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Preface

Web reasoning is the task of reasoning over Web-accessible data, which is
typically heterogeneous, distributed, uncertain, contradictory, and – most of all
– large. This leads to major challenges, which are critical not only for the Se-
mantic Web, but also for modern information systems in general. A fruitful field
of research has developed around the integration of rule and ontology languages,
their computational analysis, and the development of robust and scalable rea-
soning algorithms. More recently, there is also renewed interest in the use of
rules and ontologies in database applications, as witnessed by many new works
on technologies such as Ontology-Based Data Access, existential rules, query
rewriting, and even Datalog optimization.

The International Conference on Web Reasoning and Rule Systems has
developed into a major forum for discussion and dissemination of new results on
relevant topics within this area. Since the first edition of the conference in 2007,
RR papers have been addressing a wide variety of problems in Web reasoning
and rule systems, spanning research areas from computational logic and artificial
intelligence to databases and Web technology. The conference is devoted to both
theoretical and practical aspects of these subjects, and continues to attract the
world’s leading experts in the field. Further information can be found on the RR
website at http://www.rr-conference.org/.

This volume contains the papers presented at RR 2012: The 6th Interna-
tional Conference on Web Reasoning and Rule Systems, held in Vienna, Austria,
during September 10–12, 2012. The conference received 42 submissions (involv-
ing authors from 19 countries), of which 33 were research papers (RPs), and nine
were technical communications (TCs), a more concise paper format that was in-
troduced for the first time this year. TCs provide the opportunity to present a
wider range of results and ideas that are of interest to the RR audience, including
reports about recent own publications, position papers, and previews of ongoing
work. In a rigorous reviewing process, 12 RPs were selected for publication (36%
of 33 submitted RPs), while another 15 submissions were accepted as TCs.

The program of RR 2012 featured invited talks by Gerhard Brewka, Tommaso
Di Noia, Phokion Kolaitis, and Robert Kowalski. Extended abstracts of the talks
of Gerhard Brewka and Tommaso Di Noia are included in this volume. The talk
of Phokion Kolaitis was a joint keynote with the Second Datalog 2.0 Workshop;
the talk of Robert Kowalski was enabled in cooperation with the 4th Interna-
tional Conference on Computational Models of Argument (COMMA 2012) and
Datalog 2.0. We want to thank all invited speakers for their contribution.

This year’s conference also continued the successful cooperation with the
Reasoning Web Summer School, which was again held in the week before RR. A
Doctoral Consortium provided an additional opportunity for doctoral students
in the area of Web reasoning to present their work and research plans, and to
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receive extensive feedback from leading scientist in the field. This volume includes
five research summaries of doctoral students that were selected for presentation
at the conference.

RR 2012 received the largest number of submissions since the first RR in
2007, while also featuring one of the shortest reviewing periods in the history of
the conference. Managing this was only possible with the help of an exceptionally
diligent and professional Program Committee. Every submission received at least
three reviews, sometimes after extensive internal discussions. We would like to
thank all reviewers for their invaluable efforts.

A number of people were involved in organizing this conference. We would
like to thank our General Chair, Pascal Hitzler, as well as Alessandra Mileo, who
chaired the Doctoral Consortium, and Francesco Calimeri, who acted as a Public-
ity Chair. The local organizers Thomas Eiter and Thomas Krennwallner and their
team did a magnificent job with the organization of the event. We further thank
all organizers of the co-located events COMMA, DEXA, Datalog 2.0, and the Rea-
soning Web Summer School, who supported the orchestration of these events in
the context of the Vienna Logic Weeks 2012. We also thank Marco Maratea for
his very successful work as Sponsorship Chair, and we gratefully acknowledge the
support of our sponsors. In particular, we thank the main conference sponsors: the
Artificial Intelligence Journal, the Association for Logic Programming, the Digital
Enterprise Research Institute at the National University of Ireland in Galway, the
Dipartimento di Informatica, Sitemistica e Telematica of the University of Genoa
(DIST), the National Science Foundation, Siemens AG Austria, the Vienna Cen-
ter for Logic and Algorithms, and the Wolfgang Pauli Institute Vienna. As usual,
EasyChair provided a convenient and efficient platform for preparing the program
and these proceedings. Finally, thanks are due to all authors and participants of
RR 2012; we hope that their stay in Vienna was profitable and enjoyable.

September 2012 Markus Krötzsch
Umberto Straccia
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Multi-context Systems: Specifying the Interaction
of Knowledge Bases Declaratively

Gerhard Brewka

Leipzig University, Informatics Institute, Postfach 100920, 04009 Leipzig, Germany
brewka@informatik.uni-leipzig.de

1 Motivation

Research in knowledge representation and, more generally, information technology has
produced a large variety of formats and languages for representing knowledge. A wealth
of tools and formalisms is now available, including rather basic ones like databases or
the more recent triple-stores, and more expressive ones like ontology languages (e.g.,
description logics), temporal and modal logics, nonmonotonic logics, or logic programs
under answer set semantics, to name just a few.

The diversity of formalisms poses some important challenges. Here is a simple illus-
trative example. Assume your home town’s hospital has

– a patient database (e.g. an Oracle database),
– a disease ontology (written in a particular description logic),
– an ontology of the human body (using OWL),
– an expert system describing the effects of different medications (using a nonmono-

tonic reasoning formalism, say disjunctive logic programming).

There may be situations where the integration of the knowledge represented in such
diverse formalisms is crucial. But how can this be achieved? Translating everything into
a single all-purpose formalism is certainly not a solution. First of all, no standardized,
universal knowledge representation language exists, and there are very good reasons
for this (e.g. specific modeling needs or complexity considerations). Secondly, even if
there were such a language, most probably remodeling the information would be too
cumbersome and costly. What seems to be needed is a principled way of integrating
knowledge expressed in different formats/languages/logics.

Nonmonotonic multi-context systems (MCS) [1] provide a promising way to address
this issue. The basic idea is to leave the diverse formalisms and knowledge bases (called
contexts in this approach for historical reasons [7]) untouched, and to equip each context
with a collection of so-called bridge rules in order to model the necessary information
flow among contexts.

Bridge rules are similar to logic programming rules (including default negation),
with an important difference: they allow to access other contexts in their bodies. Using
bridge rules has several advantages: the specification of the information flow is fully
declarative; moreover, information - rather than simply being passed on as is - can be
modified in various ways:

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 1–4, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 G. Brewka

– we may translate a piece of information into the language/format of another context
– we may pass on an abstraction of the original information, leaving out unnecessary

details
– we may select or hide information
– we may add conclusions to a context based on the absence of information in another

one
– we may use simple encodings of preferences among parent contexts
– we can even encode voting rules, say based on majorities etc.

The semantics of MCS is defined in terms of equilibria: a belief state assigns a belief
set to each context Ci. Intuitively, a belief state is an equilibrium whenever the belief
set selected for each Ci is acceptable for Ci’s knowledge base augmented by the heads
of Ci’s applicable bridge rules.

The history of MCS started in Trento. Advancing work in [6,8], the Trento School
developed monotonic heterogeneous multi-context systems [7] with the aim to integrate
different inference systems. Here reasoning within as well as across contexts is mono-
tonic. The first, still somewhat limited attempts to include nonmonotonic reasoning
were done in [9] and [4]. To allow for reasoning based on the absence of information
from a context, in both papers default negation is allowed in the rules. In this way con-
textual and default reasoning are combined.

The nonmonotonic MCS of [1] substantially generalized these approaches, by ac-
commodating heterogeneous and both monotonic and nonmonotonic contexts. They
are thus capable of integrating “typical” monotonic logics like description logics or
temporal logics, and nonmonotonic formalisms like Reiter’s default logic, answer set
programs, circumscription, defeasible logic, or theories in autoepistemic logic. The cur-
rently most general MCS variant, the so-called managed MCS (mMCS) [3] allow for ar-
bitrary user-defined operations on the context knowledge bases, not just
augmentations.

2 Nonmonotonic MCS More Formally

Multi-context systems as defined in [1] build on an abstract notion of a logic L as a triple
(KBL,BSL,ACCL), where KBL is the set of admissible knowledge bases (KBs) of
L, which are sets of KB-elements (“formulas”); BSL is the set of possible belief sets,
whose elements are beliefs; and ACCL : KBL → 2BSL is a function describing the
semantics of L by assigning to each knowledge-base a set of acceptable belief sets.

A multi-context system (MCS) M = (C1, . . . , Cn) is a collection of contexts Ci =
(Li, kbi, bri) where Li is a logic, kbi ∈ KBLi is a knowledge base and bri is a set of
bridge rules of the form:

s←(c1: p1), . . . , (cj : pj), not(cj+1: pj+1), . . . , not(cm: pm). (1)

such that kb ∪ {s} is an element of KBLi , c� ∈{1, . . . , n}, and p� is element of some
belief set of BS c� , for all 1 ≤ � ≤ m. For a bridge rule r, we denote by hd(r) the
formula s while body(r) denotes the set {(c�1 : p�1) | 1 ≤ �1 ≤ j} ∪ {not(c�2 : p�2) |
j < �2 ≤ m}.
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A belief state S = (S1, . . . , Sn) for M consists of belief sets Si ∈ BS i, 1 ≤ i ≤ n.
A bridge rule r of form (1) is applicable wrt. S, denoted by S |= body(r), iff p� ∈ Sc�

for 1 ≤ � ≤ j and p� /∈ Sc� for j < � ≤ m. We use appi(S) = {hd(r) | r ∈ bri ∧S |=
body(r)} to denote the heads of all applicable bridge rules of context Ci wrt. S.

The semantics of an MCS M is then defined in terms of equilibria, where an equi-
librium is a belief state (S1, . . . , Sn) such that Si ∈ ACC i(kbi ∪ appi(S)), 1 ≤ i ≤ n.

3 Beyond Information Flow

Although nonmonotonic MCS are, as we believe, an excellent starting point to address
the problems discussed above, the way they integrate knowledge is still somewhat lim-
ited: if a bridge rule for a context is applicable, then the rule head is simply added to the
context’s knowledge base (KB). Although this covers the flow of information, it does
not capture other operations one may want to perform on context KBs. For instance,
rather than simply adding a formula φ, we may want to delete some information, or
to revise the KB with φ to avoid inconsistency in the context’s belief set. We are thus
interested in generalizations of the MCS approach where specific predefined operations
on knowledge bases can be performed.

A first step into this direction are argumentation context systems (ACS) [2]. They
specialize MCS in one respect, and are more general in another. First of all, in contrast
to nonmonotonic MCS they are homogeneous in the sense that all reasoning compo-
nents in an ACS are of the same type, namely Dung-style argumentation frameworks
[5]. The latter are widely used as abstract models of argumentation. However, ACS go
beyond MCS in two important aspects: (1) The influence of an ACS module M1 on
another module M2 can be much stronger than in an MCS. M1 may not only provide
information for M2 and thus augment the latter, it may directly affect M2’s KB and
reasoning mode: M1 may invalidate arguments or attack relationships in M2’s argu-
mentation framework, and even determine the semantics to be used by M2. (2) A ma-
jor focus in ACS is on inconsistency handling. Modules are equipped with additional
components called mediators. The main role of the mediator is to take care of inconsis-
tencies in the information provided by connected modules. It collects the information
coming in from connected modules and turns it into a consistent update specification
for its module, using a pre-specified consistency handling method which may be based
on preference information about other modules.

Managed MCS (mMCS) push the idea of mediators even further. They allow addi-
tional operations on knowledge bases to be freely defined; this is akin to management
functionality of database systems. We thus call the additional component context man-
ager. In a nutshell (and somewhat simplifying) the features of mMCS are as follows:

– Each logic comes with a set of operations O.
– An operational statement is an operation applied to a formula (e.g. insert(p),

delete(p), revise(p), ...).
– Bridge rules are as before, except for the heads which now are operational state-

ments.
– A management function: mng : 2Opst × KB → 2KB, produces a collection of

KBs out of set of operational statements and a KB.
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– A managed context consists of a logic, a KB, a set of bridge rules (as before),
together with the new part, a management function.

– An mMCS is just a collection of managed contexts.

Regarding the semantics, a belief state S = (S1, . . . Sn) contains - as before - a belief
set for each context. To be an equilibrium S has to satisfy the following condition:
the belief set chosen for each context must be acceptable for one of the KBs obtained
by applying the management function to the heads of applicable bridge rules and the
context’s KB. More formally, for all contexts Ci = (Li, kbi, bri,mngi): let Si be the
belief set chosen for Ci, and let Opi be the heads of bridge rules in bri applicable in S.
Then S is an equilibrium iff, for 1 ≤ i ≤ n,

Si ∈ ACCi(kb
′) for some kb′ ∈ mngi(Opi, kbi).

Management functions allow us to model all sorts of modifications of a context’s knowl-
edge base and thus make mMCS a powerful tool for describing the influence contexts
can have on each other.
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Extended Abstract

Matchmaking can be basically seen as the process of computing a ranked list of
resources with respect to a given query. Semantic matchmaking can be hence
described as the process of computing such ordered list also taking into account
the semantics of resources description and of the query, provided with reference
to a logic theory (an ontology, a set of rules, etc.) [3]. A matchmaking step is
fundamental in a number of retrieval scenarios spanning from (Web) service dis-
covery and composition to e-commerce transactions up to recruitment in human
resource management for task assignment, just to cite a few of them. Also in
interactive exploratory tasks, matchmaking and ranking play a fundamental role
in the selection of relevant resources to be presented to the user and, in case,
further explored. In all the above mentioned frameworks, the user query may
contain only hard (strict) requirements or may represent also her preferences.
We will see how to handle both cases while computing the ranked list of most
promising resources.

In semantic-based retrieval scenarios we have a logic theory represented, for
example, as a set of ontological axioms that logically constrain the query and the
description of a resource. If we consider both the query q and the description d
expressed as Description Logics (DL)1 statements (the logic language behind the
semantics of OWL) and an ontology O we may check if the information encoded
in d implies the one encoded in q or we may verify if d contains the description
of some characteristics that are conflicting with the query. Let us consider the
following simple example. Suppose we have a query q and four descriptions d1,
d2, d3 and d4 such that the following relations hold2:

d1 � q 	
O ⊥ d2 � q 	
O ⊥ d3 � q 
O ⊥ d4 
O q

By looking at the above relations we may say that, for sure, d4 is the best choice
for q since it fully satisfies the requirements expressed by the query. On the
other hand, if we rely on deductive reasoning tasks, regarding d1, d2 and d3 we
may only say that the first two are compatible with q and the third one is not

1 In the following we will use DL notation to present our framework but the approaches
can be easily adapted to other logic formalisms.

2 We use the notation A �O B to represent O |= A � B.

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 5–8, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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compatible with q since it contains some elements that make q�d3 unsatisfiable.
If we adopt an Open World Assumption (which is reasonable in many Web
scenarios), we may say that d1 and d2 potentially satisfy q. After all, we do not
have information on what is underspecified in both d1 and d2. Maybe, the one
who wrote the description (imagine an advertisement on eBay) just did not care
about some information to be explicitly represented. On the other hand, even
though d3 is conflicting with q, it may still contain some characteristics that have
been expressed in q. In other words, d3 partially satisfies q. The main questions
here are: How do we rank d1, d2 and d3 with respect to q? Is the classification in
potential and partial matches3 enough for ranking purposes? May we compute
a similarity degree of d1, d2 and d3 with respect to q based on their formal
semantics [7]?

Our proposal is to use two non standard reasoning tasks, namely Concept
Abduction and Concept Contraction [5], to compute an explanation on “the
reason why” d does not fully satisfy q and then compute a score based on this
explanation [4,6]. In a few words, we want to know the reason why d 
O q does
not hold.

Concept Abduction. As for the Propositional case, the main aim of this task
is to compute a (minimal) hypothesis on what is underspecified in d in order
to fully satisfy q. More formally, given d, q and O such that d � q 	
O ⊥, we
say that h is a solution to a Concept Abduction Problem 〈q, d, O〉CAP if the
following two conditions hold: d � h 	
O ⊥ and d � h 
O q. By solving a CAP
on all those descriptions that potentially satisfy q, we have an explanation for
non-full match. At this point, we may define a scoring function that assigns a
weight to h, given q, d and O. Actually, the above formulation shows its limits
with expressive languages and a more sophisticated definition is needed [1,8,2].

Concept Contraction. In case of partial match, we are interested in computing
which part of the query q is conflicting with d and suggest to the user to revise and
relax the query if she is interested in d. More formally, given d,q and O such that
d � q 
O ⊥ we say that 〈g, k〉 is a solution to a Concept Contraction Problem
〈q, d, O〉CCP if the following two conditions hold: g � k ≡O q and k � d 	
O ⊥.
In a few words, g represents what has to be given up from q while k what has to
be kept in order to potentially match q. Also in this case we may define a scoring
function that assigns a weight to g and k, given q, d and O. Both for h and 〈g, k〉,
some minimality criteria need to be defined in order to avoid trivial solutions.

Looking at the previous two reasoning tasks we observe that they could be
used to move from a partial match to a potential match and from a potential
match to a full match by solving a CCP and then a CAP. Indeed, we have the
following matchmaking “path”:

q � d 
O ⊥
partial

〈g,k〉=solve 〈q,d,O〉CCP

−−−−−−−−−−−−−−−−→ k � d 	
O ⊥
potential

h=solve 〈k,d,O〉CAP

−−−−−−−−−−−−−→ d � h 
O k
full

3 These two match classes are also known as intersection and disjoint respectively
[10].
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We notice two important aspects related to h, g and k:

– they represent an explanation on the reason why d is not a full match for
q. This is a very relevant aspect of modern retrieval systems and it is a very
hot topic, for example, in the field of Recommender Systems [16].

– they can be used as a metric to compute a semantic distance of d from q.
Hence we can use them all to evaluate the score we will use to rank a set of
descriptions with respect to the query.

So far, we have represented the query as a single formula without taking into
account user preferences. In fact, it may happen that a user is more satisfied by
the retrieved d depending on which part of her query q is satisfied: the user may
assign a different utility value to different parts of q. In these situations we need
to borrow some notions and ideas from Utility Theory [9] to perform an efficient
retrieval task. To model user preferences and their associated utility we represent
them as weighted formulas. A preference is then formulated as P = 〈p, v〉, where
p is a logic formula and v is a numerical value representing the utility gained
by the user when d satisfies p. Given a set of preferences P = {〈pi, vi〉} and a
resource description d we define a utility function, in its basic form, as

u′(P , d) =
∑
{vi | where d satisfies pi}

Actually, we still need to define what “where d satisfies pi” really means. The
most intuitive way of modelling such relation is d 
O pi. Unfortunately, this
formulation may lead to some counter-intuitive situations. Suppose to have d =
A1�A2, P1 = 〈A1, v1〉 and P2 = 〈A2, v2〉. In this case, neither d 
 A1 nor d 
 A2

and then u′({P1, P2}, d) = 0. This is not correct since we know, by the formal
semantics of �, that d will satisfy A1 or A2 or them both. Hence, the final utility
will be at least min({v1, v2}). In order to solve such problems we need a more
sophisticated utility function that takes into account the models of the formula
d. Given an interpretation I of d, i.e., dI 	= ∅, we say that I is a minimal model
of d if the value

umin(P , I) =
∑
{vi | 〈pi, vi〉 ∈ P and I |= pi}

is minimal. In this case, we call umin(P , I) a minimal utility value associated
to d with respect to P . As we would expect, things become a little bit more
complicated when we need to consider also an ontology [14,15].

In all the proposed examples we always had only one active user who formu-
lated the query q (as a set of preferences). Nevertheless, we can model negotiating
actors where both the user who expresses q and the one who describes d have an
active role in the matchmaking and they both want to maximize their expected
utility. Imagine the case of an online marketplace where the seller and the buyer
have some preferences on the configuration of an item to sell and to buy respec-
tively, and there is a mediator (in this case the marketplace itself) that tries to
find an agreement that is mutually beneficial for both the buyer and the seller.
We have successfully investigated such frameworks with particular reference to
multi-issue bilateral one-shot negotiation, a special case of bilateral matchmaking.
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Among all possible Pareto efficient [11] agreements we are obviously inter-
ested in those either maximizing the sum of utilities – maximum welfare – or
maximizing their product – Nash-bargaining solution [12,13] and we show how
to compute them.
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Abstract. Fuzzy description logics can be used to model vague knowl-
edge in application domains. This paper analyses the consistency and
satisfiability problems in the description logic SHI with semantics based
on a complete residuated De Morgan lattice. The problems are undecid-
able in the general case, but can be decided by a tableau algorithm when
restricted to finite lattices. For some sublogics of SHI, we provide upper
complexity bounds that match the complexity of crisp reasoning.

1 Introduction

Description Logics (DLs) [1] are a family of knowledge representation formalisms
that are widely used to model application domains. In DLs, knowledge is repre-
sented with the help of concepts (unary predicates) and roles (binary predicates)
that express the relationships between concepts. They have been successfully
employed to formulate ontologies–especially in the medical domain–like Galen1

and serve as the underpinning for the current semantic web language OWL 2.2
Standard reasoning in these logics includes concept satisfiability (is a given con-
cept non-contradictory?) and ontology consistency (does a given ontology have
a model?). These and other reasoning problems have been studied for DLs, and
several algorithms have been proposed and implemented.

