0 if length.s/ ¤ m � 1

c.Y.s0// otherwise
.

This MDP has been constructed such that the following theorem holds, which
establishes the link between optimal search algorithm and optimal policy:

Theorem 1.7. For any performance measure c, any problem class pF over F, and
any m 2 f1; : : : ; jXjg, an algorithm b that maximizes

X

f 2F

pF.f / c.Y.f; m; b//

is given by the optimal policy for the corresponding S-MDP (with t D 0 and
s0 D hi).

Proof. By definition, every policy operating on a S-MDP is an algorithm. The states
of the dynamic system correspond to the sequences of previously evaluated search
points and an action corresponds to exploring a new search point.

First, we verify that the definition of Pa
ss0 leads to proper probability distributions,

that is, that 8s 2 S W 8a 2 A.s/ W Ps02S Pa
ss0 D 1. We rewrite the definition of

Pa
ss0 as

Pa
ss0 D ı.X.s0/; X.s/ ˚ a/

X

g2F.s0/

pF.g/
. X

h2F.s/

pF.h/ : (1.15)

18 C. Igel

For every f 2 F.s/ and a 2 A.s/ there is exactly one s0 2 S with X.s0/ D X.s/˚a

and f 2 F.s0/. Thus we have

X

h2F.s/

pF.h/ D
X

s0 2 S

^ X.s0/ D X.s/ ˚ a

X

g2F.s0/

pF.g/ D
X

s02S
ı.X.s0/; X.s/ ˚ a/

X

g2F.s0/

pF.g/

(1.16)
and the normalization is correct.

Next, we show that maximizing the accumulated reward �fR0 j s0 D hi ; $g
maximizes the performance measure

P
f 2F pF.f / c.Y.f; m; $//. The accumu-

lated immediate reward reduces to

R0 D
mX

t 0D1

rt 0 D rm : (1.17)

Given a function f 2 F and a policy $ we have rm D c.Y.f; m; $// and therefore

�fR0 j s0 D hi ; f; $g D �frm j s0 D hi ; f; $g D c.Y.f; m; $// (1.18)

as the process is deterministic for fixed f . Thus

�fR0 j s0 D hi ; $g D
X

f 2F
pF.f / c.Y.f; m; $// ; (1.19)

which completes the proof. ut
Solving the S-MDP leads to an optimal algorithm, which “plans” the next search

points in order to maximize the reward (e.g., to find the best solution in m steps).
Although solving a MDP can be done rather efficiently3 in terms of scaling with jSj,
jAj, and m, solving the S-MDP is usually intractable because jSj obviously scales
badly with the dimensionality of the optimization problem. In Chap. 6, Teytaud and
Vazquez discuss this issue and optimal search algorithms in general in more detail.

1.6 What Can We Learn from the NFL Results for the
Design of Metaheuristics?

There is no universal best search or optimization algorithm. A “careful consideration
of the NFL theorems forces us to ask what set of problems we want to solve and
how to solve them” [33]. The NFL theorem “highlights the need for exploiting

3In a S-MDP no state is ever revisited. Hence, for any policy, the transition probability graph is
acyclic and thus value iteration finds the optimal policy after at most m steps, where each step
needs O.jAjjSj/2 computations (see [3, Sect. 2.2.2] or [2]).

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 19

problem-specific knowledge to achieve better than random performance” [37]. Its
essence is nicely captured in the discussion of the NFL results for learning [34] by
Bousquet et al. [4]. If “there is no a priori restriction on the possible phenomena that
are expected [. . .] there is no better algorithm (any algorithm would be beaten by
another one on some phenomena)” [4]. If their words are adapted for the search and
optimization scenario, the main message of the NFL theorems may be summarized
as follows:

If there is no restriction on how the past (already visited points) can be related to the future
(not yet explored search points), efficient search and optimization are impossible.

Between the two extremes of knowing nothing about a problem domain and
knowing a domain so well that an efficient, highly specialized algorithm can
be derived in reasonable time, there is enough room for the application of well
designed metaheuristics. Often we have only little, quite general knowledge about
the properties of a problem class. In such a case, using quite general metaheuristics
exploiting these properties may be a good choice. In practice, sometimes fine tuning
an algorithm to a problem class is not efficient in terms of development time and
costs. Then a more broadly tuned metaheuristic may be preferable.

Finally, let me mention some further conclusions that can be drawn from the
results reviewed in this chapter.

1.6.1 The Preconditions of the NFL Theorem Are Not Met in
Practice

I argue that if we consider a restricted class of problems, it is reasonable to assume
that the necessary conditions in the NFL theorems are not fulfilled. First, if we
would select a problem class at random, the probability that the conditions hold
is extremely low. Second, if the objective functions in a problem class obey some
constraints that are defined with respect to some neighborhood relation on the search
space, then the necessary prerequisites are likely to be violated. Thus, we can hope
to come up with metaheuristics showing above average performance for real-world
problem classes.

However, one has to keep in mind that the strict NFL results refer to averages over
all possible search behaviors and performance criteria. If we compare a selection
of algorithms using a fixed criterion, there can exist sets of functions on which
the algorithms have the same mean performance even if the sets do not meet the
conditions of the general NFL theorems. This is investigated in the context of
Focused NFL theorems, see [32] and Chap. 4.

1.6.2 Generalization from Benchmark Problems Is Dangerous

The Almost NFL theorem and the second statement of Corollary 1.1 show that
drawing general conclusions about the ranking of algorithms – even if referring

20 C. Igel

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

interesting problem class

some algorithm

specialized, invariant algorithm

random search w/o replacement

pe
rf

or
m

an
ce

m
ea

su
re

space of functions

Fig. 1.4 Distribution of mean performance over a discrete space of problems for some randomized
algorithms. The algorithms indicated by triangles and circles both have a similar mean perfor-
mance on the interesting problems (i.e., some problem class we are developing a metaheuristic for),
but a different variance. Both are biased towards the interesting problems. Uniform random search
and the algorithm indicated by triangles are invariant under the choice of the problem instance
from the class of interesting problems

to a restricted problem class – based on evaluating them on single benchmark
functions is dangerous (see the discussion in [33]). For every set of functions on
which algorithm a outperforms algorithm b there is a set of function on which the
opposite is true. Thus, one must ensure that the results on the considered benchmark
functions can be generalized to the whole class of problems the algorithms are
designed for. If algorithm b outperforms a on some test functions that are not likely
to be observed in practice (in my opinion this includes functions frequently used in
benchmark suites, e.g., some “deceptive” problems), this can even be regarded as an
argument in favor of a.

There are ways to derive valid statements about algorithm performance on a
problem class without testing the algorithm on every instance of the class. First,
one can derive formal proofs about the performance of the algorithms. Of course,
this can be extremely difficult. Second, it is possible to generalize from empirical
results on single benchmark functions to a class of problems in a strict sense if
the algorithms have certain invariance properties, see [11, 12] and Chap. 8 for a
discussion.

Example 1.12. Evolutionary algorithms in which the selection is based on ranking,
such as the CMA-ES [13] presented in Chap. 8, are invariant under order-preserving
transformations of the fitness function. For example, if the fitness values given by a
function f .x/ are all positive, the performance of a purely rank-based algorithm
on f generalizes to f .x/2; log.f .x//; : : : . The CMA-ES has several additional
invariance properties, in particular it is invariant under rotation of the search space.

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 21

As there is no well-performing universal search algorithm, the metaheuristics we are
developing must be biased towards certain problem classes. There is some trade-off
between the specialization to a problem class required for efficient optimization and
invariance properties. This becomes obvious by the invariance properties of uniform
random-search, which is fully unbiased. Figure 1.4 illustrates specialization and
invariance properties, especially showing the performance of an algorithm that is
biased toward an interesting problem class and at the same time invariant under
the choice of the problem instance from this class. Understanding, formulating,
and achieving the right bias and the right invariance properties is perhaps the most
important aspect when designing metaheuristics.

1.7 Further Reading

The book chapter on “Complexity Theory and the No Free Lunch Theorem” by
Whitley and Watson is recommended for an alternative review of NFL for search
and optimization [33]. The proof of the basic NFL theorem can found in [36]; the
proof of the Sharpened NFL theorem in [27]. Theorem 1.3 is proven in [20] and the
results in Sects. 1.4.1 and 1.4.2 in [18]. The Almost NFL theorem is derived in [6],
and Focused NFL is discussed in [32].

Acknowledgements Parts of this text are based on former joint work with Marc Toussaint. The
author acknowledges support from the German Federal Ministry of Education and Research within
the National Network Computational Neuroscience – Bernstein Fokus: “Learning behavioral
models: From human experiment to technical assistance”, grant FKZ 01GQ0951.

References

1. A. Auger, O. Teytaud, Continuous lunches are free plus the design of optimal optimization
algorithms. Algorithmica 57(1), 121–146 (2010)

2. D.P. Bertsekas, Dynamic programming and optimal control. Athena Sci. 2 (2007)
3. D.P. Bertsekas, J.N. Tsitsiklis, Neuro-dynamic programming. Athena Sci. (1996)
4. O. Bousquet, S. Boucheron, G. Lugosi, Introduction to statistical learning theory, in Advanced

Lectures in Machine Learning, ed. by O. Bousquet, U. von Luxburg, G. Rätsch. LNAI,
vol. 3176 (Springer, Berlin Heidelberg, 2004), pp. 169–207

5. D.W. Corne, J.D. Knowles, No free lunch and free leftovers theorems for multiobjective
optimisation problems, in Evolutionary Multi-Criterion Optimization (EMO 2003), ed. by
C.M. Fonseca, P.J. Fleming, E. Zitzler, L. Thiele, K. Deb. LNCS, vol. 2632 (Springer, Berlin
Heidelberg, 2003), pp. 327–341

6. S. Droste, T. Jansen, I. Wegener, Optimization with randomized search heuristics – the (A)NFL
theorem, realistic scenarios, and difficult functions. Theor. Comput. Sci. 287(1), 131–144
(2002)

7. T.M. English, Evaluation of evolutionary and genetic optimizers: no free lunch, in Proceedings
of the Fifth Annual Conference on Evolutionary Programming (EP V), San Diego, ed. by L.J.
Fogel, P.J. Angeline, T. Bäck (MIT, 1996), pp. 163–169

22 C. Igel

8. T.M. English, Optimization is easy and learning is hard in the typical function, in Proceedings
of the 2000 Congress on Evolutionary Computation (CEC 2000), San Diego, ed. by A. Zalzala,
C. Fonseca, J.H. Kim, A. Smith (IEEE, 2000), pp. 924–931

9. T. English, On the structure of sequential search: beyond “No free lunch”, in Evolutionary
Computation in Combinatorial Optimization (EvoCOP 2004), ed. by J. Gottlieb, G.R. Raidl.
LNCS, vol. 3004 (Springer, Berlin Heidelberg, 2004), pp. 95–103

10. C. Giraud-Carrier, F. Provost, Toward a justification of meta-learning: is the no free lunch
theorem a show-stopper? in Proceedings of the ICML-2005 Workshop on Meta-learning, Bonn,
2005

11. N. Hansen: Invariance, self-adaptation and correlated mutations and evolution strategies, in
Parallel Problem Solving from Nature (PPSN VI), ed. by M. Schoenauer, K. Deb, G. Rudolph,
X. Yao, E. Lutton, J.J.M. Guervós, H.P. Schwefel. LNCS, vol. 1917 (Springer, Berlin
Heidelberg, 2000), pp. 355–364

12. N. Hansen, Adaptive encoding: how to render search coordinate system invariant, in Parallel
Problem Solving from Nature (PPSN X), ed. by G. Rudolph, T. Jansen, S.M. Lucas, C. Poloni,
N. Beume. LNCS, vol. 5199 (Springer, Berlin Heidelberg, 2008), pp. 205–214

13. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies.
Evol. Comput. 9(2), 159–195 (2001)

14. D. Hume, A Treatise of Human Nature, Chap. Sect. vi. Of the Inference from the impression to
the idea. Web edition published by eBooks@Adelaide, 2006 (1739)

15. C. Igel, Recent results on no-free-lunch for optimization, in Theory of Evolutionary
Algorithms, no. 04081, ed. by H. Beyer, T. Jansen, C. Reeves, M.D. Vose, in Dagstuhl
Seminar Proceedings, Abstract Collection, Schloss Dagstuhl (Internationales Begegnungs- und
Forschungszentrum für Informatik (IBFI), 2004)

16. C. Igel, P. Stagge, Graph isomorphisms effect structure optimization of neural networks, in
International Joint Conference on Neural Networks (IJCNN 2002), Honolulu (IEEE, 2002),
pp. 142–147

17. C. Igel, M. Toussaint, Neutrality and self-adaptation. Nat. Comput. 2(2), 117–132 (2003)
18. C. Igel, M. Toussaint, On classes of functions for which no free lunch results hold. Inf. Process.

Lett. 86(6), 317–321 (2003)
19. C. Igel, M. Toussaint, Recent results on no-free-lunch theorems for optimization. arXiv

preprint cs.NE/0303032 (2003), http://arxiv.org/abs/cs.NE/0303032
20. C. Igel, M. Toussaint, A no-free-lunch theorem for non-uniform distributions of target

functions. J. Math. Model. Algorithms 3(4), 313–322 (2004)
21. M. Köppen, D.H. Wolpert, W.G. Macready, Remarks on a recent paper on the “no free lunch”

theorems. IEEE Trans. Evol. Comput. 5(3), 295–296 (1995)
22. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, Cambridge,

1995)
23. J. Niehaus, C. Igel, W. Banzhaf, Reducing the number of fitness evaluations in graph genetic

programming using a canonical graph indexed database. Evol. Comput. 15(2), 199–221 (2007)
24. N.J. Radcliffe, P.D. Surry, Fundamental limitations on search algorithms: evolutionary com-

puting in perspective, in Computer Science Today: Recent Trends and Development, ed. by
J. van Leeuwen. LNCS, vol. 1000 (Springer, Berlin Heidelberg, 1995), pp. 275–291

25. G.J.E. Rawlins, Introduction, in Foundations of Genetic Algorithms (FOGA), ed. by G.J.E.
Rawlins (Morgan Kaufmann, San Mateo, 1991), pp. 1–10

26. J.E. Rowe, M.D. Vose, A.H. Wright, Reinterpreting no free lunch. Evol. Comput. 17(1),
117–129 (2009)

27. C. Schumacher, Fundamental limitations of search. Ph.D. Thesis, University of Tennessee,
2000

28. C. Schumacher, M.D. Vose, L.D. Whitley, The no free lunch and description length, in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San
Francisco, ed. by L. Spector, E. Goodman, A. Wu, W. Langdon, H.M. Voigt, M. Gen, S. Sen,
M. Dorigo, S. Pezeshk, M. Garzon, E. Burke (Morgan Kaufmann, 2001), pp. 565–570

1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics 23

29. M.J. Streeter, Two broad classes of functions for which a no free lunch result does not hold,
in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2003),
Chicago, ed. by E. Cantú-Paz, J.A. Foster, K. Deb, D. Davis, R. Roy, U.M. O’Reilly, H.G.
Beyer, R. Standish, G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M.A.
Potter, A.C. Schultz, K. Dowsland, N. Jonoska, J. Miller. LNCS, vol. 2724 (Springer, Berlin
Heidelberg, 2003), pp. 1418–1430

30. T. Suttorp, N. Hansen, C. Igel, Efficient covariance matrix update for variable metric evolution
strategies. Mach. Learn. 75(2), 167–197 (2009). doi:10.1007/s10994-009-5102-1

31. D. Whitley, A free lunch proof for Gray versus binary encodings, in Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 1999), Orlando, ed. by W. Banzhaf,
J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith, vol. 1 (Morgan
Kaufmann, 1999), pp. 726–733

32. D. Whitley, J. Rowe, Focused no free lunch theorems, in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2008), Atlanta, ed. by M. Keijzer, et al.
(ACM, 2008), pp. 811–818

33. D. Whitley, J.P. Watson, Complexity theory and the no free lunch theorem, in Search
Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, ed.
by E.K. Burke, G. Kendall, Chap. 11 (Springer, New York, 2005), pp. 317–339

34. D.H. Wolpert, The lack of a priori distinctions between learning algorithms. Neural Comput.
8(7), 1341–1390 (1996)

35. D.H. Wolpert, W.G. Macready, No free lunch theorems for search. Technical Report SFI-TR-
05-010, Santa Fe Institute, Santa Fe (1995)

36. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1(1), 67–82 (1997)

37. D.H. Wolpert, W.G. Macready, Coevolutionary free lunches. IEEE Trans. Evol. Comput. 9(6),
721–735 (2005)

Chapter 2
Convergence Rates of Evolutionary Algorithms
and Parallel Evolutionary Algorithms

Fabien Teytaud and Olivier Teytaud

Abstract This chapter discusses the advantages (robustness) and drawbacks (slow-
ness) of algorithms searching the optimum by comparisons between fitness values
only. The results are mathematical proofs, but practical implications in terms of
speed-up for algorithms applied on parallel machines are presented, as well as
practical hints for tuning parallel optimization algorithms and on the feasibility of
some specific forms of optimization. Throughout the chapter, ŒŒa; b�� D fa; a C
1; : : : ; bg.

2.1 Introduction: Comparison-Based Algorithms and Their
Robustness

There are several important families of optimization algorithms in the literature:
Newton-like algorithms, using the Hessian (i.e., the second-order derivative);
gradient descent, using the gradient (i.e., the first-order derivative); and algorithms
using the objective function values (also termed the fitness values) only. There are
particular cases to be emphasized.

First, Quasi-Newton methods (in particular BFGS [6, 8, 10, 18]) are, formally, in
the family of algorithms using the gradient: They build, internally, an approximation
of the Hessian, but they never request the Hessian.

Second, some algorithms use less than the fitness values: These algorithms are
comparison-based algorithms. They include direct search methods [7] and most
evolutionary algorithms [4, 15]. This choice of using only a small part of the
available information is justified by the following:

F. Teytaud (�) � O. Teytaud
TAO, Inria Saclay IDF, LRI, University Paris-Sud, UMR CNRS 8623, Paris, France
e-mail: fteytaud@lri.fr; Olivier.Teytaud@lri.fr

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__2,
© Springer-Verlag Berlin Heidelberg 2014

25

mailto:fteytaud@lri.fr
mailto:Olivier.Teytaud@lri.fr

26 F. Teytaud and O. Teytaud

• Sometimes it is just the only available information. For example, when optimiz-
ing a strategy for two-player game, typically, an iteration of the evolution strategy
performs a tournament between the individuals. This tournament runs as long as
confidence intervals are not significant (or it reaches a time limit and concludes
to a draw), and this only provides a ranking (possibly with ties).

• Whenever more information is available, the robustness is better with compar-
isons only. This was explained in [2, 3, 27] and was formally established in [9].
Essentially, Hansen and Ostermeier [9] show that when considering the worst
case among compositions of a given family of fitness functions with increasing
mappings (i.e., when considering that the fitness function f might be replaced
by g ı f for some increasing g W R ! R), then optimality is necessarily reached
by a comparison-based algorithm. Even methods based on surrogate models
are sometimes now comparison-based for improved robustness [13]. In spite of
the loss of information, using comparisons only has the advantage that it makes
the optimization run resistant against some forms of noise.

Algorithms using comparisons are now widely established, and this chapter is
devoted essentially to these algorithms (however, the tools used in the proofs can
be applied in other cases). In particular, we will consider the following families of
algorithms (more formally presented in [21]):

• Selection-based non-elitist .�; �/ evolution strategies (SB-.�; �/-ES). These
algorithms, at each generation, generate � points (also termed individuals) in
the search space, and the fitness function must inform the algorithm of which �

of these � points are the � best individuals (we must resolve ties here). These �

points are termed the selected set.
• Selection-based elitist .� C �/ evolution strategies (SB-.� C �/-ES). These

algorithms, at each generation, generate � points (also termed individuals) in the
domain of the optimization, and the fitness function must inform the algorithm
which � of the union of (i) these � points and (ii) the � points selected at the
previous generation, are the � best individuals (we must resolve ties here).

• Full ranking versions of the algorithms above, i.e., FR-.�; �/-ES and FR-.�C�/-
ES; in these cases, the optimization is informed of which � points are the best,
and also of the complete ranking of these � points. Please note that the definition
“full ranking” is not often used in the literature; nonetheless, it is necessary here
as many well-known algorithm benefit from a full ranking.

For given fixed values of � and �, full ranking algorithms use more information
than selection-based elitist algorithms, which in turn use more information than
selection-based non-elitist strategies; as a consequence, they are expected to be
faster in terms of local convergence. We will see to which extent they can be faster,
and we will in particular consider the behavior as � ! 1. This is particularly
relevant now with the arrival of multi-core machines, clusters, and grids/clouds.

It is intuitively quite natural that comparison-based algorithms are slower, as
they have less information guiding the search. This is the price to pay for increased
robustness, shown in [9], and is well-known and widely asserted in evolutionary

2 Convergence Rates of Evolutionary Algorithms 27

algorithms. In this chapter, we discuss the advantages (robustness) and drawbacks
(slowness) of comparison-based algorithms. In particular, we will:

• Introduce, in Sect. 2.2, the important notion of branching factor [22]. This notion
is central to the understanding of comparison-based algorithms, in paralleliza-
tion, and it is also important beyond the scope of this chapter;

• Show the complexity bounds derived from this notion (Sect. 2.3);
• Show the computational cost associated with some real-world algorithms

(Sect. 2.4), which is often significantly different from the theoretical optimum;
• Give the implications of these complexity bounds (Sect. 2.5).

Throughout the chapter E denotes the expectation operator. We use the abbreviation
.1/; .2/; : : : ; .�/ to denote a reordering of fitness values, i.e., .1/ D i1; .2/ D
i2; .3/ D i3; : : : ; .�/ D i� with yi1 � yi2 � � � � � yi� .

2.2 The Branching Factor

Let us first present the branching factor in a simple example: The .1C1/-ES. If there
is no equality, then there are two cases: The newly sampled point is better than the
current iteration, or it is worse. For defining a .1 C 1/-ES, one should specify how
the internal state of the algorithm is updated in each of the two cases. We say that the
branching factor is two, and we have two update formulas. We now define formally
this concept in the general case.

We present below a simplified version of [21]; please refer to [21] for formal
details and detailed proofs. We consider a .�; �/-ES (the same reasoning holds
for .� C �/-ES; see [21] for details and more generality). .�; �/-ES are as in
Algorithm 2.1.

Of course, Algorithm 2.1 does not mean that the algorithm must absolutely be
written under this form in order to be in the scope of the bounds in this paper; it
must only be equivalent to an algorithm written under this form. In particular, most
evolutionary algorithms (at least .�; �/-ES and .� C �/-ES) can be rewritten in this
form.

The constant K (i.e., the number of branches in the SWITCH) is the branching
factor. Informally speaking, the branching factor is the number of different cases
that the algorithm can consider, depending on the fitness values. For example, in a
.1; �/-ES, there are � cases:

• The first individual can be the best;
• The second individual can be the best;
• . . .
• The �th individual can be the best.

For a selection-based non-elitist .�; �/ evolution strategy, there is one possible case
for each possible subset of � individuals among the � generated individuals. More
generally, the minimum number K such that the algorithm is still equivalent to
the initial version should be considered. Therefore, we can consider a rewriting of

28 F. Teytaud and O. Teytaud

Algorithm 2.1. One iteration of a .�; �/-ES (simplified by the assumption that
there are no ties). We here assume that all the yj are distinct. Each Si is a fixed
permutation. updateFormula1 can be an arbitrary function, which modifies the
internal state as a function of the xi in case y1 < y2 < y3 < � � � < y�. There is
such an update formula for each possible ranking of the y1; : : : ; y�

One iteration of a .�; �/-ES, for internal state of the algorithm s and fitness function f

Compute individuals x1; : : : ; x� as a function of the internal STATE.
Compute their fitness values y1; : : : ; y� with yi D f .xi /.
Consider S the permutation of ŒŒ1; ��� uniquely determined by: yS.i/ < yS.iC1/

switch S do
case S1

s D updateFormula1.s; x1; : : : ; x�/.break;
endsw
case S2

s D updateFormula2.s; x1; : : : ; x�/.break;
endsw
case S3

s D updateFormula3.s; x1; : : : ; x�/.break;
endsw
: : : case SK

s D updateFormulaK.s; x1; : : : ; x�/.break;
endsw
otherwise

No other case should ever be raised.
endsw

endsw

the algorithm as presented in Algorithm 2.2, where several cases are grouped into
only one update formula in order to reduce the branching factor. For example, in the

case of Selection-Based algorithms, K is at most
�

�
�

�
: There are only K D

�
�
�

�

different update formula, one for each possible selected set. In the case of FR

algorithm, there are at most K D
�

�
�

�
�Š different update formulas.

We have seen how to upper bound the branching factor by rewriting the algorithm
such that equivalent “cases” (permutations) are grouped together. This uses the fact
that the formula is the same for several cases, for example, all rankings of the �

points which lead to the same selected set.

2.2.1 Using VC-Dimension

This advanced section assumes that the reader has some understanding of the
concept of VC-dimension [26]. Intuitively, one can consider the VC-dimension of a
set of functions as a measure of the combinatorial complexity of this set of functions.
We also use the notion of level sets; the level set of f for r is the set of x in the
domain of f such that f .x/ D r .

2 Convergence Rates of Evolutionary Algorithms 29

Algorithm 2.2. A rewriting of Algorithm 2.1, by grouping cases leading to the
same update formula. Please note that the number of cases leading to the same
update formula does not need to be the same for all update formulas; the important
number is only the total number of update formulas

One iteration of a SB-.�; �/-ES, for internal state s and fitness function f :
Compute individuals x1; : : : ; x� as a function of the internal state.
Compute their fitness values y1; : : : ; y� with yi D f .xi /.
Consider S the permutation of ŒŒ1; ��� uniquely determined by:
yS.i/ < yS.iC1/

switch S do
case S1 ;
case S2 ;
case S3

s D updateFormula1.s; x1; : : : ; x�/.break;
endsw
case S4 ;
case S5

s D updateFormula2.s; x1; : : : ; x�/.break;
endsw
. . .
case SL�2 ;
case SL�1 ;
case SL

s D updateFormulaK.s; x1; : : : ; x�/.break;
endsw
otherwise

No other case should ever be raised.
endsw

endsw

However, a second tool can be used for removing some branches: Removing
cases which are not possible because there is no fitness function which leads to
this permutation S . At first view, all permutations are possible; however, some
permutations are very unlikely. For example, it is very unlikely that the crosses with
circles are selected in Fig. 2.1. The essential principle in [21], for improving bounds
in [22] is to reduce the branching factor accordingly, thanks to VC-dimension
assumptions to the VC-dimension of the set of fitness functions. Basically, the
VC-dimension is finite in many cases of interest. Figure 2.1 gives an example of
branches that can be cut under some assumptions on the fitness functions, and in
Sect. 2.3 we give some quantitative classical bounds on VC-dimension. See [14] for
a general introduction.

2.3 Complexity Bounds

Above we defined the branching factor; we will now use it for providing complexity
bounds. Consider, for simplicity, the deterministic case (the general case is treated
in references below). We see, with the branching factor, that the number of possible

30 F. Teytaud and O. Teytaud

Fig. 2.1 Example of impossible selected set if the level sets are spheres: Branches corresponding
to such selections can be discarded from the tree of possible behaviors of the algorithm. Therefore
the branching factor is reduced. More generally, if the VC-dimension is V and if the number of
individuals is �, and if there are no ties, then the number of possibly selected sets is at most �V .
The individuals are the crosses, with circles for the selected individuals. If we have a family of
fitness functions which has some constraints, then we can remove the branches corresponding to
fitness values which violate the constraints; quantifying the number of remaining branches in such
a case is precisely why VC-dimension has been defined

distinct behaviors of the algorithm after a given number N of iterations is limited:
There are K branches per iteration and N iterations, therefore the number of
possible internal states of the algorithm is limited by KN . On the other hand, if we
want the algorithm to be able to find the optimum after N iterations, the number
of possible outputs of the algorithm must be larger than the number of distinct
optima – so if there are 2d optima, we get KN 	 2d . In this section we develop
this idea more formally.

2.3.1 Convergence Ratio

We express bounds in terms of the convergence ratio. The convergence ratio is
defined in [21] as

CR� D log N.�/

dn�

; (2.1)

where

• n� is the number of iterations necessary for ensuring that with probability at least
1
2
, the algorithm has an estimate of the location of the optimum with precision �

for the Euclidean norm;
• d is the dimension of the search space;
• N.�/ is the maximum number k such that there exist k points in the domain with

pairwise distance at least 2�. Typically, N.�/ is equal to the cardinal of the search

2 Convergence Rates of Evolutionary Algorithms 31

space if it is finite and if � is small enough (e.g., N.�/ D 2d for a domain f0; 1gd

if � < 1), and N.�/ D �. 1

�d / if the search space is an open subset of Rd .

The constant 1
2

is arbitrary, and very similar results are derived for a confidence
1 � ı with constant ı > 0 (see [21] for more details). This definition implies that the
complexity verifies

n� D log N.�/

dCR�

:

As discussed below, it is known that the convergence ratio for large values of � can
reach CR� D �.log.�// for some algorithms; we will see that, for usual algorithms,
this is not the case.

2.3.2 Link with the Convergence Rate

In the continuous case (which will be the main example throughout this chapter),
this quantity is related to the convergence rate through the formula

� log.convergence rate/ D lim
�!0

CR�:

(see [21, 22] for more on this). The advantage of CR� is that it is inversely
proportional to the computational cost for a given precision, and parallel speed-ups
can be expressed by divisions between various CR� as follows: The speed-up of an
algorithm x compared to an algorithm y is the ratio between the convergence ratio of
x divided by the convergence ratio of y. This is particularly useful for estimating the
benefit of adding processors; the curve � 7! CR at which lim�!0 CR.�/ increases
as a function of � gives the parallel speed-up of the algorithm. Upper bounds
on CR.�/, independently of the algorithm in a given class (e.g. selection-based
algorithms, a wide and classical family), therefore provide universal upper bounds
on the speed-up of the given class of parallel evolutionary algorithms.

2.3.3 Known Results

Combining combinatorial arguments on the branching factor and geometrical tricks
(using VC-dimension), we get bounds provided in Table 2.1 on the convergence
ratio [21, 22]. The VC-dimension of a set f of functions is, by definition, the
maximum size of a set s such that all its subsets s0 can be isolated from their
complementary set s n s0 by a function f , as follows:

9f I max f .s0/ < min f .s n s0/

32 F. Teytaud and O. Teytaud

Table 2.1 These formulas are upper bounds on the convergence ratio for all values of � and �,
except the last row, which shows some lower bounds on the convergence ratio for � D 2d for the
sphere function. These lower bounds from [21] show that a linear speed-up can be achieved w.r.t. �,
and that a constant convergence ratio (independent of the dimension) can be achieved for � D 2d .
The first row is the general case [22]; it might be better than other rows (for � small). The second
row is when the level sets of fitness functions have VC-dimension V in Rd [21]. The third row is
just the application of the second row to the case of convex quadratic functions (V D �.d2/). The
fourth row is the special case of the sphere function [21]. The tightness of the log.�/ can be shown
by simple pattern search methods which reach such a speed-up

Framework SB- SB- FR- FR-
.�; �/ .�C �/ .�; �/ .�C �/

-ES -ES -ES -ES

General 1
d

�
�� 1

2
log.2��/

�
1
d

�
log

�
�
�

�� �
�� 1

2
log.2��/

� �
log

�
�
�

��

case � 1
d

log.�Š/ � 1
d

log.�Š/

General 1
d

1
d

1
d

1
d

case, � D 1 � log.�/ � log.�C 1/ � log.�/ � log.�C 1/

VC-dim. V V
d

log.�/ V
d

log.�C �/ V
d

.4�C log.�// V
d

.4�C log.�//

Quadratic O .d log �/ O .d log.�C �// O .d.�C log �// O .d .�C log �//

Sphere .1C 1
d

/ log.�/ log.�C �/.1C 1
d

/ 2 log.�/ O.�C log.�//

Sphere,
� D 2d – – ˝.1/ ˝.1/

i.e., the VC-dimension V is

V D maxfv 	 0I 9s1; : : : ; sv such that 8s0 � s; max f .s0/ < min f .s n s0/g:

The VC-dimension of a set of quadratic functions in dimension d is O.d 2/, whereas
the VC-dimension of a set of sphere functions or a set of linear functions is O.d/.

Basically, these results show that

• We can have a convergence ratio increasing as log.�/ as � ! 1; this shows the
asymptotic behavior on parallel machines;

• We can have a linear improvement on the convergence ratio (as a function of
�) for values of � that are not too high, i.e., essentially � � d where d is the
dimension;

• The dependency on � is not completely known.

2.4 The Limited Speed-Up of Many Real-World Algorithms

There are a lot of different methods for the updateFormula function. The internal
state to be updated contains usually, at least, (i) the step-size � (which is, roughly
speaking, the scale of mutations) and (ii) the mean of a Gaussian distribution, to be
used for generating new points. The most difficult issue is usually the update of � ;
� is the standard deviation of the Gaussian distribution used in Algorithm 2.3.

2 Convergence Rates of Evolutionary Algorithms 33

Algorithm 2.3. A typical evolutionary algorithm in the continuous domain

� D �0, x0 2 Rd .
n D 0 == iteration number
while halting criterion not reached do

xn;1; xn;2; : : : ; xn;� D Gaussian.xn; �n/

8i 2 ŒŒ1; ���; yn;i D f .xn;i /

.xnC1; �nC1/ D updateFormula.xn;1; xn;2; : : : ; xn;�; yn;1; yn;2; : : : ; yn;�/

n nC 1

end while

Three of the most widely known methods for updating � are the one-fifth rule
[15], self-adaptation (SA) [15, 17] and cumulative step-size adaptation (CSA) [11].
We saw in Sect. 2.1 that the optimal speed-up, for � sufficiently large, cannot be
better than log.�/. It is also known (e.g., [21]) that this can be reached. We will see
now that the methods above do not reach the optimal speed-up, at least under their
usual specifications.

We will use 	� D �nC1=�n. 	� small means that � decreases quickly, whereas 	�
close to 1 means a slow decrease, and the key point is that a fast convergence to the
optimum implies a fast convergence of � (see [1] for more on this). More precisely,
the log of the convergence rate is lower bounded by E log 	�. Therefore, if we can
build an absolute lower bound E log 	� D log.˝.1//, this will provide an absolute
upper bound on the convergence ratio, or, if you prefer, a lower bound on the
convergence rate. More formally, E log 	� D log.˝.1// implies CR� D O.1/. This
is not optimal, as we know that the convergence ratio should be �.log.�// for well-
designed algorithms. Equivalently, the convergence rate should be exp.��.log.�//.

We will now see that some well-known algorithms have this undesirable property
“E.log 	�jxn; �n/ 	 C ” for some C > �1 and independent of �. This shows that
improvements are possible here: The difference between the �.log �/ (predicted
by theory) and the O.1/ in algorithms below show that the algorithms cited below
(which cover most of evolutionary algorithms in the continuous domains) are not
optimal.

2.4.1 The One-Fifth Rule

The one-fifth rule is a very common rule for the update of � . The idea is to increase
� if the probability of success p is greater than 1

5
, and to decrease it otherwise. The

probability of success is the probability that an offspring is better than its parent
(Formally, in case of minimization, there is success for the i th offspring if f .xn;i / <

f .xn/).
A usual implementation is

• p � 1
5

) 	� D K1 2 .0; 1/, corresponding to the decreasing case, so we want
�nC1 < �n.

34 F. Teytaud and O. Teytaud

• p > 1
5

) 	� D K2 > 1, corresponding to the increasing case, so �nC1 must be
greater than �n.

It is easy to see that, in the first case, 	� D K1 > 0, and in the second case
	� > 1. Therefore, there exists a constant C such that E log 	� > C .

The one-fifth rule can also be expressed as 	� D K
p� 1

5

3 . Here also, it is easy to

see that 	� 	 K
� 1

5

3 > 0, therefore the same conclusion holds, namely E log 	� 	
C > �1, for some C independent of �. The one-fifth rule does not have the optimal
speed-up log.�/ with its usual parametrization. Increasing K3 (as a function of �)
might solve this.

2.4.2 Self-adaptation (SA)

Self-adaptation (SA) is another well-known algorithm for choosing the step-size
(Algorithm 2.4). Here, Ni are independent standard Gaussian random variable, 	�
is an average between log-normal random variables. Unfortunately, if � D b�=4c,
then even if the � selected mutations correspond to the smallest values of the
mutations �i , log.�/ is, on average, decreased by � log.
Q 1

4
N/, where Q 1

4
N is

the average of the first quartile of the standard Gaussian variable. One can show
[25], as for the one-fifth rule, that E log.	�/ 	 C > �1. Therefore, SA does not
have the optimal speed-up log.�/ with its usual parametrization. Increasing
 (as a
function of �) might solve this.

2.4.3 Cumulative Step-Size Adaptation (CSA)

A third method for updating the step size is the cumulative step-size adaptation
(CSA). This method looks at the path followed by the algorithm, and compares its
length to the expected length under random selection. CSA increases � if the first
path is greater than the second one, and decreases � otherwise.

We formalize an iteration of CSA with weights w1; : : : ; w� in dimension d as
follows; we do not have to assume anything on the constant �d and the constant pc

except assumptions (2.7) and (2.8):

�nC1 D �n exp

�� jjpcjj
�d

� 1

�
� c�

d�

�
(2.2)

�X

iD1

wi D 1 (2.3)

2 Convergence Rates of Evolutionary Algorithms 35

Algorithm 2.4. Self-adaptation algorithm.
 usually depends on the dimension.
As well as for the one-fifth rule and cumulative step-size adaptation, the possible
speed-up is �.1/ independently of �

Initialize �avg 2 R, x0 2 Rd

n D 0 == iteration number
while We have time do

for i D 1::� do
�i D �avge
Ni .0;1/

zi D �iNi .0; Id/ == mutation for i th individual
xn;i D xn C zi

fi D f .xn;i /

end for
Sort the individuals by increasing fitness; f.1/ < f.2/ < � � � < f.�/ .
zavg D 1

�

P�
iD1 z.i/

�avg D 1
�

P�
iD1 �.i/

xnC1 D xn C zavg

n nC 1

end while

�eff D 1P�
iD1.w

2
i /

(2.4)

d� D 1 C 2 max.0;

r
�eff � 1

d C 1
� 1/ (2.5)

c� D �eff C 2

d C �eff C 3
(2.6)

�d > 0 (2.7)

jjpcjj 	 0: (2.8)

(jj:jj does not have to be a norm, we just need Eq. (2.8).) These assumptions, to the
best of our knowledge, hold in all current implementations of CSA. They do not
completely specify the algorithm, but are sufficient for our purpose.

One can easily show that Eqs. (2.3)–(2.8) imply that 8�; E.log 	�jxn; �n/ 	 �1;
for this algorithm also, we see that 9C; 8�; E log 	� 	 C > �1. CSA does not
have the optimal speed-up log.�/ with its usual parametrization. Increasing c� =d�

might solve this.

2.5 Implications

The above results have implications on practice. Several of them concern parallel
evolutionary algorithms; parallelism is crucial in evolutionary algorithms as they
are population-based and therefore are easy to parallelize, at least when the
computational cost of the fitness is large in front of communication costs.

36 F. Teytaud and O. Teytaud

100 101 102 103 104
−16

−14

−12

−10

−8

−6

−4

−2

−0
Speed−up of CMSA algorithm, Sphere function, d=3

Lambda

lo
g|

|x
||*

N
/n

mu=lambda/4
mu=N
mu=lambda/4
mu=N
mu=lambda/4
mu=N
mu=lambda/4
mu=N

Fig. 2.2 Example of the limited speed-up of real-world algorithms on the sphere-function x 7!
jjxjj2 from [20]. The Covariance Matrix Self-adaptation Evolution Strategy (CMSA-ES) is an
algorithm using the self-adaptation rule combined with a full covariance matrix. This experiment
is done in dimension 3, and we look at the distance to the optimum normalized by the dimension,
divided by the number of generations of the algorithm (the lower the result, the better; this is a
normalized convergence rate). With usual initialization, we have a selection ratio �

�
equals to 1

4
.

As we can note, using a smaller selection ratio (here the selection ratio equal to min.d; b�=4c/=�)
is a much better choice. With this improvement we can reach the theoretical logarithmic speed-up

Changing typical algorithms for large �. The first consequence, around paral-
lelism is implied by the combination of Sect. 2.3 (which shows complexity bounds)
and Sect. 2.4 (which shows the speed-up of usual algorithms like cumulative step-
size adaptation, the one-fifth rule, and self-adaptation). The results show that
these three rules, with typical parameters, cannot reach the logarithmic speed-up
�.log.�// for � large, and have a bounded speed-up �.1/. However, this might
be easy to modify by adapting constants; for example, increasing the lognormal
mutation strength as a function of �, for the self-adaptation of � , might solve this
issue. Also, modifying c�

d�
as a function of �, for CSA, might solve this issue. As an

illustration, we show in Fig. 2.2 the great improvement provided by the reduction of
� (in order to avoid the weakness pointed out in Sect. 2.4.2) on the most recent SA
variant. This is certainly an example of theory which has a direct impact on practice.
As we can see in Fig. 2.2 more than 100 % speed-up on our graph, which increases
as the number of processors increases, with only one line of code modified in SA.

Choice of algorithm, given a number � of processors. Let us consider the choice
of an algorithm as a function of �; this is the case in which � is equal to the number
of computing units available. New machines have an increasing number of cores,
clusters or grids have thousands of cores, and since “jobs” submitted on grids must
sometimes be grouped, the value of � can be huge, beyond tens of thousands.

2 Convergence Rates of Evolutionary Algorithms 37

It is known [4] that evolution strategies do not all have the same speed-up. If �

is small in comparison with the dimension, .�=�; �/-ES can reach a linear speed-
up ,1 whereas .1; �/-ES have only logarithmic speed-up. If � is small or of the same
order as the dimension, this suggests that .�=�; �/ strategies scale better than .1; �/

algorithms.
For large �, [21] (summarized in Table 2.1) has shown that the theoretical speed-

up is �.log.�// for both algorithms (namely .�=�; �/ and .1; �/), at least for good
parametrizations of these families of algorithms. However, as shown in Sect. 2.4,
most usual .�=�; �/ evolution strategies have limited speed-up �.1/, and therefore
their speed-up is much worse than .1; �/-ES which reaches �.log.�//! Should
we deduce from this that � D 1 is better when � is large? In fact, choosing �

linear as a function of � (roughly one-fourth in many papers) is not a good idea for
algorithms based on recombination by averaging. Maybe � D min.d; �=4/ could
be a good idea; but this will not be sufficient (except maybe for SA). Our results are
independent of � in CSA, therefore changing � in CSA is not sufficient for ensuring
log.�/ speed-up in CSA, but preliminary investigations suggests that this formula
for �, combined with the modifications suggested above on c�

d�
, might give good

results.
This suggests that a lot of work remains around the case of � larger than the

dimension. In particular, we have shown [24] that Estimation of Multivariate Normal
Algorithm (EMNA) [12] is, for large �, much faster than most usual algorithms. In
[23] we have shown that some algorithms could be improved by a factor of 8 by
combining tricks dedicated to � large.

Implications for multiobjective algorithms. An original application of the
branching factor and of bounds derived with it is discussed in [19]. We have seen
in Eq. (2.1) that the convergence ratio depends on the packing numbers (i.e., N.�/).
This means that the number of fitness evaluations strongly depends on the packing
number, i.e., for a precision �, the number of disjoint balls of radius � that can
be put in the domain. Unfortunately in the multiobjective case, when the number
of conflicting objectives is large, then the packing number is huge. Thanks to this
principle, in [19] we have shown that, even if we restrict our attention to problems
with Lipschitzian Pareto fronts, finding the optimal Pareto front with precision � and
confidence 1 � ı for the Hausdorff metric requires a number of fitness evaluations
˝.1=�d�1/ C log2.1 � ı/:

• If the algorithm is based on Pareto-comparisons between individuals (i.e., we
only know which points dominate other points);

• And if the number of objectives2 is d .

1The optimal speed-up is asymptotically logarithmic, but as explained in this chapter non-
asymptotically we can reach a linear speed-up (until � D �.d/).
2Importantly, the result is based on the fact that those objectives can all be conflicting – results are
very different if we forbid too many conflicting objectives.

38 F. Teytaud and O. Teytaud

Consider a d -dimensional fitness function f (with values in Œ0; 1�d). Then, the
Pareto set is a subset of Œ0; 1�d . The rate above is, for d large, close to the
efficiency of a random search using a distribution of x such f .x/ is uniform in
the Pareto set; namely the rate of this random search is O.��d /. This means that
all comparison-based algorithms are basically not much faster than random search.
Comparison-based algorithms require, if they want to be significantly faster than
random search for d large, either:

• Some feedback from the human user;
• Or some more information on the fitness (see, for example, informed operators

[16]);
• Or moderately many conflicting objectives (see in particular [5]).

2.6 Conclusions

We have summarized theoretical complexity bounds for algorithms based on
selection, on full ranking of selected individual, or on full ranking of the complete
population; this covers most evolutionary algorithms. Many of these bounds are
shown tight within constant factors. We have shown that many real-world algorithms
are far from these complexity bounds, when � is large. This suggests several
modifications for real-world algorithms, easy to implement and which both provably
(see Sect. 2.4 compared to bounds in Sect. 2.3) and experimentally (see Fig. 2.2)
greatly improve the results for � large.

References

1. A. Auger, Convergence results for (1,�)-SA-ES using the theory of '-irreducible Markov
chains. Theor. Comput. Sci. 334, 35–69 (2005)

2. T. Bäck, F. Hoffmeister, H.-P. Schwefel, Extended selection mechanisms in genetic algorithms,
in Proceedings of the Fourth International Conference on Genetic Algorithms, San Diego, ed.
by R.K. Belew, L.B. Booker (Morgan Kaufmann, 1991)

3. J.E. Baker, Reducing bias and inefficiency in the selection algorithm, in Proceedings of the
Second International Conference on Genetic Algorithms and Their Application, Cambridge
(Lawrence Erlbaum, 1987), pp. 14–21

4. H.-G. Beyer, The Theory of Evolution Strategies (Springer, Heidelberg, 2001)
5. D. Brockhoff, E. Zitzler, Objective reduction in evolutionary multiobjective optimization:

theory and applications. Evol. Comput. 17(2), 135–166 (2009)
6. C.G. Broyden, The convergence of a class of double-rank minimization algorithms 2. New

Algorithm J. Inst. Math. Appl. 6, 222–231 (1970)
7. A. Conn, K. Scheinberg, L. Toint, Recent progress in unconstrained nonlinear optimization

without derivatives. Math. Program. 79, 397–414 (1997)
8. R. Fletcher, A new approach to variable-metric algorithms. Comput. J. 13, 317–322 (1970)
9. S. Gelly, S. Ruette, O. Teytaud, Comparison-based algorithms are robust and randomized

algorithms are anytime. Evol. Comput. Special Issue on Bridging Theory and Practice 15(4),
26 (2007)

2 Convergence Rates of Evolutionary Algorithms 39

10. D. Goldfarb, A family of variable-metric algorithms derived by variational means. Math.
Comput. 24, 23–26 (1970)

11. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies.
Evol. Comput. 9(2), 159–195 (2001)

12. P. Larranaga, J.A. Lozano, Estimation of Distribution Algorithms. A New Tool for Evolutionary
Computation (Kluwer, Boston, 2001)

13. I. Loshchilov, M. Schoenauer, M. Sebag, Comparison-based optimizers need comparison-
based surrogates, in Parallel Problem Solving from Nature (PPSN XI), ed. by R. Schaefer et al.
LNCS, vol. 6238 (Springer, New York, 2010), pp. 364–373

14. J. Matoušek, Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol 212
(Springer, New York, 2002)

15. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution (Frommann-Holzboog Verlag, Stuttgart, 1973)

16. O. Rudenko, M. Schoenauer, Dominance based crossover operator for evolutionary multi-
objective algorithms. CoRR, abs/cs/0505080 (2005)

17. H.-P. Schwefel, Adaptive Mechanismen in der biologischen Evolution und ihr Einfluss auf die
Evolutionsgeschwindigkeit. Interner Bericht der Arbeitsgruppe Bionik und Evolutionstechnik
am Institut für Mess- und Regelungstechnik Re 215/3, Technische Universität Berlin, Juli 1974.

18. D.F. Shanno, Conditioning of quasi-Newton methods for function minimization. Math.
Comput. 24, 647–656 (1970)

19. O. Teytaud, On the hardness of offline multiobjective optimization. Evol. Comput. 15, 475–
491 (2007)

20. F. Teytaud, A new selection ratio for large population sizes, in Applications of Evolutionary
Computation. LNCS, vol. 6024 (Springer, Berlin, 2010), pp. 452–460

21. O. Teytaud, H. Fournier, Lower bounds for evolution strategies using VC-dimension, in
Proceedings of PPSN, Dortmund (Springer, 2008), pp. 102–111

22. O. Teytaud, S. Gelly, General lower bounds for evolutionary computation, in Proceedings of
PPSN, Reykjavik (Springer, 2006), pp. 21–31

23. F. Teytaud, O. Teytaud, Bias and variance in continuous EDA, in Proceedings of EA09, New
York. LNCS (Springer, 2009)

24. F. Teytaud, O. Teytaud, On the parallel speed-up of estimation of multivariate normal algorithm
and evolution strategies, in Proceedings of EvoStar, Tübingen, 2009, pp. 655–664

25. F. Teytaud, O. Teytaud, Log(lambda) modifications for optimal parallelism, in Parallel
Problem Solving from Nature (Springer, New York, 2010)

26. V. Vapnik, A. Chervonenkis, On the uniform convergence of frequencies of occurence events
to their probabilities. Sov. Math. Dokl. 9, 915–918 (1968)

27. D. Whitley, The GENITOR algorithm and selection pressure: why rank-based allocation of
reproductive trials is best, in Proceedings of the Third International Conference on Genetic
Algorithms, San Mateo, ed. by J.D. Schaffer (Morgan Kaufmann, 1989)

Chapter 3
Rugged and Elementary Landscapes

Konstantin Klemm and Peter F. Stadler

Abstract The landscape of an optimization problem combines the fitness (or cost)
function f on the candidate set X with a notion of neighborhood on X , typically
represented as a simple sparse graph. A landscape forms the substrate for local
search heuristics including evolutionary algorithms. Understanding such optimiza-
tion techniques thus requires insight into the connection between the graph structure
and properties of the fitness function.

Local minima and their gradient basins form the basis for a decomposition of
landscapes. The local minima are nodes of a labeled graph with edges providing
information on the reachability between the minima and/or the adjacency of their
basins. Barrier trees, inherent structure networks, and funnel digraphs are such
decompositions producing “coarse-grained” pictures of a landscape.

A particularly fruitful approach is a spectral decomposition of the fitness function
into eigenvectors of the graph Laplacian, akin to a Fourier transformation of a real

K. Klemm (�)
Bioinformatics Group, Department of Computer Science, Interdisciplinary Center
for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany
e-mail: klemm@bioinf.uni-leipzig.de

P.F. Stadler
Bioinformatics Group, Department of Computer Science, Interdisciplinary Center
for Bioinformatics, University of Leipzig, D-04107 Leipzig, Germany

Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103
Leipzig, Germany

Fraunhofer Institut für Zelltherapie und Immunologie – IZI Perlickstraße 1, D-04103
Leipzig, Germany

Department of Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090
Wien, Austria

Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
e-mail: peter.stadler@bioinf.uni-leipzig.de

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__3,
© Springer-Verlag Berlin Heidelberg 2014

41

mailto:klemm@bioinf.uni-leipzig.de
mailto:peter.stadler@bioinf.uni-leipzig.de

42 K. Klemm and P.F. Stadler

function into the elementary waves on its domain. Many landscapes of practical and
theoretical interest, including the Traveling Salesman Problem with transpositions
and reversals, are elementary: Their spectral decomposition has a single non-zero
coefficient. Other classes of landscapes, including k-satisfiability (K-SAT), are
superpositions of the first few Laplacian eigenvectors. Furthermore, the ruggedness
of a landscape, as measured by the correlation length of the fitness function, and
its neutrality, the expected fraction of a candidate’s neighbors having the same
fitness, can be expressed by the spectrum. Ruggedness and neutrality are found
to be independently variable measures of a landscape. Beyond single instances of
landscapes, models with random parameters, such as spin glasses, are amenable to
this algebraic approach.

This chapter provides an introduction into the structural features of discrete
landscapes from both the geometric and the algebraic perspective.

3.1 Introduction

The concept of a fitness landscape originated in the 1930s in theoretical biology
[75, 76] as a means of conceptualizing evolutionary adaptation: A fitness landscape
is a kind of potential function on which a population moves uphill due to the
combined effects of mutation and selection. Thus, natural selection acts like hill
climbing on the topography implied by the fitness function.

From a mathematical point of view, a landscape consists of three ingredients:
a set X of configurations that are to be searched, a topological structure T on X

that describes how X can be traversed, and a fitness or cost function f W X ! R
that evaluates the individual points x 2 X . This generic structure is common to
many formal models, from evolutionary biology to statistical physics and operations
research [5, 26, 40, 41]. The topological structure T is often specified as a move
set, that is, as a function N W X ! P.X/ specifying for each configuration x 2 X

the subset N.x/ � X of configurations that are reachable from x. Usually, the
move set is constructed in a symmetric way, satisfying x 2 N.y/ ” y 2 N.x/.
The configuration space or search space .X;T/ becomes an undirected finite graph
G in this case. Then for each x 2 X , the degree of x is given by deg.x/ D jN.x/j.
We say that G is d -regular for non-negative integer d if deg.x/ D d for all x 2 X .

Without losing generality we assume that optimization strives to find those x 2 X

for which f .x/ is small. Thus, f is interpreted as energy (or fitness with negative
sign), and we are particularly interested in the minima of f . A configuration x 2 X

is a local minimum if f .x/ � f .y/ for all y 2 N.x/. By M we denote the set of all
local minima of the landscape. A local minimum Ox 2 M is global if, for all y 2 X ,
f . Ox/ � f .y/.

The Traveling Salesman Problem (TSP) [22], see Fig. 3.1, may serve as an
example. Given a set of n vertices (cities, locations) f1; : : : ; ng and a (not necessarily

3 Rugged and Elementary Landscapes 43

REVERSALTRANSPOSITIONEXCHANGE

Gallup

Bandelier NM

Santa Fe

Carlsbad Caverns

Valley of Fires

Bisti Badlands

Albuquerque
El Malpais NM

Four Corners
dcba

Fig. 3.1 A small instance (a) of the Traveling Salesman Problem with illustration of three different
move types (b)–(d) described in the main text

symmetric) matrix of distances or travel costs dij, the task is to find the permutation
(tour) � that minimizes the total travel cost

f .�/ D
nX

iD1

d�.i/;�.iC1/ (3.1)

where indices are interpreted modulo n. A landscape arises by imposing a topo-
logical structure on the set Sn of permutations, i.e., by specifying a move set that
determines which tours are adjacent. Often the structure of the problem suggests
one particular move set as natural, while others might look quite far-fetched.
In principle, however, the choice of the move set is independent of the function f .
For the TSP, for instance, three choices come to mind:

1. Exchange (Displacement) moves relocate a single city to another position in the
tour

.1; : : : ; i; i C 1; i C 2; : : : j; j C 1; : : : ; n/

7! .1; : : : ; i; i C 2; : : : j; i C 1; j C 1; : : : ; n/ :

See Fig. 3.1b.
2. Reversals cut the tour in two pieces and invert the order in which one half is

transversed.

.1; : : : ; i; i C 1; i C 2; : : : ; k � 2; k � 1; k; : : : n/

7! .1; : : : ; i; k � 1; k � 2; : : : ; i C 2; i C 1; k; : : : n/ :

See Fig. 3.1c.
3. Transpositions exchange the location of a single city

.1; : : : ; i � 1; i; i C 1; : : : ; k � 1; k; k C 1 : : : n/

7! .1; : : : ; i � 1; k; i C 1; : : : ; k � 1; i; k C 1; : : : n/ :

See Fig. 3.1d.

44 K. Klemm and P.F. Stadler

3.2 Ruggedness

The notion of rugged landscapes dates back to the 1980s, when Stuart Kauffman
began to investigate these structures in some detail [32]. The intuition is simple.
Once the landscape is fixed by virtue of the move set, optimization algorithms
making local moves w.r.t. this move set will “see” a complex topography of
mountain ranges, local optima, and saddles that influences their behavior. The more
“rugged” this topography, the harder it becomes for an optimization algorithm based
on local search to find the global optimum or even a good solution. Ruggedness can
be quantified in many ways, however [29]:

1. The length distribution of down-hill walks, either gradient descent or so-called
adaptive walks, is easily measured in computer simulations but is hard to deal
with rigorously, see, e.g., [37].

2. Richard Palmer [45] proposed to call a landscape f rugged if the number of local
optima scales exponentially with some measure of system size, e.g., the number
of cities of a TSP. The distribution of local optima is in several cases accessible
by the toolkit of statistical mechanics, see e.g. [50].

3. Barrier trees give a much more detailed view compared to local optima alone.
Gradient walks are implicitly included in barrier tree computations. Section 3.3
of this chapter reviews barrier trees and other concise representations of land-
scapes.

4. Correlation measures capture landscape structure in terms of the time scales on
which the cost varies under a random walk. These involve algebraic approaches
with spectral decomposition, which are the topic of Sects. 3.4 and 3.5.

3.3 Barriers

Optimization by local search or gradient walks is guaranteed to be successful in
a landscape with a unique cost minimum. In all other cases, variations of local
search are more suitable [14,33] when they accept inferior solutions to some extent.
Then the walk eventually overcomes a barrier to pass over a saddle and enters the
basin of an adjacent – possibly lower – local minimum. In this section we formalize
the notions of walks, barriers, saddles, basins, and their adjacency. They form the
basis of coarse-grained representations of landscapes. These representations “live”
on the set of local minima M which is typically much smaller than the set of
configurations X .

We review four such representations. Inherent structure networks contain com-
plete information about adjacency of the gradient walk basins of the local minima.
Barrier trees describe for each pair of local minima the barrier, i.e., the increase in
cost to be overcome in order to travel between the minima. The funnel digraph
displays the paths taken by an idealized search dynamics that takes the exit at
lowest cost from each basin. Valleys were recently introduced to formalize the

3 Rugged and Elementary Landscapes 45

Fig. 3.2 Graphical representations of local minima and saddles for the TSP instance of Fig. 3.1
under transpositions. (a) Local minima (circles) and direct saddles between their basins (y-axis
not drawn to scale). The inherent structure network is the complete graph because a direct saddle
exists for each pair of minima. In the illustration, however, saddles at a cost above 1,400 have been
omitted. (b) The barrier tree for the same landscape. An inner node (vertical line) of the barrier
tree indicates the minimal cost to be overcome in order to travel between all minima in the subtrees
of that node. In (a), the direct saddles relevant for the construction of the barrier tree are drawn as
filled rectangles. (c) Local minima are those TSP tours without neighboring tours (configurations)
of lower cost. Note that this depends on the move set: Under reversals rather than transpositions,
the two rightmost configuration are adjacent. (d) In the funnel digraph, an arc a! b indicates that
the lowest direct saddle from minimum a leads to minimum b

landscape structure implied by adaptive walks. Figure 3.2 serves as a comprehensive
illustration throughout this section.

3.3.1 Walk and Accessibility

For configurations x; y 2 X , a walk from x to y is a finite sequence of
configurations w D .w0; w1; ; : : : ; wl / with w0 D x, wl D y, and wi 2 N.wi�1/ for
all i 2 f1; 2; : : : ; lg. By Pxy we denote the set of all walks from x to y. We say that
x and y are mutually accessible at level 	 2 R, in symbols

x " 	 # y ; (3.2)

46 K. Klemm and P.F. Stadler

if there is a walk w 2 Pxy such that f .z/ � 	 for all z 2 w. The saddle height or
fitness barrier between two configurations x; y 2 X is the smallest level at which x

and y are mutually accessible,

f Œx; y� D minf	 2 Rjx " 	 # y g : (3.3)

The saddle height fulfills the ultrametric (strong triangle) inequality. Namely, for all
configurations x; y; z 2 X

f Œx; z� � maxff Œx; y�; f Œy; z�g : (3.4)

because the set of walks from x to z passing through y is a subset of Pxz.

3.3.2 Barrier Tree

Equipped with these concepts, let us return to the consideration of local minima.
When restricting arguments to elements of M , the saddle height f W M � M ! R
still fulfills the ultrametric inequality and thereby induces a hierarchical structure on
M [47]. To see this, we use the maximum saddle height

m D maxff Œ Ox; Oy�j Ox; Oy 2 M g (3.5)

of the whole landscape to define a relation on M by

Ox
 Oy W, f Œ Ox; Oy� < m : (3.6)

If all local minima are pairwise non-adjacent,
 is an equivalence relation on M .
Its transitivity follows directly from the ultrametric inequality for the saddle height.
Unless jM j D 1, there is at least one pair of minima that are not related. Therefore
the relation
 generates a partitioning of M into at least two equivalence classes.
The argument may then be applied again to each class containing more than one
element. This recursion of the partitioning into equivalence classes generates the
barrier tree. Its leaves are the singleton classes, i.e., the minima themselves. Each
inner node stands for a (sub-)partitioning at a given saddle height.

Barrier trees serve to reveal geometric differences between landscapes, e.g.,
by measuring tree balance [63]. Figure 3.3 shows an example for the number
partitioning problem [22]. Standard “flooding” algorithms construct the barrier tree
by agglomeration rather than division because the minima and saddle heights are
not known a priori. By scanning the configurations of the landscape in the order
of increasing fitness, local minima are detected and joined by an inner tree node
when connecting walks are observed [52, 73]. Barrier trees can be defined also for
degenerate landscapes where the assumption of non-adjacent local minima is not
fulfilled [17].

3 Rugged and Elementary Landscapes 47

Fig. 3.3 Barrier trees of two fitness landscapes of the same size. Left tree: an instance of the
number partitioning problem of size N D 10. Right tree: an instance of the truncated random
energy model. The trees obtained for the two types of landscapes are distinguishable by measures
of tree imbalance [63]

3.3.3 Basins and Inherent Structure Network

More detailed information about the geometry in terms of local minima is captured
by basins and their adjacency relation. A walk .w0; w1; : : : ; wl / is a gradient walk
(or steepest descent) if each visited configuration wi is the one with lowest fitness
in the closed neighborhood of its predecessor,

f .wi / D minff .x/jx 2 N.wi�1/ [wi�1g; 1 � i � l : (3.7)

From each starting configuration w0, a sufficiently long gradient walk encounters a
local minimum wl 2 M . If the encountered minimum g.x/ is unique given a starting
configuration x 2 X of a gradient walk, this defines a mapping g W X ! M . In the
case that neighbors with lowest fitness are not unique, ambiguity of gradient walks is
resolved by an additional, e.g., lexicographic ordering on X . The basin or gradient
basin of a local minimum Ox is the set B. Ox/ D g�1. Ox/ of configurations from which
a gradient walk leads to Ox. Each basin is non-empty because it contains the local
minimum itself. Since each configuration x 2 X is in the basin of exactly one local
minimum g.x/, basins are a partitioning of the set X of configurations.

The interface between two local minima Ox; Oy 2 M is the set

I. Ox; Oy/ D f.x; y/jx 2 B. Ox/; y 2 B. Oy/; x 2 N.y/g (3.8)

48 K. Klemm and P.F. Stadler

containing all pairs of adjacent configurations shared between the basins. The direct
saddle height between Ox and Oy is

hŒ Ox; Oy� D min fmaxff .x/; f .y/gj.x; y/ 2 I. Ox; Oy/g : (3.9)

Direct saddle height is lower bounded by saddle height,

hŒ Ox; Oy� 	 f Œ Ox; Oy� (3.10)

for all Ox; Oy 2 M with non-empty interface. A member of the interface .x; y/ 2
I. Ox; Oy/ is a direct saddle (between Ox and Oy) if its cost is the direct saddle height
maxff .x/; f .y/g D h. Ox; Oy/.

The inherent structure network .M; H/ [13] is defined as a graph with node
set M and edge set H D ff Ox; OygjI. Ox; Oy/ ¤ ;g. An edge thus connects the local
minima Ox and Oy if and only if there is a path from Ox to Oy that lies in the union of
basins B. Ox/ [B. Oy/. The saddle heights f Œ Ox; Oy� can be recovered from the inherent
structure network by minimizing the maximum values of the direct saddle height
hŒ Op; Oq� encountered along a path in .M; H/ that connects Ox and Oy. We remark,
finally, that some studies use the term “direct saddle” to denote only the subset of
direct saddles for which hŒ Ox; Oy� D f Œ Ox; Oy�, i.e., which cannot be circumvented by
a longer but lower path in .M; H/ [17,61]. Exact computation of inherent structure
networks requires detection of all direct saddles and is thus restricted to small
instances [66]. Efficient sampling methods exist for larger landscapes, e.g. by [38].

For the example in Fig. 3.2, the inherent structure network is the complete graph:
All basins are mutually adjacent. Remarkable graph properties, however, have been
revealed when studying the inherent structure networks of larger energy landscapes
of chemical clusters [13], spin-glass models [7], and NK landscapes [66]. Compared
to random graphs, the inherent structure networks have a large number of closed
triangles (“clustering”), modular structure, and broad degree distributions, often
with power law tails.

3.3.4 Funnel

Besides barrier tree and inherent structure network, another useful graph represen-
tation is the funnel digraph .M; A/ [34]. Here, a directed arc runs from Ox to Oy if the
basins of Ox and Oy have a non-empty interface and

h. Ox; Oy/ D minfh. Ox; Oz/jf Ox; Ozg 2 Eg : (3.11)

Thus from each local minimum Ox an arc points to that neighboring local minimum
Oy that is reached by the smallest direct saddle height. The node Ox has more than one
outgoing arc if more than one neighboring basin is reached over the same minimal
directed saddle height.

3 Rugged and Elementary Landscapes 49

The definition is motivated by stochastic variants of local search such as
Metropolis sampling [39] and simulated annealing [33]. Under the assumption
that the search exits a basin via its lowest saddle with the largest probability, the
most likely sequences of visits to basins are the directed paths of the funnel digraph.
It serves to make precise the concept of a funnel [23, 43, 74]. A local minimum Ox is
in the funnel F.Oz/ � M of a global minimum Oz if there is a directed path from Ox to
Oz on the funnel digraph. Thus the funnel contains all those local minima from which
iterative exits over the lowest barrier eventually lead to the ground state [34].

In the funnel digraph for the small TSP instance in Fig. 3.2c,d, we see that the
funnel consists of the basins of the global minimum itself (cost 1294) and of the
highest local minimum (cost 1389) while the basins of the other three minima
are outside the funnel. Numerical studies with the number partitioning problem [22]
indicate that funnel size tends to zero for large random instances [34].

3.3.5 Valleys

Adaptive walks generalize gradient walks by accepting any fitness-improving steps.
We say that x 2 X is reachable from y 2 X if there is an adaptive walk from y

to x. A valley [61] is a maximal connected subgraph of X such that no point y … W

is reachable from any starting point x 2 W . In contrast to basins, valleys do not
form a hierarchy but rather can be regarded as a community structure of X , see,
e.g., [20]. Instead, they overlap in the upper, high-energy, parts of the landscape,
where adaptive walks are not yet committed to a unique local minimum. The parts
of gradient basins below the saddle points linking them to other basins therefore are
valleys. Conversely, entire gradient basins are always contained in valleys.

The exact mutual relationships among the barrier trees, basins, inherent structure
networks, valleys, etc., are still not completely understood, in particular in the
context of degenerate landscapes.

3.4 Elementary Landscapes

3.4.1 Graph Laplacian

In the previous section we have taken a geometric or topological approach to
analyzing and representing a landscape. The alternative is to adopt an algebraic point
of view, interpreting the landscape as a vector of fitness values. The neighborhood
structure N on the set X of configurations, which index the fitness vector, also needs
an algebraic interpretation. In this contribution we only deal with graphs whose
edges are defined by the (symmetric) move set N W X ! P.X/. The most natural
choice thus are the adjacency matrix A (with entries Axy D 1 if x and y are adjacent,
i.e., y 2 N.x/, and Axy D 0 otherwise) and the incidence matrix H. The latter has

50 K. Klemm and P.F. Stadler

entries Hex D C1 if x is the “head end” of the edge e, Hex D �1 if x is the “tail
end” of e, and Hex D 0 otherwise. (The assignment of head and tail to each edge is
arbitrary.) The basic idea of algebraic landscape theory is to explore the connections
between the fitness function f and these matrix representations of the search space,
and to use combinations the these algebraic object to derive numerical descriptors
of landscape structure [49].

A convenient starting point is to consider the local variation of the fitness, e.g.,
in the form of fitness differences f .x/ � f .y/ between adjacent vertices y 2 N.x/.
The sum of the local changes

.Lf /.x/ WD
X

y2N.x/

.f .x/ � f .y// (3.12)

defines the Laplacian L as a linear operator associated with the graph on .X; N /

that can be applied to any function f on the nodes of the graph. When we imagine
a spatially extended landscape, e.g., the underlying graph being a lattice, .Lf /.x/

can be interpreted as the local “curvature” of f at configuration x. In particular, the
x-th entry of Lf is negative if x is a local minimum and .Lf /.x/ > 0 for a local
maximum.

Since L is a linear operator, it may also be seen as a matrix. In fact, L is intimately
related to both the adjacency and the incidence matrix: L D D � A, where D is
the diagonal matrix of vertex degrees deg.x/ WD P

y2X Axy, and L D HCH. The
Laplacian is thus simply a representation of the topological structure of the search
space.

3.4.2 Elementary Landscapes

Since L is a symmetric operator (on a finite-dimensional vector space), it can be
diagonalized by finding its eigenfunctions. Let us perform the diagonalization for
the simple and useful case that the graph is an n-dimensional hypercube with
node set X D f�1; C1gn and x 2 N.y/ if and only if x and y differ at exactly
one coordinate. For each set of indices I � f1; : : : ; ng, the Walsh functions are
defined as

wI .x/ D
Y

i2I

xi : (3.13)

Figure 3.4 gives an illustration for the three-dimensional case. The Walsh functions
form an orthogonal basis of R2n

. With a Walsh function of order jI j, each node of
the hypercube has n � jI j neighbors with the opposite value and I neighbors with
the same value. This amounts to

LwI D 2jI jwI : (3.14)

3 Rugged and Elementary Landscapes 51

I={} I={1} I={2} I={3}

I={1,2} I={1,3} I={2,3} I={1,2,3}

Fig. 3.4 The eight Walsh functions of the hypercube in dimension n D 3. Dark and light color of
nodes distinguishes the valuesC1 and �1

Each Walsh function wI is an eigenvector of L for eigenvalue 2jI j. Now consider a
2-spin glass as a landscape on the hypercube with the cost function

f .x/ D �
X

i;j

Jijxi xj (3.15)

with arbitrary real coefficients Jij. Since xi xj D wi;j .x/ for all x 2 X , we see that
f is a weighted sum of Walsh functions of order 2. Therefore f is an eigenvector
of the Laplacian with eigenvalue 2jI j D 4. This observation generalizes to p-spin
glasses and many other landscapes of interest.

