
Ontology-Based Governance
of Data-Aware Processes�

Diego Calvanese1, Giuseppe De Giacomo2, Domenico Lembo2,
Marco Montali1, and Ario Santoso1

1 Free University of Bozen-Bolzano
{calvanese,montali,santoso}@inf.unibz.it

2 Sapienza Università di Roma
{deGiacomo,lembo}@dis.uniroma1.it

Abstract. In this paper we show how one can use the technology developed re-
cently for Ontology-Based Data Access (OBDA) to govern data-aware processes
through ontologies. In particular, we consider processes executed over a relational
database which issue calls to external services to acquire new information and up-
date the data. We equip these processes with an OBDA system, in which an ontol-
ogy modeling the domain of interest is connected through declarative mappings
to the database, and that consequently allows one to understand and govern the
manipulated information at the conceptual level. In this setting, we are interested
in verifying first-order μ-calculus formulae specifying temporal properties over
the evolution of the information at the conceptual level. Specifically, we show
how, building on first-order rewritability of queries over the system state that is
typical of OBDA, we are able to reformulate the temporal properties into tem-
poral properties expressed over the underlying database. This allows us to adopt
notable decidability results on verification of evolving databases that have been
established recently.

1 Introduction

Recent work in business processes, services and databases brought the necessity of
considering both data and processes simultaneously while designing the system. This
holistic view of considering data and processes together has given rise to a line of re-
search under the name of artifact-centric business processes [19,16,1,2] that aims at
avoiding the notorious discrepancy of traditional approaches where these aspects are
considered separately [9]. Recently, interesting decidability results for verification of
temporal properties over such systems have been obtained in the context of so-called
Data-centric Dynamic Systems (DCDSs) based on relational technology [14,7,5,6]. In a
DCDS, processes operate over the data of the system and evolve it by executing actions
that may issue calls to external services. The data returned by such external services is
injected into the system, effectively making it infinite state. There has been also some
work on a form of DCDS based on ontologies, where the data layer is represented in

� This research has been partially supported by the EU under the ICT Collaborative Project
ACSI (Artifact-Centric Service Interoperation), grant agreement n. FP7-257593.

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 25–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 D. Calvanese et al.

a rich ontology formalism, and actions perform a form of instance level update of the
ontology [4]. The use of an ontology allows for a high-level conceptual view of the data
layer that is better suited for a business level treatment of the manipulated information.

Here we introduce Semantically-Governed Data-Aware Processes (SGDAP), in
which we merge these two approaches by enhancing a relational layer constituted by a
DCDS-based system, with an ontology, constituting a semantic layer. The ontology cap-
tures the domain in which the SGDAP is executed, and allows for seeing the data and
their manipulation at a conceptual level through an ontology-based data access (OBDA)
system [10,21]. Hence it provides us with a way of semantically governing the under-
lying DCDS. Specifically, an SGDAP is constituted by two main components: (i) an
OBDA system [10] which includes (the intensional level of) an ontology, a relational
database schema, and a mapping between the ontology and the database; (ii) a process
component, which characterizes the evolution of the system in terms of a process speci-
fying preconditions and effects of action execution over the relational layer.

The ontology is represented through a Description Logic (DL) TBox [3], expressed
in a lightweight ontology language of the DL-Lite family [12], a family of DLs specifi-
cally designed for efficiently accessing to large amounts of data. The mapping is defined
in terms of a set of assertions, each relating an arbitrary (SQL) query over the relational
layer to a set of atoms whose predicates are the concepts and roles of the ontology,
and whose arguments are terms built using specific function symbols applied to the
answer variables of the SQL query. Such mappings specify how to populate the ele-
ments of the ontology from the data in the database, and function symbols are used to
construct (abstract) objects (object terms) from the concrete values retrieved from the
database. As an example, let us consider a fragment of a university information system
in which data about students and their degree is stored and manipulated. An ontology
records the fact that both bachelor and master students are students, and that some of
the students are graduated. The actual data about students is maintained in a relational
database containing, among others, a table storing for currently enrolled students their
id, name, surname, type of degree, and for previously enrolled students also the gradua-
tion date. The mappings relating the database to the ontology specify that the concepts
for bachelor and master students are populated using a simple query that extracts from
the enrollment table name, surname, and degree type of each students stored therein,
and uses this information to create student objects. This reflects the fact that the com-
bination of these three properties is considered sufficient to identify a student in the
modeled domain.

When an SGDAP evolves, each snapshot of the system is characterized by a database
instance at the relational layer, and by a corresponding virtual ABox, which together
with the TBox provides a conceptual view of the relational instance at the semantic
layer. When the system is progressed by the process component, we assume that at every
time the current instance can be arbitrarily queried, and can be updated through action
executions, possibly involving external service calls to get new values from the envi-
ronment. Hence the process component relies on three main notions: actions, which are
the atomic progression steps for the data layer; external services, which can be called
during the execution of actions; and a process, which is essentially a non-deterministic
program that uses actions as atomic instructions. In our example, we might have an

Ontology-Based Governance of Data-Aware Processes 27

A2A0 A1
Aw A3

M

OBDA
System

Process

external service

M

D0 D1 D2 Dw D3

 non executable

T

α1

T

M

T

M

α2

T

M

αw

T

α3

R R R R R

queries

Fig. 1. Overview of a semantically-governed data-aware process

action to graduate a student with a given id, that extracts from the enrollment table the
student, provided her graduation date is NULL (indicating that the student is not gradu-
ated yet), and after obtaining the graduation mark by calling an external service, inserts
her in the table of graduated students. During the execution, the snapshots of the rela-
tional layer can be virtually mapped as ABoxes in the semantic layer. This enables to:
(i) understand the evolution of the system at the conceptual level, and (ii) govern it at
the semantic level, rejecting those actions that, executed at the relational layer, would
lead to a new semantic snapshot that is inconsistent with the semantic layer’s TBox.
Figure 1 gives an intuition about the components of a SGDAP and the usages of the
ontology to understand and govern the system execution. The subsequent technical de-
velopment details the various components of the depicted framework, and the role they
play in the system.

In this work, we are in particular interested in verifying dynamic properties specified
in a variant of μ-calculus [18], one of the most powerful temporal logics, expressed
over the semantic layer of an SGDAP. We consider properties expressed as μ-calculus
formulae whose atoms are queries built over the semantic layer. In our running example,
we can verify a property stating that every evolution of the system leads to a state
in which all students present in that state have graduated. By relying on techniques
for query answering in DL-Lite OBDA systems, which exploit FOL rewritability of
query answering and of ontology satisfiability, we reformulate the temporal properties
expressed over the semantic layer into analogous properties over the relational layer.
Given that our systems are in general infinite-state, verification of temporal properties
is undecidable. However, we show how we can adapt to our setting recent results on the
decidability of verification of DCDSs based on suitable finite-state abstractions [6].