One of the main challenges in knowledge representation is the correct mod-
eling and use of imprecise or vague knowledge. For example, medical diag-
noses from experts are rarely clear-cut and usually depend on concepts like
HighBloodPressure that are necessarily vague. Fuzzy variants of description log-
ics were introduced in the nineties as a means to tackle this challenge. Their
applicability to the representation of medical knowledge was studied in [22].

Fuzzy DLs generalize (crisp) DLs by providing a membership degree semantics
for their concepts. Thus, e.g. 130/85 belongs to the concept HighBloodPressure
with a lower degree than, say 140/80. In their original form, membership degrees
are elements of the real-number interval [0, 1], but this was later generalized to
lattices [21,26]. The papers [21,26] consider only a limited kind of semantics over
lattices, where conjunction and disjunction are interpreted through the lattice
operators meet and join, respectively.
1 http://www.opengalen.org/
2 http://www.w3.org/TR/owl2-overview/

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 9–24, 2012.
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In this paper, we consider a more general lattice-based semantics that uses a
triangular norm (t-norm) and its residuum as interpretation functions for the
logical constructors. We study fuzzy variants of the standard reasoning problems
like concept satisfiability and ontology consistency in this setting.

We show that concept satisfiability in ALC under this semantics is undecidable
in general, even if we restrict ourselves to a very simple class of infinite lattices.
However, we show with the help of a tableaux-based algorithm that decidability
of reasoning can be regained—even for the more expressive DL SHI—if the un-
derlying lattice is required to be finite. Moreover, we describe a black-box method
that can be used to transform any decision algorithm for (a small generalization
of) satisfiability into a decision procedure for consistency.

Due to space constraints, some of the technical proofs have been left out of
this paper; they can be found in the technical report [12].

2 Preliminaries

We start with a short introduction to residuated lattices, which will be the base
for the semantics of the fuzzy DL L-SHI. For a more comprehensive view on
these lattices, we refer the reader to [15,17].

2.1 Lattices

A lattice is a triple (L, ∨, ∧), consisting of a carrier set L and two idempotent,
associative, and commutative binary operators join ∨ and meet ∧ on L that
satisfy the absorption laws �1 ∨ (�1 ∧ �2) = �1 = �1 ∧ (�1 ∨ �2) for all �1, �2 ∈ L.
These operations induce a partial order ≤ on L: �1 ≤ �2 iff �1 ∧�2 = �1. As usual,
we write �1 < �2 if �1 ≤ �2 and �1 �= �2. A subset T ⊆ L is called an antichain
(in L) if there are no two elements �1, �2 ∈ T with �1 < �2. Whenever it is clear
from the context, we will use the carrier set L to represent the lattice (L, ∨, ∧).

The lattice L is distributive if ∨ and ∧ distribute over each other, finite if L
is finite, and bounded if it has a minimum and a maximum element, denoted
as 0 and 1, respectively. It is complete if joins and meets of arbitrary subsets
T ⊆ L,

∨
t∈T t and

∧
t∈T t, respectively, exist. Clearly, every finite lattice is also

complete, and every complete lattice is bounded.
A De Morgan lattice is a bounded distributive lattice L extended with an

involutive and anti-monotonic unary operation ∼, called (De Morgan) negation,
satisfying the De Morgan laws ∼(�1∨�2) = ∼ �1∧∼ �2 and ∼(�1∧�2) = ∼ �1∨∼ �2

for all �1, �2 ∈ L.
Given a lattice L, a t-norm is an associative and commutative binary operator

on L that is monotonic and has 1 as its unit. A residuated lattice is a lattice L
with a t-norm ⊗ and a binary operator ⇒ (called residuum) such that for all
�1, �2, �3 ∈ L we have �1 ⊗ �2 ≤ �3 iff �2 ≤ �1 ⇒ �3. A simple consequence is that
for all �1, �2 ∈ L we have 1 ⇒ �1 = �1, and �1 ≤ �2 iff �1 ⇒ �2 = 1.

A t-norm ⊗ over a complete lattice L is continuous if for all � ∈ L and T ⊆ L
we have �⊗(

∨
�′∈T �′) =

∨
�′∈T (�⊗�′). Every continuous t-norm ⊗ has the unique
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Fig. 1. The De Morgan residuated lattice L4 with ∼ u = u and ∼ i = i

residuum ⇒ defined by �1 ⇒ �2 =
∨

{x | �1 ⊗ x ≤ �2} for all �1, �2 ∈ L. If L is a
distributive lattice, then the meet operator �1 ∧ �2 always defines a continuous
t-norm, often called the Gödel t-norm. In a residuated De Morgan lattice L, the
t-conorm ⊕ is defined as as �1 ⊕ �2 := ∼(∼ �1 ⊗∼ �2). The t-conorm of the Gödel
t-norm is the join operator �1 ∨ �2.

For example, consider the finite lattice L4, with the elements f, u, i, and t as
shown in Figure 1. This lattice has been used for reasoning about incomplete and
contradictory knowledge [5] and as a basis for a paraconsistent rough DL [28].
In our blood pressure scenario, the two degrees i and u may be used to express
readings that are potentially and partially high blood pressures, respectively.
The incomparability of these degrees reflects the fact that none of them can be
stated to belong more to the concept HighBloodPressure than the other.

For the rest of this paper, L denotes a complete residuated De Morgan lattice
with t-norm ⊗ and residuum ⇒, unless explicitely stated otherwise.

2.2 The Fuzzy DL L-SHI
The fuzzy DL L-SHI is a generalization of the crisp DL SHI that uses the
elements of L as truth values, instead of just the Boolean true and false. The
syntax of L-SHI is the same as in SHI with the addition of the constructor →.

Definition 1 (syntax of L-SHI). Let NC, NR, and NI be pairwise disjoint
sets of concept-, role-, and individual names, respectively, and N+

R ⊆ NR a set
of transitive role names. The set of (complex) roles is NR ∪ {r− | r ∈ NR}. The
set of (complex) concepts C is obtained through the following syntactic rule,
where A ∈ NC and s is a complex role:

C ::= A | C1 � C2 | C1 � C2 | C1 → C2 | ¬C | ∃s.C | ∀s.C | � | ⊥.

The inverse of a complex role s (denoted by s) is s− if s ∈ NR and r if s = r−.
A complex role s is transitive if either s or s belongs to N+

R .

The semantics of this logic is based on functions specifying the membership
degree of every domain element in a concept C.

Definition 2 (semantics of L-SHI). An interpretation is a pair I = (ΔI , ·I)
where ΔI is a non-empty domain, and ·I is a function that assigns to every
individual name a an element aI ∈ ΔI, to every concept name A a function
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AI : ΔI → L, and to every role name r a function rI : ΔI × ΔI → L, where
rI(x, y) ⊗ rI(y, z) ≤ rI(x, z) holds for all r ∈ N+

R and x, y, z ∈ ΔI .
The function ·I is extended to L-SHI concepts as follows for every x ∈ ΔI:

– �I(x) = 1, ⊥I(x) = 0,
– (C � D)I(x) = CI(x) ⊗ DI(x), (C � D)I(x) = CI(x) ⊕ DI(x),
– (C → D)I(x) = CI(x) ⇒ DI(x),
– (¬C)I(x) = ∼ CI(x),
– (∃s.C)I(x) =

∨
y∈ΔI

(
sI(x, y) ⊗ CI(y)

)
,

– (∀s.C)I(x) =
∧
y∈ΔI

(
sI(x, y) ⇒ CI(y)

)
,

where (r−)I(x, y) = rI(y, x) for all x, y ∈ ΔI and r ∈ NR.

The semantics of the existential and value restrictions is just the direct applica-
tion of the semantics of quantification of fuzzy first-order logic [18,19] to fuzzy
DLs.

Notice that, unlike in crisp SHI, existential and universal quantifiers are not
dual to each other, i.e. in general, (¬∃s.C)I(x) = (∀s.¬C)I(x) does not hold.
Likewise, the implication constructor → cannot be expressed in terms of the
negation ¬ and conjunction �.

The axioms of this logic are those of crisp SHI, but with associated lattice
values, which express the degree to which the restrictions must be satisfied.

Definition 3 (axioms). An assertion can be a concept assertion of the form
〈a : C � �〉 or a role assertion of the form 〈(a, b) : s � �〉, where C is a concept,
s is a complex role, a, b are individual names, � ∈ L, and �∈ {=, ≥}. If � is =,
then it is called an equality assertion. A general concept inclusion (GCI) is of
the form 〈C � D, �〉, where C, D are concepts, and � ∈ L. A role inclusion is of
the form s � s′, where s and s′ are complex roles.

An ontology (A, T , R) consists of a finite set A of assertions (ABox), a finite
set T of GCIs (TBox), and a finite set R of role inclusions (RBox). The ABox
A is called local if there is an individual a ∈ NI such that all assertions in A are
of the form 〈a : C = �〉, for some concept C and � ∈ L.

An interpretation I satisfies the assertion 〈a : C � �〉 if CI(aI) � � and the
assertion 〈(a, b) : s � �〉 if sI(aI , bI) � �. It satisfies the GCI 〈C � D, �〉 if
CI(x) ⇒ DI(x) ≥ � holds for every x ∈ ΔI . It satisfies the role inclusion s � s′

if for all x, y ∈ ΔI we have sI(x, y) ≤ s′I(x, y).
I is a model of the ontology (A,T ,R) if it satisfies all axioms in A, T , R.

Given an RBox R, the role hierarchy �R on the set of complex roles is the
reflexive and transitive closure of the relation

{(s, s′) | s � s′ ∈ R or s � s′ ∈ R}.

Using reachability algorithms, the role hierarchy can be computed in polynomial
time in the size of R. An RBox R is called acyclic if it contains no cycles of the
form s �R s′, s′ �R s for two roles s �= s′.
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The fuzzy DL L-ALC is the sublogic of L-SHI where no role inclusions,
transitive roles, or inverse roles are allowed. SHI is the sublogic of L-SHI
where the underlying lattice contains only the elements 0 and 1, which may
be interpreted as false and true, respectively, and the t-norm and t-conorm are
conjunction and disjunction, respectively.

Recall that the semantics of the quantifiers require the computation of a
supremum or infimum of the membership degrees of a possibly infinite set of
elements of the domain. To obtain effective decision procedures, reasoning is
usually restricted to a special kind of models, called witnessed models [19].

Definition 4 (witnessed model). Let n ∈ N. A model I of an ontology O
is n-witnessed if for every x ∈ ΔI, every role s and every concept C there are
x1, . . . , xn, y1, . . . , yn ∈ ΔI such that

(∃s.C)I(x) =
n∨

i=1

(
sI(x, xi) ⊗ CI(xi)

)
, (∀s.C)I(x) =

n∧

i=1

(
sI(x, yi) ⇒ CI(yi)

)
.

In particular, if n = 1, the suprema and infima from the semantics of ∃s.C and
∀s.C are maxima and minima, respectively, and we say that I is witnessed.

The reasoning problems for SHI generalize to the fuzzy semantics of L-SHI.

Definition 5 (decision problems). Let O be an ontology, C, D be two con-
cepts, a ∈ NI, and � ∈ L. O is consistent if it has a (witnessed) model. C is
strongly �-satisfiable if there is a (witnessed) model I of O and x ∈ ΔI with
CI(x) ≥ �. The individual a is an �-instance of C if 〈a : C ≥ �〉 is satisfied by
all (witnessed) models of O. C is �-subsumed by D if 〈C � D, �〉 is satisfied by
all (witnessed) models of O.

Example 6. It is known that coffee drinkers and salt consumers tend to have a
higher blood pressure. On the other hand, bradycardia is highly correlated with
a lower blood pressure. This knowledge can be expressed through the TBox

{〈CoffeeDrinker � HighBloodPressure, i〉, 〈SaltConsumer � HighBloodPressure, i〉,
〈Bradycardia � ¬HighBloodPressure, i〉},

over the lattice L4 from Figure 1. The degree i in these axioms expresses that the
relation between the causes and HighBloodPressure is not absolute. Consider the
patients ana, who is a coffee drinker, and bob, a salt consumer with bradycardia,
as expressed by the ABox

{〈ana : CoffeeDrinker = t〉, 〈bob : SaltConsumer � Bradycardia = t〉}.

We can deduce that both patients are an i-instance of HighBloodPressure, but
only bob is an i-instance of ¬HighBloodPressure. Notice that if we changed all
the degrees from the GCIs to the value t, the ontology would be inconsistent.

We will focus first on a version of the consistency problem where the ABox is
required to be a local ABox; we call this problem local consistency. We show in
Section 5 that local consistency can be used for solving other reasoning prob-
lems in L-SHI if L is finite. Before that, we show that satisfiability and (local)
consistency are undecidable in L-ALC, and hence also in L-SHI, in general.
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3 Undecidability

To show undecidability, we use a reduction from the Post Correspondence Prob-
lem [24] to strong satisfiability in L-ALC over a specific infinite lattice. The
reduction uses ideas that have been successfully applied to showing undecidabil-
ity of reasoning for several fuzzy description logics [2,3,14].

Although the basic idea of the proof is not new, it is interesting for several
reasons. First, previous incarnations of the proof idea focused on decidability of
ontology consistency [3,13,14], while we are concerned with strong �-satisfiability.
Second, most of the previous undecidability results only hold for reasoning w.r.t.
witnessed models, but the current proof works for both witnessed and general
models. Finally, in contrast to an earlier version of this proof [11], the employed
lattice has a quite simple structure in the sense that it is a total order that has
only the two limit points −∞ and ∞ instead of infinitely many. Note that any
distributive lattice without limit points is already finite and reasoning in finite
residuated De Morgan lattices is decidable (see Sections 4 and 5).

Definition 7 (PCP). Let P = {(v1, w1), . . . , (vn, wn)} be a finite set of pairs
of words over the alphabet Σ = {1, . . . , s} with s > 1. The Post Correspondence
Problem (PCP) asks for a finite non-empty sequence i1 . . . ik ∈ {1, . . . , n}+ such
that vi1 . . . vik = wi1 . . . wik . If this sequence exists, it is called a solution for P.

For ν = i1 · · · ik ∈ {1, . . . , n}∗, we define vν := vi1 · · · vik and wν := wi1 · · · wik .
We consider the lattice Z∞ whose domain is Z ∪ {−∞, ∞} with the usual

ordering over the integers and −∞ and ∞ as the minimal and maximal element,
respectively. Its De Morgan negation is ∼ � = −� if � ∈ Z, ∼ ∞ = −∞, and
∼(−∞) = ∞. The t-norm ⊗ is defined as follows for all �, m ∈ Z∞:

� ⊗ m :=

{
� + m if �, m ∈ Z and �, m ≤ 0
min{�, m} otherwise.

This is in fact a residuated lattice with the following residuum:

� ⇒ m :=

⎧
⎪⎨

⎪⎩

∞ if � ≤ m

m if � > m and � ≥ 0
m − � if � > m and � < 0.

Given an instance P of the PCP, we will construct a TBox TP such that the
designated concept name S is strongly ∞-satisfiable iff P has no solution. Recall
that the alphabet Σ consists of the first s positive integers. Thus, every word
in Σ+ can be seen as a positive integer written in base s + 1; we extend this
intuition and denote the empty word by 0. We encode each word u ∈ Σ∗ with
the number −u ≤ 0.

The idea is that the TBox TP describes the search tree of P with the nodes
{1, . . . , n}∗. At its root ε, it encodes the value vε = wε = ε, which is represented
by 0, using the concept names V and W . These concept names are used through-
out the tree to express the values vν and wν at every node ν ∈ {1, . . . , n}∗.
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Additionally, we will use the auxiliary concept names Vi and Wi to encode the
constant words vi and wi, respectively, for each i ∈ {1, . . . , n}. These will be
used to compute the concatenation vνi = vνvi at each node.

To simplify the reduction, we will use some abbreviations. Given two L-ALC
concepts C and D and r ∈ NR, 〈C ≡ D〉 abbreviates the axioms 〈C � D, ∞〉,
〈D � C, ∞〉; and 〈C r� D〉 stands for the axioms 〈C � ∀r.D, ∞〉, 〈∃r.D � C, ∞〉.
For n ≥ 1, the concept Cn is inductively defined by C1 := C and Cn+1 := Cn�C.

Proposition 8. Let I be an interpretation and x ∈ ΔI.

– If I satisfies 〈C ≡ D〉, then CI(x) = DI(x).
– If I satisfies 〈C r� D〉 and CI(x) ≤ 0, then CI(x) = DI(y) holds for all

y ∈ ΔI with rI(x, y) ≥ 1.
– If CI(x) ∈ Z, CI(x) ≤ 0, and n ≥ 1, then (Cn)I(x) = n · CI(x).

We now introduce the TBox T0 :=
⋃n
i=0 T i

P that encodes the search tree of the
instance P of the PCP:

T 0
P := {〈S � V, 0〉, 〈S � ¬V, 0〉, 〈S � W, 0〉, 〈S � ¬W, 0〉},

T i
P := {〈� � ∃ri.�, 1〉,

〈� � Vi, −vi〉, 〈� � ¬Vi, vi〉, 〈� � Wi, −wi〉, 〈� � ¬Wi, wi〉,
〈(V (s+1)|vi|

� Vi)
ri� V 〉, 〈(W (s+1)|wi|

� Wi)
ri� W 〉},

where |u| denotes the length of the word u.
The TBox T 0

P initializes the search tree by ensuring for every model I and
every domain element x ∈ ΔI that satisfies SI(x) = ∞ that the values of V
and W are both 0, which is the encoding of the empty word. Each TBox T i

P
ensures the existence of an ri-successor for every domain element and describes
the constant pair (vi, wi) using the concepts Vi and Wi, that is, it forces that
V I
i (x) = −vi and W I

i (x) = −wi for every x ∈ ΔI . Using the last two axioms,
the search tree is then extended by concatenating the words v and w produced
so far with vi and wi, respectively. In the following, we will describe this in more
detail.

Consider the interpretation IP over the domain ΔIP = {1, . . . , n}∗, where for
all ν, ν′ ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n},

– V IP (ν) = −vν , W IP (ν) = −wν ,
– V IP

i (ν) = −vi, W IP
i (ν) = −wi,

– rIP
i (ν, νi) = ∞ and rIP

i (ν, ν′) = −∞ if ν′ �= νi,
– SIP (ε) = ∞ and SIP (ν′) = −∞ if ν′ �= ε.

It is easy to see that IP is in fact a model of T0 and it strongly satisfies S with
degree ∞. Moreover, every model of this TBox that strongly ∞-satisfies S must
“include” IP in the following sense.

Lemma 9. Let I be a model of T0 such that SI(x0) = ∞ for some x0 ∈ ΔI.
Then there exists a function g : ΔIP → ΔI such that AIP (ν) = AI(g(ν)) and
ri(g(ν), g(νi)) ≥ 1 hold for every concept name A ∈ {V, W, V1, W1, . . . , Vn, Wn},
every ν ∈ ΔIP , and every i ∈ {1, . . . , n}.
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Proof. We construct the function g by induction on ν and set g(ε) := x0. Since
I is a model of T 0

P and SI(x0) = ∞, we have V I(x0) ≥ 0 and ∼ V I(x0) ≥ 0, i.e.
V I(x0) = 0, and similarly W I(x0) = 0. In the same way, for every i ∈ {1, . . . , n},
V I
i (x0) and W I

i (x0) are restricted by T i
P to be −vi and −wi, respectively.

Let now ν ∈ {1, . . . , n}∗ and assume that g(ν) already satisfies the condition.
For each i ∈ {1, . . . , n}, the first axiom of T i

P ensures that
∨
y∈ΔI rI

i (g(ν), y) ≥ 1.
Thus, there is yi ∈ ΔI such that rI

i (g(ν), yi) ≥ 1. We define g(νi) := yi. By
Proposition 8, we have

V I(yi) = (V (s+1)|vi| � Vi)I(g(ν)) = −
(
(s + 1)|vi|vν + vi

)
= −vνvi = −vνi,

and similarly for W I(yi). The claim for Vi and Wi can be shown as above. ��

This proposition shows that every model of T0 encodes a description of the search
tree for a solution of P . Thus, to decide the PCP, it suffices to detect whether
there is a node ν ∈ {1, . . . , n}+ of IP where V IP (ν) = W IP (ν). We accomplish
this using the TBox

T ′ := {〈� � ∀ri.¬((V → W ) � (W → V )), 0〉 | 1 ≤ i ≤ n}.

The interpretation IP is a model of T ′ iff V IP (ν) �= W IP (ν) holds for every
ν ∈ {1, . . . , n}+.

Lemma 10. P has a solution iff S is not ∞-satisfiable w.r.t. TP := T0 ∪ T ′.

Proof. For any two values �, m ≤ 0, we have � �= m iff (� ⇒ m) ⊗ (m ⇒ �) ≤ 0.
Assume now that S is not ∞-satisfiable w.r.t. TP . Then, in particular, IP

does not satisfy T ′, i.e. we have (∀ri.¬((V → W ) � (W → V )))IP (ν) < 0 for
some ν ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n}. There must be a ν ∈ {1, . . . , n}+ with
(¬((V → W ) � (W → V )))IP (ν) < 0; thus, −vν = V IP (ν) = W IP (ν) = −wν .
This shows that vν = wν , i.e. P has a solution.