It is convenient to consider landscapes with vanishing average fitness, i.e., instead
of f , we use Qf .x/ D f .x/ � Nf , where Nf D 1

jX j
P

x2X f .x/ is the average cost of
an arbitrary configuration. A landscape is elementary if the zero-mean cost function
Qf is an eigenfunction of the Laplacian of the underlying graph, i.e.,

.Lf /.x/ D
X

y2N.x/

h Qf .x/ � Qf .y/
i

D �k
Qf .x/ (3.16)

Since L D HCH, all eigenvalues are non-negative. In the following, they will be
indexed in non-decreasing order

0 D �0 � �1 � �2 � � � � � �jX j�1 : (3.17)

52 K. Klemm and P.F. Stadler

Table 3.1 Examples of elementary landscapes

Problem Graph degree � Order Reference

p-spin glass Qn
2 n 2p p Definition

NAES Qn
2 n 4 2 [24]

Weight partitioning Qn
2 n 4 2 [24, 55]

GBP (constrained) Qn
2 n 4 2 [1]

Max cut Qn
2 n 4 2 [1]

Graph ˛-coloring Qn
˛ .˛ � 1/n 2˛ 2 [55]

XY-spin glass Qn
˛ .˛ � 1/n 2˛ 2 [21]

for ˛ > 2: Cn
˛ 2 8 sin2.�=˛/ 2 [21]

Linear assignment � .Sn;T/ n 1 [51]
TSP symmetric � .Sn;T/ n.n� 1/=2 2.n� 1/ 2 [9, 24]

� .Sn; J/ n.n� 1/=2 n 2 [9, 24]
� .An;C3/ n.n� 1/.n� 2/=6 .n� 1/.n� 2/ ? [9]

Antisymmetric � .Sn;T/ n.n� 1/=2 2n 3 [2, 55]
� .Sn; J/ n.n� 1/=2 n.nC 1/=2 O.n/ [2, 55]

Graph matching � .Sn;T/ n.n� 1/=2 2.n� 1/ 2 [55]
Graph bipartitioning J.n; n=2/ n2=4 2.n� 1/ 2 [24, 55, 57]

Qn
˛ is the n-fold Cartesian product of the complete graph K˛ , also known as a Hamming graph.

� .A; ˝/ is the Cayley graph of the group A with generating set ˝, where Sn and An denote
the symmetric and alternating groups, resp., T, J, and C3 are the transpositions, reversals, and
permutations defined by a cycle of length 3, resp. J.p; q/ is a Johnson graph.

First examples of elementary landscapes were identified by Grover and others
[9, 24, 55]. Table 3.1 lists some of them. Additional examples are discussed, e.g.,
by [36, 53, 54, 70]. In most cases, k is small: Qf lies in the eigenspace of one of the
first few eigenvalues of the Laplacian.

Lov Grover [24] showed that, if f is an elementary landscape, then

f . Oxmin/ � Nf � f . Oxmax/ (3.18)

for every local minimum Oxmin and every local maximum Oxmax. This maximum
principle shows that elementary landscapes are in a sense well-behaved: There are
no local optima with worse than average fitness Nf . A bound on the global maxima
in terms of the maximal local fitness differences can be obtained using a similar
argument [12]:

�
ˇ̌
f . Ox/ � Nf

ˇ̌ � deg. Ox/"� ; (3.19)

where "� D maxfx;yg2E jf .x/ � f .y/j is the “information stability” introduced
by [67].

The eigenvalues, �i , convey information about the underlying graph [42]. For
instance, G is connected if and only if �1 > 0. The value of �1 is often called the
algebraic connectivity of the graph G [16]. The corresponding eigenfunctions have
a particularly simple form: The vertices with non-negative (non-positive) values
of f are connected. More generally, a nodal domain of a function g on G is a

3 Rugged and Elementary Landscapes 53

maximal connected vertex set on which g does not change sign. A strong nodal
domain is a maximal connected vertex set on which g has the same strict sign, C
or �. The discrete version of Courant’s nodal domain theorem [6,10,15,46] asserts
that an eigenfunction f to eigenvalue �k (counting multiplicities) has no more than
k C 1 weak and k C mk strong nodal domains, where mk is the multiplicity of �k .
The theorem restricts ruggedness in terms of the eigenvalue. Intuitively, the nodal
domain theorem ascertains that the number of big mountain ranges (and deep sea
valleys) is small for the small eigenvalues of L.

There is, furthermore, a simple quantitative relationship between � and the
autocorrelation function of f of .X;X/ [55]. For a D-regular graph G, we have

r.s/ D .1 � �=D/s (3.20)

r.s/ is the autocorrelation function of f along a uniform random walk on
G [19, 68]. Similar equations can be derived for correlation measures defined in
terms of distances on G [55] and for non-regular graphs [3, 11, 62].

Whitley et al. [71] interpret the eigenvalue equation (3.16) as a statement on the
average fitness of the neighbors of a point,

hf ix D 1

deg.x/

X

y2N.x/

f .x/ (3.21)

and discuss some implications for local search processes. Local conditions for the
existence of improving moves are considered by [70].

3.4.3 Fourier Decomposition

Of course, in most cases, a natural move set T does not make f an elementary
landscape. In case of the TSP landscape, for example, transpositions and reversals
lead to elementary landscapes. One easily checks, on the other hand,

.Lf /.�/ D
X

i;j

�
d�.i/�.iC1/ C d�.iC1/;�.iC2/ C d�.j /�.jC1/

� d�.i/�.iC2/ � d�.j /�.iC1/ � d�.iC1/�.jC1/

	

D 2n.f .�/ � Nf / C nf .�/ �
nX

iD1

d�.i/�.iC2/

(3.22)

which is clearly not of the form a1f .�/ C a0 due to the explicit dependence of the
last term on the next-nearest neighbors w.r.t. � . Exchange moves therefore do not
make the TSP an elementary landscape.

54 K. Klemm and P.F. Stadler

A Fourier-decomposition-like formalism can be employed to decompose arbi-
trary landscapes into their elementary components [28, 51, 69]:

f D a0 C
n�1X

k>0

akfk (3.23)

where the fk form an orthonormal system of eigenfunctions of the graph Laplacian
(Lfk D �kfk , and a0 D Nf is the average value of the function f). Let us
denote the distinct eigenvalues of L by N�p, sorted in increasing order starting with
N�0 D �0 D 0. We call p the order of the eigenvalue N�p. The amplitude spectrum of
f W X ! R is defined by

Bp D
X

kW�kDN�p

jakj2

X

k>0

jakj2 : (3.24)

By definition, Bp 	 0 and
P

p Bp D 1. The amplitude measures the relative
contribution of the eigenspace of the eigenvalue with order p to the function f .
Of course, a landscape is elementary if and only if Bp D 1 for a single order and 0

for all others. For Ising spin-glass models, for example, the order equals the number
of interacting spins, Table 3.1.

In some cases, landscapes are not elementary but at least exhibit a highly
localized spectrum. The landscape of the “Low-Autocorrelated Binary String
Problem”, for instance, satisfies Bp D 0 for p > 4 [44]. Quadratic assignment
problems are also superpositions of eigenfunctions of quasi-abelian Cayleygraphs of
the symmetric group with the few lowest eigenvalues [51]. A similar result holds for
K-SAT problems. An instance of K-SAT consists of n Boolean variables xi , and a
set of m clauses each involving exactly K variables in disjunction. The cost function
f .x/ measures the number of clauses that are satisfied. [64] showed that Bp D 0 for
p > K . Similar results are available for frequency assignment problems [72], the
subset sum problem [8], or genetic programming parity problems [35]. Numerical
studies of the amplitude spectra of several complex real-world landscapes are
reported in [4, 25, 51, 65]. A practical procedure for algebraically computing the
decomposition of a landscape into its elementary constituents is discussed in [8].
This approach assumes that f .x/ is available as an algebraic equation and that an
orthonormal basis ffkg is computable.

A block-model [70, 71] is a landscape of the form

f .x/ D
X

q2Q.x/

wq (3.25)

where Q is a set of “building blocks” with weights wq . The subset Q.x/ � Q

consists of the blocks that contribute to a particular state x. For instance, the TSP
is of this type: Q is the collection of intercity connections, and wq is their length.

3 Rugged and Elementary Landscapes 55

Necessary conditions for block models to be elementary are discussed, e.g., by [70].
Equation (3.25) can be rewritten in the form

f .x/ D
X

q2Q
wq#q.x/ (3.26)

where #q.x/ D 1 if q 2 Q.x/, and #q.x/ D 0 otherwise. They form a special case
of the additive landscapes considered in the next section.

3.5 Additive Random Landscapes

Many models of landscapes contain a random component. In spin-glass Hamiltoni-
ans of the general form

f .� / D
X

i1<i2<���<ip

ai1;i2;:::;ip �1�2 : : : �ip (3.27)

with n Ising spin variables �i D ˙1, the coefficients ai1;i2;:::;ip are usually
considered as random variables drawn from some probability distribution. Similarly,
the “thermodynamics” of TSPs can be studied with the distances wq in Eq. (3.25)
interpreted as random variables. [48,58] studied this type of model in a more general
setting motivated by Eq. (3.26).

Let #q W X ! R, q 2 I , be a family of fitness functions on X , where I is
some index set, and let cq , q 2 I , be independent, real-valued, random variables.
We consider additive random fitness functions of the form

f .x/ D
X

q2I

cq#q.x/ (3.28)

on G D .X;T/. The associated probability space is referred to additive random
landscape (a.r.l.) [48]. An a.r.l. is uniform if (1) the cq , q 2 I , are independently
and identically distributed (i.i.d.) and (2) there are constants b0 and b1 such thatP

x2V #q.x/ D jV jb0 and
P

x2V #q.x/2 D jV jb1 independent of q. An a.r.l. is
strictly uniform if, in addition,

P
q #q.x/ D b2 and

P
q #q.x/2 D b3 independently

of x 2 X .
For block models, #q.x/ D #q.x/2. Hence a block model is uniform if each

block is contained in the same number configurations and is strictly uniform if
in addition, jQ.x/j is independent of x. Furthermore, every a.r.l. with Gaussian
measure is additive. This follows immediately by the Karhunen-Loève theorem
[30], using the fact that uncorrelated jointly normal distributed variables are already
independent. Random versions of elementary landscapes, i.e., those with i.i.d.
Fourier coefficients, are of course also a.r.l.s.

56 K. Klemm and P.F. Stadler

Maybe the most famous a.r.l.s are Kauffman’s NK landscape models. Consider
a binary “genome” x of length n. Each site is associated with a site fitness that
is determined from a set of K sequence positions to which position i is epistati-
cally linked. These state-dependent contributions are usually taken as independent
uniform random variables [31]. In order to see that an NK model is an a.r.l., we
introduce the functions

#i;y.i/.x/ D
jy.i/jY

kD0

ıy.i/k ;xk
(3.29)

where y.i/k denotes a particular (binary) state of position k in the epistatic
neighborhood y.i/ of i . In other words, #i;y.i/.x/ D 1 if the argument x coincides
on the K epistatic neighbors of i with a particular binary pattern y.i/. It is not hard
to check that NK models are strictly uniform [48].

An important observation in this context is that short-range spin-glass models
can be understood as a.r.l.s for which the p-spin eigenfunctions (of the Laplacian of
the Boolean hypercube)

#i1i2:::ip .� / D
pY

kD1

�ik (3.30)

take on the role of the characteristic functions f#j g. The coefficients are then taken
from a mixed distribution of the form .c/ D .1 � �/Gauss.0;s/.c/ C �ı.c/. Thus
there is a finite probability p that a coefficient cj vanishes. In this setting one
can easily evaluate the degree of neutrality, i.e., the expected fraction of neutral
neighbors

�.x/ D 1

jN.x/jE
�ˇ̌fy 2 N.x/ W f .x/ D f .y/gˇ̌� (3.31)

One finds

�.x/ D 1

D

X

y2N.x/

�cy .x/ cy.x/ WD jfq 2 I j#q.x/ ¤ #q.y/gj (3.32)

which, for the case of the p-spin models can be evaluated explicitly as �.x/ D
�.n�1

p�1/ [48]. The value of � can thus be tuned by �, the fraction of vanishing
coefficients. On the other hand, the Laplacian eigenvalue and hence the algebraic
measures of ruggedness depend only on the interaction order p. Hence, ruggedness
and neutrality are independent properties of landscapes.

Elementary landscapes have restrictions on “plateaus”, that is, on connected
subgraphs on which the landscape is flat. In particular, Sutton et al. [64] show for
3-SAT that plateaus cannot contain large balls in G unless their fitness is close to
average. A more general understanding of neutrality in elementary landscapes is
still missing, however.

3 Rugged and Elementary Landscapes 57

0.2 0.3 0.4 0.5 0.6 0.7 0.8
µ

0.2

0.3

0.4

0.5

0.6

0.7

0.8

µ es
tim

at
ed

Fig. 3.5 Empirically, the
number N of local optima
in many landscape scales
exponentially with system
size n. The values of
� WD limn!1

1
n

logN.n/

can be estimated surprisingly
accurately by the correlation
length conjecture for
*-isotropic landscapes (�)
and nearly *-isotropic
landscapes (N) (Data
are taken from [58])

There is a close connection between the Fourier decomposition of a (random)
landscape and a “symmetry” property of random fields: Stadler and Happel [58] call
a random field *-isotropic if its covariance matrix C is a polynomial of the adjacency
matrix A of the underlying graph. The interest in this symmetry property arises from
the observation that *-isotropy is equivalent to three regularity conditions on the
distributions of the Fourier coefficients:

1. EŒak� D 0 for k ¤ 0.
2. CovŒak; aj � WD EŒakaj � � EŒak�EŒaj � D VarŒak�ıkj .
3. VarŒak� D VarŒaj � if 'k.x/ and 'j .x/ are eigenfunctions to the same eigenvalue

of the graph Laplacian.

In Gaussian case, *-isotropy also has an interpretation as a maximum entropy
condition: Gaussian random fields satisfying these three conditions maximize
entropy subject to the constraint of a given amplitude spectrum [56].

An interesting empirical observation in this context is the correlation length
conjecture [59]. It states that we should expect about one local optimum within
a ball B in G whose radius r is given by the distance covered by random walk of
length ` on G, where

` D
1X

sD0

r.s/ (3.33)

is the correlation length of the landscape. This simple rule yields surprisingly
accurate estimates of the number of local optima in isotropic and nearly isotropic
landscapes, see Fig. 3.5. The accuracy of the estimate seems to decline with
increasing deviations from *-isotropy [21, 44, 58].

58 K. Klemm and P.F. Stadler

3.6 Outlook

Most of the theoretical results for fitness landscapes have been obtained for very
simple search processes, i.e., for landscapes on simple graphs. In the field of
genetic algorithms, on the other hand, the search operators themselves are typically
much more complex, involving recombination of pairs of individuals drawn from a
population. A few attempts have been made to elucidate the mathematical structure
of landscapes on more general topologies [18, 60, 61], considering generalized
versions of barrier trees and basins. A generalization of the Fourier decomposition
and a notion of elementary landscapes under recombination was explored in [62],
introducing a Markov chain on X that in a certain sense mimics the action of
crossover. In this formalism, a close connection between elementary landscapes and
Holland’s schemata [27] becomes apparent. It remains a topic for future research,
however, if and how spectral properties of landscapes can be formulated in general
for population-based search operators in which offsprings are created from more
than one parent.

Despite the tentative computational results that suggest a tight connection
between spectral properties of a landscape, statistical features of the Fourier
coefficients, and geometric properties such as the distribution of local minima, there
is at present no coherent theory that captures these connections. We suspect that
a deeper understanding of relations between these different aspects of landscapes
will be a prerequisite for any predictive theory of the performance of optimization
algorithms on particular landscape problems.

References

1. E. Angel, V. Zissimopoulos, On the classification of NP-complete problems in terms of their
correlation coefficient. Discr. Appl. Math. 99, 261–277 (2000)

2. J. Barnes, S. Dokov, R. Acevedoa, A. Solomon, A note on distance matrices yielding
elementary landscapes for the TSP. J. Math. Chem. 31, 233–235 (2002)

3. J.W. Barnes, B. Dimova, S.P. Dokov, A. Solomon, The theory of elementary landscapes. Appl.
Math. Lett. 16, 337–343 (2003)

4. O. Bastert, D. Rockmore, P.F. Stadler, G. Tinhofer, Landscapes on spaces of trees. Appl. Math.
Comput. 131, 439–459 (2002)

5. K. Binder, A.P. Young, Spin glasses: experimental facts, theoretical concepts, and open
questions. Rev. Mod. Phys. 58, 801–976 (1986)

6. T. Bıyıkoğlu, J. Leydold, P.F. Stadler, in Laplacian Eigenvectors of Graphs: Perron-Frobenius
and Faber-Krahn Type Theorems. Lecture Notes in Mathematics, vol. 1915 (Springer,
Heidelberg, 2007)

7. Z. Burda, A. Krzywicki, O.C. Martin, Network of inherent structures in spin glasses: scaling
and scale-free distributions. Phys. Rev. E 76, 051107 (2007)

8. F. Chicano, L.D. Whitley, E. Alba, A methodology to find the elementary landscape decompo-
sition of combinatorial optimization problems. Evol. Comp. (2011). doi:10.1162/EVCO_a_
00039

9. B. Codenotti, L. Margara, Local properties of some NP-complete problems. Technical Report
TR 92-021, International Computer Science Institute, Berkeley, 1992

doi: 10.1162/EVCO_a_00039
doi: 10.1162/EVCO_a_00039

3 Rugged and Elementary Landscapes 59

10. E.B. Davies, G.M.L. Gladwell, J. Leydold, P.F. Stadler, Discrete nodal domain theorems. Lin.
Algebra Appl. 336, 51–60 (2001)

11. B. Dimova, J.W. Barnes, E. Popova, Arbitrary elementary landscapes & AR(1) processes.
Appl. Math. Lett. 18, 287–292 (2005)

12. B. Dimova, J.W. Barnes, E. Popova, E. Colletti, Some additional properties of elementary
landscapes. Appl. Math. Lett. 22, 232–235 (2009)

13. J.P.K. Doye, Network topology of a potential energy landscape: a static scale-free network.
Phys. Rev. Lett. 88, 238701 (2002)

14. G. Dueck, New optimization heuristics: the great deluge algorithm and the record-to-record
travel. J. Comp. Phys. 104, 86–92 (1993)

15. A.M. Duval, V. Reiner, Perron-Frobenius type results and discrete versions of nodal domain
theorems. Lin. Algebra Appl. 294, 259–268 (1999)

16. M. Fiedler, Algebraic connectivity of graphs. Czechoslovak Math. J. 23, 298–305 (1973)
17. C. Flamm, I.L. Hofacker, P.F. Stadler, M.T. Wolfinger, Barrier trees of degenerate landscapes.

Z. Phys. Chem. 216, 155–173 (2002)
18. C. Flamm, B.M.R. Stadler, P.F. Stadler, Saddles and barrier in landscapes of generalized

search operators, in Foundations of Genetic Algorithms IX, ed. by C.R. Stephens, M. Tou-
ssaint, D. Whitley, P.F. Stadler. Lecture Notes Computer Science, vol. 4436 (Springer,
Berlin/Heidelberg, 2007), pp. 194–212. 9th International Workshop, FOGA 2007, Mexico City,
8–11 Jan 2007

19. W. Fontana, P.F. Stadler, E.G. Bornberg-Bauer, T. Griesmacher, I.L. Hofacker, M. Tacker,
P. Tarazona, E.D. Weinberger, P. Schuster, RNA folding landscapes and combinatory land-
scapes. Phys. Rev. E 47, 2083–2099 (1993)

20. S. Fortunato, Community detection in graphs. Phys. Rep. 486, 75–174 (2010)
21. R. García-Pelayo, P.F. Stadler, Correlation length, isotropy, and meta-stable states. Physica D

107, 240–254 (1997)
22. M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-

Completeness (W.H. Freeman, San Francisco, 1979)
23. P. Garstecki, T.X. Hoang, M. Cieplak, Energy landscapes, supergraphs, and “folding funnels”

in spin systems. Phys. Rev. E 60, 3219–3226 (1999)
24. L.K. Grover, Local search and the local structure of NP-complete problems. Oper. Res. Lett.

12, 235–243 (1992)
25. R. Happel, P.F. Stadler, Canonical approximation of fitness landscapes. Complexity 2, 53–58

(1996)
26. D. Heidrich, W. Kliesch, W. Quapp, in Properties of Chemically Interesting Potential Energy

Surfaces. Lecture Notes in Chemistry, vol. 56 (Springer, Berlin, 1991)
27. J. Holland, Adaptation in Natural and Artificial Systems (MIT, Cambridge, 1975)
28. W. Hordijk, P.F. Stadler, Amplitude spectra of fitness landscapes. Adv. Complex Syst. 1, 39–66

(1998)
29. L. Kallel, B. Naudts, C.R. Reeves, Properties of fitness functions and search landscapes,

in Theoretical Aspects of Evolutionary Computing, ed. by L. Kallel, B. Naudts, A. Rogers
(Springer, Berlin Heidelberg, 2001), pp. 175–206

30. K. Karhunen, Zur Spektraltheorie Stochasticher Prozesse. Ann. Acad. Sci. Fennicae, Ser. A I
34, 7 (1947)

31. S.A. Kauffman, The Origin of Order (Oxford University Press, New York/Oxford, 1993)
32. S.A. Kauffman, S. Levin, Towards a general theory of adaptive walks on rugged landscapes.

J. Theor. Biol. 128, 11–45 (1987)
33. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science

220, 671–680 (1983)
34. K. Klemm, C. Flamm, P.F. Stadler, Funnels in energy landscapes. Europ. Phys. J. B 63, 387–

391 (2008)
35. W.B. Langdon, 2-bit flip mutation elementary fitness landscapes, in 11th International

Workshop on Foundations of Genetic Algorithms, FOGA 2011, Schwarzenberg, ed. by
H.G. Beyer, W.B. Langdon (ACM, 2011), pp. 25–42

60 K. Klemm and P.F. Stadler

36. G. Lu, R. Bahsoon, X. Yao, Applying elementary landscape analysis to search-based software
engineering, in 2nd International Symposium on Search Based Software Engineering, Ben-
evento (IEEE Computer Society, Los Alamitos, 2010), pp. 3–8

37. C.A. Macken, P.S. Hagan, A.S. Perelson, Evolutionary walks on rugged landscapes. SIAM J.
Appl. Math. 51, 799–827 (1991)

38. M. Mann, K. Klemm, Efficient exploration of discrete energy landscapes. Phys. Rev. E 83(1),
011113 (2011)

39. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, Equation of state calculations
by fast computing machines. J. Chem. Phys. 21, 1087–1092 (1953)

40. M. Mézard, G. Parisi, M. Virasoro, Spin Glass Theory and Beyond (World Scientific,
Singapore, 1987)

41. P.G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987)
42. B. Mohar, Graph laplacians, in Topics in Algebraic Graph Theory, Encyclopedia of Mathe-

matics and Its Applications, vol. 102, ed. by L.W. Beineke, R.J. Wilson (Cambridge University
Press, Cambridge, 2004), pp. 113–136

43. K.i. Okazaki, N. Koga, S. Takada, J.N. Onuchic, P.G. Wolynes, Multiple-basin energy
landscapes for large-amplitude conformational motions of proteins: structure-based molecular
dynamics simulations. Proc. Natl. Acad. Sci. U.S.A. 103, 11844–11849 (2006)

44. V.M. de Oliveira, J.F. Fontanari, P.F. Stadler, Metastable states in high order short-range spin
glasses. J. Phys. A: Math. Gen. 32, 8793–8802 (1999)

45. R. Palmer, Optimization on rugged landscapes, in Molecular Evolution on Rugged Landscapes:
Proteins, RNA, and the Immune System, ed. by A.S. Perelson, S.A. Kauffman (Addison-Wesley,
Redwood City, 1991), pp. 3–25

46. D.L. Powers, Graph partitioning by eigenvectors. Lin. Algebra Appl. 101, 121–133 (1988)
47. R. Rammal, G. Toulouse, M.A. Virasoro, Ultrametricity for physicists. Rev. Mod. Phys. 58,

765–788 (1986)
48. C.M. Reidys, P.F. Stadler, Neutrality in fitness landscapes. Appl. Math. Comput. 117, 321–350

(2001)
49. C.M. Reidys, P.F. Stadler, Combinatorial landscapes. SIAM Rev. 44, 3–54 (2002)
50. H. Rieger, The number of solutions of the Thouless-Anderson-Palmer equations for p-spin

interaction spin glasses. Phys. Rev. B 46, 14655–14661 (1992)
51. D. Rockmore, P. Kostelec, W. Hordijk, P.F. Stadler, Fast Fourier transform for fitness

landscapes. Appl. Comput. Harmonic Anal. 12, 57–76 (2002)
52. P. Sibani, R. van der Pas, J.C. Schön, The lid method for exhaustive exploration of metastable

states of complex systems. Comput. Phys. Commun. 116, 17–27 (1999)
53. A. Solomon, J.W. Barnes, S.P. Dokov, R. Acevedo, Weakly symmetric graphs, elementary

landscapes, and the TSP. Appl. Math. Lett. 16, 401–407 (2003)
54. A. Solomon, B.W. Colletti, Quasiabelian landscapes of the traveling salesman problem are

elementary. Discret. Optim. 6, 288–291 (2009)
55. P.F. Stadler, Landscapes and their correlation functions. J. Math. Chem. 20, 1–45 (1996)
56. P.F. Stadler, Spectral landscape theory, in Evolutionary Dynamics—Exploring the Interplay

of Selection, Neutrality, Accident, and Function, ed. by J.P. Crutchfield, P. Schuster (Oxford
University Press, New York, 2002), pp. 231–272

57. P.F. Stadler, R. Happel, Correlation structure of the landscape of the graph-bipartitioning-
problem. J. Phys. A: Math. Gen. 25, 3103–3110 (1992)

58. P.F. Stadler, R. Happel, Random field models for fitness landscapes. J. Math. Biol. 38, 435–478
(1999)

59. P.F. Stadler, W. Schnabl, The landscape of the travelling salesman problem. Phys. Lett. A 161,
337–344 (1992)

60. B.M.R. Stadler, P.F. Stadler, Generalized topological spaces in evolutionary theory and
combinatorial chemistry. J. Chem. Inf. Comput. Sci. 42, 577–585 (2002)

61. B.M.R. Stadler, P.F. Stadler, Combinatorial vector fields and the valley structure of fitness
landscapes. J. Math. Biol. 61, 877–898 (2010)

3 Rugged and Elementary Landscapes 61

62. P.F. Stadler, R. Seitz, G.P. Wagner, Evolvability of complex characters: population dependent
Fourier decomposition of fitness landscapes over recombination spaces. Bull. Math. Biol. 62,
399–428 (2000). Santa Fe Institute Preprint 99-01-001

63. P.F. Stadler, W. Hordijk, J.F. Fontanari, Phase transition and landscape statistics of the number
partitioning problem. Phys. Rev. E 67, 0567011–6 (2003)

64. A.M. Sutton, A.E. Howe, L.D. Whitley, A theoretical analysis of the k-satisfiability search
space, in Proceedings of SLS 2009, Brussels. Lecture Notes in Computer Science, vol. 5752
(2009), pp. 46–60

65. A.M. Sutton, L.D. Whitley, A.E. Howe, A polynomial time computation of the exact
correlation structure of k-satisfiability landscapes, in Genetic and Evolutionary Computation
Conference, GECCO 2009, Montréal, 2009, ed. by F. Rothlauf, pp. 365–372

66. M. Tomassini, S. Vérel, G. Ochoa, Complex-network analysis of combinatorial spaces: the NK
landscape case. Phys. Rev. E 78, 066114 (2008)

67. V.K. Vassilev, T.C. Fogarty, J.F. Miller, Information characteristics and the structure of
landscape. Evol. Comput. 8, 31–60 (2000)

68. E.D. Weinberger, Correlated and uncorrelated fitness landscapes and how to tell the difference.
Biol. Cybern. 63, 325–336 (1990)

69. E.D. Weinberger, Local properties of Kauffman’s N-K model: a tunably rugged energy
landscape. Phys. Rev. A 44, 6399–6413 (1991)

70. L.D. Whitley, A.M. Sutton, Partial neighborhoods of elementary landscapes, in Genetic and
Evolutionary Computation Conference, GECCO 2009, Montréal, 2009, ed. by F. Rothlauf,
pp. 381–388

71. L.D. Whitley, A.M. Sutton, A.E. Howe, Understanding elementary landscapes, in Genetic and
Evolutionary Computation Conference, GECCO 2008, Atlanta, ed. by C. Ryan, M. Keijzer
(ACM, 2008), pp. 585–592

72. L.D. Whitley, F. Chicano, E. Alba, F. Luna, Elementary landscapes of frequency assignment
problems, in Proceedings of the 12th Annual Conference of Genetic and Evolutionary
Computation GECCO, Portland, ed. by M. Pelikan, J. Branke (ACM, 2010), pp. 1409–1416

73. M.T. Wolfinger, W.A. Svrcek-Seiler, C. Flamm, I.L. Hofacker, P.F. Stadler, Exact folding
dynamics of RNA secondary structures. J. Phys. A: Math. Gen. 37, 4731–4741 (2004)

74. P. Wolynes, J. Onuchic, D. Thirumalai, Navigating the folding routes. Science 267, 1619–1620
(1995)

75. S. Wright, The roles of mutation, inbreeding, crossbreeeding and selection in evolution, in
Proceedings of the Sixth International Congress on Genetics, New York, vol. 1, ed. by D.F.
Jones (Brooklyn Botanic Gardens, New York, 1932), pp. 356–366

76. S. Wright, “Surfaces” of selective value. Proc. Natl. Acad. Sci. U.S.A. 58, 165–172 (1967)

Chapter 4
Single-Funnel and Multi-funnel Landscapes
and Subthreshold-Seeking Behavior

Darrell Whitley and Jonathan Rowe

Abstract Algorithms for parameter optimization display subthreshold-seeking
behavior when the majority of the points that the algorithm samples have an
evaluation less than some target threshold. Subthreshold-seeking algorithms avoid
the curse of the general and Sharpened No Free Lunch theorems in the sense
that they are better than random enumeration on a specific (but general) family
of functions. In order for subthreshold-seeking search to be possible, most of
the solutions that are below threshold must be localized in one or more regions
of the search space. Functions with search landscapes that can be characterized
as single-funnel or multi-funnel landscapes have this localized property. We first
analyze a simple “Subthreshold-Seeker” algorithm. Further theoretical analysis
details conditions that would allow a Hamming neighborhood local search algorithm
using a Gray or binary representation to display subthreshold-seeking behavior. A
very simple modification to local search is proposed that improves its subthreshold-
seeking behavior.

4.1 Background and Motivation

When can we say that a search algorithm is robust? And what does this mean? The
“Sharpened No Free Lunch” results tell us that no search algorithm is on average
better than another over all possible discrete functions, or over any set of functions
closed under permutation [12].

D. Whitley (�)
Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA
e-mail: whitley@cs.colostate.edu

J. Rowe
Department of Computer Science, University of Birmingham, Birmingham, B15 2TT, UK
e-mail: J.E.Rowe@cs.bham.ac.uk

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__4,
© Springer-Verlag Berlin Heidelberg 2014

63

mailto:whitley@cs.colostate.edu
mailto:J.E.Rowe@cs.bham.ac.uk

64 D. Whitley and J. Rowe

One way that a search algorithm might be “robust” is if we could show that the
search algorithm is guaranteed to yield results that are guaranteed to be better than
random search on a broad class of problems. This paper illustrates how this can be
done using “subthreshold-seeking” search strategies. Assume we are minimizing an
objective function. By subthreshold-seeking search, we mean that a performance
threshold can be established and that the majority of the time search will sample
points in the search space that are below the established threshold. The concept of
“submedian seeking” behavior was first introduced by Christensen and Oppacher
[4]. Whitley and Rowe [16] generalized this idea to address general subthreshold-
seeking search strategies.

Some of the results presented in this chapter are exact, but are largely of theo-
retical interest. Other results are less exact; instead of guaranteeing subthreshold-
seeking behavior, the result describe conditions under which subthreshold-seeking
behavior can occur in realistic search algorithms.

Clearly, a search algorithm cannot be said to be robust, or to display
subthreshold-seeking behavior over all possible functions. But what classes of
functions should we expect to be able to optimize? Again, Christensen and Oppacher
[4] first introduced the idea that functions that can be described by polynomials of
bounded complexity form a general class of functions where search algorithms can
be designed that are guaranteed to yield results better than random enumeration.
Christensen and Oppacher [4] also point out that another way to define a restricted
subclass of functions is to limit the number of local optima in the search space
relative to the size of the search space.

We can take this idea one step further. If we are interested in subthreshold points
in the search space, then what matters is not the number of local optima; instead,
search can be robust when the points which are subthreshold tend to be clustered
together, so that search more often than not can move from one subthreshold point
in the search space to another subthreshold point in the search space. We introduce
the concept of “quasi-basin” to describe this condition. This also naturally leads
to considering single-funnel and multi-funnel functions and landscapes, since the
concept of a “funnel” is related to the concept of a quasi-basin.

Section 4.2 of this chapter discusses single-funnel and multi-funnel func-
tions and landscapes. Section 4.3 briefly reviews No Free Lunch concepts and
how they relate to subthreshold-seeking behaviors. Section 4.4 then introduces
subthreshold-seeking algorithms and describes conditions where algorithms can
display subthreshold-seeking behavior. The subthreshold-seeking algorithm (like
Christensen and Oppacher’s submedian-seeking algorithm) is guaranteed to display
subthreshold sampling behavior, but the algorithm is not practical. So, can we say
anything about a real search algorithm? In Sect. 4.5, we look at a local search
algorithm using a bit representation, in part because this is one of the most
general-purpose search methods that can be used for both parameter optimization
and combinatorial optimization. We then outline sufficient conditions that would
allow local search to display subthreshold-seeking behavior. We also introduce a
Subthreshold Local Search Algorithm and show that is can be superior to a simple
local search with restarts.

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 65

4.2 Single-Funnel and Multi-funnel Functions

Over the years, several binary classifications of test functions have been used to
make the argument that one set of test functions is more challenging than another,
and thus to argue that better performance on a particular type of test problem
translates into one algorithm being better than another. Here are a few of these
classifications:

1. Linear versus Nonlinear
2. Unimodal versus Multimodal
3. Separable versus Nonseparable
4. Single-Funnel versus Multi-funnel

Generally, multimodal problems are harder than unimodal problems, but this is
not always true. Generally, nonlinear problems are harder than linear problems.
Nonseparable problems are usually harder than separable problems. Yet despite
empirically backed claims that one algorithm is better than another on a particular
type of problem, there are rarely proofs that a specific algorithm performs better
than another algorithm (or even better than random search) on a specific family of
functions.

The characterization of optimization problems as single-funnel versus multi-
funnel functions is one of the more recent descriptive models that attempts to explain
why some optimization problems are harder than others.

We will sometimes need to distinguish between a function and the landscape
that is searched. When real-valued representations are used, the function and the
landscape might be viewed as being (approximately) the same. But for local
search algorithms that might be applied to combinatorial optimization problems,
the landscape can change depending on what type of representation is used, what
neighborhood move operator is used and, if the problem is a discretization of a real-
valued parameter problem, what precision is used.

Unfortunately, there does not appear to be a concise definition of a “single-
funnel” landscape. Clearly unimodal landscapes are also single-funnel landscapes.
But single-funnel problems also can be highly multimodal; nevertheless in a single-
funnel landscape there is still some kind of global structure that dominates the entire
search space and causes the best local optima to be concentrated in one region of the
search space. Such landscapes are consistent with the big valley hypothesis [2, 3].

In rough terms, the big valley hypothesis states that there exist landscapes that
are multimodal, but that these landscapes have the property that the evaluation of a
local optimum is strongly correlated with the distance of that local optimum from
the global optimum. In other words, the closer a local optimum is to the global
optimum, the better the evaluation of the local optimum is going to be in expectation.
The Traveling Salesman Problem under k-opt move operators is often given as an
example of a problem that displays a big valley landscape.

A “multi-funnel” landscape is one where there are multiple clusters of local
optima in very different regions of the search space; in other words, clusters
corresponding to the best local optima in the search space can be far apart and

66 D. Whitley and J. Rowe

Fig. 4.1 On the left is a one-dimensional version of Rastrigin’s function. On the right is a one-
dimensional version of Schwefel’s function. A threshold is shown for each function

are not concentrated in one region in the search space. Therefore, multi-funnel
landscapes can be difficult to search for algorithms that use some form of localized
non-improving move (that moves only a short distance) in an attempt to escape
local optima.

Doye used the concept of a “double-funnel” energy landscape in 1999 to explain
why finding the optimal energy state for the 38-atom Lennard-Jones cluster was
difficult [6]. Doye et al. [7] indicate that a funnel “consists of a collection of local
minima such that all monotonically decreasing sequences of successively adjacent
local minima entering the funnel terminate at the funnel bottom.” And the concept
of “Multi-funnel Optimization” is becoming more common [10, 14].

If one considers parameter optimization problems, then Rastrigin’s function,
shown in the left-hand side of Fig. 4.1, is an excellent example of a single funnel
function; it also displays a big valley structure. Again considering parameter
optimization problems, then Schwefel’s function, shown in the right-hand side of
Fig. 4.1, is an example of a multi-funnel function. (We should note that what is
usually called “Schwefel’s function” is technically a variant of Problem 2.3 in
Schwefel’s classic book, Evolution and Optimum Seeking [13], which contains sev-
eral test functions.) On both functions in Fig. 4.1, a threshold has been established
that divides each function into two sets: those points in the search space with an
evaluation below some threshold codomain value and those points in the search
below above the threshold codomain value. We will assume in these examples that
a real-valued representation is used so that a local extremum in the function is also
a local optimum in the landscape.

For Rastrigin’s function the points that are below threshold are largely concen-
trated in one region of the function. If the threshold is progressively lowered, the
points below threshold would be increasingly concentrated in a smaller region of the
search space. This is characteristic of a single-funnel function. A set of progressively
lower thresholds and the local optima that are isolated at lower thresholds is shown
in Fig. 4.2 for Rastrigin’s function.

For Schwefel’s function the points that are below threshold are not concentrated
in a single region of the function. If the threshold is progressively lowered, the points

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 67

Fig. 4.2 The graph shows two-dimensional slices of Rastrigin’s function. The function is clipped
so that only points below a threshold are evaluated. As the threshold is lowered, the points that are
below threshold are increasingly concentrated in one region of the search space, so that the average
distance between the below threshold points decreases

Fig. 4.3 The graph shows two-dimensional slices of Schwefel’s function. The function is clipped
so that only points below a threshold are evaluated. As the threshold is lowered, the points that are
below threshold continue to be at the same (or even slightly increasing) average distance from each
other

below threshold remain distributed across the entire search space. The points are
distributed across multiple “funnels” and these funnels generally continue to exist
as the threshold is lowered. Only when the threshold becomes sufficiently close to
the global optimum do the other funnels in the search space suddenly disappear. A
set of progressively lower thresholds and the local optima that are isolated at lower
thresholds is shown in Fig. 4.3 for Schwefel’s function.

In reality, the set of all possible landscapes cannot be neatly classified into single-
funnel and multi-funnel landscapes. Lunacek and Whitley introduced a metric that
measures the dispersion of a function [9]. Single-funnel landscapes would display
low dispersion, while landscapes with many funnels spread across the entire search
space would display high dispersion. But a simple “double-funnel” might display
an intermediate level of dispersion. Let d.x1; x2/ be a distance measure that returns
the distance between points x1 and x2. The dispersion metric also uses a threshold.
Consider all the points in a set T such that the points in the domain in T are below
a threshold evaluation denoted by t .

We will initially consider real-valued functions. Given a function f; the threshold
t and the distance metric d , we can then compute the following measurement of the
dispersion of the function:

X

xi ;xj2T

d.xi ; xj /

68 D. Whitley and J. Rowe

Fig. 4.4 A graph showing
the dispersion metric at
various thresholds. On the
x-axis is the sample size
when N represents 100N

samples (i.e., 10 = 1,000
samples). On the y-axis is the
pairwise distance between the
best 100 sample points. The
domain values are drawn
between �5:11 andC5:12.
The problems from which
these measurements were
taken were 50 dimensional

where d.xi ; xj / is a measurement of the distance between points xi ; xj – two points
in the search space. The summation measures the pairwise distance between all
points in the subthreshold set T . Assuming we wish to minimize, we could then
check the dispersion at different thresholds: t; t � x; t � 2x; : : : ; t � kx. Assuming
the dispersion metric is decreasing as the threshold decreases, this would indicate
that the landscape for function f displays properties associated with single-funnel
landscapes. However, if the dispersion metric is relatively constant or increasing,
this would strongly characterize the landscape as either a multi-funnel landscape, or
perhaps a more randomized landscape where local optima are randomly distributed
over the search space.

One nice aspect of the dispersion metric is that the dispersion of a function can
be estimated via random sampling. Figure 4.4 graphs dispersion measurements at
different thresholds on Rastrigin’s function and Schwefel’s function. The x-axis is
the number of points that are randomly sampled. The y-axis is the dispersion over
the best 100 points out of the total number sampled. For example, when dispersion
is measured over 100 of 1,000 points, the dispersion is being measured over the
best 10 % of the sample. If dispersion is measured over the 100 of 10,000 points,
then dispersion is being measured over the best 1 % of the sample. As the sample
percentage is decreased (10, . . . , 5, . . . , 1 %) we are in effect sampling at lower
thresholds. As Fig. 4.4 clearly shows, the trend is that as Rastrigin’s function is
sampled at lower thresholds, the dispersion decreases, but as Schwefel’s function
is sampled at lower thresholds, the dispersion increases. This is consistent with the
fact that Rastrigin’s function has a single funnel and Schwefel’s function is multi-
funnel. The trend need not be monotonic for two reasons. First, sampling is a noisy
process. Second, local minima can disappear from view as the threshold is lowered
and this can cause small fluctuations in the dispersion measurements.

One can also generalize the concept of dispersion to combinatorial landscapes. To
do this, some natural concept of distance between local optima is needed. Indeed,
in “big valley” studies sometimes pairwise distance between local optima is used

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 69

instead of measuring the distance between a sample of local optima and the distance
between those local optima and the global optimum.

4.3 No Free Lunch and Subthreshold-Seeking Behavior

So what do No Free Lunch theorems and multi-funnel functions have to do with
subthreshold-seeking behavior? We will first briefly review No Free Lunch concepts
to set the stage for discussing subthreshold-seeking algorithms.

4.3.1 No Free Lunch and Funnels

The original No Free Lunch theorem of Wolpert and Macready [20, 21] is quite
general. The “No Free Lunch” assertion is basically a zero-sum argument that states
that no search algorithm is better than another when the performance of the search
algorithms are compared over all possible discrete functions.

In this form, No Free Lunch applies only to black box optimization. This
means the structure of the function being optimized is invisible to the search
algorithm. Also, since the theorem holds over the space of all possible functions, it
is impossible to predict anything about the structure of the function being optimized.

No Free Lunch theorems for search have been refined in the last decade to be
more specific, but there continues to be confusion about what different variants of
the No Free Lunch theorem actually mean. The “Sharpened No Free Lunch” result
shows that a general No Free Lunch result only holds over sets of functions that
are closed under permutation. We might express the “Sharpened No Free Lunch”
theorem as follows:

The behaviors of any two arbitrarily chosen search algorithms are guaranteed to be
equivalent if and only if the algorithms are compared on a set of functions that is closed
under permutation.

This version of “Sharpened No Free Lunch” is more carefully stated than is
usually the case. But the wording here is important. What if we wish to compare
two specific search algorithms, Ai and Ak? Does the “Sharpened No Free Lunch”
result still apply? The answer can be no.

To be more formal, consider any algorithm Ai applied to function fj . Let
Apply.Ai; fj ; m/ represent a “meta-level” algorithm that outputs the order in which
Ai visits m elements in the codomain of fj after m steps. To begin with, we will
assume m is the size of the search space; this means the search algorithms visit every
point in the search space. We will also assume that the algorithms are deterministic.
In this case, for every pair of algorithms Ak and Ai and for any function fj , there
exists another function fl such that

Apply.Ai ; fj ; m/ � Apply.Ak; fl ; m/

70 D. Whitley and J. Rowe

We can also reconfigure Apply to be a function generator which we will denote
by APPLY such that:

fout D APPLY.Ai ; Ak; fin; m/ ” Apply.Ai ; fin; m/ � Apply.Ak; fout ; m/

We can also define a set that is closed with respect to the operation of the APPLY
function. Assume that we will be given some as yet unknown algorithms Ai and Ak ,
and we start with a set F which contains a single function f1. We assign fin D f1

and we generate a function fout D f2.
Define the set C.F / such that the set F is a subset of C.F /, and if fin is a member

of C.F / then fout D APPLY.Ai ; Aj ; fin/ is also a member of C.F /.
The “Sharpened No Free Lunch” theorem asserts that C.F / must be a set that

is closed under permutation if Ak and Ai are arbitrarily chosen (as yet unknown
algorithms) and we require that algorithms Ak and Ai have identical performance
when compared on all in the functions in C.F /. To see why this is true, assume
that an “unfriendly adversary” is allowed to pick the algorithms and we have no
idea which algorithms will be used. Then in the worst case, the set C.F / must be
closed under permutation to guarantee that algorithms Ak and Al have the same
performance under all possible comparative measures.

But what if we wish to compare exactly two algorithms, A1 and A2, and we are
told in advance what algorithms are going to be compared? In this case we can
potentially find a closure C.F / defined with respect to the APPLY function such
that the set C.F / need not be closed under permutation in order for algorithms A1

and A2 to display the same aggregate performance over the set of function in C.F /

for all possible comparative measures. This leads to the following “Focused No Free
Lunch” theorem:

Let A1 and A2 be two predetermined algorithms and let F be a set of functions. The
aggregate performance of A1 and A2 are equivalent over the set C.F /; furthermore, the
set C.F / need not be closed under permutation.

This can happen in different ways. First, assume that the algorithms are determin-
istic and that m is the size of the search space. The search behaviors of A1 and A2

when executed on a function f1 can induce a permutation group such that the orbit
of the group is smaller than the permutation closure. Whitley and Rowe [17,18] give
examples of how this can happen.

Second, in virtually all real applications m is polynomial with respect to input
size of the problem, while the search space is exponential. Let N denote the size of
the search space. Reconsider the computation where m << N .

fout D APPLY.Ai ; Aj ; fin; m/

There now can be exponentially many functions that can play the role of fout

since the behavior of fout is defined at only m point in the search space, and the
other points in the search space can be reconfigured in .N � m/Š ways, all of which
are unique if the function fin is a bijection. Intuitively, we should no longer need

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 71

the entire permutation closure to obtain identical performance over some set of
functions when only a tiny fraction of the search space is explored. In fact, under
certain conditions one can prove that given two predetermined algorithms A1 and
A2 there can exist functions f1 and f2 such that

Apply.A1; f1; m/ � Apply.A2; f2; m/

Apply.A1; f2; m/ � Apply.A2; f1; m/

so that a Focused No Free Lunch result holds over a set of only two functions
such that: C.F / D ff1; f2g: Unfortunately, it is not widely understood that there
are significant differences in the Focused and Sharpened No Free Lunch results.
Furthermore, Focused No Free Lunch results (unlike Sharpened No Free Lunch
results) need not be restricted to black box optimization [17, 18].

What does all of this have to do with funnels and dispersion? The point of looking
at single-funnel and multi-funnel functions is to notice that such functions (even
multi-funnel functions) display a tremendous amount of locality. Points in the search
space that are near to each other tend to have similar evaluations. Any reasonable
algorithm should exploit this property; furthermore, we should be able to prove that
relatively traditional search methods are better than random search when applied to
such functions.

Assuming we can define some target threshold value, we might be able to define
a search algorithm that spends more than half the time exploring parts of the search
space that are below this threshold value. In this way we can “avoid” the general
and Sharpened No Free Lunch results and claim that our search algorithm is in some
sense robust. (Focused No Free Lunch results only compare specific algorithms and
do not necessarily address whether a search algorithm is better than random search.)

But to “avoid” general No Free Lunch results, an algorithm must target a
particular family of functions. We might also like to have some assurance that
an algorithm is relatively effective on a wide range of problems. As we apply a
threshold, we can start to ask questions about how many basins of attraction are
below threshold, and how large they are. Actually, we often are not really interested
in basins of attraction, but rather in “funnels” or clusters of local optima that are all
below threshold. Later in this chapter, we introduce the concept of a “quasi-basin”
to capture this idea.

Going back to No Free Lunch, these proofs make it clear that one cannot claim
that one search algorithm is better than another without also describing the functions
and landscapes where one search algorithm will out-perform another. It has also
sometimes been suggested that one search algorithm is more robust than another, in
the sense that it will perform well across a wide range of problems. However, the
concept of robustness also leads back to the same question: if an algorithm performs
well on a wide range of problems, then on what problems does it do well, and where
does it fail to do well?

72 D. Whitley and J. Rowe

Thus, if we want to formalize the idea that a search algorithm has robust
performance across a wide range of search problems, we have to say that an
algorithm has robust performance on a particular family of problems. In the
remainder of this chapter, we look at a kind of problem structure that might be
found in either single-funnel or multi-funnel landscapes. We then define a class of
subthreshold-seeking algorithms that can exploit this type of landscape.

4.4 Subthreshold-Seeking Algorithms

Christensen and Oppacher [4] have shown that the No Free Lunch theorem does
not hold over broad classes of problems that can be described using polynomials
of a single variable. The algorithm that Christensen and Oppacher propose is in
some sense robust in as much as it is able to outperform random enumeration on
a general class of problems. But the algorithm they propose is not practical as a
search algorithm. Can we do better than this? And what theoretical and practical
implications does this question imply?

We will first generalize the approach of Christensen and Oppacher. We will say
that an algorithm has subthreshold-seeking behavior if the algorithm establishes a
performance threshold, and then spends more than half of its time sampling points
that are below threshold. An algorithm with subthreshold-seeking behavior can beat
random enumeration and avoids the Sharpened No Free Lunch result by focusing
on a special, but nevertheless general, class of functions. We will also say that an
algorithm is robust if it is able to outperform random enumeration across a general
class of functions, such as functions with a bounded number of optima or the set of
functions that can be described using polynomials.

We next ask to what degree does a Hamming neighborhood local search
algorithm using a bit representation display robust, subthreshold-seeking behavior.
In addition to the theoretical analysis presented, we empirically show that a local
search algorithm with sufficient precision will spend most of its time “subthreshold”
on a number of common benchmark problems. We next make a very simple
modification to a local search algorithm to allow it to spend more time subthreshold.

In the heuristic search community, local search with restarts is generally seen as
a broadly effective mean of sampling many local optima, and therefore of finding
globally competitive solutions. A Subthreshold Local Search algorithm is proposed
that samples the search space to estimate a threshold and to generate a sample of
subthreshold points from which to search. After this initial sample, local search
is always restarting from subthreshold points in the search space. Empirically, a
Subthreshold Local Search algorithm is both more efficient and effective than simple
local search with restarts, finding better solutions faster on common benchmark
problems.

Subthreshold Local Search is not a state-of-the-art heuristic search method; but
the algorithm is a viable alternative to local search with restarts, and the algorithm
and the various proofs provide new insights into the general robustness of local

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 73

search. The results may also have implications for population-based search methods,
such as evolutionary algorithms. By using a population combined with selection,
there is an explicit sampling mechanism that attempts to focus search in the best
(potentially subthreshold) regions of the search space; this is particularly true
for steady-state genetic algorithms and (� C �) evolution strategies, where the
population is made up of the best-so-far solutions.

4.4.1 The SubMedian-Seeker

Let f be an objective function f W Œa; b� ! R, where Œa; b� is a closed interval. We
discretize this interval by taking N uniformly sampled points, which we label with
the set X D 0; 1; : : : ; N � 1. By abuse of notation, we will consider f W X ! R,
such that f .x/ takes on the evaluation of the point labeled x. Assume f is bijective
as a function of X and that the median value of f is known and denoted by med.f /.

Christensen and Oppacher define a minimization algorithm called Sub-Median-
Seeker. The original SubMedian-Seeker is able to detect and exploit functions
where every second point is below submedian and thus a local optimum. How-
ever, such functions are maximally multimodal. We present a simplified form of
SubMedian-Seeker called EZ-SubMedian-Seeker that does not detect this regularity,
but otherwise retains all of the critical behaviors of the original SubMedian-Seeker.
The algorithm presented here is a similar to SubMedian-Seeker but is simpler and
easier to understand.

EZ-SubMedian-Seeker

1. Choose a random sample point, x 2 X.
2. While f .x/ < med.f / pick next sample x D x C 1.
3. If less than jXj

2
points have been sampled, then goto step 1. Otherwise terminate.

Without loss of generality, we assume that x and its successor x C1 are integers.
The algorithm exploits the fact that for certain classes of functions, points that are
adjacent to submedian points are more often than not also submedian points. The
actual performance depends on M.f /, which measures the number of submedian
values of f that have successors with supermedian values. Let Mcrit be a critical
value relative to M.f / such that when M.f / < Mcrit SubMedian-Seeker (or EZ-
SubMedian-Seeker) is better than random search.

Christensen and Oppacher [4] then prove:

If f is a uniformly sampled polynomial of degree at most k and if Mcrit > k=2 then
SubMedian-Seeker beats random search.

The Christensen and Oppacher proof also holds for EZ-SubMedian-Seeker. Note
there are at most k solutions to f .x/ D y, where y can be any particular codomain
value. If y is a threshold, then there are at most k crossings of this threshold over
the sampled interval. Half, or k=2, of these are crossings from subthreshold to

74 D. Whitley and J. Rowe

superthreshold values. Thus, M.f / <D k=2 for polynomials of degree k. In the
case where the median is the threshold, step 1 has equal probability of sampling
either a submedian or supermedian value. Therefore, as long as step 2 generates
a surplus of submedian points before terminating at a supermedian point, the
algorithm beats random search. We can think of step 1 as an exploration phase with
balanced cost and step 2 as an exploitation phase that accumulates submedian points.
If M.f / � k=2 < Mcrit , then SubMedian-Seeker (and EZ-SubMedian-Seeker)
will perform better than random enumeration because more time is spent below
threshold during step 2. Christensen and Oppacher offer extensions of the proof for
certain multivariate polynomials as well. In the next section we characterize a more
general Subthreshold-Seeker algorithm.

4.4.2 Subthreshold-Seeker

We still assume f is one-dimensional and bijective and N D j X j. Set a threshold
of ˛ between 0 and 1=2. We are interested in spending time in the ˛N best points of
the search space (ordered by f). We refer to these as subthreshold points. Addition
is modulo N and the search space is assumed to wrap around so that points 0 and
N � 1 are neighbors.

Let �.f / denote a threshold codomain value such that exactly ˛N points of X
have evaluations f .x/ < �.f /. Subthreshold-Seeker works as follows:

1. Pick a random element x 2 X that has not been seen before.
2. If f .x/ < �.f / let x D x C 1 and y D x � 1; otherwise goto 1.
3. While f .x/ < �.f / pick next sample x D x C 1.
4. While f .y/ < �.f / pick next sample y D y � 1.
5. If Stopping-Condition not true, goto 1.

Once a subthreshold region has been found, this algorithm searches left and right
for subthreshold neighbors. This minor variation on SubMedian-Seeker means that
a well-defined region has been fully exploited. This is critical to our quantification
of this process. We will address the “Stopping-Condition” later.

For theoretical purposes, we assume that the function �.f / is provided. In
practice, we can select �.f / based on an empirical sample.

4.4.2.1 Functions with Uniform Quasi-basins

We formally define a quasi-basin for a one-dimensional function, f , with respect
to a threshold value, v, where v is a codomain value of f : a quasi-basin is a set of
contiguous points in f that are below value v. Note this is different from the usual
definition of a basin: a quasi-basin may contain multiple local optima. Also, points
in a basin that are above threshold are not in the quasi-basin. An example of two

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 75

Fig. 4.5 The graph shows
two examples of functions
and the corresponding
subthreshold quasi-basins.
The quasi-basins are exactly
the same size and cover the
same intervals for this
particular threshold: in this
case the threshold is the
median

functions with the same intervals as quasi-basins is given in Fig. 4.5. Note that the
Subthreshold-Seeking algorithm as well as SubMedian-Seeker are only sensitive to
the size and number of quasi-basins and are not sensitive to the actual number of
local optima.

This concept of a quasi-basin can be related back to the concept of single-funnel
and multi-funnel functions. At least one type of single-funnel function is one where
there exists one large quasi-basin (potentially surrounded by small quasi-basins) that
contains the global optimum as well as most of the better local optima in the space.
Again, refer to the example of Rastrigin’s function in Fig. 4.1. However, if there are
multiple quasi-basins of similar size that are not localized in one particular region
of the search space, this suggests a multi-funnel landscape. However, even on multi-
funnel landscapes, simple search strategies can still be effective. Consider a function
f where all subthreshold points are contained in B equally sized quasi-basins of
size ˛N=B . We then ask how many superthreshold points are visited before all the
subthreshold points are found. Suppose k quasi-basins have already been found and
explored. Then there remain B � k quasi-basins to find, each containing ˛N=B

points. There are at most N � k˛N=B points unvisited. So the probability of hitting
a new quasi-basin is (slightly better than)

.B � k/.˛N=B/

N � k˛N=B
D .B � k/˛

B � k˛

This calculation is approximate because it assumes that superthreshold points are
sampled with replacement. As long as the probability of randomly sampling the
same superthreshold point twice is extremely small, the approximation will be
accurate. For large search spaces this approximation should be good.

If the probability of “hitting” a quasi-basin is p, the expected number of trials
until a “hit” occurs is 1=p. This implies that the expected number of misses before
a successful hit occurs is 1=p � 1. So the expected number of superthreshold points

76 D. Whitley and J. Rowe

that are sampled before finding a new quasi-basin is approximately (slightly less
than)

B � k˛

.B � k/˛
� 1 D B.1 � ˛/

.B � k/˛

This means that the expected number of superthreshold points seen before the
algorithm has found all quasi-basins is bounded above by

B�1X

kD1

B.1 � ˛/

.B � k/˛
D B.1 � ˛/

˛

B�1X

kD1

1

.B � k/
D B.1 � ˛/

˛
H.B � 1/ (4.1)

where H is the harmonic function. Note H.B � 1/ is approximated by log.B � 1/.
In general terms, we might expect functions that display several similarly sized

quasi-basins to be one type of multi-funnel landscape. In contrast, in the case of a
single-funnel landscape we might expect there to be a single larger quasi-basin that
dominates other subthreshold regions of the search space. We next consider the case
where there exist unevenly sized quasi-basins.

4.4.2.2 Functions with Unevenly Sized Quasi-basins

Theorem 4.1. Let f be a one-dimensional function uniformly sampled by N

points. Let ˛ be a threshold such that ˛ � 1=2, and suppose there are B

subthreshold quasi-basins which are not uniform in size, where B 	 2. Run
Subthreshold-Seeker until one quasi-basin of size at least ˛N=B C 1 is found. In
expectation, more subthreshold points will be sampled than superthreshold points
when

2B2 C ˛ C ˛N � 2˛B � B2

˛
� ˛2N

B
> 0

A weaker sufficient condition is

˛ >
Bp

N C B2

Proof. Since the quasi-basins are not uniform in size, there must be at least one
subthreshold quasi-basin of size ˛N=B C 1 or larger. We will explicitly search for a
targeted subset of exactly ˛N=B adjacent points in some quasi-basin that is of size
˛N=B C 1 or larger. For purposes of the proof, we assume we know when we have
found the targeted set. For the actual algorithm, some smaller quasi-basins may be
enumerated and this enumeration is not included in the current calculation.

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 77

The expected waiting time to find the targeted set of points is N
˛N=B

� 1: Since
we are looking for a specific target set of points, under random sampling we will
sample both superthreshold and subthreshold points before finding this target set.

The set of nontargeted points is of size N � ˛N=B , and ˛N � ˛N=B of these
are subthreshold. Therefore ˛N�˛N=B

N�˛N=B
of the points sampled before finding the

targeted region will be subthreshold in expectation. Thus the expected number of
subthreshold points sampled before a targeted point is found is ˛N�˛N=B

N�˛N=B
. N

˛N=B
�1/,

and when a targeted point is found then ˛N=B subthreshold points are sampled.
At the edges of the target at most one superthreshold point is sampled, balanced

by one subthreshold point, so these can be ignored. The expected number of
superthreshold points sampled before a targeted point is found is .1�˛/N

N�˛N=B
. N

˛N=B
�1/:

Therefore more subthreshold points are sampled when

˛N � ˛N=B

N � ˛N=B
.

N

˛N=B
� 1/ C ˛N=B >

.1 � ˛/N

N � ˛N=B
.

N

˛N=B
� 1/

Simplifying yields:

.˛ � ˛=B/.B=˛ � 1/

1 � ˛=B
C ˛

B
N >

.1 � ˛/.B=˛ � 1/

1 � ˛=B
(4.2)

2B2 C ˛ C ˛N � 2˛B � B2

˛
� ˛2N

B
> 0

We next used relaxed bounds to show that more subthreshold points are sampled
in expectation when ˛ > Bp

NCB2
: Given ˛ � 1=2 and B 	 2, the following

inequalities hold with respect to Eq. (4.2).

.˛ � ˛
B /. B

˛ � 1/

1 � ˛=B
C ˛

B
N > .˛� ˛

B
/.

B

˛
�1/C ˛

B
N D B�˛�1C ˛

B
C ˛

B
N > ˛BC ˛

B
N �1

and B=˛ � 1 >
.1 � ˛/.B=˛ � 1/

1 � ˛
B

It therefore follows that Eq. (4.2) holds when ˛B C ˛
B

N � 1 > B
˛

� 1:

Using these more conservative bounds

˛B C ˛

B
N � 1 >

B

˛
� 1

B2 C N >
B2

˛2

78 D. Whitley and J. Rowe

p
N C B2 >

B

˛

˛ >
Bp

N C B2
ut

Corollary. If f is a polynomial of degree z and we run Subthreshold-Seeker until
a quasi-basin of size at least ˛N=.z=2/ C 1 is found, then more subthreshold points
will be sampled than superthreshold points if ˛ > z

.2
p

NC.z=2/2/
.

Proof. A polynomial of degree z can have at most z=2 quasi-basins. ut

4.5 Quasi-basins and Local Search in Hamming
Neighborhoods

In this section, we outline sufficient conditions to ensure that the majority of
Hamming distance 1 neighbors under Gray and binary encodings are in the same
quasi-basin. We also look at how precision affects the number of neighbors that lie
in the same quasi-basin.

Observation. Given a 1-D function of size N D 2L and a reference point R in the
function, under a Gray or binary encoding at most dlog.Q/e bits encode for points
that are more than a distance of D points away from R, where D D 1

Q
N .

In the one-dimensional case when the highest order bit is changed under either a
Gray or binary encoding this accesses the only neighbor that is in the opposite half
of the search space.

We first will select a reference point R in the quasi-basin. Next, we can
recursively eliminate the highest-order bit so as to remove the half of the search
space which does not contain the reference point. We continue to reduce the search
space around the reference point by removing bits until dlog.Q/e bits have been
eliminated. The remaining search space is then at most D D N=Q points since

log.N=Q/ C log.Q/ D log.N / , and N.1=2/dlog.Q/e � N=Q

At higher precision under both Gray representation and binary representations,
more points are sampled that are near to the reference point. Thus, as precision
increases, the quantity N=Q becomes larger and thus log.N=Q/ increases. However
Q and log.Q/ remain constant. Therefore, at higher precision, the number of
neighbors within a distance of N=Q points increases.

Expressed another way, consider a quasi-basin of size D and a search space of
size N where the quasi-basin spans 1=Q of the search space (i.e., D D 1

Q
N):

under a bit representation at most dlog.Q/e bits encode for points that are more

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 79

than a distance of D points away from R. Note that an increase in precision also
increases the size of the search space, so that the quantity N=Q becomes larger and
thus log.N=Q/ increases. However Q and log.Q/ remain constant. Thus, at higher
precision, the number of neighbors within a distance of N=Q points increases.

Whitley and Rowe [16] present proofs that show that the expected number of
neighbors of R that fall inside the quasi-basin under a reflected Gray code as well as
under the standard binary encoding is greater than blog.N=Q/c � 1. This involves a
very detailed analysis of the Gray code and binary code neighborhoods. The proof
looks at the expected number of neighbors of reference point R that fall into a quasi-
basin by averaging over all of the possible placements of R in the Gray and binary
neighborhood. Expressed another way, the proof considers all the ways that the Gray
or binary neighborhood could span the quasi-basin, regardless of where reference
point R falls inside of the quasi-basin. Thus, if 1=Q is the fraction of the search
space that is occupied by a given quasi-basin, and reference point R falls into the
quasi-basin, then in expectation more than blog.N=Q/c�1 of the log.N / neighbors
of reference point R will also fall into the same quasi-basin.

The significance of this result is that we can outline conditions that would allow
a steepest-ascent local search algorithm to spend the majority of its time sampling
points that are contained in the same quasi-basin and therefore below threshold.
This makes it possible to outline sufficient conditions such that steepest ascent local
search is provably better than random search.

Note that for single-funnel functions where the search space is dominated by
one large quasi-basin, we can assume that the number of neighbors that fall into
the same quasi-basin should be a relatively good approximation of the number of
neighbors that are below threshold. For multi-funnel functions, the count of the
expected number of neighbors that fall in the same quasi-basin will fail to count
neighbors that might fall into other quasi-basins.

The result is limited by the fact that the analysis holds for one-dimensional
functions. This clearly is not a problem for separable functions however, since each
subproblem is an independent one-dimensional problem. And because a Hamming
neighborhood local search algorithm changes only one bit at a time, when we vary
the bits for a single parameter this dynamically isolates a one-dimensional slice
of the search space and, because the reference point R is subthreshold, there is a
corresponding quasi-basin that is sampled in that slice. However, the size of the
quasi-basin can change as we move from one parameter to the next. But the size of
the quasi-basin can also change depending on the reference point. In a sense, the real
limitation is not that the analysis holds for one-dimensional functions, but rather that
we do not really know the size of the quasi-basins or how this size varies in different
slices of the search space. Nevertheless, regardless of what one-dimensional slice of
the search space we sample, we do have a characterization of what it means for the
quasi-basin to be sufficiently large to allow a local search algorithm that is currently
below threshold to sample below threshold the majority of the time.

80 D. Whitley and J. Rowe

4.5.1 A Subthreshold Local Search Algorithm

A local search algorithm without restarts that is currently at a subthreshold point
can only move to an equal or better point which must also be subthreshold. The
real question becomes, “Are the majority of neighbors also below threshold?” For a
Hamming neighborhood, as precision increases, the number of subthreshold neigh-
bors also increases, since b.log.N=Q//c � 1 increases while Q remains constant.
This assumes the quasi-basin is not divided by increasing the precision. The above
analysis would need to hold for each dimension of a multidimensional search space,
or at least hold in a cumulative sense over all dimensions. Nevertheless, our results
suggest there are very general conditions where a Hamming neighborhood local
search algorithm can display subthreshold-seeking behavior. This also assumes local
search can absorb the start-up costs of locating a subthreshold starting point.

We will limit our implementation to Gray code representations. Under favorable
conditions a Hamming neighborhood local search algorithm using a Gray code
representation can display subthreshold-seeking behavior, but does local search
display subthreshold-seeking behavior on common benchmarks? In this section, we
compare two versions of Hamming neighborhood local search algorithms. Both
algorithms use steepest-ascent Local Search (LS) which evaluates all neighbors
before moving. One algorithm, denoted LS-Rand, uses random restarts. The other
algorithm, denoted LS-SubT, uses sampling to start local search at a subthreshold
point.

LS-SubT first samples 1,000 random points, and then applies local search from
the 100 best of these points. In this way, LS-SubT estimates a threshold value and
attempts to stay in the best 10 % of the search space.

LS-Rand does 100+y random restarts. LS-Rand was given y additional random
starts to compensate for the 1,000 sample evaluations used by the LS-SubT
algorithm. To calculate y we looked at the size of the bit encoding and the average
number of moves needed to reach a local optimum.

4.5.2 Experiments and Results

Both LS-Rand and LS-SubT were tested on benchmarks taken from Whitley et al.
[15], who also provide function definitions. The test function included Rastrigin
(F6) and Schwefel (F7), which are both separable. The other functions include
Rosenbrock, F101 and Rana functions as well as a spike function similar to one
defined by Ackley [1], where:

F.x; y/ D �20e�0:2
p

.x2Cy2/=2 � e.cos2�xCcos2�y/=2 C 22:7; xi 2 Œ�32:77; 32:77�

All problems were posed as 2-dimensional search problems. Experiments were
performed at 10- and 20-bits of resolution per parameter. A descent corresponds
to one iteration of local search, which will locate one local optimum. A trial

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 81

Table 4.1 Results of steepest-ascent search at 10-bit resolution per parameter in two-
dimensional space. LS-Rand (here Rand) used 104 restarts. LS-SubT (here SubT) restarted
from best 100 of 1,000 random points. Evals were rounded to the nearest integer

Function ALG Mean � Best � Sub Evals �

Ackley Rand 2.72 0.71 0.18 0.0b 62.4 19,371 663
SubT 0.79a 0.32 0.18 0.0b 79.7 16,214a 163

F101 Rand �29.2 0.0b �29.2 0.0b 71.7 22,917 288
SubT �29.2 0.0b �29.2 0.0b 84.0 18,540a 456

Rosenbrock Rand 0.10 0.01 0.001 0.002 61.4 23,504 3,052
SubT 0.10 0.01 0.0004 0.0b 72.0 666a 1,398

Griewangk Rand 0.86 0.16 0.010 0.011 59.5 13,412 370
SubT 0.75a 0.11 0.005 0.009 80.1 9,692a 125

Rana Rand �37.8 0.84 �49.65 0.59 49.5 22,575 2,296
SubT �39.7a 0.68 �49.49 0.52 57.6 19,453a 1,288

Rastrigin Rand 4.05 0.20 0.100 0.30 63.5 18,770 495
SubT 4.00 0.28 0.0 – 75.4 14,442a 343

Schwefel Rand �615.8 11.8 �837.9 0.0b 53.5 17,796 318
SubT �648.0a 10.1 �837.9 0.0b 68.0 14,580a 414

a Denotes a statistically significant difference at the 0.05 level using a t-test
b Denotes a value less than 1� 10�13

corresponds to 1 run of the respective algorithm, composed of 100 descents for LS-
SubT and 100 C y descents for LS-Rand. An experiment corresponds to 30 trials.
Each experiment is a configuration of search algorithm, test function and parameter
resolution. Statistics are computed over each experiment. All chromosomes were
encoded using standard Gray code.

The results of 10- and 20-bit resolution experiments are given in Tables 4.1
and 4.2, respectively. Mean denotes mean solution over all descents in all trials.
(This is also the mean over all local optima found.) Best denotes the best solution
per trial (i.e., the best optimum found over 100 or 100 C y descents). Sub

denotes the percentage of all evaluations that were subthreshold. Evals denotes
the mean number of test function evaluations per trial averaged over all trials in
the experiment; � denotes the standard deviation of the value given in the adjacent
left-hand column.

In general, the results indicate that LS-SubT sometimes produces statistically
significant better solution quality compared to LS-Rand. LS-SubT never produces
statistically significant worse performance than LS-Rand.

The data suggest two observations about subthreshold-seeking behavior. First,
the sampling used by LS-SubT results in a higher proportion of subthreshold points
compared to LS-Rand, as shown in Tables 4.1 and 4.2. Second, a larger proportion
of subthreshold neighbors are sampled for searches using higher precision. At 20
bits of precision per parameter, at least 70 % of the points sampled by LS-Rand
were subthreshold, and at least 80 % of the points samples by LS-SubT were
subthreshold. At 10 bits of precision per parameter, LS-SubT sampled subthreshold
points 57–84 % of the time.