2 Preliminaries

In this section we introduce the description logic (DL) DL-LiteA,id and describe the
ontology-based data access (OBDA) framework.

DL-LiteA,id [13,10] allows for specifying concepts, representing sets of objects, roles,
representing binary relations between objects, and attributes, representing binary rela-
tions between objects and values. For simplicity, in this paper we consider a unique

28 D. Calvanese et al.

domain for all values used in the system. The syntax of concept, role and attribute ex-
pressions in DL-LiteA,id is as follows:

B −→ N | ∃R | δ(U) R −→ P | P−

Here, N , P , and U respectively denote a concept name, a role name, and an attribute
name, P− denotes the inverse of a role, andB andR respectively denote basic concepts
and basic roles. The concept ∃R, also called unqualified existential restriction, denotes
the domain of a role R, i.e., the set of objects that R relates to some object. Similarly,
the concept δ(U) denotes the domain of an attribute U , i.e., the set of objects that U
relates to some value. Note that we consider here a simplified version of DL-LiteA,id
where we distinguish between objects and values, but do not further deal with different
datatypes; similarly, we consider only a simplified version of identification assertions.

A DL-LiteA,id ontology is a pair (T , A), where T is a TBox, i.e., a finite set of TBox
assertions, and A is an Abox, i.e., a finite set of ABox assertions. DL-LiteA,id TBox
assertions have the following form:

B1 � B2

B1 � ¬B2

(id B Z1, . . . , Zn)

R1 � R2

R1 � ¬R2

(funct R)

U1 � U2

U1 � ¬U2

(funct U)

From left to right, assertions of the first row respectively denote inclusions between
basic concepts, basic roles, and attributes; assertions of the second row denote disjoint-
ness between basic concepts, basic roles, and attributes; assertions of the last row denote
identification (assertions) (IdA), and global functionality on roles and attributes. In the
IdA, each Zi denotes either an attribute or a basic role. Intuitively, an IdA of the above
form asserts that for any two different instances o, o′ of B, there is at least one Zi such
that o and o′ differ in the set of their Zi-fillers, that is the set of objects (if Zi is a role) or
values (if Zi is an attribute) that are related to o by Zi. As usual, in DL-LiteA,id TBoxes
we impose that roles and attributes occurring in functionality assertions or IdAs cannot
be specialized (i.e., they cannot occur in the right-hand side of inclusions).

DL-LiteA,id ABox assertions have the form N(t1), P (t1, t2), or U(t1, v), where t1
and t2 denote individual objects and v denotes a value.

The semantics of DL-LiteA,id is given in [13]. We only recall here that we interpret
objects and values over distinct domains, and that for both we adopt the Unique Name
Assumption, i.e., different constants denote different objects (or values). The notions of
entailment, satisfaction, and model are as usual [13]. We also say that A is consistent
wrt T if (T , A) is satisfiable, i.e., admits at least one model.

Next we introduce queries. As usual (cf. OWL 2), answers to queries are formed
by terms denoting individuals appearing in the ABox. The domain of an ABox A, de-
noted by ADOM(A), is the (finite) set of terms appearing in A. A union of conjunctive
queries (UCQ) q over a TBox T is a FOL formula of the form ∃�y1.conj 1(�x, �y1) ∨
· · · ∨ ∃�yn.conj n(�x, �yn), with free variables �x and existentially quantified variables
�y1, . . . , �yn. Each conj i(�x, �yi) in q is a conjunction of atoms of the formN(z), P (z, z′),
U(z, z′) whereN , P and U respectively denote a concept, role and attribute name of T ,
and z, z′ are constants in a set C or variables in �x or �yi, for some i ∈ {1, . . . , n}. The

Ontology-Based Governance of Data-Aware Processes 29

Student

Master

Bachelor

mNum: String
Graduated

Fig. 2. UML conceptual schema for our running example

(certain) answers to q over an ontology (T , A) is the set ans (q, T , A) of substitutions1

σ of the free variables of q with constants in ADOM(A) such that qσ evaluates to true in
every model of (T , A). If q has no free variables, then it is called boolean, and its certain
answers are true or false. Computing ans (q, T , A) of a UCQ q over a DL-LiteA,id on-
tology (T , A) is inAC0 in the size ofA [13]. This is actually a consequence of the fact
that DL-LiteA,id enjoys the FOL rewritability property, which in our setting says that for
every UCQ q, ans (q, T , A) can be computed by evaluating the UCQ REW(q, T) over
A considered as a database. REW(q, T) is the so-called perfect reformulation of q w.r.t.
T [13]. We also recall that, in DL-LiteA,id, ontology satisfiability is FOL rewritable. In
other words, we can construct a boolean FOL query qunsat(T) that evaluates to true
over an ABox A iff the ontology (T , A) is unsatisfiable.

In our framework, we consider an extension of UCQs, called ECQs, which are
queries of the query language EQL-Lite(UCQ) [11]. Formally, an ECQ over a TBox
T is a possibly open domain independent formula of the form:

Q −→ [q] | ¬Q | Q1 ∧Q2 | ∃x.Q | x = y

where q is a UCQ over T and [q] denotes that q is evaluated under the (minimal) knowl-
edge operator (cf. [11]). To compute the certain answers ANS(Q, T , A) to an ECQ Q
over an ontology (T , A), we can compute the certain answers over (T , A) of each UCQ
embedded in Q, and evaluate the first-order part of Q over the relations obtained as the
certain answers of the embedded UCQs. Hence, also computing ANS(Q, T , A) of an
ECQ Q over a DL-LiteA,id ontology (T , A) is in AC0 in the size of A [11].

Ontology-Based Data Access (OBDA). In an OBDA system, a relational database is
connected to an ontology that represents the domain of interest by a mapping, which
relates database values with values and (abstract) objects in the ontology (c.f. [10]). In
particular, we make use of a countably infinite set V of values and a set Λ of function
symbols, each with an associated arity. We also define the set C of constants as the union
of V and the set {f(d1, . . . , dn) | f ∈ Λ and d1, . . . , dn ∈ V} of object terms.