For the other direction, let I be a model of TP and x0 ∈ ΔI such that
SI(x0) = ∞. In particular, we have

rI
i (g(ν), g(νi)) ⇒ (¬((V → W ) � (W → V )))I(g(νi)) ≥ 0

for every ν ∈ {1, . . . , n}∗ and i ∈ {1, . . . , n}, where g is the function constructed
in Lemma 9. Thus, ((V → W )�(W → V ))I(g(ν)) ≤ 0 for every ν ∈ {1, . . . , n}+,
which implies −vν = V I(g(ν)) �= W I(g(ν)) = −wν . This shows that vν �= wν
for all ν ∈ {1, . . . , n}+, i.e. P has no solution. ��

As mentioned before, since the interpretation IP is witnessed, undecidability
holds even if we restrict reasoning to n-witnessed models, for any n ∈ N.

Theorem 11. Strong satisfiability is undecidable in L-ALC, for some countable
total order L with at most two limit points, even if reasoning is over n-witnessed
models only.
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This theorem also shows that (local) consistency is undecidable in Z∞-ALC since
S is strongly ∞-satisfiable w.r.t. TP iff ({〈a : S = ∞〉}, TP) is locally consistent,
where a is an arbitrary individual name.

Notice that this does not exclude the existence of classes of infinite lattices
for which reasoning in L-SHI is decidable. In fact, there exists a large class of
infinite total orders for which consistency is decidable [9]. What Theorem 11
shows is that there exist lattices for which this problem is undecidable. If we
restrict to finite lattices, then a tableau algorithm can be used for reasoning.

4 A Tableaux Algorithm for Local Consistency

Before presenting a tableau algorithm [4] that decides local consistency by con-
structing a model of a given L-SHI ontology, we discuss previous approaches to
deciding consistency of fuzzy DLs over finite residuated De Morgan lattices in
the presence of GCIs.

A popular method is the reduction of fuzzy ontologies into crisp ones, which
has so far only been done for finite total orders [7,8,26]. Reasoning can then be
performed through existing optimized reasoners for crisp DLs. The main idea is
to translate every concept name A into finitely many crisp concept names A≥�,
one for each truth value �, where A≥� collects all those individuals that belong
to A with a truth degree ≥ �. The lattice structure is expressed through GCIs of
the form A≥�2 � A≥�1 , where �2 is a minimal element above �1, and analogously
for the role names. All axioms are then recursively translated into crisp axioms
that use only the introduced crisp concept and role names. The resulting crisp
ontology is consistent iff the original fuzzy ontology is consistent.

In general such a translation is exponential in the size of the concepts that
occur in the fuzzy ontology. The reason is that, depending on the t-norm used,
there may be many possible combinations of values �1, �2 for C, D, respectively,
that lead to C � D having the value � = �1 ⊗ �2, and similarly for the other con-
structors. All these possibilities have to be expressed in the translation. Since
ontology consistency in crisp SHI is ExpTime-hard, this yields a 2-ExpTime
reasoning procedure. Moreover, DL reasoners usually implement tableaux algo-
rithms with a worst-case complexity above NExpTime; in that case, one gets
a 2-NExpTime reasoning procedure. In contrast, our tableau algorithm has
a worst-case complexity of NExpTime, matching the behaviour of crisp SHI
reasoners.

To the best of our knowledge, at the moment there exists only one (correct)
tableaux algorithm that can deal with a finite total order of truth values and
GCIs [25],3 but it is restricted to the Gödel t-norm. The main difference be-
tween this algorithm and ours is that we non-deterministically guess the degree
of membership of each individual to every relevant concept, while the approach
from [25] sets only lower and upper bounds for these degrees; this greatly reduces
3 Several tableau algorithms for fuzzy DLs over infinite total orders exist, but they

are either restricted to acyclic TBoxes or are not correct in the presence of GCIs, as
shown in [2,6].
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the amount of non-determinism encountered, but introduces several complica-
tions when a t-norm different from the Gödel t-norm is used.

We present a straightforward tableaux algorithm with a larger amount of
nondeterminism that nevertheless matches the theoretical worst-case complexity
of tableaux algorithms for crisp SHI. It is loosely based on the crisp tableaux
algorithm in [20]. A first observation that simplifies the algorithm is that since
L is finite, we can w.l.o.g. restrict reasoning to n-witnessed models.

Proposition 12. If the maximal cardinality of an antichain of L is n, then
every interpretation in L-SHI is n-witnessed.

For simplicity, we consider only the case n = 1. For n > 1, the construction is
similar, but several witnesses have to be produced for satisfying each existential
and value restriction. The necessary changes in the algorithm are described at
the end of this section. We can also assume w.l.o.g. that the RBox is acyclic.
The proof of this follows similar arguments as for crisp SHI [27].

Proposition 13. Deciding local consistency in L-SHI is polynomially equiva-
lent to deciding local consistency in L-SHI w.r.t. acyclic RBoxes.

In the following, let O = (A, T , R) be an ontology where A is a local ABox
that contains only the individual name a and R is an acyclic RBox. We first
show that O has a model if we can find a tableau; intuitively, a possibly infinite
“completed version” of A. Later we describe an algorithm for constructing a finite
representation of such a tableau.

Definition 14. A tableau for O is a set T of equality assertions over a set
Ind of individuals such that a ∈ Ind, A ⊆ T, and the following conditions are
satisfied for all C, C1, C2 ∈ sub(O), x, y ∈ Ind, r, s ∈ NR, and � ∈ L:

Clash-free: If 〈x : C = �〉 ∈ T or 〈(x, y) : r = �〉 ∈ T, then there is no �′ ∈ L
such that �′ �= � and 〈x : C = �′〉 ∈ T or 〈(x, y) : r = �′〉 ∈ T, respectively.

Complete: For every row of Table 1, the following condition holds:

“If 〈trigger〉 is in T, there are 〈values〉 such that 〈assertions〉 are in T.”

These conditions help to abstract from the interplay between transitive roles and
existential and value restrictions. We prove in [12] that it suffices to satisfy the
above conditions to make certain that O has a model.

Lemma 15. O is locally consistent iff it has a tableau.

We now present a tableaux algorithm for deciding local consistency. The al-
gorithm starts with the local ABox A, and nondeterministically expands it to
a tree-like ABox Â that represents a model of O. It uses the conditions from
Table 1 and reformulates them into expansion rules of the form:

“If there is 〈trigger〉 in Â and there are no 〈values〉 such that 〈assertions〉
are in A, then introduce 〈values〉 and add 〈assertions〉 to Â.”



A Tableau Algorithm for Fuzzy Description Logics 19

Table 1. The tableau conditions for L-SHI

〈trigger〉 〈values〉 〈assertions〉
� 〈x : C1 � C2 = �〉 �1, �2 ∈ L with �1 ⊗ �2 = � 〈x : C1 = �1〉,

〈x : C2 = �2〉
� 〈x : C1 � C2 = �〉 �1, �2 ∈ L with �1 ⊕ �2 = � 〈x : C1 = �1〉,

〈x : C2 = �2〉
→ 〈x : C1 → C2 = �〉 �1, �2 ∈ L with �1 ⇒ �2 = � 〈x : C1 = �1〉,

〈x : C2 = �2〉
¬ 〈x : ¬C = �〉 〈x : C = ∼ �〉
∃ 〈x : ∃r.C = �〉 �1, �2 ∈ L with �1 ⊗ �2 = �,

individual y
〈(x, y) : r = �1〉,
〈y : C = �2〉

∃≤ 〈x : ∃r.C = �〉, 〈(x, y) : r = �1〉 �2 ∈ L with �1 ⊗ �2 ≤ � 〈y : C = �2〉
∃+ 〈x : ∃s.C = �〉, 〈(x, y) : r = �1〉

with r transitive and r �R s
�2 ∈ L with �1 ⊗ �2 ≤ � 〈y : ∃r.C = �2〉

∀ 〈x : ∀r.C = �〉 �1, �2 ∈ L with �1 ⇒ �2 = �,
individual y

〈(x, y) : r = �1〉,
〈y : C = �2〉

∀≥ 〈x : ∀r.C = �〉, 〈(x, y) : r = �1〉 �2 ∈ L with �1 ⇒ �2 ≥ � 〈y : C = �2〉
∀+ 〈x : ∀s.C = �〉, 〈(x, y) : r = �1〉

with r transitive and r �R s
�2 ∈ L with �1 ⇒ �2 ≥ � 〈y : ∀r.C = �2〉

inv 〈(x, y) : r = �1〉 〈(y, x) : r = �1〉
�R 〈(x, y) : r = �1〉, r �R s �2 ∈ L with �1 ≤ �2 〈(x, y) : s = �2〉
�T individual x, 〈C1 � C2, �〉 in T �1, �2 ∈ L with �1 ⇒ �2 ≥ � 〈x : C1 = �1〉,

〈x : C2 = �2〉

The rules ∃ and ∀ always introduce new individuals y that do not appear in
Â. Initially, the ABox A contains the single individual a. It is expanded by
the rules in a tree-like way: role connections are only created by adding new
successors to existing individuals. If an individual y was created by a rule ∃ or
∀ that was applied to an assertion involving an individual x, then we say that
y is a successor of x, and x is the predecessor of y; ancestor is the transitive
closure of predecessor. Note that the presence of an assertion 〈(x, y) : r = �〉
in Â does not imply that y is a successor of x—it could also be the case that
this assertion was introduced by the inv-rule. We further denote by Âx the set
of all concept assertions from Â that involve the individual x, i.e. are of the
form 〈x : C = �〉 for some concept C and � ∈ L. To ensure that the application
of the rules terminates, we need to add a blocking condition. We use anywhere
blocking [23], which is based on the idea that it suffices to examine each set Âx

only once in the whole ABox Â.
Let � be a total order on the individuals of Â that includes the ancestor

relationship, i.e. whenever y is a successor of x, then y � x. An individual y
is directly blocked if for some other individual x in Â with y � x, Âx is equal
to Ây modulo the individual names; in this case, we write Âx ≡ Ây and also
say that x blocks y. It is indirectly blocked if its predecessor is either directly or
indirectly blocked. A node is blocked if it is either directly or indirectly blocked.
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The rules ∃ and ∀ are applied to Â only if the node x that triggers their execution
is not blocked. All other rules are applied only if x is not indirectly blocked.

The total order � avoids cycles in the blocking relation. One possibility is
to simply use the order in which the individuals were created by the expansion
rules. Note that the only individual a that occurs in A, which is the root of the
tree-like structure represented by Â, cannot be blocked since it is an ancestor of
all other individuals in Â. With this blocking condition, we can show that the
size of Â is bounded exponentially in the size of A, as in the crisp case [23].

Lemma 16. Every application of expansion rules to A terminates after at most
exponentially many rule applications.

We say that Â contains a clash if it contains two assertions that are equal except
for their lattice value (see Definition 14). Â is complete if it contains a clash or
none of the expansion rules are applicable. The algorithm is correct in the sense
that it produces a clash iff O is not locally consistent (see [12] for details).

Lemma 17. O is locally consistent iff some application of the expansion rules
to A yields a complete and clash-free ABox.

Since the tableau rules are nondeterministic, Lemmata 16 and 17 together imply
that the tableaux algorithm decides local consistency in NExpTime.

Theorem 18. Local consistency in L-SHI w.r.t. witnessed models can be de-
cided in NExpTime.

As explained before, L-SHI has the n-witnessed model property for some n ≥ 1.
We have so far restricted our description to the case where n = 1. If n > 1, it
does not suffice to generate only one successor for every existential and universal
restriction, but one must produce n different successors to ensure that the degrees
guessed for these complex concepts are indeed witnessed by the model. The only
required change to the algorithm is in the rows ∃ and ∀ of Table 1, where we
have to introduce n individuals y1, . . . , yn, and 2n values �1

1, �
1
2, . . . , �

n
1 , �n2 ∈ L

that satisfy
∨n
i=1 �i1 ⊗ �i2 = � or

∧n
i=1 �i1 ⇒ �i2 = �, respectively.

5 Local Completion and other Black-Box Reductions

In the following, we assume that we have a black-box procedure that decides local
consistency in a sublogic of L-SHI. This procedure can be, e.g. the tableau-
based algorithm from the previous section, or any other method for solving
this decision problem. We show how to employ such a procedure to solve other
reasoning problems for this sublogic.

5.1 Consistency

To reduce consistency of an arbitrary ontology O = (A, T , R) to local consis-
tency, we first make sure that the information contained in A is consistent “in
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itself”, i.e. if we only consider the individuals occurring in A. It then suffices to
check a local consistency condition for each of the individuals.

Let IndA denote the set of individual names occurring in A and sub(A, T ) the
set of all subconcepts of concepts occurring in A or T . We first guess a set Â of
equality assertions of the forms 〈a : C = �〉 and 〈(a, b) : r = �〉 with a, b ∈ IndA,
C ∈ sub(A, T ), r ∈ NR, and � ∈ L. We then check whether Â is clash-free and
satisfies the tableau conditions listed in Table 1, except the witnessing conditions
∃ and ∀. Additionally, we impose the following condition on Â:

“If there is an assertion 〈α � �〉 in A, then there is �′ ∈ L such that �′ � �

and 〈α = �′〉 is in Â.”

We call Â locally complete iff it is of the above form and satisfies all of the above
conditions. Guessing this set and checking whether it is locally complete can be
done in polynomial time in the size of O.

Lemma 19. An ontology O = (A, T , R) is consistent iff there is a locally com-
plete set Â such that Ox = (Âx, T , R) is locally consistent for every x ∈ IndA.

The proof of this lemma can be found in [12] and uses similar methods as the
proofs for the results of the previous section.

Theorem 20. If local consistency in L-SHI can be decided in a complexity
class C, then consistency in L-SHI can be decided in any complexity class that
contains both NP and C.

This means that consistency in L-SHI is decidable in NExpTime. In [10], an
automata-based algorithm was presented that can decide satisfiability and sub-
sumption in L-ALCI in ExpTime. Moreover, if the TBox is acyclic, then this
bound can be improved to PSpace. The algorithm can easily be adapted to
decide local consistency. With the above reduction, this shows that consistency
in L-ALCI w.r.t. general and acyclic TBoxes can be decided in ExpTime and
PSpace, respectively. The same argument applies to any sublogic of L-SHI for
which local consistency can be decided in ExpTime or PSpace.

5.2 Satisfiability, Instance Checking, and Subsumption

To decide whether a concept C is strongly �-satisfiable w.r.t. O = (A, T , R),
we can simply check whether (A ∪ {a : C ≥ �}, T , R) is consistent for a new
individual name a not occurring in A. Thus, strong �-satisfiability is in the same
complexity class as consistency. Moreover, we can easily compute the set of all
values � ∈ L such that the ontology (A∪{a : C ≥ �}, T , R) is consistent by calling
the decision procedure for consistency a constant number of times, i.e. once for
each � ∈ L. We can use this set to compute the best bound for the satisfiability
of C. Formally, the best satisfiability degree of a concept C is the supremum of
all � ∈ L such that C is �-satisfiable w.r.t. O. Since we can compute the set of
all elements of L satisfying this property, obtaining the best satisfiability degree
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requires only a supremum computation. As the lattice L is fixed, this adds a
constant factor to the complexity of checking consistency.

To check �-instances, we can exploit the fact that a is not an �-instance of C
w.r.t. O iff there is a model I of O and a domain element x ∈ ΔI such that
CI(aI) � �. This is the case iff there is a value �′ � � such that the ontology
(A∪{a : C = �′}, T , R) is consistent. Thus, �-instances can be decided by calling
the decision procedure for consistency a constant number of times, namely at
most once for each �′ ∈ L with �′ � �. We can also compute the best instance
degree for a and C, which is the supremum of all � ∈ L such that a is an �-instance
of C w.r.t. O. Let L denote the set of all �′ such that ({a : C = �′}, T , R) is
consistent. The best instance degree for a and C is the infimum of all �′ ∈ L
since

∨
{� ∈ L | a is an �-instance of C} =

∨
{� ∈ L | ∀�′ � � : �′ /∈ L}

=
∨

{� ∈ L | ∀�′ ∈ L : � ≤ �′} =
∧

L.

Finally, note that C is �-subsumed by D iff a is an �-instance of C → D, where
a is a new individual name. Thus, deciding �-subsumption and computing the
best subsumption degree can be done using the same approach as above.

Lemma 21. If local consistency in L-SHI can be decided in a complexity class
C, then strong satisfiability, instance checking, and subsumption in L-SHI can
be decided in any complexity class that contains both NP and C.

This shows that strong satisfiability, instance checking, and subsumption in
L-SHI are in NExpTime. This bound reduces to ExpTime or PSpace if we
consider L-ALCI w.r.t. general or acyclic TBoxes, respectively [10].

6 Conclusions

We have studied fuzzy description logics with semantics based on complete resid-
uated De Morgan lattices. We showed that even for the fairly inexpressive DL
L-ALC, strong satisfiability w.r.t. general TBoxes is undecidable for some infi-
nite lattices. For finite lattices, decidability is regained. In fact, local consistency
can be decided with a nondeterministic tableaux-based procedure in exponen-
tial time. We conjecture that this upper bound can be improved to ExpTime
either by an automata-based algorithm or with the help of advanced caching
techniques [16]. However, automata-based approaches [10] can only deal with
local consistency and concept satisfiability.

Our reduction shows that any algorithm deciding local consistency suffices for
deciding consistency of ontologies, through the tableau-based local completion
described in Section 5.1. In particular, this yields tight complexity bounds for
deciding consistency in L-ALCI w.r.t. acyclic and general TBoxes–PSpace and
ExpTime, respectively. Other decision and computation problems can also be
solved using a local consistency reasoner as a black box.
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The presented tableaux algorithm has highly nondeterministic rules, and as
such is unsuitable for an implementation. Most of the optimizations developed for
tableaux algorithms for crisp DLs, like the use of an optimized rule-application
ordering, can be transfered to our setting. However, the most important task is
to reduce the search space created by the choice of lattice values in most of the
rules. We plan to study these optimizations in the future.
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Abstract. In this paper we show how one can use the technology developed re-
cently for Ontology-Based Data Access (OBDA) to govern data-aware processes
through ontologies. In particular, we consider processes executed over a relational
database which issue calls to external services to acquire new information and up-
date the data. We equip these processes with an OBDA system, in which an ontol-
ogy modeling the domain of interest is connected through declarative mappings
to the database, and that consequently allows one to understand and govern the
manipulated information at the conceptual level. In this setting, we are interested
in verifying first-order μ-calculus formulae specifying temporal properties over
the evolution of the information at the conceptual level. Specifically, we show
how, building on first-order rewritability of queries over the system state that is
typical of OBDA, we are able to reformulate the temporal properties into tem-
poral properties expressed over the underlying database. This allows us to adopt
notable decidability results on verification of evolving databases that have been
established recently.

1 Introduction

Recent work in business processes, services and databases brought the necessity of
considering both data and processes simultaneously while designing the system. This
holistic view of considering data and processes together has given rise to a line of re-
search under the name of artifact-centric business processes [19,16,1,2] that aims at
avoiding the notorious discrepancy of traditional approaches where these aspects are
considered separately [9]. Recently, interesting decidability results for verification of
temporal properties over such systems have been obtained in the context of so-called
Data-centric Dynamic Systems (DCDSs) based on relational technology [14,7,5,6]. In a
DCDS, processes operate over the data of the system and evolve it by executing actions
that may issue calls to external services. The data returned by such external services is
injected into the system, effectively making it infinite state. There has been also some
work on a form of DCDS based on ontologies, where the data layer is represented in
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a rich ontology formalism, and actions perform a form of instance level update of the
ontology [4]. The use of an ontology allows for a high-level conceptual view of the data
layer that is better suited for a business level treatment of the manipulated information.

Here we introduce Semantically-Governed Data-Aware Processes (SGDAP), in
which we merge these two approaches by enhancing a relational layer constituted by a
DCDS-based system, with an ontology, constituting a semantic layer. The ontology cap-
tures the domain in which the SGDAP is executed, and allows for seeing the data and
their manipulation at a conceptual level through an ontology-based data access (OBDA)
system [10,21]. Hence it provides us with a way of semantically governing the under-
lying DCDS. Specifically, an SGDAP is constituted by two main components: (i) an
OBDA system [10] which includes (the intensional level of) an ontology, a relational
database schema, and a mapping between the ontology and the database; (ii) a process
component, which characterizes the evolution of the system in terms of a process speci-
fying preconditions and effects of action execution over the relational layer.

The ontology is represented through a Description Logic (DL) TBox [3], expressed
in a lightweight ontology language of the DL-Lite family [12], a family of DLs specifi-
cally designed for efficiently accessing to large amounts of data. The mapping is defined
in terms of a set of assertions, each relating an arbitrary (SQL) query over the relational
layer to a set of atoms whose predicates are the concepts and roles of the ontology,
and whose arguments are terms built using specific function symbols applied to the
answer variables of the SQL query. Such mappings specify how to populate the ele-
ments of the ontology from the data in the database, and function symbols are used to
construct (abstract) objects (object terms) from the concrete values retrieved from the
database. As an example, let us consider a fragment of a university information system
in which data about students and their degree is stored and manipulated. An ontology
records the fact that both bachelor and master students are students, and that some of
the students are graduated. The actual data about students is maintained in a relational
database containing, among others, a table storing for currently enrolled students their
id, name, surname, type of degree, and for previously enrolled students also the gradua-
tion date. The mappings relating the database to the ontology specify that the concepts
for bachelor and master students are populated using a simple query that extracts from
the enrollment table name, surname, and degree type of each students stored therein,
and uses this information to create student objects. This reflects the fact that the com-
bination of these three properties is considered sufficient to identify a student in the
modeled domain.