82 D. Whitley and J. Rowe

Table 4.2 Results of steepest-ascent search at 20-bit resolution per parameter in two-
dimensional space. LS-Rand (here Rand) used 101 restarts. LS-SubT (here SubT) restarted
from best 100 of 1,000 random points. Evals were rounded to the nearest integer

Function ALG Mean � Best � Sub Evals �

Ackley Rand 2.84 0.66 0.0001 0.0b 75.1 77,835 1,662
SubT 0.65a 0.28 0.0001 0.0b 89.9 73,212a 1,194

F101 Rand �29.2 0.0b �29.22 0.0b 84.7 84,740 1,084
SubT �29.2 0.0b �29.22 0.0b 92.3 77,244a 1,082

F2 Rand 0.0b 0.0b 0.0b 0.0b 86.0 2�107 4�105

SubT 0.0b 0.0b 0.0b 0.0b 85.9 2�107 3�105

Griewangk Rand 0.75 0.20 0.0045 0.003 80.3 66,609 1,109
SubT 0.60a 0.09 0.0049 0.003 90.0 59,935a 1,103

Rana Rand �40.63 0.93 �49.76 0.47 74.2 3�106 8�105

SubT �42.54a 0.66 �49.83 0.51 85.0 3�106 8�105

Rastrigin Rand 4.10 0.22 0.033 0.18 81.5 76,335 1,734
SubT 3.94a 0.21 0 – 88.5 68,019a 1,018

Schwefel Rand �622.7 13.8 �837.97 0.0b 73.5 75,285 969
SubT �660.4a 13.4 �837.97 0.0b 84.8 69,372a 1,340

a Denotes a statistically significant difference at the 0.05 level using a t-test
b Denotes a value less than 1� 10�7

At 10 bits of precision, LS-SubT also did fewer evaluations, meaning that it
reached local optima faster than LS-Rand. This makes sense in as much as it starts
at points with better evaluations. Sometimes the difference was dramatic. Thus, the
majority of the time LS-SubT also produced solutions as good or better than LS-
Rand, and it did so with less effort.

At 20 bits of precision, there is less difference between LS-Rand and LS-SubT.
This follows from our theory, since higher precision implies that both algorithms
spend more time subthreshold after a subthreshold point is found, but this does not
necessarily result in faster search.

The number of evaluations that were executed on the Rana and F2 functions
at 20-bit resolution is huge. Examination of the search space shows that both
of these functions contain “ridges” that run at almost 45ı relative to the .x; y/

coordinates. In this context, the local search is forced to creep along the ridge in
very small, incremental steps. Higher precision exaggerates this problem, which
is hardly noticeable at 10 bits of precision. This is a serious problem for search
algorithms that are not rotationally invariant [19]; it is also a good argument for the
use of algorithms such as CMA-ES which are rotationally invariant [8].

4.6 Conclusions

The No Free Lunch theorem formalizes the idea that all black box search algorithms
have identical behavior over the set of all possible discrete functions [5,11,21]. The
Sharpened No Free Lunch theorem extends this idea to sets of functions closed

4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior 83

under permutations. In both cases, one is unable to say that any algorithm is
better than random enumeration. In this paper, conditions are outlined that allow
a subthreshold-seeking algorithm to beat random enumeration on problems of
bounded complexity. The Subthreshold-Seeker algorithm is able to focus search in
the better regions of the search space.

The paper also examines the potential for subthreshold-seeking behavior for
local search algorithms using binary and Gray code representations. Subthreshold-
seeking behavior can be increased by using higher bit precision, but this also
reduces exploration. A simple modification to local search is proposed that improves
its subthreshold-seeking behavior. A simple sampling mechanism can be used to
initialize local search at subthreshold points, thereby increasing the potential for
subthreshold-seeking behavior. Experiments show that this modification results in
faster convergence to equally good or better solutions compared to local search
without subthreshold initialization. Of course this strategy also has its own failure
modes. Assume that an “important” basin of attraction, or a quasi-basin, is very
large above threshold, yet small below threshold; then it is possible that random
restarts could have an advantage over subthreshold restarts if success were measured
in terms of finding and exploiting this “important” region. Of course, the problem
with random restarts is that the search can also converge to local optima that are
superthreshold.

The trend in recent years has been to use real-valued representations for
parameter optimization problems. One reason for using bit representations in the
current study is that it produces a well-defined finite search space that allows one to
explicitly count neighbors. But in principle, the same general ideas could be applied.

Acknowledgements This research was sponsored by the Air Force Office of Scientific Research,
Air Force Materiel Command, USAF, under grant number FA9550-07-1-0403. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. We would also like to thank Dagstuhl for giving us the chance to
meet and exchange ideas.

References

1. D. Ackley, A Connectionist Machine for Genetic Hillclimbing (Kluwer Academic, Boston,
1987)

2. K.D. Boese, A.B. Kahng, S. Muddu. On the big valley and adaptive multi-start for discrete
global optimizations. Technical report, UCLA CS Department, 1993

3. K.D. Boese, A.B. Kahng, S. Muddu, A new adaptive multi-start technique for combinatorial
global optimizations. Oper. Res. Lett. 16, 101–113 (1994)

4. S. Christensen, F. Oppacher, What can we learn from no free lunch? in GECCO-01, San
Francisco, 2001 (Morgan Kaufmann, 2001), pp. 1219–1226

5. J. Culberson, On the futility of blind search. Evolut. Comput. 6(2), 109–127 (1998)
6. J. Doye, M. Miller, D. Wales, The double-funnel energy landscape of the 38-atom Lennard-

Jones cluster. J. Chem. Phys. 110(14), (1999)
7. J. Doye, R. Leary, M. Locatelli, F. Schoen, Global optimization of Morse clusters by potential

energy transforms. INFORMS J. Comput. 16(4), 371–379 (2004)

84 D. Whitley and J. Rowe

8. N. Hansen, S. Kern, Evaluating the CMA evolution strategy on multimodal test functions,
in Proceedings of 8th International Conference on Parallel Problem Solving from Nature,
Birmingham (Springer, 2004), pp. 282–291

9. M. Lunacek, L.D. Whitley, The dispersion metric and the CMA evolution strategy, in
GECCO’06: proceedings of the 8th Annual Conference on Genetic and Evolutionary Com-
putation, Seattle (ACM, New York, 2006), pp. 477–484

10. R. Marcia, J. Mitchell, J. Rosen, Multi-funnel optimization using Gaussian underestimation. J.
Glob. Optim. 39(1), 39–48 (2007)

11. N. Radcliffe, P. Surry, Fundamental limitations on search algorithms: evolutionary computing
in perspective, in Computer Science Today, ed. by J. van Leeuwen. Lecture Notes in Computer
Science, vol. 1000 (Springer, Berlin/Heidelberg, 1995)

12. C. Schumacher, M. Vose, L. Whitley, The no free lunch and problem description length, in
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San
Francisco, 2001, pp. 565–570

13. H.-P. Schwefel, Evolution and Optimum Seeking (Wiley, New York, 1995)
14. A.M. Sutton, L.D. Whitley, M. Lunacek, A.E. Howe, PSO and multi-funnel landscapes: how

cooperation might limit exploration, in Genetic and Evolutionary Computation Conference
(GECCO 2006), Seattle, 2006

15. D. Whitley, K. Mathias, S. Rana, J. Dzubera, Evaluating evolutionary algorithms. Artif. Intell.
J. 85, 1–32 (1996)

16. D. Whitley, J. Rowe, Subthreshold-seeking local search. Theor. Comput. Sci. 361(1), 2–17
(2006)

17. D. Whitley, J. Rowe, Focused no free lunch theorems, in GECCO-08, Atlanta (ACM, 2008)
18. D. Whitley, J. Rowe, A no free lunch tutorial: sharpened and focused no free lunch, eds.

A. Auger, B. Doerr. Theory of Randomized Search Heuristics (World Scientific, Singapore,
2010)

19. L.D. Whitley, M. Lunacek, J. Knight, Ruffled by ridges: how evolutionary algorithms can fail,
in Genetic and Evolutionary Computation Conference, Seattle, vol. 2, 2004, pp. 294–306

20. D. H. Wolpert, W.G. Macready, No free lunch theorems for search. Technical report, SFI-TR-
95-02-010, Santa Fe Institute, July 1995

21. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 4, 67–82 (1997)

Chapter 5
Black-Box Complexity for Bounding
the Performance of Randomized Search
Heuristics

Thomas Jansen

Abstract In black-box optimization a search algorithm looks for a global optimum
of an unknown objective function that can only be explored by sampling the function
values of some points in the search space. Black-box complexity measures the
number of such function evaluations that any search algorithms needs to make in
the worst case to locate a global optimum of any objective function from some
class of functions. The black-box complexity of a function class thus yields a lower
bound on the performance for all algorithms. This chapter gives a precise and
accessible introduction to the notion of black-box complexity, explains important
properties and discusses several concrete examples. Starting with simple examples
and proceeding step-wise to more complex examples an introduction that explains
how such results can be derived is presented.

5.1 Introduction

When algorithms are applied to solve computational problems, one of the most
important issues is that of efficiency. Does the proposed algorithm solve the
problem at hand efficiently? Efficiency of algorithms is measured with respect to
the algorithm’s use of some or several resources and a performance criterion. What
resources are taken into account depends on the specific application. Most often the
computation time is considered to be most crucial. Other resources like the memory
use are also of general importance. In specific situations, still other resources may
be important; the number of sent messages is an example for algorithms that are
running in a distributed computing environment. Performance criteria are usually
given by the computational task. Typically, a performance criterion is solving a

T. Jansen (�)
Department of Computer Science, Aberystwyth University, Aberystwyth SY23 3DB, UK
e-mail: t.jansen@aber.ac.uk

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__5,
© Springer-Verlag Berlin Heidelberg 2014

85

mailto:t.jansen@aber.ac.uk

86 T. Jansen

well-defined computational task like sorting n elements, finding some x� 2 S that
maximizes a given objective function f W S ! IR, or finding an approximation of
certain quality to such an optimal solution x�.

When one is concerned with a specific algorithm one considers its efficiency.
Clearly, one is interested in finding an algorithm for the problem at hand that is
as efficient as possible. This leads to a shift in perspective in a natural way. One
is interested in finding out how efficient algorithms for a specific problem can be.
This is usually denoted as the complexity of the problem. While the analysis of
a single algorithm can be a very difficult and challenging task the analysis of a
problem’s complexity is obviously even more difficult. It may be surprising that for
some problems tight upper and lower bounds on their complexity can be proven.

Results on the complexity of a problem are much more general than results on the
performance of a specific algorithm for a problem. This implies that results on the
complexity are necessarily weaker and usually deliver smaller lower bounds. They
need to hold for all possible algorithms, not just a single one. The advantage of their
generality is they tell us about general limits of what algorithms can achieve and let
us realize when we found an optimal algorithm.

Research on algorithms and complexity theory is most often concerned with
problem-specific algorithms. These algorithms are tailored towards solving a very
specific computational task, like finding a minimum cost tour in the traveling
salesperson problem (TSP). Randomized search heuristics, however, are very
different. They are not tailored towards a specific application but implement a very
general idea of how search should be conducted. They are often not tailored towards
a specific task and very often are oblivious to the concrete problem instance at hand.
Therefore, comparing randomized search heuristics based on classic complexity
theory is inherently unfair. A more appropriate kind of complexity theory, called
black-box complexity [5], exists. Within this formal framework meaningful upper
and lower bounds for randomized search heuristics in black-box optimization can
be derived. This chapter describes this framework and gives examples for results
obtained within it.

In the next section we give formal definitions for black-box complexity. This
includes the definition of a black-box algorithm, its expected worst-case optimiza-
tion time, and the black-box complexity of a problem class. We continue with
highlighting the difference between black-box complexity and classical computa-
tional complexity by means of an illustrative example and motivating black-box
complexity as an informative measure in Sect. 5.3. Considering only the size of the
function class or search space already non-trivial results on black-box complexity
can be obtained. We derive such results in Sect. 5.4 and develop an intuitive
understanding of important properties of black-box complexity this way. Research
in the theory of evolutionary algorithms is often driven by the consideration of
example functions. We connect black-box complexity to this branch of research
in Sect. 5.5. Section 5.6 demonstrates how results for less simple and artificial
examples can be derived by analyzing the black-box complexity of meaningful and
natural classes of functions. We summarize and conclude in Sect. 5.7.

5 Black-Box Complexity for Bounding Performance 87

5.2 Randomized Search Heuristics and Black-Box
Complexity

5.2.1 Basic Concepts

Complexity theory starts with the definition of a performance criterion and a
computational resource. For the definition of black-box complexity we consider
the optimization of a function f W S ! IR as performance criterion. An algorithm
completes this task when it finds some x� 2 S that maximizes f , i.e. f .x�/ D
max ff .x/ j x 2 Sg holds. It is not difficult to adapt the framework to other
performance criteria like approximation. We restrict our attention to finite search
spaces S . The task that we consider is black-box optimization. This means that the
algorithm does not know about the function f . What is known to the algorithm
is that the unknown objective function f is member of some class of function
F � fgW S ! IRg. Note that the search space S is the same for all potential objective
functions g. The only way for an algorithm to gather knowledge about the objective
function f is to sample some points in the search space. We can imagine that
the objective function f is hidden from the algorithm in a black box. The algorithm
may present points x 2 S to the black box and receives the function value f .x/ as
answer. In this sense the black box serves as an oracle to the algorithm. Although the
definition of black-box complexity works for all kinds of algorithms, we define it
with randomized search heuristics in mind. Randomized search heuristics tend to be
simple and computationally cheap. In most cases it is reasonable to assume that their
computational effort is tightly connected to the number of function evaluations, i.e.
accesses to the oracle, they require. We take this idea to the extreme by using this
number of function evaluations as the only resource. Thus, the resources used by a
run of an algorithm solving this black-box problem equal the number of function
evaluations carried out. This abstract definition has the immediate advantage that
we do not need to define a specific model of computation. We do not care about
the kind of computations the algorithm carries out and only take the function
evaluations into account. We discuss some implications of this choice not to restrict
the computational powers of black-box algorithms in any way in Sect. 5.3.

Most randomized search heuristics are incomplete algorithms. Such algorithms
may find an optimal solution but they do not notice that. We take this into account by
counting the number of function evaluations until a global optimum of the objective
function f is found for the first time without asking whether the algorithm has any
proof or knowledge that it actually found a global optimum. While it is clear that
this may be difficult when comparing complete and incomplete algorithms [10] it
is sensible to use this generous definition to investigate the potential of randomized
search heuristics.

Having defined the performance criterion (optimization of some unknown
function f W S ! IR with f 2 F, F known) and the resource (number of f -
evaluations) as well as what we mean by optimization (sample some point x� 2 S

88 T. Jansen

with f .x�/ D max ff .x/ j x 2 Sg), we are now ready to formally define black-box
complexity. We use the usual approach considering the performance of algorithms,
taking the worst case over all possible objective functions, and minimizing over all
possible algorithms.

5.2.1.1 Problem Class

Complexity theory cannot be carried out for single problem instances. For a single
problem instance an optimal algorithm is the trivial one that produces an optimal
solution in the first. Even though we may not know this algorithm we know that it
exists. In classical complexity theory one considers a problem to be set of problem
instances where the instances have some size. In some sense we fix the size of
the instances (by fixing the search space S) in the following definition. We clarify
the differences and similarities to classical complexity theory by means of an
example.

Definition 5.1. Let S be a finite set, called the search space, and let F �
ff W S ! IRg be a non-empty set of potential objective functions. We denote F as a
generic problem class.

Consider the well-known satisfiability problem (MAX-SAT). We have variables
x1; x2; : : : ; xn and clauses c1; c2; : : : ; cm. A clause is a disjunction of some literals.
A literal is a variable or its negation. We are looking for an assignment of the
n variables that satisfies as many clauses as possible. For a specific instance, i.e.
for a specific set of m clauses over n variables, we can easily define a function
f W f0; 1gn ! f0; 1; : : : ; mg such that f .x/ denotes the number of clauses that
the assignment x 2 f0; 1gn satisfies. In classical complexity theory one analyzes
the number of computation steps an algorithm that is given x1; x2; : : : ; xn and
c1; c2; : : : ; cm needs to find an assignment satisfying a maximum number of clauses
and is interested in the worst-case taken over all possible instances. The complexity
of the problem is the best worst case number of computation steps that is achievable.
In black-box complexity we consider the class of functions F that contains all such
functions f for a fixed value of n. Note that the black-box algorithm does not know
about the specific problem instance, in particular, it does not even know about the
number of clauses. We are interested in the best an algorithm can achieve under
these circumstances. We restrict our interest to algorithms that actually solve the
problem, i.e. they eventually solve every possible instance. We formalize this in the
following subsection.

5.2.1.2 Black-Box Algorithms

Definition 5.2. An algorithm A is called a black-box algorithm for F if for all f 2
F the expected number of function evaluations until the algorithm samples some
x� 2 S with f .x�/ D max ff .x/ j x 2 Sg is finite.

5 Black-Box Complexity for Bounding Performance 89

This general definition captures all algorithms that guarantee global optimization.
It includes very simple algorithms like pure random sampling as well as more
advanced ones like simulated annealing and most evolutionary algorithms. We
require, however, the algorithm to find a solution for each f 2 F. This implies
that, for example, local search is a black-box algorithm for the class of unimodal
problems, but it is not a black-box algorithm for the class of multimodal problems.

Note that we do not make any assumptions about the number of times a specific
search point is sampled. This differs from the definition of algorithms in the
No Free Lunch (NFL) scenario, where the algorithms are usually assumed to be
non-repeating, i.e. never to sample any point twice ([8, 16, 18], also see the chapter
on the NFL theorems, Chap. 1).

5.2.1.3 Performance Criteria and Black-Box Complexity

Just like in classical complexity theory we are interested in the best achievable
worst-case performance. We formalize this based on the notion of the worst-case
expected optimization time.

Definition 5.3. The optimization time TA;f of black-box algorithm A on objective
function f 2 F is the number of function evaluations A makes up to and including
the first function evaluation of some x� 2 S with f .x�/ D max ff .x/ j x 2 Sg.
Its mean E

�
TA;f

�
is called its expected optimization time, where the expectation is

taken over the random choices the algorithm A makes.
The worst-case expected optimization time TA;F of black-box algorithm A on the

function class F is defined as TA;F D sup
˚
E
�
TA;f

� j f 2 F

.

The black-box complexity BF of the function class F is defined as BF D
inf fTA;F j A black-box algorithm for Fg.

Black-box algorithms may be either randomized or deterministic. Even though
most search heuristics are randomized and we are definitely most interested in
randomized search heuristics, it makes sense to consider deterministic black-box
algorithms first. They are structurally simpler and help us to better understand the
limitations due to the scenario of black-box optimization. We consider randomized
black-box algorithms afterwards.

5.2.2 Deterministic Algorithms

The first important observation is that a black-box algorithm does not have any
inputs. It knows about the class F of potential objective functions but this knowledge
was already available when the black-box algorithm was designed. It can be
incorporated in the algorithm, but since it is fixed and thus cannot change, it is
not an input. A deterministic black-box algorithm A may initially perform some
computations, but since the algorithm has no input and since it is deterministic
these computations are always the same any time A is started. At the end of these

90 T. Jansen

01

11 00 11

10 10 10 10 11 10

00 00 00 00 00 00 11 11 11 10 10 10

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

Fig. 5.1 Deterministic black-box algorithm for some F � ff WS ! IRg with S D
f00; 01; 10; 11g and ff .x/ j f 2 F; x 2 Sg D f1; 2; 3g

computations A needs to decide about the first point in the search space it wants to
sample. Let x1 2 S be this first point it samples. Clearly, this point is always the
same regardless of the concrete objective function f 2 F. If x1 happens to be a
global optimum for f the algorithm A may stop. Otherwise it can again perform
arbitrary computations before deciding about the second point in the search space it
wishes to sample. These computations now can depend on f .x1/. This value was not
known to the algorithm beforehand and can thus be regarded as a kind of input. We
thus denote the second point in the search space that A samples as x

.f .x1//
2 . If a third

point in the search space is sampled this can, of course, depend on f .x1/, x
.f .x1//
2 ,

and f
�
x

.f .x1//
2

�
. We see how this continues. It is worth mentioning that this insight

paves the way for a compact and very convenient notation for deterministic black-
box algorithms. The key observation is that we do not care about the computations
A carries out at all. We only are concerned with the points in the search space it
samples and their function value. We can organize these points in a tree. The root of
the tree is a node that we label with x1, the first point in the search space sampled
by A. For each possible function value of x1 we have one edge leaving the root
connecting it with a node that is labeled with x

.f .x1//
2 . For the sake of clarity we label

the edges by f .x1/. We continue this way, constructing a complete tree. In cases
where ff .x/ j f 2 F; x 2 Sg is a finite set we obtain a tree where each node has
finite degree. For the investigation of black-box complexity we care about optimal
algorithms. Clearly, such algorithms sample any point in the search space at most
once. So, if we have ff .x/ j f 2 F; x 2 Sg finite we know that optimal black-box
algorithms for F are finite trees. It is convenient to identify any deterministic black-
box algorithm by its tree. Figure 5.1 shows an example. We can replace these trees
by more compact trees by having more than one label at an edge. The more compact
version of the tree in Fig. 5.1 can be seen in Fig. 5.2.

5.2.3 Randomized Algorithms

For randomized black-box algorithms things are less simple. Since randomized
black-box algorithms can make use of random choices there is no single fixed
x1 2 S that is sampled as first point in the search space. If we restrict our attention

5 Black-Box Complexity for Bounding Performance 91

01

11 00 11

10 10 10 11 10

00 11 10

1 2 3

1, 2 3 1 2 3

1, 2, 3 1, 2, 3 1, 2, 3

Fig. 5.2 Compact description of the deterministic black-box algorithm for some F � ff WS !
IRg with S D f00; 01; 10; 11g and ff .x/ j f 2 F; x 2 Sg D f1; 2; 3g from Fig. 5.1

to cases where algorithms do not resample any point in the search space and
ff .x/ j f 2 F; x 2 Sg is finite, we can use a well-known trick from complexity
theory [17] to have a very similar representation. In formal settings algorithms
are often described using Turing machines as model of computation. Randomized
algorithms are then described as Turing machines with additional tape where
uniformly distributed random bits can be read. It is easy to “move the randomness
to the beginning of the computation” in the following way. In the beginning the
Turing machine copies a sufficiently large number of random bits to a working tape.
After this initialization it proceeds deterministically. Any time that original Turing
machine accesses the tape with random bits the modified Turing machine accesses
the copies of the random bits. Clearly, this does not change anything. Moreover,
we see that a randomized algorithm can be described as making a (possibly very
complicated) random decision in the very beginning and proceeding determinis-
tically afterwards. Thus, we can describe a randomized black-box algorithm as a
probability distribution over deterministic black-box algorithms. Note that requiring
that S and ff .x/ j f 2 F; x 2 Sg be finite is necessary. Otherwise the number of
random bits that are sufficient for the computation may not be known in advance.

5.3 Black-Box Complexity and Practice

Our first concrete example highlights the difference between algorithmic complexity
and black-box complexity. Remember that we do not restrict the computational
power of black-box algorithms in any way and only take into account the number of
function evaluations. Sometimes this can make an important difference. We consider
the search space S D f0; 1gn and the class of functions

F D
�

f .x/ D w0 C
nX

iD1

wi xŒi � C
n�1X

iD1

nX

jDiC1

wi;j xŒi �xŒj � j

8 i; j 2 f0; 1; : : : ; ngW wi ; wi;j 2 IR

	
;

92 T. Jansen

i.e. the class of polynomials over f0; 1gn of degree at most 2. The best-known NP-
complete problem is the satisfiability problem, SAT. In SAT we are given a set of
n variables, x1; x2; : : : ; xn, and a set of m clauses, i.e. disjunctions of some variables
and negated variables. The problem is to decide whether there is an assignment of
the n variables that satisfies all m clauses simultaneously. The optimization variant,
MAX-SAT, asks for an assignment that satisfies as many clauses simultaneously
as possible. Of course, MAX-SAT is NP-hard. It remains NP-hard if we restrict
the length of each clause to 2, i.e. each clause may contain at most two (negated)
variables [6]. The key observation is that this restricted problem, MAX-2-SAT, is
contained in F. Consider, for example, the clause x3 _x7. It is easy to verify that the
polynomial 1 � x7 C x3x7 assumes the value 0 for x3 D 0; x7 D 1 and the value 1
for all other assignments of the two variables. Thus, it coincides in value with the
clause. Moreover, it has degree 2. Clearly, using such a polynomial for each of the
m clauses and adding up these polynomials yields a polynomial of degree at most 2
that yields as value the number of satisfied clauses. This is a polynomial reduction of
MAX-2-SAT to the optimization of F and, thus, optimization of F is also NP-hard.
The black-box complexity of F, however, is rather small. Consider the following
algorithm A:

1. For i WD 1 to n do f xŒi � WD 0 g
2. v0 WD f .x/; m WD v0; y WD x

3. For i WD 1 to n do f xŒi � WD 1; vi WD f .x/ � v0; xŒi � WD 0 g
4. For i WD 1 to n � 1 do f

For j WD i C 1 to n do f
xŒi � WD 1; xŒj � WD 1; vi;j WD f .x/ � vi � vj � v0; xŒi � WD 0;
xŒj � WD 0 g g

5. For all x 2 f0; 1gn do f
v WD v0 C

nP
iD1

vi xŒi � C
n�1P
iD1

nP
jDiC1

vi;j xŒi �xŒj �

If v > m Then m WD v; y WD x g
6. Compute f .y/.

We claim that A is a black-box algorithm for F. First, we count the number of
f -evaluations. There is one f -evaluation in line 2, n in line 3,

�
n
2

� D n.n � 1/=2 in
line 4 and one more in line 6. Thus, algorithm A performs exactly .n2 C n C 4/=2

f -evaluations. Since we know that f 2 F holds, we have

f .x/ D w0 C
nX

iD1

wi xŒi � C
n�1X

iD1

nX

jDiC1

wi;j xŒi �xŒj �

for unknown weights w. Thus, we have f .0n/ D w0 and see that v0 D w0 holds after
line 2. In the same way, we have f .0i�110n�i / D w0 C wi and see that vi D wi

holds for all i 2 f1; : : : ; ng after line 3. Finally, we have f .0i�110j�i�110n�j / D
w0 Cwi Cwj Cwi;j and vi;j D wi;j holds for all i; j after line 4. Thus, algorithm A

manages to learn the objective function within .n2 C n C 4/=2 function evaluations.

5 Black-Box Complexity for Bounding Performance 93

We now see the idea in algorithm A clearly. It makes use of function evaluations not
to actually locate an optimal search point (but this may still happen accidentally) but
to reconstruct the problem instance at hand. After that it can compute the function
value of f itself without needing access to the oracle any more. This is what happens
in line 5. The maximal function value is stored in m and the according search point
is stored in y without any actual function evaluation of f . Thus, in line 6, a global
optimum of f can be sampled. We see that TA;F � .n2 C n C 4/=2 holds and have
BF � .n2 C n C 4/=2 D O.n2/ as immediate consequence. This holds in spite of F
being NP-hard to optimize. We see that black-box complexity can be misleading if
a black-box algorithm has computational effort that is not polynomially bounded
in the number of function evaluations. Since randomized search heuristics are
usually algorithmically very simple this is not an issue. Moreover, more restrictive
definitions of black-box complexity allow for the derivation of more realistic results
for more restricted classes of algorithms [12]. In any case, black-box complexity
always yields correct lower bounds.

Bounds obtained by means of complexity theory tend to be small. This is also true
for black-box complexity. One may wonder what the point of analyzing black-box
complexity is. Analyses of concrete algorithms on specific problems typically
yield more precise results for the algorithm under consideration. Such an analysis,
however, can never deliver the kind of general result that we obtain by means of
black-box complexity. There are three main motivations for studying the black-box
complexity of problems. First, black-box complexity can tell us if we already have
found an optimal algorithm for a problem. If the upper bound obtained in a specific
analysis matches the black-box complexity, the search for a better algorithm can stop
since we know that there is no better algorithm. While rare, we present examples
in the following where this is the case. The second major advantage of black-box
complexity is to inform us about the intrinsic difficulty of a problem. We can learn
if a problem is actually hard for all algorithms. Finally, results on the black-box
complexity of problems can yield additional insight in the structure of the problem
that can guide the search for more efficient algorithms.

5.4 Bounds for Generic Classes of Functions

The black-box complexity BF is always bounded below by 1 since each black-box
algorithm needs to sample at least a global optimum for any objective function
due to Definition 5.3. On the other hand, the black-box complexity BF is always
bounded above by jS j since sampling each point in the search space implies that
an optimum has also been sampled. While these two observations are very obvious
non-trivial results about black-box complexity can also be obtained. We start with
a few general observations at the end of this section and a few simple concrete
results in the next section. Before we do this we take a closer look at black-box
algorithms that will help us to develop a more concrete understanding and prove
lower bounds on the black-box complexity of various function classes. The idea is

94 T. Jansen

to develop a deeper understanding of black-box complexity, not to develop realistic
black-box algorithms.

In the following, we make very general observations that hold for arbitrary
function classes F. The statements we make only depend on the size of the function
class jFj or the size of the search space jS j. Note that this is different in spirit
from NFL results (see Chap. 1). There an assumption about the structure of F, being
closed under permutations of the search space, needs to be made. The statements in
this section are independent of such structural assumptions.

Using the notion of black-box complexity and our simple description of black-
box algorithms, a few observations can be made. We already argued that 1 � BF �
jS j holds. In fact, it is not difficult to prove stronger upper bounds on the black-box
complexity for arbitrary function classes. We begin with a simple observation that
is even independent of the concrete finite search space S .

Theorem 5.1. Let F be a finite set of functions. BF � .jFj C 1/=2.

Proof. Since F is finite we have F D ff1; f2; : : : ; fsg for some fixed s 2
IN. Let x�i be a global optimum of fi for i 2 f1; 2; : : : ; sg. First consider
the deterministic black-box algorithm A that samples x�1 , x�2 , . . . , x�s in this
fixed ordering. Obviously, we have E.TA;fi / D i for all i 2 f1; 2; : : : ; sg and
TA;F D s follows. Since the black-box complexity of F is defined as BF D
inf fTA;F j A black-box algorithm for Fg, TA;F D s imposes s as an upper bound
and BF � s D jFj follows. We can improve on this by considering a randomized
black-box algorithm for F. This algorithm samples x�1 , x�2 , . . . , x�s in an ordering
selected uniformly at random. It samples the global optimum of f D fi in the t th
step with probability 1=s for any i and t . Thus

TA;F �
sX

tD1

t � 1

s
D 1

s
� s.s C 1/

2
D .s C 1/=2 D .jFj C 1/=2

holds. ut
For an upper bound on BF it suffices to have an upper bound on TA;F for

any specific black-box algorithm A for F. For the proof of Theorem 5.1 a very
simple black-box algorithm was sufficient. Considering another extremely simple
randomized black-box algorithm, another upper bound can be proved.

Theorem 5.2. Let S be a finite search space and F � ff W S ! IRg a set of
functions. BF � .jS j C 1/=2.

Proof. We consider the randomized black-box algorithm A that samples all jS j
points of S in a ordering that is determined uniformly at random at the beginning of
the computation. This is feasible since S is finite. Since the ordering is determined
uniformly at random we have for any x 2 S and any t 2 f1; 2; : : : ; jS jg that A

samples x as t th point in the search space equals 1=jS j. Clearly, any objective
function f 2 F has at least one global optimum x�. We have that the expected
position of x� in the sequence of points sampled by A equals

5 Black-Box Complexity for Bounding Performance 95

jS jX

tD1

t � 1

jS j D 1

jS j � jS j � .jS j C 1/

2
D jS j C 1

2
:

Since this holds for any function f 2 F we have E.TA;F/ � .jS j C 1/=2 and the
same upper bound on BF. ut

In complexity theory it is sometimes the case that removing items from a set can
increase the complexity of this set. In black-box complexity, however, this cannot
happen.

Theorem 5.3. Let F � ff W S ! IRg and F0 � ff W S ! IRg be two sets of
functions. .F � F0/) .BF � BF0/.

Proof. By definition we have BF D inf fTA;F j A black-box algorithm for Fg and
TA;F D sup

˚
E
�
TA;f

� j f 2 F

. Since F � F0 holds the supremum in TA;F is

taken only over E
�
TA;f

�
that are also considered for the supremum in TA;F0 . Thus,

TA;F � TA;F0 holds for any black-box algorithm A. Thus, BF � BF0 follows. ut
For the proof of more specific results it is useful to have an appropriate tool.

A very useful tool for proving lower bounds (not only) in black-box complexity is
known as Yao’s minimax principle [13, 19].

Theorem 5.4 (Yao’s Minimax Principle). Consider a problem where the set of
possible inputs is finite and each input has finite size. Such a problem allows only
for a finite number of different deterministic algorithms. Moreover, a randomized
algorithm Aq can be described as probability distribution q over the set of
deterministic algorithms A.

For all probability distributions p over the set of inputs I and all randomized
algorithms Aq

min
A2A E.T .A; Ip// � max

I2I E.T .Aq; I //

holds.

Yao’s minimax principle is a quite direct consequence from game theory. The
idea is to consider algorithm design as a two-player zero-sum game, where one
player chooses an algorithm and the other chooses an input. Clearly, the player
choosing the algorithm wants to minimize the run time while the opponent aims
at maximizing it. The importance of Yao’s minimax principle becomes clearer if
we rephrase its meaning in a less formal way. Lower bounds on the worst-case
optimization time of randomized algorithms can be proved by proving lower bounds
on the expected optimization time of optimal deterministic algorithms, where the
expectation is taken over a distribution over the inputs. The strength of this result
has two sources. First, it is much simpler to analyze deterministic algorithms
than randomized algorithms (even though considering only optimal deterministic
algorithms makes it harder). Second, we are free to choose any distribution over the
input that we feel may be difficult.

96 T. Jansen

5.5 Bounds for Typical Benchmark Functions

When theoretically analyzing the performance of randomized search heuristics like
evolutionary algorithms, it is common practice to start with proving results for
artificial example functions [4]. We will consider three such functions in this section,
namely Needle, OneMax, and BinVal. We already know the black-box complexity
for each of these functions: It is 1 – like it is for each single function. To be able
to derive meaningful results we need to generalize single objective functions to a
function class. Whether such a generalization is meaningful depends on the search
heuristic we consider. Most randomized search heuristics have the property that
they are completely symmetric with respect to the role of 1- and 0-bits. This implies
that we can exchange the roles of 1- and 0-bits at each of the n positions without
changing the behavior of the randomized search heuristic. Since there 2n ways of
doing this we arrive at a function class of size 2n, where such randomized search
heuristics behave exactly the same for each function in this class. We formalize this
idea in the following definition and discuss concrete examples when considering the
three different example functions. We make use of the notion x ˚ y for bit strings x

and y. For x; y 2 f0; 1gn let x ˚ y denote the bitwise exclusive or of x and y. For
example, 0101 ˚ 1100 D 1001.

Definition 5.4. For f W f0; 1gn ! IR and a 2 f0; 1gn, let fa.x/ WD f .x ˚ a/.
Moreover, we define f � WD ffa j a 2 f0; 1gng.

The generalization in Definition 5.4 has been introduced together with the notion
of black-box complexity [3]. It is important that it differs from the notion of an
orbit [15] that is tied to a specific search operator. This makes this similar to the
notion of a fitness landscape [14] that always depends completely on the search
operator. The generalization in Definition 5.4 is well-defined independent of any
algorithm and operator. However, it only captures the structure of a function in an
appropriate way for randomized search heuristics that treat the two different bit
values symmetrically. This is still much more general than notions that depend on
specific search operators [2].

The generalization in Definition 5.4 is not the only conceivable generalization
of this kind. We will discuss another generalization when we observe limitations of
what we can be achieved using Definition 5.4.

5.5.1 Needle

One well-known example is the function NeedleW f0; 1gn ! IR with

Needle.x/ WD
nY

iD1

xŒi �

5 Black-Box Complexity for Bounding Performance 97

01

11 00 11

10 10 10 10 11 10

00 00 00 00 00 00 11 11 11 10 10 10

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

Fig. 5.3 Visualization of the function Needle

Obviously, Needle yields the function value 1 for the all 1 bit string 1n and the
function value 0 anywhere else. Since the number of 1-bits in the all 1 bit strings 1n

is n and since it is strictly smaller for all other bit strings, Needle is a special case of
a function where the function value depends only on the number of 1-bits in the bit
string and not the specific bit string itself. Such functions are called symmetric and
can easily be visualized. The at most n C 1 different function values can be plotted
over the number of 1-bits as is done in Fig. 5.3 for Needle.

The function Needle is usually considered as a difficult function. In particular, it
is known that a very simple evolutionary algorithm, the so-called (1+1) EA, has
expected optimization time �.2n/ on Needle [7]. In order to prove that Needle
is actually a hard function we would like to show that it has large black-box
complexity. However, BfNeedleg D 1 holds (Theorem 5.1). Obviously, an algorithm
that samples 1n is a black-box algorithm for fNeedleg and achieves this bound.
For a stronger result we need to consider Needle� instead as defined by means of
Definition 5.4. We consider Needle� and discuss its meaning prior to determining
the black-box complexity. The idea of Needle is to have a flat fitness landscape with
a single spike that may be anywhere. It should not matter to have it at 1n. Having
the spike at an arbitrary position is exactly captured by Needle� D fNeedlea j a 2
f0; 1gng with

Needlea.x/ D
(

1 if x D a

0 otherwise

where a denotes the bitwise complement of a. Now we can move on to establish an
exact bound of the black-box complexity for Needle�. We achieve this by applying
Yao’s minimax principle.

Theorem 5.5. BNeedle� D .2n C 1/=2

Proof. All functions Needlea are defined on the search space S D f0; 1gn and jS j D
2n holds. Thus, BNeedle� � .2n C 1/=2 is a direct consequence of Theorem 5.2.

We prove a lower bound on BNeedle� by applying Yao’s minimax principle
(Theorem 5.4). We choose the uniform distribution over Needle� as probability
distribution. We need to consider an optimal deterministic black-box algorithm A

98 T. Jansen

for Needle� and prove a lower bound on its expected performance. A deterministic
black-box algorithm for Needle� is a tree that contains at least 2n nodes. If there are
less than 2n nodes than there is at least one x 2 f0; 1gn that is not the label of any
node of A. Clearly, this x is never sampled by A. But x is the unique global optimum
of Needlex 2 fNeedle�g. So, A does not optimize all functions in fNeedle�g and is
therefore not a black-box algorithm for fNeedle�g. We conclude that A contains at
least 2n nodes.

We have jff .x/ j f 2 Needle�; x 2 f0; 1gngj D 2 since Needle only yields
function values 0 and 1. Clearly, optimal black-box algorithms for Needle� do
not sample any more points after sampling one point with function value 1. Thus,
each node in A has at most 1 outgoing edge. Therefore, an optimal deterministic
black-box algorithm for Needle� is a degenerated tree that equals a chain of 2n

nodes. The expected performance of such an algorithm when the expectation is
taken over the uniform distribution equals

jf0;1gnjX

tD1

t � 1

jf0; 1gnj D 1

jf0; 1gnj � jf0; 1gnj � .jf0; 1gnj C 1/

2
D 2n C 1

2

and this establishes the lower bound. ut
The result BNeedle� D 2n�1 C 1=2 D �.2n/ is remarkable since it shows

that Needle is not a particularly difficult function for evolutionary algorithms.
The performance of very simple evolutionary algorithm, �.2n/ [7], is in fact
asymptotically optimal. Thus, Needle is an example for an intrinsically difficult
function where evolutionary algorithms perform particularly well. Note that this is
the case even for a very simple evolutionary algorithm that reevaluates many search
points and we take this reevaluations into account when assessing its performance.

It is interesting to note that the bound on the black-box complexity of Needle�
could have been established in a much simpler way. It suffices to note that Needle�
is closed under permutations of the search space. Permuting any Needlea can only
result in another function with exactly one point yielding function value 1 and all
other points having function value 0, i.e. a function Needlea0 for some a0 2 f0; 1gn.
Due to the sharpened NFL theorem (see Theorem 1.2 in Chap. 1) we know that all
algorithms are guaranteed to have equal performance on Needle�. Thus, we could
simply analyze an arbitrary black-box algorithm for Needle�. This, of course,
simply yields the same calculation as in the proof of Theorem 5.2 (where we
considered random enumeration) and Theorem 5.5 (where a deterministic algorithm
is considered). Black-box complexity, however, is in no way restricted to classes of
functions that are closed under permutations of the search space. Thus, we can prove
non-trivial results for classes of functions that are not closed under permutations. We
consider such examples in the following.

5 Black-Box Complexity for Bounding Performance 99

number of 1-bits
n/2 n

O
ne

M
ax

n/2

nFig. 5.4 Visualization of the
function OneMax

5.5.2 OneMax

One of the best studied example functions in the context of evolutionary algorithms
and other randomized search heuristics [4,9,20] is OneMaxW f0; 1gn ! IR that yields

as function value simply the number of 1-bits, OneMax.x/ D
nP

iD1

xŒi �. Clearly,

OneMax is also a symmetric function and can be visualized as introduced for Needle
(see Fig. 5.4).

Since the function value strictly increases with the number of 1-bits the unique
global optimum, the all 1 bit string 1n, is easy to find. Thus, for example,
evolutionary algorithms [4], simulated annealing [9], and appropriately configured
artificial immune systems [21] have no problems at all locating it, a very simple
evolutionary algorithm requires on average �.n log n/ function evaluations to
achieve this [4].

Clearly, it makes no sense to investigate the black-box complexity of OneMax.
As for all single functions, BfOneMaxg D 1 holds. Thus, we need to identify a
class of functions the captures the idea of OneMax. We consider OneMax to be
a function with a unique global optimum where the function value for any x 2
f0; 1gn is decreased from its maximal value n by the Hamming distance between
x and the unique global optimum. This idea is exactly captured by OneMax� D
fOneMaxa j a 2 f0; 1gng. For OneMax� no results can by obtained by means of
NFL results since OneMax� is not closed under permutations of the search space.
If it was, all black-box algorithms for OneMax� would have equal performance.
Random enumeration of the search space takes on average 2n�1 C 1=2 function
evaluations for optimization of OneMax� as it does for all functions f W f0; 1gn ! IR
with unique global optimum. Simple evolutionary algorithms, however, optimize
OneMax� in �.n log n/ function evaluations. Thus, OneMax� cannot be closed
under permutation of the search space. By analyzing its black-box complexity we
see that �.n log n/ is off from optimal performance only by a factor of �.log2 n/

so that evolutionary algorithms are rather efficient on OneMax�.

Theorem 5.6. BOneMax� D �.n= log n/

Proof. We begin with the proof of the lower bound BOneMax� D ˝.n= log n/ and
apply Yao’s minimax principle. As in the proof of Theorem 5.5 we consider the

100 T. Jansen

uniform distribution. The unique global optimum of OneMaxa is a. Thus, for each
x 2 f0; 1gn there is exactly one function in OneMax� that has x as its unique
global optimum. We conclude that each black-box algorithm for A contains at
least 2n nodes. We have jff .x/ j f 2 OneMax�; x 2 f0; 1gngj D n C 1 since
each function OneMaxa yields exactly all function values from f0; 1; : : : ; ng. We
can conclude that each node in the tree of an optimal deterministic black-box
algorithm for OneMax� has degree at most n. The expected number of function
evaluations of such an algorithm equals the average depth of this tree. It is well
known that the average depth of a tree with 2n nodes and degree bound n is
˝.logn 2n/ D ˝.n= log n/ [11]. This establishes BOneMax� D ˝.n= log n/.

The proof of the upper bound BOneMax� D O.n= log n/ is due to Anil
and Wiegand [1]. We consider the following algorithm A that keeps track of
all candidate objective functions (having at all times F D fa 2 f0; 1gn j
OneMaxa may be the objective functiong) and stops when jF j D 1 holds.

1. F WD f0; 1gn; S WD ;
2. While jF j > 1 do
3. Select x 2 f0; 1gn n S uniformly at random. S WD S [fxg
4. v WD f .x/

5. F WD F n fa j OneMaxa 6D vg
6. Choose a such that F D fag. Compute f .a/.

We claim that A is a black-box algorithm for OneMax�. The idea is to keep
track of all functions OneMaxa that cannot yet be ruled out being the unknown
objective function f 2 OneMax�. It is known that there is some a� 2 f0; 1gn

such that f D OneMaxa� holds. Initially all 2n different a 2 f0; 1gn are possible
and are thus stored in F . The set S helps to keep track of points already sampled
and thus helps to avoid resampling. The main loop (lines 2–5) ends when only one
possible a 2 f0; 1gn is left. Clearly, if the elimination process is correct we have
a D a�. Remember that the unique global optimum of OneMaxa is a. Thus, given
the correctness of the elimination process in line 6, the unique global optimum
of the objective function f is sampled. The elimination process in the main loop
(lines 2–5) works as follows. Some still unseen x 2 f0; 1gn is selected randomly,
the set of seen points updated accordingly (line 3), and the objective function is
sampled (line 4). In line 5 all a 2 F such that OneMaxa differs in function value
from f at x are eliminated from F . Clearly, a� cannot be eliminated this way and
remains in F . Moreover, for each a 6D a� there is at least one x 2 f0; 1gn such
that OneMaxa.x/ 6D OneMaxa� .x/ holds. For example, this is the case for x D a

since a is the unique global optimum of OneMaxa but not of OneMaxa� so that
OneMaxa� .x/ < OneMaxa.x/ D n holds. Thus, F will be eventually reduced to
just a�, and we conclude that A is indeed a black-box algorithm for OneMax�. We
remark that A is not efficient with respect to computational effort. However, we are
only concerned with the number of function evaluations.

We need an upper bound on the expected number of function evaluations
A makes before identifying the unknown objective function f D OneMaxa� .
Consider some fixed a 2 F with a 6D a�. Let d denote the Hamming distance

5 Black-Box Complexity for Bounding Performance 101

between a and a�, d WD H.a; a�/. We select some x 2 f0; 1gn uniformly at random
and are interested in Prob.OneMaxa.x/ D OneMaxa�.x//. This is the probability
that a cannot be ruled out as objective function by sampling f .x/. We have

OneMaxa.x/ D
nX

iD1

xŒi � ˚ aŒi � D
nX

iD1

xŒi � C aŒi � � 2xŒi �aŒi � D H.a; x/

and call xŒi � C aŒi � � 2xŒi �aŒi � the contribution of aŒi � to the function value
OneMaxa.x/. There are n � d bits where a and a� are equal. Thus, the contribution
of these n � d bits is equal for a and a�. We have OneMaxa.x/ D OneMaxa�.x/

if and only if the contribution of the other d bits is equal for a and a�, too.
Let ad ; a�d ; xd 2 f0; 1gd denote these n bits in a, a�, and x, respectively. The
contribution of ad equals OneMaxa.xd / D H.ad ; xd /, while the contribution of
a�d equals OneMaxa�.xd / D H.a�d ; xd /. Note that a�d D ad holds. Thus, we
have OneMaxa.x/ D OneMaxa�.x/ if and only if H.ad ; xd / D H.ad ; xd / holds.
We have H.ad ; xd / D d � H.ad ; xd / and thus require H.ad ; xd / D d=2 for
OneMaxa.x/ D OneMaxa�.x/ to hold. We conclude that for d odd we have
Prob.OneMaxa.x/ D OneMaxa�.x// D 0 since d=2 … IN in this case. For even d

we can pick d=2 positions among the d positions in xd where xd and ad disagree.
Thus we have Prob.OneMaxa.x/ D OneMaxa�.x// D �

d
d=2

� � 2�d in this case. We
conclude that

Prob.OneMaxa.x/ D OneMaxa�.x// �
�

d
d=2

�

2d
�
r

1

d

holds in both cases where the last inequality follows from application of Stirling’s
formula for .d Š/.

We summarize what we have so far. For all a 6D a� we have that a is not removed
from F with probability at most

p
1=d for 1 < d � n while a is definitely removed

for d D 1 (remember that d D H.a; a�/). Thus, on expectation jF j is reduced top
1=d jF j in one execution of the main loop (lines 2–5) of algorithm A. It follows

from Markov’s inequality that we have the new F with at most 2
p

1=d jF j elements
after one round with probability at least 1=2.

Nothing changes if instead of considering F completely, we partition F into
n � 2 disjoint sets where the set Fd contains all a with H.a; a�/ D d (for d 2
f2; 3; : : : ; ng). Remember that we can ignore d D 0 and d D 1 since a� is never
removed and all a with H.a; a�/ D 1 are removed certainly in the first round.

Now we consider 8n=.ln.n/ � ln.2// rounds of algorithm a. Clearly, in these
rounds O.n= log n/ function evaluations are made. In each round each of the
sets Fd is reduced to at most 2

p
1=d jFd j elements with probability at least 1=2.

Applying Chernoff bounds [13], we have at least 2n=.ln.n/ � ln.2// such rounds
with probability 1 � e�˝.n= log n/. The initial size is jFd j D �

n
d

�
, we thus have with

this probability

102 T. Jansen

jFd j �
�

2p
d

�2n=.ln.n/�ln.2//

�

n

d

!
< 1

for each set. Thus, on expectation after O.n= log n/ function evaluations algo-
rithm A samples the unique global optimum and stops. ut

Note that the longer part of the proof of Theorem 5.6 is concerned with the
upper bound on the black-box complexity. We see that establishing that evolutionary
algorithms are quite efficient on OneMax was rather simple since for this the lower
bound suffices.

5.5.3 BinVal

Another interesting example function where evolutionary algorithms are similarly

efficient is BinValW f0; 1gn ! IR with BinVal.x/ D
nP

iD1

2n�i xŒi �. The function

BinVal yields as function value the number represented by x read as standard binary
encoding of a non-negative integer. It is known that evolutionary algorithms are
similarly efficient on BinVal as they are for OneMax, in fact, for a very simple
evolutionary algorithm the performance is asymptotically equal �.n log n/ [4].
We want to compare this to the black-box complexity. While it is clear that we
have BfBinValg D 1, it may come as a surprise that the black-box complexity BBinVal�

is not much larger.

Theorem 5.7. BBinVal� D 2 � 2�n.

Proof. We begin with the proof of a lower bound for BBinVal� . Since BinVal has
a unique global optimum (the all ones bit string) the same holds for any BinVala.
As for OneMaxa, we have that a is the unique global optimum of BinVala.
Thus BinVal� contains 2n different functions with 2n different global optima.
We conclude that for any black-box algorithm for BinVal� the probability to be
successful with the very first point it samples is bounded above by 2�n in the worst
case (where the probability is taken over the random choices of the algorithm). The
best a black-box algorithm can achieve is to sample the unique global optimum with
probability 1 after at most two sampled points. The average number of samples of
such a hypothetical black-box algorithm for BinVal� would be

2�n � 1 C .1 � 2�n/ � 2 D 2 � 2�n

and is a lower bound on BBinVal� .
For the upper bound we prove that such a black-box algorithm for BinVal� is not

merely hypothetical. Consider the following algorithm A.

1. Select x 2 f0; 1gn uniformly at random. v WD f .x/

5 Black-Box Complexity for Bounding Performance 103

2. For i WD 1 to n do
aŒn C 1 � i � WD v mod 2; v WD bv=2c

3. Compute f .x ˚ a/.

We observe that A performs at most two function evaluations. According to
Definition 5.3 the second function evaluation (in line 3) is not taken into account
if the first function evaluation (in line 1) has already sampled the unique global
optimum of f . Since x is chosen uniformly at random this happens with probability
2�n. We see that algorithm A performs in expectation 2 � 2�n function evaluations.
What needs to be shown is that algorithm A actually is a black-box algorithm for
BinVal�.

We have f D BinVala� for some unknown a� 2 f0; 1gn. Thus,

v D f .x/ D BinVala�.x/ D
nX

iD1

2n�i .xŒi � ˚ a�Œi �/

holds after the first function evaluation. We see that v 2 f0; 1; : : : ; 2ng is a
non-negative integer that is represented by x ˚ a� in standard binary encoding.
This standard binary encoding is computed and stored in a in line 2. Thus, we
have a D x ˚ a� after line 2. We conclude that x ˚ a D x ˚ x ˚ a� D a�
holds. Thus, in line 3 the function value of a�, the unique global optimum of
f , is sampled. Therefore, algorithm A is a black-box algorithm for BinVal� and
establishes BBinVal� � 2 � 2�n. ut

We see the reason for the extremely small black-box complexity of BinVal�
in the proof of Theorem 5.7. The position of the unique global optimum is given
away with a single function value. We see that the 2n different function values that
BinVal yields give away much more information than the n C 1 different function
values that OneMax yields. Randomized search heuristics, however, typically do
not exploit function values to this degree of detail. In particular, many evolutionary
algorithms are completely oblivious with respect to the true function values and are
only sensitive with respect to the ordering of the function values. One may argue that
for these evolutionary algorithms the class of functions BinVal� does not adequately
capture the idea of BinVal. For these evolutionary algorithms it makes more sense
to consider the class of functions

BinVal�� WD ff ı g j g 2 BinVal�; gW IR ! IR strictly increasingg
that “hides” the function values but preserves the ordering. Note that BinVal�� is
not finite and thus Yao’s minimax principle (Theorem 5.4) cannot be applied. Yet,
BBinVal�� D ˝.n= log n/ can be shown with similar techniques not very different
from the proof of the lower bound on BOneMax� [5].

The proofs of lower bounds on the black-box complexity we presented so far
have all been concerned with classes of functions that are based on one single
objective function. Capturing the idea of this objective function in a way that
lets the randomized search heuristic of interest performs provably equally on all

104 T. Jansen

members of this function class, we have been able to prove non-trivial lower bounds
on the black-box complexity. This way we can compare the performance of the
randomized search heuristic we are interested in with the lower bound on the black-
box complexity and see if there can be much more efficient algorithms. This is
a useful approach since randomized search heuristics are often analyzed on such
single objective functions. But there can be no doubt that it would also be very
useful to have non-trivial lower bounds on the black-box complexity of more natural
classes of functions. This can also be achieved as the following two examples show.

5.6 Bounds for Natural Classes Functions

5.6.1 Monomials

We begin with a simple example inspired by the class of polynomials of degree
at most 2 that we considered as our very first example. A conjunction of several
variables and negated variables is called a monomial, i.e. a polynomial with just one
term. The number of variables in a monomial is called its degree. Let Md denote the
class of monomials mW f0; 1gn ! IR of degree at most d .

Theorem 5.8. 2d�1 C 1=2 � BMd
� 2d .

Proof. Consider some monomial m 2 Md with d 0 � d variables. There is exactly
one setting of the d 0 variables involved in m that yields function value 1; the other
2d 0 � 1 settings yield value 0. Clearly, the setting of the other n � d 0 variables
has no influence at all. Thus, there are 2n�d 0

settings of the n variables that yield
function value 1; all other settings yield function value 0. When sampling the
search space f0; 1gn uniformly at random, each sample finds one of the 2n�d 0

optimal settings with probability 2n�d 0

=2n 	 2�d . Thus, the worst-case expected
optimization time of pure random sampling on Md is bounded above by 2d . This
establishes BMd

� 2d .
For the lower bound we consider the set

M 0
d D fz1z2 � � � zd j 8 i 2 f1; 2; : : : ; d gW zi 2 fxi ; 1 � xi gg :

Clearly, M 0
d � Md holds. This implies BM 0

d
� BMd

(Theorem 5.3) and it suffices
to prove a lower bound on BM 0

d
. Moreover, we have M 0

d D Needle� for the function

NeedleW f0; 1gd ! IR. Thus, BM 0

d
D 2d�1 C 1=2 holds (Theorem 5.5). ut

5.6.2 Unimodal Functions

Clearly, the class of monomials of degree at most d is not a very interesting
class of functions. But we can also obtain results on the black-box complexity of
practically relevant function classes like the class of unimodal problems. Consider

5 Black-Box Complexity for Bounding Performance 105

some objective function f W f0; 1gn ! IR. We call two points x; y 2 f0; 1gn

Hamming neighbors (or neighbors for short) if they differ in exactly 1 bit, i.e. their
Hamming distance equals one, H.x; y/ D 1. We call a point x 2 f0; 1gn a local
optimum of f if no Hamming neighbor of x has larger function value. We call f

unimodal if f has exactly one local optimum. We call f weakly unimodal if every
local optimum of f is also a global optimum of f . Let

U D ff W f0; 1gn ! IR j f weakly unimodalg

denote the class of all weakly unimodal problems.
Weakly unimodal objective functions have the property that there exist paths

leading to a global optimum. If f 2 U then for all x 2 f0; 1gn we have that either x

is a global optimum or there is a Hamming neighbor y of x such that f .y/ > f .x/

holds. This implies that local search is guaranteed to find a global optimum of any
f 2 U in finite time regardless of the starting point. One may be tempted to believe
that this means that weakly unimodal functions are in some sense easy to optimize.
We can prove rigorously that this is not true by means of black-box complexity.
We prove an exponential lower bound on BU. More specifically, we identify a
subclass F � U and prove that BF > 2nı

holds for any constant ı < 1. Since
F � U implies BF � BU (Theorem 5.3), we have an exponential lower bound on
the black-box complexity of weakly unimodal functions this way.

Theorem 5.9. 8 constants ı < 1W BU > 2nı
.

Proof. We call a sequence of points P D .x1; x2; : : : ; xl / a path of length l if for
all i 2 f1; 2; : : : ; l � 1g we have that xi and xiC1 are Hamming neighbors. We call
P a simple path if the points of P are pairwise disjoint, i.e. jfx1; x2; : : : ; xl gj D l .

We restrict our attention to paths P that start in the all 1 bit string, i.e. P D
.x1 D 1n; x2; : : : ; xl /. Given such a path P we define its path function fP by

fP .x/ D
(

n C i if i D maxfj 2 f1; 2; : : : ; lg j x D xj g,

n � OneMax.x/ otherwise.

For x 2 f0; 1gn not on the path P the function value fP .x/ equals the Hamming
distance between x and the starting point of the path. For path points x 2 P there
may be several i 2 f1; 2; : : : ; lg such that x D xi holds (unless P is a simple path).
For such points the function value fP .x/ is by n larger than the position of point
xi D x with largest index i . Clearly, fP is unimodal and has xl as its unique global
optimum.

Such paths P D .x1 D 1n; x2; : : : ; xl / can easily be constructed randomly. We
start with i D 1 in x1 D 1n. As long as i < l we choose xiC1 uniformly at random
from the set of the n Hamming neighbors of xi and increase i to i C 1.

We fix an arbitrary constant " with maxf0; ıg < " < 1 and define l WD l.n/ D 2n"

for the rest of the proof. With this l we consider the random paths P D .x1 D
1n; x2; : : : ; xl / as described above. For each P we consider its corresponding path

106 T. Jansen

function fP and collect all these path functions in F D ffP W f0; 1gn ! IN j P D
.x1 D 1n; x2; : : : ; xl /g. We want to prove BF > 2nı

by means of Yao’s minimax
principle (Theorem 5.4). To this end we define a probability distribution on BF

by assigning to fP 2 F the probability by which the path P is created in the
random path construction. Now we need to bound by below the number of function
evaluations an optimal deterministic black-box algorithm for F makes on average
in the worst case. To achieve this it is useful to have a result on a central property
of the random paths P . It can informally be described in the following way. If we
make a linear number of steps on such a path it is highly likely that we arrive at a
point that has a linear Hamming distance to the point where we started. We make
this precise in the following lemma.

Lemma 5.1. Consider a randomly constructed path P D .x1 D 1n; x2; : : : ; xl /.
8 constants ˇ > 0W 9 constant ˛.ˇ/ > 0W 8 j 	 ˇnW
Prob.H

�
pi ; piCj / � ˛.ˇ/n

� D 2�˝.n/.

Proof. The random path construction works in the same way for any current
position i . Thus, it suffices to prove the statement for i D 1 and some fixed
j 	 ˇn with i C j < l We consider the random Hamming distance from the
first path point Ht WD H.1n; xtC1/ for all t 2 f1; 2; : : : ; j g. We need to prove
Prob

�
Hj � ˛n

� D 2�˝.n/ for some constant ˛ that we are free to choose depending
on ˇ.

We have HtC1 2 fHt �1; HtC1g since the next point on the path is chosen among
the n Hamming neighbors of the current point. Moreover, we have Prob.HtC1 D
Ht � 1/ D Ht =n since, in order to decrease the Hamming distance by 1, we need to
change one of the Ht out of n bits that differ from x1 in x1Ct . Thus, Prob.HtC1 D
Ht C 1/ D 1 � Ht =n holds.

We define ˛ WD minf1=50; ˇ=5g. Since we have ˇ > 0, ˛ > 0 follows and this
is a valid choice of ˛. Moreover, we define � WD minf1=10; j=ng. Note that � is not
necessarily a constant since j may depend on n. However, due to its definition we
have 5˛ � � � 1=10. We consider the last �n steps of the random path construction
until xj is constructed. It is important to note that � � j=n holds. This implies that
the last �n steps of the random path construction actually do exist.

We make a case distinction with respect to the value of HT , where T is the first
of these last �n steps we consider. First, consider the case where HT 	 2�n holds.
We consider �n steps and in each step the value of Ht can decrease by at most one.
Thus, at the end we have Ht 	 2�n � �n D �n with probability 1. We see that
if we are sufficiently far away at the beginning of those last steps we cannot be too
close at the end.

Now we consider the other case, where Ht < 2�n holds. Again, since we
consider only �n steps and in each step the value of Ht can increase by at most
one, we have Ht < 2�n C �n D 3�n all the time. This implies that Prob.HtC1 D
Ht C 1/ > 1 � 3� 	 7=10. We consider a series of �n random experiments with
success probability at least 7=10 in each experiment. We are interested in the number
of successes M 0. Now consider another random process where we consider a series

5 Black-Box Complexity for Bounding Performance 107

of �n independent random experiments each with success probability exactly 7=10.
Let M denote the number of successes in this second random process. Clearly,
for any v 2 IR, we have Prob .M 0 	 v/ 	 Prob .M 	 v/. Thus M stochastically
dominates M 0 and we may analyze this second random process instead. Due to the
independence of the random experiments we are in a situation where we can apply
Chernoff bounds [13]. We have E.M / D .7=10/�n and get

Prob .M < .3=5/�n/ D Prob .M < .1 � 1=7/.7=10/�n/ D e�˝.�n/ D 2�˝.n/:

With probability 1 � 2�˝.n/ we have at least .3=5/�n steps where Ht is increased
among those last �n steps. Thus there can be at most .2=5/�n steps where Ht is
decreased. Since Ht is non-negative, we have

Hj 	 0 C .3=5/�n � .2=5/�n D .1=5/�n

with this probability 1 � 2�˝.n/. Together, we have with probability 1 � 2�˝.n/ a
Hamming distance of at least .1=5/�n 	 ˛n between x1 and x1Cj . ut

Making use of this lemma we can now complete the proof of Theorem 5.9. Our
aim is to prove that no deterministic black-box algorithm can make much progress
on fP in any single step. More concretely, we will show that it is highly unlikely
to make progress of at least n (with respect to fitness or, equivalently, on the path).
Note that this is an even stronger statement.

In a first step we recognize that “shortcuts” on the path may exist. If the path
is not a simple path, it may be actually possible to make a rather big step forward
on the path by considering a Hamming neighbor. This is the case if this Hamming
neighbor is the first and last point of a circle. We solve this problem by conceptually
removing all circles. Clearly, this reduces the path length. Using Lemma 5.1 it is
easy to see that with probability 1�2�˝.n/ the remaining path length is at least l=n.

In order to simplify the proof, we consider a simplified scenario where we
equip the black-box algorithm with additional knowledge and ask for less than
optimization. Before the first point is sampled, a black-box algorithm knows that
the path starts in x1 D 1n. In addition to that, we equip it with the knowledge of
all path points xi with fP .xi / � fP .x1/ and with fP .1n/. This corresponds to
removing all circles. If there is a circle coming back to the first point x1, we let
the algorithm know everything about this circle. Clearly, this can only improve the
algorithm’s performance. At any point, i.e. after any number of points sampled,
we can describe the algorithm’s knowledge in the following way. Among all path
points it knows there is some path point xj with maximal function value fP .xj /.
In addition, we equip the algorithm with knowledge about all path points xi with
fP .xi / � fP .xj /. This covers our practice of removing cycles. Moreover, there is
a set of points N � f0; 1gn known not to be on the path. Every x 2 N has been
sampled by the algorithm and could easily be identified as not being a path point by
its function value fP .x/ < n.

In the beginning we have j D 1 and N D ;. In each round the algorithm has
to decide which point x 2 f0; 1gn to sample next. Clearly, since we are considering

108 T. Jansen

an optimal black-box algorithm this will be some point not sampled before. We
distinguish three different cases with respect to this newly sampled point x.

1. Case: x … P In this case we first update N to N [fxg. Moreover, we update
j to j C n and additionally equip the algorithm with the knowledge about all
path points xi with fP .xi / � fP .xj / for the new value of j .

2. Case: x 2 P and fP.x/ < fP.xj Cn/ In this case we again update j to j Cn

and additionally equip the algorithm with the knowledge about all path points xi

with fP .xi / � fP .xj / for the new value of j . This is similar to the first case.
3. Case: x 2 P and fP.x/ � fP.xj Cn/ In this case we update j to l so that the

optimum is found. The algorithm stops successfully in this case.

What we only ask is that an optimal black-box algorithm only makes an advance
on the path of at least n in a single function evaluation. If this succeeds, we stop the
process and pretend that the optimum was found. Clearly, this way we can at best
prove a lower bound of ..l=n/ � n/=n D �

�
2n"

=n2
�
. Since we only need to prove

a lower bound of 2nı
for some ı < " this is sufficient.

We start with N D ; and j D 1. If the algorithm samples some point x with
H .x; 1n/ � ˛.1/n (relatively close to the best known path point 1n where ˛.1/

is the constant from Lemma 5.1 with ˇ D 1), we have a success with probability
only 2�˝.n/ due to Lemma 5.1. If the algorithm samples some point x far way, i.e.
H .x; 1n/ > ˛.1/n we consider the random process of path construction as if it
had not yet taken place completely. This way we see that the path construction hits
exactly some x with H .x; 1n/ > ˛.1/n only with probability 2�˝.n/. Thus, the first
step is almost completely hopeless as claimed.

In later steps we have j > 1 and may have N 6D ;. While j > 1 is not a big
change, having N 6D ; may change things significantly. In order to deal with this
we separate the set of known points N [˚

xi j fP .xi / � fP .xj /

into points close
(fx 2 K j H.x; xj / < ˛.1=2/ng) and far away (fx 2 K j H.x; xj / < ˛.1=2/ng).
If all known points are far away it is again easy to prove that not much changes
using Lemma 5.1. If the set of known points that are close is not empty we make
use of a simple trick. We ignore the next n=2 steps of random path construction and
advance the algorithm by this on the path. After that we are in a situation where all
known points are again far away with probability 1 � 2�˝.n/ (Lemma 5.1).

So, we have that in each step the algorithm succeeds with probability 2�˝.n/.
Applying the union bound yields that the algorithm succeeds in 2nı

steps with
probability at most 2nı � 2�˝.n/ D 2�˝.n/. Thus, we have BU > 2nı

as claimed. ut

5.7 Conclusions

Black-box complexity is a very general notion that allows us to establish lower
bounds on the difficulty of problems in the black-box scenario that hold for all
algorithms, in particular for all randomized search heuristics. It only takes into

5 Black-Box Complexity for Bounding Performance 109

account the number of times the objective function is evaluated until a global
optimum is sampled for the first time. Not requiring that a black-box algorithm
must recognize an optimal solution allows for the inclusion of incomplete heuristics.
Not taking into account the computational effort of the heuristics allows for the
rigorous proof of absolute bounds not depending on any unproven assumptions (like
P 6D NP). But this comes at the price of delivering unrealistic results when black-box
algorithms are excessively expensive. In practice, this is not an issue as randomized
search heuristics are almost always simple.

The notion of black-box complexity allows for general observations that rely only
on very general properties like the size of the class of functions or the search space.
Considering more concrete classes of functions and using Yao’s minimax principle
as the most important tool, a number of non-trivial lower bounds on the black-box
complexity are proven. This holds for results on single example functions, where
the key for deriving interesting bounds on the black-box is capturing the idea of
the example function in an appropriate class of functions. Such results can prove
actual and concrete randomized search heuristics like evolutionary algorithms to
be very efficient on such problems. By proving their performance to be close to
the black-box complexity, it is proven that no other algorithm can be much more
efficient. In addition, non-trivial results for more natural classes of functions like
monomials of bounded degree or unimodal functions are proven. It can be expected
that black-box complexity will prove a useful concept for the rigorous proof of lower
bounds on the difficulty of problems in the future, too.

Acknowledgements This material is based upon work supported by Science Foundation Ireland
(SFI) under Grant No. 07/SK/I1205.

References

1. G. Anil, R.P. Wiegand, Black-box search by elimination of fitness functions, in Proceedings
of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms (FOGA 2009),
Orlando, ed. by I. Garibay, T. Jansen, R.P. Wiegand, A.S. Wu (ACM, 2009), pp. 67–78

2. Y. Borenstein, R. Poli, Structure and metaheuristics, in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2006), Seattle, ed. by M. Keijzer et al. (ACM,
2006), pp. 1087–1094

3. S. Droste, T. Jansen, K. Tinnefeld, I. Wegener, A new framework for the valuation of
algorithms for black-box optimization. in Foundations of Genetic Algorithms 7 (FOGA 2002),
Torremolinos, ed. by K.A. De Jong, R. Poli, J. Rowe (Morgan Kaufmann, San Francisco, 2003),
pp. 253–270

4. S. Droste, T. Jansen, I. Wegener, On the analysis of the (1+1) evolutionary algorithm. Theor.
Comput. Sci. 276, 51–81 (2002)

5. S. Droste, T. Jansen, I. Wegener, Upper and lower bounds for randomized search heuristics in
black-box optimization. Theory Comput. Syst. 39, 525–544 (2006)

6. M.R. Garey, D.S. Johnson, Computers and Intractability. A Guide to the Theory of NP-
Completeness (Freeman, New York, 1979)

7. J. Garnier, L. Kallel, M. Schoenauer, Rigorous hitting times for binary mutations. Evol.
Comput. 7(2), 173–203 (1999)

110 T. Jansen

8. C. Igel, M. Toussaint, A no-free-lunch theorem for non-uniform distributions of target
functions. J. Math. Model. Algorithms 3(4), 313–322 (2004)

9. T. Jansen, I. Wegener, A comparison of simulated annealing with simple evolutionary
algorithms on pseudo-boolean functions of unitation. Theor. Comput. Sci. 386, 73–93 (2007)

10. D.S. Johnson, A theoretician’s guide to the experimental analysis of algorithms, in Data Struc-
tures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation
Challenges, ed. by M.H. Goldwasser, D.S. Johnson, C.C. McGeoch (American Mathematical
Society, Providence, 2002), pp. 215–250

11. D. Knuth, The Art of Computer Programming. Volume 3: Sorting and Searching, 2nd edn.
(Addison-Wesley, London, 1997)

12. P.K. Lehre, C. Witt, Black-box search by unbiased variation, in Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2010), Portland, ed. by M. Pelikan, J. Branke
(ACM, 2010), pp. 1441–1448

13. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, Cambridge,
1995)

14. C.M. Reidys, P.F. Stadler, Combinatorial landscapes. SIAM Rev. 44(1), 3–54 (2002)
15. J.E. Rowe, M.D. Vose, A.H. Wright, Structural search spaces and genetic operators. Evol.

Comput. 12(4), 461–493 (2004)
16. C. Schumacher, M.D. Vose, L.D. Whitley, The no free lunch and description length, in

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San
Francisco, ed. by L. Spector et al. (Morgan Kaufmann, 2001), pp. 565–570

17. I. Wegener, Complexity Theory (Springer, Berlin, 2005)
18. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.

Comput. 1(1), 67–82 (1997)
19. A. Yao, Probabilistic computations: towards a unified measure of complexity, in Proceedings

of the 17 Annual IEEE Symposium on the Foundations of Computer Science (FOCS ’77),
Providence (IEEE, Piscataway, 1977), pp. 222–227

20. C. Zarges, Rigorous runtime analysis of inversely fitness proportional mutation rates, in
Proceedings of the 10th International Conference on Parallel Problem Solving from Nature
(PPSN 2008), Dortmund, ed. by G. Rudolph, T. Jansen, S. Lucas, C. Poloni, N. Beume
(Springer, Berlin, 2008), pp. 112–122

21. C. Zarges, On the utility of the population size for inversely fitness proportional mutation rates,
in Proceedings of the Tenth ACM SIGEVO Workshop on Foundations of Genetic Algorithms
(FOGA 2009), Orlando, ed. by I. Garibay, T. Jansen, R.P. Wiegand, A.S. Wu (ACM, 2009),
pp. 39–46

Chapter 6
Designing an Optimal Search Algorithm
with Respect to Prior Information

Olivier Teytaud and Emmanuel Vazquez

Abstract There are many optimization algorithms, most of them with many
parameters. When you know which family of problems you face, you would like
to design the optimization algorithm which is the best for this family (e.g., on
average against a given distribution of probability on this family of optimization
algorithms). This chapter is devoted to this framework: we assume that we know
a probability distribution, from which the fitness function is drawn, and we look
for the optimal optimization algorithm. This can be based (i) on experimentations,
i.e. tuning the parameters on a set of problems, (ii) on mathematical approaches
automatically building an optimization algorithm from a probability distribution
on fitness functions (reinforcement learning approaches), or (iii) some simplified
versions of the latter, with more reasonable computational cost (Gaussian processes
for optimization).