Formally, an OBDA system is a structure O = 〈R, T ,M〉, where: (i) R =
{R1, . . . , Rn} is a database schema, constituted by a finite set of relation schemas;
(ii) T is a DL-LiteA,id TBox; (iii) M is a set of mapping assertions, each of the form
Φ(�x) � Ψ(�y,�t), where: (a) �x is a non-empty set of variables, (b) �y ⊆ �x, (c) �t is a
set of object terms of the form f(�z), with f ∈ Λ and �z ⊆ �x, (d) Φ(�x) is an arbitrary
SQL query over R, with �x as output variables, and (e) Ψ(�y,�t) is a CQ over T of arity
n > 0 without non-distinguished variables, whose atoms are over the variables �y and
the object terms �t. Without loss of generality, we use the special function symbol val/1
to map values from the relational layer to the range of attributes in the semantic layer.

1 As customary, we can view each substitution simply as a tuple of constants, assuming some
ordering of the free variables of q.

30 D. Calvanese et al.

Example 1. We formalize our running example presented in Section 1, and consider a simple
university information system that stores and manipulates data concerning students and their
degree. In particular, we define an OBDA system O = 〈R, T ,M〉 to capture the conceptual
schema of such a domain, how data are concretely maintained in a relational database, and how
the two information levels are linked through mappings. The TBox T , shown in Figure 2 using
the notation of UML class diagrams, is constituted by the following assertions:

Bachelor � Student
Master � Student

Graduated � Student

δ(MNum) � Student
Student � δ(MNum)

(funct MNum)
(id Student MNum)

The conceptual schema states that Bachelor, Master, and Graduated are subclasses of Student,
and that MNum (representing the matriculation number) is an attribute of Student. The con-
ceptual schema also expresses that: (i) each Student has exactly one matriculation number (by
composing the assertion stating that each Student must be in the domain of MNum with the
assertion stating that MNum is functional); (ii) matriculation numbers can be used to identify
Students (i.e., each MNum is associated to at most one Student). Data related to students are
maintained in a concrete underlying data source that obeys the database schema R, constituted
by the following relation schemas: (i) ENROLLED(id, name, surname, type, endDate) stores
information about students that are currently (endDate=NULL) or were enrolled in a bachelor
(type="BSc") or master (type="MSc") course. (ii) GRAD(id,mark, type) stores data of for-
mer students who have been graduated. (iii) TRANSF M(name, surname) is a temporary rela-
tion used to maintain information about master students that have been recently transferred from
another university, and must still complete the enrollment process. The interconnection between
R and T is specified through the following set M of mapping assertions:

m1 : SELECT name, surname, type FROM ENROLLED WHERE type ="BSc"
� Bachelor (stu1 (name,surname,type))

m2 : SELECT name, surname, type FROM ENROLLED WHERE type ="MSc"
�Master (stu1 (name,surname,type))

m3 : SELECT name, surname, type, id FROM ENROLLED
�MNum (stu1 (name,surname,type),val (id))

m4 : SELECT name, surname FROM TRANSF M
�Master (stu1 (name,surname,"MSc"))

m5 : SELECT e. name,e. surname, e. type FROM ENROLLED e, GRAD g WHERE e. id =g. id
� Graduated (stu1 (name,surname,type))

Intuitively, m1 (resp., m2) maps every id in ENROLLED with type "BSc" ("MSc") to a bach-
elor (master) student. Such a student is constructed by “objectifying” the name, surname and
course type using variable term stu1/3. In m3, the MNum attribute is instead created using di-
rectly the value of id to fill in the target of the attribute. Notice the use of the val function symbol
for mapping id to the range of MNum. Mapping m4 leads to create further master students by
starting from the temporary TRANSF M table. Since such students are not explicitly associated
to course type, but it is intended that they are "MSc", objectification is applied to students’ name
and surname, adding "MSc" as a constant in the variable term. Notice that, according to the
TBox T , such students have a matriculation number, but its value is not known (and, in fact, no
mapping exists to generate their MNum attribute). Finally, m5 generates graduated students by
selecting only those students in the ENROLLED table whose matriculation number is also con-
tained in the GRAD table. ��

Given a database instance D made up of values in V and conforming to schema R,
and given a mapping M, the virtual ABox generated from D by a mapping assertion

Ontology-Based Governance of Data-Aware Processes 31

m = Φ(x) � Ψ(y, t) in M is m(D) =
⋃
v∈eval(Φ,D) Ψ [x/v], where eval (Φ,D)

denotes the evaluation of the SQL query Φ over D, and where we consider Ψ [x/v]
to be a set of atoms (as opposed to a conjunction). Then, the ABox generated from D
by the mapping M is M(D) =

⋃
m∈Mm(D). Notice that ADOM(M(D)) ⊆ C. As

for ABoxes, the active domain ADOM(D) of a database instance D is the set of values
occurring in D. Notice that ADOM(D) ⊆ V . Given an OBDA system O = 〈R, T ,M〉
and a database instance D for R, a model for O wrt D is a model of the ontology
(T ,M(D)). We say that O wrt D is satisfiable if it admits a model wrt D.

Example 2. Consider a DB instance D = {ENROLLED(123, john, doe,"BSc",NULL)}. The
corresponding virtual ABox obtained from the application of the mapping M is M(D) =
{Bachelor(stu1(john, doe,"BSc")), MNum(stu1(john, doe,"BSc"), val(123))}. ��

A UCQ q over an OBDA system O = 〈R, T ,M〉 is simply an UCQ over T . To com-
pute the certain answers of q over O wrt a database instanceD for R, we follow a three-
step approach: (i) q is rewritten to compile away T , obtaining qr = REW(q, T); (ii) the
mapping M is used to unfold qr into a query over R, denoted by UNFOLD(qr,M),
which turns out to be an SQL query [20]; (iii) such a query is executed over D, obtain-
ing the certain answers. For an ECQ, we can proceed in a similar way, applying the
rewriting and unfolding steps to the embedded UCQs. It follows that computing certain
answers to UCQs/ECQs in an OBDA system is FOL rewritable. Applying the unfolding
step to qunsat(T), we obtain also that satisfiability in O is FOL rewritable.

3 Semantically-Governed Data-Aware Processes

A Semantically-Governed Data-Aware Process (SGDAP) S = 〈O,P , D0〉 is formed
by an OBDA System O = 〈R, T ,M〉 by a process component P , and by an initial
database instance D0 that conforms to the relational schema R in O. Intuitively, the
OBDA system keeps all the data of interest, while the process component modifies and
evolves such data, starting from the initial database D0.

The process component P constitutes the progression mechanism for the SGDAP.
Formally, P = 〈F ,A, π〉, where: (i) F is a finite set of functions representing calls to
external services, which return values; (ii) A is a finite set of actions, whose execution
progresses the data layer, and may involve external service calls; (iii) π is a finite set of
condition-action rules that form the specification of the overall process, which tells at
any moment which actions can be executed.