When an SGDAP evolves, each snapshot of the system is characterized by a database
instance at the relational layer, and by a corresponding virtual ABox, which together
with the TBox provides a conceptual view of the relational instance at the semantic
layer. When the system is progressed by the process component, we assume that at every
time the current instance can be arbitrarily queried, and can be updated through action
executions, possibly involving external service calls to get new values from the envi-
ronment. Hence the process component relies on three main notions: actions, which are
the atomic progression steps for the data layer; external services, which can be called
during the execution of actions; and a process, which is essentially a non-deterministic
program that uses actions as atomic instructions. In our example, we might have an
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Fig. 1. Overview of a semantically-governed data-aware process

action to graduate a student with a given id, that extracts from the enrollment table the
student, provided her graduation date is NULL (indicating that the student is not gradu-
ated yet), and after obtaining the graduation mark by calling an external service, inserts
her in the table of graduated students. During the execution, the snapshots of the rela-
tional layer can be virtually mapped as ABoxes in the semantic layer. This enables to:
(i) understand the evolution of the system at the conceptual level, and (ii) govern it at
the semantic level, rejecting those actions that, executed at the relational layer, would
lead to a new semantic snapshot that is inconsistent with the semantic layer’s TBox.
Figure 1 gives an intuition about the components of a SGDAP and the usages of the
ontology to understand and govern the system execution. The subsequent technical de-
velopment details the various components of the depicted framework, and the role they
play in the system.

In this work, we are in particular interested in verifying dynamic properties specified
in a variant of μ-calculus [18], one of the most powerful temporal logics, expressed
over the semantic layer of an SGDAP. We consider properties expressed as μ-calculus
formulae whose atoms are queries built over the semantic layer. In our running example,
we can verify a property stating that every evolution of the system leads to a state
in which all students present in that state have graduated. By relying on techniques
for query answering in DL-Lite OBDA systems, which exploit FOL rewritability of
query answering and of ontology satisfiability, we reformulate the temporal properties
expressed over the semantic layer into analogous properties over the relational layer.
Given that our systems are in general infinite-state, verification of temporal properties
is undecidable. However, we show how we can adapt to our setting recent results on the
decidability of verification of DCDSs based on suitable finite-state abstractions [6].

2 Preliminaries

In this section we introduce the description logic (DL) DL-LiteA,id and describe the
ontology-based data access (OBDA) framework.

DL-LiteA,id [13,10] allows for specifying concepts, representing sets of objects, roles,
representing binary relations between objects, and attributes, representing binary rela-
tions between objects and values. For simplicity, in this paper we consider a unique
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domain for all values used in the system. The syntax of concept, role and attribute ex-
pressions in DL-LiteA,id is as follows:

B −→ N | ∃R | δ(U) R −→ P | P−

Here, N , P , and U respectively denote a concept name, a role name, and an attribute
name, P− denotes the inverse of a role, andB andR respectively denote basic concepts
and basic roles. The concept ∃R, also called unqualified existential restriction, denotes
the domain of a role R, i.e., the set of objects that R relates to some object. Similarly,
the concept δ(U) denotes the domain of an attribute U , i.e., the set of objects that U
relates to some value. Note that we consider here a simplified version of DL-LiteA,id
where we distinguish between objects and values, but do not further deal with different
datatypes; similarly, we consider only a simplified version of identification assertions.

A DL-LiteA,id ontology is a pair (T , A), where T is a TBox, i.e., a finite set of TBox
assertions, and A is an Abox, i.e., a finite set of ABox assertions. DL-LiteA,id TBox
assertions have the following form:

B1 
 B2

B1 
 ¬B2

(id B Z1, . . . , Zn)

R1 
 R2

R1 
 ¬R2

(funct R)

U1 
 U2

U1 
 ¬U2

(funct U)

From left to right, assertions of the first row respectively denote inclusions between
basic concepts, basic roles, and attributes; assertions of the second row denote disjoint-
ness between basic concepts, basic roles, and attributes; assertions of the last row denote
identification (assertions) (IdA), and global functionality on roles and attributes. In the
IdA, each Zi denotes either an attribute or a basic role. Intuitively, an IdA of the above
form asserts that for any two different instances o, o′ of B, there is at least one Zi such
that o and o′ differ in the set of their Zi-fillers, that is the set of objects (if Zi is a role) or
values (if Zi is an attribute) that are related to o by Zi. As usual, in DL-LiteA,id TBoxes
we impose that roles and attributes occurring in functionality assertions or IdAs cannot
be specialized (i.e., they cannot occur in the right-hand side of inclusions).

DL-LiteA,id ABox assertions have the form N(t1), P (t1, t2), or U(t1, v), where t1
and t2 denote individual objects and v denotes a value.

The semantics of DL-LiteA,id is given in [13]. We only recall here that we interpret
objects and values over distinct domains, and that for both we adopt the Unique Name
Assumption, i.e., different constants denote different objects (or values). The notions of
entailment, satisfaction, and model are as usual [13]. We also say that A is consistent
wrt T if (T , A) is satisfiable, i.e., admits at least one model.

Next we introduce queries. As usual (cf. OWL 2), answers to queries are formed
by terms denoting individuals appearing in the ABox. The domain of an ABox A, de-
noted by ADOM(A), is the (finite) set of terms appearing in A. A union of conjunctive
queries (UCQ) q over a TBox T is a FOL formula of the form ∃�y1.conj 1(�x, �y1) ∨
· · · ∨ ∃�yn.conj n(�x, �yn), with free variables �x and existentially quantified variables
�y1, . . . , �yn. Each conj i(�x, �yi) in q is a conjunction of atoms of the formN(z), P (z, z′),
U(z, z′) whereN , P and U respectively denote a concept, role and attribute name of T ,
and z, z′ are constants in a set C or variables in �x or �yi, for some i ∈ {1, . . . , n}. The
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(certain) answers to q over an ontology (T , A) is the set ans (q, T , A) of substitutions1

σ of the free variables of q with constants in ADOM(A) such that qσ evaluates to true in
every model of (T , A). If q has no free variables, then it is called boolean, and its certain
answers are true or false. Computing ans (q, T , A) of a UCQ q over a DL-LiteA,id on-
tology (T , A) is inAC0 in the size ofA [13]. This is actually a consequence of the fact
that DL-LiteA,id enjoys the FOL rewritability property, which in our setting says that for
every UCQ q, ans (q, T , A) can be computed by evaluating the UCQ REW(q, T ) over
A considered as a database. REW(q, T ) is the so-called perfect reformulation of q w.r.t.
T [13]. We also recall that, in DL-LiteA,id, ontology satisfiability is FOL rewritable. In
other words, we can construct a boolean FOL query qunsat(T ) that evaluates to true
over an ABox A iff the ontology (T , A) is unsatisfiable.

In our framework, we consider an extension of UCQs, called ECQs, which are
queries of the query language EQL-Lite(UCQ) [11]. Formally, an ECQ over a TBox
T is a possibly open domain independent formula of the form:

Q −→ [q] | ¬Q | Q1 ∧Q2 | ∃x.Q | x = y

where q is a UCQ over T and [q] denotes that q is evaluated under the (minimal) knowl-
edge operator (cf. [11]). To compute the certain answers ANS(Q, T , A) to an ECQ Q
over an ontology (T , A), we can compute the certain answers over (T , A) of each UCQ
embedded in Q, and evaluate the first-order part of Q over the relations obtained as the
certain answers of the embedded UCQs. Hence, also computing ANS(Q, T , A) of an
ECQ Q over a DL-LiteA,id ontology (T , A) is in AC0 in the size of A [11].

Ontology-Based Data Access (OBDA). In an OBDA system, a relational database is
connected to an ontology that represents the domain of interest by a mapping, which
relates database values with values and (abstract) objects in the ontology (c.f. [10]). In
particular, we make use of a countably infinite set V of values and a set Λ of function
symbols, each with an associated arity. We also define the set C of constants as the union
of V and the set {f(d1, . . . , dn) | f ∈ Λ and d1, . . . , dn ∈ V} of object terms.

Formally, an OBDA system is a structure O = 〈R, T ,M〉, where: (i) R =
{R1, . . . , Rn} is a database schema, constituted by a finite set of relation schemas;
(ii) T is a DL-LiteA,id TBox; (iii) M is a set of mapping assertions, each of the form
Φ(�x) � Ψ(�y,�t), where: (a) �x is a non-empty set of variables, (b) �y ⊆ �x, (c) �t is a
set of object terms of the form f(�z), with f ∈ Λ and �z ⊆ �x, (d) Φ(�x) is an arbitrary
SQL query over R, with �x as output variables, and (e) Ψ(�y,�t) is a CQ over T of arity
n > 0 without non-distinguished variables, whose atoms are over the variables �y and
the object terms �t. Without loss of generality, we use the special function symbol val/1
to map values from the relational layer to the range of attributes in the semantic layer.

1 As customary, we can view each substitution simply as a tuple of constants, assuming some
ordering of the free variables of q.
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Example 1. We formalize our running example presented in Section 1, and consider a simple
university information system that stores and manipulates data concerning students and their
degree. In particular, we define an OBDA system O = 〈R, T ,M〉 to capture the conceptual
schema of such a domain, how data are concretely maintained in a relational database, and how
the two information levels are linked through mappings. The TBox T , shown in Figure 2 using
the notation of UML class diagrams, is constituted by the following assertions:

Bachelor � Student
Master � Student

Graduated � Student

δ(MNum) � Student
Student � δ(MNum)

(funct MNum)
(id Student MNum)

The conceptual schema states that Bachelor, Master, and Graduated are subclasses of Student,
and that MNum (representing the matriculation number) is an attribute of Student. The con-
ceptual schema also expresses that: (i) each Student has exactly one matriculation number (by
composing the assertion stating that each Student must be in the domain of MNum with the
assertion stating that MNum is functional); (ii) matriculation numbers can be used to identify
Students (i.e., each MNum is associated to at most one Student). Data related to students are
maintained in a concrete underlying data source that obeys the database schema R, constituted
by the following relation schemas: (i) ENROLLED(id, name, surname, type, endDate) stores
information about students that are currently (endDate=NULL) or were enrolled in a bachelor
(type="BSc") or master (type="MSc") course. (ii) GRAD(id,mark, type) stores data of for-
mer students who have been graduated. (iii) TRANSF M(name, surname) is a temporary rela-
tion used to maintain information about master students that have been recently transferred from
another university, and must still complete the enrollment process. The interconnection between
R and T is specified through the following set M of mapping assertions:

m1 : SELECT name, surname, type FROM ENROLLED WHERE type ="BSc"
� Bachelor (stu1 (name,surname,type))

m2 : SELECT name, surname, type FROM ENROLLED WHERE type ="MSc"
�Master (stu1 (name,surname,type))

m3 : SELECT name, surname, type, id FROM ENROLLED
�MNum (stu1 (name,surname,type),val (id))

m4 : SELECT name, surname FROM TRANSF M
�Master (stu1 (name,surname,"MSc"))

m5 : SELECT e. name,e. surname, e. type FROM ENROLLED e, GRAD g WHERE e. id =g. id
� Graduated (stu1 (name,surname,type))

Intuitively, m1 (resp., m2) maps every id in ENROLLED with type "BSc" ("MSc") to a bach-
elor (master) student. Such a student is constructed by “objectifying” the name, surname and
course type using variable term stu1/3. In m3, the MNum attribute is instead created using di-
rectly the value of id to fill in the target of the attribute. Notice the use of the val function symbol
for mapping id to the range of MNum. Mapping m4 leads to create further master students by
starting from the temporary TRANSF M table. Since such students are not explicitly associated
to course type, but it is intended that they are "MSc", objectification is applied to students’ name
and surname, adding "MSc" as a constant in the variable term. Notice that, according to the
TBox T , such students have a matriculation number, but its value is not known (and, in fact, no
mapping exists to generate their MNum attribute). Finally, m5 generates graduated students by
selecting only those students in the ENROLLED table whose matriculation number is also con-
tained in the GRAD table. ��

Given a database instance D made up of values in V and conforming to schema R,
and given a mapping M, the virtual ABox generated from D by a mapping assertion
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m = Φ(x) � Ψ(y, t) in M is m(D) =
⋃
v∈eval(Φ,D) Ψ [x/v], where eval (Φ,D)

denotes the evaluation of the SQL query Φ over D, and where we consider Ψ [x/v]
to be a set of atoms (as opposed to a conjunction). Then, the ABox generated from D
by the mapping M is M(D) =

⋃
m∈Mm(D). Notice that ADOM(M(D)) ⊆ C. As

for ABoxes, the active domain ADOM(D) of a database instance D is the set of values
occurring in D. Notice that ADOM(D) ⊆ V . Given an OBDA system O = 〈R, T ,M〉
and a database instance D for R, a model for O wrt D is a model of the ontology
(T ,M(D)). We say that O wrt D is satisfiable if it admits a model wrt D.

Example 2. Consider a DB instance D = {ENROLLED(123, john, doe,"BSc",NULL)}. The
corresponding virtual ABox obtained from the application of the mapping M is M(D) =
{Bachelor(stu1(john, doe,"BSc")), MNum(stu1(john, doe,"BSc"), val(123))}. ��

A UCQ q over an OBDA system O = 〈R, T ,M〉 is simply an UCQ over T . To com-
pute the certain answers of q overO wrt a database instanceD forR, we follow a three-
step approach: (i) q is rewritten to compile away T , obtaining qr = REW(q, T ); (ii) the
mapping M is used to unfold qr into a query over R, denoted by UNFOLD(qr,M),
which turns out to be an SQL query [20]; (iii) such a query is executed over D, obtain-
ing the certain answers. For an ECQ, we can proceed in a similar way, applying the
rewriting and unfolding steps to the embedded UCQs. It follows that computing certain
answers to UCQs/ECQs in an OBDA system is FOL rewritable. Applying the unfolding
step to qunsat(T ), we obtain also that satisfiability in O is FOL rewritable.

3 Semantically-Governed Data-Aware Processes

A Semantically-Governed Data-Aware Process (SGDAP) S = 〈O,P , D0〉 is formed
by an OBDA System O = 〈R, T ,M〉 by a process component P , and by an initial
database instance D0 that conforms to the relational schema R in O. Intuitively, the
OBDA system keeps all the data of interest, while the process component modifies and
evolves such data, starting from the initial database D0.

The process component P constitutes the progression mechanism for the SGDAP.
Formally, P = 〈F ,A, π〉, where: (i) F is a finite set of functions representing calls to
external services, which return values; (ii) A is a finite set of actions, whose execution
progresses the data layer, and may involve external service calls; (iii) π is a finite set of
condition-action rules that form the specification of the overall process, which tells at
any moment which actions can be executed.

An action α ∈ A has the form α(p1, . . . , pn) : {e1, . . . , em}, where:
(i) α(p1, . . . , pn) is the signature of the action, constituted by a name α and a sequence
p1, . . . , pn of input parameters that need to be substituted with values for the execution
of the action, and (ii) {e1, . . . , em} is a set of effect specifications, whose specified ef-
fects are assumed to take place simultaneously. Each ei has the form q+i ∧ Q−

i � Ei,
where: (a) q+i ∧ Q−

i is a query over R whose terms are variables �x, action parameters,
and constants from ADOM(D0). The query q+i is a UCQ, and the query Q−

i is an ar-
bitrary FOL formula whose free variables are included in those of q+i . Intuitively, q+i
selects the tuples to instantiate the effect, and Q−

i filters away some of them2. (b) Ei is

2 To convey this intuition, we use the “−” superscript.
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the effect, i.e., a set of facts for R, which includes as terms: terms in ADOM(D0), in-
put parameters, free variables of q+i , and in addition Skolem terms formed by applying
a function f ∈ F to one of the previous kinds of terms. Such Skolem terms involv-
ing functions represent external service calls and are interpreted so as to return a value
chosen by an external user/environment when executing the action.

The process π is a finite set of condition-action rules Q �→ α, where α is an action
in A and Q is a FOL query over R whose free variables are exactly the parameters of
α, and whose other terms can be quantified variables or values in ADOM(D0).

Example 3. Consider the OBDA system O defined in Example 1. We now define a process
component P = 〈F ,A, π〉 over the relational schema R of O, so as to obtain a full SGDAP.
In particular, π is constituted by the following condition-action rules (’ ’ denotes existentially
quantified variables that are not used elsewhere):

– ENROLLED(id, , , ,NULL)� GRADUATE(id)
– TRANSF M(name, surname)� COMPL-ENR(name, surname)

The first rule extracts a matriculation number id of a currently enrolled student (endDate=NULL)
from the ENROLLED relation and graduates the student, whereas the second rule selects a pair
name surname in TRANSF M and use them to complete the enrollment of that student. In or-
der to be effectively executed, the involved actions rely on the following set F of service calls:
(i) today() returns the current date; (ii) getMark(id, type) returns the final mark received by
student id; (iii) getID(name, surname, type) returns the matriculation number for the name-
surname pair of a student. The two actions GRADUATE and COMPL-ENR are then defined as
follows:

GRADUATE(id) : { GRAD(id2,m, t)� GRAD(id2,m, t),
TRANSF M(n, s)� TRANSF M(n, s),
ENROLLED(id2, n, s, t, d) ∧ id2 �= id� ENROLLED(id2, n, s, t,d),
ENROLLED(id, n, s, t,NULL)� ENROLLED(id, n, s, t, today()),
ENROLLED(id, , , t,NULL)� GRAD(id, getMark(id, t), t) }

COMPL-ENR(n, s) : { GRAD(id,m, t)� GRAD(id,m, t),
ENROLLED(id, n2, s2, t,d)� ENROLLED(id, n2, s2, t, d),
TRANSF M(n2, s2) ∧ (n2 �= n ∨ s2 �= s)� TRANSF M(n2, s2),
TRANSF M(n, s)
� ENROLLED(getID(n, s, "MSc"), n, s, "MSc",NULL)}

Given a matriculation number id, action GRADUATE inserts a new tuple for id in GRAD, updating
at the same time the enrollment’s end date for id in ENROLLED to the current date, while keeping
all other entries in TRANSF M,GRAD and ENROLLED. Given a name and surname, action
COMPL-ENR has the effect of moving the corresponding tuple in TRANSF M to a new tuple
in ENROLLED, for which the matriculation number is obtained by interacting with the getID
service call; all other entries TRANSF M,GRAD and ENROLLED are preserved. ��

4 Execution Semantics

This work focuses on the semantics of SGDAP assuming that external services behave
nondeterministically, i.e., two calls of a service with the same arguments may return
different results during the same run. This captures both services that model a truly non-
deterministic process (e.g., human operators), and services that model stateful servers.
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Let S = 〈O,P , D0〉 be a SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉.
The semantics of S is defined in terms of a possibly infinite transition system (TS).
More specifically, two possible transition systems can be constructed to describe the
execution semantics of S: (i) a relational layer transition system (RTS), representing
all allowed computations that, starting from D0, the process component can do over
the data of the relational layer, according to the constraints imposed at the semantic
layer (semantic governance); (ii) a semantic layer transition system (STS), representing
the same computations at the semantic layer. To construct these transition systems, we
first define the semantics of action execution. Let α be an action in A of the form
α(�p) : {e1, . . . , en} with effects ei = q+i ∧ Q−

i � Ei, and let σ be a substitution of
�p with values in V . The evaluation of the effects of α on a database instance D using a
substitution σ is captured by the following function:

DO(D,α, σ) =
⋃
q+i ∧Q−

i �Eiin α

⋃
θ∈ANS((q+i ∧Q−

i )σ,D)Eiσθ

which returns a database instance made up of values in V and Skolem terms represent-
ing service calls. We denote with CALLS(DO(D,α, σ)) such service calls, and with
EVALS(D,α, σ) the set of substitutions that replace these service calls with values
in V :

EVALS(D,α, σ) = {θ | θ : CALLS(DO(D,α, σ))→ V is a total function}.

We then say that the database instance D′ is produced from D by the application of
action α using substitution σ if D′ = DO(D,α, σ)θ, where θ ∈ EVALS(D,α, σ).

Relational Layer Transition System (RTS). Let S = 〈O,P , D0〉 be a SGDAP with
O = 〈R, T ,M〉. The RTS ΥR

S of S is formally defined as 〈R, Σ, s0, db,⇒〉, where
Σ is a (possibly infinite) set of states, s0 is the initial state, db is a total function from
states in Σ to database instances made up of values in V and conforming to R, and
⇒⊆ Σ×Σ is a transition relation.Σ,⇒ and db are defined by simultaneous induction
as the smallest sets such that s0 ∈ Σ, with db(s0) = D0, and satisfying the following
property: Given s ∈ Σ, for each condition-action rule Q(�p) �→ α(�p) ∈ π, for each
substitution σ of �p such that σ ∈ ANS(Q,D), consider every database instance D′

produced from D by the application of α using σ. Then: (i) if there exists s′ ∈ Σ such
that db(s′) = D′, then s ⇒ s′; (ii) otherwise, if O is satisfiable wrt D′, then s′ ∈ Σ,
s ⇒ s′ and db(s′) = D′, where s′ is a fresh state. We observe that the satisfiability
check done in the last step of the RTS construction accounts for semantic governance.