6.1 Introduction

The No Free Lunch (NFL) theorem states that all optimization algorithms (OA)
perform equally, on average, on the set of all fitness functions for a given finite
domain and a given finite codomain (see e.g. [41]). The NFL, however, does
not hold in continuous domains [2]. Even in discrete domains, it is restricted to
specific distributions of fitness functions (for example, uniform distribution over
all functions from a finite domain to a finite codomain), which are probably far

O. Teytaud (�)
TAO, Inria Saclay IDF, LRI, University of Paris-Sud, UMR CNRS 8623, France
e-mail: olivier.teytaud@inria.fr

E. Vazquez
Department of Computer Science and Information Engineering, National University of Tainan,
Tainan, Taiwan SUPELEC, Gif-sur-Yvette, France
e-mail: emmanuel.vazquez@supelec.fr

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__6,
© Springer-Verlag Berlin Heidelberg 2014

111

mailto:olivier.teytaud@inria.fr
mailto:emmanuel.vazquez@supelec.fr

112 O. Teytaud and E. Vazquez

from real-world fitness functions [7, 13, 39]. In fact, a given OA will probably have
varying performance depending on the type of fitness functions. This raises the two
following questions when dealing with an optimization problem:

1. Given prior knowledge about a function to be optimized, which OA should be
considered?

2. How to tune the parameters of a given OA?

A simple empirical solution in order to take into account prior knowledge is to
compare the performances of different OAs on a given family of test problems,
which are deemed to be close to the real optimization problem to be solved. In
some cases, the choice of the parameters of an OA (question 2 above) can also be
considered as an optimization problem; optimizing the parameters of an OA can
lead to major improvements.

Figure 6.1 illustrates three approaches for designing optimal algorithms for a
given prior. The first approach [8, 21, 22], already suggested above, consists in
optimizing the parameters of an OA. This approach is easy to use, immediately
operational and efficient in practice. The second approach [2, 10, 26] consists in
considering the problem specified by Eqs. (6.1) and (6.2) and solving it as a Markov
decision process. This second approach is mathematically appealing as it provides
a provably optimal algorithm; unfortunately, the approach is computationally very
expensive and might be difficult to use in practice. Therefore, the third approach
considers a criterion that measures the progress of an optimization algorithm (e.g.,
Eq. (6.12)), and a prior about the function to be optimized under the form of random
process (e.g., it assumes that the fitness function is drawn according to a Gaussian
process), and proposes an algorithm which is optimal (within the limit of the
computational cost) for optimizing the criterion on average on the sample paths
of the random process.

The first approach based on testbeds is discussed in Sect. 6.2. Section 6.3
discusses the second approach. The approach will be illustrated on a particular
case. Section 6.4 discusses the third approach, and in particular gaussian process
optimization, which is relevant for expensive optimization, i.e., when the function
to be optimized is expensive by itself. It is then possible to achieve more reasonable
computational costs, whilst preserving a much better algorithm than usual tech-
niques for small numbers of function evaluations.

In this chapter, #E denotes the cardinality of the set E , Xn is the nth visited
point of the considered OA, and x� is (when existing and unique) the global
optimum. Ea denotes the expectation operator, with respect to random variable a.
We will restrict our attention to black-box optimization, in which we have no closed-
form expression (i.e., fitness functions with no available analytical expression)
for the fitness function and for which we cannot use specific algorithms like
linear programming, quadratic programming, or shortest path. Our focus is also
essentially on functions for which the gradient is not available; discrete optimization
is considered as well as continuous optimization.

6 Designing an Optimal Search Algorithm with Respect to Prior Information 113

Short term criterion
(expected improvement,
stepwise uncertainty...)

Optimizer of
optimizer Tuned optimizer

Optimizer

Testbed (= prior) (tuning algorithm;
e.g. Revac)

ALGORITHMS OPTIMAL FOR A SHORT TERM CRITERION

FORMALLY OPTIMAL OPTIMIZERS FOR A GIVEN PRIOR

TUNING OPTIMIZERS

Automatic optimizer
builder

Testbed (= prior)

Optimizer with
computational cost L
(optimal for L large)

Limit L on
computational power

EGO or IAGO
or other

Prior (usually Gaussian)

Optimizer optimal for
the short term criterion

Fig. 6.1 Three approaches for optimization given a prior knowledge (typically a distribution on
possible fitness functions). These three approaches are detailed in Sects. 6.2–6.4, respectively

6.2 Testbeds for Black-Box Optimization and Parameter
Tuning

The simplest way to solve the main question in this chapter, i.e., which OA should
we use for a given probability distribution of optimization problems, is to select a
family of OAs, and to test this family of OAs on a family of fitness functions. This
does not create new OAs, but it provides a ranking of existing algorithms. It can
also be used for tuning OAs, i.e., choosing which values should be assigned to each
parameter.

6.2.1 Tuning OAs

It is a common practice to design testbeds for tuning OAs. Given an OA Optimize�

parametrized by � , the idea is to tune � in order to minimize a loss function which
characterizes the performance of Optimize� on a given testbed.

In the unconstrained case, the most widely known test bed is probably Black-Box
Optimization Benchmarking (BBOB) [1]; [11], another optimization benchmark,
includes also constrained optimization.

For example, in the BBOB optimization test bed, probably the biggest available
test bed, the functions in dimension D are listed in Table 6.1, where z D x � x�

114 O. Teytaud and E. Vazquez

Table 6.1 Functions in dimension D for BBOB optimization test bed

f .z/ Name Remarks

jjzjj2 C fopt Sphere Simplest casePD
iD1 106 i�1

D�1 z2
i C fopt Cigar Ill conditionedPD�1

iD1

�
100.z2

i � ziC1/2 C .zi � 1/2
�C fopt Rosenbrock Non-convex

10
�
D �PD

iD1 cos.2�xi /
�
C jjzjj2 C fopt Rastrigin Many local minima

106z2
1 C

PD
iD2 z2

i C fopt Discus Ill conditioned; one
critical variable

z2
1 C 106

PD
iD2 z2

i C fopt Bent cigar Ill conditioned; one
low importance variable

z1 Linear slope One critical variable

for some x� randomly drawn (often far from the boundaries of the domain), and
x� is the optimum; and fopt randomly drawn as well. Random rotations of these
functions are also included.

6.2.2 Limitations of Test Beds

Some elements on the limitations of testbeds are given below. We also suggest
guidelines for the design of future test beds.

Overfitting. An important issue is overfitting. Overfitting occurs when an OA is
itself optimized on a given family of optimization problems. Certainly the algorithm
becomes very strong on this family of problems, but it may also happen that the
family of test problems is not sufficiently representative of the real optimization
problem, for which the optimized algorithm may turn out to be weak. It is therefore
important to develop good and large test beds as discussed in Sect. 6.2, including
training set, test set, validation set, as is usually done in machine learning. Then, it
makes sense to look for the best OA, in average, on this family of functions. BBOB
has been designed with a careful look at overfitting issues: Random rotations of
these functions are considered as well, in addition to smooth local irregularities (see
[1] for details). Noisy versions of these functions are also included, with additive
noise or multiplicative noise.

Small dimension. Experimenting in high dimension is time-consuming: Many
algorithms become very slow. This is probably the main reason for having only
very low dimensionality (for example, all the BBOB benchmarks in 2009 were for
dimension less than 20).

Differentiability. All the functions considered in most benchmarks can be differ-
entiated almost everywhere, and everywhere for many of them. With tools like
Ampl [9] (automatic differentiation), one can easily interface a function with a
nonlinear solver using an automatically computed gradient. Then, optimization

6 Designing an Optimal Search Algorithm with Respect to Prior Information 115

in dimension 100,000 is possible, a number which is not possible for many
evolutionary algorithms. This means that algorithms are tested:

• On families of fitness functions for which some programs can reach dimension
100,000,

• But the tests are only performed in dimension less than 30 (often less than 20).

Some of the most efficient algorithms on BBOB are unable to run with dimension
100 (and are even almost intractable in dimension 30).

Tweaking effect. Usually, the benchmarks are provided in order to be tested
intensively: People using the test bed are allowed to perform hundreds of runs.
They know the objective functions in advance, and therefore they can (and must, if
they want good results) tweak their program specifically for these fitness functions.
What is the robustness of these results? An important point is that the experiments
provided in [8] show that they could take an algorithm among the competitors, and
tune it so that it outperforms all the algorithms on a function of the CEC 2005
competition (the older version of the BBOB test bed). In machine learning, nearly
all the challenges (e.g., Pascal challenges [23]) are protected against the tweaking
effect by hiding the real instances; we might guess that this will be also the case in
the future of optimization. In the white box case (i.e., fitness function explicitly
available for analysis), the ROADEF challenge http://challenge.roadef.org/2010/
index.en.htm, for example, is already protected against the tweaking effect, as the
real instances are not known in advance (however, usually, related instances are
provided for test).

Closed-form fitness function. A more subtle limitation is that only closed-form
fitness functions are considered. These fitness functions give a strong advantage
to algorithms which cumulate information from one iteration to another because
they have nearly the same shape at all scales (e.g., f .x/ D P

n	1
1
2n sin.4nx/2,

see Fig. 6.2). For fitness functions in which things are different at all scales, results
might be quite different. We believe that this somehow subtle effect is nonetheless
critical and might explain why practitioners sometimes strongly disagree with
theoretical analysis on closed-form fitness function.

Bias in the criteria used for ranking algorithms on a given family of problems.
The usual criteria used in publications are not always that good for a real-world
application. For example, in the continuous domain, authors usually consider ([1]
and many others) as a criterion the expected log of the distance to the optimum. This
means that it is better (for this criterion) to fail with probability 49/50, and to have a
very fast convergence one run out of 50, rather than having a good precision all the
time.

We will need some definitions to mathematically rephrase this. Define xn as the
nth search point of your optimization run, and that xn ! x�, where x� is the
optimum of the fitness function. Assume that

jjxn � x�jj
jjxn�1 � x�jjq ! � 	 0:

http://challenge.roadef.org/2010/index.en.htm
http://challenge.roadef.org/2010/index.en.htm

116 O. Teytaud and E. Vazquez

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 0.00050.0010.00150.002
0

0.02

0.04

0.06

0.08

0.1

-0.004 -0.001-0.003-0.002 -0.0005-0.001-0.0015-0.0020 0.0010.0020.0030.004
0

0.05

0.1

0.15

0.2

-0.01 -0.005 0 0.005 0.01

0

0.05

0.1

0.15

0.2

-0.02-0.015-0.01-0.005 0 0.005 0.01 0.015 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-0.1 -0.05 0 0.05 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

0.2

0.4

0.6

0.8

1

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Fig. 6.2 An example of function with nearly the same shape at all scales; x 7!P
n� 1

1
2n sin.4nx/. Each plot is a zoom of the previous plot. A good point in such a fitness function

is that the optimization algorithm cannot cheat by knowing in advance the scale at which there are
local minima since there are local minima at all scales

then, this convergence is termed:

• A linear convergence if q D 1, 0 < � < 1;
• A superlinear convergence if q D 1, � D 0;
• A quadratic convergence if q D 2, � > 0;
• A convergence of order q, if � > 0.

More formally, with quadratic convergence once out of 50 runs, and no con-
vergence at all in all other runs, you get a mean log distance to the optimum
' �cquadratic � 2N =50 with N the number of iterations; whereas a linear convergence
leads to ' �clinear � N . Also, a linear convergence once out of 50 runs (and no
convergence at all in other cases) leads to ' �clinear=50, while a fixed step-size
finding the optimum with precision � in all runs leads to ' log.�/, whereas it’s
more likely to be satisfactory for the user.

Considering the expected fitness is less usual, because without the log-scale you
do not see the nice linear curves predicted by the theoretical analysis, but it might
be irrelevant in many cases. This is related to the fact that test beds are usually
used with huge numbers of fitness evaluations, which is much better for getting nice
curves with linear convergence in log-scale. Is it consistent with real-world criteria?

6 Designing an Optimal Search Algorithm with Respect to Prior Information 117

No real-world fitness function. Working on a real-world fitness function is often
quite a time-consuming work, and people will rarely spend time to compare many
algorithms on their real-world application. However, the published results around
real-world applications can be quite useful. In particular, they show new horizons
in terms of experimental setup, for example, optimization runs with far less than
the 106 or 108 fitness evaluations that we often see in publications, with more
than dimension 300, with noise, or parallel optimization with many computation
units. Also, they show that practitioners sometimes prefer simple understandable
algorithms (the .1C1/-ES with one-fifth rule [25]), which can be easily plugged into
an application (you can implement it in 5 min on any machine with any language)
than a complicated algorithm. In some cases, they prefer constant step-size than
rules ensuring linear convergence in log-scale.

6.3 Reinforcement Learning Approaches

Optimization consists in choosing, at each iteration, one (resp. several, in the
parallel case) new point(s) at which the fitness function will be evaluated. Therefore,
optimization can be considered as multistage optimization, i.e., optimization of
one decision per time step. More precisely, optimization is usually formalized as
follows:

• At each time step t , a point Xt has to be chosen;
• After each such choice, the fitness function yt at this point is evaluated;
• After all the time steps, a reward (some function of the evaluated points and of

the fitness) is evaluated.

If we are a little bit more general, we get the following framework:

• At each time step, a decision has to be chosen;
• After each such choice, we get some information;
• After all the time steps, a reward is given.

This is exactly the framework of reinforcement learning. This section is devoted
to this possible solving of optimization problems by reinforcement learning algo-
rithms.

A black-box optimization algorithm is a function which, given past observations
(i.e., points with their fitness values), chooses a new point. Therefore, we can
consider the optimization algorithm as a (possibly stochastic) function Optimize.
This functions takes as input the time step of the optimization run and the past
chosen points and their fitness values, and outputs a new search point. More
precisely, consider the problem of choosing X1, X2,. . . ,XN , the points to be visited,
by a function Optimize as follows:

X1 D Optimize.1/ (6.1)

y1 D f .X1/

118 O. Teytaud and E. Vazquez

X2 D Optimize.2; X1; y1/

y2 D f .X2/

: : : D : : :

Xn D Optimize.n � 1; X1; y1; : : : ; Xn�1; yn�1/

with the goal of minimizing

Loss D Ef L.f; Xn/ (6.2)

for some loss function L.f; Xn/, which might be, e.g., L.f; Xn/ D f .Xn/.
Equation (6.2) makes sense only if a distribution of probability for f is available;
this is a prior for the optimization. Given n and this prior, can we choose Optimize
minimizing Eq. (6.2) (which is a quality indicator for the optimization algorithm for
the given prior knowledge).

This formulation is quite general, e.g., it covers both discrete and continuous
optimization, but could be further extended. The algorithm might be stochastic
as well (Eq. (6.2) might then contain an expectation operator w.r.t the source of
randomness of the algorithm), or, for including gradient-based algorithms, take into
account a gradient, with

yi D f .Xi /

gi D rf .Xi / rf .Xi / is the gradient of f at Xi

XiC1 D Optimize.i C 1; X1; y1; g1; : : : ; Xi ; yi ; gi /;

i.e., the newly visited point depends on the iteration index i , the fitness values
.yj /j
i , the gradients .gj /j
i . In the simplest form above Eqs. (6.1) and (6.2),
i.e., only fitness values are used by the optimization algorithm.

For clarity, let us consider an example which is simple, but which shows that
noisy optimization (i.e., cases in which the fitness function is noisy) is possible in
this framework. This example is as follows. Consider a simple distribution on f ,
namely, for x� (optimum of the fitness function) randomly uniformly drawn in the
domain Œ0; 1�d ,

f .x/ D B.min.1; jjx � x�jj// where x� D arg min f; (6.3)

i.e., f .x/ is a Bernoulli random variable with parameter min.1; jjx � x�jj/, denoted
by B.min.1; jjx � x�j//. That is, it is 1 with probability min.1; jjx � x�jj/ and
0 otherwise, and the loss at x is the expectation, i.e. Loss D Ef min.1; jjxn �
x�jj/. Some authors [2, 10, 26] propose to consider and solve the problem defined
by Eqs. (6.1) and (6.2) as a Markov decision process (MDP).

Unfortunately, the MDP defined by Eqs. (6.1) and (6.2) has a huge size: The
number of time steps is n, and the dimension of the state space is n � .d C 1/. With
n D 50 and d D 4, this implies a dimension 250 for the MDP; this is quite big for
usual algorithms. [2, 26] propose the use of the Upper Confidence Tree algorithm

6 Designing an Optimal Search Algorithm with Respect to Prior Information 119

Inputs:

• an integer

Optimize function for choosing Xk+1 given the Xj for j ≤ k and their fitness values.

n (number of iterations of the optimization run); k < n.
• a loss function L;
• a distribution of fitness functions;
• s0 = (x1, y1, . . . , xk, yk) = (X1, y1, . . . , Xk, yk) the set of current observations (i.e.

the Xi’s are the previously visited points (i.e. in the domain and the yi’s are their
fitness values).

Initialize S and N to the zero function; initialize P (s) to the empty set for all s.
while Time left > 0 do

s ← s0. //beginning of a simulation
Randomly draw f̂ according to the prior distribution on f conditionally to
x1, y1, . . . , xk, yk.
i ← k

while i < n do
if N(s) > #P (s)

1
2 //progressive widening then

P (s) ← P (s) ∪ { one randomly drawn point in the search space}.
end if
xi+1 = arg minx∈P (s) L̂(x1, y1, . . . , xi, yi, x), where

L̂s(x) = S(x)/N(x) − log(N(s))/N(x).

yi+1 ← f̂(xi).
i ← i + 1

end while
Let loss = L(f̂ , xn).
for all s prefix of s // s might be of the form (x1, y1, . . . , xj , yj) or
(x1, y1, . . . , xj , yj , xj+1) do

N(s) ← N(s) + 1 //number of simulations through s

S(s) ← S(s) + loss //sum of simulated losses
end for

end while
Output: Xk+1 = arg maxx N(x1, y1, . . . , xk, yk, xk + 1), the next visited point.

Fig. 6.3 An Optimize./ function which optimally solves the optimization problem (Eqs. (6.1)
and (6.2)) for some probabilistic prior on the fitness function, in the case of a discrete set of y

values (i.e., the fitness values might be in f0; 1g as in Eq. (6.3), or any other finite set)

(UCT [16]), an algorithm which has been proved very efficient for many difficult
problems, and became particularly famous for the application of some variants to
the game of Go [4, 6, 18].

The resulting algorithm is summarized in Fig. 6.3 (a complete description is in
[26]). This version works only if the fitness values are in a finite set (otherwise the
writing is more complicated). Typically, a nice application is the noisy binary case,
i.e., the framework given in Eq. (6.3). Algorithm 6.3 is theoretically appealing, as
it has a mathematical proof of optimality, within a huge computational power, but
unfortunately it is only good with huge computation time; it could only be applied

120 O. Teytaud and E. Vazquez

for very limited n and d . Nonetheless, for an optimization process which is repeated
often on randomly distributed objective functions, this might be interesting.

In the next section, we’ll see the case in which f is drawn according to a gaussian
process. We’ll see that in that case and under some approximations, it’s possible to
design fast algorithms (in terms of convergence rate w.r.t the number of iterations)
whilst keeping a more reasonable computational cost than with the algorithm above.

6.4 Gaussian Processes for Optimization

The function to be optimized is a real-valued function f defined on some compact
search space X. This section deals with OAs that rely on a Gaussian random process
to model the objective function. This idea, initiated by J. Mockus under the name
of Bayesian optimization (see [19, 20, 33, 42] and references therein), has received
particular attention during the last decade in the field of computer experiments,
where functions to be optimized are typically expensive to evaluate (see, e.g.,
[12, 14, 15, 36]).

6.4.1 From Deterministic to Bayesian Optimization

A deterministic optimization procedure is an application

X W F WD RX ! XN;

f 7! X.f / WD .X1.f /; X2.f /; : : : / ;
(6.4)

that maps a real-valued function defined on X to a sequence of points in X, with the
property that, for all n 	 1, XnC1.f / depends only on the previous n evaluations
f .X1.f //, . . . , f .Xn.f //. If a probability measure P is chosen on F, then the
optimization strategy becomes a random sequence X in X. Note that randomness
only comes from the fact that the objective function f is considered as a random
element in F.

The Bayesian approach to optimization is based on two main ideas. The first idea
is to capture prior information about the unknown function f by choosing P on F,
or equivalently, by choosing the probability distribution of the canonical stochastic
process

� W X � F ! R;

.x; f / 7! �.x; f / WD f .x/:
(6.5)

For practical reasons, only Gaussian process priors (which are, roughly speaking,
the extension of multivariate Gaussian random variables to a continuous index
for dimensions) have been considered in the literature. In this case, the prior is
completely characterized by the first- and second-order moments of �, that is,

6 Designing an Optimal Search Algorithm with Respect to Prior Information 121

the mean function m.x/ WD EŒ�.x/� and the covariance function k.x; y/ WD
EŒ.�.x/ � m.x//.�.y/ � m.y//�. The mean and covariance functions are chosen
by the user to correspond to his/her prior knowledge on f . The covariance function
can be chosen to match a regularity assumption [31, 35]. If no prior knowledge is
available in advance, these functions are generally estimated from the data using,
for instance, maximum likelihood estimation (see the discussion in Sect. 6.4.4.1).

The second idea of Bayesian optimization is to choose the evaluation points
Xn according to a sampling criterion n.x/ that measures the interest (for the
optimization problem) of an additional evaluation at x 2 X, given the previous
evaluations f .X1.f //, . . . , f .Xn.f //. Thus, to choose the .n C 1/th evaluation
point, one has to solve a second optimization problem

XnC1 D arg max
x2X

n.x/; (6.6)

which, unfortunately, is usually not analytically solvable.
In other words, Bayesian optimization replaces the optimization of the objective

function by a series of optimizations of a sampling criterion. This is only interesting
if the original optimization problem is so expensive that solving many problems of
the form in Eq. (6.6) is a better idea; this is typically the case if the original problem
involves a very expensive fitness function.

Of course, each optimization program defined by Eq. (6.6) must nonetheless
be preferably cheap, which entails that the evaluation of n at a given point of X
must also be cheap. To summarize, n should be a cheap-to-evaluate criterion that
quantifies the interest of an additional evaluation—using what has been assumed on
f through P, and learned from previous evaluations—and reflects our concern that
evaluations of f are expensive.

In this setting, a key issue is how to update the prior P—or equivalently, the
distribution of �—when new evaluation results are obtained; or in other words, how
to take into account previous evaluations for the choice of a new one. Here, the
kriging predictor plays a central role because it is a method that makes it possible
to update the prior in an easy way. Section 6.4.3 presents three algorithms based
on three different sampling criteria. The three algorithms make a direct use of the
kriging predictor. For the sake of consistency, we shall discuss very briefly how to
build the kriging predictor in the next section.

6.4.2 An Introduction to Kriging

Kriging [5, 37] is widely used in the domain of computer experiments since the
seminal paper of [27] as a method to construct an approximation of an unknown
function from scattered data. It can also be understood as a kernel regression
method, such as splines [38], Radial Basis Functions [40], or Support Vector Regres-
sion [32]. Kriging is also known as the Best Linear Unbiased Predictor (BLUP) in
statistics [31], and has been reinvented in the machine-learning community under
the name of Gaussian Processes [24].

122 O. Teytaud and E. Vazquez

Let � be a Gaussian process with mean m.x/, x 2 X, and covariance function
k.x; y/, .x; y/ 2 X2. Assume that m.x/ can be written as a linear parametric
function m.x/ D bTp.x/, where p.x/ is the q-dimensional vector of all monomials
of degree less than or equal to l 2 N, and b 2 Rq is a vector of fixed but
unknown coefficients. The theory of kriging is concerned with the construction of
the best linear unbiased predictor (BLUP) of � based on a finite set of pointwise
observations of the process. For x 2 X and xn WD .x1; : : : ; xn/ 2 Xn, n 	 1,
denote by O�.xI xn/ a linear predictor of �.x/ based on �.x1/; : : : ; �.xn/. Such a
linear predictor can be written as

O�.xI xn/ D �.xI xn/T�
n

; (6.7)

with �
n

D .�.x1/; : : : ; �.xn//T and �.xI xn/ a vector of weights �i .xI xn/, i D
1; : : : ; n. The BLUP is the linear projection of �.x/ onto spanf�.xi /; i � ng
orthogonally to the space of functions P WD fbTp.x/I b 2 Rqg, and in such way that
the norm of the prediction error is minimum. Then, the vector of kriging coefficients
�.xI xn/ is obtained as the solution of the linear system of equations [5]

�
k.xn; xn/ P T

P 0

��
�.xI xn/

˛.xI xn/

�
D
�

k.x; xn/

p.x/

�
; (6.8)

where k.xn; xn/ is the n � n matrix of covariances k.xi ; xj /, P is a q � n matrix
with entries xj

i for j D 1; : : : ; n and multi-indexes i D .i1; : : : ; id / such that
ji j WD i1 C � � � C id � l , ˛.xI xn/ is a vector of Lagrange coefficients, k.x; xn/ is a
vector of size n with entries k.x; xi / and p.x/ is a vector of size q with entries xi , i

such that ji j � l . It is one of the main advantages of kriging that its implementation
only necessitates very basic numerical operations.

The variance of the kriging error, also called kriging variance, is given by

�2.xI xn/ WD varŒ�.x/� O�.xI xn/� D k.x; x/��.xI xn/Tk.x; xn/�˛.xI xn/Tp.x/ :

(6.9)

The knowledge of this variance makes it possible to derive confidence intervals
for the predictions. If a given region of X remains unexplored, the variance of the
prediction error is generally high. From the viewpoint of optimization, it means that
a global optimizer may be contained in that region. Note that the kriging predictor
is an interpolator (the kriging variance is equal to zero at evaluation points).

6.4.3 Bayesian Sampling Criteria

In the following sections, three Bayesian sampling criteria to find the global maxima
of f are presented. To simplify the presentation, we shall assume that f is modeled

6 Designing an Optimal Search Algorithm with Respect to Prior Information 123

by a zero-mean Gaussian random process � with known covariance function k.x; y/.
We shall assume moreover that the global optimum, denoted by M D supx2X f .x/,
is unique. The corresponding global optimum will be denoted by X?. We shall also
use the notations Mn WD �.X1/_� � �_�.Xn/ (the maximum of the evaluation results
at step n) and mn WD �.X1/ ^ � � � ^ �.Xn/ (the minimum of the evaluations).

6.4.3.1 P-Algorithm

One of the first sampling criteria proposed in the literature is based on the idea
of iteratively maximizing the probability of excursion of � over a sequence of
thresholds un, n 	 1 [17]. At each step n, if un D Mn for instance, then the idea
is to select the next evaluation point that will have the highest probability to exceed
the current maximum. The algorithm derived from this criterion is called the P-
algorithm [14, 42]. Using our previous assumptions on � and the kriging predictor,
the strategy can be written formally as

XnC1 D arg max
x2X

n.x/ WD P f�.x/ 	 un j �.X1/; : : : ; �.Xn/g

D
8
<

:
1 � ˚

� O�.xIXn/�un

�.xIXn/

�
if �.xI Xn/ > 0;

0 if �.xI Xn/ D 0;
(6.10)

where ˚ is the normal cumulative distribution function. As mentioned in Sect. 6.4.1,
the optimization problem (6.10) is again a global optimization problem, but the
criterion n can be optimized with limited computational resources. The choice of
un is a free parameter of the algorithm. Jones [14] suggests to use the empirical rule

un D max
x2X

O�.xI Xn/ C ˛n.Mn � mn/;

with ˛n a positive number. Small values of ˛n entail that the algorithm favors
exploitation over exploration, which means that the algorithm favors local optimiza-
tion over global optimization. The converse holds true for large values of ˛n; that is,
the algorithm tries to sample unexplored regions rather than promising regions. The
analysis of the convergence of the algorithm has been proposed under restrictive
hypotheses in [3].

6.4.3.2 Expected Improvement

The expected improvement (EI) algorithm (also called Efficient Global Optimiza-
tion) is a popular OA proposed by J. Mockus in the 1970s and brought to the field

124 O. Teytaud and E. Vazquez

of computer experiments by M. Schonlau [15, 28–30]. The EI algorithm chooses a
new evaluation point XnC1 as the maximizer over X of the quantity

n.x/ WD E
�
.�.x/ � Mn/ _ 0 j �.X1/; : : : ; �.Xn/

�
;

WD
(

s ˚ 0
�

z
s

�C z ˚
�

z
s

�
if s > 0;

max .z; 0/ if s D 0:
(6.11)

with z D O�.xI Xn/ � Mn and s D �.xI Xn/. The function n.x/, which is called
the expected improvement at x, can be interpreted as the conditional mean excess
of �.x/ above the current maximum Mn. There is no parameter to tune here, which
is certainly an advantage with respect to the P-algorithm. Many applications of the
EI algorithm are available in the engineering literature. The convergence of the EI
algorithm has been analyzed in [34].

6.4.3.3 Informational Approach to Global Optimization

The Informational Approach to Global Optimization (IAGO) proposed recently in
[36] provides a choice of an evaluation point that is one-step optimal in terms
of reduction of the uncertainty on the maximizer location. It is based on two
main ideas. The first idea is to estimate the probability distribution PX?j�

n
of X?

conditioned on the observation vector �
n

D .�.X1/ : : : �.Xn//. This probability
distribution represents what has been learned (through evaluations) and assumed
(through the Gaussian model) about X?. The progress made in finding a solution to
the global optimization problem can be assessed by looking at how the probability
distribution of X? is spread over X—in practice, only a finite subset Xd � X is
considered. In particular, the support of the distribution narrows as progress is being
made toward reducing the uncertainty left on X?. This estimation can be carried out
using the kriging predictor and conditional simulations of � over a finite grid (see
[5, 36] for an insight into how conditional simulations are generated).

The second idea is to adopt an information-based search strategy, by sampling f

where the largest uncertainty reduction on X? is expected. To quantify uncertainty,
the conditional Shannon entropy of the global optimum has been suggested. This
results in a sampling strategy defined as

XnC1 D arg min
x2X E

h
H.X?I �

n
; �.x// j �

n

i
; (6.12)

D arg min
x2X

Z

z2R
H.X?I �

n
; �.x/ D z/p�.x/j�

n
.z/d z ; (6.13)

where p�.x/j�
n

denotes the density of the candidate observation conditioned on
�

n
and where H.X?I �

n
; �.x// stands for the entropy of X? conditioned on �

n

6 Designing an Optimal Search Algorithm with Respect to Prior Information 125

and the candidate observation �.x/, which can be written—using straightforward
notations—as

H.X?I �
n
; �.x// D �

X

y2Xd

PX?j�
n
; �.x/.y/ log PX?j�

n
; �.x/.y/ :

The advantages of IAGO over EI have been discussed in [35]. However, it must
be stated that the computational complexity of IAGO is significantly higher than
that of EI (cf. [35]).

6.4.4 From the Sampling Criterion to the OA

In this section, we shall discuss very briefly how to insert these criteria into OA, and
give some brief recommendations regarding their practical use.

6.4.4.1 Choosing a Model

The choice of P (or, equivalently, that of �) is a central and largely open question in
the domain of Bayesian optimization. In the framework of kriging, the covariance
function of � is generally chosen in a parametrized class, and its parameters are
estimated from available data. The method used for this estimation (variogram
fitting in geostatistics, cross-validation in machine learning or maximum likelihood
in statistics) may not be adapted in a context of a small number of evaluations. Now,
Bayesian optimization may perform very poorly if the covariance is inadequate (see,
e.g., [14] for examples). Empirical results indicate, however, that it is possible to
choose a fixed covariance that ensures a satisfactory behavior over a large class of
functions [34].

6.4.4.2 Optimization of the Sampling Criterion

Optimizing a sampling criterion n to select a new evaluation point is an important
practical difficulty of Bayesian optimization, as n may have many local optima.
However, one has to keep in mind that the evaluation of the sampling criterion does
not require any evaluation of the objective function f , and that there is no need for
exact optimization since the sampling criterion is only used to determine the next
evaluation point. In practice, working with approximate solutions for the optimizers
of the sampling criterion has little influence on the final estimation of the optimum
of f .

At the beginning of the optimization procedure, very little is known on the poten-
tial location of the optimizers. However, as the number of evaluations increases, it
becomes obvious that certain areas of search space do not have any interest for an

126 O. Teytaud and E. Vazquez

additional evaluation as they will probably contain no global optimizer. A possible
strategy is then to perform the optimization of the sampling criterion over a finite
set of candidate points and resample this set at each iteration to maintain a good
representation of the support of the probability density of the optimizers of f over X.

6.5 Conclusion

We have discussed the design of OA specialized on some prior. We have seen that
this prior might be a set of (possibly randomized) fitness functions; then, an OA
based on this prior might be:

• An OA with mathematically derived parameters; however, this is often quite
difficult in real life, and many practitioners use parametrizations very far from
the choice of theoreticians.

• An experimentally tuned optimizer, based on a “meta”-level; i.e., another
optimizer is in charge of optimizing the optimizer, as in Sect. 6.2.

• A provably optimal optimizer, built on the distribution of fitness functions (or
possible for a worst case on a distribution of fitness functions); this involves
complicated Markov Decision Process solvers as in Sect. 6.3. Due to huge inter-
nal computational cost of such optimizers, they are for the moment essentially
theoretical, in spite of some recent positive results.

• An optimization algorithm somehow similar to the above provably optimal
algorithm, but for which the process is simplified by a sufficiently “nice” prior as
Gaussian processes in Sect. 6.4, and an approximate criterion n. This approach
(e.g., Efficient Global Optimization (EGO), Informational Approach to Global
Optimization (IAGO)) is quite expensive, but nonetheless provides operational
OA for some expensive optimization problems.

Further work remains to (i) promote better test beds (in particular emphasizing
real-world problems and frameworks more related to real-world problems), and (ii)
increase the speed of EGO, IAGO, and more theoretical algorithms discussed in this
chapter, so that they can be tested and used more conveniently.

Acknowledgements O. Teytaud is grateful to NSC for funding NSC100-2811-E-024-001, to
ANR for funding COSINUS program (project EXPLO-RA ANR-08-COSI-004), and to the
European FP7 program (European Project Nr. FP7-ICT-247022).

References

1. A. Auger, H.G. Beyer, N. Hansen, S. Finck, R. Ros, M. Schoenauer, D. Whitley, Black-box
optimization benchmarking, in GECCO’09: Proceedings of the 11th Annual Conference on
Genetic and Evolutionary Computation, Montreal, 2009

6 Designing an Optimal Search Algorithm with Respect to Prior Information 127

2. A. Auger, O. Teytaud, Continuous lunches are free plus the design of optimal optimization
algorithms. Algorithmica 57(1), 121–146 (2010)

3. J.M. Calvin, A one-dimensional optimization algorithm and its convergence rate under Wiener
measure. J. Complex. 17, 306–344 (2001)

4. G. Chaslot, M.H.M. Winands, J.W.H.M. Uiterwijk, H. van den Herik, B. Bouzy, Progressive
strategies for Monte Carlo tree search, in Proceedings of the 10th Joint Conference on
Information Sciences (JCIS 2007), Salt Lake City, ed. by P. Wang et al. (World Scientific
Publishing Co. Pvt. Ltd., 2007), pp. 655–661

5. J.P. Chilès, P. Delfiner, Geostatistics: Modeling Spatial Uncertainty (Wiley, New York, 1999)
6. R. Coulom, Efficient selectivity and backup operators in Monte Carlo tree search, in Proceed-

ings of the 5th International Conference on Computers and Games, Turin, 2006, ed. by P.
Ciancarini, H.J. van den Herik

7. S. Droste, T. Jansen, I. Wegener, Perhaps not a free lunch but at least a free appetizer, in
Proceedings of the First Genetic and Evolutionary Computation Conference (GECCO’99),
San Francisco, 13–17, ed. by W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar,
M. Jakiela, R.E. Smith (Morgan Kaufmann, 1999), pp. 833–839

8. A.E. Eiben, Principled approaches to tuning EA parameters, in Proceedings of CEC (tutorial),
Trondheim, 2009

9. R. Fourer, D.M. Gay, B.W. Kernighan, AMPL: A Modeling Language for Mathematical
Programming (Duxbury Press, Belmont, 2002)

10. S. Gelly, S. Ruette, O. Teytaud, Comparison-based algorithms are robust and randomized
algorithms are anytime. Evol. Comput. J. (Special Issue on Bridging Theory and Practice)
15(4), 26 (2007)

11. N.I.M. Gould, D. Orban, P.L. Toint, CUTEr and SifDec: a constrained and unconstrained
testing environment, revisited. ACM Trans. Math. Softw. 29(4), 373–394 (2003)

12. D. Huang, T. Allen, W. Notz, N. Zeng, Global optimization of stochastic black-box systems
via sequential kriging meta-models. J. Glob. Optim. 34, 441–466 (2006)

13. C. Igel, M. Toussaint, On classes of functions for which no free lunch results hold. Inf. Process.
Lett. 86, 317–321 (2003). See also Los Alamos Preprint cs.NE/0108011

14. D.R. Jones, A taxonomy of global optimization methods based on response surfaces. J. Glob.
Optim. 21, 345–383 (2001)

15. D.R. Jones, M. Schonlau, W.J. Welch, Efficient global optimization of expensive black-box
functions. J. Glob. Optim. 13, 455–492 (1998)

16. L. Kocsis, C. Szepesvari, Bandit-based Monte Carlo planning, in ECML’06, Berlin, 2006,
pp. 282–293

17. H.J. Kushner, A new method of locating the maximum point of an arbitrary multipeak curve in
the presence of noise. J. Basic Eng. 86, 97–106 (1964)

18. C-S. Lee, M-H. Wang, G. Chaslot, J-B. Hoock, A. Rimmel, O. Teytaud, S-R. Tsai, S-C. Hsu,
T-P. Hong, The computational intelligence of MoGo revealed in Taiwan’s Computer Go
tournaments, IEEE Trans. Comput. Intell. AI Games 1(1), 73–89 (2009)

19. J. Mockus, Bayesian Approach to Global Optimization: Theory and Applications (Kluwer,
Dordrecht/Boston/London, 1989)

20. J. Mockus, V. Tiesis, A. Zilinskas, The application of Bayesian methods for seeking the
extremum, in Towards Global Optimization, vol. 2, ed. by L.C.W. Dixon, G.P. Szego (North-
Holland, New York, 1978) pp. 117–129

21. V. Nannen, A.E. Eiben, Relevance estimation and value calibration of evolutionary algorithm
parameters, in International Joint Conference on Artificial Intelligence (IJCAI’07), Hyderabad,
2007, pp. 975–980

22. V. Nannen, A.E. Eiben, Variance reduction in meta-EDA, in GECCO’07: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation, London (UK) (ACM, New
York, 2007) pp. 627–627

23. Pascal Challenges, http://pascallin2.ecs.soton.ac.uk/Challenges/, 2011
24. C.E. Rasmussen, C.K.I. Williams, Gaussian Processes for Machine Learning (MIT, Cam-

bridge, 2006)

http://pascallin2.ecs.soton.ac.uk/Challenges/

128 O. Teytaud and E. Vazquez

25. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien des
biologischen Evolution (Frommann-Holzboog Verlag, Stuttgart, 1973)

26. P. Rolet, M. Sebag, O. Teytaud, Optimal robust expensive optimization is tractable, in
GECCO’09: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Com-
putation, Montréal (ACM, 2009)

27. J. Sacks, W.J. Welch, T.J. Mitchell, H.P. Wynn, Design and analysis of computer experiments.
Stat. Sci. 4(4), 409–435 (1989)

28. M. Schonlau, Computer experiments and global optimization, Ph.D. thesis, University of
Waterloo, Waterloo, 1997

29. M. Schonlau, W.J. Welch, Global optimization with nonparametric function fitting, in Pro-
ceedings of the ASA, Section on Physical and Engineering Sciences, Alexandria (American
Statistical Association, 1996) pp. 183–186

30. M. Schonlau, W.J. Welch, D.R. Jones, A data analytic approach to Bayesian global optimiza-
tion, in Proceedings of the ASA, Section on Physical and Engineering Sciences, Anaheim
(American Statistical Association, 1997) pp. 186–191

31. M.L. Stein, Interpolation of Spatial Data: Some Theory for Kriging (Springer, New York,
1999)

32. I. Steinwart, A. Christmann, Support Vector Machines (Springer, New York, 2008)
33. A. Törn, A. Zilinskas, Global Optimization (Springer, Berlin, 1989)
34. J. Villemonteix, Optimisation de fonctions coûteuses, PhD thesis, Université Paris-Sud XI,

Faculté des Sciences d’Orsay, 2008
35. J. Villemonteix, E. Vazquez, M. Sidorkiewicz, E. Walter, Global optimization of expensive-to-

evaluate functions: an empirical comparison of two sampling criteria. J. Glob. Optim. 43(2–3),
373–389 (2009)

36. J. Villemonteix, E. Vazquez, E. Walter, An informational approach to the global optimization of
expensive-to-evaluate functions. J. Glob. Optim. 44(4), 509–534 (2009). doi:10.1007/s10898-
008-9354-2

37. H. Wackernagel, Multivariate Geostatistics (Springer, Berlin, 1995)
38. G. Wahba, in Spline Models for Observational Data. Volume 59 of CBMS-NSF Regional

Conference Series in Applied Mathematics (SIAM, Philadelphia, 1990)
39. B. Weinberg, E.G. Talbi, NFL theorem is unusable on structured classes of problems, in

Proceedings of the 2004 IEEE Congress on Evolutionary Computation, Portland (IEEE, 2004),
pp. 220–226

40. H. Wendland, Scattered Data Approximation. Monographs on Applied and Computational
Mathematics (Cambridge University Press, Cambridge, 2005)

41. D.H. Wolpert, W.G. Macready, No free lunch theorems for search, Technical Report, Santa Fe
Institute, 1995

42. A. Zilinskas, A review of statistical models for global optimization. J. Glob. Optim. 2, 145–153
(1992)

Chapter 7
The Bayesian Search Game

Marc Toussaint

Abstract The aim of this chapter is to draw links between (1) No Free Lunch
(NFL) theorems which, interpreted inversely, lay the foundation of how to design
search heuristics that exploit prior knowledge about the function, (2) partially
observable Markov decision processes (POMDP) and their approach to the problem
of sequentially and optimally choosing search points, and (3) the use of Gaussian
processes as a representation of belief, i.e., knowledge about the problem. On the
one hand, this joint discussion of NFL, POMDPs and Gaussian processes will
give a broader view on the problem of search heuristics. On the other hand this
will naturally introduce us to efficient global optimization algorithms that are well
known in operations research and geology (Gutmann, J Glob Optim 19:201–227,
2001; Jones et al., J Glob Optim 13:455–492, 1998; Jones, J Glob Optim 21:345–
383, 2001) and which, in our view, naturally arise from a discussion of NFL and
POMDPs.

7.1 Introduction

We consider the problem of optimization, where an objective function f W X ! R
is fixed but unknown and an algorithm has to find points in the domain X which
maximize f .x/. In this paper we take the view that search is a problem of navigating
through belief space. With “belief” we denote our current knowledge about the
objective function represented in terms of a probability distribution over problems
(functions). In principle, Bayes’ rule tells us how to update this belief state when we
explore a new search point and thereby gain new knowledge about the objective
function. In that sense, repeatedly querying search points generates a trajectory

M. Toussaint (�)
Machine Learning & Robotics Lab, Free University of Berlin, Arnimallee 7, 14195 Berlin,
Germany
e-mail: marc.toussaint@fu-berlin.de

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__7,
© Springer-Verlag Berlin Heidelberg 2014

129

mailto:marc.toussaint@fu-berlin.de

130 M. Toussaint

through belief space—and efficient search means to “navigate” through belief space
in a goal-directed manner. For instance, navigating with the goal to gain information
about the objective function, or with the goal to reach a belief that implies certainty
about the location of the optimum of the objective function.

In this view, the problem of optimization can be framed as a partially observable
Markov decision process problem just in the same way as standard navigation
problems. The POMDP formulation naturally ties in with an alternative formulation
of the No Free Lunch (NFL) theorem: In the next section we present such a
formulation which is equivalent to the one in [5] but, instead of relying on classical
notions like “closed under permutation”, is formulated in terms of the structure of
the function prior P.f /. In a sequential search process, this prior is updated to
become a new posterior P.f j observations/ after each exploration of a search point
and observation of the corresponding function value. This posterior is the belief state
in the corresponding POMDPs. Therefore, the POMDP framework directly implies
the optimal policy in the case that NFL conditions do not hold.

Clearly, for most relevant cases the optimal search policy is infeasible to
compute. However, when making strong assumptions about the prior belief—that
is, our initial knowledge about the objective function—and approximating optimal
planning with optimal 1- or 2-step look-ahead planning, then such algorithms
become tractable. An example is search in continuous spaces when the prior belief
is a Gaussian process. The resulting approximate optimal search algorithms are of
high practical relevance and have a long history in operations research and geology
(e.g., under the name of kriging) [2, 6, 7].

The material covered in this chapter is complementary to the survey on (approx-
imately) optimal search algorithms in Chap. 6. In particular, Chap. 6 gives an
explicit introduction to kriging, while the focus of this chapter is on the alternative
formulation of NFL, how this ties in with the POMDP approach to optimal search
policies, and a basic demonstration of a truly planning (2-step look-ahead) search
policy in the case of Gaussian processes.

In the following section we present an alternative formulation of a general NFL
result that is equivalent to the one presented in [5]. Section 7.3 briefly introduces
the most relevant notions of POMDPs. Section 7.4 then draws the relation between
POMDPs and optimization. We interpret optimization as a “Bayesian search game”
and discuss the belief update when we acquire new observations during search.
In Sect. 7.5 we define some simple heuristic policies to choose new search points
based on the current belief, including one that would be optimal for a two-step
horizon problem. Finally, in Sect. 7.6 we discuss the use of Gaussian processes as
belief representation, as was done before in the context of kriging [2, 6, 7], and
illustrate the resulting optimization algorithms on some examples. The reader may
experience the idea of search using Gaussian processes by literally playing the
Bayesian search game (competing with a Gaussian processes-based search policy),
using the implementation given at the author’s webpage.1

1http://userpage.fu-berlin.de/mtoussai/07-bsg/

http://userpage.fu-berlin.de/mtoussai/07-bsg/

7 The Bayesian Search Game 131

7.2 Yet Another Formulation of NFL

Let us begin with a simple formulation of No Free Lunch (NFL) [16]. Roughly
speaking, NFL theorems specify conditions under which “informed search”—
that is, picking search points better than random—is impossible. These issues are
intimately linked to the conditions under which generalization in learning theory is
possible—which we discuss briefly below. The point in specifying such conditions
is that (1) one should never try to write an efficient search algorithm when NFL
conditions hold, and (2) the NFL theorems should give a hint on how to design a
search algorithm when these conditions do not hold.

There are many alternative formulations of NFL theorems; a standard one for
optimization is [16]. In [5] we presented a general formulation which specifies con-
ditions on the probability distribution over the objective function. The formulation
we present here is equivalent to the one in [5] but more naturally leads to the notion
of beliefs, POMDPs and Bayesian search. The specific formulation and proof we
give here are, to our knowledge, novel—but only a minor variant of the existing
formulations; see [5] for a more extensive discussion of existing NFL formulations.

Let X be a finite or continuous search space. We call elements in X sites. Assume
a search algorithm is applied on a function f W X ! Y sampled from P.f /. We
write fx for the function value of f at site x. A non-revisiting algorithm iteratively
samples a new site xt and gets in return an observation yt D fxt . We formalize an
algorithm A as a search distribution P.xt j x0Wt�1; y0Wt�1IA/ conditioned on previ-
ous samples and their observed values, and the initial search distribution P.x0IA/,
with zero probability of revisitation, xt 2 x0Wt�1) P.xt j x0Wt�1; y0Wt�1IA/ D 0.
All this defines a stochastic process of the search algorithm interacting with the
objective function, as summarized by the joint distribution

P.f; x0WT ; y0WT IA/

D P.f / P.y0 j x0; f / P.x0IA/

TY

tD1

P.yt j xt ; f / P.xt j x0Wt�1; y0Wt�1IA/ :

(7.1)

Theorem 7.1. In this setting, a basic NFL theorem reads

9h W Y ! R s.t.

8 finite subsets fx1; ::; xKg � X W P.fx1 ; ::; fxK / D
KY

kD1

h.fxk
/ (7.2)

” 8A; 8T W P.y0WT IA/ D
TY

iD0

h.yi / (independent of A) (7.3)

132 M. Toussaint

The condition (7.2) on the left simply says that P.f / factorizes identically,2 which
means that every fx is mutually independent from every other fx0 —nothing can be
learnt about fx0 from fx . The “for-all-finite-subsets” formulation we used is typical
for continuous X and in analogy to the definition of Gaussian processes (see below).
Additionally, the condition (7.2) says that every marginal distribution h.fxk

/ (we
called h W Y ! R histogram of function values in [5]) is identical, independent
of the site xk . In other terms, the function values are identically independently
distributed (independently refers to different sites x). Hence, no algorithm can
predict the observation at a new site based on previous samples better than with a
constant marginal that ignores previous samples and the location of the site. The
inevitable result is that the function values an algorithm observes are a random
sequence independent of the algorithm itself.

Proof. We first show Eq. (7.2)) Eq. (7.3): Up to some total time t we have the
random variables f , x0Wt , y0Wt . Their joint is given by Eq. (7.1). Here, P.yt j xt ; f / is
the probability of observing a value yt when sampling at point xt , given the function
is f . This could account for noisy function evaluations, but for simplicity here we
simply assume P.yt j xt ; f / D ıyt ;fxt

. Given this joint, we find

P.yt j x0Wt�1; y0Wt�1IA/

D
X

xt2X

hX

f

P.yt j xt ; f / P.f j x0Wt�1; y0Wt�1/
i

P.xt j x0Wt�1; y0Wt�1IA/

D
X

xt2X

P.fxt Dyt j x0Wt�1; y0Wt�1/ P.xt j x0Wt�1; y0Wt�1IA/

D
X

xt2X

h.yt / P.xt j x0Wt�1; y0Wt�1IA/ D h.yt / : (7.4)

The last line used the fact that the algorithm is non-revisiting and that P.f /

factorized, such that P.fxt D yt j x0Wt�1; y0Wt�1/ D P.fxt D yt / D h.yt /. (For X

continuous we need to replace summations by integrals.) This means that a newly
sampled function value yt is independent of the algorithm A and of the history
x0Wt�1; y0Wt�1. By induction over t D 0; 1; : : : we get the right-hand side (RHS),
Eq. (7.3).

We now show the inverse Eq. (7.2) (Eq. (7.3): To show :(7.2)) :(7.3) let
fx1; ::; xKg for which P.fx1 ; ::; fxK / does not identically factorize. We distinguish
two cases: (i) In the case that the marginals are not identical (h depends on the site) it
is clear that two algorithms that pick two different sites (with different marginals h)
as the first search point will have a different P.y0/—and the RHS (7.3) is violated.
(ii) If all marginals P.fx1/ D h.fx1/ are the same but P.fx1 ; ::; fxK / does not

2On true subsets � X , but not all subsets � X . This weaker condition ensures that also the(
holds; see proof for details.

7 The Bayesian Search Game 133

factorize, then at least one conditional P.fx1 j fx2 ; ::; fxK / 6D h.fx1/ is different
from the marginal. Two algorithms that deterministically first pick x2; ::; xK and
then, depending on the conditional P.fx1 j fx2 ; ::; fxK / will pick either x1 or an
outside point in X n fx1; ::; xKg (here we need the real subset fx1; ::; xKg � X

rather than the � X) will have a different P.yK/ than random search—and the
RHS (7.3) is violated.

To link to more traditional presentations: The left-hand side, LHS (7.2), is
related to sets of functions which are closed under permutation. In particular,
associating equal probability to functions in a set closed under permutation leads
to independent and identically distributed function values at different points. The
LHS (7.2) is equivalent to the so-called strong NFL conditions in [5]. Further, one
usually assumes some criterion C that evaluates the quality of an algorithm A by
mapping the sequence y0Wt of observed values to a real number. Obviously, if P.y0Wt /
is independent of the algorithm, then so is

P
y0Wt

P.y0Wt / C.y0Wt /. In traditional
terms this means, averaged over all functions (in terms of P.f /), the quality of
an algorithm is independent of the algorithm. For instance, every algorithm is as
good as random search.

A note on continuous spaces: The LHS condition (7.2) is interesting in the
case of continuous search spaces, which touches deeply into the notion of well-
defined measures over functions in continuous space. Naively, the LHS condition
(7.2) describes something like a Gaussian process with a zero covariance function,
C.x; x0/ D 0 for any x 6D x0. At first sight there seems to be no problem in
defining such a distribution over functions also in continuous space, in particular
because the definition of a Gaussian process only makes reference to function value
distributions over finite subsets of the domain. However, [1] make the point that
this “zero-covariance” Gaussian process is actually not a proper Lebesgue measure
over the space of function. This means any P.f / which fulfils the LHS (7.2) is not
a Lebesgue measure. Inversely, if we assume that P.f / is a Lebesgue measure—
and [1] imply that this is the only sensible definition of measure over functions in
continuous space—then it follows that NFL does not hold in continuous domains.

A note on generalization in statistical learning theory: The NFL theorem, as we
formulated it, is closely related to the issue of generalization: Can the algorithm
generalize knowledge gained from sites x1WT�1 to a new site? NFL says that this is
not possible without assumptions on the underlying function. On the surface this
seems to contradict the classical foundation of statistical learning theory, stating
that generalization to “new” data is possible without making assumptions about the
underlying function. The origin of this seeming contradiction is simply the use of
the word “new data” in both contexts. The prototypical setup in statistical learning
theory considers a joint distribution P.X; Y / D P.Y jX/ P.X/ from which data
f.xi ; yi /gN

iD0 was sampled i.i.d. In that context, a “new” data point x� is one that is
equally sampled from the same source P.X/ as the previous data—without ruling
out revisitation of the same site. Statements on generalization roughly state that,
in the limit of large N , generalization to new data is possible. If the domain X is

134 M. Toussaint

finite, the limit of large N implies that new data points are likely to coincide with
previously observed sites and the possibility of generalization is obvious. If the
domain is continuous, the chance to revisit exactly the same site is zero and it seems
that revisitation is not an issue and NFL holds—however, as we discussed in the
previous section, w.r.t. standard Lebesgue measures over functions, NFL does not
hold in continuous spaces.

7.3 Some Background on POMDPs

Our formulation of NFL states that, assuming a fully factored distribution over
functions, any search algorithm will have the same expected performance. Inversely
this implies that when we assume a non-factored distribution over functions—which
we call function prior—then the algorithm has at least a chance to exploit previous
observations x0Wt ; y0Wt to decide “intelligently” (better than random search) about the
next sample xtC1.

Partial observable Markov decision processes (POMDP) give us a clear descrip-
tion of how an optimal (fully Bayes-rational) algorithm would choose the next
sample point based on previous observations. The point in referring to POMDPs
will not be that we will in practice be able to design fully Bayes-optimal search
algorithms—this is in any realistic case computationally infeasible. However, the
POMDP framework provides us with two important aspects: First the notion of
a belief, which can be shown to subsume all the information from the history of
observations x0Wt ; y0Wt that is necessary to make optimal decisions. And second, the
POMDP framework provides us with promising approximate decision heuristics,
for instance, iteratively using the optimal two-step look-ahead strategy as an
approximation to the optimal T -step look-ahead for a problem of horizon T , as
is discussed in detail in Sect. 7.5.

We briefly introduce POMDPs and the notion of beliefs in POMDPs here. For
more details see [9]. A POMDP is a stochastic model of the interaction of an
agent with an environment where the agent does not fully observe the state st of
the environment but only has access to (“partial”) observations yt . For every time
step t the environment is in state st , the agent chooses an action atC1, the world
transitions into a new state according to a conditional probability P.stC1 j atC1; st /,
and the agent gets a new observation according to P.ytC1 j stC1; atC1/.

Since each single observation yt gives only partial information about the state,
it is in general suboptimal for the agent to use only yt to decide on an action atC1.
A better alternative for the agent would be to take the full history .y0Wt ; a0Wt / as
input to choose an action—since this provides all the information accessible to the
agent at the time this, in principle, supports choosing optimal actions. However,
it can be shown [9] that a sufficient alternative input to choose optimal actions is
the posterior distribution P.st j y0Wt ; a0Wt /. This should not be a surprise: given the
Markovian structure of the world itself, if the agent would have access to the state
st then optimal policy would map st directly to atC1. If, as in POMDPs, the agent

7 The Bayesian Search Game 135

y1 y2

b0 b1 b2

a1 a2

s0 s1 s2 R

aT

sT

Fig. 7.1 Dynamic Bayesian network for the stochastic process of a (belief-based) agent interacting
within a POMDP—for simplify in the case of finite horizon and final reward only

does not have access to st , then the state posterior P.st j y0Wt ; a0Wt / provides all the
information about st accessible to the agent, i.e., that can be inferred from previous
observations and actions.

The state posterior is also called the belief bt D P.st j y0Wt ; a0Wt /. To summarize,
Fig. 7.1 illustrates the stochastic process of a (belief-based) agent interacting within
a POMDP as a dynamic Bayesian network. The environment is described by
the state transition probabilities P.stC1 j atC1; st /, the observation probabilities
P.yt j st ; at /, and the initial state distribution P.s0/. The agent is described (in the
belief-based case3) by the policy � W bt 7! atC1 that maps the current belief state to
the action. In each step, after executing action atC1 and observing ytC1, the agent
updates the belief using Bayes’ rule:

btC1.stC1/ D P.stC1 j y0WtC1; a0WtC1/

/ P.ytC1 j stC1; y0Wt ; a0Wt / P.stC1 j y0Wt ; a0Wt /

D P.ytC1 j stC1; at /
hX

st

P.stC1; st j y0Wt ; a0Wt /
i

D P.ytC1 j stC1; at /
X

st

P.stC1 j st ; at / bt .st / (7.5)

This equation is called belief update. The prior belief b0.s0/ is initialized with the
initial state distribution P.s0/.

7.4 From NFL to Beliefs and the Bayesian Search Game

Table 7.1 summarizes how one can draw a relation between the problem of
optimization and POMDPs. The action at of the agent/algorithm correspond to the
next site xt that the algorithm explores. The state st of the environment corresponds
to the unknown underlying function f —a difference here is that in POMDPs the

3Alternatives to represent agent policies are, for instance, finite state controllers [11].

136 M. Toussaint

Table 7.1 Translation of the search game as a partially observable
Markov decision process

POMDP Bayesian search game

World state st Objective function f

Action at Choice of search point xt

Observation yt Function value yt D f .xt�1/

Belief state bt D P.st jy0Wt ; a0Wt / Belief bt D P.f jy0Wt ; x0Wt /

environment state is manipulated by actions, whereas in search exploring a site
xt does not change the function f of the environment. But as in a POMDP, the
environment state f is not fully observable. Only a partial observation P.yt j f; xt /

is accessible to the agent/algorithm depending on the site it explores.
As in POMDPs, the belief bt .f / captures all information about the state f that

is accessible to the algorithm. The P.f / defined in the previous section provides
the prior belief b0.f / WD P.f /; in Eq. (7.4) we also referred to the posterior belief
at time t ,

bt .f / WD P.f j x0Wt ; y0Wt / : (7.6)

NFL says that if the prior belief factorizes in identical marginals, then there is no
way to derive a smart sampling heuristic from this belief. The reason is that in
the NFL case the belief cannot be updated in a useful way. Why is this? Given
a new observation yt at xt we can update the belief in the sense that now we
explicitly know the function value at xt —but we cannot update the belief about
function values at yet unexplored sites because the NFL conditions do not allow us
to generalize to unexplored sites. Hence the belief over yet unexplored sites always
remains i.i.d. with marginals h.y/.

Inversely, the belief is a generic and exhaustive way to capture all of what we
can possibly know about the underlying function given the observations made so
far. In particular, when NFL condition (7.2) does not hold, then an observation yt at
some site xt tells us something about the function at other sites. The belief state is
an exact description of this information about yet unexplored sites.

The stochastic search processes of a belief-based algorithm, which pick new
search points based on a policy �t W bt�1 7! xt , can be depicted as the dynamic
Bayesian network (DBN) as in Fig. 7.2. This process can be viewed as a (single-
player) game: The game starts with the player picking a specific prior belief b0

over the space of functions, and with the environment choosing a specific function
f from some function prior P.f /. For simplification, we assume that the player
is informed on P.f / such that his prior belief coincides with the function prior,
b0.f / D P.f /. This initialization of the game corresponds to the first two nodes
on the left in the DBN.

In the first time step, it will use the policy �t W bt�1 7! xt to pick a first site at
time x1 D �1.b0/. The environment responds by returning the function evaluation

7 The Bayesian Search Game 137

bO

f

x1 x2 y2y1

R

xT

b1 b2

Fig. 7.2 The dynamic Bayesian network describing the search game. f is a function sampled
from P.f /. bt is a belief over functions that the player maintains; it is initialized deterministically
to b0 D P.f /. xt � �t .bt / is the player’s sample action at time t , and yt D f .xt / the evaluation
feedback

y1 D f .x1/. The player updates its belief as in Eq. (7.5). Since in our case the
function f is not influenced by the action xt the belief update simplifies to

bt .f / D P.f j x0Wt ; y0Wt /

/ P.yt j f; x0Wt ; y0Wt�1/ P.f j x0Wt ; y0Wt�1/

D P.yt j xt ; f / bt�1.f / (7.7)

The game continues like that until, at some final deadline T , a reward R is emitted
depending only on the last sample.

Drawing the connection to POMDPs does not directly lead to new efficient solu-
tion methods. However, some simple facts from POMDPs also help us understand
the problem of search better: (1) We know that the optimal policy in POMDPs
is a deterministic function from beliefs to actions. This notion of optimality in
POMDPs is very general and implies optimal solutions to the so-called exploration-
exploitation problem [12] or strategies to gain information for later payoff. Clearly,
such strategies are also relevant in the context of search. (2) A POMDP can be
reformulated as a Markov decision process (MDP) with world state Qst D .st ; bt /—
that is, when we think of the tuple .st ; bt / as the new (embedding) world state.
This also implies that optimal policies can be found by computing a value function
V.st ; bt / over this embedding space. Note that this value function is a function over
the space of distributions—and thereby of extremely high complexity. Point-based
value iteration methods follow this approach by exploiting a sparse structure of the
value function [9].

7.5 Belief-Based Search Policies

In this section we consider some basic heuristic policies to choose the next search
point based on the current belief. For simplicity we consider a finite horizon T where
the reward is exactly the function value f .xT / 2 R of the last site. The objective

138 M. Toussaint

is then: Find a policy �t W bt 7! xtC1 (different for each t) that maximizes the
expectation of f .xT /.

The problem the player is faced with is obviously a problem of planning ahead,
i.e., taking samples that allow him to learn as much as possible about f (shaping
its belief favorably) such that at the deadline T he is as well informed as possible
to pick the final sample. But what are computationally feasible policies in practice?
Let us define some basic policies here:

The k-step look-ahead policy: �k W bt 7! xtC1 is defined as the optimal policy
for picking xtC1 based on bt , assuming that the horizon T D t C k is k steps ahead.
For large k, computing this policy is infeasible. For k D 1 or k D 2 approximations
may be feasible.

The greedy policy: �kD1 is the one-step lookahead policy which picks the point
xtC1 that maximizes the predictive mean Oft .x/ D R

f
f .x/ bt .f / df , that is, the

mean function given the current belief bt ,

�kD1.bt / D argmaxx
Oft .x/ : (7.8)

Thereby, the greedy policy is the optimal policy for the final pick of xT based
on bT�1.

The two-step look-ahead: This policy �kD2 is

�kD2.bt / D argmaxxtC1

Z

ytC1

max
xtC2

OftC1.xtC2/ P.ytC1 j xtC1; bt / (7.9)

OftC1 D
Z

f

f .x/b.f I ytC1; xtC1; bt /df (7.10)

where b.f I ytC1; xtC1; bt / is the belief when updating bt with the new observations
according to Eq. (7.7). The term maxxtC2

OftC1.xtC2/ is the expected reward when
the greedy policy is applied in the next step. The integral over ytC1 accounts for all
possible outcomes (and corresponding belief updates) for the sample xtC1. In that
sense, the two-step look-ahead policy can imply explorative strategies: One might
want to pick xtC1 such that the outcome ytC1 contains crucial information for the
belief update such that the final (greedy) pick has maximal expected reward.

A simple exploration policy �explore is to always pick the site xtC1 that
maximizes the predictive variance O�t .x/2 D R

f Œf .x/ � Oft .x/�2bt .f /df of the
belief. This strategy aims at learning as much as possible about the function, but
neglects that we are interested in high function values and should thus learn as much
as possible about regions where we hope to find high function values.

A simple exploit-explore policy �EE is to pick the site xtC1 that maximizes
gt .x/ D Oft .x/C˛�t .x/, that is, a combination of the predictive mean and variance.
gt .x/ can be interpreted as an optimistic function value estimate: The value could
potentially be ˛ standard deviations above the current mean estimation.

7 The Bayesian Search Game 139

Another heuristic combining exploration and exploitation is the expected
improvement policy �EI. Let Yt D maxfy1WT g be the maximum value
observed so far. We can compute for each site x the expected improvement
qt .x/ D R

f
f .x/ıf .x/>Yt bt .f /df , where ı is the indicator function. This expected

improvement computes a mean value, as with Oft , but only over function values
greater than Yt .

7.6 Experiments with Gaussian Processes as Belief
Representation

The belief update in Eq. (7.7) is a simple equation, but for a concrete algorithm it
requires to represent a distribution over function space and be able to multiply the
likelihood term P.yt j xt ; f / to the belief to become a new belief. What is a family
of distributions over functions which we can be represented in computers and which
is conjugate (that is, if the old belief is an element of this family, then the updated
belief is also an element of this family)?

Gaussian processes [13] are such a family of distributions over continuous
functions. They can be defined as follows. Let f
 GP.�; C / be a ran-
dom function sampled from a Gaussian process with mean function �.x/ and
covariance function C.x; x0/. Then, for any finite set of points fx1; : : : ; xN g,
the vector .f .x1/; : : : ; f .xN // is distributed joint Gaussian with mean vector
.�.x1/; : : : ; �.xN // and covariance matrix C.xi ; xj /, i; j D 1 : : : N . Since this
definition describes the behavior of random functions on finite subsets it fits nicely
with our formulation of NFL.

The covariance function C.x; x0/ is typically decaying with the distance
jx � x0j such that points close to each other are strongly correlated. This leads
to smooth functions. Often C.x; x0/ is chosen squared exponential C.x; x0/ D
�2 expf�.x � x0/2=2�2g C ıxDx0%2 with correlation bandwidth � (and observation
standard deviation %). Figure 7.3 displays a number of functions sampled
independently from a GP prior with constant mean �.x/ D 0 and bandwidth
� D 1

2
. This should illustrate what it means to assume such a prior: We believe a

priori that functions typically look like those in Fig. 7.3, in particular w.r.t. the type
of smoothness. (GPs are related to cubic splines, see [13].)

It is a common approach to use GPs as a representation of the belief b for search
and optimization problems; in geology this method is also called kriging [2, 6, 7].
One often assumes that a single function evaluation is expensive (e.g., drilling a hole
to get a geological probe) and therefore extensive computational cost to evaluate a
policy is acceptable.

To demonstrate the use of Gaussian processes to represent beliefs we imple-
mented a Bayesian search game, which can be downloaded from the author’s

140 M. Toussaint

Fig. 7.3 Ten sample functions from a Gaussian process prior with bandwidth � D 1
2

Table 7.2 Performance for different policies for finding the optimum of a function sampled from
a GP prior with bandwidth � D 1

2
, constrained to the search interval Œ�1; 1�. We measure the loss

as the difference between the last sampled value f .xT / and the true optimum of the function. The
algorithm is only allowed to take T D 10 (respectively, T D 5) samples. Mean and standard
deviation are given for 10,000 random functions

Policy Final loss for T D 10 Avg loss (T D 10) Final loss for T D 5 Avg loss (T D 5)

�kD1 0.632˙ 0.006 0.764˙ 0.006 0.648˙ 0.006 0.891˙ 0.006
�EE, ˛ D 1 0.051˙ 0.002 0.492˙ 0.003 0.254˙ 0.004 0.834˙ 0.005
�EE, ˛ D 2 0.0039˙ 0.0004 0.687˙ 0.002 0.256˙ 0.004 0.970˙ 0.004
�EE, ˛ D 4 0.0026˙ 0.0001 0.952˙ 0.003 0.296˙ 0.004 1.079˙ 0.004
�EI 0.0015˙ 0.0001 0.926˙ 0.003 0.299˙ 0.004 1.063˙ 0.005
�explore 0.0015˙ 0.0001 0.926˙ 0.003 0.303˙ 0.004 1.069˙ 0.005

webpage.4 Here we report on some quantitative experiments. We implemented the
policies �kD1, �kD2, �EE, �EI, �explore simply by evaluating the respective integrals
over a grid. This becomes expensive already for k D 2.

We performed some experiments with Gaussian process beliefs to illustrate and
evaluate the different policies defined in the previous section. The objective is to
find the optimum of a function sampled from a Gaussian process with bandwidth
� D 1

2
. The search is constrained to the interval Œ�1; 1�.

Table 7.2 displays the results when we allow the algorithms to take only T D 10

or T D 5 samples to find the optimum. The objective is the final loss: the difference
between the last sampled value f .xT / and the true optimum of the function. We also
report on the average loss during the T samples. Although this is not the objective
it indicates whether the algorithm tends to sample good points also in intermediate
steps.

4http://userpage.fu-berlin.de/mtoussai/07-bsg/

http://userpage.fu-berlin.de/mtoussai/07-bsg/

7 The Bayesian Search Game 141

Fig. 7.4 Ten sample functions from a Gaussian process prior with bandwidth � D 1 conditioned
on f .x/ D 0 for x D �0:9; 0; 0:9

Table 7.3 Performance for different policies for finding the
optimum of a function sampled from a GP prior illustrated
in Fig. 7.4. The algorithm is only allowed to take T D 2

samples. Mean and standard deviation are given for 10,000
random functions

Policy Final loss for T D 2

�kD1 0.0144˙ 0.0003
�EE, ˛ D 1 0.0116˙ 0.0002
�EE, ˛ D 2 0.0116˙ 0.0002
�EE, ˛ D 4 0.0116˙ 0.0002
�EI 0.0116˙ 0.0002
�explore 0.0116˙ 0.0002
�kD2 0.0095˙ 0.0002

For T D 10 we find that the expected improvement policy �EI and the simple
exploration policy �explore perform best. Both of them are rather exploratory, which
is evident also from the high average loss. In contrast, �EE with ˛ D 1 is less
exploratory, focuses on a (local) optimum earlier, leading to higher final loss but
lower average loss. For comparison we also tested for only T D 5, where the
greedier �EE with ˛ D 1 performs slightly better than the other policies.