An action α ∈ A has the form α(p1, . . . , pn) : {e1, . . . , em}, where:
(i) α(p1, . . . , pn) is the signature of the action, constituted by a name α and a sequence
p1, . . . , pn of input parameters that need to be substituted with values for the execution
of the action, and (ii) {e1, . . . , em} is a set of effect specifications, whose specified ef-
fects are assumed to take place simultaneously. Each ei has the form q+i ∧ Q−

i � Ei,
where: (a) q+i ∧ Q−

i is a query over R whose terms are variables �x, action parameters,
and constants from ADOM(D0). The query q+i is a UCQ, and the query Q−

i is an ar-
bitrary FOL formula whose free variables are included in those of q+i . Intuitively, q+i
selects the tuples to instantiate the effect, and Q−

i filters away some of them2. (b) Ei is

2 To convey this intuition, we use the “−” superscript.

32 D. Calvanese et al.

the effect, i.e., a set of facts for R, which includes as terms: terms in ADOM(D0), in-
put parameters, free variables of q+i , and in addition Skolem terms formed by applying
a function f ∈ F to one of the previous kinds of terms. Such Skolem terms involv-
ing functions represent external service calls and are interpreted so as to return a value
chosen by an external user/environment when executing the action.

The process π is a finite set of condition-action rules Q �→ α, where α is an action
in A and Q is a FOL query over R whose free variables are exactly the parameters of
α, and whose other terms can be quantified variables or values in ADOM(D0).

Example 3. Consider the OBDA system O defined in Example 1. We now define a process
component P = 〈F ,A, π〉 over the relational schema R of O, so as to obtain a full SGDAP.
In particular, π is constituted by the following condition-action rules (’ ’ denotes existentially
quantified variables that are not used elsewhere):

– ENROLLED(id, , , ,NULL) � GRADUATE(id)
– TRANSF M(name, surname) � COMPL-ENR(name, surname)

The first rule extracts a matriculation number id of a currently enrolled student (endDate=NULL)
from the ENROLLED relation and graduates the student, whereas the second rule selects a pair
name surname in TRANSF M and use them to complete the enrollment of that student. In or-
der to be effectively executed, the involved actions rely on the following set F of service calls:
(i) today() returns the current date; (ii) getMark(id, type) returns the final mark received by
student id; (iii) getID(name, surname, type) returns the matriculation number for the name-
surname pair of a student. The two actions GRADUATE and COMPL-ENR are then defined as
follows:

GRADUATE(id) : { GRAD(id2,m, t) � GRAD(id2,m, t),
TRANSF M(n, s) � TRANSF M(n, s),
ENROLLED(id2, n, s, t, d) ∧ id2 �= id � ENROLLED(id2, n, s, t,d),
ENROLLED(id, n, s, t,NULL) � ENROLLED(id, n, s, t, today()),
ENROLLED(id, , , t,NULL) � GRAD(id, getMark(id, t), t) }

COMPL-ENR(n, s) : { GRAD(id,m, t) � GRAD(id,m, t),
ENROLLED(id, n2, s2, t,d) � ENROLLED(id, n2, s2, t, d),
TRANSF M(n2, s2) ∧ (n2 �= n ∨ s2 �= s) � TRANSF M(n2, s2),
TRANSF M(n, s)
� ENROLLED(getID(n, s, "MSc"), n, s, "MSc",NULL)}

Given a matriculation number id, action GRADUATE inserts a new tuple for id in GRAD, updating
at the same time the enrollment’s end date for id in ENROLLED to the current date, while keeping
all other entries in TRANSF M,GRAD and ENROLLED. Given a name and surname, action
COMPL-ENR has the effect of moving the corresponding tuple in TRANSF M to a new tuple
in ENROLLED, for which the matriculation number is obtained by interacting with the getID
service call; all other entries TRANSF M,GRAD and ENROLLED are preserved. ��

4 Execution Semantics

This work focuses on the semantics of SGDAP assuming that external services behave
nondeterministically, i.e., two calls of a service with the same arguments may return
different results during the same run. This captures both services that model a truly non-
deterministic process (e.g., human operators), and services that model stateful servers.

Ontology-Based Governance of Data-Aware Processes 33

Let S = 〈O,P , D0〉 be a SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉.
The semantics of S is defined in terms of a possibly infinite transition system (TS).
More specifically, two possible transition systems can be constructed to describe the
execution semantics of S: (i) a relational layer transition system (RTS), representing
all allowed computations that, starting from D0, the process component can do over
the data of the relational layer, according to the constraints imposed at the semantic
layer (semantic governance); (ii) a semantic layer transition system (STS), representing
the same computations at the semantic layer. To construct these transition systems, we
first define the semantics of action execution. Let α be an action in A of the form
α(�p) : {e1, . . . , en} with effects ei = q+i ∧ Q−

i � Ei, and let σ be a substitution of
�p with values in V . The evaluation of the effects of α on a database instance D using a
substitution σ is captured by the following function:

DO(D,α, σ) =
⋃
q+i ∧Q−

i �Eiin α

⋃
θ∈ANS((q+i ∧Q−

i)σ,D)Eiσθ

which returns a database instance made up of values in V and Skolem terms represent-
ing service calls. We denote with CALLS(DO(D,α, σ)) such service calls, and with
EVALS(D,α, σ) the set of substitutions that replace these service calls with values
in V :

EVALS(D,α, σ) = {θ | θ : CALLS(DO(D,α, σ)) → V is a total function}.

We then say that the database instance D′ is produced from D by the application of
action α using substitution σ if D′ = DO(D,α, σ)θ, where θ ∈ EVALS(D,α, σ).

Relational Layer Transition System (RTS). Let S = 〈O,P , D0〉 be a SGDAP with
O = 〈R, T ,M〉. The RTS ΥR

S of S is formally defined as 〈R, Σ, s0, db,⇒〉, where
Σ is a (possibly infinite) set of states, s0 is the initial state, db is a total function from
states in Σ to database instances made up of values in V and conforming to R, and
⇒⊆ Σ×Σ is a transition relation.Σ, ⇒ and db are defined by simultaneous induction
as the smallest sets such that s0 ∈ Σ, with db(s0) = D0, and satisfying the following
property: Given s ∈ Σ, for each condition-action rule Q(�p) �→ α(�p) ∈ π, for each
substitution σ of �p such that σ ∈ ANS(Q,D), consider every database instance D′

produced from D by the application of α using σ. Then: (i) if there exists s′ ∈ Σ such
that db(s′) = D′, then s ⇒ s′; (ii) otherwise, if O is satisfiable wrt D′, then s′ ∈ Σ,
s ⇒ s′ and db(s′) = D′, where s′ is a fresh state. We observe that the satisfiability
check done in the last step of the RTS construction accounts for semantic governance.