Semantic Layer Transition System (STS). Given a SGDAP S with O = 〈R, T ,M〉
and with RTS ΥR

S = 〈R, Σ, s0, db,⇒〉, the STS Υ S
S of S is a “virtualization” of the RTS

in the semantic layer. In particular,Υ S
S maintains the structure of ΥR

S unaltered, reflecting
that the process component is executed over the relational layer, but it associates each
state to a virtual ABox obtained from the application of the mappingM to the database
instance associated by ΥR

S to the same state. Formally, Υ S
S = 〈T , Σ, s0, abox,⇒〉,

where abox is a total function from Σ to ABoxes made up of individual objects in
C and conforming to T , such that for each s ∈ Σ with db(s) = D, abox(s) =M(D).
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5 Dynamic Constraints Formalism

Let S = 〈O,P , D0〉 be an SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉. We
are interested in the verification of conceptual temporal properties over S, i.e., prop-
erties that constrain the dynamics of S understood at the semantic layer. Technically,
this means that properties are verified over the SGDAP’s STS Υ S

S , combining tempo-
ral operators with queries posed over the ontologies obtained by combining the TBox
T with the ABoxes associated to the states of Υ S

S . More specifically, we adopt ECQs
[11] to query the ontologies of Υ S

S , and μ-calculus [18] to predicate over the dynamics
of Υ S

S .
We use a variant of μ-calculus [18], one of the most powerful temporal logics sub-

suming LTL, PSL, and CTL* [15], called μLEQL
C , whose formulae have the form:

Φ ::= Q | Z | ¬Φ | Φ1 ∨ Φ2 | ∃x ∈ C0.Φ | 〈−〉Φ | μZ.Φ

where Q is an ECQ over T , C0 = ADOM(M(D0)) is the set of object terms appearing
in the initial virtual ABox (obtained by applying the mapping M over the database
instanceD0), andZ is a predicate variable. As usual, syntactic monotonicity is enforced
to ensure existence of unique fixpoints. Beside the usual FOL abbreviations, we also
make use of the following ones: [−]Φ = ¬〈−〉(¬Φ) and νZ.Φ = ¬μZ.¬Φ[Z/¬Z].
The subscript C in μLEQL

C stands for “closed”, and attests that ECQs are closed queries.
In fact, μLEQL

C formulae only support the limited form of quantification ∃x ∈ C0.Φ,
which is a convenient, compact notation for

∨
c∈ADOM(M(D0))

Φ[x/c]. We make this
assumption for simplicity, but actually, with some care, our result can be extended to a
more general form of quantification over time [6].

In order to define the semantics of μLEQL
C we resort to STSs. Let Υ =

〈T , Σ, s0, abox,⇒〉 be an STS. Let V be a predicate and individual variable valua-
tion on Υ , i.e., a mapping from the predicate variables Z to subsets of the states Σ, and
from individual variables to constants in ADOM(M(D0)). Then, we assign meaning
to μLEQL

C formulas by associating to Υ and V an extension function (·)ΥV , which maps
μLEQL

C formulas to subsets of Σ. The extension function (·)ΥV is defined inductively as:

(Q)ΥV = {s ∈ Σ | ANS(QV, T , abox(s)) = true}
(Z)ΥV = V (Z) ⊆ Σ
(¬Φ)ΥV = Σ − (Φ)ΥV
(Φ1 ∨ Φ2)

Υ
V = (Φ1)

Υ
V ∪ (Φ2)

Υ
V

(∃x ∈ C0.Φ)
Υ
V =

⋃
{(Φ)ΥV [x/c] | c ∈ ADOM(M(D0))}

(〈−〉Φ)ΥV = {s ∈ Σ | ∃s′. s ⇒ s′ and s′ ∈ (Φ)ΥV }
(μZ.Φ)ΥV =

⋂
{E ⊆ Σ | (Φ)ΥV [Z/E] ⊆ E}

Intuitively, the extension function (·)ΥV assigns to the various μLEQL
C constructs the fol-

lowing meanings. The boolean connectives have the expected meaning, while quantifi-
cation is restricted to constants in ADOM(M(D0)). The extension of 〈−〉Φ consists of
the states s such that for some state s′ with s ⇒ s′, we have that Φ holds in s′, The
extension of μZ.Φ is the smallest subset Eμ of Σ such that, assigning to Z the exten-
sion Eμ, the resulting extension of Φ is contained in Eμ. When Φ is a closed formula,
(Φ)ΥV does not depend on V , and we denote it by (Φ)Υ . We are interested in the model
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checking problem, i.e., verify whether a μLEQL
C closed formula Φ holds for the SGDAP

S. This problem is defined as checking whether s0 ∈ (Φ)Υ
S
S , that is, whether Φ is true

in the initial state s0 of Υ S
S . If it is the case, we write Υ S

S |= Φ.

Example 4. An example of dynamic property in our running example is Φ =
μZ.((∀s.[Student(s)] → [Graduated(s)]) ∨ [−]Z), which expresses that every evolution of the
system leads to a state in which all students present in that state are graduated. ��

6 Rewriting μ-Calculus Formulae

Let S = 〈O,P , D0〉 be an SGDAP where O = 〈R, T ,M〉 and P = 〈F ,A, π〉. In this
section, we show how verification of μLEQL

C properties over the STS Υ S
S can be reduced

to verification of μLC properties over the corresponding RTS ΥR
S .

μLC properties are μ-calculus properties whose atoms are closed, domain-
independent FO queries over a database schema. More specifically, the semantics of
μLC is defined over an RTS ΥR = 〈R, Σ, s0, db,⇒〉, following exactly the same line
given in Section 5 for μLEQL

C and STSs, except for local queries, whose semantics is:

(Q)Υ
R

V = {s ∈ Σ | eval (QV, db(s)) = true}

where eval (QV, db(s)) = true iff QV is true in db(s), considered as a FOL inter-
pretation. Let Φ be a μLEQL

C dynamic property specified over the TBox T of S. The
reduction is realized by providing a translation mechanism from Φ into a correspond-
ing μLC property Φ′ specified over R, and then showing that Υ S

S |= Φ if and only if
ΥR
S |= Φ′.

Before dealing with the translation of Φ, we substitute each subformula of the form
∃x ∈ C0.Ψ into the equivalent form

∨
c∈ADOM(M(D0))

Ψ [x/c]. This means that when
such a form of quantification is used, the initial ABox must be materialized in order
to compute the active domain of the initial ABox in the semantic layer. We then deal
with the translation of Φ, by separating the treatment of the dynamic part and of the
embedded ECQs. Since the dynamics of an SGDAP is completely determined at the
relational layer, the dynamic part is maintained unaltered. ECQs are instead manipu-
lated as defined in Section 2, performing in particular the following two-step transla-
tion: (1) the TBox T used by the property is compiled away, rewriting the original
formula into a “self-contained” equivalent formula Φr = REW(Φ, T ), obtained by re-
placing each embedded ECQ with its corresponding rewriting wrt T [20]; (2) by using
the information contained in the mappingM, Φr is unfolded to the relational layer into
UNFOLD(Φr,M), by replacing each embedded ECQ with its corresponding unfolding
wrtM [20].

As for the unfolding, the interesting case to be discussed is hence the one of (existen-
tial) quantification: the other cases are simply managed by pushing the unfolding down
to the subformula(e). Given an ECQ of the form ∃x.Q, we have:

UNFOLD(∃x.Q,M) =
∨

(f/n)∈FS(M) ∃x1, . . . , xn.UNFOLD(Q[x/f(x1, . . . , xn)],M)

where FS(M) is the set of function symbols contained inM, including the special func-
tion symbol val used for attribute values. This unfolding reflects that quantification over
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object terms and values in the ontology must be properly rephrased as a corresponding
quantification over those values in the relational layer that could lead to produce such
object terms and values through the application ofM. This is done by unfolding ∃x.Q
into a disjunction of formulae, where each of the formulae is obtained from Q by re-
placing x with one of the possible variable terms constructed from function symbols
in M, and quantifying over the existence of values that could form a corresponding
object term. We observe that one of the formulae, namely the one using the val function
symbol, tackles the case in which x appears in the range of an attribute.

When the unfolding is applied to a UCQ of the query, the atoms in the UCQ are
unified with the heads of the mapping assertions in M. For each possible unifier, each
atom is replaced with an auxiliary view predicate, which corresponds to a view defined
in terms of the SQL query that constitutes the body of the matching mapping assertion.
The UCQ’s unfolding is then obtained as the union of all queries obtained in this way.

Example 5. Consider the μLEQL
C property Φ described in Example 4, together with the TBox T

and mapping M in Example 1. Φr = REW(Φ, T ) results in μZ.(∀s.Qr(s)) ∨ [−]Z, where

Qr(s) = [Student(s) ∨ Bachelor(s) ∨Master(s) ∨MNum(s, )] ⊃ [Graduated(s)]

As for the unfolding, we first observe that FS(M) = {stu1/3, val/1}. This means that
UNFOLD(∀s.Qr(s),M) results in

∀v.UNFOLD(Qr(val(v)),M) ∧ ∀x1, x2, x3.UNFOLD(Qr(stu1(x1, x2, x3)),M)

The first conjunct corresponds to true, because there are no matching mapping assertions for the
UCQ Student(val(x)) ∨ Bachelor(val(x)) ∨ Master(val(x)) ∨ MNum(val(x), ), which is on
the left-hand side of the implication in Qr(val(v)). As for the second conjunct, when unfolding
the UCQ Student(stu1(x1, x2, x3))∨Bachelor(stu1(x1, x2, x3))∨Master(stu1(x1, x2, x3))∨
MNum(stu1(x1, x2, x3), ), we notice that the involved mapping assertions are m1, m2, and
m3, but we only consider m3, because the query on its left-hand side contains the ones on the
left-hand side of m1 and m2. The unfolding then results in:

μZ.
(
∀x1, x2, x3.AUXm3(x1, x2, x3, ) ⊃ AUXm5(x1, x2, x3)

)
∨ [−]Z

where m3 and m5 are the mapping assertions whose right-hand side respectively
matches with MNum(stu1(x1, x2, x3), ) and Graduated(stu1(x1, x2, x3)), and where
AUXm3(name, surname, type, id) and AUXm5(name, surname, type) represent the auxiliary
view predicates of mapping assertions m3 and m5 respectively, whose defining queries are the
SQL queries in the left-hand side of the mapping assertions themselves. ��

We are now ready to state our main result: verification of μLEQL
C properties over an STS

can be faithfully reduced to verification of μLC properties over the corresponding RTS.

Theorem 1. Let S = 〈O,P , D0〉 be an SGDAP with O = 〈R, T ,M〉, and let Φ be a
μLEQL

C dynamic property specified over T . Then:

Υ S
S |= Φ if and only if Υ R

S |= UNFOLD(REW(Φ, T ),M)

Proof. From Section 4, we know that ΥR
S = 〈R, Σ, s0, db,⇒〉 and Υ S

S =
〈T , Σ, s0, abox,⇒〉, where abox(·) is defined as follows: for every s ∈ Σ, abox(s) =
M(db(s)). We prove the following more general result: given a state s ∈ Σ, we have

s ∈ (Φ)Υ
S
S if and only if s ∈ (UNFOLD(REW(Φ, T ),M))Υ

R
S



Ontology-Based Governance of Data-Aware Processes 37

For simplicity, below use UR(Φ) as an abbreviation for UNFOLD(REW(Φ, T ),M).
We start by observing that we can drop first-order quantification from the language re-

placing ∃x ∈ C0.Φ with
∨
c∈ADOM(abox(s0))

Φ[x/c]. This allows us to consider valuations
only for the predicate variables, used in fixpoint formulae. The proof is then organized
in three parts: (1) We prove the theorem for formulae of LEQL

C , obtained from μLEQL
C

by dropping the predicate variables and the fixpoint constructs. LEQL
C corresponds to a

first-order variant of the Hennessy Milner logic, and its semantics does not depend on
the second-order valuation. (2) We extend the results to the infinitary logic obtained by
extending LEQL

C with arbitrary countable disjunction. (3) We recall that fixpoints can be
translated into this infinitary logic, thus proving that the theorem holds for μLEQL

C .

Proof for LEQL
C . We proceed by induction on the structure of Φ, without considering

the case of predicate variable and of fixpoint constructs, which are not part of LEQL
C .

(Base case: Φ = Q) We have to show that ANS(Q, T , abox(s)) = true if and only if
ANS(UR(Q), db(s)) = true. By definition, abox(s) =M(db(s)), hence the proof
is obtained from the soundness and completeness of ECQ rewriting [11].

(Inductive step: Φ = ¬Ψ ) By induction hypothesis, for every s ∈ Σ we have s ∈
(Ψ)Υ

S
S if and only if s ∈ (UR(Ψ))Υ

R
S . Hence, s /∈ (Ψ)Υ

S
S if and only if s /∈

(UR(Ψ))Υ
R
S , which in turn implies that s ∈ (¬Ψ)Υ S

S if and only if s ∈ (¬UR(Ψ))Υ
R
S .

The proof is then obtained by observing that, by definition, ¬UR(Ψ) = UR(¬Ψ).
(Inductive step: Φ = Φ1 ∨ Φ2) By induction hypothesis, for every s ∈ Σ we have

s ∈ (Φ1)
Υ S
S if and only if s ∈ (UR(Φ1))

Υ R
S , and s ∈ (Φ2)

Υ S
S if and only if

s ∈ (UR(Φ2))
Υ R
S . Hence, s ∈ (Φ1)

Υ S
S or s ∈ (Φ2)

Υ S
S if and only if s ∈ (UR(Φ1))

Υ R
S

or s ∈ (UR(Φ2))
Υ R
S , which in turn implies that s ∈ (Φ1 ∨ Φ2)

Υ S
S if and only if

s ∈ (UR(Φ1)∨ UR(Φ2))
Υ R
S . The proof is then obtained by observing that, by defini-

tion, UR(Φ1) ∨ UR(Φ2) = UR(Φ1 ∨ Φ2).
(Inductive step: Φ = 〈−〉Ψ ) By induction hypothesis, for every s′ ∈ Σ we have

s′ ∈ (Ψ)Υ
S
S if and only if s′ ∈ (UR(Ψ))Υ

R
S . Now consider that, by definition,

s ∈ (〈−〉Ψ)Υ S
S if and only if there exists a transition s ⇒ s′ such that s′ ∈ (Ψ)Υ

S
S .

By construction, Υ S
S and ΥR

S have the same transition relation. Therefore, we have

that s ∈ (〈−〉Ψ)Υ S
S if and only if s ∈ (〈−〉UR(Ψ))Υ

R
S . The proof is then obtained

by observing that, by definition, 〈−〉UR(Ψ) = UR(〈−〉Ψ).
Extension to Arbitrary Countable Disjunction. Let Ψ be a countable set of LEQL

C

formulae. Given an STS Υ S = 〈T , Σ, s0, abox,⇒〉, the semantics of
∨
Ψ is (

∨
Ψ)Υ

S
=⋃

ψ∈Ψ (ψ)
Υ S

(similarly for RTSs). Therefore, given a state s ∈ Σ we have s ∈ (
∨
Ψ)Υ

S

if and only if there exists ψ ∈ Ψ such that s ∈ (ψ)Υ
S
. Arbitrary countable conjunction

is obtained for free because of negation.
Let ΥR

S = 〈R, Σ, s0, db,⇒〉 and Υ S
S = 〈T , Σ, s0, abox,⇒〉. By induction hypoth-

esis, we can assume that for every s ∈ Σ and formula ψ ∈ Ψ , we have s ∈ (ψ)Υ
S
S

if and only if s ∈ (UR(ψ))Υ
R
S . Given the semantics of

∨
Ψ above, this implies that

s ∈ (
∨
Ψ)Υ

S
S if and only if s ∈ (

∨
UR(Ψ))Υ

R
S , where UR(Ψ) = {UR(ψ) | ψ ∈ Ψ}. The

proof is then obtained by observing that
∨

UR(Ψ) = UR(
∨
Ψ).
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Extension to Full μLEQL
C . In order to extend the result to the whole μLEQL

C , we resort to
the well-known result stating that fixpoints of the μ-calculus can be translated into the
infinitary Hennessy Milner logic by iterating over approximants, where the approximant
of index α is denoted by μαZ.Φ (resp. ναZ.Φ). This is a standard result that also holds
for μLEQL

C . In particular, approximants are built as follows:

μ0Z.Φ = false ν0Z.Φ = true
μβ+1Z.Φ = Φ[Z/μβZ.Φ] νβ+1Z.Φ = Φ[Z/νβZ.Φ]
μλZ.Φ =

∨
β<λ μ

βZ.Φ νλZ.Φ =
∧
β<λ ν

βZ.Φ

where λ is a limit ordinal, and where fixpoints and their approximants are connected by
the following properties: given an STS or RTS Υ and a state s of Υ

– s ∈ (μZ.Φ)ΥV if and only if there exists an ordinal α such that s ∈ (μαZ.Φ)ΥV and,
for every β < α, it holds that s /∈ (μβZ.Φ)ΥV ;

– s /∈ (νZ.Φ)ΥV if and only if there exists an ordinal α such that s /∈ (ναZ.Φ)ΥV and,
for every β < α, it holds that s ∈ (νβZ.Φ)ΥV . ��

7 Decidability Results

Given an SGDAP S, in Section 6 we have shown how to reduce verification of μLEQL
C

properties over Υ S
S into verification of μLC properties over ΥR

S . However, due to the
injection of new, fresh data into the system due to call to external services, ΥR

S (as well
as Υ S

S) is in general infinite-state. This causes verification to be undecidable in general,
even for the very simple case of an SGDAP in which the TBox contains no assertions
and directly reflects the database schema via simple one-to-one mappings, and where
the temporal formula to be verified is a propositional reachability property [6].

An extensive study concerning some decidability boundaries for the verification of
Data-Centric Dynamic Systems (DCDSs) with non-deterministic external services has
been provided in [6]. One of the most interesting conditions for decidability that have
been studied so far is state-boundedness. Let S = 〈O,P , D0〉 be an SGDAP with
O = 〈R, T ,M〉 and RTS ΥR

S = 〈R, Σ, s0, db,⇒〉. We say that S is state-bounded if
there exists a bound b such that for each s ∈ Σ, |ADOM(db(s))| < b. Intuitively, state-
boundedness imposes that the database associated to the state of the RTS ΥR

S remains
bounded, although it may acquire arbitrarily many new values in the course of the evo-
lution of the system (forgetting old ones, to keep the bound on the state). Leveraging
on the result on state-boundedness, we can exploit our rewriting result above to get the
following theorem.

Theorem 2. Verification of μLEQL
C properties over state-bounded SGDAPs is decidable,

and can be reduced to conventional finite-state model checking.

Proof (sketch). The proof is based on a reduction to DCDSs. For a formal definition of
a DCDS, the interested reader can refer to [6]. Intuitively, DCDSs are tightly related to
SGDAPs, with some key differences in the data component: (i) the process component
is identical in the two frameworks; (ii) DCDSs are constituted by a relational layer (i.e.,
no ontology nor mapping are present); (iii) while SGDAPs define constraints over the
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data at the semantic layer, DCDSs are equipped with denial constraints posed directly
over the database schema.

Let S = 〈O,P , D0〉, with O = 〈R, T ,M〉. By exploiting FOL rewritability in
DL-LiteA, the consistency check used to generate Υ S

S can be rewritten as a denial con-
straint overR. This means that ΥR

S can be generated by a purely relational DCDS. Tech-
nically, starting from S we can construct a corresponding DCDS with nondeterministic
services SREL = 〈D,P〉, where D = 〈V ,R, {UNFOLD(qunsat(T ),M) → false}, D0〉,
such that ΥR

S ≡ ΥDCDS
SREL

, where ΥDCDS
SREL

is the RTS constructed for the DCDS SREL fol-
lowing the definition in [6]. This also means that S is state-bounded if and only if SREL

is state-bounded.
Let us now consider a μLEQL

C property Φ. From Theorem 1, we know that Υ S
S |= Φ

if and only if ΥR
S |= Φ′, where Φ′ = UNFOLD(REW(Φ, T ),M). By recalling that

ΥR
S ≡ ΥDCDS

SREL
, we get that Υ S

S |= Φ if and only if ΥDCDS
SREL

|= Φ′. The proof is then obtained
from the decidability of verification of μLP properties for state-bounded DCDSs with
non-deterministic services [6], by recalling that Φ′ is a μLC property, and by observing
that μLC is trivially contained in μLP [6]. ��

Example 6. Consider the SGDAP S = 〈O,P , D0〉, where O is the OBDA system defined in
Example 1, and P the process component defined in Example 3. It is easy to see that the resulting
RTS Υ R

S is state-bounded. Intuitively, this follows from the facts that the actions of S either move
tuples from the TRANSF M table to the ENROLLED one, or copy tuples from the ENROLLED
table to the GRAD one. Hence, the size of each database instance appearing in Υ R

S is at most
twice the size of D0, thus verification of μLEQL

C properties over the STS Υ S
S is decidable. ��

We close this section by mentioning that the sufficient syntactic conditions for state-
boundedness of DCDSs given in [6] can be easily applied to SGDAPs as well, given
that the structure of the process component remains unchanged.