Finally, we also want to demonstrate the effect of two-step look-ahead planning.
It is not easy to find a problem class for which this policy performs better than
the others. Here is a slightly contrived example: We sampled random functions
from a GP prior with large bandwidth � D 1 (very smooth functions) which were
additionally conditioned on f .x/ D 0 at the sites x D �0:9; 0; 0:9. Figure 7.4
displays 10 random samples from this prior.

Table 7.3 displays the results for all policies with only T D 2—that is, the
algorithm only has one sample to learn as much as possible about the function
before placing the final sample, which decides on the final loss. First, we find that

142 M. Toussaint

all algorithms �EE, �EI, �explore have the same performance. This is because they
all first sample the site x D �0:45 or x D 0:45, which have maximal entropy, and
then sample the last point using the greedy policy. Hence, they are all equivalent for
T D 2.

The two-step look-ahead policy behaves differently: It first samples a point very
near by x D 0 (approximately x D 0:05). The observation at this point implicitly
allows the algorithm to infer the slope of the true function around x D 0. This
implies a “better informed” GP posterior of the function, which has more certainty
about the function on both sides rather than only on one side of x D 0. As a
consequence, the final (greedy) pick of xT is better than with the other algorithms.

This rather contrived example demonstrates, on the one hand, the intricate
implications of lookahead strategies—how they pick points based on how their
knowledge for future picks is improved. On the other hand, the minimal differences
in performance and given that we had to construct such complicated scenarios to
demonstrate the advantage of a two-step look-ahead strategy argues against such
strategies. Note that �kD2 is computationally orders of magnitude slower than the
other policies.

7.7 Discussion

In this chapter we presented a discussion of three seemingly unconnected topics: No
Free Lunch, POMDPs, and Gaussian processes. However, we hope it became clear
that these topics are closely related.

NFL & Gaussian processes: In our formulation, the NFL condition (7.2) is that
the function prior identically factorizes on any finite subset fx1; ::; xKg � X . Only
if this condition is violated can we hope for an efficient search algorithm. Violation
of this constraint implies that function values on finite subsets are dependent—
a Gaussian process by definition describes exactly this correlation of values on
finite subsets. Therefore, in our view, a Gaussian process is a very natural and
simple model of the violation of NFL conditions. At this point one should note
that, although Gaussian processes are typically formulated for continuous X with
continuous covariance function, they can of course also be applied on discrete
spaces, e.g., with a covariance function depending on the Hamming distance or
other similarity measures.

NFL & POMDPs: The reason we discussed POMDPs in the context of NFL is that
the POMDP framework explicitly states what the optimal search algorithm would
be. In particular, the POMDP framework clarifies that the notion of a belief is a
sufficient representation of all the knowledge gained from previous explorations,
in the sense that the optimal algorithm can be viewed as a policy mapping from
the belief to a new search point. Generally, we do not want to over-stress the
discussion of truly optimal search algorithms. The POMDP framework formulated

7 The Bayesian Search Game 143

here leads to optimal search (given the assumption of the prior belief). Hutter [4]
has discussed universal optimality, where the role of the prior is replaced by a
complexity measure over algorithms (Solomonoff complexity). In both cases the
computational complexity of evaluating the optimal policy is exponential and the
key is to have good approximate policies. However, the notion of the belief leads
naturally to the existing literature on optimization using heuristics like the expected
improvement policy.

Let us also mention estimation of distribution algorithms (EDAs) [8]. It has been
argued before that EDAs implicitly learn about the problem by shaping the search
distribution [14]. From our perspective, EDAs (and also genetic algorithms) try to
perform two tasks at once with the search distribution: They use it to accumulate
information about the problem (representing where optima might be), and they use
it to describe the next sample point. The belief framework suggests to disentangle
these two issues: The belief is used to represent all knowledge and a separate policy
maps it to a new samples. From a Bayesian perspective the benefit is that there is no
loss in information in the belief update.

Finally, let us discuss related literature. Gutmann [2], Jones [7], and Jones
et al. [6] discuss global optimization using response surfaces (also called surrogates,
or kriging). Our Gaussian process search algorithm is an instance of such global
response surface modelling. However, this work has not made the connection to
POMDPs, NFL and look-ahead planning. Only the maximizing immediate measures
(figures of merit) like the expected improvement has been discussed in this context.

Another branch of research focuses on local models of the fitness function
[3, 10, 15]. These methods are very effective when many samples can be taken
(where a global model would become infeasible). However, look-ahead heuristic
or a well-defined Bayesian belief update has not been discussed in this context.

Acknowledgements This research was supported by the German Research Foundation (DFG),
Emmy Noether fellowship TO 409/1-3.

References

1. A. Auger, O. Teytaud, Continuous lunches are free plus the design of optimal optimization
algorithms. Algorithmica 57(1), 121–146 (2010)

2. H. Gutmann, A radial basis function method for global optimization. J. Glob. Optim. 19,
201–227 (2001)

3. N. Hansen, A. Ostermeier, Completely derandomized self-adaption in evolutionary strategies.
Evol. Comput. 9, 159–195 (2001)

4. M. Hutter, Towards a universal theory of artificial intelligence based on algorithmic probability
and sequential decision theory. arXiv: cs.AI/0012011 (2000)

5. C. Igel, M. Toussaint, A no-free-lunch theorem for non-uniform distributions of target
functions. J. Math. Model. Algorithms 3, 313–322 (2004)

6. D. Jones, M. Schonlau, W. Welch, Efficient global optimization of expensive black-box
functions. J. Glob. Optim. 13, 455–492 (1998)

cs.AI/0012011

144 M. Toussaint

7. D.R. Jones, A taxonomy of global optimization methods based on response surfaces. J. Glob.
Optim. 21, 345–383 (2001)

8. M. Pelikan, D.E. Goldberg, F. Lobo, A survey of optimization by building and using prob-
abilistic models. Technical Report IlliGAL-99018, Illinois Genetic Algorithms Laboratory,
1999

9. J. Pineau, G. Gordon, S. Thrun, Anytime point-based approximations for large POMDPs.
J. Artif. Intell. Res. 27, 335–380 (2006)

10. J. Poland, Explicit local models: towards optimal optimization algorithms. Technical Report
No. IDSIA-09-04, 2004

11. P. Poupart, C. Boutilier, Bounded finite state controllers, in Advances in Neural Information
Processing Systems 16 (NIPS 2003), Vancouver, vol. 16 (MIT Press, 2004)

12. P. Poupart, N. Vlassis, J. Hoey, K. Regan, An analytic solution to discrete Bayesian
reinforcement learning, in Proceeding of the 23rd International Conference on Machine
Learning (ICML 2006), Pittsburgh, 2006, pp. 697–704

13. C.E. Rasmussen, C. Williams, Gaussian Processes for Machine Learning (MIT Press,
Cambridge, 2006)

14. M. Toussaint, Compact representations as a search strategy: compression EDAs. Theor.
Comput. Sci. 361, 57–71 (2006)

15. H. Ulmer, F. Streichert, A. Zell, Optimization by Gaussian processes assisted evolution
strategies, in International Conference on Operations Research (OR 2003) (Springer,
Heidelberg, 2003) pp. 435–442

16. D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization. IEEE Trans. Evol.
Comput. 1(1), 67–82 (1997)

Chapter 8
Principled Design of Continuous Stochastic
Search: From Theory to Practice

Nikolaus Hansen and Anne Auger

Abstract We derive a stochastic search procedure for parameter optimization from
two first principles: (1) imposing the least prior assumptions, namely by maximum
entropy sampling, unbiasedness and invariance; (2) exploiting all available informa-
tion under the constraints imposed by (1). We additionally require that two of the
most basic functions can be solved reasonably fast. Given these principles, two prin-
cipal heuristics are used: reinforcing of good solutions and good steps (increasing
their likelihood) and rendering successive steps orthogonal. The resulting search
algorithm is the covariance matrix adaptation evolution strategy, CMA-ES, that
coincides to a great extent to a natural gradient descent. The invariance properties
of the CMA-ES are formalized, as are its maximum likelihood and stationarity
properties. A small parameter study for a specific heuristic—deduced from the
principles of reinforcing good steps and exploiting all information—is presented,
namely for the cumulation of an evolution or search path. Experiments on two noisy
functions are provided.

8.1 Introduction: Top-Down Versus Bottom-Up

Let f W Rn ! R, x 7! f .x/ be an objective or cost (or fitness) function to be
minimized, where, in practice, the typical search space dimension n obeys 3 < n <

300. When properties of f are unknown a priori, an iterative search algorithm can
proceed in evaluating solutions on f and so gather information for finding better
solutions over time (black-box search or optimization). Good solutions have, by
definition, a small f -value, and evaluations of f are considered as the cost of search
(note the double entendre of the word cost for f). The objective is, in practice,

N. Hansen (�) � A. Auger
INRIA Saclay – Île-de-France, Orsay, France
e-mail: Nikolaus.Hansen@inria.fr; anne.auger@inria.fr

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__8,
© Springer-Verlag Berlin Heidelberg 2014

145

mailto:Nikolaus.Hansen@inria.fr
mailto:anne.auger@inria.fr

146 N. Hansen and A. Auger

Given: a cost function f , a parametrized family of distributions P (θ), and
Initialize:
Repeat while not happy

Sample: x1 λ P (θk) i.i.d.
Update:

Fig. 8.1 Stochastic search template

to find a good solution with the least number of function evaluations and, more
rigorously, to generate a sequence xk , k D 1; 2; 3; : : : , such that f .xk/ converges
fast to the essential infimum of f , denoted f �. The essential infimum f � is the
largest real number such that the set of better search points fx 2 Rn W f .x/ < f �g
has zero volume.

In order to search in continuous spaces with even moderate dimension, some
structure in the cost function needs to be exploited. For evolution strategies, the
principle structure is believed to be neighborhood. Strong causality [33]—the
principle that small actuator changes have generally only small effects—and fitness-
distance correlation [31]—a statistical perspective of the same concept—are two
ways to describe the structure that evolution strategies are based upon. In contrast
to Chaps. 4, 6, and 7 of this volume, in this chapter we do not introduce an a priori
assumption on the problem class we want to address, that is, we do not assume
any structure in the cost function a priori. However, we use two ideas that might
imply the exploitation of neighborhood: We assume that the variances of the sample
distribution exist, and we encourage consecutive iteration steps to become, under
a variable metric, orthogonal (via step-size control). Empirically, the latter rather
reduces the locality of the algorithm: The step-sizes that achieve orthogonality are
usually large in their stationary condition. We conjecture therefore that either the
mere existence of variances and/or the “any-time” approach that aims to improve in
each iteration, rather than only in a final step, implies already the exploitation of a
neighborhood structure in our context.

In order to solve the above-introduced search problem on f , we take a principled
stochastic (or randomized) approach. We first sample points from a distribution
over the search space with density p.:j�/, we evaluate the points on f and finally
update the parameters � of the distribution. This is done iteratively and defines a
search procedure on � as depicted in Fig. 8.1. Indeed, the update of � remains the
one and only crucial element—besides the choice of p (and �) in the first place.
Consequently, this chapter is entirely devoted to the question of how to update � .

Before we proceed, we note that under some mild assumptions on p, and for
any increasing transformation g W R ! R (in particular also for the identity), the
minimum of the function

� 7! E.g.f .x//j�/ (8.1)

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 147

coincides with the minimum of f (the expectation E is taken under the sample dis-
tribution p, given parameters �). The optimal distribution is entirely concentrated
in the arg min of f . In black-box search, we do not want (and are not able) to impose
strong regularity conditions on the unknown function f . However, we have entire
control over p. This seems an excellent justification for a randomized approach to
the original black-box search problem. We sketch two approaches to solve (8.1).1

8.1.1 The Top-Down Way

We might chose p being “sufficiently smooth” and conduct a gradient descent,

�kC1 D �k � 	r� E.f .x/j�/ with 	 > 0 : (8.2)

We are facing two problems with Eq. (8.2). On the one hand, we need to compute
r� E.f .x/j�/. On the other hand, the gradient r� strongly depends on the specif-
ically chosen parameterization in � . The unique solution to the second problem is
the natural gradient. The idea to use the natural gradient in evolution strategies
was coined in [40] and elegantly pursued in [11]. The natural gradient is unique,
invariant under reparametrization and in accordance with the Kullback-Leibler
(KL) divergence or relative entropy, the informational difference measure between
distributions. We can reformulate Eq. (8.2) using the natural gradient, denoted Qr, in
a unique way as

�kC1 D �k � 	 QrE.f .x/j�/ : (8.3)

We can express the natural gradient in terms of the vanilla gradient r� , using the
Fisher information matrix, as Qr D F�1

� r� . Using the log-likelihood trick, r� p D
.p=p/r� p D pr� log p we can finally, under mild assumption on p, re-arrange
Eq. (8.3) into

�kC1 D �k � 	E. f .x/„ƒ‚…
expensive

“controlled”‚ …„ ƒ
F�1

� r� log p.xj�// : (8.4)

In practice, the expectation in Eq. (8.4) can be approximated/replaced by taking the
average over a (potentially small) number of samples, xi , where computing f .xi / is
assumed to be the costly part. We will also choose p such that we can conveniently
sample from the distribution and that the computation (or approximation) of
F�1

� r� log p is feasible. The top-down way of Eqs. (8.3) and (8.4) is an amazingly
clean and principled approach to stochastic black-box optimization.

1That is, to find a sequence �k , k D 1; 2; 3; : : : , such that limk!1 E.f .xj�k// D f �.

148 N. Hansen and A. Auger

8.1.2 The Bottom-Up Way

In this chapter, we choose a rather orthogonal approach to derive a principled
stochastic search algorithm in the Rn. We take a scrutinizing step-by-step road to
construct the algorithm based on a few fundamental principles—namely maximal
entropy, unbiasedness, maintaining invariance, and, under these constraints, exploit-
ing all available information and solving simple functions reasonably fast.

Surprisingly, the resulting algorithm arrives at (8.3) and (8.4): Eqs. (8.12) and
(8.51) implement Eq. (8.3) in the manifold of multivariate normal distributions
under some monotonic transformation of f [1, 5] (let 	 D 1, c1 D c� D 0,
c� D �k D 1). The monotonic transformation is driven by an invariance principle.
In both ways, top-down and bottom-up, the same, well-recognized stochastic search
algorithm covariance matrix adaptation evolution strategy (CMA-ES) emerges.
Our scrutinizing approach, however, reveals additional aspects that are consistently
useful in practice: Cumulation via an evolution path, step-size control and different
learning rates 	 for different parts of � . These aspects are either well hidden by
Eq. (8.4)2 or can hardly be derived at all (cumulation). On the downside, the bottom
up way is clearly less appealing.

The following sections will introduce and motivate the CMA-ES step-by-step.
The CMA-ES samples new solutions from a multivariate normal distribution and
updates the parameters of the distribution, namely the mean (incumbent solution),
the covariance matrix and additionally a step-size in each iteration, utilizing the
f -ranking of the sampled solutions. We formalize the different notions of invariance
as well as the maximum likelihood and stationarity properties of the algorithm.
A condensed final transcription of the algorithm is provided in the appendix. For
a discussion under different perspectives, the reader is referred to [12, 15, 22].

8.2 Sampling with Maximum Entropy

We start by sampling � (new) candidate solutions xi 2 Rn, obeying a multivariate
normal (search) distribution

xi
 mk C �k � Ni .0; Ck/ for i D 1; : : : ; �; (8.5)

where k D 0; 1; 2; : : : ; is the time or iteration index, and mk 2 Rn, �k > 0, and
N.0; C/ denotes a multivariate normal distribution with zero mean and covariance
matrix C,
 denotes equality in distribution. For convenience, we will sometimes
omit the iteration index k.

2Different learning rates might be related to some parameters in the distribution being orthogonal.

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 149

x2

x1

Fig. 8.2 One hundred and fifty samples from a multivariate (standard) normal distribution in 2-D.
Both coordinates are i.i.d. according to a standard normal distribution. The circle depicts the one-�
equal density line, the center of the circle is the mean and modal value at zero. In general, lines of
equal density (level sets) are ellipsoids. The probability to sample a point outside the dashed box
is close to 1� .1� 2� 0:0015/2 1=170

New solutions obey a multivariate normal distribution with expectation m and
covariance matrix �2 � C. Sets of equal density—that is, lines or surfaces in
2-D or 3-D, respectively—are ellipsoids centered about the mean and modal
value m. Figure 8.2 shows 150 sampled points from a standard (2-variate) normal
distribution, N.0; I/.

Given mean, variances and covariances of a distribution, the chosen multivariate
normal distribution has maximum entropy and—without any further knowledge—
suggests itself for randomized search. We explain Eq. (8.5) in more detail.

• The distribution mean value, m, is the incumbent solution of the algorithm: It
is the current estimate for the global optimum provided by the search procedure.
The distribution is point symmetrical about the incumbent. The incumbent m is
(usually) not evaluated on f . However, it should be evaluated as final solution in
the last iteration.

• New solutions are obtained by disturbing m with the mutation distribution

N
�
0; �2C

� � � � N.0; C/ ; (8.6)

where the equivalence holds by definition of N.:; :/. The parameter � > 0

is a step-size or scale parameter and exists for notational convenience only.
The covariance matrix C has n2Cn

2
degrees of freedom and represents a full

quadratic model.
The covariance matrix determines the shape of the distribution, where level-

sets of the density are hyper-ellipsoids (refer to [12, 15] for more details).
On convex quadratic cost functions, C will closely align with the inverse
Hessian of the cost function f (up to a scalar factor). The matrix C defines a
variable neighborhood metric. The above-said suggests that using the maximum

150 N. Hansen and A. Auger

entropy distribution with finite variances implies the notion, and underlines the
importance of neighborhood.

The initial incumbent m0 needs to be provided by the user. The algorithm has no
preference for any specific value and its operations are invariant to the value of m0

(see translation invariance in Sect. 8.4).
Equation (8.5) implements the principle of stationarity or unbiasedness,

because the expected value of Eq. (8.6) is zero. Improvements are not a priori
made by construction, but only after sampling by selection. In this way, the least
additional assumptions are built into the search procedure.

The number of candidate solutions sampled in Eq. (8.5) cannot be entirely
derived from first principles. For small � 6� n the search process will be
comparatively local and the algorithm can converge quickly. Only if previously
sampled search points are considered, � could be chosen to its minimal value of
one—in particular if the best so-far evaluated candidate solution is always retained.
We tend to disregard previous samples entirely (see below). In this case, a selection
must take place between � 	 2 new candidate solutions. Because the mutation
distribution is unbiased, newly sampled solutions tend to be worse than the previous
best solution, and in practice � 	 5 is advisable.3

On the other hand, for large � � n, the search becomes more global and the
probability to approach the desired, global optimum on multimodal functions is
usually larger. On the downside, more function evaluations are necessary to closely
approach an optimum even on simple functions.

Consequently, a comparatively successful overall strategy runs the algorithm first
with a small population size, e.g., the default � D 4 C b3 ln nc, and afterwards
conducts independent restarts with increasing population sizes (IPOP) [6].

After we have established the sampling procedure using a parameterized dis-
tribution, we need to determine the distribution parameters which are essential to
conduct efficient search. All parameters depend explicitly or implicitly on the past
and therefore are described in their update equations.

8.3 Exploiting the Objective Function

The pairs .xi ; f .xi //iD1;:::;� provide the information for choosing a new and better
incumbent solution mkC1 as well as the new distribution covariance matrix �2C.
Two principles are applied.

3In the .�; �/-ES, only the � best samples are selected for the next iteration. Given � D 1, a
very general optimality condition for � states that the currently second best solution must resemble
the f -value of the previous best solution [24]. Consequently, on any linear function, � D 2 and
� D 3 are optimal [24,36]. On the sphere function Eq. (8.22), � D 5 is optimal [33]. On the latter,
� 3:7� can also be shown optimal for � 	 2 and equal recombination weights [9], compare
(8.12). For � < 5, the original strategy parameter setting for CMA-ES has been rectified in [10],
but only mirrored sampling leads to satisfactory performance in this case [10].

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 151

8.3.1 Old Information Is Disregarded

There are a few reasons to believe that old information can or should be disre-
garded.

(a) The given .n2 C 3n/=2 distribution parameters, m and �2 � C, should already
capture all necessary previous information. Two additional state variables, the
search paths p� ; pc 2 Rn, will provide another 2n parameters. Theoretical
results suggests that only slight improvements can be made by storing and
using (all) previously sampled candidate solutions [38, 39], given rank-based
selection.

(b) Convergence renders previously sampled solutions rather meaningless, because
they are too far away from the currently focused region of interest.

(c) Disregarding old solutions helps to avoid getting trapped in local optima.
(d) An elitist approach can be destructive in the presence of noise, because a

supersolution can stall any further updates. Under uncertainties, any information
must be used with great caution.

8.3.2 Ranking of the Better Half Is Exploited

Only the ranking of the better half of the new candidate solutions is exploited.
Function values are discarded as well as the ranking of the worse half of the newly
sampled points. Specifically, the function f enters the algorithm only via the indices
i W � for i D 1; : : : ; �, in that (serving as definition for i W �)

f .x1W�/ � f .x2W�/ � � � � � f .x�W�/ (8.7)

is satisfied. We choose � D b�=2c, because

(a) On a linear function in expectation the better half of the new solutions improve
over mk and for the same reason

(b) On the quadratic sphere function only the better half of the new solutions can
improve the performance, using positive recombination weights (see Eq. (8.12)
below). For the remaining solutions, xi W� � mk needs to enter with a negative
prefactor [3].

We feel that using worse points to make predictions for the location of better
points might make a too strong assumption on the regularity of f in general. Indeed,
optimization would be a much easier task if outstandingly bad points would allow
generally valid implications on the location of good points, because bad points
are generally easy to obtain.

On the highly symmetrical, isotropic sphere model, using the worse half of the
points with the same importance than the better half of the points for calculating the
new incumbent can render the convergence two times faster [2, 3]. In experiments

152 N. Hansen and A. Auger

with CMA-ES, we find the factor to be somewhat smaller and obtain very similar
results also on the isotropic, highly multimodal Rastrigin function. On most
anisotropic functions we observe performance degradations and also failures in
rare cases and in cases with noise. The picture, though, is more encouraging for
a covariance matrix update with negative samples, as discussed below.

Because only the f -ranked solution points (rather than the f -values) are
used, we denote the f -ranking also as (rank-based) selection. The exploitation of
available information is quite conservative, reducing the possible ways of deception.
As an additional advantage, function values do not need to be available (for example,
when optimizing a game-playing algorithm, a passably accurate selection and
ranking of the � best current players suffices to proceed to the next iteration). This
leads to a strong robustness property of the algorithm: Invariance to order-preserving
transformations, see next section. The downside of using only the f -ranking is that
the possible convergence speed cannot be faster than linear [7, 28, 38].

8.4 Invariance

We begin with a general definition of invariance of a search algorithm A. In short,
invariance means that A does not change its behavior under exchange of f with
an equivalent function h 2 H.f /, in general conditionally to change of the initial
conditions.

Definition 8.1 (Invariance). Let H be a mapping from the set of all functions into
its power set, H W fRn ! Rg ! 2fRn!Rg, f 7! H.f /. Let S be the state space
of the search algorithm, s 2 S and Af W S ! S an iteration step of the algorithm
under objective function f . The algorithm A is invariant under H (in other words:
Invariant under the exchange of f with elements of H.f /) if for all f 2 fRn ! Rg,
there exists for all h 2 H.f / a bijective state space transformation Tf!h W S ! S

such that for all states s 2 S

Ah ı Tf!h.s/ D Tf!h ı Af .s/ ; (8.8)

or equivalently

Ah.s/ D Tf!h ı Af ı T �1
f!h.s/ : (8.9)

If Tf!h is the identity for all h 2 H.f /, the algorithm is unconditionally invariant
under H. For randomized algorithms, the equalities hold almost surely, given
appropriately coupled random number realizations, otherwise in distribution. The
set of functions H.f / is an invariance set of f for algorithm A.

The simplest example where unconditional invariance trivially holds is H W f 7!
ff g. Any algorithm is unconditionally invariant under the “exchange” of f with f .

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 153

sk

f
sk+1

Tf→h(sk) Tf→h(sk+1)
h

Tf→hTf→h
−1 Tf→h

Fig. 8.3 Commutative diagram for invariance. Vertical arrows depict an invertible transformation
(encoding) T of the state variables. Horizontal arrows depict one time step of algorithm A, using
the respective function and state variables. The two possible paths between a state at time k and a
state at time k C 1 are equivalent in all (four) cases. The two paths from upper left to lower right
are reflected in Eq. (8.8). For f D h the diagram becomes trivial with Tf !h as the identity. One
interpretation of the diagram is that given T �1

f !h, any function h can be optimized like f

The idea of invariance is depicted in the commutative diagram in Fig. 8.3. The two
possible paths from the upper left to the lower right are reflected in Eq. (8.8).

Equation (8.9) implies (trivially) for all k 2 N that

Ak
h.s/ D Tf!h ı Ak

f ı T �1
f!h.s/ ; (8.10)

where Ak.s/ denotes k iteration steps of the algorithm starting from s. Equa-
tion (8.10) reveals that for all h 2 H.f /, the algorithm A optimizes the function h

with initial state s just like the function f with initial state T �1
f!h.s/. In the lucky

scenario, Tf!h is the identity and A behaves identically on f and h. Otherwise,
first s must be moved to T �1

f!h.s/, such that after an adaptation phase any function h

is optimized just like the function f . This is particularly attractive if f is the
easiest function in the invariance class. The adaptation time naturally depends on
the distance between s and T �1

f!h.s/.
We give the first example of unconditional invariance to order-preserving

transformations of f .

Proposition 8.1 (Invariance to order-preserving transformations). For all
strictly increasing functions g W R ! R and for all f W Rn ! R, the CMA-ES
behaves identically on the objective function x 7! f .x/ and the objective function
x 7! g.f .x//. In other words, CMA-ES is unconditionally invariant under

Hmonotonic W f 7! fg ı f j g is strictly increasingg : (8.11)

Additionally, for each f W Rn ! R, the set of functions Hmonotonic.f /—the orbit of
f —is an equivalence class of functions with indistinguishable search trace.

Proof idea. Only the f -ranking of solutions is used in CMA-ES, and g does not
change this ranking. We define the equivalence relation as f
 h iff 9g strictly
increasing such that f D g ı h. Then, reflexivity, symmetry and transitivity for the

154 N. Hansen and A. Auger

equivalence relation
 can be shown elementarily, recognizing that the identity and
g�1 and compositions of strictly increasing functions are strictly increasing. ut

The CMA-ES depends only on the sub-level sets fx j f .x/ � ˛g for ˛ 2 R.
The monotonous transformation g does not change the sub-level sets, that is
fx j g.f .x// � g.˛/g D fx j f .x/ � ˛g.

8.5 Update of the Incumbent

Given the restricted usage of information from the evaluations of f , the incumbent
is generally updated with a weighted mean of mutation steps:

mkC1 D mk C cm

�X

iD1

wi .xi W� � mk/ (8.12)

with

�X

iD1

jwi j D 1; w1 	 w2 � � � 	 w�; 0 < cm � 1 : (8.13)

The question of how to choose optimal weight values wi is pursued in [3], and
the default values in Table 8.2 of the Appendix approximate the optimal positive
values on the infinite dimensional sphere model. As discussed above, we add the
constraints

w� > 0 and � � �=2 ; (8.14)

while the formulation with Eq. (8.12) also covers more general settings. Usually, we
set the learning rate cm D 1 and the computation of the new incumbent simplifies to

mkC1 D
�X

iD1

wi xi W� : (8.15)

A learning rate of one seems to be the largest sensible setting. A value larger than
one should only be advantageous if �k is too small, and implies that the step-size
heuristic should be improved. Very small �k together with cm � 1 resemble a
classical gradient descent scenario.

The amount of utilized information can be quantified via the variance effective
selection mass, or effective �

�eff D

�X

iD1

w2
i

!�1

; (8.16)

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 155

where we can easily derive the tight bounds 1 < �eff � �. Usually, a weight setting
with �eff �=4 is appropriate. Given �eff, the specific choice of the weights is com-
paratively uncritical. The presented way to update the incumbent using a weighted
mean of all � selected points gives raise for the name(�=� W; �)-CMA-ES.

Proposition 8.2 (Random ranking and stationarity of the incumbent). Under
(pure) random ranking, mk follows an unbiased random walk

mkC1
 mk C �kp
�eff

N.0; Ck/ (8.17)

and consequently

E.mkC1jmk/ D mk : (8.18)

Pure random ranking means that the index values i W � 2 f1; : : : ; �g do not depend
on x1; : : : ; x�, for all i D 1; : : : ; �, for example, when f .x/ is a random variable
with a density and does not depend on x, or when i W � is set to i .

Proof idea. Equation (8.17) follows from Eqs. (8.5), (8.12), (8.16), and (8.18)
follows because EN.0; C/ D 0 by definition. ut
The proposition affirms that only selection (f -ranking) can induce a biased
movement of the incumbent m.

Proposition 8.3 (Maximum likelihood estimate of the mean). Given x1W�; : : : ;

x�W�, the incumbent mkC1 maximizes, independent of the positive definite matrix C,
the weighted likelihood

mkC1 D arg max
m2Rn

�Y

iD1

pwi

N
.xi W� j m/ ; (8.19)

where pwi
N

.x j m/ D .p
N

.x j m//wi and p
N

.x j m/ denotes the density of N.m; C/ at
point x, or equivalently the weighted log-likelihood

mkC1 D arg max
m2Rn

�X

iD1

wi � log pN .xi W� j m/ ; (8.20)

Proof idea. We exploit the one-dimensional normal density and the fact that
the multivariate normal distribution, after a coordinate system rotation, can be
decomposed into n independent marginal distributions. ut

Finally, we find translation invariance, a property that every continuous search
algorithm should enjoy.

156 N. Hansen and A. Auger

Proposition 8.4 (Translation invariance). The CMA-ES is translation invariant,
that is, invariant under

Htrans W f 7! fha W x 7! f .x � a/ j a 2 Rng ; (8.21)

with the bijective state transformation, Tf!ha , that maps m to m C a (cf. Fig. 8.3).
In other words, the trace of mk C a is the same for all functions ha 2 Htrans.

Proof idea. Consider Fig. 8.3: An iteration step with state .mk; �k; Ck; : : : / using
cost function x 7! f .x/ in the upper path is equivalent with an iteration step with
state .mk C a; �k; Ck; : : : / using cost function ha W x 7! f .x � a/ in the lower
path. ut

Translation invariance, meaning also that mk � m0 does not depend on m0, is
a rather indispensable property for a search algorithm. Nevertheless, because mk

depends on m0, a reasonable proposition for m0, depending on f , is advisable.

8.6 Step-Size Control

Step-size control aims to make a search algorithm adaptive to the overall scale of
search. Step-size control allows for fast convergence to an optimum and serves to
satisfy the following basic demands on a search algorithm:

1. Solving linear functions, like f .x/ D x1. On linear functions we desire a
geometrical increase of the f -gain f .mk/ � f .mkC1/ with increasing k.

2. Solving the simplest convex-quadratic function, the sphere function

f .x/ D
nX

iD1

.xi � x�i /2 D kx � x�k2 ; (8.22)

quickly. We desire

kmk � x�k
km0 � x�k exp

�
�c

k

n

�
; (8.23)

such that c 6� 0:02 min.n; �/, because c 0:25 � is the optimal value which
can be achieved with optimal step-size, and optimal positive weights for � 6� n

(c 0:5 � can be achieved using also negative weights for xi W��mk in Eq. (8.12),
see [3]). The optimal step-size changes when approaching the optimum.

Additionally, step-size control will provide scale invariance, as explicated below.
Unfortunately, step-size control can hardly be derived from first principles and

therefore relies on some internal model or some heuristics. Line-search is one such
heuristic that decides on the realized step length after the direction of the step is

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 157

given. Surprisingly, a line-search can gain very little over a fixed (optimal) step
length given in each iteration [27]. Recent theoretical results even seem to indicate
that in the limit for n ! 1 the optimal progress rate cannot be improved at all
by a cost-free ray search on a half-line (given positive weights) or by a line search
otherwise (Jebalia M, personal communication). A few further heuristics for step-
size control are well-recognized:

1. Controlling the success rate of new candidate solutions, compared to the best
solution seen so far (one-fifth success rule) [33, 35].

2. Sampling different candidate solutions with different step-sizes (self-adaptation)
[33, 36]. Selected solutions also retain their step-size.

3. Testing different step-sizes by conducting additional test steps in direction
mkC1�mk , resembling a rudimentary line-search (two-point adaptation) [18,34].

4. Controlling the length of the search path, taken over a number of iterations
(cumulative step-size adaptation, CSA, or path-length control) [32].

In our context, the last two approaches find reasonable values for � in simple test
cases (like ridge topologies).

We use cumulative step-size adaptation here. The underlying design principle is
to achieve perpendicularity of successive steps. Perpendicularity is measured using
an evolution path and a variable metric.

Conceptually, an evolution path, or search path, of length j is the vector

mk � mk�j ; (8.24)

that is, the total displacement of the mean during j iterations. For technical
convenience, and in order to satisfy the stationary condition Eq. (8.26), we compute
the search path, p� , in an iterative momentum equation with the initial path
p�

0 D 0 as

p�
kC1 D .1 � c� / p�

k Cp
c� .2 � c� /�eff Ck

� 1
2

mkC1 � mk

�k

: (8.25)

The factor 1 � c� > 0 is the decay weight, and 1=c� n=3 is the backward time
horizon. After 1=c� iterations about 1 � exp.�1/ 63 % of the information has
been replaced; Ck

� 1
2 is the positive symmetric square root4 of Ck

�1. The remaining
factors are, without further degree of freedom, chosen to guarantee the stationarity,

p�
k
 N.0; I/ for k D 1; 2; 3; : : : ; (8.26)

given p�
0
 N.0; I/ and pure random ranking of xi W� in all preceding time steps.

4The positive symmetric square root satisfies Ck
�

1
2 Ck

�
1
2 D Ck

�1, has only positive eigenvalues
and is unique.

158 N. Hansen and A. Auger

Fig. 8.4 Schematic depiction of three evolution paths in the search space (each with six successive
steps of mk). Left: Single steps cancel each other out and the evolution path is short. Middle: Steps
are “on average orthogonal”. Right: Steps are positively correlated and the evolution path is long.
The length of the path is a good indicator for optimality of the step-size

The length of the evolution path is used to update the step-size � either
following [29]

�kC1 D �k � exp

c�

d�

kp�

kC1k2 � n

2n

!!
(8.27)

or via

�kC1 D �k � exp

�
c�

d�

� kp�
kC1k

EkN.0; I/ k � 1

��
; (8.28)

where d� 1. The step-size increases/decreases iff kp�
kC1k2 or kp�

kC1k is
larger/smaller than its expected value. Equation (8.27) is more appealing and easier
to analyze, but Eq. (8.28) might have an advantage in practice. In practice, also an
upper bound to the argument of exp is sometimes useful.

Figure 8.4 depicts the idea of the step-size control schematically.

• If steps are positively correlated, the evolution path tends to be long (right
picture). A similar trajectory could be covered by fewer but longer steps and
the step-size is increased.

• If steps are negatively correlated they tend to cancel each other out and the
evolution path is short (left picture). Shorter steps seem more appropriate and
the step-size is decreased.

• If the f -ranking does not affect the length of the evolution path, the step-size is
unbiased (middle picture).

We note two major postulates related to step-size control and two major design
principles of the step-size update.

Postulate 1 (Conjugate steps). Successive iteration steps should be approximately
C�1-conjugate, that is, orthogonal with respect to the inner product (and metric)
defined by C�1.

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 159

As a consequence of this postulate, we have used perpendicularity as optimality
criterion for step-size control.

If steps are uncorrelated, like under random selection, they indeed become
approximately C�1-conjugate, that is, .mkC1 � mk/T C�1mk � mk�1 0, see [15].
This means the steps are orthogonal with respect to the inner product defined
by C�1 and therefore orthogonal in the coordinate system defined by C. In this
coordinate system, the coordinate axes, where the independent sampling takes place,
are eigenvectors of C. Seemingly uncorrelated steps are the desired case and are
achieved by using C�1=2 in Eq. (8.25).

In order to better understand the following assertions, we rewrite the step-size
update in Eq. (8.28), only using an additive update term,

log �kC1 D log �k C c�

d�

� kp�
kC1k

EkN.0; I/ k � 1

�
: (8.29)

First, in accordance with our stationary design principle, we establish a station-
arity condition on the step-size.

Proposition 8.5 (Stationarity of step-size). Given pure random ranking and p�
0

N.0; I/, the quantity log �k performs an unbiased random walk (see Eq. (8.29)).
Consequently, the step-size obeys the stationarity condition

E.log �kC1j�k/ D log �k : (8.30)

Proof idea. We analyze the update Eqs. (8.29) and (8.25). ut
Postulate 2 (Behavior on linear functions [14]). On a linear function, the disper-
sion of new candidate solutions should increase geometrically fast in the iteration
sequence, that is, linearly on the log scale. Given �

ˇ

k as dispersion measure with
ˇ > 0, we can set w.l.o.g. ˇ D 1 and demand for some ˛ > 0

E.log �kC1j�k/ 	 log �k C ˛ : (8.31)

The CMA-ES satisfies the postulate for some k0 and all k 	 k0, because on a
linear function the expected length of the evolution path increases monotonically.
We reckon that k0 / 1=c� . Finally, we investigate the more abstract conception of
scale invariance as depicted in Fig. 8.5.

Proposition 8.6 (Scale invariance). The CMA-ES is invariant under

Hscale W f 7! fh˛ W x 7! f .x=˛/ j ˛ > 0g (8.32)

with the associated bijective state space transformation

T W .m; �; C; p� ; pc/ 7! .˛m; ˛�; C; p� ; pc/ :

160 N. Hansen and A. Auger

(mk, σk,Ck, . . .)
k → k + 1 using f(x)

(mk+1, σk+1,Ck+1, . . .)

(αmk, ασk,Ck, . . .)
k → k + 1 using f(x/α)

(αmk+1, ασk+1,Ck+1, . . .)

T (α) T −1(α) T −1(α) T (α)

Fig. 8.5 Commutative diagram for scale invariance. Vertical arrows depict an invertible trans-
formation (encoding) T of all state variables of CMA-ES with T .˛/ W .m; �; C; p� ; pc/ 7!
.˛m; ˛�; C; p� ; pc/. Horizontal arrows depict one time step of CMA-ES, applied to the respective
tuple of state variables. The two possible paths between a state at time k and a state at time k C 1

are equivalent in all (four) cases. For ˛ D 1 the diagram becomes trivial. The diagram suggests
that CMA-ES is invariant under the choice of ˛ > 0 in the sense that, given T and T �1 were
available, any function x 7! f .˛x/ is (at least) as easy to optimization as f

That means for all states .mk; �k; Ck; p�
k ; pc

k/

CMA-ESh.T .mk; �k; Ck; p�
k ; pc

k// D T .CMA-ESf . mk; �k; Ck; p�
k ; pc

k„ ƒ‚ …
D

T �1.T .mk;�k ;Ck ; p�
k ; pc

k//

// ;

(8.33)

see Fig. 8.5. Furthermore, for any given f W Rn ! R, the set of functions
Hscale.f /—the orbit of f —is an equivalence class.

Proof idea. We investigate the update equations of the state variables comparing
the two possible paths from the lower left to the lower right in Fig. 8.5. The
equivalence relation property can be shown elementarily (cf. Proposition 8.1) or
using the property that the set f˛ > 0g is a transformation group over the set
fh W Rn ! Rg and therefore induces the equivalence classes Hscale.f / (see also
Proposition 8.9). ut
Invariance allows us to draw the commutative diagram of Fig. 8.5. Scale invariance
can be interpreted in several ways:

• The choice of scale ˛ is irrelevant for the algorithm, that is, the algorithm has no
intrinsic (built-in) notion of scale.

• The transformation T in Fig. 8.5 is a change of coordinate system (here: change
of scale) and the update equations are independent of the actually chosen
coordinate system; that is, they could be formulated in an algebraic way.

• For functions in the equivalence class Hscale.f /, the trace of the algorithm .˛mk;

˛�k; Ck; p�
k ; pc

k/ will be identical for all k D 0; 1; 2; : : : , given that m0 and �0 are
chosen appropriately, for example, �0 D 1=˛ and m0 D �0 � a. Then the trace
for k D 0 equals .˛m0; ˛�0; C0; : : : / D .a; 1; C0; : : : /, and the trace does not
depend on ˛ for any k 	 0.

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 161

• From the last point follows that the step-size control has a distinct role in scale
invariance. In practice, when ˛ is unknown, adaptation of the step-size that
achieves �k / 1=˛ can render the algorithm virtually independent of ˛.

Scale invariance and step-size control also facilitate the possibility of linear
convergence in k to the optimum x�, in that

lim
k!1

k

s
kmk � x�k
km0 � x�k D exp

�
� c

n

�
(8.34)

exists with c > 0 or equivalently,

lim
k!1

1

k
log kmk � x�k D lim

k!1
1

k
log

kmk � x�k
km0 � x�k

D lim
k!1

1

k

tX

kD1

log
kmk � x�k

kmk�1 � x�k

D � c

n
(8.35)

and similarly

E

�
log

kmkC1 � x�k
kmk � x�k

�
! � c

n
for k ! 1 : (8.36)

Hence, c denotes a convergence rate and for c > 0 the algorithm converges “log-
linearly” (in other words, geometrically fast) to the optimum.

In the beginning of this section we stated two basic demands on a search
algorithm that step-size control is meant to address, namely solving linear functions
and the sphere function appropriately fast. We now pursue, with a single experiment,
whether the demands are satisfied.

Figure 8.6 shows a run on the objective function f W Rn ! R; x 7! kxk, with
n D 20, � D 12 (the default value, see Table 8.2) and with �0 D 10�9 chosen far
too small given that m0 D 1. The outcome when repeating this experiment always
looks very similar. We discuss the demands in turn.

1. During the first 170 iterations the algorithm virtually “observes” the linear
function x 7! P20

iD1 xi at point 1 2 R20. We see during this phase that � increases
geometrically fast (linearly on the log scale). From this observation, and the
invariance properties of the algorithm (also rotation invariance, see below), we
can safely imply that the demand for linear functions is satisfied.

2. After the adaptation of � after about 180 iterations, linear convergence to the
optimum can be observed. We compute the convergence rate between iteration

162 N. Hansen and A. Auger

0 200 400 600
10−10

10−5

100

1e−101e−10

blue:abs(f), cyan:f−min(f), green:sigma

iterations
0 200 400 600

−1

−0.5

0

0.5

1

1.5

2

x(18)=−2e−10
x(13)=−2e−10
x(10)=−1e−10
x(14)=−1e−10
x(19)=−5e−11
x(20)=−2e−11
x(17)=−7e−12
x(5)=6e−12
x(15)=6e−12
x(16)=2e−11
x(1)=2e−11
x(7)=3e−11
x(4)=3e−11
x(11)=4e−11
x(2)=5e−11
x(9)=7e−11
x(3)=7e−11
x(12)=9e−11
x(6)=1e−10
x(8)=1e−10

Object Variables (20−D)

iterations

Fig. 8.6 A run of CSA-ES (Eqs. (8.5), (8.15), (8.25) and (8.28)) on the objective function f W
R20 ! R; x 7! kxk, as a member of the equivalence class of functions x 7! g.k˛ x� x�k/ with
identical behavior, given �0 / 1=˛ and m0 D �0 � .const C x�/. Here, m0 D 1 and the initial
step-size �0 D 10�9 is chosen far too small. Left: f .mk/ (thick blue graph) and �k versus iteration
number k in a semi-log plot. Right: All components of mk versus k

180 and 600 from the graph. Starting with kmkk
km0k exp

��c k
n

�
from Eq. (8.23)

we replace m0 with m180 and compute

kmkD600k
kmkD180k 10�9:5

100
 exp

�
�c

600 � 180

20

�
: (8.37)

Solving for c yields c 1:0 and with min.n; �/ D � D 12 we get c 1:0 6�
0:24 D 0:02 min.n; �/. Our demand on the convergence rate c is more than
satisfied. The same can be observed when covariance matrix adaptation is applied
additionally (not shown).

The demand on the convergence (8.23) can be rewritten in that

log kmk � x�k �c
k

n
C const : (8.38)

The k in the RHS numerator implies linear convergence in the number of iterations.
The n in the denominator implies linear scale-up: The number of iterations to
reduce the distance to the optimum by a given factor increases linearly with the
dimension n. Linear convergence can also be achieved with covariance matrix
adaptation. Given � 6� n, linear scale-up cannot be achieved with covariance
matrix adaptation alone, because a reliable setting for the learning rate for the
covariance matrix is o.1=n/. However, step-size control is reliable and achieves
linear scale-up given the step-size damping parameter d� D O.1/ in Eq. (8.28).
Scale-up experiments are inevitable to support this claim and have been done, for
example, in [22].

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 163

8.7 Covariance Matrix Adaptation

In the remainder we exploit the f -ranked (i.e., selected and ordered) set .x1W�; : : : ;

x�W�/ to update the covariance matrix C. First, we note that the covariance
matrix represents variation parameters. Consequently, an apparent principle is to
encourage, or reinforce variations that have been successful—just like successful
candidate solutions are reinforced in the update of m in Eq. (8.15). Based on the
current set of f -ranked points, the successful variations are (by definition)

xi W� � mk for i D 1; : : : ; � : (8.39)

Remark that “successful variation” does not imply f .xi W�/ < f .mk/, which is
neither necessary nor important nor even desirable in general. Even the demand
f .x1W�/ < f .mk/ would often result in a far too small a step-size.

8.7.1 The Rank-� Matrix

From the successful variations in (8.39) we form a covariance matrix

C�

kC1 D
�X

iD1

wi

xi W� � mk

�k

�
�
xi W� � mk

�T

�k

: (8.40)

Equation (8.40) is analogous to Eq. (8.15) where successful solution points are used
to form the new incumbent. We can easily derive the condition

E.C�

kC1jCk/ D Ck (8.41)

under pure random ranking, thus explaining the factors 1=�k in (8.40).
Assuming the weights wi as given, the matrix C�

kC1 maximizes the (weighted)
likelihood of the f -ranked steps.

Proposition 8.7 (Maximum likelihood estimate of C). Given � 	 n, the matrix
C�

kC1 maximizes the weighted log-likelihood

C�

kC1 D arg max
C pos def

�X

iD1

wi � log p
N

�
xi W� � mk

�k

ˇ̌
ˇ̌ C
�

; (8.42)

where p
N

.x j C/ denotes the density of N.0; C/ at point x, and therefore the RHS of
Eq. (8.42) reads more explicitly

arg max
C pos def

�1

2
log det.˛C/ � 1

2�k
2

�X

iD1

wi .xi W� � mk/TC�1.xi W� � mk/

!
(8.43)

where ˛ D 2��k
2 is irrelevant for the result.

164 N. Hansen and A. Auger

Proof idea. The proof is nontrivial but works similarly to the classical non-weighted
case. ut

In contrast to the computation of m in Eq. (8.12), we are not aware of a derivation
for optimality of certain weight values in Eq. (8.40). Future results might reveal that
different weights and/or even a different value for � are desirable for Eqs. (8.12)
and (8.40). Before we turn finally to the covariance matrix update, we scrutinize the
computation of C�

kC1.

8.7.1.1 What Is Missing?

In Sect. 8.3 we argued to use only the � best solutions from the last iteration to
update distribution parameters. For a covariance matrix update, disregarding the
worst solutions might be too conservative, and a negative update of the covariance
matrix with the � worst solutions is proposed in [29]. This idea is not accommodated
in this chapter, but has been recently exploited with consistently good results [4,23].
An inherent inconsistency with negative updates though is that long steps tend to be
worse merely because they are long (and not because they represent a bad direction)
meanwhile, unfortunately, long steps also lead to stronger updates.

At first sight we might believe to have covered all variation information given
by xi W� � mk in the covariance matrix C�

kC1. On closer inspection we find that the
outer product in Eq. (8.40) removes the sign: Using �.xi W� � m/ instead of xi W� � m
in Eq. (8.40) yields the same C�

kC1. One possibility to recover the sign information
is to favor the direction xi W� � m over �.xi W� � m/ D mk � xi W� in some way.
This seems difficult to accomplish without affecting either the distribution mean
(interfering with Proposition 8.3) or the maximum entropy property. Therefore, we
choose a different way to recover the sign information.

8.7.2 Another Evolution Path

We recover the sign information in a classical and rather heuristic way, which turns
out to be nevertheless quite effective. We consider an evolution path x � mk�j for
j > 0, where x might be mkC1 or any xi W�. We decompose the path into the recent
step and the old path

x � mk�j D x � mk C mk � mk�j : (8.44)

Switching the sign of the last step means using the vector mk � x instead of x � mk ,
and we get in this case

mk � x C mk � mk�j D 2.mk � x/ C x � mk�j

D x � mk�j � 2.x � mk/ : (8.45)

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 165

Comparing the last line with the LHS of Eq. (8.44), we see that now the sign of
the recent step matters. Only in the trivial cases, if either x D mk (zero step) or
mk D mk�j (previous zero path) the outer products of Eqs. (8.44) and (8.45) are
identical. Because we will compute the evolution path over a considerable number
of iterations j , the specific choice for x should become rather irrelevant and we will
use mkC1 in the following.

In practice, we compute the evolution path, analogous to Eq. (8.25). We set
pc

0 D 0 and use the momentum equation

pc
kC1 D .1 � cc/ pc

k C h�

p
cc.2 � cc/�eff

mkC1 � mk

�k

; (8.46)

where h� D 1 if kp�
kC1k2 <

�
1 � .1 � c� /2.kC1/

� �
2 C 2

nC1

�
n and zero otherwise;

h� stalls the update whenever kp�
kC1k is large. The implementation of h� supports

the judgment of pursuing a heuristic rather than a first principle here, and is driven
by two considerations.

1. Given a fast increase of the step-size (induced by the fact that kp�
kC1k is large),

the change to the “visible” landscape will be fast, and the adaptation of the
covariance matrix to the current landscape seems inappropriate, in particular,
because

2. The covariance matrix update using pc is asymmetric: A large variance in a single
direction can be introduced fast (while kpc

kC1k is large), but the large variance can
only be removed on a significantly longer time scale. For this reason in particular,
an unjustified update should be avoided.

While in Eq. (8.46), again, 1 � cc is the decay factor and 1=cc .n C 4/=4, the
remaining constants are determined by the stationarity condition

pc
kC1
 pc

k ; (8.47)

given pc
k
 N.0; Ck/ and pure random ranking and h� � 1.

The evolution path pc heavily exploits the sign information. Let us consider,
for a given y 2 Rn, two hypothetical situations with mkC1 � mk D ˛k y, for
k D 0; 1; 2; : : : . We find that for k ! 1

pc
k !

s
2 � cc

cc
y

r
n C 2

2
y if ˛k D 1 (8.48)

pc
k ! .�1/k�1

r
cc

2 � cc
y .�1/k�1

r
2

n C 2
y if ˛k D .�1/k (8.49)

166 N. Hansen and A. Auger

Both equations follow from solving the stationarity condition x D .1�cc/�.˙x/Cp
cc.2 � cc/ for x. Combining both equations, we get the ratio between maximal

and minimal possible length of pc, given the input vectors have constant length, as

2 � cc

cc
 n C 2

2
: (8.50)

Additionally to the matrix C�

kC1, we use the rank-one matrix pc
kC1pc

kC1
T to introduce

the missing sign information into the covariance matrix. The update is specified
below in Eq. (8.51). The update implements the principal heuristic of reinforcing
successful variations for variations observed over several iterations.

Evaluation of the Cumulation Heuristic

We evaluate the effect of the evolution path for covariance matrix adaptation. Fig-
ure 8.7 shows running length measurements of the (�=� W; �)-CMA-ES depending
on the choice of cc on the cigar function (see legend). The graphs in the left plot
are typical example data to identify a good parameter setting. Ten values for c�1

c
between 1 and 10 n are shown for each dimension. Larger values are not regarded as
sensible. The setting cc D 1 means that the heuristic is switched off. Improvements
over the setting cc D 1 can be observed in particular for larger dimensions, where,
up to n D 100, the function can be solved up to ten times faster. For c�1

c D n the
performance is for all dimensions close to optimal.

The right plot shows the running lengths for four different parameter settings
versus dimension. For n D 3 the smallest speed-up of about 25 % is observed for
all variants with c�1

c > 1. The speed-up grows to a factor of roughly 2, 4, and 10

for dimensions 10, 30, and 100, respectively, and always exceeds a factor of
p

n=2.
For cc D 1 (heuristic off) the scaling with the dimension is n1:7. For c�1

c D p
n

the scaling becomes n1:1 and about linear for c�1
c 	 n=3. These findings hold for

any function, where the predominant task is to acquire the orientation of a constant
number of “long axes”, in other words to find a few insensitive directions, where yet
a large distance needs to be traversed. The assertion in [37] that c�1

c / n is needed
to get a significant scaling improvement turns out to be wrong. For larger population
sizes �, where the rank-� update becomes more effective, the positive effect reduces
and almost vanishes with � D 10n.

The same experiment has been conducted on other (unimodal) functions. While
on many functions the cumulation heuristic is less effective and yields only a rather
n-independent and small speed-up (e.g., on the Rosenbrock function somewhat
below a factor of two), we have not seen an example yet where it compromises
the performance remarkably. Hence the default choice has become c�1

c n=4 (see
Table 8.2 in the Appendix), because (a) the update for the covariance matrix will
have a time constant of c�1

1 n2=2 and we feel that c�1
1 =c�1

c should not be smaller
than n, and (b) in our additional experiments the value c�1

c D n is indeed sometimes
worse than smaller values.

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 167

f-evaluations f-evaluations divided by dimension

100 101 102 103

103

104

105

3

10

30

100

time horizon

101 102
102

103

104

dimension

Fig. 8.7 Number of function evaluations to reach f .x/ < 10�6 on f .x/ D x2
1 C 106

Pn
iD2 x2

i

with m0 D 1 and �0 D 1. For a (backward) time horizon of c�1
c D 1, the cumulation heuristic

is, by definition, switched off. Left figure: Number of function evaluations, where each point
represents a single run, plotted versus the backward time horizon of the evolution path, c�1

c ,
for n D Œ3I 10I 30I 100� (from bottom to top). Triangles show averages for c�1

c D pn and n,
also shown on the right. Right figure: Average number of function evaluations divided by n, from
Œ10I 3I 2I 1� D b10=bpncc runs, plotted versus n for (from top to bottom) c�1

c D 1IpnI nC3
3
In.

Compared to cc D 1, the speed-up exceeds in all cases a factor of
p

n=2 (dashed line)

8.7.3 The Covariance Matrix Update

The final covariance matrix update combines a rank-one update using pcpcT and a
rank-� update using C�

kC1,

CkC1 D .1 � c1 � c� C c�/ Ck C c1 pc
kC1pc

kC1
T C c�C�

kC1 ; (8.51)

where pc and C�

kC1 are defined in Eqs. (8.46) and (8.40), respectively, and c� D
.1 � h2

� / c1cc.2 � cc/ is of minor relevance and makes up for the loss of variance
in case of h� D 0. The constants c1 2=n2 and c� �eff=n2 for �eff < n2 are
learning rates satisfying c1 C c� � 1. The approximate values reflect the rank of
the input matrix or the number of input samples, divided by the degrees of freedom
of the covariance matrix. The remaining degrees of freedom are covered by the old
covariance matrix Ck . Again, the equation is governed by a stationarity condition.

Proposition 8.8 (Stationarity of covariance matrix C). Given pure random rank-
ing and pc

k
 N.0; Ck/ and h� D 1, we have

E.CkC1jCk/ D Ck : (8.52)

Proof idea. Compute the expected value of Eq. (8.51). ut

168 N. Hansen and A. Auger

Finally, we can state general linear invariance for CMA-ES, analogous to scale
invariance in Proposition 8.6 and Fig. 8.5.

Proposition 8.9 (Invariance under general linear transformations). The CMA-
ES is invariant under full rank linear transformations of the search space, that is,
for each f W Rn ! R invariant under

HGL W f 7! ff ı B�1 W x 7! f .B�1x/ j B is a full rank n � n matrixg : (8.53)

The respective bijective state space transformation reads

TB W .m; �; C; p� ; pc/ 7! .Bm; �; BCBT; p� ; Bpc/ : (8.54)

Furthermore, for each f , the set HGL.f / is an equivalence class with iden-
tical algorithm trace TB.mk; �k; Ck; p�

k ; pc
k/ for a state s and the initial state

.m0; �0; C0; p�
0 ; pc

0/ D T �1
B .s/.

Proof idea. Straightforward computation of the updated tuple: The equivalence
relation property can be shown elementarily (cf. Proposition 8.1) or by recognizing
that the set of full rank matrices is a transformation group over the set ff W Rn ! Rg
with group action .B; f / 7! f ı B�1 and therefore induces the equivalence classes
HGL.f / as orbits of f under the group action. ut

A commutative diagram, analogous to Fig. 8.5, applies with TB in place of T .˛/

and using f .B�1x/ in the lower path. The transformation B can be interpreted as a
change of basis and therefore CMA-ES is invariant under linear coordinate system
transformations. All further considerations made for scale invariance likewise hold
for invariance under general linear transformations.

Because an appropriate (initial) choice of B is usually not available in practice,
general linear invariance must be complemented with adaptivity of C to make it
useful in practice and eventually adapt a linear encoding [17].

Corollary 8.1 (Adaptive linear encoding and variable metric [17]). The covari-
ance matrix adaptation implements an adaptive linear problem encoding, that is, in
other words, an adaptive change of basis, or a change of coordinate system, or a
variable metric for an evolution strategy.

Proof idea (The proof can be found in [16]). General linear invariance achieves
identical performance on f .B�1x/ under respective initial conditions. Here, B is
the linear problem encoding used within the algorithm. Changing (or adapting)
C without changing m turns out to be equivalent with changing the encoding (or
representation) B in a particular way without changing B�1m (see also [13, 16]).
Also, for each possible encoding we find a respective covariance matrix BBT. ut

While adaptation of C is essential to implement general linear invariance, rotation
invariance does not necessarily depend on an adaptation of C: rotation invariance is

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 169

already achieved for C � I, because BIBT D I when B is a rotation matrix, cf.
Eq. (8.54). Nevertheless, it is important to note that covariance matrix adaptation
preserves rotation invariance.

Corollary 8.2 (Rotation invariance). The CMA-ES is invariant under search
space rotations.

Proof idea. Rotation invariance follows from Proposition 8.9 when restricted to the
orthogonal group with BBT D I (for any initial state). ut

8.8 An Experiment on Two Noisy Functions

We advocate testing new search algorithms always on pure random, on linear and
on various (nonseparable) quadratic functions with various initializations. For the
(�=� W; �)-CMA-ES this has been done elsewhere with the expected results: Param-
eters are unbiased on pure random functions, the step-size � grows geometrically
fast on linear functions, and on convex quadratic functions the level sets of the search
distribution align with the level sets of the cost function, in that C�1 aligns to the
Hessian up to a scalar factor and small stochastic fluctuations [15, 22].

Here, we show results on the well-known Rosenbrock function

f .x/ D
n�1X

iD1

100 .x2
i � xiC1/

2 C .xi � 1/2 ;

where the possible achievement is less obvious. In order to “unsmoothen” the
landscape, a noise term is added: Each function value is multiplied with

exp
�˛N

2 n
� .G C C=10/

�
C ˛N

2 n
� .G C C=10/ ; (8.55)

where G and C are standard Gauss (normal) and standard Cauchy distributed
random numbers, respectively. All four random numbers in (8.55) are sampled
independently each time f is evaluated. The term is a mixture between the common
normal noise 1CG, which we believe has a principal “design flaw” [30], and the log-
normal noise exp.G/ which is alone comparatively easy to solve, each mixed with
a heavy tail distribution which cannot be alleviated through averaging. We believe
that this adds several difficulties on top of each other.

We show results for two noise levels, ˛N D 0:01 and ˛N D 1. A section
through the 5-D and the 20-D landscape for ˛N D 1 is shown in Fig. 8.8. The lower
dimensional landscape appears more disturbed but is not more difficult to optimize.

170 N. Hansen and A. Auger

n = 5 n = 20

−0.5 0 0.5 1 1.5

10

20

30

40

50

60

−0.5 0 0.5 1 1.5

20

40

60

80

100

120

140

β β

Fig. 8.8 Both figures show three sections of the Rosenbrock function for ˛N D 1 and argument
x D ˇ� 1C 1

20
N.0; I/. All graphs show 201 points for ˇ 2 Œ�0:5; 1:5� and a single realization of

N.0; I/ in each subfigure. The left basin about zero is initially highly attractive (cf., for example,
Fig. 8.9, upper right) but is not nearby a local or global optimum. The basin around ˇ D 1 is close
to the global optimum at 1 and is monotonically (nonvisibly) connected to the left basin

Figure 8.9 shows the output from a typical run for ˛N D 0:01 of the (�=� W; �)-
CMA-ES with m0 D �1 and �0 D 1 (correctly presuming that in all variables
mi ˙ 3�0 embrace the optimum at 1). The calling sequence in Matlab was5

opts.evalparallel = ’on’; % only one feval() call per iteration
cmaes(’frosennoisy’, -ones(20,1), 1, opts); % run CMA-ES
plotcmaesdat; % plot figures using output files

The default population size for n D 20 is � D 12. An error of 10�9, very close
to the global optimum, is reached after about 20,000 function evaluations (without
covariance matrix adaptation it takes about 250,000 function evaluations to reach
10�2). The effect of the noise is hardly visible in the performance. In some cases, the
optimization only finds the local optimum of the function close to .�1; 1; : : : ; 1/T;
in some cases the noise leads to a failure to approach any optimum (see also below).

The main challenge on the Rosenbrock function is to follow a winding ridge, in
the figure between evaluation 1;000 and 15;000. The ridge seems not particularly
narrow: The observed axis ratio is about twenty, corresponding to a condition
number of 400. But the ridge constantly changes its orientation (witnessed by the
lower-right subfigure). Many stochastic search algorithms are not able to follow this
ridge and get stuck with a function value larger than one.

5Source code is available at http://www.lri.fr/~hansen/cmaes_inmatlab.html and will be accessible
at http://cma.gforge.inria.fr/ in the future. In our experiment, version 3.40.beta was used with
Matlab.

http://www.lri.fr/~{}hansen/cmaes_inmatlab.html
http://cma.gforge.inria.fr/

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 171

0 0.5 1 1.5 2 2.5

x 104

10−15

10−10

10−5

100

105

2e−08
6e−10

f=3.92592534704732e−15

blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio

0 0.5 1 1.5 2 2.5

x 104

−2

−1

0

1

2

x(1)=1
x(2)=1
x(3)=1
x(4)=1
x(5)=1
x(6)=1
x(7)=1
x(8)=1
x(9)=1
x(10)=1
x(11)=1
x(12)=1
x(13)=1
x(14)=1
x(15)=1
x(16)=1
x(17)=1
x(18)=1
x(19)=1
x(20)=1

Object Variables (20−D)

0 0.5 1 1.5 2 2.5

x 104

10−2

10−1

100

101
Principle Axes Lengths

function evaluations
0 0.5 1 1.5 2 2.5

x 104

10−2

10−1

100

101

 6
 5
 1
 2
 7
 4
 9
 3
 8
 10
 13
 11
 12
 14
 15
 16
 17
 18
 19
 20

Standard Deviations in Coordinates divided by sigma

function evaluations

Fig. 8.9 A typical run of the (�=� W ; �)-CMA-ES on the Rosenbrock function (n D 20) with a
small disturbance of the function value (˛N D 0:01). All values are plotted against number of
objective function evaluations. Upper left: Iteration-wise best function value (thick blue graph),
median and worst function value (black graphs, mainly hidden), square root of the condition
number of Ck (increasing red graph), smallest and largest coordinate-wise standard deviation
of the distribution N

�
0; �2

k Ck

�
with final values annotated (magenta), and �k following closely

the largest standard deviation (light green). Lower left: Square roots of eigenvalues of Ck , sorted.
Upper right: Incumbent solution mk . Lower right: Square roots of diagonal elements of Ck

In Fig. 8.10, the noise term is set to ˛N D 1, generating a highly rugged
landscape (Fig. 8.8) and making it even harder to follow the winding ridge. Most
search algorithms will fail to solve this function.6 Now, two additional heuristics
are examined.

6There is a simple way to smooth the landscape: A single evaluation can be replaced by the
median (not the mean) of a number of evaluations. Only a few evaluations reduce the dispersion
considerably, but about 1;000 evaluations are necessary to render the landscape similarly smooth as
with ˛N D 0:01. Together with (�=� W)-CMA-ES, single evaluations, as in Fig. 8.10, need overall
the least number of function evaluations (comprising restarts).

172 N. Hansen and A. Auger

0 2 4 6 8
x 104

10−15

10−10

10−5

100

105

4e−08
1e−09

f=9.5513014105682e−15

blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio

0 2 4 6 8
x 104

−3

−2

−1

0

1

2

x(1)=1
x(2)=1
x(3)=1
x(4)=1
x(5)=1
x(6)=1
x(7)=1
x(8)=1
x(9)=1
x(10)=1
x(11)=1
x(12)=1
x(13)=1
x(14)=1
x(15)=1
x(16)=1
x(17)=1
x(18)=1
x(19)=1
x(20)=1

Object Variables (20−D)

0 2 4 6 8
10−4

10−2

100

102
Principle Axes Lengths

0 2 4 6 8
10−4

10−2

100

102

 5
 3
 4
 9
 10
 2
 6
 12
 8
 7
 1
 13
 11
 14
 15
 16
 17
 18
 19
 20

Standard Deviations in Coordinates divided by sigma

Fig. 8.10 A typical run of the IPOP-UH-CMA-ES on the noisy Rosenbrock function (n D 20,
˛N D 1), a (�=� W)-CMA-ES with uncertainly handling restarted with increasing population size.
The highly rugged lines, partly beyond 105 , in the upper left depict the worst measured function
value (out of �). One restart was necessary to converge close to the global optimum. See also
Fig. 8.9 for more explanations

First, restarting the algorithm with increasing population size (IPOP, [6]).
The population size is doubled for each restart. A larger population size � is more
robust to rugged landscapes, mainly because the sample variance can be larger (for
�eff < n, the optimal step-size on the sphere function is proportional to �eff [2]).
Restarting with increasing population sizes is a very effective heuristic when a good
termination criterion is available.

Second, applying an uncertainty-handling (UH, [25]). The uncertainty-handling
reevaluates a few solutions and measures their resulting rank changes [25]. If the
rank changes exceed a threshold, an action is taken. Here, � is increased. This pre-
vents from getting stuck, when the noise disturbs the selection too severely, but it can
also lead to divergence. This is of lesser relevance, because in this case the original
algorithm would most likely have been stuck anyway. Again, a good termination
criterion is essential.

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 173

0 2 4 6 8 10

x 104

10−20

10−10

100

1010

6e−08
6e−11

f=3.26695237035689e−14

blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio

x 104

0 2 4 6 8 10
10−4

10−2

100

102
Principle Axes Lengths

0 3
10−4

10−2

100

102

0 1 2 3
10−20

10−10

100

1010

1e−08
2e−11

f=2.98792845403614e−15

blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio

1 2

Principle Axes Lengths

0 1 2 3

x 104

−4

−2

0

2

4

x(1)=
x(4)=
x(7)=
x(11)=
x(14)=
x(15)=
x(17)=
x(13)=
x(19)=
x(12)=
x(18)=
x(16)=
x(20)=
x(10)=
x(9)=2
x(3)=4
x(6)=5
x(5)=6
x(8)=1
x(2)=6

Object Variables (20−D)

0 2 4 6 8 10

x 104

−5

0

5

x(2)=−
x(5)=−
x(4)=−
x(3)=−
x(14)=
x(15)=
x(19)=
x(20)=
x(18)=
x(16)=
x(17)=
x(6)=2
x(7)=2
x(12)=
x(8)=4
x(13)=
x(9)=8
x(10)=
x(11)=
x(1)=2

Object Variables (20−D)

Fig. 8.11 Two typical runs of the IPOP-CMA-ES (left) and UH-CMA-ES (right, with uncertainty-
handling) on the noisy ellipsoid function (n D 20, ˛N D 1). With ˛N D 0 the ellipsoid is solved
in about 22;000 function evaluations. In the lower left we can well observe that the algorithm
gets stuck “in the middle of nowhere” during the first two launches. See also Fig. 8.9 for more
explanations

Remark that in both cases, for restarts and with the uncertainty handling, another
possible action is to increase the number of function evaluations used for each
individual in replacing a single value with a median.

174 N. Hansen and A. Auger

For running IPOP-UH-CMA-ES, the following sequence is added before calling
cmaes.

opts.restarts = 1; % maximum number of restarts
opts.StopOnStagnation = ’yes’; % terminate long runs
opts.noise.on = ’yes’; % activate uncertainty-handling

Each restart uses the same initial conditions, here m0 D �1 and �0 D 1 from
above. For ˛N D 0:01 (Fig. 8.9) the uncertainty-handing increases the running
length by about 15 %, simply due to the reevaluations (not shown). For ˛N D 1

in Fig. 8.10, it shortens the running length by a factor of about ten by reducing the
number of necessary restarts. Typical for noisy functions, the restart was invoked
due to stagnation of the run [20]. When repeating this experiment, in about 75 % one
restart is needed to finally converge to the global optimum with � D 24. Without
uncertainty-handling it takes usually five to six restarts and a final population size
of � 	 384. Without covariance matrix adaptation it takes about 70 times longer to
reach a similar precision as in Fig. 8.10.

Experiments with the well-known Ellipsoid function,

f .x/ D
nX

iD1

106 i�1
n�1 x2

i

with the same noisy multiplier and ˛N D 1 are shown in Fig. 8.11 for IPOP-
CMA-ES (left) and UH-CMA-ES (right). The function is less difficult and can be
solved with a population size � D 48 using the IPOP approach and with the default
population size of 12 with UH-CMA-ES.

8.9 Summary

Designing a search algorithm is intricate. We recapitulate the principled design ideas
for deriving the CMA-ES algorithm.

• Using a minimal amount of prior assumptions on the cost function f in order
to achieve maximal robustness and minimal susceptibility to deceptiveness.

– Generating candidate solutions by sampling a maximum entropy distribution
adds the least amount of unwarranted information. This implies the stochastic
nature of the algorithm and that no construction of potentially better points
is undertaken. This also implies an internal quadratic model—at least when
the distribution has finite variances—and stresses the importance of neighbor-
hood. Consequently, a variable neighborhood suggests itself.

– Unbiasedness of all algorithm components, given the objective function is
random and independent of its argument. This principle suggests that only
the current state and the selection information should bias the behavior of

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 175

the algorithm. Adding another bias would add additional prior assumptions.
We have deliberately violated this principle for uncertainty-handling as used
in one experiment, where the step-size is increased under highly perturbed
selection.

– Only the ranking of the most recently sampled candidate solutions is used as
feed-back from the objective function. This implies an attractive invariance
property of the algorithm.

Exploiting more specific information on f effectively, for example, smoothness,
convexity or (partial) separability, will lead to different and more specific design
decisions, with a potential advantage on smooth, convex or separable functions,
respectively.

• Introducing and maintaining invariance properties. Even invariance is related to
avoiding prior assumptions as it implies not exploiting the specific structure of
the objective function f (for example, separability). We can differentiate two
main cases.

– Unconditional invariance properties do not depend on the initial conditions
of the algorithm and strengthen any empirical performance observation.
They allow us to unconditionally generalize empirical observations to the
equivalence class of functions induced by the invariance property.

– Invariance properties that depend on state variables of the algorithm (like �k

for scale invariance in Fig. 8.5) must be complemented with adaptivity. They
are particularly attractive, if adaptivity can drive the algorithm quickly into
the most desirable state. This behavior can be empirically observed for CMA-
ES on the equivalence class of convex-quadratic functions. Step-size control
drives step-size �k close to its optimal value, and adaptation of the covariance
matrix reduces these functions to the sphere model.