Semantic Layer Transition System (STS). Given a SGDAP S with O = 〈R, T ,M〉
and with RTS ΥR

S = 〈R, Σ, s0, db,⇒〉, the STS Υ S
S of S is a “virtualization” of the RTS

in the semantic layer. In particular,Υ S
S maintains the structure of ΥR

S unaltered, reflecting
that the process component is executed over the relational layer, but it associates each
state to a virtual ABox obtained from the application of the mapping M to the database
instance associated by ΥR

S to the same state. Formally, Υ S
S = 〈T , Σ, s0, abox,⇒〉,

where abox is a total function from Σ to ABoxes made up of individual objects in
C and conforming to T , such that for each s ∈ Σ with db(s) = D, abox(s) = M(D).

34 D. Calvanese et al.

5 Dynamic Constraints Formalism

Let S = 〈O,P , D0〉 be an SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉. We
are interested in the verification of conceptual temporal properties over S, i.e., prop-
erties that constrain the dynamics of S understood at the semantic layer. Technically,
this means that properties are verified over the SGDAP’s STS Υ S

S , combining tempo-
ral operators with queries posed over the ontologies obtained by combining the TBox
T with the ABoxes associated to the states of Υ S

S . More specifically, we adopt ECQs
[11] to query the ontologies of Υ S

S , and μ-calculus [18] to predicate over the dynamics
of Υ S

S .
We use a variant of μ-calculus [18], one of the most powerful temporal logics sub-

suming LTL, PSL, and CTL* [15], called μLEQL
C , whose formulae have the form:

Φ ::= Q | Z | ¬Φ | Φ1 ∨ Φ2 | ∃x ∈ C0.Φ | 〈−〉Φ | μZ.Φ

where Q is an ECQ over T , C0 = ADOM(M(D0)) is the set of object terms appearing
in the initial virtual ABox (obtained by applying the mapping M over the database
instanceD0), andZ is a predicate variable. As usual, syntactic monotonicity is enforced
to ensure existence of unique fixpoints. Beside the usual FOL abbreviations, we also
make use of the following ones: [−]Φ = ¬〈−〉(¬Φ) and νZ.Φ = ¬μZ.¬Φ[Z/¬Z].
The subscript C in μLEQL

C stands for “closed”, and attests that ECQs are closed queries.
In fact, μLEQL

C formulae only support the limited form of quantification ∃x ∈ C0.Φ,
which is a convenient, compact notation for

∨
c∈ADOM(M(D0))

Φ[x/c]. We make this
assumption for simplicity, but actually, with some care, our result can be extended to a
more general form of quantification over time [6].

In order to define the semantics of μLEQL
C we resort to STSs. Let Υ =

〈T , Σ, s0, abox,⇒〉 be an STS. Let V be a predicate and individual variable valua-
tion on Υ , i.e., a mapping from the predicate variables Z to subsets of the states Σ, and
from individual variables to constants in ADOM(M(D0)). Then, we assign meaning
to μLEQL

C formulas by associating to Υ and V an extension function (·)ΥV , which maps
μLEQL

C formulas to subsets of Σ. The extension function (·)ΥV is defined inductively as:

(Q)ΥV = {s ∈ Σ | ANS(QV, T , abox(s)) = true}
(Z)ΥV = V (Z) ⊆ Σ
(¬Φ)ΥV = Σ − (Φ)ΥV
(Φ1 ∨ Φ2)

Υ
V = (Φ1)

Υ
V ∪ (Φ2)

Υ
V

(∃x ∈ C0.Φ)
Υ
V =

⋃
{(Φ)ΥV [x/c] | c ∈ ADOM(M(D0))}

(〈−〉Φ)ΥV = {s ∈ Σ | ∃s′. s ⇒ s′ and s′ ∈ (Φ)ΥV }
(μZ.Φ)ΥV =

⋂
{E ⊆ Σ | (Φ)ΥV [Z/E] ⊆ E}

Intuitively, the extension function (·)ΥV assigns to the various μLEQL
C constructs the fol-

lowing meanings. The boolean connectives have the expected meaning, while quantifi-
cation is restricted to constants in ADOM(M(D0)). The extension of 〈−〉Φ consists of
the states s such that for some state s′ with s ⇒ s′, we have that Φ holds in s′, The
extension of μZ.Φ is the smallest subset Eμ of Σ such that, assigning to Z the exten-
sion Eμ, the resulting extension of Φ is contained in Eμ. When Φ is a closed formula,
(Φ)ΥV does not depend on V , and we denote it by (Φ)Υ . We are interested in the model

Ontology-Based Governance of Data-Aware Processes 35

checking problem, i.e., verify whether a μLEQL
C closed formula Φ holds for the SGDAP

S. This problem is defined as checking whether s0 ∈ (Φ)Υ
S
S , that is, whether Φ is true

in the initial state s0 of Υ S
S . If it is the case, we write Υ S

S |= Φ.

Example 4. An example of dynamic property in our running example is Φ =
μZ.((∀s.[Student(s)] → [Graduated(s)]) ∨ [−]Z), which expresses that every evolution of the
system leads to a state in which all students present in that state are graduated. ��

6 Rewriting μ-Calculus Formulae

Let S = 〈O,P , D0〉 be an SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉. In this
section, we show how verification of μLEQL

C properties over the STS Υ S
S can be reduced

to verification of μLC properties over the corresponding RTS ΥR
S .

μLC properties are μ-calculus properties whose atoms are closed, domain-
independent FO queries over a database schema. More specifically, the semantics of
μLC is defined over an RTS ΥR = 〈R, Σ, s0, db,⇒〉, following exactly the same line
given in Section 5 for μLEQL

C and STSs, except for local queries, whose semantics is:

(Q)Υ
R

V = {s ∈ Σ | eval (QV, db(s)) = true}

where eval (QV, db(s)) = true iff QV is true in db(s), considered as a FOL inter-
pretation. Let Φ be a μLEQL

C dynamic property specified over the TBox T of S. The
reduction is realized by providing a translation mechanism from Φ into a correspond-
ing μLC property Φ′ specified over R, and then showing that Υ S

S |= Φ if and only if
ΥR
S |= Φ′.

Before dealing with the translation of Φ, we substitute each subformula of the form
∃x ∈ C0.Ψ into the equivalent form

∨
c∈ADOM(M(D0))

Ψ [x/c]. This means that when
such a form of quantification is used, the initial ABox must be materialized in order
to compute the active domain of the initial ABox in the semantic layer. We then deal
with the translation of Φ, by separating the treatment of the dynamic part and of the
embedded ECQs. Since the dynamics of an SGDAP is completely determined at the
relational layer, the dynamic part is maintained unaltered. ECQs are instead manipu-
lated as defined in Section 2, performing in particular the following two-step transla-
tion: (1) the TBox T used by the property is compiled away, rewriting the original
formula into a “self-contained” equivalent formula Φr = REW(Φ, T), obtained by re-
placing each embedded ECQ with its corresponding rewriting wrt T [20]; (2) by using
the information contained in the mapping M, Φr is unfolded to the relational layer into
UNFOLD(Φr,M), by replacing each embedded ECQ with its corresponding unfolding
wrt M [20].