8 Conclusion

In this paper, we have introduced semantically-governed data-aware processes, where
an ontology in DL-LiteA,id is used to capture the information manipulated by the pro-
cess at the conceptual level, and to understand and govern the process itself. Our key
result is the ability of extending FOL rewritability, typical of DL-Lite, to arbitrary tem-
poral formulae expressed in μ-calculus. Indeed, in this paper we have used this result
to show decidability of temporal verification in our setting for an interesting class of
data-aware processes. The exact computational complexity of verification remains to
be investigated.

However, the result appears to be much more general, and can be exploited to lift re-
sults obtained lately for (relational) data-aware processes [8,6,17], to the case in which
an ontology-based governance component is introduced. We plan to investigate this
further in the future, and study the requirements on the languages used to express the
ontology and the mappings that make this lifting feasible. The framework described in
this paper is being applied in the context of the EU project ACSI3 to two significant
real-world case studies.

3 http://www.acsi-project.eu

http://www.acsi-project.eu
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Abstract. In this paper we study query answering over ontologies ex-
pressed in Datalog+/–, i.e., datalog with existential variables in rule
heads. Differently from previous proposals, we focus on subclasses of
unions of conjunctive queries (UCQs), rather than on the whole class
of UCQs. To identify subclasses of UCQs, we introduce the notion of
conjunctive query pattern. Given a class of queries Q expressed by a
conjunctive query pattern, we study decidability and complexity of an-
swering queries in Q over a Datalog+/– program. In particular, we define
an algorithm that, given a Datalog+/– program P and a class of queries
Q, is able to compute a simplified Datalog+/– program P ′ that is equiv-
alent to P with respect to answering queries in Q. We show that such
an algorithm constitutes both a theoretical and a practical interesting
tool for studying query answering over ontologies expressed in terms of
Datalog+/– rules.

1 Introduction

A lot of interesting recent work on Datalog extensions [4,1,2,14,7,12,15] are based
on the idea of extending Datalog rules with existential variables in rule heads.
Following [4], we call Datalog+/– this extension of the Datalog language (recent
papers also use the terms existential rules or Datalog∃ for this formalism).

The renewed interest in this kind of rules is mainly due to its relationship
with ontology languages: as shown in [5], extending Datalog with existential
head variables allows for expressing several Description Logics, in particular the
logics of the DL-Lite family [9], which can be seen as the logical underpinnings
of the OWL 2 QL ontology specification language.

Reasoning under this kind of existential rules is in general undecidable. There-
fore, much effort has been devoted to the identification of decidable fragments
of the general formalism, and the computational analysis of reasoning in such
fragments. Notable fragments are, for instance, linear Datalog+/–, multi-linear
Datalog+/–, and guarded Datalog+/– [5], but many other fragments have been
recently defined (see, e.g., [1,2,7,14,15]).

Almost all the recent approaches in this direction focus on conjunctive query
answering under existential rules, i.e., the problem of answering a conjunctive
query (or a union of conjunctive queries) over a set of existential rules and a
database instance (see, e.g., [4]). We recall that many other problems involving

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 42–57, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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existential rules can be reduced in a straightforward way to this problem, e.g.,
implication of existential rules, conjunctive query containment under existential
rules, etc.

In this paper we study query answering over ontologies expressed in
Datalog+/–. Differently from previous proposals, we focus on subclasses of
unions of conjunctive queries (UCQs), rather than on the whole class of UCQs.
In fact, in many applications it seems realistic to assume that only a subclass of
UCQs will be used to query the program. In such cases, the current results and
reasoning techniques might not be an optimal choice.

In fact, let P be a program that does not belong to any known decidable
Datalog+/– fragment. This implies that answering arbitrary UCQs under P is
not decidable (or is not known to be decidable). But, answering a subclass of
UCQs under P might actually be decidable. In particular, this problem might
be equivalent to answering such queries to a program P ′ simpler than P , and
we might use known query answering algorithms for this task. In this paper we
follow this idea, and provide a technique that is able to realize such a form of
program simplification.

More precisely, the main contributions of this paper are the following:

– To identify subclasses of UCQs, we introduce the notion of conjunctive query
pattern, which we see as a natural way of expressing restrictions on query
variable bindings in the context of Datalog+/–.

– Given a class of queriesQ expressed by a conjunctive query pattern, we study
decidability and complexity of answering queries inQ over a Datalog+/– pro-
gram. In particular, we define an algorithm that, given a Datalog+/– pro-
gram P and a class of queries Q, is able to compute a simplified Datalog+/–
program P ′ that is equivalent to P with respect to answering queries in Q.
We show that such an algorithm constitutes both a theoretical and a prac-
tical interesting tool for studying query answering over ontologies expressed
in terms of Datalog+/– rules.

The idea of conjunctive query pattern shares similarities with the magic sets
technique for Datalog programs [3]. However, besides main technical differences,
the purpose of conjunctive query patterns in the scenario of rules with existential
variables in the head is actually different from magic sets, since we use query
patterns to identify classes of queries for which a given program admits decidable
(or tractable) query answering.

In the following section, we first briefly recall the Datalog+/– formalism.
Then, in Section 3 we introduce a query-based notion of equivalence between
Datalog+/– programs, and introduce the notion of conjunctive query pattern.
In Section 4, we present our technique for the reduction of a Datalog+/– program
with respect to a conjunctive query pattern. Finally, in Section 5 we present an
example of execution of the above technique, and conclude in Section 6.
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2 Preliminaries

2.1 Syntax of Datalog+/–

We start from three pairwise disjoint alphabets: (i) a relational schemaR, where,
as usual, every relation symbol is associated with an arity, denoted by Arity(r),
which is a non-negative integer; (ii) a countably infinite domain of constants;
(iii) a countably infinite domain of variables.

An atom is an expression of the form r(t1, . . . , tk) where k = Arity(r) and
where every ti is either a constant symbol or a variable symbol. A database is a
(possibly infinite) set of ground atoms. Given an atom γ, we denote by Rel(γ)
the relation symbol occurring in γ.

A Datalog+/– rule R is an expression of the form α :- β1, . . . , βn., where
α, β1, . . . , βn are atoms and i ≥ 1 (we omit the existential quantification in the
head of the rule). We call the atom α the head of R and call the expression
β1, . . . , βn the body of R.

We call distinguished variables of R the variables occurring both in the head
and in the body of R. We call existential body variables of R the variables that
occur only in the body of R, ebj-variables (existential body join variables) of R
the existential body variables occurring at least twice in the body of R, and call
existential head variables of R the variables that occur only in the head of R.

A Datalog+/– program is a finite set of Datalog+/– rules. Given a Datalog+/–
program P , the signature of P is the set of relation symbols occurring in P .

A conjunctive query (CQ) is an existentially quantified conjunction of positive
atoms (possibly with free variables): in this paper, we use a Datalog notation for
CQs, i.e., a CQ q is an expression of the form q(x) :-α1, . . . , αn, where α1, . . . , αn

is a sequence of atoms, called the body of q, the variables x are the distinguished
variables of q and every variable of x occurs at least once in the body of q;
the non-distinguished variables occurring in the body of q are called existential
variables of q; finally, we call join variables the variables occurring at least twice
in the body of q. The number of variables of x is called the arity of q. A union
of conjunctive queries (UCQ) is a set of CQs of the same arity.

2.2 Semantics of Datalog+/–

Given a Datalog+/– rule R of the form α :- β1, . . . , βn. and a database B, we
say that B satisfies R if the first-order interpretation IB (i.e., the first-order
interpretation isomorphic to B) satisfies the first-order sentence

∀x.β1 ∧ . . . ∧ βn → ∃y.α

where x denotes all the variables occurring in the body of R and y denotes the
existential head variables of R.

Given a Datalog+/– program P and a database D, we say that a database B
satisfies (P,D) if B ⊇ D and B satisfies every rule in P . Moreover, we denote
by sem(P,D) the set of all databases B such that B satisfies (P,D).
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Let q be a FOL query and let B be a database. We denote by ans(q, B) the set
of tuples of constants c such that IB satisfies q(c), where q(c) is the first-order
sentence obtained from q by replacing its free variables with the constants c.

We are interested in posing unions of conjunctive queries (UCQs) over
Datalog+/– programs. More precisely, let P be a program, let q be a UCQ
and let D be a database. The certain answers to q under P and D, de-
noted by cert(q, P,D), are the set of tuples of constants t such that t ∈⋂

B∈sem(P,D) ans(q, B).

2.3 Linear, Multi-linear, and Guarded Datalog+/–

Finally, we briefly recall some classes of Datalog+/– programs, i.e., linear
Datalog+/–, multi-linear Datalog+/–, and guarded Datalog+/–.

A Datalog+/– program P is linear if, for every rule R in P , there is a single
atom in the body of R.

A Datalog+/– program P is multi-linear if, for every rule R in P , every atom
α in the body of R is such that all distinguished variables and all existential
body variables of R occur as arguments in α.

A Datalog+/– program P is guarded if, for every rule R in P , there exists an
atom α (called the guard) in the body of R such that all distinguished variables
and all existential body variables of R occur in α.

It has been shown that, with respect to data complexity, answering UCQs
under linear and multi-linear Datalog+/– programs is in AC0, while answering
UCQs under guarded Datalog+/– programs is PTIME-complete [5].

3 Query-Equivalent Programs and Conjunctive Query
Patterns

In this section we first introduce a notion of equivalence between Datalog+/–
programs with respect to a class of queries. Then, we define conjunctive query
patterns.

3.1 Query-Equivalent Programs

We start by defining a query-based notion of program equivalence.

Definition 1. Given a class Q of UCQs and two Datalog+/– programs P1, P2,
we say that P1 is Q-equivalent to P2 if, for every UCQ q ∈ Q and for every
database D, ans(q, P1, D) = ans(q, P2, D).

Informally, the above notion of Q-equivalence is in terms of certain answers to
the queries of the class Q: Two programs are Q-equivalent if the certain answers
to the queries in the class Q over every database D are the same for the two
programs.
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Notice that the above notion of equivalence is somehow similar to the notion
of uniform equivalence studied in Datalog [16] and answer set programming [11],
however, differently from uniform equivalence, it is query-dependent.

It can be easily shown that, in general, checking Q-equivalence between two
Datalog+/– programs is undecidable. For instance, let Q be the whole class of
conjunctive queries. Then, it is easy to see that deciding Q-equivalence of two
arbitrary Datalog programs corresponds to check uniform equivalence between
Datalog programs, which is already undecidable [16,10].

Based on the concept of Q-equivalence, we now define the notion of Q-
expansion of a set of programs P .

Definition 2. Given a class P of programs, a program P and a class Q of
UCQs, we define the Q-expansion of P, denoted by P [Q], as the class of programs
constituted by every program P such that there exists a program P ′ ∈ P such
that P ′ is Q-equivalent to P .

Therefore, the class P [Q] “expands” the initial class of programs P by adding all
programs that areQ-equivalent to some program in P . Thus, the less constrained
the class of queries Q is, the larger the expansion P [Q] is.

An informal explanation of the above definition is the following. If a program
P is in the class P [Q] but not in the class P , then the program P can be
considered as a member of the class P , as long as we are interested in answering
queries from the class Q.

Of course, for every class of programs P and for every class of UCQs Q, we
have that P [Q] ⊇ P (since Q-equivalence is a reflexive relation).

3.2 Conjunctive Query Patterns

We now introduce the notion of conjunctive query pattern (CQ pattern).
We start by introducing QP-atoms. A QP-atom is an atom whose arguments

are occurrences of elements of the set {B,U,BU}. The symbols B,U,BU , where
B stands for bound (term), U stands for unbound and BU stands for bound or
unbound, are called pattern arguments. We assume that pattern arguments are
disjoint from both the alphabet of constants and the alphabet of variables.

The informal meaning of the pattern arguments of QP-atoms is the following.
The pattern argument B is used to represent a bound argument position, i.e., a
position where distinguished variables and constants may occur as arguments.
The pattern argument U is used to represent an unbound argument position, i.e.,
a position where only non-join existential variables may occur as arguments. The
pattern argument BU is used to represent an arbitrary argument position, i.e.,
a position where all kinds of terms (distinguished variables, constants, and both
join and non-join existential variables) may occur as arguments.

A conjunctive query pattern (CQP) π is a set of QP-atoms.
From now on, we will call query atoms the standard atoms that may occur in

conjunctive queries (to distinguish such atoms from QP-atoms).
Given an atom γ occurring in the body of a conjunctive query q, we denote by

τqp(γ, q) the function that returns the QP-atom obtained from γ by replacing: (i)
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every occurrence of a distinguished variable or a constant in γ with B, (ii) every
occurrence of a non-join existential variable with U , (iii) every other argument
(i.e., every join existential variable) with BU . Moreover, given a CQ q, we denote
by τqp(q) the set of QP-atoms

⋃
γ∈body(q) τqp(γ, q).

Definition 3. Given a CQP π and a conjunctive query q, we say that q is an
instance of π if τqp(q) ⊆ π.

Informally, an instance of a CQP π is any conjunctive query whose body matches
with a subset of the pattern π, under the assumption that the pattern argument
B can only match with distinguished variables or constants, and the pattern
argument U can only match with non-join existential variables.

Given a CQP π, we denote by Qπ the set constituted by every UCQ Q such
that every CQ in Q is an instance of π.

Given a QP-atom α and an atom γ of a CQ q, we say that γ is compatible
with α if τqp(γ, q) = α.

Example 1. Let π be the CQP {r(B,BU,U), s(U,BU)}. Then:

– Let q1 be the CQ q1(X) :- r(X,Y, Z), s(W,Y ). Then, q1 is an instance of π:
in fact, the atom r(X,Y, Z) matches with the QP-atom r(B,BU,U) (i.e.,
τqp(r(X,Y, Z), q1) = r(B,BU,U)) because variable X is distinguished and
variable Z is a non-join existential variable in q1; moreover, the atom s(W,Y )
matches with the QP-atom s(U,BU) (i.e., τqp(s(W,Y ), q1) = s(U,BU))
because variable W is a non-join existential variable in q1. Therefore,
τqp(q) ⊆ π.

– Let q2 be the CQ q2(X) :- r(X,Y, Z), r(c, Y, V ), s(W,X). Then, q2 is also an
instance of π: in particular, the atom r(c, Y, V ) matches with the QP-atom
r(B,BU,U) (i.e., τqp(r(c, Y, V ), q2) = r(B,BU,U)) because c is a constant,
Y is a join existential variable, and V is a non-join existential variable in q2.

– Let q3 be the CQ q3(X,Z) :- r(X,Y, Z), s(W,Y ). Then, q3 is not an
instance of π, because the atom r(X,Y, Z) does not match with the
QP-atom r(B,BU,U) (because variable Z is distinguished in q3), i.e.,
τqp(r(X,Y, Z), q3) = r(B,BU,B).

4 Query-Pattern Based Program Reduction

In this section we present an algorithm that, given a program P and a CQP π,
produces a new Datalog+/– program that is Qπ-equivalent to P .

We start by defining a notion of applicability of a rule to a QP-atom.

Definition 4. We say that a rule R is QP-applicable to a QP-atom α if
Rel(α) = Rel(head(R)) and for every argument of α in which B occurs, the
corresponding argument of head (R) is a distinguished variable or a constant.
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The above definition can be explained as follows. Roughly speaking, some of
the known query rewriting techniques for Datalog+/– (e.g., [8,6,13]) are based
on the application of a resolution step between a query atom α and a rule R.
This resolution step is based on a specialized unification rule between α and
head(R): such a unification succeeds only if all the existential head variables of
R occurring in head(R) match with existential variables of the query in α.

Now, a QP-atom represents an approximated representation of a query atom.
Therefore, Definition 4 corresponds to an approximation of the above appli-
cability condition between query atoms and rules, based on the structure of
QP-atoms.

Definition 5. Let R be a rule and α a QP-atom. We define the specialization
of R with respect to α (and denote it by Spec(R,α)) as the rule obtained from R
by replacing every distinguished argument of head (R) with a new head existential
variable if the corresponding argument of α is U .

Moreover, given a program P and a QP-atom α, we denote by RulesQP(α, P )
the set of rules constituted by every rule R′ such that there exists a rule R of P
such that:

1. R has Rel(α) as head predicate;

2. R is QP-applicable to α;

3. R′ = Spec(R,α).

Informally, the specialization of R with respect to α is a transformation of rule R
which is obtained by turning every distinguished variable X of R which unifies
with a pattern argument U of α into an existential variable. For instance, if
α = r(B,U) and R is the rule r(x, y) :- r(x, z), r(z, y), then Spec(R,α) is the rule
r(x, y′) :- r(x, z), r(z, y).

Of course, the transformed rule Spec(R,α) is weaker than the initial rule R,
in the sense that R logically entails Spec(R,α) while the converse in general
does not hold. Anyway, with respect to the QP-atom α (and all the query atoms
compatible with α), Spec(R,α) can actually be considered as a faithful represen-
tation of R: in fact, it can be shown that, with respect to the above mentioned
resolution step, for every query atom γ compatible with α, the result of applying
R to γ is the same as the result of applying Spec(R,α) to γ.

The above simplification of a rule with respect to a QP-atom is the crux of
our program reduction technique. In fact, our idea is to simplify the program
with respect to a set of QP-atoms that represents the set of all possible query
atoms which can be generated by resolution during the rewriting of the query.

To compute the above set of QP-atoms, we can actually start from an initial
CQ-pattern π and perform a rewriting of π, through a specialization of the
rewriting steps applied in the above mentioned query rewriting methods for
Datalog+/–, in particular [8,6].

In the following, we call redundant a rule R such that there exists a substitu-
tion σ of the existential head variables of R such that there exists an atom in the
body of R that is equal to σ(head(R)). Indeed, it is immediate to verify that a
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redundant rule can always be removed from every program P without changing
the semantics of P .

We are now able to present the algorithm QP-Projection.

Algorithm. QP-Projection
Input: program P , CQP π
Output: program P ′

begin
A := π;
repeat
for each α ∈ A do
for each R ∈ P do
if R is QP-applicable to α
then A := A∪ QP-Atom-Rewrite (α,R);

for each α1, α2 ∈ A do
if Rel(α1) = Rel(α2)
then A := A∪ QP-Reduce (α1, α2);

until a fixpoint is reached;
P ′ := ∅;
for each α ∈ A do
P ′ := P ′ ∪ RulesQP(α, P );
delete all redundant rules from P ′;

return P ′;
end

The algorithm takes as input a program P and a CQ-pattern π, and returns
a new program P ′. The algorithm is divided in two parts:

– In its first part, the algorithm computes the set A of QP-atoms. Such a
set represents all the QP-atoms which are relevant for the CQ-pattern π
with respect to the program P . The set A is computed starting from the
initial CQ-pattern π and increasing such a set through the application of two
expansion steps, called QP-Atom-Rewrite and QP-Reduce (and described
below), until a fixpoint is reached.

– In its second part, the algorithm computes the set of rules RulesQP(α, P )
for every QP-atom α in the set A previously computed. The union of all
such rules constitutes the program returned by the algorithm (except for
redundant rules which are filtered out).

We now present the algorithms QP-Atom-Rewrite and QP-Reduce. The algo-
rithm QP-Atom-Rewrite is the following:

Algorithm. QP-Atom-Rewrite
Input: QP-atom α = r(t1, ..., tk), rule R
Output: set of QP-atoms β1, ..., βn

begin
let head(R) be of the form r(t′1, ..., t

′
k);
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let z1, ..., zk be variable symbols not occurring in R;
R′ := R;
for each i s.t. 1 ≤ i ≤ k do
if ti = U and t′i is distinguished
then t′′i := zi
else t′′i := t′i;

let head(R′) be of the form r(t′′1 , ..., t
′′
k);

if R′ is redundant
then return ∅
else return body(τqp(R

′, α));
end

The algorithm QP-Reduce is the following:

Algorithm. QP-Reduce
Input: QP-atoms α1 = r(t1, ..., tk), α2 = r(t′1, ..., t

′
k)

Output: QP-atom β
begin

for each i s.t. 1 ≤ i ≤ k do
if ti = t′i = U
then t′′i := U
else
if ti = t′i = B
then t′′i := B
else t′′i := BU ;

return r(t′′1 , ..., t
′′
k);

end

Essentially, such algorithms are very similar to the analogous rewriting steps
of the above cited query rewriting techniques for Datalog+/–: in particular, QP-
Atom-Rewrite is a specialization to the case of QP-atoms of step (b) of the
rewriting algorithm presented in [6], while QP-Reduce is an analogous special-
ization of step (a) of the same algorithm.