• Exploiting all available information effectively. The available information
and its exploitation are highly restricted by the first two demands. Using a
deterministic ranking and different weights for updating m and C are due to
this design principle. Also the evolution paths in Eq. (8.46) and in Eq. (8.51) are
governed by exploiting otherwise unused sign information. Using the evolution
paths does not violate any of the above demands, but allows us to additionally
exploit dependency information between successive time steps of the algorithm.

• Solving the two most basic continuous domain functions reasonably fast. Solving
the linear function and the sphere function reasonably fast implies the intro-
duction of step-size control. These two functions are quite opposed: The latter
requires convergence, the former requires divergence of the algorithm.

Finally, two heuristic concepts are applied in CMA-ES.

• Reinforcement of the better solutions and the better steps (variations) when
updating mean and variances, respectively. This seems a rather unavoidable
heuristic given a conservative use of information from f . This heuristic bears
the maximum likelihood principle.

176 N. Hansen and A. Auger

Table 8.1 Summary of the update equations for the state variables in the (�=� W ; �)-CMA-ES
with iteration index k D 0; 1; 2; : : : . The chosen ordering of equations allows us to remove the
iteration index in all variables but mk . Unexplained parameters and constants are given in Table 8.2

Given k 2 N[f0g, mk 2 Rn, �k 2 RC, Ck 2 Rn�n positive definite, p�
k 2 Rn, and pc

k 2 Rn

xi � mk C �k �N.0; Ck/ is normally distributed for i D 1; : : : ; � (8.56)

mkC1 D mk C cm

�X

iD1

wi .xiW� �mk/

where f .x1W�/
 � � �
 f .x�W�/
 f .x�C1W�/ : : : (8.57)

p�
kC1 D .1� c� / p�

k C
p

c� .2� c� /�eff Ck
�

1
2

mkC1 �mk

cm �k

(8.58)

pc
kC1 D .1� cc/ pc

k C h�

p
cc.2� cc/�eff

mkC1 �mk

cm �k

(8.59)

CkC1 D .1� c1 C .1� h�
2/ c1cc.2� cc// Ck

C c1 pc
kC1pc

kC1
T C c�

�X

iD1

wi

xiW� �mk

�k

�
�
xiW� �mk

�T

�k

� Ck

!
(8.60)

�kC1 D �k � exp

�
1^ c�

d�

� kp�
kC1k

EkN.0; I/k � 1

��
(8.61)

• Orthogonality of successive steps. This heuristic is a rather common conception
in continuous domain search.

Pure random search, where the sample distribution remains constant in the
iteration sequence, follows most of the above design principles and has some
attractive robustness features. However, pure random search neither accumulates
information from the past in order to modify the search distribution, nor changes and
adapts internal state variables. Adaptivity of state variables, however, detaches the
algorithm from the initial conditions and lets (additional) invariance properties come
to life. Only invariance to increasing f -value transformations (Proposition 8.1)
is independent of state variables of the search algorithm. We draw the somewhat
surprising conclusion that the abstract notion of invariance leads, by advising
the introduction of adaptivity, when carefully implemented, to a vastly improved
practical performance.

Despite its generic, principled design, the practical performance of CMA-ES
turns out to be surprisingly competitive, or even superior, also in comparatively
specific problem classes. This holds in particular when more than 100n function
evaluations are necessary to find a satisfactory solution [26]—even, for example,
on smooth unimodal nonquadratic functions [8], or on highly multimodal functions
[21] and on noisy or highly rugged functions [20]. In contrast, much better search
heuristics are available given (nearly) convex-quadratic problems or (partially)
separable multimodal problems.

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 177

Table 8.2 Default parameter values of the (�=� W)-CMA-ES, where by definition
P�

iD1 jwi j D 1

and ��1
eff D

P�
iD1 w2

i

˛cov D 2^ �=3 could be chosen < 2, e.g. ˛cov D 0:5 for noisy problems

� D 4C b3 ln nc population size, see also [6, 19]

� D
�

�

2

�
parent number

wi D ln
�

�C1
2

�� ln i
P�

jD1

�
ln
�

�C1
2

�� ln j
� recombination weights for i D 1; : : : ; �

cm D 1 learning rate for the mean with � D 1

cm
	 1

c� D �eff C 2

nC �eff C 5
cumulation constant for step-size (1=c� —respective time constant)

d� D 1C c� C 2 max

0;

r
�eff � 1

nC 1
� 1

!
step-size damping, is usually close to one

cc D 4C �eff=n

nC 4C 2�eff=n
cumulation constant for pc

c1 D ˛cov

.nC 1:3/2 C �eff
cov. matrix learning rate for the rank one update using pc

c� D min

�
1� c1; ˛cov

�eff � 2C 1=�eff

.nsC 2/2 C ˛cov�eff=2

�
learning rate for rank-� update

Acknowledgements The authors would like to express their gratitude to Marc Schoenauer for his
kind and consistent support.

Appendix

The (�=� W; �)-CMA-ES, as described in this chapter, is summarized in Table 8.1.
We have p�

kD0 D pc
kD0 D 0, CkD0 D I, while mkD0 2 Rn and �kD0 > 0 are user

defined. Additionally, xi W� is the i -th best of the solutions x1; : : : ; x�,

h� D
8
<

:
1 if

kp�
kC1k2

1�.1�c� /2.kC1/ <
�
2 C 4

nC1

�
n

0 otherwise
;

for EkN.0; I/ k D p
2 �. nC1

2
/=�. n

2
/ p

n � 1=2 we use the better approximationp
n
�
1 � 1

4n
C 1

21n2

�
, and Ck

� 1
2 is symmetric with positive eigenvalues and satisfies

178 N. Hansen and A. Auger

Ck
� 1

2 Ck
� 1

2 D .Ck/�1. The binary ^ operator depicts the minimum of two values
with low operator precedence. The default parameter values are shown in Table 8.2.

References

1. Y. Akimoto, Y. Nagata, I. Ono, S. Kobayashi, Bidirectional relation between CMA evolution
strategies and natural evolution strategies, in Proceedings of the Parallel Problem Solving from
Nature – PPSN XI, Part I, Kraków, ed. by R. Schaefer, C. Cotta, J. Kolodziej, G. Rudolph.
Lecture Notes in Computer Science, vol. 6238 (Springer, 2010), pp. 154–163

2. D. Arnold, Optimal weighted recombination, in Foundations on Genetic Algorithms FOGA
2005, Aizu-Wakamatsu City. Lecture Notes in Computer Science, vol. 3469 (Springer, 2005),
pp. 215–237

3. D. Arnold, Weighted multirecombination evolution strategies. Theor. Comput. Sci. 361(1),
18–37 (2006)

4. D.V. Arnold, N. Hansen, Active covariance matrix adaptation for the (1+1)-CMA-ES, in Pro-
ceedings of the Genetic and Evolutionary Computation Conference, GECCO 2010, Portland,
2010, pp. 385–392

5. L. Arnold, A. Auger, N. Hansen, Y. Ollivier, Information-geometric optimization algorithms:
a unifying picture via invariance principles. arXiv:1106.3708 (Arxiv preprint) (2011)

6. A. Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in The
2005 IEEE International Congress on Evolutionary Computation (CEC 2005), Edinburgh, ed.
by B. McKay et al., vol. 2, 2005, pp. 1769–1776

7. A.Auger, N. Hansen, Reconsidering the progress rate theory for evolution strategies in finite
dimensions, in Proceedings of the 8th Annual Conference on Genetic and Evolutionary
Computation GECCO, Seattle (ACM, 2006), pp. 445–452

8. A. Auger, N. Hansen, J. Zerpa, R. Ros, M. Schoenauer, Experimental comparisons of derivative
free optimization algorithms, in 8th International Symposion on Experimental Algorithms SEA
2009, Dortmund. Lecture Notes in Computer Science, vol. 5526 (Springer, 2009), pp. 3–15

9. H.G. Beyer, The Theory of Evolution Strategies. Natural Computing Series (Springer,
Heidelberg, 2001)

10. D. Brockhoff, A. Auger, N. Hansen, D.V. Arnold, T. Hohm, Mirrored sampling and sequential
selection for evolution strategies, in Parallel Problem Solving from Nature (PPSN XI), Kraków,
ed. by R. Schaefer et al. LNCS, vol. 6238 (Springer, 2010) pp. 11–20

11. T. Glasmachers, T. Schaul, Y. Sun, D. Wierstra, J. Schmidhuber, Exponential natural evolution
strategies, in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2010, Portland, ed. by M. Pelikan, J. Branke (ACM, 2010) pp. 393–400

12. N. Hansen, The CMA evolution strategy: a tutorial, http://www.lri.fr/~hansen/cmatutorial.pdf
13. N. Hansen, Invariance, self-adaptation and correlated mutations in evolution strategies, in

Proceedings of PPSN VI, Parallel Problem Solving from Nature, Paris, ed. by M. Schoenauer,
K. Deb, G. Rudolph, X. Yao, E. Lutton, J. Merelo, H.P. Schwefel (Springer, 2000), pp. 355–364

14. N. Hansen, An analysis of mutative � -self-adaptation on linear fitness functions. Evol. Comput.
14(3), 255–275 (2006)

15. N. Hansen, The CMA evolution strategy: a comparing review, in Towards a New Evolutionary
Computation. Advances on Estimation of Distribution Algorithms, Hefei, ed. by J. Lozano,
P. Larranaga, I. Inza, E. Bengoetxea (Springer, 2006), pp. 75–102

16. N. Hansen, Adaptive encoding for optimization. Research Report RR-6518, INRIA (2008),
http://hal.inria.fr/inria-00275983/en/

17. N. Hansen, Adaptive encoding: how to render search coordinate system invariant, in Parallel
Problem Solving from Nature (PPSN X), Dortmund, ed. by G. Rudolph et al. LNCS, 2008,
pp. 205–214

http://www.lri.fr/~hansen/cmatutorial.pdf
http://hal.inria.fr/inria-00275983/en/

8 Principled Design of Continuous Stochastic Search: From Theory to Practice 179

18. N. Hansen, CMA-ES with two-point step-size adaptation. Technical Report, RR-6527, INRIA
(2008), http://hal.inria.fr/inria-00276854/en/

19. N. Hansen, Benchmarking a BI-population CMA-ES on the BBOB-2009 function testbed, in
Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference,
Montreal (ACM, 2009), pp. 2389–2395

20. N. Hansen, Benchmarking a BI-population CMA-ES on the BBOB-2009 noisy testbed, in
Workshop Proceedings of the GECCO Genetic and Evolutionary Computation Conference,
Montreal (ACM, 2009), pp. 2397–2402

21. N. Hansen, S. Kern, Evaluating the CMA evolution strategy on multimodal test functions, in
Parallel Problem Solving from Nature PPSN VIII, Birmingham, ed. by X. Yao, et al. Lecture
Notes in Computer Science, vol. 3242 (Springer, 2004), pp. 282–291

22. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies.
Evol. Comput. 9(2), 159–195 (2001)

23. N. Hansen, R. Ros, Benchmarking a weighted negative covariance matrix update on the BBOB-
2010 noiseless testbed, in Genetic and Evolutionary Computation Conference, GECCO 2010,
Companion Material, Portland, 2010, pp. 1673–1680

24. N. Hansen, A. Gawelczyk, A. Ostermeier, Sizing the population with respect to the local
progress in (1, �)-evolution strategies—a theoretical analysis, in IEEE International Con-
ference on Evolutionary Computation, Perth, vol. 1, 1995, pp. 80–85

25. N. Hansen, S. Niederberger, L. Guzzella, P. Koumoutsakos, A method for handling uncertainty
in evolutionary optimization with an application to feedback control of combustion. IEEE
Trans. Evol. Comput. 13(1), 180–197 (2009)

26. N. Hansen, A. Auger, R. Ros, S. Finck, P. Pošík, Comparing results of 31 algorithms from the
black-box optimization benchmarking BBOB-2009, in Workshop Proceedings of the Genetic
and Evolutionary Computation Conference (GECCO 2010), Portland (ACM, 2010), pp. 1689–
1696

27. J. Jägersküpper, Lower bounds for hit-and-run direct search, in Stochastic Algorithms:
Foundations and Applications – SAGA 2007, Zurich, ed. by Yao, Xin et al. LNCS, vol. 4665
(Springer, Berlin/Heidelberg, 2007) pp. 118–129

28. J. Jägersküpper, Lower bounds for randomized direct search with isotropic sampling. Oper.
Res. Lett. 36(3), 327–332 (2008)

29. G. Jastrebski, D. Arnold, Improving evolution strategies through active covariance matrix
adaptation, in The 2006 IEEE International Congress on Evolutionary Computation (CEC
2006), Vancouver, 2006, pp. 2814–2821

30. M. Jebalia, A. Auger, N. Hansen, Log linear convergence and divergence of the scale-invariant
(1+1)-ES in noisy environments. Algorithmica 59(3), 425–460 (2011)

31. T. Jones, S. Forrest, Fitness distance correlation as a measure of problem difficulty for genetic
algorithms, in Proceedings of the 6th International Conference on Genetic Algorithms, ICGA,
Pittsburgh, ed. by L.J. Eshelman (Morgan Kaufmann, 1995), pp. 184–192

32. A. Ostermeier, A. Gawelczyk, N. Hansen, Step-size adaptation based on non-local use of
selection information, in Parallel Problem Solving from Nature PPSN IV, Jerusalem, ed. by
Y. Davidor et al. Lecture Notes in Computer Science, vol. 866 (Springer, 1994), pp. 189–198

33. I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution (Frommann-Holzboog, Stuttgart, 1973)

34. R. Salomon, J.L. van Hemmen, Accelerating backpropagation through dynamic self-
adaptation. Neural Netw. 9(4), 589–601 (1996)

35. M. Schumer, K. Steiglitz, Adaptive step size random search. IEEE Trans. Autom. Control
13(3), 270–276 (1968)

36. H.P. Schwefel, Numerical Optimization of Computer Models (Wiley, New York, 1981)
37. T. Suttorp, N. Hansen, C. Igel, Efficient covariance matrix update for variable metric evolution

strategies. Mach. Learn. 75(2), 167–197 (2009)
38. O. Teytaud, H. Fournier, Lower bounds for evolution strategies using VC-dimension, in

Parallel Problem Solving from Nature PPSN X, Dortmund. Lecture Notes in Computer Science,
vol. 5199 (Springer, 2008) pp. 102–111

http://hal.inria.fr/inria-00276854/en/

180 N. Hansen and A. Auger

39. O. Teytaud, S. Gelly, General lower bounds for evolutionary algorithms, in Parallel Problem
Solving from Nature PPSN IX, Reykjavik. Lecture Notes in Computer Science, vol. 4193
(Springer, 2006), pp. 21–31

40. D. Wierstra, T. Schaul, J. Peters, J. Schmidhuber, Natural evolution strategies, in IEEE
Congress on Evolutionary Computation, Hong Kong (IEEE, 2008), pp. 3381–3387

Chapter 9
Parsimony Pressure Made Easy: Solving
the Problem of Bloat in GP

Riccardo Poli and Nicholas Freitag McPhee

Abstract The parsimony pressure method is perhaps the simplest and most fre-
quently used method to control bloat in genetic programming (GP). In this chapter
we first reconsider the size evolution equation for genetic programming developed
in Poli and McPhee (Evol Comput 11(2):169–206,2003) and rewrite it in a form that
shows its direct relationship to Price’s theorem. We then use this new formulation
to derive theoretical results that show how to practically and optimally set the
parsimony coefficient dynamically during a run so as to achieve complete control
over the growth of the programs in a population. Experimental results confirm the
effectiveness of the method, as we are able to tightly control the average program
size under a variety of conditions. These include such unusual cases as dynamically
varying target sizes so that the mean program size is allowed to grow during some
phases of a run, while being forced to shrink in others.

9.1 Introduction

Starting in the early 1990s researchers began to notice that in addition to progres-
sively increasing their mean and best fitness, genetic programming (GP) populations
also exhibited certain other dynamics. In particular, it was often observed that, while
the average size (number of nodes) of the programs in a population was initially
fairly static (if noisy), at some point the average program size would start growing

R. Poli (�)
School of Computer Science and Electronic Engineering, University of Essex, Colchester,
Essex, UK
e-mail: rpoli@essex.ac.uk

N.F. McPhee
Division of Science and Mathematics, University of Minnesota, Morris, MN, USA
e-mail: mcphee@morris.umn.edu

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__9,
© Springer-Verlag Berlin Heidelberg 2014

181

mailto:rpoli@essex.ac.uk
mailto:mcphee@morris.umn.edu

182 R. Poli and N.F. McPhee

at a rapid pace. Typically this increase in program size was not accompanied by any
corresponding increase in fitness.

This phenomenon, which is known as bloat and can succinctly be defined as
program growth without (significant) return in terms of fitness, has been the subject
of intense study in GP, both because of its initially surprising nature, and because of
its significant practical effects. (Large programs are computationally expensive to
evolve and later use, can be hard to interpret, and may exhibit poor generalisation.)
Over the years, many theories have been proposed to explain various aspects of
bloat [27, Sect. 11.3]. We review the key theoretical results on bloat in Sect. 9.2,
with special emphasis on the size evolution equation [28] as it forms the basis for
this new approach.

While the jury was out on the causes of bloat, practitioners still had the practical
problem of combating bloat in their runs. Consequently, a variety of practical
techniques have been proposed to counteract bloat; we review these in Sect. 9.3.
We will particularly focus on the parsimony pressure method [14, 38], which is
perhaps the simplest and most frequently used method to control bloat in genetic
programming. This method effectively treats the minimisation of size as a soft
constraint and attempts to enforce this constraint using the penalty method, i.e.,
by decreasing the fitness of programs by an amount that depends on their size. The
penalty is typically simply proportional to program size. The intensity with which
bloat is controlled is, therefore, determined by one parameter called the parsimony
coefficient. The value of this coefficient is very important: Too small a value and runs
will still bloat wildly; too large a value and GP will take the minimisation of size
as its main target and will almost ignore fitness, thus converging towards extremely
small but useless programs. Unfortunately, however, the “correct” values of this
coefficient are highly dependent on particulars such as the problem being solved,
the choice of functions and terminals, and various parameter settings. Very little
theory, however, has been put forward to aid in setting the parsimony coefficient in
a principled manner, forcing users to proceed by trial and error.

This chapter presents a simple, effective, and theoretically grounded solution
to this problem. In Sect. 9.4, we reconsider the size evolution equation for GP
developed in [28], rewriting it in a form that shows its direct relationship to
Price’s theorem [18, 27, 29]. We then use this new formulation to derive theoretical
results that tell us how to practically and optimally set the parsimony coefficient
dynamically during a run so as to achieve very tight control over the average size
of the programs in a population. We test our theory in Sect. 9.5, where we report
extensive empirical results, showing how accurately the method controls program
size in a variety of conditions. We then conclude in Sect. 9.6.

9.2 Bloat in Theory

As mentioned above, there are several theories of bloat. For example, the replication
accuracy theory [22] states that the success of a GP individual depends on its ability
to have offspring that are functionally similar to the parent. As a consequence,

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 183

GP evolves towards (bloated) representations that increase replication accuracy. The
removal bias theory [37] observes that inactive code in a GP tree (code that is not
executed, or is executed but its output is then discarded) tends to be low down in the
tree (i.e., near its leaves), residing therefore in smaller-than-average-size subtrees.
Crossover events excising inactive subtrees produce offspring with the same fitness
as their parents. On average the inserted subtree is bigger than the excised one, so
such offspring are bigger than average while retaining the fitness of their parent,
leading ultimately to growth in the average program size. Another important theory,
the nature of program search spaces theory [17, 19], predicts that above a certain
size, the distribution of fitnesses does not vary with size. Since there are more long
programs, the number of long programs of a given fitness is greater than the number
of short programs of the same fitness. Over time GP samples longer and longer
programs simply because there are more of them.

The explanations for bloat mentioned above are largely qualitative. There have
been, however, some efforts to mathematically formalise and verify these theories.
For example, Banzhaf and Langdon [3] defined an executable model where only
the fitness, the size of active code and the size of inactive code of programs were
represented (i.e., there was no representation of program structure). Fitnesses of
individuals were drawn from a bell-shaped distribution, while active and inactive
code lengths were modified by a size-unbiased mutation operator. The model was
able to reproduce some effects which are found in GP runs. Rosca proposed a
similar, but slightly more sophisticated model which also included an analogue of
crossover [31]. A strength of these types of models is their simplicity. A weakness
is that they suppress or remove many details of the representation and operators
typically used in GP. This makes it difficult to verify if all the phenomena observed
in the model have analogues in GP runs, and if all important behaviours of GP in
relation to bloat are captured by a model.

In [24, 28], a size evolution equation for genetic programming was developed,
which is an exact formalisation of the dynamics of average program size:

EŒ�.t C 1/� D
X

l

S.Gl/p.Gl ; t/; (9.1)

Here �.t C1/ is the mean size of the programs in the population at generation t C1,
EŒ � is the expectation operator, Gl is the set of all programs having a particular
shape l , S.Gl/ is the size of programs in the set Gl (i.e., programs having the shape
l), and p.Gl ; t/ is the probability of selecting programs from Gl (i.e., of shape l)
from the population in generation t . This can be rewritten in terms of the expected
change in average program size as:

EŒ�.t C 1/ � �.t/� D
X

l

S.Gl/.p.Gl ; t/ � ˚.Gl ; t//; (9.2)

where ˚.Gl ; t/ is the proportion of programs of shape Gl in the current generation.
Both equations apply to a generational GP system with selection and any form

184 R. Poli and N.F. McPhee

of symmetric subtree crossover1 (see [28] for a proof), but not mutation. Size-
evolution equations can be derived also for mutation [35], but they are different
from Eqs. (9.1) and (9.2). No other assumption is required by these equations (e.g.,
infinite population).

These equations make a prediction only one-step in the future. However, as we
will see in the paper this is sufficient for many practical purposes. Note also that
Eqs. (9.1) and (9.2) do not directly explain bloat. They are, however, important
because they constrain what can and cannot happen size-wise in GP populations.
So, any explanation for bloat (including the theories summarised in this section)
has to agree with these results. In particular, Eq. (9.1) predicts that, for symmetric
subtree-swapping crossover operators, the mean program size evolves as if selection
only was acting on the population. This means that if there is a variation in mean
size (bloat, for example) it must be the result of some form of positive or negative
selective pressure on some or all of the shapes Gl . Equation (9.2) shows that there
can be bloat only if the selection probability p.Gl ; t/ is different from the proportion
˚.Gl ; t/ for at least some l . In particular, for bloat to happen there will have to be
some short Gl ’s for which p.Gl ; t/ < ˚.Gl ; t/ and also some longer Gl ’s for which
p.Gl ; t/ > ˚.Gl ; t/ (at least on average). As we will see later, Eqs. (9.1) and (9.2)
are the starting point for the work reported here.

We conclude this review with a recent explanation for bloat called the crossover
bias theory [5, 26] which is based in significant part and is consistent with the
size evolution equation above. On average, each application of subtree crossover
removes as much genetic material as it inserts. So, crossover on its own does not
produce growth or shrinkage. However, while the mean program size is unaffected,
higher moments of the distribution are. In particular, crossover pushes the population
towards a particular distribution of program sizes (a Lagrange distribution of the
second kind), where small programs have a much higher frequency than longer ones.
For example, crossover generates a very high proportion of single-node individuals.
In virtually all problems of practical interest, very small programs have no chance of
solving the problem. As a result, programs of above-average length have a selective
advantage over programs of below-average length. Consequently, the mean program
size increases.

9.3 Bloat Control in Practice

The traditional technique of fixing a maximum size or depth for any individuals to be
inserted in the population are by-and-large ineffective at controlling bloat. In fact, in
some cases they can even induce growth [6]. So, over the years numerous empirical
techniques have been proposed to control bloat [19, 36]. These include size-fair

1In a symmetric operator the probability of selecting particular crossover points in the parents does
not depend on the order in which the parents are drawn from the population.

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 185

crossover and size-fair mutation [4, 16], which constrain the choices made during
the execution of a genetic operation so as to actively prevent growth. In size-fair
crossover, for example, the crossover point in the first parent is selected randomly,
as in standard crossover. The size of the subtree to be excised is then used to
constrain the choice of the second crossover point so as to guarantee that the subtree
chosen from the second parent will not be “unfairly” big. Another technique, the
Tarpeian method [25], controls bloat by acting directly on the selection probabilities
in Eq. (9.2) by setting the fitness of randomly chosen longer than average programs
to 0. Multi-objective optimisation (with two objectives: fitness and size) has also
been used to control bloat. For example, [7] used a modified selection based on the
Pareto criterion to reduce code growth without significant loss of solution accuracy,
and [13] used a Pareto approach on regression problems in an industrial setting.

Older methods include several mutation operators that may help control the
average tree size in the population while still introducing new genetic material.
Kinnear [11] proposes a mutation operator which prevents the offspring’s depth
being more then 15 % larger than its parent. Langdon [15] proposes two mutation
operators in which the new random subtree is on average the same size as the code
it replaces. In Hoist mutation [12] the new subtree is selected from the subtree being
removed from the parent, guaranteeing that the new program will be smaller than its
parent. Shrink mutation [2] is a special case of subtree mutation where the randomly
chosen subtree is replaced by a randomly chosen terminal. McPhee and Poli [23]
provides theoretical analysis and empirical evidence that combinations of subtree
crossover and subtree mutation operators can control bloat in linear GP systems.

None of the methods mentioned above, however, has gained as much widespread
acceptance as the parsimony pressure method [14, 38]. The method works as
follows. Let f .x/ be the fitness of program x. When the parsimony pressure is
applied we define and use a new fitness function

fp.x/ D f .x/ � c`.x/ (9.3)

where `.x/ is the size of program x and c is a constant known as the parsimony
coefficient.2 Zhang and Mühlenbein [38] showed the benefits of adaptively adjusting
the coefficient c at each generation in experiments on the evolution of sigma-pi
neural networks with GP, but most implementations and results in the literature
actually keep c constant. As we will see in Sect. 9.4, however, a dynamic c is in
fact essential to obtain full control of bloat.

The parsimony pressure method can be seen as a way to address the
generalisation-accuracy tradeoff common in machine learning [33, 38]. There are
also connections between this method and the minimum description length (MDL)
principle used to control bloat in [8–10]. The MDL approach uses a fitness function
which combines program complexity (expressed as the number of bits necessary

2Naturally, while fp is used to guide evolution, one needs to still use the original fitness function
f to recognise solutions and stop runs.

186 R. Poli and N.F. McPhee

to encode the program’s tree) and classification error (expressed as the number
of bits necessary to encode the errors on all fitness cases). Rosca also linked the
parsimony pressure method to his approximate evolution equations for rooted-tree
schemata [30, 32–34].

Naturally, controlling bloat while at the same time maximising fitness turns the
evolution of programs into either a multi-objective optimisation problem or, at least,
into a constrained optimisation problem. Thus, as mentioned in Sect. 9.1, we should
expect (and numerous results in the literature show this) that excessively aggressive
methods to control bloat may lead to poor performance (in terms of ability to solve
the problem at hand) of the evolved programs. The parsimony pressure method is
not immune from this risk. So, although good control of bloat can be obtained with
a careful choice of the parsimony coefficient, the choice of such a coefficient is
an important but delicate matter. To date, however, trial and error remains the only
general method for setting the parsimony coefficient. Furthermore, with a constant
c the method can only achieve partial control over the dynamics of the average
program size over time.

In this chapter we aim to change all that, theoretically deriving and testing an
easy and practical modification of the parsimony pressure technique which provides
extremely tight control over the dynamics of the mean program size.

9.4 Optimal Parsimony Pressure

In this section we show the relationship between the size evolution equation and
Price’s theorem [29]. We also show how to use this new form of the size evolution
equation to solve for dynamic parsimony coefficients that will allow for various
types of control of the average program size (e.g., Eqs. (9.14), (9.15), (9.19), and
(9.20), which follow). Despite their theoretical origin, these forms of size control
are straightforward to add to most GP systems and (as is shown in Sect. 9.5) can
provide exceptionally tight control over the average population size.

Let us start by considering Eq. (9.1) again. With trivial manipulations it can be
rewritten in terms of length-classes, rather than tree shapes, obtaining

EŒ�.t C 1/� D
X

`

`p.`; t/ (9.4)

where the index ` ranges over all program sizes, and

p.`; t/ D
X

lWS.Gl /D`

p.Gl ; t/ (9.5)

is the probability of selecting a program of length `. Similarly, we can rewrite
Eq. (9.2) as

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 187

EŒ��� D EŒ�.t C 1/ � �.t/� D
X

`

` .p.`; t/ � ˚.`; t// ; (9.6)

where ˚.`; t/ D P
lWS.Gl /D` ˚.Gl ; t/.

We now restrict our attention to fitness proportionate selection. In this case

p.`; t/ D ˚.`; t/
f .`; t/

Nf .t/
; (9.7)

where f .`; t/ is the average fitness of the programs of size ` and Nf .t/ is the average
fitness of the programs in the population, both computed at generation t . Then from
Eq. (9.6) we obtain

EŒ��� D
X

`

`

�
˚.`; t/

f .`; t/

Nf .t/
� ˚.`; t/

�

D 1

Nf .t/

X

`

`.f .`; t/ � Nf .t//˚.`; t/

D 1

Nf .t/

�X

`

.` � �.t//.f .`; t/ � Nf .t//˚.`; t/

„ ƒ‚ …
D Cov.`;f / by definition

C�.t/
X

`

.f .`; t/ � Nf .t//˚.`; t/

„ ƒ‚ …
D 0 by definition of Nf .t/

�
;

where �.t/ D P
` ` ˚.`; t/ is the current average program size. So,

EŒ��� D Cov.`; f /

Nf .t/
: (9.8)

This result is important because it shows that Eq. (9.6), our coarse-grained version
of Eq. (9.2), is in fact a form of Price’s theorem (see [1, 18, 29] for a detailed
review). While Price’s theorem is generally applicable to “inheritable features” in
an evolving system, only informal arguments have so far been made conjecturing
that size might be one such feature [18]. Our result, proves the conjecture.

We are now in a position to more clearly see the effects of parsimony pressure
and, more generally, of any form of program-size control based on the following
generalisation of Eq. (9.3):

fp.x; t/ D f .x/ � g.`.x/; t/ (9.9)

188 R. Poli and N.F. McPhee

where g is a function of program size, `.x/, and generation, t . To achieve this we
consider Eq. (9.8) when the fitness function f .x/ is replaced by fp.x; t/. We obtain

EŒ��� D Cov.`; fp/

Nfp

(9.10)

D Cov.`; f � g/

Nf � Ng (9.11)

D Cov.`; f / � Cov.`; g/

Nf � Ng (9.12)

where we omitted t for brevity. So, absence of growth (and bloat), EŒ��� D 0, is
obtained if

Cov.`; g/ D Cov.`; f /: (9.13)

In many conditions, this equation makes it possible to determine penalty functions
g that can be used to control the program size dynamics in GP runs.

As an example, let us consider the case g.`.x/; t/ D c.t/`.x/ where c.t/ is a
function of the generation number t . (This is essentially the traditional parsimony
pressure in Eq. (9.3) but here the parsimony coefficient is allowed to change over
time.) Then

Cov.`; g/ D c.t/ Cov.`; `/ D c.t/ Var.`/:

Substituting this into Eq. (9.13) and solving for c.t/ one finds that, in order to
completely remove growth (or shrinking) from a run, one needs to set

c.t/ D Cov.`; f /

Var.`/
: (9.14)

Note that c is a function of t because both numerator and denominator can change
from generation to generation.

Let us now consider the more general case g.`.x/; t/ D c.t/`.x/k where k is
any real number (positive or negative). Here the no size-change condition requires

c.t/ D Cov.`; f /= Cov.`; `k/: (9.15)

Note that when k < 0, instead of penalising longer individuals we give a fitness
advantage to shorter individuals, which is an equally good strategy for controlling
bloat as we illustrate in Sect. 9.5.

As another example, let us consider the case g.`.x/; t/ D c.t/.`.x/ � �.t//.
Here

Cov.`; g/ D c.t/ Cov.`; ` � �.t//

D c.t/ Cov.`; `/ � c.t/ Cov.`; �.t//:

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 189

But, Cov.`; �.t// D 0 and Cov.`; `/ D Var.`/, so we end up with Eq. (9.14) again
(although the resulting penalty coefficient is then used in a different g).

What if we wanted �.t/ to follow, in expectation, a particular function �.t/, e.g.,
the ramp �.t/ D �.0/ C b � t or a sinusoidal function? The theory helps us in this
case as well. Adding �.t/ to both sides of Eq. (9.10) we obtain:

Cov.`; f / � Cov.`; g/

Nf � Ng C �.t/ D EŒ�.t C 1/� D �.t C 1/: (9.16)

If g is a family of functions with a single parameter (as is true of all the functions g

considered above), then we can use this constraint to solve for the free variable. For
example, if we want to control bloat with parsimony terms of the form g.`.x/; t/ D
c.t/`.x/k we can substitute this into Eq. (9.16), obtaining

Cov.`; f / � c.t/ Cov.`; `k/

Nf � c.t/EŒ`k�
C �.t/ D �.t C 1/: (9.17)

Solving for c.t/ gives:

c.t/ D Cov.`; f / � .�.t C 1/ � �.t// Nf

Cov.`; `k/ � .�.t C 1/ � �.t//EŒ`k�
(9.18)

If k D 1, i.e., g D c.t/`.x/ (as in the standard parsimony pressure), this
simplifies to

c.t/ D Cov.`; f / � .�.t C 1/ � �.t// Nf

Var.`/ � .�.t C 1/ � �.t//�.t/
(9.19)

Note that, in the absence of sampling noise (i.e., for an infinite population),
requiring that EŒ��� D 0 at each generation causes Eq. (9.13) to reduce to
�.t/ D �.0/ for all t > 0. However, in any finite population the parsimony pressure
method can only achieve �� D 0 in expectation, so there can be some random
drift in �.t/ w.r.t. its starting value of �.0/. Experimentally we have found that
this tends to be significant only for very small populations and long runs. If tighter
control over the mean program size is desired, one can use Eq. (9.18) with the choice
�.t/ D �.0/, which leads to the following formula

c.t/ D Cov.`; f / � .�.0/ � �.t// Nf

Cov.`; `k/ � .�.0/ � �.t//EŒ`k�
: (9.20)

Note the similarities and differences between this and Eq. (9.15). In the presence of
any drift moving �.t/ away from �.0/, this equation will actively strengthen the
size control pressure to push the mean program size back to its initial value.3

3We talk about size control pressure rather than parsimony pressure because �.t/ can drift both
above and below �.0/.

190 R. Poli and N.F. McPhee

As we will see in the following section, our technique gives users almost
complete control over the dynamics of the mean program size, and control can be
obtained in a single generation. It is thus possible to design interesting schemes
where the covariance-based bloat control is switched on or off at different times,
perhaps depending on the particular conditions of a run. In the next section we will,
for example, test the idea of letting the GP system run undisturbed until the mean
program size reaches a threshold, at which point we start applying bloat control to
prevent further growth.

Also, we note that while much of this theory assumes the use of fitness
proportionate selection, Eq. (9.6) is valid in general and one could imagine selec-
tion schemes that directly penalise the selection probabilities p.`; t/ rather than
fitnesses. As we will see in the experiments, however, the penalty coefficients
estimated using the theory developed for fitness proportionate selection actually
work very well without any modification also in systems based on other forms of
selection, such as tournament selection.

Finally, we would like to make clear that while our covariant parsimony pressure
technique can control the dynamics of program size, controlling program size is only
one aspect of bloat. We are not explicitly addressing the causes of bloat here (these
are discussed in detail elsewhere, e.g., [5, 26]): We are curing the worst symptom
associated with such causes.

9.5 Experimental Results

To verify the theory in a variety of different conditions, we conducted experiments
using three different GP systems—two linear register-based GP systems and one
tree-based GP system [21]—and several problems. We briefly describe these
systems and the problems in the next section, and then present some of our
experimental results. Due to space limitations we will be able to report in detail
on only a fraction of the tests we made, but the reported results generalise across a
wide array of experiments.

9.5.1 GP Systems, Problems and Primitives

The first GP system we used was a linear generational GP system. It initialises
the population by repeatedly creating random individuals with lengths uniformly
distributed between 1 and 200 primitives. The primitives are drawn randomly and
uniformly from a problem’s primitive set. The system uses fitness proportionate
selection and crossover applied with a rate of 100 %. Crossover creates offspring by
selecting two random crossover points, one in each parent, and taking the first part
of the first parent and the second part of the second w.r.t. their crossover points. We

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 191

used populations of size 100, 1,000 and 10,000. In each condition we performed
100 independent runs, each lasting 500 generations.

With this linear GP system we used two artificial test problems. The first was
the Hole problem, which simply allocates a fitness of 0.001 to programs of size
smaller than 10 nodes, and a fitness of 1.0 to all other programs. This problem was
used because it presents the minimal conditions for bloat to occur (according to the
crossover-bias theory described in Sect. 9.2). The second problem, which we will
call Square Root, was one where the fitness of programs was simply the square
root of their size, i.e., f .x/ D p

`.x/. This problem also satisfies the conditions
for bloat, but, unlike the previous one, here the entire fitness landscape is expected
to favour bloat (not just sections containing the very short programs) because the
correlation between length and fitness is very high for all sizes. Because of its very
strong tendency to bloat, we consider this problem a good stress-test of our method.
The fitness for both Hole and Square Root is determined completely by the
size of the program, so any choice of primitive set produces the same results.

The second GP system we used was also linear and generational. It uses the
same crossover (with the same rate) and the same form of initialisation as the
first system, but initial program lengths are in the range 1–50. Runs lasted 100
generations. The system uses tournament selection (with tournament size 2) instead
of fitness proportional selection. This allows us to test the generality of our method
for controlling program size.

With this system we solved two classical symbolic regression problems. The
objective was to evolve a function which fits a polynomial of the form x C x2 C
� � � C xd , where d is the degree of the polynomial, for x in the range Œ�1; 1�. In
particular we considered degrees d D 6 and d D 8 and we sampled the polynomials
at the 21 equally spaced points x 2 f�1; �0:9; : : : ; 0:9; 1:0g. We call the resulting
symbolic regression problemsPoly-6 and Poly-8. Polynomials of this type have
been widely used as benchmark problems in the GP literature.

Fitness (to be maximised) was 1=.1 C error/, where error is the sum of the
absolute differences between the target polynomial and the output produced by the
program under evaluation over the 21 fitness cases. The primitive set used to solve
these problems is shown in the first column of Table 9.1. The instructions refer to
three registers: the input register RIN, which is loaded with the value of x before
a fitness case is evaluated, and the two registers R1 and R2, which can be used for
numerical calculations. R1 and R2 are initialised to x and 0, respectively. The output
of the program is read from R1 at the end of its execution.

The third GP system was a classical generational tree-based GP system using
binary tournament selection, with subtree crossover applied with 100 % probability.
Thirty-five independent runs were done for each of five different targets for the
average program size. The population size in each case was 2,000, and each run went
for 500 generations. The populations were initialised using the PTC2 tree creation
algorithm [20] with the initial trees having size 150.

With the tree-based GP system we used the 6-Multiplexer problem. This
is a classical Boolean function induction problem where the objective is to evolve
a Boolean function with six inputs designed as A0, A1, D0, D1, D2, D3, which

192 R. Poli and N.F. McPhee

Table 9.1 Primitive sets
used in our experiments

Polynomial 6-MUX

R1 = RIN AND
R2 = RIN OR
R1 = R1 + R2 NAND
R2 = R1 + R2 NOR
R1 = R1 * R2
R2 = R1 * R2
Swap R1 R2

produces as output a copy of one of the inputs D0–D3. These are known as the data
lines of the multiplexer. The particular input copied over is determined by the inputs
A0 and A1 (known as the address lines of the multiplexer), as follows: If A0 =
0 and A1 = 0, then Out = D0; if A0 = 1 and A1 = 0, then Out = D1; if A0
= 0 and A1 = 1, then Out = D2; if A0 = 1 and A1 = 1, then Out = D3. The
function has 64 possible combinations of inputs, so we have 64 fitness cases. Fitness
is the number of fitness cases a program correctly computes. The primitive set used
is shown in the second column of Table 9.1.

9.5.2 Results

We start by looking at the Hole and Square Root problems. As Fig. 9.1 shows
for populations of size 1,000, bloat is present in both cases, with the

p
` fitness

function bloating fiercely. Results for populations of size 100 and 10,000 are
qualitatively similar.

To give a sense of the degree of control that can be achieved with our technique,
Fig. 9.2 illustrates the behaviour of mean program size for the Hole and Square
Root problems when five different flavours of our size control scheme are used.
Results are for populations of size 1,000, but other population sizes provide similar
behaviours. Note the small amount of drift present when Eq. (9.14) is used (first
column). This is completely removed when instead we use Eq. (9.20) (column 5,
note the different scale, and also column 3 after the transient). As columns 2 and 4
show, the user is free to impose any desired mean program size dynamics thanks to
the use of Eq. (9.19).

We turn to the Poly-6 and Poly-8 problems. As Fig. 9.3 shows, bloat is
present in both problems. The behaviour of mean program size is brought under
complete control with our technique as shown in Figs. 9.4 and 9.5. Here we used
the same targets as in Fig. 9.2 (although with slightly different parameters), but, to
illustrate a further alternative, we used a parsimony term of the form g.t/ D c.t/=`.
This effectively promotes the shorter programs rather than penalising the longer
ones.

Excellent size control was also obtained in tree-based GP when solving the 6-
MUX problem, as shown in Fig. 9.6. We used the same targets as in Fig. 9.2, but

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 193

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

a

 0

 5e+37

 1e+38

 1.5e+38

 2e+38

 2.5e+38

 3e+38

 0 50 100 150 200 250 300 350 400 450 500

lo
g

si
ze

generation

b

Fig. 9.1 Behaviour of the mean program size in a linear GP system when solving the Hole
problem (a) and the Square Root problem (b) in the absence of bloat control for populations
of size 1,000. Results are averages over 100 independent runs. The error bars indicate the standard
deviation across the runs. Note the log scale on plot (b)

again with slightly different parameters. Here the drift that’s possible when using
Eq. (9.14) (the “Local” case in the figure) is quite apparent when compared to the
very tight control obtained in the other configurations. Figure 9.7 shows how the
average size varied in each of our runs. Only one run had average program size
above 250. When one considers, however, that there is no size limit or other form
of bloat control being used, having the mean sizes in that case remain below 300
for 500 generations is still a significant achievement. Much less size-variation is
present if one requires �.t C 1/ D �.0/ as illustrated in Fig. 9.8. Note that in order
to achieve full control over size, sometimes the penalty values c.t/ may have to be
positive, as illustrated in Fig. 9.9.

194 R. Poli and N.F. McPhee

Hole Problem SquareRoot Problem

Δμ =0
 50

 60

 70

 80

 90

 100

 110

 120

 130

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

 40

 60

 80

 100

 120

 140

 160

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

sin

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

 60

 70

 80

 90

 100

 110

 120

 130

 140

 0 50 100 150 200 250 300 350 400 450 500
si

ze

generation

limit

 80

 100

 120

 140

 160

 180

 200

 220

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

 80

 100

 120

 140

 160

 180

 200

 220

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

linear
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

μ = μ0

 96

 97

 98

 99

 100

 101

 102

 103

 104

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

 96

 97

 98

 99

 100

 101

 102

 103

 104

 105

 0 50 100 150 200 250 300 350 400 450 500

si
ze

generation

Fig. 9.2 Size control obtained in the Hole and Square Root problems with populations of size
1,000 using the penalty function g.`.x/; t / D c.t/.`.x/� �.t//. c.t/ is computed via Eq. (9.14)
so that EŒ��� D 0 for the plots in the first row. Equation (9.19) was used for the other plots so
that EŒ�.t/� D �.t/. �.t/ D 30 sin.t=80/C�.0/ in the second row, �.t/ D tC�.0/ in the fourth
row and �.t/ D �.0/ in the fifth row. In the plots in the third row bloat control with �.t/ D 200

was activated when mean program size reached 200. Results are the average mean size over 100
independent runs. Note: The range of the y-axes vary across the plots

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 195

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

a

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

b

Fig. 9.3 Behaviour of the mean program size in a linear GP system when solving the Poly-6
problem (a) and the Poly-8 problem (b) in the absence of bloat control for populations of size
1,000. Results are averages over 100 independent runs

Performance comparisons are not the focus of this chapter. However, since virtu-
ally all bloat control methods need to balance parsimony and solution accuracy, it is
reasonable to ask what sort of performance implications the use of our covariance-
based bloat-control technique implies. As shown in Table 9.2 on page 200, for the
two polynomial regression problems, there is generally very little performance loss
associated with the use of our technique, and several of the configurations in fact
increase the success rates.

196 R. Poli and N.F. McPhee

Poly-6 Problem Poly-8 Problem

Δμ = 0
 20

 22

 24

 26

 28

 30

 32

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 20

 22

 24

 26

 28

 30

 32

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

sin

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100
si

ze
generation

limit
 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 20

 30

 40

 50

 60

 70

 80

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

linear
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

μ = μ0

 23.5

 24

 24.5

 25

 25.5

 26

 26.5

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 23.5

 24

 24.5

 25

 25.5

 26

 26.5

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

Fig. 9.4 Size control obtained in the Poly-6 and Poly-8 problems with populations of size
1,000 using the penalty function g.`.x/; t / D c.t/

`.x/
. c.t/ is computed via Eq. (9.15) with k D �1

so that EŒ��� D 0 for the plots in the first row. It was computed via Eq. (9.18) (with the same
k) so that EŒ�.t/� D �.t/ for the remaining plots. �.t/ D 12:5 sin.t=10/C �.0/ in the second
row, �.t/ D t C �.0/ in the fourth row and �.t/ D �.0/ in the fifth row. In the plots in the third
row bloat control with �.t/ D 75 was activated only when mean program size reached 50. Results
are the average mean size over 100 independent runs. Figure 9.5 shows results for populations of
size 100. Populations size 10,000 provided qualitatively similar behaviours. Note: The range of the
y-axes vary across the plots

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 197

Poly-6 Problem Poly-8 Problem

Δμ = 0

 10

 15

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

sin

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

limit
 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

linear
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120
 130

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

μ = μ0

 21

 22

 23

 24

 25

 26

 27

 28

 29

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

 22

 23

 24

 25

 26

 27

 28

 29

 0 10 20 30 40 50 60 70 80 90 100

si
ze

generation

Fig. 9.5 As in Fig. 9.4 but for a population of size 100

198 R. Poli and N.F. McPhee

Fig. 9.6 Scatterplot of the average size over multiple runs of the 6-MUX problem with various
size target functions. The population size was 2,000 and we used the penalty function f � c`.
The “Constant” case had a constant target size of 150. “Sin” had the target size function sin..t C
1/=50:0/ � 50:0C 150. “Linear” had the target function 150C t . “Limited” used no size control
until the size exceeded the limit 250, after which a constant target of 250 was used. “Local” used a
target of �� D 0

0 100 200 300 400 500

100

150

200

250

300

350
Avg size vs. time, mu(t+1) = mu(t)

6 MUX, pop size = 2K
Generation

A
vg

 s
iz

e

Fig. 9.7 Average size in different independent runs when using the target �.t C 1/ D �.t/ in the
6-MUX problem

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 199

0 100 200 300 400 500

130

140

150

160

170
Avg size vs. time, mu(t+1) = mu(0)

6 MUX, pop size = 2K
Generation

A
vg

 s
iz

e

Fig. 9.8 Average size in different independent runs when using the target �.t C 1/ D �.0/ in the
6-MUX problem

0 100 200 300 400 500

−0.05

0.05

Generation

P
en

al
ty

100

140

180

Avg size and C vs. time

A
vg

.s
iz

e

Fig. 9.9 Scatterplots of the average size over multiple runs of the 6-MUX problem with size target
function sin..tC1/=50:0/�50:0C150 (top) and of the values of penalty coefficient c.t/ for each
independent run with the 6-MUX problem (bottom)

9.6 Conclusions

For many years scientists, engineers and practitioners in the GP community have
used the parsimony pressure method to control bloat in genetic programming.
Although more recent and sophisticated techniques exist, parsimony pressure
remains the most widely known and used method.

The method suffers from two problems. Firstly, although good control of bloat
can be obtained with a careful choice of the parsimony coefficient, such a choice is
difficult and is often simply done by trial and error. Secondly, while it is clear that
a constant parsimony coefficient can only achieve partial control over the dynamics
of the average program size over time, no practical method to choose the parsimony
coefficient dynamically and efficiently is available. The work presented in this
chapter changes all of this.

Starting from the size evolution equation proposed in [28], we have developed
a theory that tells us how to practically and optimally set the parsimony coefficient
dynamically during a run so as to achieve complete control over the growth of the

200 R. Poli and N.F. McPhee

Table 9.2 Success rate
comparison for Poly-6 and
Poly-8 runs with different
bloat control settings

Anti-bloat
Poly Success Standard

degree Target Penalty rate deviation

6 none 0.77 0.04
6 �� D 0 c` 0.83 0.04
6 sin c` 0.77 0.04
6 limit c` 0.86 0.03
6 linear c` 0.83 0.04
6 � D �0 c` 0.83 0.04
6 �� D 0 c.`� EŒ`�/ 0.92 0.03
6 sin c.`� EŒ`�/ 0.83 0.04
6 limit c.`� EŒ`�/ 0.90 0.03
6 linear c.`� EŒ`�/ 0.83 0.04
6 � D �0 c.`� EŒ`�/ 0.86 0.03
6 �� D 0 c`�1 0.70 0.05
6 sin c`�1 0.77 0.04
6 limit c`�1 0.80 0.04
6 linear c`�1 0.79 0.04
6 � D �0 c`�1 0.71 0.05
6 �� D 0 c.`�1 � EŒ`�1�/ 0.62 0.05
6 sin c.`�1 � EŒ`�1�/ 0.41 0.05
6 limit c.`�1 � EŒ`�1�/ 0.86 0.03
6 linear c.`�1 � EŒ`�1�/ 0.45 0.05
6 � D �0 c.`�1 � EŒ`�1�/ 0.54 0.05
8 none 0.24 0.04
8 �� D 0 c` 0.37 0.05
8 sin c` 0.47 0.05
8 limit c` 0.41 0.05
8 linear c` 0.36 0.05
8 � D �0 c` 0.35 0.05
8 �� D 0 c.`� EŒ`�/ 0.30 0.05
8 sin c.`� EŒ`�/ 0.41 0.05
8 limit c.`� EŒ`�/ 0.33 0.05
8 linear c.`� EŒ`�/ 0.33 0.05
8 � D �0 c.`� EŒ`�/ 0.34 0.05
8 �� D 0 c`�1 0.26 0.04
8 sin c`�1 0.32 0.05
8 limit c`�1 0.26 0.04
8 linear c`�1 0.23 0.04
8 � D �0 c`�1 0.20 0.04
8 �� D 0 c.`�1 � EŒ`�1�/ 0.02 0.014
8 sin c.`�1 � EŒ`�1�/ 0.00 0
8 limit c.`�1 � EŒ`�1�/ 0.06 0.02
8 linear c.`�1 � EŒ`�1�/ 0.00 0
8 � D �0 c.`�1 � EŒ`�1�/ 0.02 0.014

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 201

programs in a population. The method is extremely general, applying to a large
class of control strategies of which the classical parsimony pressure method is
an instance. Experimental results with three different GP systems, using different
selection strategies and five different problems all strongly confirm the effectiveness
of the method.

Many instantiations of the technique presented here are possible. To a practitioner
willing to try out our ideas, we would recommend to start from tuning the parsimony
pressure coefficient of the traditional (linear) parsimony pressure method at every
generation using our Eq. (9.15). This will do a great deal to control changes in
program size. If more control is desired one could then adopt Eq. (9.20) with k D 1.

In future research it would be interesting to explore the applicability of Price’s
theorem to the control of bloat also in the case of crossover operators which are not
symmetric and mutation operators. In this case Price’s equation (Eq. (9.8)) would
include additional terms which with a symmetric crossover evaluate to 0. It would
also be interesting to explore the possibility of dynamically modulating the penalty
coefficient not only as a function of size but also of the fitness distribution so as to
achieve both fast progress towards high fitness values and bloat control.

References

1. L. Altenberg, The Schema Theorem, Price’s Theorem, in Foundations of Genetic Algorithms 3,
Estes Park, ed. by L.D. Whitley, M.D. Vose (Morgan Kaufmann, 1994), pp. 23–49. http://
dynamics.org/~altenber/PAPERS/STPT/. Published 1995

2. P.J. Angeline, An investigation into the sensitivity of genetic programming to the frequency
of leaf selection during subtree crossover, in Genetic Programming 1996: Proceedings of the
First Annual Conference, Stanford University, ed. by J.R. Koza, D.E. Goldberg, D.B. Fogel,
R.L. Riolo (MIT, 1996), pp. 21–29

3. W. Banzhaf, W.B. Langdon, Some considerations on the reason for bloat. Genet. Pro-
gram. Evol. Mach. 3(1), 81–91 (2002). doi:10.1023/A:1014548204452. http://web.cs.mun.ca/~
banzhaf/papers/genp_bloat.pdf

4. R. Crawford-Marks, L. Spector, Size control via size fair genetic operators in the PushGP
genetic programming system, in GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, New York, ed. by W.B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy,
D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter,
A.C. Schultz, J.F. Miller, E. Burke, N. Jonoska (Morgan Kaufmann, 2002), pp. 733–739

5. S. Dignum, R. Poli, Generalisation of the limiting distribution of program sizes in tree-based
genetic programming and analysis of its effects on bloat, in GECCO ’07: Proceedings of the
9th Annual Conference on Genetic and Evolutionary Computation, London, vol. 2, ed. by
D. Thierens, H.G. Beyer, J. Bongard, J. Branke, J.A. Clark, D. Cliff, C.B. Congdon, K. Deb,
B. Doerr, T. Kovacs, S. Kumar, J.F. Miller, J. Moore, F. Neumann, M. Pelikan, R. Poli,
K. Sastry, K.O. Stanley, T. Stützle, R.A. Watson, I. Wegener (ACM, 2007), pp. 1588–1595.
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1588.pdf

6. S. Dignum, R. Poli, Crossover, sampling, bloat and the harmful effects of size limits, in
Proceedings of the 11th European Conference on Genetic Programming, EuroGP 2008,
Naples, ed. by M. O’Neill, L. Vanneschi, S. Gustafson, A.I. Esparcia Alcazar, I. De Falco,
A. Della Cioppa, E. Tarantino. Lecture Notes in Computer Science, vol. 4971 (Springer, 2008),
pp. 158–169. doi:10.1007/978-3-540-78671-9_14

http://dynamics.org/~altenber/PAPERS/STPT/
http://dynamics.org/~altenber/PAPERS/STPT/
http://web.cs.mun.ca/~banzhaf/papers/genp_bloat.pdf
http://web.cs.mun.ca/~banzhaf/papers/genp_bloat.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2007/docs/p1588.pdf

202 R. Poli and N.F. McPhee

7. A. Ekart, S.Z. Nemeth, Selection based on the Pareto nondomination criterion for controlling
code growth in genetic programming. Genet. Program. Evol. Mach. 2(1), 61–73 (2001).
doi:10.1023/A:1010070616149

8. H. Iba, Complexity-based fitness evaluation for variable length representation (1997). Position
paper at the Workshop on Evolutionary Computation with Variable Size Representation at
ICGA-97

9. H. Iba, H. de Garis, T. Sato, Genetic programming using a minimum description length
principle, in Advances in Genetic Programming, Chap. 12, ed. by K.E. Kinnear Jr. (MIT, 1994),
pp. 265–284

10. H. Iba, H. de Garis, T. Sato, Temporal data processing using genetic programming, in Genetic
Algorithms: Proceedings of the Sixth International Conference (ICGA95), Pittsburgh, ed. by
L. Eshelman (Morgan Kaufmann, 1995), pp. 279–286

11. K.E. Kinnear Jr., Evolving a sort: lessons in genetic programming, in Proceedings of the
1993 International Conference on Neural Networks, San Francisco, vol. 2 (IEEE, 1993),
pp. 881–888. doi:10.1109/ICNN.1993.298674. http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/
ftp.io.com/papers/kinnear.icnn93.ps.Z

12. K.E. Kinnear Jr., Fitness landscapes and difficulty in genetic programming, in Proceedings of
the 1994 IEEE World Conference on Computational Intelligence, Orlando, vol. 1 (IEEE, 1994),
pp. 142–147. doi:10.1109/ICEC.1994.350026. http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/
ftp.io.com/papers/kinnear.wcci.ps.Z

13. M. Kotanchek, G. Smits, E. Vladislavleva, Pursuing the Pareto paradigm tournaments,
algorithm variations & ordinal optimization, in Genetic Programming Theory and Practice
IV, Ann Arbor, ed. by R.L. Riolo, T. Soule, B. Worzel. Genetic and Evolutionary Computation,
vol. 5 (Springer, 2006), pp. 167–186

14. J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural
Selection (MIT, Cambridge, 1992)

15. W.B. Langdon, The evolution of size in variable length representations, in 1998 IEEE
International Conference on Evolutionary Computation, Anchorage, Alaska (IEEE, 1998),
pp. 633–638. doi:10.1109/ICEC.1998.700102. http://www.cs.bham.ac.uk/~wbl/ftp/papers/
WBL.wcci98_bloat.pdf

16. W.B. Langdon, Size fair and homologous tree genetic programming crossovers. Genet.
Program. Evol. Mach. 1(1/2), 95–119 (2000). doi:10.1023/A:1010024515191. http://www.cs.
ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_fairxo.pdf

17. W.B. Langdon, R. Poli, Fitness causes bloat, in Soft Computing in Engineering Design and
Manufacturing, ed. by P.K. Chawdhry, R. Roy, R.K. Pant (Springer, London, 1997), pp. 13–
22. http://www.cs.bham.ac.uk/~wbl/ftp/papers/WBL.bloat_wsc2.ps.gz

18. W.B. Langdon, R. Poli, Foundations of Genetic Programming (Springer, 2002). http://www.cs.
ucl.ac.uk/staff/W.Langdon/FOGP/

19. W.B. Langdon, T. Soule, R. Poli, J.A. Foster, The evolution of size and shape, in Advances
in Genetic Programming 3, ed. by L. Spector, W.B. Langdon, U.M. O’Reilly, P.J. Angeline,
Chap. 8 (MIT, Cambridge, 1999). pp. 163–190. http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.
pdf

20. S. Luke, Two fast tree-creation algorithms for genetic programming. IEEE Trans. Evol.
Comput. 4(3), 274–283 (2000). http://ieeexplore.ieee.org/iel5/4235/18897/00873237.pdf

21. N.F. McPhee, N.J. Hopper, M.L. Reierson, Sutherland: an extensible object-oriented software
framework for evolutionary computation, in Genetic Programming 1998: Proceedings of the
Third Annual Conference, University of Wisconsin, Madison, ed. by J.R. Koza, W. Banzhaf,
K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R. Riolo
(Morgan Kaufmann, 1998), p. 241. http://www.mrs.umn.edu/~mcphee/Research/Sutherland/
sutherland_gp98_announcement.ps.gz

22. N.F. McPhee, J.D. Miller, Accurate replication in genetic programming, in Genetic Algorithms:
Proceedings of the Sixth International Conference (ICGA95), Pittsburgh, ed. by L. Eshel-
man (Morgan Kaufmann, 1995), pp. 303–309. http://www.mrs.umn.edu/~mcphee/Research/
Accurate_replication.ps

http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/kinnear.icnn93.ps.Z
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/kinnear.icnn93.ps.Z
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/kinnear.wcci.ps.Z
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/ftp.io.com/papers/kinnear.wcci.ps.Z
http://www.cs.bham.ac.uk/~wbl/ftp/papers/WBL.wcci98_bloat.pdf
http://www.cs.bham.ac.uk/~wbl/ftp/papers/WBL.wcci98_bloat.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_fairxo.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/WBL_fairxo.pdf
http://www.cs.bham.ac.uk/~wbl/ftp/papers/WBL.bloat_wsc2.ps.gz
http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/
http://www.cs.ucl.ac.uk/staff/W.Langdon/FOGP/
http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.pdf
http://www.cs.bham.ac.uk/~wbl/aigp3/ch08.pdf
http://ieeexplore.ieee.org/iel5/4235/18897/00873237.pdf
http://www.mrs.umn.edu/~mcphee/Research/Sutherland/sutherland_gp98_announcement.ps.gz
http://www.mrs.umn.edu/~mcphee/Research/Sutherland/sutherland_gp98_announcement.ps.gz
http://www.mrs.umn.edu/~mcphee/Research/Accurate_replication.ps
http://www.mrs.umn.edu/~mcphee/Research/Accurate_replication.ps

9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP 203

23. N.F. McPhee, R. Poli, Using schema theory to explore interactions of multiple operators,
in GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference,
New York, ed. by W.B. Langdon, E. Cantú-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M.A. Potter, A.C. Schultz, J.F.
Miller, E. Burke, N. Jonoska (Morgan Kaufmann, 2002), pp. 853–860. http://www.cs.bham.ac.
uk/~wbl/biblio/gecco2002/GP139.pdf

24. R. Poli, General schema theory for genetic programming with subtree-swapping crossover, in
Genetic Programming, Proceedings of EuroGP 2001, Lake Como. Lecture Notes in Computer
Science (Springer, Milan, 2001)

25. R. Poli, A simple but theoretically-motivated method to control bloat in genetic programming,
in Genetic Programming, Proceedings of the 6th European Conference, EuroGP 2003, Essex,
ed. by C. Ryan, T. Soule, M. Keijzer, E. Tsang, R. Poli, E. Costa. Lecture Notes in Computer
Science (Springer, 2003), pp. 211–223

26. R. Poli, W.B. Langdon, S. Dignum, On the limiting distribution of program sizes in tree-
based genetic programming, in Proceedings of the 10th European Conference on Genetic
Programming, Valencia, vol. 4445, ed. by M. Ebner, M. O’Neill, A. Ekárt, L. Vanneschi,
A.I. Esparcia-Alcázar. Lecture Notes in Computer Science (Springer, 2007), pp. 193–204.
doi:10.1007/978-3-540-71605-1_18

27. R. Poli, W.B. Langdon, N.F. McPhee, A field guide to genetic programming. Published
via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008). (With
contributions by J. R. Koza)

28. R. Poli, N.F. McPhee, General schema theory for genetic programming with subtree-swapping
crossover: Part II. Evol. Comput. 11(2), 169–206 (2003). doi:10.1162/106365603766646825.
http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partII.pdf

29. G.R. Price, Selection and covariance. Nature 227, August 1, 520–521 (1970). http://www.cs.
ucl.ac.uk/staff/W.Langdon/ftp/papers/price_nature.pdf

30. J. Rosca, Generality versus size in genetic programming, in Genetic Programming 1996:
Proceedings of the First Annual Conference, Stanford University, ed. by J.R. Koza, D.E.
Goldberg, D.B. Fogel, R.L. Riolo (MIT, 1996), pp. 381–387. ftp://ftp.cs.rochester.edu/pub/
u/rosca/gp/96.gp.ps.gz

31. J. Rosca, A probabilistic model of size drift, in Genetic Programming Theory and Practice,
Chap. 8, ed. by R.L. Riolo, B. Worzel (Springer, New York, 2003), pp. 119–136

32. J.P. Rosca, Analysis of complexity drift in genetic programming, in Genetic Programming
1997: Proceedings of the Second Annual Conference, Stanford University, ed. by J.R. Koza,
K. Deb, M. Dorigo, D.B. Fogel, M. Garzon, H. Iba, R.L. Riolo (Morgan Kaufmann, 1997),
pp. 286–294. ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/97.gp.ps.gz

33. J.P. Rosca, D.H. Ballard, Complexity drift in evolutionary computation with tree represen-
tations. Technical Report NRL5, University of Rochester, Computer Science Department,
Rochester, 1996. ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.drift.ps.gz

34. J.P. Rosca, D.H. Ballard, Rooted-tree schemata in genetic programming, in Advances in
Genetic Programming 3, Chap. 11, ed. by L. Spector, W.B. Langdon, U.M. O’Reilly, P.J.
Angeline (MIT, Cambridge, 1999), pp. 243–271. http://www.cs.bham.ac.uk/~wbl/aigp3/ch11.
pdf

35. J.E. Rowe, N.F. McPhee, The effects of crossover and mutation operators on variable length
linear structures, in Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO-2001), San Francisco, ed. by L. Spector, E.D. Goodman, A. Wu, W.B. Langdon,
H.M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon, E. Burke (Morgan Kauf-
mann, San Francisco, 2001), pp. 535–542. http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/
d03b.pdf

36. T. Soule, J.A. Foster, Effects of code growth and parsimony pressure on populations in genetic
programming. Evol. Comput. 6(4), 293–309 (1998). doi:10.1162/evco.1998.6.4.293

http://www.cs.bham.ac.uk/~wbl/biblio/gecco2002/GP139.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2002/GP139.pdf
http://lulu.com
http://www.gp-field-guide.org.uk
http://cswww.essex.ac.uk/staff/rpoli/papers/ecj2003partII.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/price_nature.pdf
http://www.cs.ucl.ac.uk/staff/W.Langdon/ftp/papers/price_nature.pdf
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.gp.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.gp.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/97.gp.ps.gz
ftp://ftp.cs.rochester.edu/pub/u/rosca/gp/96.drift.ps.gz
http://www.cs.bham.ac.uk/~wbl/aigp3/ch11.pdf
http://www.cs.bham.ac.uk/~wbl/aigp3/ch11.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d03b.pdf
http://www.cs.bham.ac.uk/~wbl/biblio/gecco2001/d03b.pdf

204 R. Poli and N.F. McPhee

37. T. Soule, J.A. Foster, Removal bias: a new cause of code growth in tree based evolutionary pro-
gramming, in 1998 IEEE International Conference on Evolutionary Computation, Anchorage,
Alaska (IEEE, 1998), pp. 781–186

38. B.T. Zhang, H. Mühlenbein, Balancing accuracy and parsimony in genetic programming. Evol.
Comput. 3(1), 17–38 (1995). doi:10.1162/evco.1995.3.1.17

Chapter 10
Experimental Analysis of Optimization
Algorithms: Tuning and Beyond

Thomas Bartz-Beielstein and Mike Preuss

Abstract This chapter comprises the essence of several years of tutorials the
authors gave on experimental research in evolutionary computation. We highlight
the renaissance of experimental techniques also in other fields to especially focus
on the specific conditions of experimental research in computer science, or more
concretely, metaheuristic optimization. The experimental setup is discussed together
with the pitfalls awaiting the unexperienced (and sometimes even the experienced).
We present a severity criterion as a meta statistical concept for evaluating statistical
inferences, which can be used to avoid fallacies, i.e., misconceptions resulting
from incorrect reasoning in argumentation caused by floor or ceiling effects. The
sequential parameter optimization is discussed as a meta statistical framework
which integrates concepts such as severity. Parameter tuning is considered as a
relatively new tool in method design and analysis, and it leads to the question
of adaptability of optimization algorithms. Another branch of experimentation
aims at attaining more concrete problem knowledge, we may term it “exploratory
landscape analysis”, containing sample and visualization techniques that are often
applied but not seen as being a methodological contribution. However, this chapter
is not only a renarration of well-known facts. We also attempt to look into the future
to estimate what the hot topics of methodological research will be in the coming
years and what changes we may expect for the whole community.

T. Bartz-Beielstein (�)
Faculty of Computer Science and Engineering Science, Institute of Computer Science, Cologne
University of Applied Sciences, Cologne, Germany
e-mail: thomas.bartz-beielstein@fh-koeln.de

M. Preuss
Algorithm Engineering, Department of Computer Science, TU Dortmund, Germany
e-mail: mike.preuss@tu-dortmund.de

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__10,
© Springer-Verlag Berlin Heidelberg 2014

205

mailto:thomas.bartz-beielstein@fh-koeln.de
mailto:mike.preuss@tu-dortmund.de

206 T. Bartz-Beielstein and M. Preuss

10.1 Introduction

As in many natural sciences, research on metaheuristics and especially evolutionary
computation (EC) mainly rests on two pillars: theory and practice. Undoubtedly,
theory in EC has made good forward progress during the last decade. However,
the larger part of published work in this area is still dealing almost exclusively
with the application of EC and related methods to real-world and/or benchmark
problems. Qualms regarding the meaningfulness of theoretical approaches are rarely
expressed, but doubts concerning the reliability of experimental results are often
raised, especially by practitioners. This may lead to the question: “Can we get rid of
experimentation in EC as a whole and resort to theory only?”

Our experience is that this will not happen, because there are simply too many
different real-world applications of EC techniques. Moreover, theory and practice
have different rhythms, and one may design and implement a useful algorithm
modification in minutes or hours, but adapting the existing theory to it may take days
or weeks. It may be worth noting that in other related sciences and in philosophy of
science, experimentation is currently experiencing a renaissance [54].

If we presume that experimentation is necessary, we need to ponder how to
strengthen the experimental methodology in order to make experimental results
more reliable and thus also more useful for theoretical approaches. It may help
to make clear what experimental works in EC are actually about and if they can
be split into categories. It seems that during the last decades, two motivations for
experimental works have been predominant:

• Solving a real-world problem, or at least showing that it could be solved by some
EC-based method

• Demonstrating the ability of a (preferably new and self-defined) algorithm

These two form the extremes, and mixtures with various weights are frequently
encountered. They resemble a problem-centric and an algorithm-centric view,
respectively. The former strongly leans towards engineering and often focuses
on representations, simulating, modeling, long runtimes, and technical issues,
whereas the latter is much nearer to algorithmics and mathematics. One deals with
constructed problems that can be computed fast and for which the most important
properties are well known.

Setting up an experiment can be far from trivial as there are numerous mistakes
that may render an experiment useless. Rardin and Uzsoy [71] state the following:
“No one who has ever tried it thinks conducting empirical research on heuristics
is easy”, and we would like to add that this stems from the complexity of the
systems with which heuristics deals with. Many influences which are simply ignored
(or removed “by construction”) in theoretical investigations cannot be removed but
must rather be controlled in experimental studies, thereby at least trying to avoid the
most obvious mistakes.

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 207

Performing experiments in computer science can address the following (related)
tasks:

T-1 Find the best parameters or algorithms given k sets of random numbers
representing the outcome of some experiments.

T-2 Find the best assignment for a set of real variables representing the parameters
of the algorithm (within a given range) for a problem class.

T-3 Given m possible ways to modify algorithm A (e.g., by using extra operators)
find the best combination for a problem class.
Regarding task T-1, we will restrict our analysis to problems with k D 2. We
are using SPOT (introduced in Sect. 10.3.2) to find the best assignment. SPOT can
also be used to determine the best combination of algorithm operators for a given
problem class.

Although conceptually different, task T-3 can be tackled in the framework
of task T-2. In a complex experiment the experimenter might have to consider,
hierarchically, all three tasks (for example he might want to retune the parameters
for every different combination of operators in T-3). The tuning procedure can
be performed hierarchically, e.g., for every different combination of operators.
However, we recommend an alternative approach which includes the operators into
the algorithm design. Settings for the operators can be included as factors in the
algorithm design and treated in a similar way as numerical parameters; see Chap. 14
in [18] for an example.

We report on these methodological foundations in Sect. 10.2, also reflecting on
approaches in other fields, especially in algorithmics. This section also describes
how reports from experimental studies can be structured.

Section 10.3 introduces the framework of active experimentation. It describes the
sequential parameter optimization toolbox. Since the comparison of results plays
a central role in experimentation, we discuss key elements from a metastatistical
perspective.

The algorithm-centric research has made good progress during the last years; two
notable developments are different tuning techniques (e.g., F-Race [22], sequential
parameter optimization (SPO) [1, 17] and the relevance and calibration method
(REVAC) [61]) and new benchmark competitions/libraries as BBOB’09 [36] and
the CEC’05 competition [75]. We highlight SPO as one interesting tuning approach
and its use for the experimental analysis of a simulated annealing (SANN) heuristic,
which is presented in Sect. 10.4. Hypothesis testing is discussed in Sect. 10.5. We
present an introduction and discuss problems related to hypothesis testing as well.