As for the unfolding, the interesting case to be discussed is hence the one of (existen-
tial) quantification: the other cases are simply managed by pushing the unfolding down
to the subformula(e). Given an ECQ of the form ∃x.Q, we have:

UNFOLD(∃x.Q,M) =
∨

(f/n)∈FS(M) ∃x1, . . . , xn.UNFOLD(Q[x/f(x1, . . . , xn)],M)

where FS(M) is the set of function symbols contained in M, including the special func-
tion symbol val used for attribute values. This unfolding reflects that quantification over

36 D. Calvanese et al.

object terms and values in the ontology must be properly rephrased as a corresponding
quantification over those values in the relational layer that could lead to produce such
object terms and values through the application of M. This is done by unfolding ∃x.Q
into a disjunction of formulae, where each of the formulae is obtained from Q by re-
placing x with one of the possible variable terms constructed from function symbols
in M, and quantifying over the existence of values that could form a corresponding
object term. We observe that one of the formulae, namely the one using the val function
symbol, tackles the case in which x appears in the range of an attribute.

When the unfolding is applied to a UCQ of the query, the atoms in the UCQ are
unified with the heads of the mapping assertions in M. For each possible unifier, each
atom is replaced with an auxiliary view predicate, which corresponds to a view defined
in terms of the SQL query that constitutes the body of the matching mapping assertion.
The UCQ’s unfolding is then obtained as the union of all queries obtained in this way.

Example 5. Consider the μLEQL
C property Φ described in Example 4, together with the TBox T

and mapping M in Example 1. Φr = REW(Φ, T) results in μZ.(∀s.Qr(s)) ∨ [−]Z, where

Qr(s) = [Student(s) ∨ Bachelor(s) ∨Master(s) ∨MNum(s,)] ⊃ [Graduated(s)]

As for the unfolding, we first observe that FS(M) = {stu1/3, val/1}. This means that
UNFOLD(∀s.Qr(s),M) results in

∀v.UNFOLD(Qr(val(v)),M) ∧ ∀x1, x2, x3.UNFOLD(Qr(stu1(x1, x2, x3)),M)

The first conjunct corresponds to true, because there are no matching mapping assertions for the
UCQ Student(val(x)) ∨ Bachelor(val(x)) ∨ Master(val(x)) ∨ MNum(val(x),), which is on
the left-hand side of the implication in Qr(val(v)). As for the second conjunct, when unfolding
the UCQ Student(stu1(x1, x2, x3))∨Bachelor(stu1(x1, x2, x3))∨Master(stu1(x1, x2, x3))∨
MNum(stu1(x1, x2, x3),), we notice that the involved mapping assertions are m1, m2, and
m3, but we only consider m3, because the query on its left-hand side contains the ones on the
left-hand side of m1 and m2. The unfolding then results in:

μZ.
(
∀x1, x2, x3.AUXm3(x1, x2, x3,) ⊃ AUXm5(x1, x2, x3)

)
∨ [−]Z

where m3 and m5 are the mapping assertions whose right-hand side respectively
matches with MNum(stu1(x1, x2, x3),) and Graduated(stu1(x1, x2, x3)), and where
AUXm3(name, surname, type, id) and AUXm5(name, surname, type) represent the auxiliary
view predicates of mapping assertions m3 and m5 respectively, whose defining queries are the
SQL queries in the left-hand side of the mapping assertions themselves. ��

We are now ready to state our main result: verification of μLEQL
C properties over an STS

can be faithfully reduced to verification of μLC properties over the corresponding RTS.

Theorem 1. Let S = 〈O,P , D0〉 be an SGDAP with O = 〈R, T ,M〉, and let Φ be a
μLEQL

C dynamic property specified over T . Then:

Υ S
S |= Φ if and only if Υ R

S |= UNFOLD(REW(Φ, T),M)

Proof. From Section 4, we know that ΥR
S = 〈R, Σ, s0, db,⇒〉 and Υ S

S =
〈T , Σ, s0, abox,⇒〉, where abox(·) is defined as follows: for every s ∈ Σ, abox(s) =
M(db(s)). We prove the following more general result: given a state s ∈ Σ, we have

s ∈ (Φ)Υ
S
S if and only if s ∈ (UNFOLD(REW(Φ, T),M))Υ

R
S

Ontology-Based Governance of Data-Aware Processes 37

For simplicity, below use UR(Φ) as an abbreviation for UNFOLD(REW(Φ, T),M).
We start by observing that we can drop first-order quantification from the language re-

placing ∃x ∈ C0.Φ with
∨
c∈ADOM(abox(s0))

Φ[x/c]. This allows us to consider valuations
only for the predicate variables, used in fixpoint formulae. The proof is then organized
in three parts: (1) We prove the theorem for formulae of LEQL

C , obtained from μLEQL
C

by dropping the predicate variables and the fixpoint constructs. LEQL
C corresponds to a

first-order variant of the Hennessy Milner logic, and its semantics does not depend on
the second-order valuation. (2) We extend the results to the infinitary logic obtained by
extending LEQL

C with arbitrary countable disjunction. (3) We recall that fixpoints can be
translated into this infinitary logic, thus proving that the theorem holds for μLEQL

C .

Proof for LEQL
C . We proceed by induction on the structure of Φ, without considering

the case of predicate variable and of fixpoint constructs, which are not part of LEQL
C .

(Base case: Φ = Q) We have to show that ANS(Q, T , abox(s)) = true if and only if
ANS(UR(Q), db(s)) = true. By definition, abox(s) = M(db(s)), hence the proof
is obtained from the soundness and completeness of ECQ rewriting [11].

(Inductive step: Φ = ¬Ψ) By induction hypothesis, for every s ∈ Σ we have s ∈
(Ψ)Υ

S
S if and only if s ∈ (UR(Ψ))Υ

R
S . Hence, s /∈ (Ψ)Υ

S
S if and only if s /∈

(UR(Ψ))Υ
R
S , which in turn implies that s ∈ (¬Ψ)Υ S

S if and only if s ∈ (¬UR(Ψ))Υ
R
S .