Through the above algorithms QP-Atom-Rewrite and QP-Reduce, the first
part of the algorithm QP-Projection executes a rewriting of the initial CQ-
pattern π by using a technique analogous to the query rewriting algorithm in
[6]. However, besides the differences due to the different nature of CQ-patterns
with respect to CQs, we point out that, differently from the algorithm in [6],
QP-Projection only focuses on rewriting of single atoms rather than conjunctions
of atoms. That is, every QP-atom is always considered in isolation when it is
processed.

Then, it is easy to verify that QP-Projection always terminates. In particular,
the first part of the algorithm QP-Projection always terminates, because the
number of distinct QP-atoms that can be generated by the algorithm is finite.

We are now able to prove that the program returned by QP-Projection is
Qπ-equivalent to the initial program P (recall that Qπ is the class of UCQs
constituted by CQs which are instances of the CQ-pattern π).
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Theorem 1. Let P be a Datalog+/– program, let π be a CQP, and let P ′ be
the program returned by QP-Projection(P, π). Then, P ′ is Qπ-equivalent to P .

Proof (sketch). In the following, we will make use of the algorithm TGD-rewrite
of [12], reported below:

Algorithm. TGD-rewrite
Input: a schema R, a set of TGDs Σ and a BCQ q over R
Output: the FO-rewriting Qr of q under Σ
begin

Qnew := {q};
Qr := ∅;
repeat
Qr := Qr ∪Qnew;
Qtemp := Qnew;
Qnew := ∅;
for all q ∈ Qtemp do
for all σ ∈ Σ do
- factorization -
q′ := factorize(q, σ);
- rewriting -
for all a ∈ body(q′) do
- atom-rewrite -
if σ is applicable to a

then q′′ := γa,σ(q
′[a/body(σ)]);

if q′′ /∈ Qr

then Qn := Qn ∪ {q′′};
until Qnew = ∅;
return Qr;

end

Let q ∈ Qπ. Let Q be the UCQ returned by TGD-rewrite on input P and q
and let Q′ be the UCQ returned by the algorithm TGD-rewrite on input P ′ and
q. We prove that Q and Q′ are equivalent UCQs. In particular, we prove the
following key property. Suppose that q is a CQ, suppose that α is an atom of
body(q) and suppose that the atom-rewrite step can be applied to α using a rule
R ∈ P . Let q′ be the CQ returned by such an atom-rewrite step. Then, there
exists a rule Ri ∈ P ′ such that the atom-rewrite step can be applied to α using
a rule Ri and the query returned by such an atom-rewrite step is q′.

Then, it can be shown that the above property in turn implies that Q ⊆ Q′,
which obviously implies that Q is contained in Q′.

On the other hand, it is easy to see that the program P ′ is logically entailed by
P . Therefore, from the correctness of the algorithm TGD-rewrite (see Theorem
1 of [12]), it follows that Q′ is contained in Q. Hence, Q and Q′ are equivalent.
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As a corollary of the above theorem, we get the following important property.

Corollary 1. Let P be a Datalog+/– program, let π be a CQP, let P be
a class of Datalog+/– programs, and let P ′ be the program returned by
QP-Projection(P, π). If P ′ ∈ P, then P ∈ P [Qπ].

Informally, the meaning of the above corollary is that, if the program P ′ com-
puted by QP-Projection on input P and π is in the class P , then program P can
be considered in the class of programs P as well, but only with respect to the
class of queries Qπ (i.e., P is in the Qπ-expansion of P).

As we will show in the next section, the above corollary has very interesting
consequences, since it may allow for query answering over programs that do not
belong to known decidable classes of Datalog+/– programs; or, it may allow
for using polynomial algorithms for query answering over Datalog+/– programs
that do not belong to tractable classes of programs; and so on.

5 Example

In this section, in order to show the power of query patterns, we present a
comprehensive example of an application of the program reduction algorithm
to a Datalog+/– program P . In particular, we will focus on a program which
does not belong to the class of guarded Datalog+/– programs (and hence does
not belong to the class of multi-linear programs too). Finally, we conclude the
section with a brief comment on the possible usages of the techniques presented
in this paper.

5.1 Program

Let us consider a program P concerning the university domain. P is composed
by the following set of rules.

R1 = courseMates(X,Y ) :- courseMates(X,Z), courseMates(Z, Y ).
R2 = courseMates(X,Y ) :- student(X), attendCourse(X,W ), course(W ).
R3 = friends(X,Y ) :- courseMates(X,Y ), studyTogether(X,Y ).
R4 = course(W ) :- heldAt(W,J,K).
R5 = heldAt(W,J,K) :- department(J), hasDepartment(K, J),

university(K).
R6 = hasDepartment(K, J) :- heldAt(W,J,K).

We can observe that the rule R1, which states that if two students are both
course mates with a third student they are course mates too, is a typical example
of transitive closure rule, thus obviously it is not guarded (and thus R1 is not
multi-linear too).

The rule R2, which states that if a student attends a course he has at least one
course mate, is guarded, since it contains a guard atom, attendCourse(X,W ),
which contains all the universally quantified variables of the rule; however, R2

is not multi-linear.
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The rule R3, which states that two course mates that study together are
friends too, is multi-linear (and thus guarded too), since all the body atoms
contain all the variables of the rule.

The rule R4, which states that the first argument of the relation heldAt is a
course, is linear, and thus is both multi-linear and guarded.

The rule R5, which states that at least one course is held at each department,
is guarded, since it contains the guard atom hasDepartment(K, J); however, R5

is not multi-linear.
Finally, the rule R6, which states that if a course is held at a department d of

a university u, then department d belongs to university u, is linear, and thus is
both multi-linear and guarded.

Hence, the overall program P is neither multi-linear nor guarded.

5.2 Query 1

Let us now consider the following query over the program P :

q1(X) :- courseMates(X,Y ).

The query pattern for q1 (i.e., τqp(q1)) is:

π1 = {courseMates(B,U)}

Let P and π1 be the input elements for the QP-Projection algorithm, and Pπ1

the output program.
At the first iteration of the QP-Projection algorithm we have that A = π1.
The rule R1 is QP-applicable to the QP-atom α = courseMates(B,U),

however the QP-Atom-Rewrite algorithm does not return new QP-atoms be-
cause the rule obtained by projecting R1 on α is Spec(R1, α) = R′

1 =
courseMates(X,Y ′) :- courseMates(X,Z), courseMates(Z, Y ), which is redun-
dant. So the set A does not change.

Also the rule R2 is QP-applicable to the QP-atom α = courseMates(B,U),
and since the rule obtained by projecting R2 on α, Spec(R2, α) = R′

2 = R2 is
not redundant, the body atoms resulting from the QP-Atom-Rewrite step are
added to A, such that:

A = {courseMates(B,U), student(B), attendCourse(B,BU), course(BU)}.

Now we have that the rule R4 is QP-applicable to the QP-atom β = course(BU),
and since the rule obtained by projecting R4 on β, Spec(R4, β) = R′

4 = R4 is not
redundant, the body atom resulting from the QP-Atom-Rewrite step is added
to A, such that:

A = {courseMates(B,U), student(B), attendCourse(B,BU), course(BU),
heldAt(BU,U, U)}.

Since the rule R5 is QP-applicable to the QP-atom γ = heldAt(BU,U, U), and
since the rule obtained by projecting R5 on γ, Spec(R5, γ) = R′

5 = R5 is not
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redundant, the body atoms resulting from the QP-Atom-Rewrite step are added
to A, such that:

A = {courseMates(B,U), student(B), attendCourse(B,BU), course(BU),
heldAt(BU,U, U), department(U), hasDepartment(U,U),
university(U)}.

Finally, since the rule R6 is QP-applicable to the QP-atom δ =
hasDepartment(U,U), and since the rule obtained by projecting R6 on δ,
Spec(R6, δ) = R′

6 = R6 is not redundant, the body atom resulting from the
QP-Atom-Rewrite step is added to A, such that:

A = {courseMates(B,U), student(B), attendCourse(B,BU), course(BU),
heldAt(BU,U, U), department(U), hasDepartment(U,U),
university(U), heldAt(U,U, U)}.

The QP-Reduce step between the QP-atoms heldAt(BU,U, U) and
heldAt(U,U, U) produces the QP-atom heldAt(BU,U, U), which already
belongs to A and, since there are no other rules which are QP-applicable to the
atoms of A, the QP-Projection algorithm produce the following rewriting of P
with respect to π1: Pπ1 = {R2, R4, R5, R6}.

Notice that the rules belonging to Pπ1 are only the ones for which the
QP-Atom-Rewrite algorithm produced new QP-atoms in A. In particular,
as we observed before, the rule generated by projecting R1 on α is R′

1 =
courseMates(X,Y ′) :- courseMates(X,Z), courseMates(Z, Y ). Since such a
rule is redundant, R′

1 does not belong to Pπ1 .
The rules R2, R4, R5 and R6 are all guarded, thus the resulting program

Pπ1 is obviously guarded, hence query answering under this program is PTIME-
complete.

Consequently, Corollary 1 implies that answering the initial query, as well as
every query in the set Qπ1 , over P is in PTIME.

5.3 Query 2

Let us now consider the following query over the program P :

q2(X) :- course(X), attendCourse(Y,X), attendCourse(Z,X),
studyTogether(Y, Z).

The query pattern for q2 (i.e., τqp(q2)) is:

π2 = {course(B), attendCourse(BU,B), studyTogether(BU,BU)}

Let P and π2 be the input elements for the QP-Projection algorithm, and Pπ2

the output program.
In this case we have that, at the first iteration of the QP-Projection algorithm,

A = π2.
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The rule R4 is QP-applicable to the atom β = course(B), and since, as
before, the rule obtained by projecting R4 on β, Spec(R4, β) = R′

4 = R4 =
course(W ) :- heldAt(W,J,K). is not redundant, the body atom resulting from
the QP-Atom-Rewrite step is added to A, such that:

A = {course(B), attendCourse(BU,B), studyTogether(BU,BU),
heldAt(B,U, U)}.

Now, there are no rules that are QP-applicable to the atoms
attendCourse(BU,B), studyTogether(BU,BU) and heldAt(B,U, U) (no-
tice that R5 is not QP-applicable to heldAt(B,U, U) because in the head of the
rule the first argument is unbound), and the QP-Reduce step cannot be applied
to any QP-atom of A, thus the QP-Projection algorithm produce the following
rewriting of P with respect to π2: Pπ2 = {R4}.

Since, as observed before, R4 is a multi-linear rule (linear, actually), the re-
sulting program Pπ2 is multi-linear, thus query answering under this program is
in AC0.

Consequently, Corollary 1 implies that answering query q2, as well as every
query in the set Qπ2 , over P is in AC0.

We conclude this section with a remark on the practical usage of query pat-
terns. While, for ease of exposition, the above example always starts from a
single query q and derives the query pattern corresponding to q, this is not the
only interesting usage of query patterns. For instance, a more general use of
query patterns would consist of directly starting from a query patten π defining
a whole class of UCQs, and then check, through the algorithm QP-Projection,
the program over the whole class of queries corrsponding to π.

Another very interesting usage of query patterns would be to start from a
program P and a given class of Datalog+/– programs C (such that P 	∈ C),
and try to identify the maximal query patterns π (i.e. maximal subclasses of
UCQs) such that the program P ′ returned by QP-Projection(P, π) belongs to
C. Indeed, such maximal query patterns can be identified through an iterative
algorithm which starts from the universal query pattern containing the QP-atom
r(BU,BU,BU) for every relation r occurring in P , and then tries to “specialize”
such a query pattern in all possible ways (by eliminating QP-atoms or replacing
existing QP-atoms with more specialized ones) until QP-Projection(P, π) returns
a program belonging to the class C.

6 Conclusions

In this paper we have studied query answering under existential rules. We have
focused on subclasses of UCQs and have presented a program reduction tech-
nique that is able to simplify a given program with respect to a subclass of
UCQs.

Our results clearly show that, in many cases, restricting to a subclass of
UCQs may significantly simplify query answering: in particular, our technique in



56 C. Civili and R. Rosati

principle allows for effectively processing queries under Datalog+/– programs for
which no query answering technique is currently known.

We plan to extend the present work along different directions. First, we believe
that both the notion of conjunctive query pattern and the program reduction
algorithm can be further refined, to produce even more significant program sim-
plifications. Then, although the present technique does not constitute per se
a new query answering method, it would be nice to experimentally evaluate
whether (and how much) pairing the program reduction technique with known
query answering algorithms for Datalog+/– is able to speed-up the query an-
swering process. Finally, it would be very interesting to generalize this approach
to other ontology languages (e.g., Description Logics).
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Abstract. Description Logic programs (DL-programs) are a prominent approach
for a loose coupling of rules and ontologies, which has become a topic of in-
creased interest. When computing answer sets of a DL-program, special
DL-atoms, which provide query interface to an ontology, are evaluated under
a possibly changing input that gives a context for the evaluation. Many differ-
ent such contexts may exist and evaluating a DL-atom may be costly even for
one context. Thus a natural question to ask is when the evaluation is independent
of the context. Such information has immediate applications in optimization of
DL-programs, but is also beneficial for other reasoning tasks, like inconsistency
diagnosis and program repair. We provide an answer to this question based on
a semantic notion of independence and provide a complete characterization of
independent DL-atoms. We then extend the characterization to independence un-
der additional information about inclusions among rule predicates. Moreover, we
develop an axiomatization which allows one to derive all tautological DL-atoms
in the general case and under predicate inclusions. A complexity analysis reveals
that checking whether a DL-atom is independent, can be done efficiently.

1 Introduction

DL-programs are a prominent approach for the loose coupling of rules and ontologies,
in which the rules and the ontology part exchange information via a well-defined inter-
face.1 In general, a DL-atom specifies an update of an ontology prior to querying it; e.g.
DL[C � p; C](t); means that assertions C(t) are made for each individual t such that
p is true for t in the rules part. Several semantics of such programs have been defined,
cf. [4,9,13,19,17,3], and the concept of DL-atom has been adopted and generalized by
other formalisms e.g. [18,10,6].

Irrespective of a particular semantics, for the evaluation of DL-programs in practice
(i.e., when computing models or answer sets) individual DL-atoms have to be evalu-
ated under varying input in general. Thus, the possible ontology updates specified by a
DL-atom define respective contexts for their evaluation, and many different such con-
texts may need to be considered. Moreover, even for one context evaluating the query
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1 For further discussion of loose and strong couplings and their strengths, cf. [15,4,8].
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specified by the DL-atom in this context may be costly. Therefore, developing optimiza-
tion techniques, e.g. caching techniques [7], partial evaluation and atom merging [6], is
necessary for the development of effective solvers.

Caching techniques, for instance, aim at memorizing the value of a DL-atom for
some inputs, and to conclude about its value on a new input. However, the very question
whether its value is on all inputs the same has not been considered so far; we call DL-
atoms with this property independent. The identification of independent DL-atoms has
immediate applications in optimization, as such atoms respectively rules involving them
can be removed from the DL-program.

However, information about independence has also other uses. The loose coupling
by DL-programs may result in inconsistency, that is, that no answer set (i.e., suitable
model) of a DL-program exists. To remedy the situation, an inconsistency-tolerating
approach was developed in [16,8]. In this approach, one distills a set of DL-atoms (a
“diagnosis”) which has the “wrong value” in establishing an answer set, meaning that
if these atoms and rules involving them are ignored, then an answer set exists. Based
on such diagnoses, one can think of repairing the ontology part of the DL-program
by changing the axioms such that consistency is gained. However, the value of a DL-
atom can be independent of the underlying ontology (or the initial one modulo a set
of changes); thus some of the diagnoses are false positives, i.e., the opposite value can
never be established.

This problem can be avoided by identifying independent DL-atoms, for instance
tautologic ones. However, it is not always obvious that a certain DL-atom is tautologic.
Let us illustrate this by an example.

Example 1. Consider the following DL-program representing information in the fruit
domain: P = (Φ,Π) with underlying ontology Φ and the rules part

Π =

⎧⎨
⎩

(1) so(pineapple, chile). (2) vi(X)← ex(X).
(3) sw(X)← ex(X), not bi(X). (4) ex(X)← so(X,Y ).
(5) no(X)← DL[H � vi,H −∪ sw,A −∩ ex; ¬A](X).

⎫⎬
⎭ ,

where predicate so stands for Southern fruit with its country of origin, vi for vitamin,
ex for exotic, bi for bitter, sw for sweet, and no for non-African fruit, respectively.
Moreover, H stands for the concept of healthiness and A for the concept of African
fruit. Here (1) is the fact that pineapple is a Southern fruit possibly from Chile, rule (2)
states that exotic fruits are rich of vitamin and rule (3) that exotic fruits are sweet,
unless they are known to be bitter. Rule (4) says that Southern fruits are exotic. Finally,
rule (5) contains a DL-atom in its body. Informally, it selects all objects o into no such
that ¬A(o), i.e., that it is a not an African fruit is provable from the ontology Φ, upon
the (temporary) assertions that vitamin objects are healthy, sweet ones are unhealthy,
and the restriction that only fruit known to be exotic may be African.

It is not straightforward for this DL-atom, nor for any of its instances, that it is
tautologic; this however will be shown in Section 4.

If we adopt the reasonable assumption that the underlying ontology is satisfiable, an-
other kind of independence is possible: DL-atoms which are contradictory, i.e., always
evaluate to false.
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Our contributions on identifying independent DL-atoms briefly are as follows:
• Based on a semantic notion of independence, we provide a syntactic characteriza-

tion of independent DL-atoms. While tautologic DL-atoms have a rich structure, contra-
dictory DL-atoms are simple and only possible without ontology update prior to query
evaluation.
• We also consider relaxed forms of tautologies, relative to additional information

on rule predicates (acting as constraints on the possible updates to the ontology). In
particular, we study inclusion among rule predicates.
• We develop a complete axiomatization for deriving all tautologies by means of

simple rules of inference, in the general case as well as under separable inclusion con-
straints, i.e., without projective input inclusions.
• We determine the complexity of the calculus. It turns out that tautology checking is

feasible in polynomial time (more precisely, in NLogSpace in general, and in LogSpace,
in fact it is first-order expressible, for non-negative queries), also relative to separable
inclusion constraints (in this case, it is NLogSpace-complete). Thus, we establish that
checking whether a given DL-atom is independent can be done efficiently.
Our results provide further insight into the nature of DL-programs. In particular, they
might be useful for DL-programs that are automatically constructed (like the ones en-
coding a fragment of Baader and Hollunder’s terminological default logic over ontolo-
gies [2]). They can be applied to simplify DL-programs, as well as in inconsistency
analysis, e.g., to refine inconsistency-tolerating semantics of DL-programs [16].

2 Preliminaries

2.1 Description Logics

We assume that the reader is familiar with the basics of Description Logics (DLs) and
their syntax and semantics [1]. We will consider DL knowledge bases defined over
signatures Σo = 〈F ,Po〉 with a set F of individuals (constants) c and a set Po =
Pc ∪ Pr of (atomic) concept names Pc and role names Pr ; concept expressions, role
expressions are defined as usual, as well as concept inclusion axioms C 
 D, role
axioms (if any are available), and assertion axioms. A DL knowledge base (or ontology)
in a DL L is then a (finite) set Φ of axioms in L.

We do not commit to a particular DL L here, but as for DL-programs assume that

– assertions C(a), ¬C(a), R(a, b), ¬R(a, b) with C ∈ Pc , R ∈ Pr and a, b ∈ F are
admissible in L (or can be simulated), and

– Φ |= φ denotes, under the usual model-based semantics of L, logical entailment of
a formula φ from Φ, i.e., each model Φ satisfies φ.

For instance, the DLs SHIF , SHOIN , and SROIQ, which provide the logical un-
derpinnings of OWL-Lite, OWL DL and OWL 2, respectively (see, e.g., [11,12,14]),
and the lightweight DL DL-LiteR fulfill this. 2

In particular, we consider DL-queries, i.e., formulas φ = Q(t) such that Q is either

2 If negative role assertions can not be simulated, as e.g. basic DLs of the DL-Lite family or in
EL++, the syntax of DL-atoms can be accordingly restricted.
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(a) a concept inclusion C 
 D or its negation ¬(C 
 D), with t = ε (void),
(b) a concept instance C(t1) or its negation¬C(t1), with t = t1 a term (i.e., a constant

from F or a variable), or
(c) a role instance R(t1, t2) or its negation ¬R(t1, t2), with t = t1, t2 two terms,

where C,D ∈ Pc , respectively C,D ∈ Pc ∪{�,⊥} in case of a), and R ∈ Pr .
Satisfaction of a ground, i.e., variable free, Q(t) in a model I of Φ, is defined by
(a) CI ⊆ DI resp. CI 	⊆ DI , (b) tI1 ∈ CI resp. tI1 /∈ CI , and (c) (tI1 , t

I
2 ) ∈ RI

resp. (tI1 , t
I
2 ) /∈ RI . A general Q(t) is satisfied by I, if each of its ground instances

Q(t′) (obtained by replacing variables with constants from F ) is satisfied.
Note that entailment Φ |= Q(t) is monotonic, (in particular, ¬(C 
 D) is C 	
 D).

2.2 DL-Programs

Informally, a DL-program consists of a DL ontology Φ over Σo and a normal logic
program Π over Σp , which may contain DL-queries to Φ in rule bodies. The latter
are evaluated subject to hypothetical updates of Φ with assertions determined from the
predicate extensions under an interpretation of Π .