Some researchers claim that scientific progress is based on accepting high-level
theories, whereas others view progress “based on the growth of more localized
experimental knowledge”[54]. Actually, there is an interesting debate about the
importance of experimentation in the philosophy of science, e.g., [24] can be
recommended as a good starting point. We will not detail this discussion in
this chapter, but will transfer some important results from this on-going debate
in the following. The focus of our work lies on severity as a metastatistical
concept for evaluating statistical inferences, which can be used to avoid fallacies,

208 T. Bartz-Beielstein and M. Preuss

i.e., misconceptions resulting from incorrect reasoning in argumentation caused by
floor or ceiling effects. Severity, as an extension of the power used in hypothesis
testing, is introduced in Sect. 10.6.

Based on the considerations from the previous sections, meta statistical principles
can be applied. Metastatistical rules, as discussed in Sect. 10.7, are necessary,
because statistical results can be misleading and need some interpretation. Here
the concept of severity comes into play, which is one element of the sequential
parameter optimization.

For the problem-centric approach, it is often most important to collect problem
knowledge during design and test of an optimization method. This resembles some
kind of exploratory analysis and is dealt with in Sect. 10.8. Finally, the chapter
concludes with a summary and a view onto envisaged future developments in
Sect. 10.9.

10.2 Towards an Experimental Methodology

The following sections provide basic elements and fundamental considerations,
which are necessary for active experimentation in computer science. Active experi-
mentation, which implements a framework of the approach presented in this section,
is visualized in Fig. 10.1.

Section 10.2.1 discusses the role of experiments in computer science. Generally,
experiments should be based on well-founded research questions. We present
research questions related to demonstration, robustness, comparison, understanding,
and novelty detection in Sect. 10.2.2. The key problem which occurs in nearly every
experimental study is the selection of an appropriate measure. The most prominent
measures are introduced in Sect. 10.2.3. After an adequate measure is selected, the
pre-experimental planning phase can begin. During this phase, which is described
in Sect. 10.2.4, the experimental setup is calibrated. Problems, which are related
to parameter settings, are briefly discussed in Sect. 10.2.5. Then, experiments can
be performed, see Sect. 10.2.6. These experiments can generate lots of data, which
are used for the experimental analysis. We consider key features of comparisons
in Sect. 10.2.7. Findings from these analyses should be presented, e.g., as articles.
We propose a structured report scheme in Sect. 10.2.8. We can conclude from
our experience that meaningful results require several experiments as discussed
in Sect. 10.2.9. Finally, we consider the determination of scientifically meaningful
results in Sect. 10.2.10.

10.2.1 Performing Experiments in Computer Science

In theoretical computer science, one is usually interested in pessimistic generaliza-
tions, in knowing what an algorithm does in the worst possible case. Experimental

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 209

Fig. 10.1 Steps and contexts of performing an experiment from research question to scientific
result

results are considered with a certain amount of skepticism. This may have two
reasons:

• Many experimental works of the past are not very well crafted. Unlike from
other sciences with very expensive (in time and financial effort) experiments,
computer science is in the luxurious position of allowing for nearly unlimited
sampling. Thus, one should not stop at the first results but instead use the
obtained knowledge to refine the experiment. Every possible setup is like a
simple point in a high-dimensional space, defined by the many different factors
that could influence the outcome. Sampling just at one point will not allow for
any conclusions about, e.g., the overall quality of certain algorithms.

• Experimental investigations rarely care about worst cases. If the treated problem
has a real-world background, the worst case view is usually not applicable: One
simply does not know how it could look, and as no analytic formulation is
available, there is no alternative way of approaching the worst case. One therefore
often follows an average case approach, where the average consists of some
reasonably likely cases or representatives thereof. Thus, experiments can only
lead to probabilistic reasoning because it is not possible to give a conclusion that
holds for every member of a problem class. This approach generalizes neutrally
over the samples made, and even if the experiment is bug-free and cleverly set
up, exact knowledge is only attained for the points that are actually measured.
Performance guarantees cannot be given for any deviating setting.

This said, we do not recommend to cease experimentation altogether. In many
situations, it is the only way to advance scientific progress. In others, it can be a
valuable addition to theory, as emphasized by the Algorithm Engineering approach
[26]. However, it is necessary to be aware of the problems one may run into and to
follow a suitable experimental methodology instead of doing ad-hoc tests.

Several authors from different fields have cautioned against experimental mis-
takes and provided guidelines for scientifically meaningful experimentation on
algorithms; we name only a small subset here. Moret gives a methodology overview
from the viewpoint of algorithmics, also reporting about testing heuristics [59].

210 T. Bartz-Beielstein and M. Preuss

Johnson [45] provides a comprehensive list of pitfalls and solutions for experiments
in algorithmics, mostly dealing with deterministic algorithms. However, a large
part of the list also applies to metaheuristics/evolutionary algorithms. Nevertheless,
there are problems stemming from the nondeterministic nature of these algorithms.
These are especially treated, e.g., by Hooker [40] and Eiben [29]. In the following,
we describe how to start an experimental investigation on metaheuristic optimiza-
tion methods and how to avoid the most commonly made mistakes.

10.2.2 Research Questions

Around two decades ago, Cohen [27] hinted at the fact that in artificial intelligence,
experimental studies were often not well tasked. In the evolutionary computation or
metaheuristics fields, the situation at that time was certainly not better. Surprisingly,
nowadays many experimental works still come without a clear statement about
the overall research question that is going to be answered. Instead, the implicitly
assumed task often is to show that any new algorithm A is better than a standard
method A� or many of them. Sampling comparison data at a small number
of points (defined by algorithms, optimization problems, parameters, termination
criteria, etc.) does not necessarily allow for general conclusions about the compared
algorithms. Besides, the tackled research question should not be that general. As
an example, it may make more sense to ask under which conditions (problems,
runtimes, etc.) A is better than A� and why. It goes without saying that the research
question must be stated in the paper, so that the reader gets a chance to value the
experimental findings.

In our view, the following questions or aspects of questions are fundamental
for experiments in computer science and may serve as a guideline for setting
up new experiments. The experimenter should clearly state if experiments are
performed to:

1. Demonstrate the performance of one algorithm,
2. Verify the robustness of one algorithm on several problem instances,
3. Compare two (or several) known algorithms,
4. Explain and understand an observed behavior, or
5. Detect something new.

Each of these five research goals, which can also be characterized as demonstration,
robustness, comparison, understanding, and novelty detection, requires a different
experimental setup.

We discourage mixing too many different aspects of an experimental investi-
gation into one experiment. Rather, one shall consider if it makes sense to split
the investigation into multiple experiments, each one reported separately. This
simplifies understanding the outcome and also enhances reproducibility, which
should be a primary concern when presenting exciting new facts obtained by
experiment. If we want to employ statistical techniques as hypothesis tests to bolster

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 211

up our confidence in the findings, it is necessary to switch the context from a
domain-specific scientific one to a statistical one and back. We can first formulate
one or several scientific claims. As an example, we consider the claim: “Algorithm A

is faster than algorithm A� under the defined conditions (test problems, performance
measure, parameter settings, etc.).” These then have to be formulated as statistical
hypotheses, which can be tested by experimentation.

10.2.3 What to Measure?

Once the direction of the experimental investigation is set, one has to decide how to
measure. This may not be a trivial issue. McGeoch [55] demonstrates that even for
deterministic algorithms, the influence of the measure should not be underestimated
and that setting it up properly can be a decisive factor for obtaining interesting
results. When investigating nondeterministic optimization algorithms on not too
simple problems, there are two principal possibilities. We can employ a quality
task and measure how long the algorithm needs to get there, or we can set up a
budget (usually regarded as equivalent to runtime in black-box optimization) task
and measure the performance obtained under scarce resources. As discussed in the
BBOB’09 setup [36], fixing a quality task (there also called horizontal measuring)
often leads to a better understanding of algorithm performance than fixing a budget
task (vertical measuring). The competition was thus run under the expected running
time (ERT) measure:

ERT .ftarget/ D #FEs.fbest.FE/ 	 ftarget/

#succ
(10.1)

The number of “unsuccessful evaluations” (where the observed objective function
value is worse than a given target, fbest.FE/ 	 ftarget, restarts are assumed) per
repeat is summed up and divided by the number of successes (#succ) of attaining the
target function value ftarget. The ERT is certainly good at capturing the performance
of algorithms under relaxed resource conditions. However, real-world problems
often do not allow such generous conditions so that only a few hundred or thousand
function evaluations can be invested. It is a philosophical question if one can justify
applying the term “optimization” in this context, but apart from that it is obvious
that an algorithm with a good final best function value does not necessarily provide
a good approximation of this value fast. Thus it also makes sense to set a budget task
in the predicted range of allowed function evaluations under application conditions
and ask which algorithm provides the best solution and how reliable it is.

Next to the ERT, some often-used measures are the mean best fitness (MBF)
and the success rate (SR). However, these come with some difficulties. Averaging is
very sensitive regarding outliers, so it may be more suitable to work with the median
instead of the mean. Success rates were frequently used in the past, but this measure
removes the whole runtime information. A fast method always reaching 100 %

212 T. Bartz-Beielstein and M. Preuss

becomes indistinguishable from a slow one also reaching this success rate. For
setting up proper conditions for measuring, one may rely on runtime distributions
as proposed by Hoos and Stützle [41]. Chapter 7 in [1] presents 18 different
performance measures and mentions relevant publications.

Sometimes, however, the available base measures do not match the intention of
the experiment well. For example, if one has a certain, possibly unusual tradeoff
between quality and runtime in mind. In these cases, it may be necessary to define a
new measure as, e.g., suggested by Rardin and Uzsoy [71] (see [67] for an example).
However, this path should be walked with caution: It does not make sense to stick
to a measure that does not express what one actually wants to investigate. But too
many measures render results incomparable.

10.2.4 Pre-experimental Planning

If research question and measure are chosen, and the implementation issues have
been resolved, it is time for the first tests. We name this phase pre-experimental
planning and its main purpose is to check if the envisioned experimental setup
is meaningful. This may apply to the selection of ftarget values for measuring, or
the maximum allowed number of function evaluations, or the set of benchmark
problems one is going to investigate.

During the pre-experimental planning phase, several practical problems have to
be considered, e.g., how many comparisons should be performed? How many repeat
runs of each algorithm should be done? Should a one-stage or multistage procedure
be used? Classical textbooks on statistics provide useful answers to these questions,
which are related to pre-data information, i.e., before the experimental data is
available. We highly recommend Bechhofer et al.’s comprehensive work “Design
and Analysis of Experiments for Statistical Selection, Screening, and Multiple
Comparisons” [20].

Additionally, one should try to make sure that other possible problems that could
influence the outcome of an experiment are found and remedied. As Knight [47]
argues, one should apply common sense concerning setup and results. Are the
first results plausible? Or do they hint to a possible code problem? What makes
a meaningful difference in my test cases? We would explicitly suggest to use as
much visualization as possible at this stage. A problem revealed only after the
experiment is finished is much more annoying than one found early, especially if
time constraints do not allow for redoing the whole experiment.

At the end of the pre-experimental phase, one should be able to set up an
experiment in a way that it leads to results that address the given research question.
We may assume that not all possible problems with the setup can be identified during
this first phase, but it serves as a filter preventing the most obvious mistakes, some
of which we highlight in the following.

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 213

10.2.5 Fair Parameter Settings

There are different opinions on how much effort should be put into obtaining good
parameters for the algorithms which are to be compared. It certainly makes sense
to compare algorithms under default parameters. This resembles an application
setting where parameter adaptation to a problem is not possible, e.g., due to time
restrictions. On the other hand, it may also be important to know how the algorithm
would perform under good parameter settings. In this case, tuning algorithms can
be applied before running the comparison. In either case, the comparison should
be fair, meaning that the same amount of tuning should go into setting up each
algorithm. It is clear that a tuned algorithm will perform better than an algorithm
running under default parameters in most cases; this is hardly worth an experimental
investigation. For newly invented algorithms, a robust set of default parameters
may not be available, thus the ad hoc parameter values chosen to make it run
can serve as such. However, it is even more necessary to explore parameter effects
and interactions in this case, e.g., by applying tuning. Regardless of the statements
above, it may be a viable research question to ask if any parameter setting for a
new algorithm leads to a performance advantage over a standard algorithm. Then
the next question should be: How robust are these parameters, or is the advantage
only achieved for very specific problems, and if so, for which ones?

10.2.6 Performing the Experiments

Now that the research question and the performance measure for a given problem
and algorithm are fixed, experiments can be performed. It is important to set up
the scientific claims and their matching statistical hypotheses before looking at the
obtained results [59] to achieve as much objectivity as possible. Otherwise, one
could set up hypotheses in a way so that they are always supported, which renders
the scientific contribution insignificant. On the other hand, this requires a change in
how experimental results are received. More than the raw numbers or outcomes of
statistical tests, the knowledge gain is important. Do the results contain previously
unknown facts? This may also happen if two well-known algorithms, neither of
which is new, are compared on a new set of benchmark functions; it is not necessary
to always invent new algorithms. Or do they support or even refute known facts?

Additionally, we would like to give a practical hint here: “Never watch a running
experiment.” Once one can be sure that the experiment is indeed going to produce
useful data, one should wait with the analysis until the experiment is finished. The
reason is simply that one is easily mislead by the first results coming in and may get
a wrong impression that is later on hard to get rid of, even in the face of the full data
set. In this case the experimenter is in danger of losing the necessary neutrality.

214 T. Bartz-Beielstein and M. Preuss

10.2.7 Key Features of Comparisons

Many experimental studies are based on comparisons. Consider, e.g., tuning
procedures which can be used to improve algorithm’s performance. Obviously,
each tuning procedure itself requires comparisons, because the performance of the
algorithm before, say

x D perf.A/; (10.2)

and after the tuning, say x� D perf.A�/ has to be compared. Many tuning proce-
dures are based on stochastic data, i.e., noisy data. This noise can be caused by:

1. The algorithm, e.g., evolutionary algorithms,
2. The problem, e.g., simulation model,
3. Or both.

Therefore, the comparison of two real values x and x� is not sufficient and multiple
runs of the algorithm have to be performed. We are considering (at least) two data
vectors: x and x�, where x denotes the vector of n performance values of the untuned
algorithm A, and x� the vector of m runs of the tuned algorithm A�. Note, a similar
situation might occur even if algorithm and problem are purely deterministic when
multiple problem instances are tested.

In many cases we are facing the following fundamental problem after all the
experiments were performed, i.e., post-data: Given two data sets, x and x�, repre-
senting data from associated algorithms A and A�, respectively. Decide whether A

is better than A�.
In order to answer this question, performance has to be measured. Although

simple statistics such as the mean or median of the run time are adequate to gain a
first impression of the algorithm’s performance, a sound statistical analysis requires
more sophisticated measures. At this stage, statistical tests can be are carried out.

10.2.8 Reporting Results

After the results are in, they should be visualized to enable a basic consistency
check. Figures are much easier to interpret than tables, so this effort is not
wasted and greatly helps when looking for interesting effects. When conducting
the experiment as well as when creating a structured report of it, it may be helpful
to work alongside the eight-step procedure presented in Fig. 10.2 and to write
down decisions, setups and results as they are obtained during the experiment. This
structure is largely similar to the one often applied in natural sciences for many
decades.

Note that we separate observations from discussion. This may seem artificial
and the distinction is not in all cases obvious. However, the intention is to keep

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 215

R-1: Research question. State in short the general objective of the experiment.
Pre-experimental planning. Report the results of first tests which are important
for setting up the main experiment, e.g., for choosing problems, parameter
settings, termination criteria.

R-2:

R-3: Task. Formulate one or several scientific claims (only applicable if more concrete
than the research question) and give matching statistical hypotheses, together
with significance conditions.

R-4: Setup. Here goes everything that is needed to replicate the experiment, if not
previously described. This consists of the applied algorithms, test problems,
parameter settings, important outer conditions (e.g., if relevant, details of the
employed hardware). Now, experiments can be performed.

R-5: Results/Visualization. This holds numerical results or links to the tables or
figures made of them and also reports on the outcome of the hypothesis tests.

R-6: Observations. Unexpected or otherwise notable behavior that has been detected
by reviewing the results, without interpretation.

R-7: Discussion of the statistical relevance. Statistical hypotheses from step R-3 are
reconsidered (accepted/rejected).

R-8: Discussion of the scientific meaning. Attempts to give explanations for the re-
sults/observations obtained and puts the results of the experiment in a context
with other scientific findings. This paragraph is meant to contain subjective
statements which might lead to new hypotheses or research questions based on
the results from current experiments.

Fig. 10.2 Structured report

objective differences apart from their interpretation. If, for example, an algorithm
is surprisingly good on specific problem instances, this is surely an observation.
Giving a presumed reason why this is the case belongs to the discussion, as another
author may come up with another explanation even if the observation can be
replicated.

10.2.9 Iterating the Experimental Process

As already stated by McGeoch [55] and others, experimentation with algorithms
should not be limited to a one-shot event but rather should be regarded as an iterated
process where the results obtained from the first experiment lead to new hypotheses
and a refined experimental setup for the next. For example, it may happen that the
first experiment revealed some unexpected facts and one has an intuition concerning
the causing factors, which can be tested in a second experiment.

In order to support the incremental experimentation process, we recommend
keeping an experimental journal of all experiments undertaken in a specific context.
The journal should contain at least a list of running numbers, time stamps,
names/research questions, and a short description of the outcome. The journal can
be helpful for obtaining an overview of the progress of an investigation and keeping
the data well organized.

216 T. Bartz-Beielstein and M. Preuss

10.2.10 Scientifically Meaningful Results?

Finally, after performing all these tests as described in Sect. 10.2.7, one fundamental
qualm remains: “How can we guarantee that results are scientifically meaningful?”
This question is related to post-data information—it includes data which is avail-
able after the experiments were performed. We will focus on this question in
the following by introducing the concept of severity. A technical treatment of
the concept of severity is given in Sect. 10.6.

In the severe testing philosophy, the quantitative assessment offered by error
statistics provides tools to test how well-probed hypotheses are. Mayo [53] intro-
duces the concept of severity as follows: “Stated simply, a passing result is a severe
test of hypothesis H just to the extent that it is very improbable for such a passing
result to occur, were H false.”

Although this approach is based on classical hypothesis testing, i.e., the Neyman–
Pearson statistical paradigm, it is relevant to different statistical frameworks,
e.g., non parametric approaches. Classical hypotheses testing dominates today’s
scientific publications, therefore this first approach is justified by everyday practice.

10.3 Active Experimentation

Section 10.3.1 presents active experimentation as a framework which implements
features of the experimental methodology introduced in Sect. 10.2. This frame-
work can be used for demonstration, robustness, comparison, understanding, and
novelty detection. In Sect. 10.3.2 the sequential parameter optimization toolbox is
introduced. It comprehends the computational steps of the active experimentation
framework, i.e., design of experiments, response surface methods, or statistical
analysis and visualization. Automated experimentation has gained much attention
in the last years. Several automated approaches were proposed, especially in the
context of demonstration and robustness, e.g., automated tuning of algorithms.
Therefore, we will compare automated and interactive approaches in Sect. 10.3.3.

10.3.1 Definition

Definition 10.1 (Active Experimentation). Active experimentation (AEX) is a
framework for tuning and understanding of algorithms. AEX employs methods from
error statistics to obtain reliable results. It comprises the following elements:

AEX-1: Scientific questions
AEX-2: Statistical hypotheses

AEX-3: Experiments
AEX-4: Scientific meaning

�

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 217

These elements can be explained as follows. The starting point of the investigation
is a scientific question (AEX-1). This question often deals with assumptions about
algorithms, e.g., influence of parameter values or new operators. This (complex)
question is broken down into (simple) statistical hypotheses (AEX-2) for testing.
Next, experiments can be performed for each hypothesis:

(a) Select a model, e.g., a linear regression model to describe a functional relation-
ship.

(b) Select an experimental design.
(c) Generate data, i.e., perform experiments.
(d) Refine the model until the hypothesis can be accepted/rejected.

Finally, to assess the scientific meaning of the results from an experiment, conclu-
sions are drawn from the hypotheses. This is step AEX-4 in the active experimen-
tation framework. Here, the concept of severity as introduced in Sect. 10.6 comes
into play.

10.3.2 Sequential Parameter Optimization Toolbox

We introduce the sequential parameter optimization toolbox (SPOT) as one possible
implementation of the experimental approach in the AEX framework. The SPO
toolbox was developed over recent years by Thomas Bartz-Beielstein, Christian
Lasarczyk, and Mike Preuß [17]. Main goals of SPOT are (i) to determine improved
parameter settings for optimization algorithms and (ii) to provide statistical tools for
analyzing and understanding their performance.

Definition 10.2 (Sequential Parameter Optimization Toolbox). The sequential
parameter optimization toolbox (SPOT) implements the following features, which
are related to step AEX-3.

SPOT-1: Use the available budget (e.g., simulator runs, number of function
evaluations) sequentially, i.e., use information from the exploration
of the search space to guide the search by building one or several
metamodels. Choose new design points based on predictions from the
metamodel(s). Refine the metamodel(s) stepwise to improve knowledge
about the search space.

SPOT-2: If necessary, try to cope with noise (see Sect. 10.2.7) by improving
confidence. Guarantee comparable confidence for search points.

SPOT-3: Collect information to learn from this tuning process, e.g., apply
exploratory data analysis.

SPOT-4: Provide mechanisms both for interactive and automated tuning. �

The article “Sequential Parameter Optimization” [17] was the first attempt to
summarize results from tutorials and make this approach known to and available for

218 T. Bartz-Beielstein and M. Preuss

a broader audience. Since 2004, a series of tutorials was presented during the leading
conferences in the field of computational intelligence, e.g., [6, 7, 9–12, 14, 15].

SPOT was successfully applied in the fields of bioinformatics [32, 33, 79],
environmental engineering [30, 48], shipbuilding [72], fuzzy logic [82], multi-
modal optimization [68], statistical analysis of algorithms [50, 78], multicriteria
optimization [80], genetic programming [51], particle swarm optimization [16, 49],
automated and manual parameter tuning [31, 42, 43, 74], graph drawing [65, 77],
aerospace and shipbuilding industry [63], mechanical engineering [56], and chemi-
cal engineering [39]. Bartz-Beielstein [3] collects publications related to sequential
parameter optimization.

SPOT employs a sequentially improved model to estimate the relationship
between algorithm input variables and its output. This serves two primary goals.
One is to enable determination of good parameter settings; thus SPOT may be used
as a tuner. Second, variable interactions can be revealed that help to understand
how the tested algorithm works when confronted with a specific problem or how
changes in the problem influence the algorithm’s performance. Concerning the
model, SPOT allows the insertion of virtually every available metamodel. However,
regression and Kriging models, or a combination thereof, are most frequently used
as prediction models (as defined as F in Algorithm 10.1). Bartz-Beielstein [4, 5]
describes integration and use of these prediction models in SPOT.

Algorithm 10.1 presents a formal description of the SPOT scheme. This scheme
consists of two phases, namely the first construction of the model (lines 1–6) and
its sequential improvement (lines 8–27). Phase 1 determines a population of initial
designs in algorithm parameter space and runs the algorithm k times for each design.
Phase 2 consists of a loop with the following components:

1. Update the model by means of the obtained data.
2. Generate a (large) set of design points and compute their utility by sampling the

model.
3. Select the seemingly best design points and run the algorithm for these.
4. The new design points are added to the population and the loop starts over if the

termination criterion is not reached.

A counter k is increased in each cycle and is used to determine the number of
repeats that are performed for each setting to be statistically sound in the obtained
results. Consequently, this means that the best design points so far are also run
again to obtain a comparable number of repeats. SPOT provides tools to perform
the following tasks:

1. Initialize. An initial design is generated. This is usually the first step during
experimentation. The employed parameter region and the constant algorithm
parameters have to be provided by the user.

2. Run. This is usually the second step. The optimization algorithm is started
with configurations of the generated design. Additionally information about the
algorithm’s problem design are used in this step. The algorithm provides the
results to SPOT.

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 219

Algorithm 10.1. SPOT

// phase 1, building the model:
let A be the tuned algorithm;
generate an initial population P D fp1; : : : ; pmg of m parameter vectors;
let k D k0 be the initial number of tests for determining estimated utilities;
foreach p 2 P do

run A with p k times to determine the estimated utility x of p;
end
// phase 2, using and improving the model:
while termination criterion not true do

let a denote the parameter vector from P with best estimated utility;
let k0 the number of repeats already computed for a;
build prediction model F based on P and fx1; : : : ; xjPjg;
// (alternatively: Use several prediction models in

parallel)
generate a set P0 of l new parameter vectors by random sampling;
foreach p 2 P0 do

calculate f .p/ to determine the predicted utility F.p/;
end
select set P00 of d parameter vectors from P0 with best predicted utility (d � l);
run A with a k � k0 C 1 times and recalculate its estimated utility using all k C 1 test

results; // (improve confidence)
let k D k C 1;
// (alternatively: Use more enhanced update schemes like

OCBA)
run A k times with each p 2 P00 to determine the estimated utility F.p/ extend the
population by P D P[P00;

end

3. Sequential step. A new design is generated. A prediction model is used in
this step. Several generic prediction models are available in SPOT already. To
perform an efficient analysis, especially in situations when only few algorithms
runs are possible, user-specified prediction models can easily be integrated into
SPOT. Prediction models can also be used in parallel [19], which results in
the so-called ensemble-based modeling approach. To improve confidence, the
number of repeats can be increased. Optimal computational budget allocation
(OCBA) [8, 25] is implemented as the default method for assigning new
evaluations to algorithm configurations.

4. Report. An analysis, based on information from the results, is generated. Since all
data flow is stored in files, new report facilities can be added very easily. SPOT
contains some scripts to perform a basic regression analysis and plots such as
histograms, scatter plots, plots of the residuals, etc.

5. Automatic mode. In the automatic mode, the steps run and sequential are
performed after an initialization for a predetermined number of times.

220 T. Bartz-Beielstein and M. Preuss

10.3.3 Comparison of Automated and Interactive Tuning

SPOT can be run in an automated and in an interactive mode. The automated mode
might be of interest for the user who is primarily interested in the result and who can
afford a tuning procedure which is not restricted to a very small number of algorithm
runs. Similar to microscopes in biology, SPOT can be used as a “datascope” to gain
insight into algorithm behavior, by revealing factor effects and their importance to
the experimenter. Such insights are not only used to guide the interactive parameter
optimization process, but are also of intrinsic value to the developer or end user of
a target algorithm.

The classical response surface methodology (as discussed in Chap. 15 of [23])
underlying our interactive approach was developed not only for finding parameter
settings that achieve improved performance, but also to provide insights into how
the performance of a target algorithm is affected by parameter changes. This latter
question is related to the analysis of the response surface in the region of interest.
Contour plots, which can easily be obtained in the SPOT framework, are useful tools
to answer it.

We recommend using classical regression models at the first stage of an interac-
tive approach, because these models can be interpreted quite easily; features of the
response surface can be seen directly from the regression equation Y D Xˇ. This
is not the case for more sophisticated prediction models, such as neural networks or
Gaussian process models. Furthermore, as demonstrated in [42], it is possible to
obtain competitive results using such simple models. Nevertheless, in principle,
more complex regression models could be used in the context of the interactive
sequential parameter optimization approach. Furthermore, we note that observations
and hypotheses regarding the dependence of a given target algorithm’s performance
on its parameter settings could also be obtained by analyzing more complex models,
including the Gaussian process models constructed by the automatic sequential
parameter optimization procedures.

Clearly, the interactive approach makes it easy to use results from early stages of
the sequential parameter optimization process to effectively guide decisions made
at later stages. For example, looking back at the initial stages of the process, the
experimenter can detect that the set of variables studied at this stage was chosen
poorly, or that inappropriate ranges were chosen for certain variables. We note that
the models used in early stages of the automated procedures also provide guidance
to later stages of the process. However, the interactive process leaves room for expert
human judgment, which can often be more effective in terms of the improvement
achieved based on a small number of target algorithm runs.

The human expertise required to use the interactive approach successfully can be
seen as a drawback compared to fully automated approaches. However, by providing
dedicated support for the various operations that need to be carried out in this
context, SPOT eases the burden on the experimenter and lowers the barrier to using
the interactive approach effectively.

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 221

10.4 Case Study: Tuning Simulated Annealing

This section presents a working example to demonstrate essential principles of AEX
introduced in Sect. 10.3. The following study will be referred to later in Sect. 10.7,
which discusses metastatistical principles. This case study was set up to illustrate
key elements of the AEX framework. It does not present a complete analysis of
simulated annealing, but can serve as a starting point for an experimental analysis.

Our goal is to determine an improved parameter-setting for a simulated annealing
search heuristic. This goal can be formulated as the following scientific question
(this refers to AEX-1):

Can we modify the algorithm design in such a manner that SANN’s performance and
robustness is improved?

Furthermore, we are seeking for tools which provide support in deciding whether
this improvement is scientifically (or in practice) meaningful.

10.4.1 Simulated Annealing

Simulated Annealing (SANN) belongs to the class of stochastic global optimization
methods. The R implementation, which was investigated in our study, uses the
Metropolis function for the acceptance probability. It is a variant of the simu-
lated annealing algorithm given in [21]. SANN uses only function values but
is relatively slow. It will also work for non-differentiable functions. By default
the next candidate point is generated from a Gaussian Markov kernel with scale
proportional to the actual temperature. Temperatures are decreased according to the
logarithmic cooling schedule as given in [21]; specifically, the temperature is set
to temp= log...t � 1/=tmax/ � tmaxC exp.1//, where t is the current iteration
step, and temp and tmax are specifiable via control. SANN is not a general-
purpose method but can be very useful in getting to a good value on a very rough
surface.

SANN uses two design variables, which were tuned during our study:

temp is the starting temperature for the cooling schedule. Defaults to 10.
tmax is the number of function evaluations at each temperature. Defaults to 10.

The interval from 1 to 50 was chosen as the region of interest (ROI) for both
design variables in our experiments. The total number of function evaluations (of the
Branin function, see Sect. 10.4.2) was set to maxit D 250 for all experiments. The
starting point, i.e., the initial value for the parameters to be optimized over, was
x0 D .10; 10/.

222 T. Bartz-Beielstein and M. Preuss

10.4.2 Description of the Objective Function

The Branin function

f .x1; x2/ D
�

x2 � 5:1

4�2
x2

1 C 5

�
x1 � 6

�2

C 10 �
�

1 � 1

8�

�
cos.x1/ C 10;

with

x1 2 Œ�5; 10� and x2 2 Œ0; 15� (10.3)

was chosen as a test function, because it is well-known in the global optimiza-
tion community, so results are comparable. It has three global minima, x�1 D
Œ3:1416; 2:2750�, x�2 D Œ9:4248; 2:4750�, and x�3 D Œ�3:1416; 12:2750� with
y� D f .x�i / D 0:3979, (i D 1; 2; 3). Results from the corresponding tuning
experiments will be used in Sect. 10.7.1 to discuss particular aspects of the active
experimentation framework.

10.5 Hypothesis Testing

We will describe the classical Neyman–Pearson statistical framework, which
includes pre-data statistics such as significance levels, errors of the first and second
kind, and power.

10.5.1 Neyman–Pearson Tests

To illustrate the concept of hypothesis testing, we introduce some basics from
statistics. Hypothesis testing is the key element of step AEX-2 in the active
experimentation framework.

Following the definition in Mayo [53], Neyman and Pearson (N-P) tests can
be described as follows. The set of all possible values of the sample X D
.X1; X2; : : : ; Xn/ with realizations x D .x1; x2; : : : ; xn/ is X, and � is the set of
all possible values of the unknown parameters � . A statistical model is represented
as a pair .X; �/.

A null hypothesis, H0, and an alternative hypothesis, H1 are stated. These
hypotheses partition the parameter space of the statistical model. The generic form
of the null and alternative hypotheses is

H0 W � 2 �0 versus H1 W � 2 �1; where .�0; �1/ is a partition of �:

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 223

We will use P.xI H/ for the probability of x under H to avoid confusion with con-
ditional probabilities, P.xjH/, where H denotes a random variable (Bayes’ rule).

A test statistic d.X/ reflects the distance from H0 in the direction of H1. To
simplify the following discussion, we consider a sample X D .X1; X2; : : : ; Xn/

where the Xis are assumed to be normal, independent, and identically distributed
with known standard deviation � , i.e., Xi
 N.�; �2/. Here, the unknown
parameter � is the mean � of the normal distribution. The test statistic is

d.X/ D X � �0

�=
p

n
D X � �0

�x

; (10.4)

where X is the sample mean, �0 is the hypothesized population mean under the
null hypothesis, and �x denotes the standard error. We will consider one-sided tests
in the following. Based on the prespecified ˛ value, the critical value c1�˛ , which
partitions � into the region of acceptance, C0.˛/ and the region of rejection, C1.˛/

of the null hypothesis, can be determined as the quantile z1�˛ of the standard normal
distribution.

C0.˛/ D fx 2 X W d.x/ � c1�˛g
C1.˛/ D fx 2 X W d.x/ > c1�˛g:

The type I error probability (or error of the first kind, ˛ error) is

P.d.X/ > c1�˛I H0/ � ˛;

and represents the probability that the null hypothesis is rejected erroneously. The
type II error probability (or error of the second kind, ˇ error) is

P.d.X/ � c1�˛I H1/ D ˇ.�1/;

where �1 is the hypothesized population mean under the alternative hypothesis,
error-statistical methods describe methods using error probabilities based on the
relative frequencies of errors in repeated sampling. Probability is used to quantify
how frequently methods are able to discriminate between alternative hypotheses and
their reliability of error detection [54]. Following Mayo [53], we will use the term
error statistics for hypothesis tests, statistical significance tests, and related error
probability methods.

Example 10.1. We consider one particular test, T .xI ˛I �/ D T .˛/ about the mean
with significance level ˛ D 0:025. The null hypothesis H0 W � � �0 is tested
versus the alternative hypothesis H1 W � > �0. Here, c1�˛ can be determined as the
quantile z1�˛ of the standard normal distribution, e.g., c1�0:025 D z1�0:025 D 1:96,
therefore

224 T. Bartz-Beielstein and M. Preuss

Fig. 10.3 One-sided hypotheses test. Based on the null and alternative hypotheses and ˛, the
significance level, a test can be performed. We assume a known standard deviation, say � D 2 and
a sample size of n D 100. If the mean value x is larger than 12.39, the null hypothesis is rejected,
otherwise it is accepted. The dark gray shaded region represents the Type I error probability. The
alternative hypothesis reads �1 D 12:2. The light gray shaded region (which includes also the
dark gray shaded region) represents the power of the test, i.e., 1� ˇ

C0.˛/ D fx 2 X W d.x/ � 1:96g;
C1.˛/ D fx 2 X W d.x/ > 1:96g:

Furthermore, let �0 D 12, � D 2, and n D 100. The null hypothesis H0 W � � 12

is tested versus the alternative hypothesis H1 W � > 12. The test rule derived from
this test reads: Reject H0 if d.x0/ > 1:96, or if x D �0 C d.x0/ � �x > 12:39, see
Fig. 10.3. If the observed value of the test statistic falls into the rejection region, we
will reject the null hypothesis at a 2.5 % significance level. �

Acceptance and rejection are associated with certain actions, e.g., publishing
a result about effects of modifying the recombination operator of an evolutionary
algorithm. But, how can we be sure that this action is justified, e.g., scientifically
correct or meaningful? The behavioristic rationale answers this as follows:

We are justified in “accepting/rejecting” hypotheses in accordance with tests having low
error probabilities because we will rarely err in repeated applications.[64]

This rationale, which was formulated by J. Neyman and E.S. Pearson in 1933, is
based on the idea that error probabilities are means to determine “the evidence a set
of data x0 supplies for making warranted inferences about the process giving rise to
data x0” [53].

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 225

10.5.2 Power of a Test

The severity concept, which is introduced in Sect. 10.6, is related to the power of a
test. The power of a test is a standard concept in hypotheses testing. It is the test’s
probability of correctly rejecting the null hypothesis, i.e., the complement of the
false negative rate, ˇ. The power of a test is defined as

POW.T .˛/I �1/ D P.d.X/ > c1�˛I �1/; for �1 > �0: (10.5)

Power curves illustrate the effect on power of varying the alternate hypothesis.
Severity, which uses post-data information, was introduced by Mayo [53] as “the
attained power”. Severity can be seen as an extension of the power of a test,
cf. Sect. 10.6.2.

Example 10.2. The power of the test specified in Example 10.1, where the null
hypothesis H0 W � � 12 is tested versus the alternative hypothesis H1 W � > 12 can
be determined with Eq. (10.5) as follows:

POW.T .˛/I �1/ D P.d.X/ > c1�˛I � D �1/ D P

X � �0

�x

> c1�˛I � D �1

!

(10.6)

Since � D �1,

X � �0

�x

follows a N

�
� � �0

�x

; 1

�

distribution. Therefore

POW.T .˛/I �1/ D 1 � ˚

�
c1�˛ C �0 � �1

�x

�
; (10.7)

where ˚ denotes the cumulative distribution of the probability density function of
the standard normal distribution, i.e.,

˚.x/ D P.t < x/ D 1p
2�

Z tDx

tD�1
exp

�
� t2

2

�
dt:

We are using the values from Example 10.1, i.e., ˛ D 0:025, c1�0:025 D
z1�0:025 D 1:96, �0 D 12, � D 2, and n D 100. Power depends on the value
of the alternative, i.e., �1. For �1 D 12:2, we determine:

POW.T .˛ D 0:025/I �1 D 12:2/

D P

�
Z > 1:96 C 12 � 12:2

0:2

�
D 1 � ˚.0:96/ D 0:1685:

226 T. Bartz-Beielstein and M. Preuss

Fig. 10.4 Power of a test. We
are using the values from
Example 10.1, i.e.,
˛ D 0:025,
c1�0:025 D z1�0:025 D 1:96,
�0 D 12, � D 2, and
n D 100. Power depends on
the alternative, i.e., �1. For
�1 D 12:2, we determine:
POW.T .˛ D 0:025/I�1 D
12:2/ D 0:1685

To determine the power for various �1 values, we obtain

POW.T .˛ D 0:025/I �1/ D P

�
Z > 1:96 C 12 � �1

0:2

�
with Z
 N.0; 1/;

(10.8)

see Fig. 10.4. �

Very significant results can be obtained with high power, even if the size of the
effect is of no practical relevance: The effect is there, but its magnitude is of little
value. This is similar to the situation with p values, see [13]. On the other extreme, a
study with low power will have indecisive results, even if the effect is real and
relevant.

N-P theory has been under attack, basically for the following three problems.

P-1: N-P tests are too coarse, because they tell us to reject or accept a certain
hypothesis H , but do not indicate the level of rejection or acceptance.

P-2: Since statistical significance and not scientific importance is considered, N-P
tests give rise to fallacies of rejection and of acceptance.

P-3: N-P tests focus on pre-data, i.e., information from new data is not considered.

The power of a test does not depend on the experimental result x0, it remains the
same for different outcomes. Even if the experimental result gives better evidence
for accepting or rejecting the null hypothesis, the power will be identical. Power is
no solution to problems P-1 to P-3, because the power of a test retains its coarseness,
it does not consider its scientific importance, and it relies on pre-experimental
data. This applies to confidence intervals as well, because they do not consider the
experimental outcome. Mayo introduces severity as a basic concept for post-data
inference. Example 10.4 illustrates the difference between power and severity.

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 227

10.6 Severity

10.6.1 Motivation

Severity provides a metastatistical principle for evaluating proposed statistical
inferences. It tells us how “well probed” (not “how probable”) hypotheses are and
is an attribute of the test procedure as a whole. That is, severity should be calculated
after the test procedure is finished. Once the data x0 of the test T .˛/ are available,
they enable us to evaluate the severity of the test and the resulting inference.

Example 10.3. In order to exemplify the concept of severity, we consider the
following situation (see also [52, p. 183]): A randomized search algorithm, say .A/,
has scored high success rate on a test problem. It is able to detect the optimum in
96:3 % of the runs. Consider the following situations:

1. First, suppose that it would be extraordinary for an algorithm, say A�, that has no
domain knowledge at all, to have a score as high, or higher, than A. Is this score
good evidence that A is well-suited for solving this problem? Based on A’s and
A�’s test results, the severity rationale would be in this case that this inference is
warranted.

2. Next, suppose that it would be no problem for an algorithm A� that has no
domain knowledge, e.g., random search, to have a score as high as 96 %. Again,
we may ask the same question: Is this score of 96:3 % good evidence that A is
well-suited for this test problem? Based on information about A’s and A�’s high
score results, the severity rationale would be in this case that this inference is
not warranted. The severity concept should provide tools for detecting ceiling
effects.

�

10.6.2 Severe Tests

These considerations lead to the definition of severity as a concept for post-data
inference. Here, we are facing the situation that a test has been performed and
a decision (“accept” or “reject” hypothesis H) has been made. The following
definition of a severe test is presented in [53, p. 7]:

Definition 10.3 (Severe Test). A statistical hypothesis H passes a severe test T

with data x0 if,

S-1 x0 agrees with H , and
S-2 with very high probability, test T would have produced a result that accords

less well with H than x0 does, if H were false.

�

228 T. Bartz-Beielstein and M. Preuss

Instead of calculating the power, which does not include information from the test
result,

POW.T .˛/I �1/ D P.d.X/ > c1�˛I � D �1/;

for �1 > �0, see Eq. (10.5), Mayo [53] introduces the attained power or severity

SEV.T .˛/I d.x0/I � � �1/ D P.d.X/ > d.x0/I � > �1/ (10.9)

in case of acceptance of the null and

SEV.T .˛/I d.x0/I � > �1/ D P.d.X/ � d.x0/I � � �1/ (10.10)

in case of rejection of the null. In order to simplify notation, we suppress the
arguments T .˛/ and d.x0/ in the following and use the abbreviations SEV.� � �1/

and SEV.� > �1/, respectively.
Equation (10.9) states that � � �1 passes the test with high severity if there

is a very high probability that d.x0/ would have been larger than it is, were � >

�1. And Eq. (10.10) states that � > �1 passes the test with high severity if there
is a very high probability that d.x0/ would have been smaller than it is, were � �
�1. Note, severity depends on the test and the test result, i.e., it includes post-data
information from d.x0/ instead of c1�˛ . Similar to the calculation of the power, the
severity can be determined. Note, that based on severity criterion S-1, we have to
determine whether data from the test result lead to an acceptance or an rejection of
the hypothesis H .

10.6.2.1 Severity in the Case of Acceptance of the Null

First, the determination of severity of acceptance for test T .˛/ is considered. For
example, this situation arises if no difference in means can be found. Based on
the outcome d.x0/ � c1�˛ , H0 has survived the test. In this case, a statistically
insignificant result (“accept H0” or “� � �1”) is considered. Severity can be
calculated as follows:

SEV.� � �1/ DP .d.X/ > d.x0/I � � �1is false /

DP .d.X/ > d.x0/I � > �1/

DP

X � �0

�x

>
x0 � �0

�x

I � > �1

!

DP

�
Z >

x0 � �

�x

�
with Z
 N.0; 1/

D1 � ˚

�
x0 � �

�x

�
: (10.11)

�

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 229

Note, a t distribution is used if � is unknown. In this case, the test statistic of
Eq. (10.4) reads

d.x0/ D X � �0

Sn=
p

n
;

where Sn is defined as

Sn D
r

1

n � 1

X
.Xi � X/2:

10.6.2.2 Severity in the Case of Rejection of the Null Hypothesis

Severity can be calculated as

SEV.� > �1/ D 1 � SEV.� � �1/;

because

SEV.� > �1/ DP .d.X/ � d.x0/I � > �1 is false /

D˚

�
x0 � �

�x

�
:

�
A comparison of Eqs. (10.7) and (10.11) shows that severity does not directly

use the information from the critical value c1�˛ and from the significance level ˛.
This information is used indirectly, because the inference (accept/reject) is used to
calculate severity.

Example 10.4. Similar to the calculation of the power of a test in Example 10.2
we will determine the severity. We are using the values from Example 10.1, i.e.,
˛ D 0:025, c1�0:025 D z1�0:025 D 1:96, �0 D 12, � D 2, and n D 100. Again, the
null hypothesis H0 W � � 12 is tested versus the alternative hypothesis H1 W � > 12.
Similar to power, severity is evaluated at a point �1 D �0 C � , where � denotes the
difference from �0 which is considered meaningful. Here, we have chosen � D 0:2,
which results in �1 D 12 C 0:2 D 12:2. As can be seen from Eq. (10.11), severity
depends on the experimental outcome, i.e., x0. For x0 D 11:8, we obtain:

SEV.� � �1/ DP

�
Z >

11:8 � 12:2

0:2

�

DP.Z > �2/ with Z
 N.0; 1/

D1 � ˚.�2/ D 0:977:

230 T. Bartz-Beielstein and M. Preuss

Fig. 10.5 Severity for three
different results x0: 12:1,
12:3, and 12:39. These curves
can be interpreted as follows:
Consider, e.g., x0 D 12:3,
which gives d.x0/ D 1:5:
The assertion that �
 13

severely passes because
SEV.�
 13/ D 0:9998

�

In case of a rejection of the alternative, the power of a test provides a lower bound
for the severity. This can be seen from Eqs. (10.6) and (10.9). Power and severity
are the same, if d.x0/ equals c1�˛ .

10.6.2.3 Usage of the Severity Concept

The framework presented in this section can be used as a metastatistical check to
evaluate which inferences are warranted. Figure 10.5 illustrates this check. The
severity for three different outcomes x0 is shown. Severity increases for smaller
values of x0. The power curve and the severity curve coincide for x0 D 12:39, i.e.,
d.x0/ D c1�˛ or x0 D �0 C c1�˛ � �x .

The curves from Fig. 10.5 can be used to compare the severity of the assertion
� � 12:4 for different experimental outcomes: First, x0 D 12:1 is considered. Here,
we obtain

SEV.T .˛ D 0:025/I d.x0/ D 12:1I � � 12:4/

D P

�
Z >

12:1 � 12:4

0:2

�
D 1 � ˚.�1:5/ D 0:9332:

So, the assertion � � 12:4 passes with high severity. Next, the experimental
outcome x0 D 12:39 is considered. Here, we obtain

SEV.T .˛ D 0:025/I d.x0/ D 12:39I � � 12:4/

D P

�
Z >

12:39 � 12:4

0:2

�
D 1 � ˚.�0:05/ D 0:5199;

i.e., this experimental result decreases severity.

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 231

The severity curves from Fig. 10.5 can also be used in the following way: Let
x0 D 12:1. The practitioner selects a relatively high severity value, say 0:9. The
related � value is calculated, say 12:4. That is, the assertion that “� � 12:4”
severely passes with the result x0 D 12:1.

In addition, we present one useful application of the severity criterion for the
experimental analysis of algorithms.

Example 10.5. Comparing a newly developed algorithm A� to the best known
algorithm A might lead to a situation where the result is interpreted too readily
as positive evidence of no difference in their performances. Here, we are using the
following values: ˛ D 0:025, c1�0:025 D z1�0:025 D 1:96, �0 D 0:0, � D 2, and
n D 100. The null hypothesis H0 W � � 0 is tested versus the alternative hypothesis
H1 W � > 0. Let the test T .˛/ yield a statistically insignificant result x0 D 0:3,
i.e., the alternative is rejected. The experimenter states that “any discrepancy from
�0 D 0 is absent or no greater than 0:1.” How severely does � � 0:1 pass with
x0 D 0:3? We obtain

SEV.T .˛ D 0:025/I d.x0/ D 0:3I � � 0:1/

D P

�
Z >

0:3 � 0:1

0:2

�
D 0:1587:

So, even if a difference of 0:1 exists, such a result would occur 84 % of the time.
Clearly, severity does not support the experimenter’s statement in this case. �

Severity was developed as an error statistical tool in the framework of the new
experimentalism. The new experimentalists claim that theories present only heuristic
rules, leading us to experimental knowledge [24]. They view progress in terms of the
accumulation of experimental discoveries. These findings are independent of high-
level theory. How to produce scientifically meaningful results is the central theme
in the research of the new experimentalists. Bartz-Beielstein [1, 2] demonstrates
how these concepts can be transferred from the philosophy of science to computer
science.

10.7 Metastatistical Principles

This section refers to the third and fourth step (AEX-3 and AEX-4, respectively) of
the active experimentation framework. As introduced in Sect. 10.4, we will present
a working example to illustrate particular aspects of the active experimentation
framework. Next, experiments will be performed. The corresponding results are
shown in Sect. 10.7.1. These results will be used to discuss differences between
statistically significant and scientifically meaningful results in Sect. 10.7.2. Finally,
ceiling effects will be revisited in Sect. 10.7.3.

232 T. Bartz-Beielstein and M. Preuss

Table 10.1 SANN results. Results from n D 100 repeats. Smaller values
are better. The optimal function value is y� D 0:3979

Model Min. First qu. Median Mean Third qu. Max.

Default 0.3982 0.4037 0.4130 0.8281 0.5032 6.1120
Random 0.3988 0.5326 1.2160 2.0720 2.9820 8.8800
Tuned 0.3979 0.3987 0.4000 0.4010 0.4022 0.4184

10.7.1 Results from Default, Random, and Tuned Settings

Experiments are performed at this stage, i.e., SPOT is used to execute algorithm
runs in an objective and reproducible manner. This is step AEX-3 from the active
experimentation framework. As a baseline for our experiments, we run SANN 100
times—first, with default parameters (tmax D temp D 10), and second, with
randomly chosen parameter values from the interval Œ1; 50�.1 These experiments
were performed to quantify the benefit of tuning for our experiments. Results from
these two experiments are shown in the first and second result row from Table 10.1.
SANN was not able to determine the optimal function value with these settings.
Now that the baseline results are available, we can examine SANN’s tunability.

The final best configuration found by SPOT reads temp = 1.115982 and tmax =
38. Now that these results are available, we would like to determine their statistical
significance and scientific meaning.

10.7.2 Spurious Effects

As mentioned in Sect. 10.2.7, our focus lies on metastatistical principles that can be
applied after the experiments are performed. These principles are necessary to avoid
fallacies, i.e., misconceptions resulting from incorrect reasoning in argumentation
caused by spurious effects. Following Cohen [28], we define spurious effects as
effects that suggest that a treatment is

• Effective when it is not, or
• Not effective when it is.

One prominent example for spurious effects is the ceiling effect. If one wants to
investigate performance differences between different methods, it is important to
select the test problems/settings so that these differences indeed can occur. It is of
little interest to see result tables with nearly all the methods always obtaining success
rates of 100 %. This would be a ceiling effect: The test problems are too easy, so all

1SPOT can generate 100 randomly chosen design points of the SANN by using the following
setting in the CONF file: init.design.size = 100 and init.design.repeats =
1.

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 233

algorithms “crash into the ceiling”. On the other hand, test problems can also be too
hard, then we have a floor effect because most measured algorithms never obtain
a measurable progress: All remain “on the floor”. Particularly quality tasks that
may not be reached (and thus not counted for success rates) have to be set up with
care. When floor/ceiling effects occur, there is almost no variability in the data, and
thus all compared algorithms appear to obtain similar performance. Ceiling effects
occur when test problems are not sufficiently challenging. In the hypothesis-testing
framework from statistics, the situation can be formulated as the following claim.

Claim 1. Let A and A� denote two algorithms and consider the hypothesis

H W perf.A/ 	 perf.A�/:

If A and A� achieve a performance which is close to the maximum level of
performance, H should not be confirmed due to a ceiling effect. �

Claim 1 describes a situation in which there is a high probability that algorithms
A and A� reach a similar high performance, i.e., the difference in their performances
perf.A�/ � perf.A/ is small. This corresponds to S-1 and S-2 from Definition 10.3:
With very low probability, the comparison of perf.A/ with perf.A�/ would have
produced a result that accords with the hypothesis “H : There is no difference in
their performances” as well as or better than the test result does, if H were false and
a given difference were present. Consequently, severity can be used to detect ceiling
effects.

10.7.3 Ceiling Effects Revisited

Now the necessary tools for performing a post-data analysis are available and can
be applied to the results from the SANN case study (see Sect. 10.4). This refers to
the fourth step of the active experimentation framework, i.e., AEX-4. The function
spotSeverity() and a related plotting functions are implemented in the R
version of the SPO toolbox,2 which is available via CRAN [4].

Summary statistics from these two run configurations were shown in Table 10.1.
These results indicate that SANN with tuned parameters outperforms SANN with
default parameters. We will apply error statistical tools to analyze the scientific
meaning of this result. Based on results from this case study, a power and a severity
plot is generated, see Fig. 10.6. A histogram illustrates the importance of EDA tools:

2R is a freely available language and environment for statistical computing and graphics which
provides a wide variety of statistical and graphical techniques. CRAN is a network of ftp and web
servers around the world that store identical, up-to-date versions of code and documentation for R,
see http://cran.r-project.org.

http://cran.r-project.org

234 T. Bartz-Beielstein and M. Preuss

Fig. 10.6 Comparison of the
tuned and the default SANN
configuration on the Branin
function with 250 function
evaluations. Each run
configuration was run 100
times. The null hypothesis
“there is no difference in
means” is rejected. The
dotted line illustrates the
power of the test, whereas the
solid line represents the
severity. This plot was
generated with the function
spotPlotSeverity()
from R’s SPOT package

Fig. 10.7 Comparison of the
tuned and the default SANN
configuration on the Branin
function with 250 function
evaluations. Each run
configuration was run 100
times. The null hypothesis
“there is no difference in
means” is rejected

In a second experiment, we increased the number of SANN function evaluations
from maxit= 250 to 1,000,000 (Fig. 10.7). This problem design is used to illustrate
a ceiling effect (the problem is too easy, because of the large number of function
evaluations): Again, each configuration is run 100 times. First, we will compare
simple summary statistics from these two run configurations, see Table 10.2.

Both algorithms show the same behavior (up to four digits after the decimal) if
the number of function evaluations is set to 10e6. However, a t-test claims that there
is a statistically significant difference in means. In addition, we generate a t-test:

Paired t-test

t = -8.8975, df = 99, p-value = 1.384e-14

alternative hypothesis: True difference in means is less than 0

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 235

Table 10.2 SANN results. Results from n D 100 repeats. Smaller values are better. The optimal
function value is y� D 0:3979

Model maxit Min. First qu. Median Mean Third qu. Max.

Tuned 250 0.3979 0.3987 0.4000 0.4010 0.4022 0.4184
Default 250 0.3982 0.4037 0.4130 0.8281 0.5032 6.1120
Tuned 1e6 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979
Default 1e6 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

Fig. 10.8 Comparison of the tuned and the default SANN configuration on the Branin function
with 1e6 function evaluations. Each run configuration was run 100 times. The null hypothesis
“there is no difference in means” is rejected. The dotted line illustrates the power of the test,
whereas the solid line represents the severity

In this situation, error statistical tools and tools from exploratory data analysis
might be helpful. Figure 10.8 shows the corresponding plots of power and severity.
The severity interpretation of rejection shows that only very small differences in
mean (� < 2e � 6) pass with high severity.

A histogram (see Fig. 10.9) illustrates the importance of EDA tools. Results
from the tuned SANN have a smaller standard deviation. However, it is up to the
practitioner to decide whether a difference as small as 1e � 6 is of importance for
this kind of problem instance. Error statistical tools provide support for this decision.

Now, we can answer the question from Sect. 10.4:

SANN’s performance and robustness could be improved. Severity and EDA provide useful
decision support tools.

236 T. Bartz-Beielstein and M. Preuss

Fig. 10.9 Comparison of the
tuned and the default SANN
configuration on the Branin
function with 1e6 function
evaluations. Each run
configuration was run 100
times. The null hypothesis
“there is no difference in
means” is rejected

10.8 Exploratory Landscape Analysis

If the treated problem is not a constructed benchmark and thus most of its properties
are unknown, it makes sense to use the test runs done with the optimization algo-
rithm of choice to acquire some additional problem knowledge. If one evaluation
of the optimization problem takes on the order of minutes or more to compute,
one cannot simply apply standard tuning techniques (as documented in Sect. 10.3).
Instead, one could generate a surrogate model from the evaluated points and tune
on this surrogate problem [69], or integrate the tuning process within the algorithm
itself, which is, e.g., easily possible when restarts are performed [81]. Exploratory
Landscape Analysis (ELA) [57, 58] follows another approach, namely to detect
problem properties first in order to to make a reasonably informed decision for some
optimization algorithm.

10.8.1 Important Problem Properties

Problem properties which need to be determined to set up an optimization algorithm
that matches the problem well are (more than these may be suitable, depending on
the problem and the optimization algorithm):

Multimodality Most classic optimization algorithms inherently expect a unimodal
(convex) problem. However, experience shows that most simulator-based problems
are multimodal. But how multimodal? Do they have few local optima (as Schwefel’s
problem 2.13), or many (as Rastrigin’s problem)? In the first case, a niching or
time-parallel method may be useful; in the latter case, one has to rely on multistarts
(see [66] for a discussion) or on using large populations to inherently average out

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 237

the many peaks in order to detect the global basin structure. If indeed a convex
problem is found, classic optimization methods as BFGS (see, e.g., [62]) are most
likely more effective than evolutionary ones.

Global Basin Structure Rastrigin’s problem is not as difficult as it may seem at
first. It has a huge amount of local optima, but also a global basin structure due to the
quadratic term: Seen from a large distance, it appears as parabola. Problems without
global structure are more difficult because one virtually needs to “look in every
corner.” As an example, one may refer to the Gaussian mixture problem generator
by Gallagher [34]. See [37] for more examples.

Separability If a problem is fully or partly separable, it may be partitioned into
subproblems which are then of lower dimensionality and should be considerably
easier to solve. For benchmark problems, it is known that separable problems
become inseparable by simple geometric transformations as rotation [73].

Variable Scaling Even if the considered search space bounds are the same for all
variables, the problem may behave very different in the single dimensions. It can be
essential to perform small steps in some dimensions, and large ones in others. Some
algorithms as, e.g., the CMA-ES [35] handle such problems well, but most standard
EA variants do not.

Search Space Homogeneity Most benchmark sets are created with a homogeneous
problem structure in mind, which is expressed by a single, relatively simple formula.
However, real-world problems do not necessarily behave like this. The CEC’05
benchmark set [75] contains hybrid problems that consist of different ones blended
into another, so that the resulting problem behaves differently in different search
space areas.

Basin Size Homogeneity As, for example, emphasized by Törn [76], the basin size
of the global optimum certainly influences the hardness of a problem. However, in
the presence of many optima, the size relations of all encountered basins can lead to
additional difficulties. Many algorithms for multimodal problems (e.g., most niching
EA methods) assume similar basin sizes and use appropriately adjusted distances to
differentiate between basins. If size differences are huge, these methods are doomed
to fail.

Global to Local Optima Contrast This property refers to the height (quality)
differences between global and local peaks in comparison to the average fitness level
of a problem. It thus determines if very good peaks are easily recognized as such.
Together with basin size homogeneity, the influence of this property on niching
methods was reviewed in [70].

Size of Plateaus Plateaus make optimization problems harder as they do not
provide any information about good directions to turn to. Large plateaus effectively
cut the search space into parts that prevent path-oriented optimization algorithms
from moving from one embedded peak area (possibly also a multimodal landscape
itself) to another one.

238 T. Bartz-Beielstein and M. Preuss

This set of properties is a rather phenomenologically (in the sense that these fea-
tures have been either explicitly modeled into benchmark problems or observed in
visualizations of existing ones) motivated collection which stresses the importance
of the global structure in real-valued search spaces. Some time ago, many measures
based on mathematical properties of mainly bit-coded problems were suggested
and employed for expressing hardness of problems for evolutionary algorithms.
The most prominent of these may be the fitness-distance correlation (FDC) [46].
However, further theoretical investigations of Jansen [44] and He et al. [38] largely
found the existing measures unsuitable for predictive purposes, so watching out for
new properties surely makes sense. Furthermore, in exploratory landscape analysis,
one is especially interested in what can be achieved with only few evaluations of the
problem, as the ultimate goal usually is to set up a good optimization algorithm for
expensive problems with unknown properties.

10.8.2 Exploratory Testing

Attempts to acquire experimentally property knowledge on expensive functions are
usually performed manually, without a guiding algorithm. Instead they follow the
intuition of the experimenter, which, during the process, adapts to the already-
known facts.

Sampling, dimension reduction techniques, and especially visualization are
important techniques to obtain problem knowledge. Interestingly, search points
visited during stagnation phases may reveal interesting problem properties. We
provide a real-world example as proof of concept. Figure 10.10 shows a fitness
distance correlation plot from the last best point of one optimization run, using
all successively sampled points (around 300). The treated problem [72] is the 15-
variable engineering task to construct a ship propulsion system with high efficiency
and low cavitation (low pressure bulbs at high velocity spots that lead to noise
and deterioration), formulated as a constraint penalized single-objective problem.
Simulation times are on the order of minutes. The question we tackled here was to
find out why optimization always got stuck early. The plot shows several layers of
fitness values, most likely stemming from the penalization when hitting a constraint.

Exploratory testing (sampling) can focus either on global or local features of a
problem. Global sampling may employ any space-filling design as, for example,
a Latin hypercube design (LHD), which is useful for obtaining a rough idea
of the problem nature. Putting the sampled points into a model enables one to
visualize the landscape, e.g., Kriging models as employed in Sect. 10.3 may be used.
However, note that a model comes with certain assumptions (such as smoothness
of the landscape), so that some features such as high-frequency ruggedness may
completely go unnoticed.

Testing locally makes sense if one needs to find out which properties of
the problem lead to stagnation in the optimization process, and then should be
conducted in the neighborhood of the best-yet obtained points. However, for

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 239

Fig. 10.10 Quality to search space distance correlation around a good solution, �quality (dF) over
�search space distance (dP). Obtained from the last 300 samples performed by an (1 + 1)-ES on a
moderately expensive engineering problem. All sampled points are equal or worse than the center
point. The plot reveals a layered structure which is most likely due to constraint penalties applied
to infeasible solutions

high-dimensional problems, running extensive grid tests in all possible variable
combinations around a best solution is infeasible. Nevertheless, one may try grid
tests in some combinations, especially if the variables can be grouped according to
domain knowledge.

We investigate this for the ship propulsion problem described above, choosing
two variable pairs with different properties. The first two variables, c.x1/ and
c.x05/, both refer to the shape of the rotor and should interact strongly; the other
two (cStat.x05/ and kr.x0/) are expected to interact only weakly. Figure 10.11
shows the results of 21 � 21 point grid scans around the same best found point as
employed in Fig. 10.10, keeping all other variables constant. The histograms help in
assessing the frequency of encountering infeasible solutions (fitness values around
�1:5), which is surprisingly similar in both situations, while the landscapes are
completely different. For the two strongly interacting variables, we obtain a highly
rugged landscape, but for the weakly interacting ones it is relatively flat with linear
cliffs. We can safely assume that this contrast makes the problem harder.

An alternative approach to grid scans would be a local model (e.g., generalized
linear or Kriging), generated from a space-filling sample around the point of interest.
However, even identifying the properties of optimization problems near high-fitness
spots may keep other important properties secret. Unless a rather complete scan of
the problem in all dimensions is possible (which would remove the necessity for
an optimization algorithm), we cannot be sure to have revealed the information that
could be helpful for setting up an optimization process fully. Our landscape analysis
remains exploratory.

240 T. Bartz-Beielstein and M. Preuss

Fig. 10.11 Grid sample around a good search point identified in a prior optimization run, 20 %
of the available search space in each of the two tested dimensions were covered with 21 � 21

samples. Upper row: Two different two-variable combinations visualized as contour plot. Lower
row: Histograms of same data. The variables on the left are expected to interact strongly; the ones
on the right should be nearly uncorrelated

10.9 Summary and Future Developments

In this chapter, we have run through the current state of experimental research in
evolutionary computation as we see it. We presented severity as a metastatistical
rule for evaluating statistical tests. Limitations of simply accepting or rejecting
hypotheses are avoided, which refers to Problem P-1 from Sect. 10.5. If an inference
could only be said to pass a test with low severity, then there fails to be evidence for
this inference. Summarizing, severity provides a method that quantifies the extent
of the difference from the null hypothesis that is (or is not) warranted by data x0.
This provides an answer to Problem P-2. One important feature of the severity
concept is the extension of significance level and power, which are pre-data error
probabilities. In contrast to the power of a test, severity uses values from the test

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 241

statistic, and enables a post-data interpretation of statistical tests. This provides an
answer to problem P-3.

Active experimentation is a flexible and general framework which can be applied
in many situations. Note that we do not claim that AEX is the only suitable way for
tuning algorithms. Far from it! We state that AEX presents only one possible way—
which might not be the best for your specific problem. We highly recommend other
approaches in this field, namely F-Race [22] and REVAC [60].

We have also elaborated on the specific problems when setting up an experimen-
tal investigation in evolutionary computation, and provided hints on how to avoid the
most common mistakes, and suggestions for how to write up and iterate experiments
in order to concretize and validate the findings.

For cases where the problem properties are largely unknown, we suggest employ-
ing an exploratory landscape analysis approach which is in a relatively unstructured
way often applied by practitioners already, without considering it as a working
scheme of its own. Better understanding of (optimization) algorithm performance,
however, needs to achieve some kind of parameter to property matching and on this
path, visualization may play the key role.

As a general conclusion, we feel that still, more emphasis on experimental
methodology is needed and much work is still left undone in this area. Especially,
the cooperation between theory and practice should be improved, and moving
towards each other may be an important task for the near future. Theory should
consider current experimental results as a starting point for investigations, and
established theory should be validated (e.g., concerning assumptions made) by
means of structured experimental analysis.

Acknowledgements This work was supported by the Bundesministerium für Bildung und
Forschung (BMBF) under the grants FIWA (AIF FKZ 17N2309), MCIOP (AIF FKZ 17N0311),
and by the Cologne University of Applied Sciences under the research focus grant COSA.

References

1. T. Bartz-Beielstein, Experimental Research in Evolutionary Computation—The New Experi-
mentalism. Natural Computing Series (Springer, Berlin/Heidelberg/New York, 2006)

2. T. Bartz-Beielstein, How experimental algorithmics can benefit from Mayo’s extensions to
Neyman-Pearson theory of testing. Synthese 163(3), 385–396 (2008). doi:10.1007/s11229-
007-9297-z

3. T. Bartz-Beielstein, Sequential parameter optimization—an annotated bibliography. CIOP
technical report 04/10, Research Center CIOP (Computational Intelligence, Optimization and
Data Mining), Cologne University of Applied Science, Faculty of Computer Science and
Engineering Science, Apr 2010

4. T. Bartz-Beielstein, SPOT: an R package for automatic and interactive tuning of optimization
algorithms by sequential parameter optimization. CIOP technical report 05/10, Research
Center CIOP (Computational Intelligence, Optimization and Data Mining), Cologne University
of Applied Science, Faculty of Computer Science and Engineering Science, Jun 2010.
Comments: related software can be downloaded from http://cran.r-project.org/web/packages/
SPOT/index.html

http://cran.r-project.org/web/packages/SPOT/index.html
http://cran.r-project.org/web/packages/SPOT/index.html

242 T. Bartz-Beielstein and M. Preuss

5. T. Bartz-Beielstein, Writing interfaces for the sequential parameter optimization toolbox
SPOT. CIOP technical report 07/10, Cologne University of Applied Sciences, Cologne
University of Applied Science, Faculty of Computer Science and Engineering Science, July
2010

6. T. Bartz-Beielstein, M. Preuss, CEC tutorial on experimental research in evolutionary
computation, in IEEE Congress on Evolutionary Computation, Tutorial Program, Tutorials
given at CEC 2004, San Diego and CEC 2005, Edinburgh

7. T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation (tutorial),
in Genetic and Evolutionary Computation Conference (GECCO 2005), Washington, June 2005

8. T. Bartz-Beielstein, M. Preuss, Considerations of budget allocation for sequential parameter
optimization (SPO), in Workshop on Empirical Methods for the Analysis of Algorithms,
Proceedings, Reykjavik, ed. by L. Paquete et al., 2006, pp. 35–40

9. T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation (tutorial),
in Genetic and Evolutionary Computation Conference (GECCO 2006), Seattle, July, 2006

10. T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation–the
future of experimental research (tutorial), in Genetic and Evolutionary Computation Con-
ference (GECCO 2007), London, July 2007

11. T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation–the
future of experimental research (tutorial), in Genetic and Evolutionary Computation Con-
ference (GECCO 2008), Atlanta, July 2008

12. T. Bartz-Beielstein, M. Preuss, Experimental research in evolutionary computation–the
future of experimental research (tutorial), in Genetic and Evolutionary Computation Con-
ference (GECCO 2009), Montreal, July 2009

13. T. Bartz-Beielstein, M. Preuss, The future of experimental research, in Experimental Methods
for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiarandini,
L. Paquete, M. Preuß (Springer, Berlin/Heidelberg/New York, 2010), pp. 17–46

14. T. Bartz-Beielstein, M. Preuss, Tuning and experimental analysis in evolutionary computation:
what we still have wrong (tutorial), in Genetic and Evolutionary Computation Confer-
ence (GECCO 2010), Portland, July 2010

15. T. Bartz-Beielstein, M. Preuss, Automatic and interactive tuning of algorithms, in GECCO
2011 (Companion), ed. by N. Krasnogor, P.L. Lanzi (ACM, New York, 2011), pp. 1361–1380

16. T. Bartz-Beielstein, K.E. Parsopoulos, M.N. Vrahatis, Design and analysis of optimization
algorithms using computational statistics. Appl. Numer. Anal. Comput. Math. 1(2), 413–433
(2004)

17. T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, Sequential parameter optimization, in
Proceedings 2005 Congress on Evolutionary Computation (CEC’05), Edinburgh, vol. 1, ed.
by B. McKay et al. (IEEE, Piscataway, 2005), pp. 773–780

18. T. Bartz-Beielstein, M. Chiarandini, L. Paquete, M. Preuss (ed.), Experimental Methods for
the Analysis of Optimization Algorithms. (Springer, Berlin/Heidelberg/New York, 2010)

19. T. Bartz-Beielstein, M. Friese, O. Flasch, W. Konen, P. Koch, B. Naujoks, Ensemble-based
modeling. CIOP technical report 06/11, Research Center CIOP (Computational Intelligence,
Optimization and Data Mining), Cologne University of Applied Science, Faculty of Computer
Science and Engineering Science, July 2011

20. R.E. Bechhofer, T.J. Santner, D.M. Goldsman, Design and Analysis of Experiments for
Statistical Selection, Screening, and Multiple Comparisons (Wiley, New York, 1995)

21. C.J.P. Belisle, Convergence theorems for a class of simulated annealing algorithms. J. Appl.
Probab. 29, 885–895 (1992)

22. M. Birattari, Tuning Metaheuristics (Springer, Berlin/Heidelberg/New York, 2005)
23. G.E.P. Box, W.G. Hunter, J.S. Hunter, Statistics for Experimenters (Wiley, New York, 1978)
24. A.F. Chalmers, What Is This Thing Called Science (University of Queensland Press, St. Lucia,

1999)
25. C.H. Chen, An effective approach to smartly allocate computing budget for discrete event

simulation, in Proceedings of the 34th IEEE Conference on Decision and Control, New
Orleans, 1995, pp. 2598–2605

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 243

26. M. Chimani, K. Klein, Algorithm engineering: concepts and practice, in Experimental Methods
for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiarandini,
L. Paquete, M. Preuß (Springer, New York, 2010)

27. P.R. Cohen, A survey of the eighth national conference on artificial intelligence: pulling
together or pulling apart? AI Mag. 12(1), 16–41 (1991)

28. P.R. Cohen, Empirical Methods for Artificial Intelligence (MIT, Cambridge, 1995)
29. A.E. Eiben, M. Jelasity, A critical note on experimental research methodology in EC, in

Proceedings of the 2002 Congress on Evolutionary Computation (CEC’2002), Hawaii (IEEE,
2002), pp. 582–587

30. O. Flasch, T. Bartz-Beielstein, A. Davtyan, P. Koch, W. Konen, T.D. Oyetoyan, M. Tamutan,
Comparing CI methods for prediction models in environmental engineering. CIOP technical
report 02/10, Research Center CIOP (Computational Intelligence, Optimization and Data
Mining), Faculty of Computer Science and Engineering Science, Cologne University of
Applied Sciences, Germany, Feb 2010

31. T. Fober, Experimentelle Analyse Evolutionärer Algorithmen auf dem CEC 2005 Testfunktio-
nensatz. Master’s thesis, Universität Dortmund, 2006

32. T. Fober, M. Mernberger, G. Klebe, E. Hüllermeier, Evolutionary construction of multiple
graph alignments for the structural analysis of biomolecules. Bioinformatics 25(16), 2110–
2117 (2009)

33. T. Fober, S. Glinca, G. Klebe, E. Hüllermeier, Superposition and alignment of labeled point
clouds. IEEE/ACM Trans. Comput. Biol. Bioinfo. 8(6), 1653–1666 (2011)

34. M. Gallagher, B. Yuan, A general-purpose tunable landscape generator. IEEE Trans. Evol.
Comput. 10(5), 590–603 (2006)

35. N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies.
Evol. Comput. 9(2), 159–195 (2001)

36. N. Hansen, A. Auger, S. Finck, R. Ros, Real-parameter black-box optimization benchmarking
2009: experimental setup. Technical report RR-6828, INRIA, 2009

37. N. Hansen, S. Finck, R. Ros, A. Auger, Real-parameter black-box optimization benchmarking
2009: noiseless functions definitions. Technical report RR-6829, INRIA, 2009

38. J. He, C. Reeves, C. Witt, X. Yao, A note on problem difficulty measures in black-box
optimization: classification, realizations and predictability. Evol. Comput. 15(4), 435–443
(2007)

39. F. Henrich, C. Bouvy, C. Kausch, K. Lucas, M. Preuss, G. Rudolph, P. Roosen, Economic
optimization of non-sharp separation sequences by means of evolutionary algorithms. Comput.
Chem. Eng. 32(7), 1411–1432 (2008)

40. J.N. Hooker, Testing heuristics: we have it all wrong. J. Heuristics 1(1), 33–42 (1996)
41. H.H. Hoos, T. Stützle, Evaluating Las Vegas algorithms: pitfalls and remedies, in UAI ’98:

Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, ed. by
G.F. Cooper, S. Moral (Morgan Kaufmann, 1998), pp. 238–245

42. F. Hutter, T. Bartz-Beielstein, H. Hoos, K. Leyton-Brown, K.P. Murphy, Sequential model-
based parameter optimisation: an experimental investigation of automated and interactive
approaches empirical methods for the analysis of optimization algorithms, in Experimental
Methods for the Analysis of Optimization Algorithms, ed. by T. Bartz-Beielstein, M. Chiaran-
dini, L. Paquete, M. Preuß (Springer, Berlin/Heidelberg/New York, 2010), pp. 361–414

43. F. Hutter, H.H. Hoos, K. Leyton-Brown, K.P. Murphy, Time-bounded sequential parameter
optimization, in Proceedings of LION 2010, Venice. LNCS, 6073 (2010), pp. 281–298

44. T. Jansen, On classifications of fitness functions, in Theoretical Aspects of Evolutionary
Computing, ed. by L. Kallel, B. Naudts, A. Rogers (Springer, Berlin, 2001), pp. 371–386

45. D.S. Johnson, A theoretician’s guide to the experimental analysis of algorithms, in Data
Structures, Near Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementa-
tion Challenges (AMS, Providence, 2002), pp. 215–250

46. T. Jones, S. Forrest, Fitness distance correlation as a measure of problem difficulty for genetic
algorithms, in Proceedings of the Sixth International Conference on Genetic Algorithms,
Pittsburgh (Morgan Kaufmann, 1995), pp. 184–192

244 T. Bartz-Beielstein and M. Preuss

47. K. Knight, P. Langley, P.R. Cohen, What makes a compelling empirical evaluation? IEEE
Intel. Syst. 11, 10–14 (1996)

48. W. Konen, T. Zimmer, T. Bartz-Beielstein, Optimized modelling of fill levels in stormwater
tanks using CI-based parameter selection schemes (in German). at-Automatisierungstechnik
57(3), 155–166 (2009)

49. O. Kramer, B. Gloger, A. Goebels, An experimental analysis of evolution strategies and particle
swarm optimisers using design of experiments, in Proceedings of the 9th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’07, London (ACM, 2007), pp. 674–681

50. C.W.G. Lasarczyk, Genetische Programmierung einer algorithmischen Chemie. PhD thesis,
Technische Universität Dortmund, 2007

51. C.W.G. Lasarczyk, W. Banzhaf, Total synthesis of algorithmic chemistries, in GECCO ’05:
Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, Washington
D.C. (ACM, New York, 2005), pp. 1635–1640

52. D.G. Mayo, Error and the Growth of Experimental Knowledge (The University of Chicago
Press, Chicago, 1996)

53. D.G. Mayo, A. Spanos, Severe testing as a basic concept in a Neyman–Pearson philosophy of
induction. Br. J. Philos. Sci. 57, 323–357 (2006)

54. D.G. Mayo, A. Spanos, Error and Inference (Cambridge University Press, Cambridge, 2010)
55. C.C. McGeoch, Toward an experimental method for algorithm simulation. INFORMS J.