The proof is then obtained by observing that, by definition, ¬UR(Ψ) = UR(¬Ψ).
(Inductive step: Φ = Φ1 ∨ Φ2) By induction hypothesis, for every s ∈ Σ we have

s ∈ (Φ1)
Υ S
S if and only if s ∈ (UR(Φ1))

Υ R
S , and s ∈ (Φ2)

Υ S
S if and only if

s ∈ (UR(Φ2))
Υ R
S . Hence, s ∈ (Φ1)

Υ S
S or s ∈ (Φ2)

Υ S
S if and only if s ∈ (UR(Φ1))

Υ R
S

or s ∈ (UR(Φ2))
Υ R
S , which in turn implies that s ∈ (Φ1 ∨ Φ2)

Υ S
S if and only if

s ∈ (UR(Φ1)∨ UR(Φ2))
Υ R
S . The proof is then obtained by observing that, by defini-

tion, UR(Φ1) ∨ UR(Φ2) = UR(Φ1 ∨ Φ2).
(Inductive step: Φ = 〈−〉Ψ) By induction hypothesis, for every s′ ∈ Σ we have

s′ ∈ (Ψ)Υ
S
S if and only if s′ ∈ (UR(Ψ))Υ

R
S . Now consider that, by definition,

s ∈ (〈−〉Ψ)Υ S
S if and only if there exists a transition s ⇒ s′ such that s′ ∈ (Ψ)Υ

S
S .

By construction, Υ S
S and ΥR

S have the same transition relation. Therefore, we have

that s ∈ (〈−〉Ψ)Υ S
S if and only if s ∈ (〈−〉UR(Ψ))Υ

R
S . The proof is then obtained

by observing that, by definition, 〈−〉UR(Ψ) = UR(〈−〉Ψ).
Extension to Arbitrary Countable Disjunction. Let Ψ be a countable set of LEQL

C

formulae. Given an STS Υ S = 〈T , Σ, s0, abox,⇒〉, the semantics of
∨
Ψ is (

∨
Ψ)Υ

S
=

⋃
ψ∈Ψ (ψ)

Υ S
(similarly for RTSs). Therefore, given a state s ∈ Σ we have s ∈ (

∨
Ψ)Υ

S

if and only if there exists ψ ∈ Ψ such that s ∈ (ψ)Υ
S
. Arbitrary countable conjunction

is obtained for free because of negation.
Let ΥR

S = 〈R, Σ, s0, db,⇒〉 and Υ S
S = 〈T , Σ, s0, abox,⇒〉. By induction hypoth-

esis, we can assume that for every s ∈ Σ and formula ψ ∈ Ψ , we have s ∈ (ψ)Υ
S
S

if and only if s ∈ (UR(ψ))Υ
R
S . Given the semantics of

∨
Ψ above, this implies that

s ∈ (
∨
Ψ)Υ

S
S if and only if s ∈ (

∨
UR(Ψ))Υ

R
S , where UR(Ψ) = {UR(ψ) | ψ ∈ Ψ}. The

proof is then obtained by observing that
∨

UR(Ψ) = UR(
∨
Ψ).

38 D. Calvanese et al.

Extension to Full μLEQL
C . In order to extend the result to the whole μLEQL

C , we resort to
the well-known result stating that fixpoints of the μ-calculus can be translated into the
infinitary Hennessy Milner logic by iterating over approximants, where the approximant
of index α is denoted by μαZ.Φ (resp. ναZ.Φ). This is a standard result that also holds
for μLEQL

C . In particular, approximants are built as follows:

μ0Z.Φ = false ν0Z.Φ = true
μβ+1Z.Φ = Φ[Z/μβZ.Φ] νβ+1Z.Φ = Φ[Z/νβZ.Φ]
μλZ.Φ =

∨
β<λ μ

βZ.Φ νλZ.Φ =
∧
β<λ ν

βZ.Φ

where λ is a limit ordinal, and where fixpoints and their approximants are connected by
the following properties: given an STS or RTS Υ and a state s of Υ

– s ∈ (μZ.Φ)ΥV if and only if there exists an ordinal α such that s ∈ (μαZ.Φ)ΥV and,
for every β < α, it holds that s /∈ (μβZ.Φ)ΥV ;

– s /∈ (νZ.Φ)ΥV if and only if there exists an ordinal α such that s /∈ (ναZ.Φ)ΥV and,
for every β < α, it holds that s ∈ (νβZ.Φ)ΥV .
�

7 Decidability Results

Given an SGDAP S, in Section 6 we have shown how to reduce verification of μLEQL
C

properties over Υ S
S into verification of μLC properties over ΥR

S . However, due to the
injection of new, fresh data into the system due to call to external services, ΥR

S (as well
as Υ S

S) is in general infinite-state. This causes verification to be undecidable in general,
even for the very simple case of an SGDAP in which the TBox contains no assertions
and directly reflects the database schema via simple one-to-one mappings, and where
the temporal formula to be verified is a propositional reachability property [6].

An extensive study concerning some decidability boundaries for the verification of
Data-Centric Dynamic Systems (DCDSs) with non-deterministic external services has
been provided in [6]. One of the most interesting conditions for decidability that have
been studied so far is state-boundedness. Let S = 〈O,P , D0〉 be an SGDAP with
O = 〈R, T ,M〉 and RTS ΥR

S = 〈R, Σ, s0, db,⇒〉. We say that S is state-bounded if
there exists a bound b such that for each s ∈ Σ, |ADOM(db(s))| < b. Intuitively, state-
boundedness imposes that the database associated to the state of the RTS ΥR

S remains
bounded, although it may acquire arbitrarily many new values in the course of the evo-
lution of the system (forgetting old ones, to keep the bound on the state). Leveraging
on the result on state-boundedness, we can exploit our rewriting result above to get the
following theorem.

Theorem 2. Verification of μLEQL
C properties over state-bounded SGDAPs is decidable,

and can be reduced to conventional finite-state model checking.

Proof (sketch). The proof is based on a reduction to DCDSs. For a formal definition of
a DCDS, the interested reader can refer to [6]. Intuitively, DCDSs are tightly related to
SGDAPs, with some key differences in the data component: (i) the process component
is identical in the two frameworks; (ii) DCDSs are constituted by a relational layer (i.e.,
no ontology nor mapping are present); (iii) while SGDAPs define constraints over the

Ontology-Based Governance of Data-Aware Processes 39

data at the semantic layer, DCDSs are equipped with denial constraints posed directly
over the database schema.

Let S = 〈O,P , D0〉, with O = 〈R, T ,M〉. By exploiting FOL rewritability in
DL-LiteA, the consistency check used to generate Υ S

S can be rewritten as a denial con-
straint over R. This means that ΥR

S can be generated by a purely relational DCDS. Tech-
nically, starting from S we can construct a corresponding DCDS with nondeterministic
services SREL = 〈D,P〉, where D = 〈V ,R, {UNFOLD(qunsat(T),M) → false}, D0〉,
such that ΥR

S ≡ ΥDCDS
SREL

, where ΥDCDS
SREL

is the RTS constructed for the DCDS SREL fol-
lowing the definition in [6]. This also means that S is state-bounded if and only if SREL

is state-bounded.
Let us now consider a μLEQL

C property Φ. From Theorem 1, we know that Υ S
S |= Φ

if and only if ΥR
S |= Φ′, where Φ′ = UNFOLD(REW(Φ, T),M). By recalling that

ΥR
S ≡ ΥDCDS

SREL
, we get that Υ S

S |= Φ if and only if ΥDCDS
SREL

|= Φ′. The proof is then obtained
from the decidability of verification of μLP properties for state-bounded DCDSs with
non-deterministic services [6], by recalling that Φ′ is a μLC property, and by observing
that μLC is trivially contained in μLP [6].
�
Example 6. Consider the SGDAP S = 〈O,P , D0〉, where O is the OBDA system defined in
Example 1, and P the process component defined in Example 3. It is easy to see that the resulting
RTS Υ R

S is state-bounded. Intuitively, this follows from the facts that the actions of S either move
tuples from the TRANSF M table to the ENROLLED one, or copy tuples from the ENROLLED
table to the GRAD one. Hence, the size of each database instance appearing in Υ R

S is at most
twice the size of D0, thus verification of μLEQL

C properties over the STS Υ S
S is decidable. ��

We close this section by mentioning that the sufficient syntactic conditions for state-
boundedness of DCDSs given in [6] can be easily applied to SGDAPs as well, given
that the structure of the process component remains unchanged.

8 Conclusion

In this paper, we have introduced semantically-governed data-aware processes, where
an ontology in DL-LiteA,id is used to capture the information manipulated by the pro-
cess at the conceptual level, and to understand and govern the process itself. Our key
result is the ability of extending FOL rewritability, typical of DL-Lite, to arbitrary tem-
poral formulae expressed in μ-calculus. Indeed, in this paper we have used this result
to show decidability of temporal verification in our setting for an interesting class of
data-aware processes. The exact computational complexity of verification remains to
be investigated.

However, the result appears to be much more general, and can be exploited to lift re-
sults obtained lately for (relational) data-aware processes [8,6,17], to the case in which
an ontology-based governance component is introduced. We plan to investigate this
further in the future, and study the requirements on the languages used to express the
ontology and the mappings that make this lifting feasible. The framework described in
this paper is being applied in the context of the EU project ACSI3 to two significant
real-world case studies.

3 http://www.acsi-project.eu

http://www.acsi-project.eu

40 D. Calvanese et al.

References

1. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Proclets: A Framework
for Lightweight Interacting Workflow Processes. Int. J. of Cooperative Information Sys-
tems 10(4), 443–481 (2001)

2. Abiteboul, S., Bourhis, P., Galland, A., Marinoiu, B.: The AXML Artifact Model. In: Proc.
of TIME, pp. 11–17 (2009)

3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The De-
scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2003)

4. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R.: Verification of
Conjunctive-Query Based Semantic Artifacts. In: Proc. of DL, vol. 745. CEUR (2011),
ceur-ws.org (2011)

5. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., De Masellis, R., Felli, P.: Foundations
of Relational Artifacts Verification. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 379–395. Springer, Heidelberg (2011)

6. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.: Verification of
Relational Data-Centric Dynamic Systems with External Services. CoRR Technical Report
arXiv:1203.0024, arXiv.org e-Print archive (2012),
http://arxiv.org/abs/1203.0024

7. Belardinelli, F., Lomuscio, A., Patrizi, F.: Verification of Deployed Artifact Systems via Data
Abstraction. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) Service Oriented
Computing. LNCS, vol. 7084, pp. 142–156. Springer, Heidelberg (2011)

8. Belardinelli, F., Lomuscio, A., Patrizi, F.: An Abstraction Technique for the Verification of
Artifact-Centric Systems. In: Proc. of KR, pp. 319–328 (2012)

9. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of Artifact-
Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

10. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., Rodrı́guez-Muro, M.,
Rosati, R.: Ontologies and Databases: The DL-Lite Approach. In: Tessaris, S., Franconi, E.,
Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web.
LNCS, vol. 5689, pp. 255–356. Springer, Heidelberg (2009)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: EQL-Lite: Effective
First-Order Query Processing in Description Logics. In: Proc. of IJCAI, pp. 274–279 (2007)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable Reasoning
and Efficient Query Answering in Description Logics: The DL-Lite Family. J. of Automated
Reasoning 39(3), 385–429 (2007)

13. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Path-Based Identifi-
cation Constraints in Description Logics. In: Proc. of KR, pp. 231–241 (2008)

14. Cangialosi, P., De Giacomo, G., De Masellis, R., Rosati, R.: Conjunctive Artifact-Centric
Services. In: Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS,
vol. 6470, pp. 318–333. Springer, Heidelberg (2010)

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge
(1999)

16. Cohn, D., Hull, R.: Business Artifacts: A Data-Centric Approach to Modeling Business Op-
erations and Processes. IEEE Bull. on Data Engineering 32(3), 3–9 (2009)

17. De Masellis, R., De Giacomo, G., Rosati, R.: Verification of Conjunctive Artifact-Centric
Services. Int. J. of Cooperative Information Systems (to appear, 2012)

ceur-ws.org
http://arxiv.org/abs/1203.0024

Ontology-Based Governance of Data-Aware Processes 41

18. Emerson, E.A.: Automated Temporal Reasoning About Reactive Systems. In: Moller, F.,
Birtwistle, G. (eds.) Logics for Concurrency. LNCS, vol. 1043, pp. 41–101. Springer, Hei-
delberg (1996)

19. Nigam, A., Caswell, N.S.: Business Artifacts: An Approach to Operational Specification.
IBM Systems Journal 42(3), 428–445 (2003)

20. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking
Data to Ontologies. In: Spaccapietra, S. (ed.) Journal on Data Semantics X. LNCS, vol. 4900,
pp. 133–173. Springer, Heidelberg (2008)

21. Rodriguez-Muro, M., Calvanese, D.: High Performance Query Answering over DL-Lite On-
tologies. In: Proc. of KR, pp. 308–318 (2012)

	Ontology-Based Governance
of Data-Aware Processes
	Introduction
	Preliminaries
	Semantically-Governed Data-Aware Processes
	Execution Semantics
	Dynamic Constraints Formalism
	Rewriting -Calculus Formulae
	Decidability Results
	Conclusion
	References