Comput. 8(1), 1–15 (1996)
56. J. Mehnen, T. Michelitsch, C. Lasarczyk, T. Bartz-Beielstein, Multi-objective evolutionary

design of mold temperature control using DACE for parameter optimization. Int. J. Appl.
Electromagn. Mech. 25(1–4), 661–667 (2007)

57. O. Mersmann, M. Preuss, H. Trautmann, Benchmarking evolutionary algorithms: towards
exploratory landscape analysis, in Proceedings of the 11th International Conference on
Parallel Problem Solving from Nature: Part I, PPSN’10, Krakow (Springer, Berlin/Heidelberg,
2010), pp. 73–82

58. O. Mersmann, B. Bischl, H. Trautmann, M. Preuss, C. Weihs, G. Rudolph, Exploratory
landscape analysis, in Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’11, Dublin (ACM, New York, 2011), pp. 829–836

59. B.M. Moret, H.D. Shapiro, Algorithms and experiments: the new (and old) methodology.
J. Univers. Comput. Sci. 7(5), 434–446 (2001)

60. V. Nannen, Evolutionary agent-based policy analysis in dynamic environments. PhD thesis,
Vrije Universiteit Amsterdam, 2009

61. V. Nannen, A.E. Eiben, A method for parameter calibration and relevance estimation in
evolutionary algorithms, in Genetic and Evolutionary Computation Conference, GECCO 2006,
Proceedings, Seattle, ed. by M. Cattolico (ACM, 2006), pp. 183–190

62. J.C. Nash, Compact Numerical Methods for Computers: Linear Algebra and Function
Minimisation, 2nd edn. (IOP, Bristol, 1990)

63. B. Naujoks, D. Quagliarella, T. Bartz-Beielstein, Sequential parameter optimisation of
evolutionary algorithms for airfoil design, in Proceedings Design and Optimization: Methods
and Applications (ERCOFTAC’06), Berlin, ed. by G. Winter et al. (University of Las Palmas
de Gran Canaria, 2006), pp. 231–235

64. J. Neyman, E.S. Pearson, On the problem of the most efficient tests of statistical hypotheses.
Philos. Trans. R. Soc. A 231, 289–337 (1933)

65. N.H. Pothmann, Kreuzungsminimierung für k-seitige Buchzeichnungen von Graphen mit
Ameisenalgorithmen. Master’s thesis, Universität Dortmund, 2007

66. M. Preuss, Niching prospects, in Bioinspired Optimization Methods and Their Applications
(BIOMA 2006), ed. by B. Filipic, J. Silc (Jozef Stefan Institute, Ljubljana, 2006), pp. 25–34

67. M. Preuss, T. Bartz-Beielstein, Sequential parameter optimization applied to self-adaptation
for binary-coded evolutionary algorithms, in Parameter Setting in Evolutionary Algorithms,
ed. by F. Lobo, C. Lima, Z. Michalewicz. Studies in Computational Intelligence (Springer,
New York, 2007), pp. 91–120

10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond 245

68. M. Preuss, G. Rudolph, F. Tumakaka, Solving multimodal problems via multiobjective
techniques with application to phase equilibrium detection, in Proceedings of the International
Congress on Evolutionary Computation (CEC2007), Singapore (IEEE, Piscataway, 2007)

69. M. Preuss, G. Rudolph, S. Wessing, Tuning optimization algorithms for real-world problems
by means of surrogate modeling, in Proceedings of the 12th Annual Conference on Genetic
and Evolutionary Computation, GECCO ’10, Portland (ACM, New York, 2010), pp. 401–408

70. M. Preuss, C. Stoean, R. Stoean, Niching foundations: basin identification on fixed-property
generated landscapes, in Proceedings of the 13th Annual Conference on Genetic and
Evolutionary Computation, GECCO ’11, Dublin (ACM, 2011), pp. 837–844

71. R.L. Rardin, R. Uzsoy, Experimental evaluation of heuristic optimization algorithms: a tutorial.
J. Heuristics 7(3), 261–304 (2001)

72. G. Rudolph, M. Preuss, J. Quadflieg, Two-layered surrogate modeling for tuning optimization
metaheuristics. Algorithm engineering report TR09-2-005, Faculty of Computer Science,
Algorithm Engineering (Ls11), Technische Universität Dortmund, Sept 2009

73. R. Salomon, Re-evaluating genetic algorithm performance under coordinate rotation of
benchmark functions: a survey of some theoretical and practical aspects of genetic algorithms.
BioSystems 39, 263–278 (1996)

74. S.K. Smit, A.E. Eiben, Comparing parameter tuning methods for evolutionary algorithms, in
IEEE Congress on Evolutionary Computation (CEC), Trondheim, 2009, pp. 399–406

75. P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem
definitions and evaluation criteria for the CEC 2005 special session on real-parameter
optimization. Technical report, Nanyang Technological University, Singapore, 2005. http://
www.ntu.edu.sg/home/EPNSugan

76. A. Törn, M. Ali, S. Viitanen, Stochastic global optimization: problem classes and solution
techniques. J. Glob. Optim. 14(4), 437–447 (1999)

77. M. Tosic, Evolutionäre Kreuzungsminimierung. Diploma thesis, University of Dortmund, Jan
2006

78. H. Trautmann, J. Mehnen, Statistical methods for improving multi-objective evolutionary
optimisation. Intern. J. Comput. Intell. Res. 5(2), 72–78 (2009)

79. L. Volkert, Investigating EA based training of HMM using a sequential parameter optimization
approach, in Proceedings of the 2006 IEEE Congress on Evolutionary Computation,
Vancouver, ed. by G.G. Yen et al. (IEEE, 2006), pp. 2742–2749

80. S. Wessing, Towards optimal parameterizations of the S-metric selection evolutionary multi-
objective algorithms. Algorithm engineering report TR09-2-006, Universität Dortmund, Sept
2009

81. S. Wessing, M. Preuß, G. Rudolph, When parameter tuning actually is parameter control,
in Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’11, Dublin (ACM, 2011), pp. 821–828

82. Y. Yi, Fuzzy operator trees for modeling utility functions. PhD thesis, Philipps-Universität
Marburg, 2008

http://www.ntu.edu.sg/home/EPNSugan
http://www.ntu.edu.sg/home/EPNSugan

Chapter 11
Formal Search Algorithms + Problem
Characterisations = Executable Search
Strategies

Patrick D. Surry and Nicholas J. Radcliffe

Abstract Traditional evolutionary algorithms use a standard, predetermined repre-
sentation space, often in conjunction with a similarly standard and predetermined set
of genetic move operators, themselves defined in terms of the representation space.
This approach, while simple, is awkward and—we contend—inappropriate for
many classes of problem, especially those in which there are dependencies between
problem variables (e.g., problems naturally defined over permutations). For these
reasons, over time a much wider variety of representations have come into common
use. This paper presents a method for specifying algorithms with respect to abstract
or formal representations, making them independent of both problem domain and
representation. It also defines a procedure for generating an appropriate problem
representation from an explicit characterisation of a problem domain that captures
beliefs about its structure. We are then able to apply a formal search algorithm to
a given problem domain by providing a suitable characterization of it and using
this to generate a formal representation of problems in the domain, resulting in
a practical, executable search strategy specific to that domain. This process is
illustrated by showing how identical formal algorithms can be applied to both the
travelling sales-rep problem (TSP) and real parameter optimisation to yield familiar
(but superficially very different) concrete search strategies.

P.D. Surry (�)
Hopper Inc, 275 Third Street, Cambridge, MA, 02142, USA
e-mail: patrick@hopper.com

N.J. Radcliffe
Stochastic Solutions Limited, 5 Atholl Crescent, Edinburgh, EH3 8EJ, UK

Department of Mathematics, University of Edinburgh, King’s Buildings, EH9 3JZ,
Edinburgh, UK
e-mail: Nicholas.Radcliffe@StochasticSolutions.com

Y. Borenstein and A. Moraglio (eds.) Theory and Principled Methods for the Design
of Metaheuristics, Natural Computing Series, DOI 10.1007/978-3-642-33206-7__11,
© Springer-Verlag Berlin Heidelberg 2014

247

mailto:patrick@hopper.com
mailto:Nicholas.Radcliffe@StochasticSolutions.com

248 P.D. Surry and N.J. Radcliffe

11.1 Preamble

This paper is a revised and expanded version of a paper entitled Formal Algorithms
+ Formal Representations = Search Strategies by Surry and Radcliffe [25]. While
still unavoidably technical, we have attempted to simplify the presentation in this
version of the paper, and have added a glossary at the end that may help the reader
for whom much of the terminology is new.

Since the publication of this paper, there have been a number of papers which,
directly or indirectly, extend the ideas of forma analysis, or develop related ideas.
The interested reader is referred, in particular, to the works of Moraglio [14], Rowe
et al. [23], Jones [12], Troya and Cotta [2, 3] and Gong [9].

It is likely that some of the arguments made in this paper will seem laboured to
the modern reader as attitudes within the field have changed in the 15 years since this
paper was originally prepared. Although the authors have revised the paper and have
to some extent modified the language, the reader is asked to make some allowances.
The authors believe, and have been encouraged by the editors to believe, that the
core approach outlined in this paper is, if anything, more relevant today, when a
wider variety of representations are being actively used, than when the paper was
originally drawn up, and that the approaches described can offer practical ways of
transferring operators and insights between problem domains and representations.

11.2 Introduction

The traditional genetic algorithm (e.g., the Simple Genetic Algorithm of Gold-
berg [7]) was defined over a fixed representation space, namely that of binary
strings. A common historical perception was that to employ such an algorithm
for a new problem, one need only define a fitness function. (Indeed, standard
software packages exist which literally require only computer code for a fitness
function, e.g., GENESIS by Grefenstette [10].) For problems defined explicitly over
binary strings (one counting, royal road, etc.) this does not present any difficulty.
For others, such as real-parameter optimisation, some encoding from the problem
variables into binary strings must be formulated, in order that the fitness of binary
chromosomes can be calculated by decoding them. However, such “shoe-horning”
may make much of the structure of the search problem unavailable to the algorithm
in terms of heritable allele patterns (see, for example, Goldberg’s discussion of
meaningful alphabets in [8]). For problems in which candidate solutions are more
complicated objects, such as the travelling sales-rep problem (TSP), a direct binary
encoding may be unnatural or even infeasible. A particular case is when the “natural
variables” of the problem are not orthogonal, in that the valid settings of one
variable depend on the value of another (e.g., permutations). Faced with such a
situation, practitioners typically adopt an ad hoc approach, drawing on evolutionary
“concepts” to define pragmatic new move operators perceived as appropriate in the

11 Executable Search Strategies 249

new domain (e.g., operators such as subtour inversion, partially matched crossover
and order crossover have been devised for the TSP by Oliver et al. [15]).

Neither the use of a fixed representation space nor an ad hoc approach to
each new problem are satisfactorily problem-independent, making it difficult to
form meaningful comparisons between different algorithms or transfer algorithms
between problem domains. (Attempting to compare, for instance, “genetic algo-
rithms” and “simulated annealing” is futile until both a problem domain and
set of move operators are specified to begin to define each algorithm precisely.)
Algorithms using a fixed representation space cannot naturally be applied to
nonorthogonal problems, and worse, cannot easily incorporate knowledge about the
structure of the problem—one is forced to change either the growth function (the
genotype–phenotype mapping) or the move operators, making the algorithm even
less independent of problem.

In this paper we discuss a methodology by which these difficulties can be
overcome. We show how we can characterise mathematically our assumptions about
the relationship between fitness and the structure of the search space, and then gen-
erate a representation embedding those assumptions. We further demonstrate how
(evolutionary) algorithms can be precisely specified independent of any particular
representation or problem domain. In combination, this allows us to instantiate
a given algorithm for any appropriate representation of any particular problem
domain. This is the basis for formulating testable hypotheses about algorithm
and representation quality within and across problem domains. We illustrate the
technique by starting with a single formal search algorithm and mathematically
deriving concrete, implementable and familiar search strategies for the disparate
problem domains of real parameter optimization and the TSP.

In order to fix terminology,1 a search problem is taken to be the task of solving
any problem instance from a well-specified problem domain, where by solving
we mean attempting to find some optimal or near-optimal solution from a set of
candidate solutions. A problem domain is a set of problem instances sharing similar
structure, each of which takes the form of a search space (of candidate solutions)
together with some fitness function defined on that search space, as illustrated in
Fig. 11.1. For instance, “symmetric travelling sales-rep problems” is a problem
domain, within which a particular set of n.n � 1/=2 intercity distances defines
an instance (yielding a search space of .n � 1/Š=2 tours and an associated fitness
function). A search strategy is then simply a prescription that specifies, for any
problem instance, how to sample successive candidate solutions from the search
space, typically biasing the samples depending on the observed quality (fitness) of
previously sampled points. Any such strategy can be viewed as utilising one or more
move operators, such as recombination, mutation and hill-climbing, that produce
new candidate solutions from those previously visited.

Because the objects in the search space can be arbitrary structures (e.g.,
real-valued vectors, TSP tours, neural-network topologies, etc.), search strategies

1See also the glossary in Sect. 11.7.

250 P.D. Surry and N.J. Radcliffe

Fig. 11.1 (Top) A problem instance consists of a search space S (a set of candidate solutions),
a fitness function f , and a space R from which fitness values are drawn. R is usually �C

0 (the
set of non-negative reals), but can have a more complex form, including being multidimensional,
sometimes with extra dimensions quantifying constraint violations. (Bottom) A particular problem
instance I is usually but one of a large number of related search problems that together form a
problem domain D

are necessarily problem-specific. In order to make meaningful comparisons between
search strategies in different problem domains, it is helpful to define formal search
algorithms with respect to a formal representation of the search space, allowing the
transfer of search algorithms between problem domains. In general, a representation
consists of a representation space and a growth function. The representation space
defines a set of chromosomes which will be manipulated (by the move operators)
during search, and the growth function defines a mapping between chromosomes
and solutions. The move operators can then be defined on the representation space,
with the quality of any chromosome determined using the growth function in
conjunction with the fitness function.

Note that both the representation and algorithm are mathematical constructions
and need not be directly related to the way in which the data structures and computer
code for the resulting search strategy is implemented on a computer.2 So rather
than simply plugging together different bits of computer code (for representation

2Thus the title of this paper has been inspired by but differentiated carefully from that of
Wirth’s [30] and Michalewicz’s [13].

11 Executable Search Strategies 251

and algorithm), we plug together different bits of mathematics from which we
can formally derive a concrete search strategy that can be implemented in a well-
specified way.

One obvious method to achieve the goal of problem-independent search is to fix
the representation space, and then construct an appropriate growth function for each
new problem domain. Such a search algorithm would sample chromosomes from
the fixed representation space, using the growth and fitness functions as a “black-
box” to evaluate them. This was essentially the traditional viewpoint, whereby
deploying a genetic algorithm to a new problem domain simply involved finding
a way to map candidate solutions on to binary strings. There are, however, strong
arguments against this approach. First, it may be extremely difficult or impossible
to construct an appropriate growth function. Secondly, it is increasingly recognised
that effective search is only possible if search strategies incorporate appropriate
domain knowledge (of the structure of the function being optimised); this is clearly
impossible in the black-box approach.

Work on the so-called No Free Lunch Theorem (by Wolpert and Macready [31]
and Radcliffe and Surry [22]) formalised these ideas, and showed that true black-
box optimisation can be at most as efficient as enumerative search, despite the claims
of some authors. We argue that by abstracting the definition of a search algorithm
away from a fixed representation-space (just as we strove for independence from a
particular problem domain), we can realise the goal of a truly problem-independent
algorithm while at the same time making the role played by domain knowledge
much more explicit.

In particular, our approach supports testable hypotheses about algorithm and
representation quality within and across problem domains. For example, Radcliffe
and Surry [20] show that the performance of typical evolutionary algorithms is
highly correlated with the degree to which alleles (induced by the representation)
group solutions of similar fitness (as measured by the variance of the fitness
function). This points toward a more principled approach to studying the practical
convergence properties of evolutionary algorithms, analogous to work on global
random search such as Zhigljavsky’s [32].

The formulation presented in Sect. 11.3 postulates a problem-dependent char-
acterisation � which captures knowledge about a problem domain. This charac-
terisation mechanically generates a formal representation (representation space
and growth function) for any instance of the problem, by defining a number of
equivalences over the search space, as shown in Fig. 11.2. These equivalences
induce subsets of the search space thought to contain solutions with related
performance, possibly as partitions generated by equivalence relations, or simply
as groups of solutions sharing some characteristic. For a given solution, the pattern
of its membership of the specified subsets is used to define its alleles (and possibly
genes). Although in some problems the search space can be partitioned orthogonally
(informally, meaning that all combinations of alleles represent legal solutions), this
is not always the case. For example, in the travelling sales-rep problem, natural
representations involve characterising tours by the edges (links) that they share, and
it is clear that an arbitrary collection of edges does not always represent a valid tour.

252 P.D. Surry and N.J. Radcliffe

Fig. 11.2 (Top) The choice of representation is particularly important in evolutionary algorithms.
We normally represent solutions with a genotype or chromosome, drawn from some space C over
which the genetic operators are defined. Traditionally, this has most often been bit strings (in
the case of genetic algorithms), real vectors (in the case of evolution strategies and evolutionary
programming), or S-expressions (in the case of genetic programming) but can in principle be any
space at least as large as the solution space S. We then use a growth function g to implement the
genotype-phenotype mapping from C to S.
(Bottom) The fundamental idea with forma analysis is to generate both a representation space and a
set of genetic operators for a problem domain through a mechanical procedure that takes as its input
a problem domain D together with a characterization � of that domain. We typically characterize
the search domain by specifying a set of equivalences among the solutions for any instance I . These
equivalences induce a representation made up of a representation space C� (of chromosomes) and
a growth function g� mapping chromosomes to the objects in S. A chromosome 	 2 C� is a string
of alleles, each of which indicates that 	 satisfies a particular equivalence on S. Algorithms can be
completely specified by their action on the alleles of these generalised chromosomes, making them
totally independent of the problem domain itself

In Sect. 11.4 we show how formal algorithms can be precisely specified. The
effectiveness of these formal algorithms is a direct function of the quality of the
domain knowledge captured by the allele structure generated by the characterisation.
Such algorithms are themselves independent of any particular problem domain or
representation; the move operators they use are defined to manipulate solutions only
in terms of their abstracted subset-membership properties (alleles).

Because many problem domains are most naturally characterised using non-
orthogonal representations, the traditional operators are seen not to be fully general
(e.g., consider one-point crossover between permutations). We provide examples of
generalisations of N -point and uniform crossover, and of mutation and hill-climbing
operators, and later show how they reduce to traditional forms in familiar problem
domains.

11 Executable Search Strategies 253

We proceed in Sect. 11.5 to show how any formal algorithm can be instantiated
with any suitable representation of a problem domain of interest to produce a
concrete search strategy. This is illustrated by defining a simple representation-
independent evolutionary algorithm and instantiating it, on the one hand, to solve
the TSP and, on the other, to solve a real-parameter optimisation problem. The
resulting search strategies for the two problems look very different from each other
but are both similar to evolutionary algorithms commonly applied in their respective
domains. We thus prove the surprising result that two apparently quite different
algorithms, in two completely different problem domains, are in fact identical, in a
strong mathematical sense.

In Sect. 11.6 we summarise the implications of this more formal approach. We
see that by separating algorithm and representation, we achieve the goal of truly
problem-independent algorithms. This separation also makes the role of domain
knowledge in the search process much more explicit, allowing us to pose more
carefully questions such as “What is a good algorithm given certain properties of
the characterisation?” and “What is a good characterisation of a given problem
domain?” Although this formalism might be argued to contain a certain degree of
circularity, it is seen to yield practical benefits. For instance, we are able to transfer
such algorithms between arbitrary problem domains and to compare different
algorithms fairly, independent of a particular problem.

11.3 Formal Representations

In tackling a domain of search problems, we often prefer to search over a set of
structures (chromosomes) representing the objects in the search space rather than
directly over the objects themselves. Use of such a representation (made up of a
representation space and associated growth function) makes the search algorithm
much more generic. A general method for defining a representation is to classify
subsets of solutions according to characteristics which they share.

Holland [11] used exactly this approach. He identified subsets of a search space
of binary strings using schemata—sets of strings that share particular bit values. His
Schema Theorem shows how the observed fitness of any schema in a population
can be used to bound the expected instantiation of the same schema in the next
generation, under the action of fitness-proportionate selection. Several authors then
generalised the notion of a schema and have shown that the theorem applies to
arbitrary subsets of the search space, provided that suitable disruption coefficients
are chosen (see Radcliffe [16] and Vose and Liepins [28]).

In particular, Radcliffe [16, 17] has developed the idea of forma analysis, in
which general subsets of the search space are termed formae. Typically, the formae
are defined as the equivalence classes induced by a set of equivalence relations,
although this need not be the case. Any solution can then be identified by specifying
the equivalence class to which it belongs for each of the equivalence relations

254 P.D. Surry and N.J. Radcliffe

(provided the set of relations is sufficiently rich). Loosely speaking, we identify
genes with a set of basic equivalence relations and alleles with the corresponding
equivalence classes. For instance, in a search space of faces, “hair colour” and
“eye colour” might be two basic equivalence relations, which would induce the
formae “red hair”, “brown hair”, “blue eyes”, etc. Higher-order formae are then
constructed by intersection, e.g., “brown hair and blue eyes”. Chromosomes made
up of strings of alleles can then be used to represent the original structures
of the search space (faces in our example). These chromosomes make up the
representation space and the objects they encode define the growth function. In
certain cases, the genes are orthogonal, meaning that any combination of allele
values represents a valid solution, but in many cases this is not so (certain alleles are
incompatible).

It is also not always easy to define equivalence relations; in these cases we simply
identify particular subsets of the search space that share some characteristic. In such
cases, genes are not defined and a chromosome consists simply of a set of alleles.
For instance, in the TSP, we could identify n.n � 1/=2 subsets of the search space,
each containing all tours in which city i is linked to city j . Then a particular tour
would be represented by the set of (undirected) edges it contained. Although in this
case each chromosome would have the same number of alleles, this need not be so,
and the ideas of formal representations and operators generalise easily to variable-
length chromosomes [18]. This and other TSP representations are discussed further
in Sect. 11.5.1.

For any problem domain we require a (problem-dependent) characterisation:
a mathematical procedure for generating the equivalences between candidate
solutions that induce both the (formal) representation and the growth function
for any problem instance (see Fig. 11.2). The characterisation explicitly captures
all of the structure that will be exploited by a search algorithm, allowing us (for
example) to test alternative hypotheses about what makes a “good” representation
for a particular algorithm. The selection of an appropriate characterisation for a
particular problem domain is an open problem. However, several design principles
have been previously proposed by Radcliffe [16]. The most important of these is
that the generated formae should group together solutions of related fitness [20], in
order to create nonrandom structure which can be exploited by the move operators.
We also require that it is possible to find a member of any given formae in
reasonable time without resorting to enumeration, but this is true of most reasonable
characterisations.

Examples of several representations designed for various problem domains are
shown in Table 11.1. These include the traditional binary representation for real
parameters, the Dedekind representation for real parameters introduced in [26],
two natural representations for the TSP (for comparisons of these and others see
[20]), and two representations for subset-selection problems (used in neural-network
topology optimisation), one in which only set membership is considered to be
important and one in which both membership and non-membership is used [18].

11 Executable Search Strategies 255

Table 11.1 This table summarises the characteristics of several representations for different
problem domains (see Sect. 11.5.1 for TSP representations; Sect. 11.5.2 for real-parameter rep-
resentations; and see [18] for subset representations). Basic formae indicates the way in which
basic subsets of the search space are identified, and the existence of genes is noted. Orthogonal
representations are those in which any combination of alleles defines a valid solution. Degeneracy
occurs when multiple chromosomes represent the same solution, and redundancy measures the
amount of excess information in the chromosome (i.e., the number of alleles that could be removed
while still identifying a unique solution)

Representation Basic formae G
en

es
?

O
rt

ho
go

na
l?

D
eg

en
er

ac
y

R
ed

un
da

nc
y

Binary-coded reals Same value for i th bit Yes Yes None None
Dedekind real parameters Same side of cut at value x Yes No None Huge
TSP: permutations Same city in position i Yes No �2n Low
TSP: undirected edges Both contain link jk No No None Low
Subset-selection: inclusive Both include i th element No Yes None None
Subset-selection: incl/excl Both include or both exclude

i th element
Yes Yes None None

11.4 Formal Algorithms

Traditional evolutionary algorithms are typically defined using a set of move oper-
ators that assume a particular form of the representation space. For example, many
genetic algorithms assume chromosomes are binary strings, and most evolution
strategies assume chromosomes are strings of real parameter values. Although
some of the operators used by such algorithms can be generalised straightforwardly
to related representation spaces (for example, N -point crossover between binary
strings is easily generalised to k-ary chromosomes), they typically are not general
enough to handle arbitrary representations. In particular, variable-length genomes
and nonorthogonal representations both present difficulties, and have generally led
in the past to ad hoc construction of problem-specific move operators (for example,
in the TSP).

We will specify formal algorithms by defining formal move operators. These
are defined by specifying how they manipulate the chromosomes’ alleles (equiv-
alence classes) for any formal representation derived from a suitable problem
characterisation. Such algorithms are completely independent of representation, and
we will show in Sect. 11.5 that they can be applied to any problem domain by
mathematically deriving problem-specific instances of the formal move operators
using a representation appropriate to that domain.

A number of design principles have been proposed to facilitate the development
of simple structure-preserving move operators. This has led to the definition of
a number of representation-independent recombination and mutation operators,
permitting the construction of truly representation-independent algorithms. These
design principles [16, 19] and associated operators include the following.

256 P.D. Surry and N.J. Radcliffe

11.4.1 Respect

Respect requires that children produced by recombination are members of all
formae to which both their parents belong. For example, if our representation
included equivalence relations for hair colour and eye colour, then if both parents
had red hair and green eyes, so should all of the children produced by a respectful
crossover operator.

R3. Random respectful recombination is an example of a recombination operator
defined in terms of a formal representation. It is defined to be that operator which
selects a child uniformly at random from the set of all solutions which share all
characteristics possessed by both parents (their similarity set).

11.4.2 Transmission

A recombination operator is said to be strictly transmitting if every child it produces
is equivalent to one of its parents under each of the basic equivalence relations
(loosely, a child shares each gene value with at least one of its parents). Thus, if one
parent had red hair and the other had brown hair, then transmission would require
that the child had either red or brown hair.

RTR. The random transmitting recombination operator is defined as that operator
which selects a child uniformly at random from the set of all solutions belonging
only to basic formae present in either of the parents (their dynastic potential).

11.4.3 Assortment

Assortment requires that a recombination operator be capable of generating a child
with any compatible characteristics taken from the two parents. In our example
above, if one parent had green eyes and the other had red hair, then if those two
characteristics are compatible, assortment would require that we could generate a
child with green eyes and red hair.

RAR. The random assorting recombination operator, a generalised form of uniform
crossover, has been previously defined [18]. It proceeds by placing all alleles from
both parents in a conceptual bag (possibly with different multiplicities), and then
repeatedly draws out alleles for insertion into the child, discarding them if they
are incompatible with those already there. If the bag empties before the child is
complete, which can happen if not all combinations of alleles are legal (so that the
representation is nonorthogonal) remaining genes are set to random values that are
compatible with the alleles already present in the child.

11 Executable Search Strategies 257

All of R3, RTR and RAR may be viewed as generalizations of uniform crossover,
in the sense that they all reduce to uniform crossover in some cases, yet all handle
non-orthogonal representations.

GNX. A generalised version of N -point crossover has also been defined by
Radcliffe and Surry [20]. This proceeds in much the same way as standard N -point
crossover, dividing the two parents with N cut-points, and then using genetic
material from alternating segments. The alleles within each segment are tested in
a random order for inclusion in the child, and any remaining gaps are patched by
randomly selecting compatible alleles first from the unused alleles in the parents,
and then from all possible alleles.

11.4.4 Ergodicity

This demands that we select operators such that it is possible to move from any
location in the search space to any other by their repeated action. (Typically a
standard mutation operator is sufficient.)

BMM. Binomial minimal mutation, a generalisation of standard point-wise muta-
tion, has been proposed in [20]. Minimal mutations are defined to be those moves
that change the fewest possible number of alleles in a solution (in nonorthogonal
representations it may be necessary to change more than one allele at a time to
maintain legality). BMM performs a binomially-distributed number (parameterised
by the genome length and a gene-wise mutation probability) of minimal mutations,
and does not forbid mutations which ‘undo’ previous ones.

Hill-climbers. The definition of representation-independent “minimal mutation”
allows us to define a number of representation-independent hill-climbing operators,
and to define memetic algorithms based on the idea of searching over a subspace of
local-optima [21].

11.4.5 Example

Using the above operators, we can define algorithms that are independent from
any particular representation or problem, such as the example shown in Fig. 11.3.
Note that every step of the algorithm is precisely defined, and that given a
representation of a problem domain, we can mathematically derive a concrete
search strategy suitable for implementation on a computer (see Sect. 11.5). This
is different from traditional evolutionary algorithms, in which steps 4 and 5 would
have to be modified for any problem domain which required a new representation
space.

258 P.D. Surry and N.J. Radcliffe

1. Generate an initial population by randomly sampling p times from the space of chro-
mosomes.

2. Evaluate the p members of the initial population via the growth and fitness functions.
3. Select two parents using binary-tournament selection.
4. Recombine the parents using RAR.
5. Mutate the resulting child using BMM.
6. If the child does not exist in the population, evaluate it and replace the member having

the worst fitness.
7. Repeat to step 3 until termination criterion.

Fig. 11.3 A representation-independent evolutionary algorithm: This example shows how
representation-independent move operators allow us to define specific evolutionary algorithms
precisely (in a mathematical sense) without first choosing a problem domain or representation

11.5 Search Strategies

In order to construct a practical search strategy for a given problem domain,
we simply combine a formal algorithm with an appropriate representation of the
problem domain. There is no need to construct new move operators, as we can
merely instantiate those defined in the formal algorithm of choice. Since exactly
the same formal algorithm (for example, that shown above) can be instantiated for
two different representations (of either the same or different problem domains), one
can begin to make more definite statements about the quality of the algorithm itself
as it is defined independently of any problem. We can fix the representation and
vary the algorithm, allowing more meaningful comparisons between algorithms, or
conversely, fix the algorithm to compare several alternative representations for a
given problem domain.

For several of the representations shown in Table 11.1, the generalised operators
defined in Sect. 11.4 reduce to traditional domain-specific variants. For example,
for any orthogonal representation, R3, RTR and RAR all reduce to uniform
crossover [27], GNX reduces to N -point crossover, and BMM becomes simple
gene-wise point mutation.

It is reassuring that algorithms defined using these formal operators reduce to
commonly used search strategies in the relevant problem domains. To illustrate,
the algorithm shown in Fig. 11.3 is instantiated in Fig. 11.4 for both the travelling
sales-rep problem using the undirected-edge representation, and for a real-parameter
function optimisation problem using the Dedekind representation. This results, on
the one hand, on a strategy based on edge-recombination and sub-tour inversions,
and, on the other, in one based on blend-crossover and Gaussian creep-mutation.
Both of these strategies have been widely used in their respective domains, but it
was not clear before now that they were exactly the same formal algorithm.

Again recall that the representation and algorithm described here are abstract
constructions, used only to derive mathematically the search strategy that will
be eventually implemented computationally. For example, the (formal) Dedekind
representation for real numbers has (in the limit) an infinite number of genes, yet it

11 Executable Search Strategies 259

Problem domain: TSP Real-parameter opt.

Representation: Undirected-edges Dedekind

Representation type: Allelic Genetic

Choose initial population: of random tours of random vectors

Evaluate each solution: by measuring
tour length

using provided f(x)

Select two parents: using binary-tournament selection

Recombine parents using: variant of edge-recomb. BLX-0(blend crossover)

Mutate the child with: binomial number of
sub-tour inversions

Gaussian creep-
mutation for each
parameter

Evaluate, replace worst: if the child does not exist in the population

Repeat: until termination criterion

Fig. 11.4 Search strategy as algorithm plus representation: When the illustrative representation-
independent algorithm of Fig. 11.3 is instantiated with characterisations of two diverse problem
domains (TSP at left; real-parameter optimisation at right), we derive familiar, problem-specific
search strategies

is a simple matter mathematically to derive forms of the various operators suitable
for efficient (and finite!) implementation. (More recent work by Gong [9] has looked
more at questions of generating physical representations and operators, rather than
specifying them mathematically, as is the focus here.)

11.5.1 Travelling Sales-Rep Optimization

Here the problem domain, D, comprises all (symmetric) TSPs. Each problem
instance consists of a particular collection of cities, so that the search space S is the
set of all possible tours: all non-equivalent paths that visit every city exactly once.
For example, given a set of four particular cities labelled 1–4, chosen for illustration
to sit at the corners of a square,

S D
8
<

:
1 2

34

;
1 2

34

;
1 2

34

9
=

; : (11.1)

In general, a TSP over n cities has an associated search space of size nŠ=2n D
.n � 1/Š=2, arising from the nŠ different permutations of the city labels and the 2n

equivalent forms for any tour.

260 P.D. Surry and N.J. Radcliffe

11.5.1.1 The Permutation Representation

One convenient way to represent a tour is by listing the sequence of city labels in
the order in which they are visited, so that the second tour shown in the set might be
represented by 1243. This is called the permutation representation, denoted � .

For any particular representation , we distinguish between the representative of
a solution under (the formal chromosome, or genotype) and the solution itself (the
phenotype). The set of all chromosomes in this representation will be denoted C.
Given a chromosome 	 2 C, and the solution x 2 S to which it corresponds, we
write 	 to mean “the solution represented by 	 in representation ”. Thus 	 is a
member of S, and in the current example 	 D x. For our four-city TSP, we can thus
write

S D f1234�; 1243�; 1324�g : (11.2)

The permutation representation is a formal genetic representation, where the i th
gene identifies the i th city in the tour. Here we have characterised the problem
domain using basic equivalence relations that group together tours in which a
specified city is visited at a prescribed position in the tour. As noted above, this
characterisation results more from the natural way in which tours are written down
rather than from any underlying belief about the structure of the cost function.
Composition of these basic equivalence relations lead to formae that contain tours in
which particular cities are visited at specified positions in the tour (possibly familiar
to most readers as the o-schemata of Goldberg and Lingle [6]). For example, in our
four-city example, the forma � containing all tours that have city 1 and 2 in the first
and second positions respectively would be given by

� D f1234�; 1243�g (11.3)

corresponding to the o-schema 12�� (where � is a wildcard or “don’t care”
indicator).

The representation-independent RAR� and GNX� operators are straightforward
to implement for this representation, while the definition of BMM� depends on the
observation that the minimal mutation of a permutation is generated by exchanging
the positions of two cities [20]. However, we find that the resulting domain-specific
operators are not particularly effective, precisely because the permutation-based
characterization does not capture very useful information about solution structure
and fitness.

11.5.1.2 The Undirected Edge Representation

When we instead consider the structure of the cost function for the TSP, it is clear
that it is the connections between cities—the edges contained in the tour—that
determine its cost. This suggests that a characterisation of the problem domain

11 Executable Search Strategies 261

based on edges might be more effective than the permutation representation. In the
undirected edge representation, denoted u, we choose the characterisation �u that
identifies subsets of tours having a link (edge) between any two specified cities. For
example, the tour 1324� contains the (undirected) edges 13, 23, 24 and 14, so that

1324� D f13; 23; 24; 14gu D
1 2

34

: (11.4)

Any solution can be represented by the set of undirected edges that it contains, as
�u generates formae comprising all tours containing a specific set of edges. For
example, the forma � consisting of those tours that contain the 12 edge is

� D f
1 2

34

;
1 2

34

g: (11.5)

Note that in this case �u does not generate equivalence relations: we call the
representation allelic because genes are not directly defined, and a solution is
simply a collection of alleles. (Although we could induce a genetic representation
by defining a basic equivalence relation for each of the n.n�1/=2 edges a tour could
contain—generating a binary chromosome with n.n � 1/=2 genes—the actions
of the move operators would then tend to be dominated by the many edges not
contained by the tour. See also [5] where this representation is employed.)

RARu, while somewhat harder to implement than for the permutation represen-
tation, follows straightforwardly from its definition, becoming a variant of edge
recombination by Whitley et al. [29] and R3 reduces to a weaker version of the
same operator [20].

To instantiate BMMu, we note that the minimal mutation for this representation
is the reversal of a subtour. For example,

f14; 34; 35; 25; 26; 16gu D 143526� BMMu

7�! 125346� D f12; 34; 35; 25; 46; 16gu;

(11.6)
reversing the section from positions 2–5 inclusive. Minimal mutations are thus at
distance 2 from their parents in this representation (as sub-tour reversal breaks two
edges), allowing us to implement BMMu directly.

Thus instantiating the representation-independent algorithm shown in Sect. 11.4
results in the domain-specific search strategy shown at the start of this section.

11.5.2 Real-Parameter Optimization

Many optimisation problems are formulated as a search for vectors of real-valued
parameters that form extrema of some function. A variety of both local and global

262 P.D. Surry and N.J. Radcliffe

techniques with varying degrees of specialisation have been proposed for tackling
such problems. Evolutionary algorithms have also been regularly applied in these
domains, a particular attraction being that they require only the ability to evaluate
the function at any point. Indeed, evolution strategies have been primarily focused
on real-parameter optimisation, with theoretical results specialised to this domain.
Traditional genetic algorithms, on the other hand, were historically applied to such
problems by mapping to a canonical representation space of binary strings for which
simple operators are defined. Typical “practical” genetic algorithms specialise these
operators by considering the phenotypic effects of the moves they generate in the
search domain of real parameters.

We show that by explicitly designing representations that capture beliefs about
the structure of the search domain of real parameters (such as the importance of
locality and continuity), we can instantiate representation-independent mutation
and recombination operators to derive commonly used operators such as blend
crossover, line recombination and Gaussian mutation.

Although real-parameter optimization is conceptually based on a continuous
search-space, we can extend our work on formal construction of representations
in discrete (typically combinatorial) search problems by constructing a limiting
sequence of discrete representations that form an increasingly accurate approxi-
mation to the continuous space [24]. In this approach, we approximate each real
parameter x by an integer i 2 Zn (the integers, modulo n) with n ! 1, which
extends naturally to higher dimensions (multiple real parameters).

11.5.2.1 Traditional Binary Coding

Historical approaches to binary coding of real parameters were based (if on any
explicit foundation!) on the belief that more schemata are better than fewer (the
notion of implicit parallelism, giving rise to the principle of minimal alphabets).
This has repeatedly been shown to be little more than statistical sleight of hand: one
sample is one sample, not many. There is also perhaps some idea that because binary
coding “chops up the search space” in many different ways, it lets the algorithm
discover useful patterns [7,11] but research has shown that is only true if the problem
happens to coincide with the particular scaling and location captured in the binary
coding. For example, Eshelman and Schaffer [4] found that simply rescaling or
shifting the coordinate axes could dramatically affect performance. (It is reasonable,
however, to speculate about constructing a formal representation based on beliefs
about periodicity in the objective function—or, indeed, on any other feature thought
to be relevant—but this has not as yet been achieved, although an early attempt was
made by Radcliffe [16].)

11.5.2.2 The Dedekind Representation

In generic real-parameter optimisation, it would seem that a more desirable charac-
terization of the problem domain would capture the idea that small changes in the

11 Executable Search Strategies 263

Table 11.2 This table compares the Dedekind representation with traditional binary-
coding for a single real-valued parameter. The real parameter is first approximated by
mapping to Zn (with n ! 1 in the limit). Although the Dedekind representation
is highly non-orthogonal with n � 1 genes, compared to the dlog2 ne required for
traditional binary coding, we never physically store or manipulate the chromosome
in this form; it is simply a mathematical device used to derive appropriate domain-
specific operators that encapsulate our beliefs about the problem structure

x 2 Œ0; 1/ i 2 Z8 Dedekind Traditional binary

0.000 0 0000000 000
0.125 1 1000000 001
0.250 2 1100000 010
0.375 3 1110000 011
0.500 4 1111000 100

parameters lead to small changes in the observed function values (e.g. see [32]).
That is to say, we might believe that neighbouring solutions in the search space are
likely to have related performance. In evolution strategies, this belief is termed the
principle of strong causality, and in real analysis functions with such a property are
termed Hölder continuous or Lipschitz.

In order to quantify this belief, we identify groups of solutions (formae) based
on locality using the idea of Dedekind cuts3 on each parameter (approximated as
an integer in Zn). Here, two solutions are equivalent with respect to the i th cut
for a given parameter if they lie on the same side of i on the Zn number line.
Table 11.2 compares the Dedekind and traditional binary-coded representation for a
single parameter with n D 8.

Note that, formally, the Dedekind representation has n � 1 highly nonorthogonal
(constrained) binary genes coding a single approximated parameter, instead of
the k D dlog2 ne orthogonal genes of traditional integer coding or Gray coding.
However, we will see that the operators we derive from this representation and their
limiting behaviour as we increase the fidelity of approximation (n ! 1) are much
more natural for the problem domain.

While it is somewhat ironic that this formalism of the real representation utilises
binary genes, we emphasise once again that we do not propose to store or manipulate
solutions in this form, but only to apply our design principles to (mathematically
rather than computationally) develop and analyse our operators. Indeed, we strongly
advised against storing the solutions as physically described in by the Dedekind
representations; in our own code, we store real parameters as floating native point
values in our chosen implementation language.

It is now straightforward to derive forms of the representation-independent
genetic operators described in Sect. 11.4. For the traditional binary coding, the

3A Dedekind cut is a partitioning of the rational numbers into two non-empty sets, such that all
the members of one are less than all those of the other. For example, the irrationals are formally
defined as Dedekind cuts on the rationals (e.g.

p
2 , hfx ˇ̌ x2 > 2g; fx ˇ̌ x2 < 2gi).

264 P.D. Surry and N.J. Radcliffe

generalised operators reduce to “standard” forms, since the representations are
orthogonal (all combination of allele values are legal). Thus, RAR, RTR and R3

reduce to uniform crossover, GNX reduces to N -point crossover, and BMM reduces
to bitwise point mutation [26].

For the Dedekind representation, it is clear that both R3 and RTR require that the
child be uniformly selected to lie in the box determined by the parents. It is clear that
in the limit of n ! 1, this is equivalent to blend crossover with parameter ˛ D 0

(BLX-0), as defined by Eshelman and Schaffer [4], and widely used in evolution
strategies [1].4 For this representation, it is not difficult to see that RAR is also
equivalent to BLX-0 (it is easy to show that the child must lie in the interval defined
by the parents, and only slightly more difficult to demonstrate that the likelihood is
uniform over the interval).

Turning to mutation, if we analyse our representation-independent mutation
operator BMM with the Dedekind representation, it is clear that a minimal mutation
involves flipping the value of one of the two bits forming the transition from ones
to zeros in the genome. Thus a fixed-length sequence of minimal mutations is
equivalent to a random walk away from the original transition point. We can show
that this reduces in the limit of n ! 1 to standard Gaussian creep mutation with
width parameterised by the gene-wise mutation probability [26].

The Dedekind representation results from treating each real parameter (dimen-
sion) of a multiparameter search space independently. By instead considering all
possible axis orientations simultaneously we derive the Isodedekind (“Isotropic
Dedekind”) representation [26]. The operators we derive from this representation
again reduce to forms familiar from evolution strategies.

Once again, we have demonstrated that we can formally derive a domain-specific
search strategy—this time for real-parameter optimization—from a representation-
independent algorithm. This allows us to study directly the impact of representation
on algorithm performance. Indeed Fig. 11.5 illustrates how exactly the same formal
algorithm can exhibit very different characteristics for a specific optimization
problem when representation is the only variable.

11.6 Summary

This paper has presented a more formal approach to evolutionary search, by
separating a search strategy into a representation and an algorithm. We have
introduced a disciplined methodology for attacking new problem domains—instead
of simply using evolutionary “ideas” to invent new operators, one need only
provide a characterisation of the problem that explicitly captures beliefs about its
structure, and then instantiate an existing algorithm with the derived representa-
tion. This applies equally to problems with nonorthogonal representations where

4BLX-0 is perhaps now more commonly known as box crossover.

11 Executable Search Strategies 265

Fig. 11.5 In the spirit of the work presented in [4] by Eshelman and Schaffer, this figure illustrates
the results of applying an identical formal algorithm instantiated with the four different real-
parameter representations discussed by Surry [24] to Schaffer’s F6 function. The two-dimensional
function is radially symmetric with global maximum at .0; 0/, local maxima on circles of radius
�; 2�; : : :, and local minima on circles of radius �=2; 3�=2; : : : [4]. The search domain is
Œ�100; 100� � Œ�100; 100� of which the figures show the central region. Each figure shows all
of the points sampled in one typical run of a fixed algorithm based on the R3 and BMM operators.
Each algorithm sampled approximately 9,000 points in the central region during a run of 100
generations with population size 100. The binary representation (top-left) exhibits extremely poor
coverage and an extremely striated sampling pattern based on the relative periodicity in the function
and the representation. A Gray-coded representation (top-right) typically shows better coverage, as
mutation is more effective, but the sampling pattern is clearly biased. The Dedekind representation
(bottom-left) shows much better coverage, but since R3 reduces to BLX-0 there is still a tendency
to favour the axis directions, and an inward bias on the population. The algorithm based on the
Isodedekind representation (bottom-right) still shows the inward population bias since R3 reduces
to line recombination, but the axial skew is removed

traditional evolutionary algorithms are inapplicable. We have demonstrated, by way
of example, that identical algorithms can be applied to both the TSP and real
parameter optimisation, yielding familiar (but apparently quite different) concrete
search strategies.

266 P.D. Surry and N.J. Radcliffe

Because these formal algorithms are independent of any particular representa-
tion, it is possible to transfer them to arbitrary problem domains, and to make
meaningful comparisons between them. By making the role of domain knowledge
more explicit we are also directed to more reasoned investigation of what makes a
good representation for a given problem. Further investigations will build on these
ideas to construct a more complete taxonomy of representations, and to investigate
issues of algorithmic performance and quality of representation.

11.7 Glossary

Allele. If genes are defined, the alleles for a gene are its possible values. For
example, in the directed edge representation for the TSP, there is a gene for each
(originating) city, and the alleles are the possible destinations that the tour can
next visit. If genes are not defined, we use the term allele to refer to the smallest
specifiable values that together make up a chromosome, usually as a set. For
example, in the undirected edge representation of the TSP, a tour is defined simply as
a set of (undirected) edges, e.g. f12; 23; 34; 41g. We refer to these edges as alleles,
but the alleles do not correspond to any gene (something true geneticists would
probably regard as an abuse).

Basic Equivalence Relation. A basis in linear algebra is a set of vectors from
which others may be formed as linear combinations. Similarly, a set of equivalence
relations can have a basis, from which others may be formed by conjunction (logical
and). Basic equivalence relations play the role of formal genes in forma analysis.

Basic Formae; Basic Equivalence Classes. The equivalence classes induced by
basic equivalence relations (“genes”). Basic equivalence classes play the rôle of
formal alleles in forma analysis.

Chromosome. See genotype.

Characterisation. A characterisation of a problem domain is a mathematical
procedure for constructing a formal representation for any problem instance in
that domain. It captures our assumptions about the relationship between the fitness
function and the structure of the search space.

Degeneracy. A degenerate representation is one in which two or more chromo-
somes represent the same solution. For example, in the permutation representation
for the symmetric TSP, 1234, 2341 and 4321 (among others) all represent the same
solution, namely

1 2

34

:

11 Executable Search Strategies 267

Equivalence Relation. An equivalence relation
 is a relation between members
of a set that exhibits reflexivity (x
 x), symmetry (x
 y H) y
 x) and
transitivity (x
 y and y
 z H) x
 z). Real biological genes can be thought
of as examples of equivalence relations (e.g. eye colour). Equivalence relations
partition spaces into sets of equivalent solutions called equivalence classes; the
equivalance classes for eye colour might be “green”, “blue” and “brown”.

Fitness Function. The objective function, or quality measure, for solutions.

Forma. A forma is a subset of the search space, often an equivalence class induced
by an equivalence relation. A forma is a generalization of the notion of a schema.

Formae. The plural of forma is formae.

Formal Algorithm. A formal (search) algorithm is a well-specified mathematical
procedure for sampling a search space, based on representation-independent move
operators and the fitness values observed for candidate solutions. It can be thought
of as parameterized by a formal representation: once the (formal) algorithm and
representation are chosen, an implementable search strategy can be derived.

Formal Representation. A formal representation is a conceptual data structure
that allows (formal) operators to be defined. The representation is often derived
using a characterisation of a problem domain. We typically distinguish between
genetic and allelic representations.

Gene. A gene is a variable in a representation, which can take on some well-defined
range of values and which has a well-defined meaning. For example, the eye-colour
gene specifies eye colour, and might have legal values (alleles) green, blue and
brown.

Genotype. The chosen representation of the problem, usually as some kind of
string of “genes”. This is also known as a chromosome.

Genotype–Phenotype Mapping. See growth function.

Growth Function. A function that transforms a genotype (or chromosome) into a
solution (or phenotype). Also known as the genotype-phenotype mapping.

Move Operator. A move operator is a prescription for generating a new can-
didate solution to a problem instance from one or more existing solutions and
(sometimes) their fitness values. Examples include recombination, mutation and
hill-climbing operators. We distinguish representation-independent move operators
used in formal algorithms, which can be instantiated mathematically for any formal
representation, from the resulting problem-specific move operators employed in
search strategies.

Orthogonal Representation. A representation is orthogonal if each of its param-
eters may be set independent of the value of any of the others, i.e. if there are no
“invalid” chromosomes.

268 P.D. Surry and N.J. Radcliffe

Partitions. A partitioning of a set is a collection of disjoint subsets (partitions)
covering the set.

Phenotype. The candidate solution to the problem. Phenotypes are represented and
specified by a given genotype or chromosome but are distinct from them. In nature,
an actual organism is a phenotype, whereas the organism’s genotype is its DNA.

Problem Domain. A problem domain is a collection of related search problems,
for example symmetric travelling sales-rep problems (TSP).

Problem Instance. A problem instance is a specific example from a problem
domain, consisting of a search space and fitness function. For example, a set of
n.n � 1/=2 intercity distances for a TSP.

Redundancy. A representation is redundant if the value of one gene can be
deduced from the values of others, or equivalently, if not all of the gene values
are required to specify a solution uniquely. Redundant representations cannot be
orthogonal, but nonorthogonal representations do not have to be redundant.

Representation. The genotype of a natural organism specifies a corresponding
phenotype (physical organism) that can be constructed by following a well-defined
set of steps starting from the DNA; in this sense, the genotype may be said to
“represent” the organism. In a similar way, we typically manipulate and work with
some kind of an encoding or representation of the actual objects in the search space
when we use evolutionary algorithms.

Search Algorithm. See formal algorithm.

Search Problem. A search problem is the task of finding (near) optimal solutions
to a problem instance.

Search Space. The set of candidate solutions (phenotypes) to a given search
problem.

Search Strategy. A search strategy is a concrete computational approach to finding
high fitness solutions from a given problem instance. This paper demonstrates that
search strategies can be derived mathematically given a characterisation of the
problem domain and a formal algorithm.

Solution. A (candidate) solution to the problem; a member of the search space; a
phenotype.

References

1. T. Bäck, F. Hoffmeister, H.-P. Schwefel, A survey of evolution strategies, in Proceedings of
the Fourth International Conference on Genetic Algorithms, San Diego (Morgan Kaufmann,
San Mateo, 1991), pp. 2–9

2. C. Cotta, J. Troya, Genetic forma recombination in permutation flowshop problems. Evol.
Comput. 6, 25–44 (1998)

11 Executable Search Strategies 269

3. C. Cotta, J. Troya, On the influence of the representation granularity in heuristic forma
recombination, in ed. by J. Carroll, E. Damiani, H. Haddad, D. Oppenheim, ACM Symposium
on Applied Computing 2000, Villa Olmo (ACM, 2000) pp. 433–439

4. L.J. Eshelman, D.J. Schaffer, Real-coded genetic algorithms and interval schemata, in ed.
by D. Whitley, Foundations of Genetic Algorithms 2 (Morgan Kaufmann, San Mateo, 1992)
pp. 187–202

5. B.R. Fox, M.B. McMahon, Genetic operators for sequencing problems, in ed. by G.J.E.
Rawlins, Foundations of Genetic Algorithms (Morgan Kaufmann, San Mateo, 1991)

6. D.E. Goldberg, R. Lingle Jr, Alleles, loci and the traveling salesman problem, in Proceed-
ings of an International Conference on Genetic Algorithms, Pittsburgh (Lawrence Erlbaum
Associates, Hillsdale, 1985)

7. D.E. Goldberg, Genetic Algorithms in Search, Optimization & Machine Learning (Addison-
Wesley, Reading, 1989)

8. D.E. Goldberg, Real-coded genetic algorithms, virtual alphabets, and blocking. Technical
Report IlliGAL Report No. 90001, Department of General Engineering, University of Illinois
at Urbana-Champaign, 1990

9. T. Gong, Principled Design of Nature Inspired Optimizers—Generalizing a Formal Design
Methodology, PhD thesis, City University, London, 2008

10. J.J. Grefenstette, GENESIS: a system for using genetic search procedures, in Proceedings of
the 1984 Conference on Intelligent Systems and Machines, Rochester, 1984, pp. 161–165

11. J.H. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann
Arbor, 1975)

12. T.C. Jones, Evolutionary Algorithms, Fitness Landscapes and Search, PhD thesis, University
of New Mexico, 1995

13. Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs (Springer,
Berlin, 1992)

14. A. Moraglio, Towards a Geometric Unification of Evolutionary Algorithms, PhD thesis,
University of Essex, 2007

15. I.M. Oliver, D.J. Smith, J.R.C. Holland, A study of permutation crossover operators on the
travelling salesman problem, in Proceedings of the Third International Conference on Genetic
Algorithms, George Mason University, Washington, DC (Morgan Kaufmann, San Mateo, 1987)

16. N.J. Radcliffe, Equivalence class analysis of genetic algorithms. Complex Syst. 5(2), 183–205
(1991)

17. N.J. Radcliffe, Forma analysis and random respectful recombination, in Proceedings of the
Fourth International Conference on Genetic Algorithms, San Diego (Morgan Kaufmann, San
Mateo, 1991), pp. 222–229

18. N.J. Radcliffe, Genetic set recombination, in ed. by D. Whitley, Foundations of Genetic
Algorithms 2 (Morgan Kaufmann, San Mateo, 1992)

19. N.J. Radcliffe, The algebra of genetic algorithms. Ann. Maths Artif. Intell. 10, 339–384 (1992)
20. N.J. Radcliffe, P.D. Surry, Fitness variance of formae and performance prediction, in

Foundations of Genetic Algorithms III,ed. by L.D. Whitley, M.D. Vose (Morgan Kaufmann,
San Mateo, 1994) pp. 51–72

21. N.J. Radcliffe, P.D. Surry, Formal memetic algorithms, in ed. by T.C. Fogarty, Evolutionary
Computing: AISB Workshop, Leeds, Apr 1994, Lecture Notes in Computer Science 865
(Springer, Berlin/New York, 1994) pp. 1–16

22. N.J. Radcliffe, P.D. Surry, Fundamental limitations on search algorithms: evolutionary com-
puting in perspective, in Computer Science Today: Recent Trends and Developments, ed. by
J. van Leeuwen. Lecture Notes in Computer Science, vol. 1000 (Springer, New York, 1995),
pp. 275–291

23. J.E. Rowe, M.D. Vose, A.H. Wright, Group properties of crossover and mutation. Evol.
Comput. 10(2), 151–184 (2002)

24. P.D. Surry, A Prescriptive Formalism for Constructing Domain-specific Evolutionary Algo-
rithms, PhD thesis, University of Edinburgh, 1998

270 P.D. Surry and N.J. Radcliffe

25. P.D. Surry, N.J. Radcliffe, Formal algorithms + formal representations = search strategies,
in Parallel Problem Solving from Nature IV, Berlin, ed. by H.-M. Voigt, W. Ebeling,
I. Rechenberg, H. Schwefel (Springer, LNCS 1141, 1996), pp. 366–375

26. P.D. Surry, N.J. Radcliffe, Real representations, in Foundations of Genetic Algorithms IV, ed.
by R.K. Belew, M.D. Vose (Morgan Kaufmann, San Mateo, 1996)

27. G. Syswerda, Uniform crossover in genetic algorithms, in Proceedings of the Third Interna-
tional Conference on Genetic Algorithms, Fairfax (Morgan Kaufmann, San Mateo, 1989)

28. M.D. Vose, G.E. Liepins, Schema disruption, in Proceedings of the Fourth International
Conference on Genetic Algorithms, San Diego (Morgan Kaufmann, San Mateo, 1991),
pp. 237–243

29. D. Whitley, T. Starkweather, D. Fuquay, Scheduling problems and traveling salesmen: the
genetic edge recombination operator, in Proceedings of the Third International Conference on
Genetic Algorithms, Fairfax (Morgan Kaufmann, San Mateo, 1989)

30. N. Wirth, Algorithms + Data Structures = Programs (Prentice-Hall, Englewood Cliffs, 1976)
31. D.H. Wolpert, W.G. Macready, No free lunch theorems for search, Technical Report, SFI–TR–

95–02–010, Santa Fe Institute, 1995
32. A.A. Zhigljavsky, Theory of Global Random Search (Kluwer Academic, Dordrecht/Boston,

1991)

	Foreword
	Preface
	The Story Told in the Book
	Overview of the Chapters
	Theory for Drawing the Line
	Relevant Scope of Problems
	Top-Down Principled Design of Search Algorithms
	Principled Practice

	Acknowledgements
	Contents
	List of Contributors
	Chapter1 No Free Lunch Theorems: Limitations and Perspectives of Metaheuristics
	1.1 Introduction
	1.2 The NFL Theorem for Search
	1.2.1 Basic Definitions
	1.2.2 The NFL Theorem
	1.2.3 The Sharpened NFL Theorems

	1.3 The Preconditions in the NFL Theorem and the Sharpened NFL Theorems
	1.3.1 Independence of Algorithmic Complexity
	1.3.2 Non-repeating Algorithms
	1.3.3 Deterministic and Randomized Algorithms
	1.3.4 Finiteness of Domain and Codomain
	1.3.5 Restriction to a Single Objective
	1.3.6 Fixed Objective Functions
	1.3.7 Averaging Over All Search Behaviors and All Performance Criteria

	1.4 Restricted Function Classes and NFL
	1.4.1 How Likely Are the Conditions for NFL?
	1.4.2 Structured Search Spaces and NFL
	1.4.3 The Almost NFL Theorem

	1.5 Search and Markov Decision Processes
	1.6 What Can We Learn from the NFL Results for the Design of Metaheuristics?
	1.6.1 The Preconditions of the NFL Theorem Are Not Met in Practice
	1.6.2 Generalization from Benchmark Problems Is Dangerous

	1.7 Further Reading
	References

	Chapter2 Convergence Rates of Evolutionary Algorithms and Parallel Evolutionary Algorithms
	2.1 Introduction: Comparison-Based Algorithms and Their Robustness
	2.2 The Branching Factor
	2.2.1 Using VC-Dimension

	2.3 Complexity Bounds
	2.3.1 Convergence Ratio
	2.3.2 Link with the Convergence Rate
	2.3.3 Known Results

	2.4 The Limited Speed-Up of Many Real-World Algorithms
	2.4.1 The One-Fifth Rule
	2.4.2 Self-adaptation (SA)
	2.4.3 Cumulative Step-Size Adaptation (CSA)

	2.5 Implications
	2.6 Conclusions
	References

	Chapter3 Rugged and Elementary Landscapes
	3.1 Introduction
	3.2 Ruggedness
	3.3 Barriers
	3.3.1 Walk and Accessibility
	3.3.2 Barrier Tree
	3.3.3 Basins and Inherent Structure Network
	3.3.4 Funnel
	3.3.5 Valleys

	3.4 Elementary Landscapes
	3.4.1 Graph Laplacian
	3.4.2 Elementary Landscapes
	3.4.3 Fourier Decomposition

	3.5 Additive Random Landscapes
	3.6 Outlook
	References

	Chapter4 Single-Funnel and Multi-funnel Landscapes and Subthreshold-Seeking Behavior
	4.1 Background and Motivation
	4.2 Single-Funnel and Multi-funnel Functions
	4.3 No Free Lunch and Subthreshold-Seeking Behavior
	4.3.1 No Free Lunch and Funnels

	4.4 Subthreshold-Seeking Algorithms
	4.4.1 The SubMedian-Seeker
	4.4.2 Subthreshold-Seeker
	4.4.2.1 Functions with Uniform Quasi-basins
	4.4.2.2 Functions with Unevenly Sized Quasi-basins

	4.5 Quasi-basins and Local Search in Hamming Neighborhoods
	4.5.1 A Subthreshold Local Search Algorithm
	4.5.2 Experiments and Results

	4.6 Conclusions
	References

	Chapter�5 Black-Box Complexity for Bounding the Performance of Randomized Search Heuristics
	5.1 Introduction
	5.2 Randomized Search Heuristics and Black-Box Complexity
	5.2.1 Basic Concepts
	5.2.1.1 Problem Class
	5.2.1.2 Black-Box Algorithms
	5.2.1.3 Performance Criteria and Black-Box Complexity

	5.2.2 Deterministic Algorithms
	5.2.3 Randomized Algorithms

	5.3 Black-Box Complexity and Practice
	5.4 Bounds for Generic Classes of Functions
	5.5 Bounds for Typical Benchmark Functions
	5.5.1 Needle
	5.5.2 OneMax
	5.5.3 BinVal

	5.6 Bounds for Natural Classes Functions
	5.6.1 Monomials
	5.6.2 Unimodal Functions

	5.7 Conclusions
	References

	Chapter6 Designing an Optimal Search Algorithm with Respect to Prior Information
	6.1 Introduction
	6.2 Testbeds for Black-Box Optimization and Parameter Tuning
	6.2.1 Tuning OAs
	6.2.2 Limitations of Test Beds

	6.3 Reinforcement Learning Approaches
	6.4 Gaussian Processes for Optimization
	6.4.1 From Deterministic to Bayesian Optimization
	6.4.2 An Introduction to Kriging
	6.4.3 Bayesian Sampling Criteria
	6.4.3.1 P-Algorithm
	6.4.3.2 Expected Improvement
	6.4.3.3 Informational Approach to Global Optimization

	6.4.4 From the Sampling Criterion to the OA
	6.4.4.1 Choosing a Model
	6.4.4.2 Optimization of the Sampling Criterion

	6.5 Conclusion
	References

	Chapter7 The Bayesian Search Game
	7.1 Introduction
	7.2 Yet Another Formulation of NFL
	7.3 Some Background on POMDPs
	7.4 From NFL to Beliefs and the Bayesian Search Game
	7.5 Belief-Based Search Policies
	7.6 Experiments with Gaussian Processes as Belief Representation
	7.7 Discussion
	References

	Chapter8 Principled Design of Continuous Stochastic Search: From Theory to Practice
	8.1 Introduction: Top-Down Versus Bottom-Up
	8.1.1 The Top-Down Way
	8.1.2 The Bottom-Up Way

	8.2 Sampling with Maximum Entropy
	8.3 Exploiting the Objective Function
	8.3.1 Old Information Is Disregarded
	8.3.2 Ranking of the Better Half Is Exploited

	8.4 Invariance
	8.5 Update of the Incumbent
	8.6 Step-Size Control
	8.7 Covariance Matrix Adaptation
	8.7.1 The Rank-μ Matrix
	8.7.1.1 What Is Missing?

	8.7.2 Another Evolution Path
	8.7.3 The Covariance Matrix Update

	8.8 An Experiment on Two Noisy Functions
	8.9 Summary
	Appendix
	References

	Chapter9 Parsimony Pressure Made Easy: Solving the Problem of Bloat in GP
	9.1 Introduction
	9.2 Bloat in Theory
	9.3 Bloat Control in Practice
	9.4 Optimal Parsimony Pressure
	9.5 Experimental Results
	9.5.1 GP Systems, Problems and Primitives
	9.5.2 Results

	9.6 Conclusions
	References

	Chapter10 Experimental Analysis of Optimization Algorithms: Tuning and Beyond
	10.1 Introduction
	10.2 Towards an Experimental Methodology
	10.2.1 Performing Experiments in Computer Science
	10.2.2 Research Questions
	10.2.3 What to Measure?
	10.2.4 Pre-experimental Planning
	10.2.5 Fair Parameter Settings
	10.2.6 Performing the Experiments
	10.2.7 Key Features of Comparisons
	10.2.8 Reporting Results
	10.2.9 Iterating the Experimental Process
	10.2.10 Scientifically Meaningful Results?

	10.3 Active Experimentation
	10.3.1 Definition
	10.3.2 Sequential Parameter Optimization Toolbox
	10.3.3 Comparison of Automated and Interactive Tuning

	10.4 Case Study: Tuning Simulated Annealing
	10.4.1 Simulated Annealing
	10.4.2 Description of the Objective Function

	10.5 Hypothesis Testing
	10.5.1 Neyman–Pearson Tests
	10.5.2 Power of a Test

	10.6 Severity
	10.6.1 Motivation
	10.6.2 Severe Tests
	10.6.2.1 Severity in the Case of Acceptance of the Null
	10.6.2.2 Severity in the Case of Rejection of the Null Hypothesis
	10.6.2.3 Usage of the Severity Concept

	10.7 Metastatistical Principles
	10.7.1 Results from Default, Random, and Tuned Settings
	10.7.2 Spurious Effects
	10.7.3 Ceiling Effects Revisited

	10.8 Exploratory Landscape Analysis
	10.8.1 Important Problem Properties
	10.8.2 Exploratory Testing

	10.9 Summary and Future Developments
	References

	Chapter11 Formal Search Algorithms + Problem Characterisations = Executable Search Strategies
	11.1 Preamble
	11.2 Introduction
	11.3 Formal Representations
	11.4 Formal Algorithms
	11.4.1 Respect
	11.4.2 Transmission
	11.4.3 Assortment
	11.4.4 Ergodicity
	11.4.5 Example

	11.5 Search Strategies
	11.5.1 Travelling Sales-Rep Optimization
	11.5.1.1 The Permutation Representation
	11.5.1.2 The Undirected Edge Representation

	11.5.2 Real-Parameter Optimization
	11.5.2.1 Traditional Binary Coding
	11.5.2.2 The Dedekind Representation

	11.6 Summary
	11.7 Glossary
	References