Syntax. A signature Σ = 〈F ,Po ,Pp〉 for DL-programs consists of a set F of con-
stant symbols and sets Po , Pp of predicate symbols such that Σo = 〈F ,Po〉 is a
DL-signature and Σp = 〈F ,Pp〉 = 〈F ,P〉 is an LP-signature, i.e., a function-free
first-order signature over a nonempty finite set F of constant symbols and a nonempty
finite set P of predicate symbols of arities ≥ 0. Terms over F and a set V of variables,
and ordinary atoms p(t1, . . . , tn) are defined as usual, where p ∈ P ; a classical literal
is either an ordinary atom a or its negation ¬a.

A DL-atom a(t) has the form

DL[S1 op1 p1, . . . , Sm opm pm; Q](t) , m ≥ 0, (1)

where 1. either Si ∈ Pc and pi ∈ Pp is unary, or Si ∈ Pr and pi ∈ Pp is binary,
2. opi ∈ {�, −∪, −∩}, and 3. Q(t) is a DL-query. We call λ = S1 op1 p1, . . . , Sm opm pm,
the input signature and p1, . . . , pm the input predicates of a(t). We regard λ as un-
ordered list—thus for any permutation π of {1, . . . , n}, the DL-atom DL[λπ ; Q](t)
where λπ = Sπ(1) opπ(1) pπ(1), . . . , Sπ(m) opπ(m) pπ(m) is a syntactic variant of (1)—
and assume that its elements Si opi pi are pairwise different. We also write Si opi pi ∈
λ. Intuitively, opi = � (resp., opi = −∪) increases Si (resp., ¬Si) by the extension of pi,
while opi = −∩ constrains Si to pi.

A DL-rule r has the form

a0 ← a1, . . . , ak, not ak+1, . . . ,not am , m ≥ k ≥ 0 , (2)

where a0 is a classical literal, and every ai is a classical literal or a DL-atom, 1 ≤ i ≤ m,
where a0 may be absent (written as ⊥). A DL-program P = (Φ,Π) consists of a DL
ontology Φ and a finite set Π of DL-rules.

Example 2. Consider a DL-program P = (Φ,Π), such that Φ = {C 
 D} and Π is
given by:
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{p(a).; q(a).; r(b).; v(X)← DL[C � p,D −∩ q; D](X), not DL[C −∪ r; ¬C](X).}
In the first DL-atom intuitively the concept C is extended by the predicate p and the
concept ¬D is restricted by predicate q. Then, all instances of D are retrieved from the
resulting ontology. The second DL-atom extends ¬C by the extension of r and queries
all instances of ¬C from the respectively extended Φ.

Semantics. In what follows, let P = (Φ,Π) be a DL-program over Σ = 〈F ,Po ,Pp〉.
By gr(Π) we denote the grounding of Π wrt. F , i.e., the set of ground rules origi-
nating from DL-rules in Π by replacing, per DL-rule, each variable by each possible
combination of constants in F .

An interpretation I (overΣp) is a consistent set of ground literals overΣp ; I satisfies
(i) a classical ground literal l under Φ, denoted I |=Φ l, iff l ∈ I , and (ii) a ground
DL-atom a of the form (1), denoted I |=Φ a, iff Φ ∪ τI(a) |= Q(c), where τI(a) =⋃m

i=1 Ai(I), the DL-update of Φ under I by a, is defined as

– Ai(I) = {Si(e) | pi(e) ∈ I}, for opi = �;
– Ai(I) = {¬Si(e) | pi(e) ∈ I}, for opi = −∪;
– Ai(I) = {¬Si(e) | pi(e) /∈ I}, for opi = −∩. 3

We say that I satisfies a ground DL-rule r of form (2), denoted I |=Φr, if either I |= a0,
I |= aj for some k < j ≤ m, or I 	|= ai for some 1 ≤ i ≤ k. I satisfies (is a model of)
P = (Φ,Π), denoted I |= P , iff I |=Φ r for all r ∈ gr(Π).

Finally, an interpretation I is an answer set of P , iff I is a minimal (wrt. ⊆) model
of the FLP-reduct P I

FLP = 〈Φ,ΠI
FLP 〉 of P wrt. I , where ΠI

FLP contains all ground
DL-rules r of form (2) from gr(Π) such that I |= ai for all 1 ≤ i ≤ k, and I 	|= aj ,
for all k < j ≤ m. This is the FLP-semantics of DL-programs; several other semantics
have been proposed, cf. [4,13,19,17,3], but the evaluation of DL-atoms is the same.

Example 3. Reconsider P from Example 2. It has one answer set I = {p(a), q(a),
r(b), v(a)}. The DL-update of Φ under I by the DL-atom DL[C � p,D −∩ q; D](a) re-
sults in A1(I)∪A2(I), where A1(I)= {C(a)} and A2(I)= {¬D(b)}. Due to C 
 D
in Φ, it holds that Φ∪A1(I)∪A2(I) |= D(a). Thus DL[C � p,D −∩ q; D](a) evalu-
ates to true. On the other hand, the DL-update of Φ under I by DL[C −∪ r; ¬C](a) is
A3(I)= {¬C(b)}, and Φ∪A3(I) 	|= ¬C(a). Therefore, DL[C −∪ r; ¬C](a) evaluates
to false, and the FLP-reduct of P wrt. I contains the ground rule

v(a)← DL[C � p,D −∩ q; D](a), not DL[C −∪ r; ¬C](a).

Finally, one can verify that I is the only answer set of P . Adding the “guessing“
rules v(c)← not v(b) and v(b)← not v(c) to Π , however, results in two answer sets,
namely I1 = I ∪ {v(b)} and I2 = I ∪{v(c)}.

3 Independent DL-atoms

We call a DL-atom a independent, if it always has the same truth value, regardless of
the underlying ontology and the context in which it is evaluated, i.e, the interpretation

3 If ¬Si(e) can not be expressed, the use of −∪ and −∩ is excluded, cf. Footnote 2.
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I of the rules. This means that a amounts to one of the logical constants ⊥ (false, i.e.,
is a contradiction) or � (true, i.e., is a tautology).

In formalizing this notion, we take into account that independence trivializes for
unsatisfiable underlying ontologies, and thus restrict to satisfiable ones.

Definition 1 (independent DL-atom). A ground DL-atom a is independent, if for all
satisfiable ontologies Φ,Φ′ and all interpretations I, I ′ it holds that I |=Φ a iff I ′ |=Φ′

a.
Furthermore, we call a tautologic (resp., contradictory), if for all satisfiable ontolo-

gies Φ and all interpretations I , it holds that I |=Φ a (resp., I 	|=Φ a).

Example 4. A DL-atom of the form a = DL[ ; ¬(C 
 C)]() is contradictory. Indeed,
the query¬(C 
 C) is unsatisfiable, hence there does not exist any satisfiable ontology
Φ, s.t. φ |= ¬(C 
 C). Hence regardless of I , always I 	|=Φ ¬(C 
 C).

On the other hand consider a DL-atom b = DL[C −∩ p, C −∪ p; ¬C](c). It is tauto-
logic, because under any interpretation I of p, it holds that ¬C(c) ∈ τI(b). Hence, it is
true that I |=Φ ¬C(c) for any ontology Φ (and any interpretation I).

In the following, we aim at a characterization of independent DL-atoms.

3.1 Contradictory DL-atoms

We defined above contradictory DL-atoms relative to satisfiable ontologies (otherwise,
trivially no contradictory DL-atoms exist).

An obvious example of a contradictory DL-atoms is DL[ ; � 
 ⊥](), where ⊥ and
� are the customary empty and full concept, respectively. Indeed, the DL-query⊥ 
 �
is false in every interpretation, i.e., a logical contradiction. As it turns out, contradictory
DL-atoms are characterized by such contradictions, and have a simple input signature.

We call a DL-query Q(t) satisfiable, if there exists some satisfiable ontology L such
that L |= Q(t), and unsatisfiable otherwise. Then we have the following result.

Proposition 1. A ground DL-atom a = DL[λ; Q](t) is contradictory if and only if
λ = ε and Q(t) is unsatisfiable.

Proof. (if) If λ = ε, then for every I , I |=Φ a iff Φ |= Q(t); as Q(t) is unsatisfiable,
we have for every satisfiable L that L 	|= Q(t). Thus a is contradictory.

(Only If). Suppose a is contradictory, i.e., I 	|=Φ a for every satisfiable ontology Φ
and every interpretation I , i.e., L ∪ τI(a) 	|= Q(t). It follows that Q(t) is unsatisfiable.
To show λ = ε, assume towards a contradiction that λ 	= ε. Then there exists some
interpretation I0 such that τI0 (a) 	= ∅, i.e., contains some assertion B. Consider an ar-
bitrary satisfiable ontologyL. As L∪τI0 (a) 	|= Q(t), it follows that L 	|= ¬.B, where¬.
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B is the opposite of B. However, it is not difficult to see that satisfiable ontologies L0

exist such that L0 |= ¬.B.4 This, however, raises a contradiction. Thus τ = ε. ��

By this result, contradictory DL-atoms have a simple form. As concept and role instance
queries are always satisfiable, Q must be a (possibly negated) concept inclusion query
and of the form ¬(C 
 C), ¬(C 
 �), ¬(⊥ 
 C), ¬(⊥ 
 �), or � 
 ⊥.

3.2 Tautologic DL-atoms

For tautologic DL-atoms, the situation is more complex. First of all, clearly a DL-atom
is tautologic if it has a tautologic query (i.e., it is satisfied by the empty ontology). This
is, however, only possible for concept inclusion queries; instance queries (¬)C(t), resp.
(¬)R(t1, t2), are clearly not tautologic.

DL-atoms with tautologic queries are of the formDL[λ; C 
 �](),DL[λ; ⊥ 
 C](),
DL[λ; C 
 C](), or DL[λ; � 	
 ⊥](), where λ is an arbitrary input signature.

However, there are also tautologic DL-atoms whose query is not tautologic.

Example 5. Consider in the fruit scenario the DL-atom

a = DL[EF −∩ fr, S −∪ fr, S � fr; ¬EF ](c),

where EF stands for exotic fruit, S for sweet, fr for fruit.
Intuitively, we restrict here the concept ¬EF and extend the concepts S and ¬S by

the predicate fr. Then we ask whether c is not an exotic fruit. No matter which inter-
pretation I of the DL-program we consider and irrespective of Φ, we will always get
that Φ ∪ τI(a) |= ¬EF (c). Indeed, if fr(c) ∈ I , then τI(a) is unsatisfiable; otherwise
¬EF (c) is explicitly present in τI(a). Hence in both cases, τI(a) |= ¬EF (c). This
means that a is tautologic.

In the rest of this section, we identify for each query type those forms of the input
signature for which the DL-atom is tautologic, or prove nonexistence of such forms.
We first consider concept queries, i.e., queries (¬)C(t) and (¬)(C 
 D), and then role
queries, for which similar results hold.

Concept queries

Concept instance. To start with, let us consider the query C(t). No matter what input
signature is considered for this type of the DL-atom, it can never be tautologic.

Proposition 2. For no input signature λ, a ground DL-atom a of the form DL[λ; C](t)
is tautologic.

4 If B is a negative (resp., positive) assertion, then ¬B is a positive (resp. negative) assertion
and we can take L0 = {¬B}. If ¬B is not an admissible assertion, we can effect ¬B by a
set of possible more restrictive axioms (e.g. we can enforce a negative role assertion ¬R(a, b)
in basic DL-Lite e.g. by L0 = {∃R � C,∃R � ¬C} and in EL++ by L0 = {∃R � ⊥}).
Note that if negative assertions were not explicitly available in the DL and the operators −∪, −∩
disallowed in DL-atoms, still the above construction may be used as e.g. in case of DL-Lite
and EL++, and thus the same characterization of contradictions holds.
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Proof. Consider a ground DL-atom a = DL[λ; C](t). Towards a contradiction, sup-
pose that λ is a signature such that a is tautologic. Thus by definition, for all ontologies
Φ and for all interpretations I it holds that Φ ∪ τI(a) |= C(t). Thus in particular, for
L = ∅ it holds that τI(a) |= C(t). We consider two cases, according to the satisfia-
bility of τI(a). (1) Suppose τI(a) is unsatisfiable. Then there must exist some S, such
that S(t) ∈ τI(a) and ¬S(t) ∈ τI(a). The presence of S(t) in τI(a) can only be
ensured if some S�p occurs in the input signature λ of a for some p. Now consider
the interpretation I = ∅. As p(t) 	∈ I , we can not get S(t) ∈ τI(a), which leads to
contradiction.

(2) Now suppose τI(a) is satisfiable. Then C(t) must be in τI(a). Similar to the
previous case, this requires that C�p occurs in λ for some p. Again I = ∅ does not allow
us to obtain C(t)∈ τI(a), hence τI(a) 	|= C(t). This contradicts our assumption. ��

Concept inclusion. For DL-atoms with concept queries of the form C 
 D and C 	
 D,
where C 	=D and neither concept is � or ⊥, we get the same result as for positive
instance queries.

Proposition 3. For no input signature λ, a ground DL-atom of the form
DL[λ; C 
 D]() or DL[λ; C 	
 D](), where C 	= D are different concept names, is
tautologic.

Proof. Consider a ground DL-atom a = DL[λ; C 
 D](), and suppose a is tautologic.
Then for every ontology Φ and interpretation I , it holds that Φ ∪ τI(a) |= C 
 D.
Let Φ = ∅ and I = ∅. Observe that τI(a) is satisfiable, as it contains only negative
assertions. Let c be a fresh constant; then Φ′ = Φ∪τI (a)∪{C(c),¬D(c)} is satisfiable,
and Φ′ 	|= C 
 D. By monotonicity of |=, it follows Φ ∪ τI(a) 	|= C 
 D. Thus a is
not tautologic, which is a contradiction.

The proof for a = DL[λ; C 	
 D]() is similar. ��

Out of the remaining concept queries, only the following (straightforwardly) give rise
to tautologic DL-atoms.

Proposition 4. A ground DL-atom of the form DL[λ; Q]() is a tautology iff Q=C 

C, Q=C 
 �, or Q=� 	
 ⊥, for any C ∈ Pc ∪ {⊥,�}.

Negative concept instance. Finally, we investigate the forms of tautologic DL-atoms
with a query ¬C(t).

Proposition 5. A ground DL-atom a with the query ¬C(t) is tautologic if and only if
it has one of the following forms:

c1. DL[λ, C −∩ p, C −∪ p; ¬C](t),

c2. DL[λ, C −∩ p,D� p,D −∪ p; ¬C](t),

c3. DL[λ,C−∩p0,C0 � p0, C
0−∩p′0,

C1 � p1, C
1−∩p′1, . . . , Cn � pn, C

n−∩p′n, C−∪pn+1; ¬C](t),

c4. DL[λ,C−∩p0,C0 � p0, C
0−∩p′0,

C1 � p1, C
1−∩p′1, . . . , Cn � pn, C

n−∩p′n, D � pn+1D−∪p′n+1; ¬C](t),
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where for every i = 0, . . . , n+ 1, pi = p′j for some j < i or pi = p0, and p′n+1 = p′ij
for some j ≤ n or p′n+1 = p0.

Informally, the lists of (c3) and (c4) include a “chain” p = p0 ⊆ pj1 ⊆ pj2 ⊆ pjk =
pn+1 resp. p = p0 ⊆ pj′1 ⊆ pj′2 ⊆ pj′

k′ = p′n+1. The proof of this proposition is given
in the extended paper [5]; likewise for subsequent results that are stated without proof.

Example 6 (cont’d). The DL-atom a = DL[EF −∩ fr, S −∪fr, S � fr; ¬EF ](c) is an
example of the tautologic form (c2). However, the DL-atom in the program of Exam-
ple 1 is not of any form (c1)–(c4), and thus in general not tautologic.

Role queries. A careful analysis reveals that the result for tautologic DL-atoms with
concept instance queries carries over to the case when the query Q(t) is a role instance
query. The same holds for negative concept and role instance queries, when the concept
names C,D are replaced with names R1, R2 (and the predicates p, q are binary). For the
latter consider a = DL[τ ; ¬R](t) that is tautologic. Following the analysis in Propo-
sition 5, which is generic in the arity of the tuple t, necessarily the existence of roles
R1 and R2 instead of C resp. D, and binary instead of unary input predicates p and q
can be concluded, For example, the form (c3) above for the role query ¬R1 results in
DL[γ, R1 −∩ p,R2 −∩ q, R2 � p,R2 −∪ q; ¬R1](t), where R1, R2 are roles and p, q are
binary predicates. More formally, the following is obtained.

Proposition 6. Propositions 2 and 5 hold if C and D are replaced by role names R1

and R2, respectively (and p and q are binary instead of unary).

Thus, as an interesting consequence, there is no interference of concept and role names
in tautologic DL-atoms.

Axiomatization. Based on the results above, we obtain a calculus for the derivation of
all tautologic DL-atoms as follows. The axioms are:

a0. DL[; Q](),
a1. DL[S −∩ p, S −∪ p; ¬S](t),
a2. DL[S −∩ p, S′ � p, S′ −∪ p; ¬S](t),

where Q=S 
 S, Q=S 
 �, or Q=� 	
 ⊥, S, S′ are either distinct concepts or
distinct roles, and p is a unary resp. binary predicate.

The first rule of inference is reflecting the monotonicity of DL-atoms wrt. increasing
input signatures:

Expansion DL[λ; Q](t)

DL[λ, λ′; Q](t)
(e).

The following rules state that an update predicate p may be replaced by q, if the latter
has in case of consistent update τI(a) a larger value than p:

Increase

DL[λ, S � q, S′ � p, S′−∩q; Q](t)

DL[λ, S � p; Q](t)
(in1),

DL[λ, S−∪q, S′ � p, S′−∩q; Q](t)

DL[λ, S−∪p; Q](t)
(in1).
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Let Ktaut denote the respective calculus.

Lemma 1. Every ground DL-atom a of form (c1) – (c4) is derivable from axioms a1
and a2 using the rules (e), (in	), and (in−∪).

Since also correctness of the rules is easily establish we have:

Theorem 1. The calculus Ktaut is sound and complete for the theory of tautologic
ground DL-atoms.

Proof. Soundness. It is easily seen that the rules (e), (in−∪), and (in	) are sound. Indeed
if a′ results from a by rule (e), then τI(a′) ⊇ τI(a); if a′ results from a by rule (in	)
resp. (in−∪), then either τI(a′) is unsatisfiable or again τI(a′) ⊇ τI(a) (and in case of
satisfiability pI ⊆ qI must hold).

Completeness. The completeness of the theory follows, as regards concept queries,
from Propositions 2–5, and Lemma 1, and as regards roles from Proposition 6. ��

Notice that in fact Ktaut is minimal, i.e., no axiom scheme or inference rule is redun-
dant.

4 Independence under Inclusion

In the previous section, we considered the existence of contradictory and tautologic DL-
atoms in DL-programs in the general case, assuming that the rules of the DL-program
are arbitrary. However, by simple analysis or by assertions, we might have information
about the relationship between rule predicates that must hold in any model or answer
set.

For example, suppose that a DL-program contains the rule

q(X)← p(X). (3)

It imposes an inclusion constraint on the predicates p and q, i.e., for every model I of
the program, pI ⊆ qI must hold. If p and q are input predicates for DL-atoms, then the
rule (3) might affect the independence behavior of a DL-atom in the program: relative
to the inclusion constraint, it might be tautologic. Similar rules might state inclusions
between binary input predicates, e.g.

q(X,Y )← p(X,Y ), (4)

q(Y,X)← p(X,Y ); (5)

also projections, e.g.

r(X)← p(X,Y ), or r(Y )← p(X,Y ), (6)

(of p on r) might occur. An interesting question is how the presence of such predicate
constraints influences the independence behavior, which we address in this section.
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We call any rule
q(Y1, . . . , Yn)← p(X1, . . . , Xm) (7)

where n ≤ m and the Yi are pairwise distinct variables from X1, . . . , Xm an inclusion
constraint (IC); if n=m, we also write p ⊆ q if Yi=Xi and p ⊆ q− if Yi =Xn−i+1,
for all i=1, . . . , n. Moreover, for the calculus for tautologic DL-atoms under inclusion
constraints as developed in this section, we consider an extended language including
p− as a name, representing for every p ∈ Po its inverse as defined above. By Cl(C) we
denote the closure of C, i.e., the set of all ICs which are satisfied by every interpretation
I such that I |= C. In particular note that p ⊆ q− |= p− ⊆ q.

Let us now consider the impact of a set C on independence. To this end, we consider
independence relative to C, i.e., the interpretations I, I ′ in Definition 1 must satisfy C.

Example 7 (cont’d). Reconsider P in Example 1. We can include rule (2) (also written
ex ⊆ vi) as an inclusion constraint to the set C, and also rule (4). Moreover, as none
of the fruits is known to be bitter in our context, we additionally include ex ⊆ sw in C.
The closure Cl(C) moreover contains the ICs vi(X)← so(X,Y ) and sw← so(X,Y ).

4.1 Contradictory DL-atoms

In what follows, we show that the presence of inclusion constraints C does not change
the result regarding contradictory DL-atoms as obtained for the general case.

Proposition 7. Let a = DL[λ; Q](t) be a ground DL-atom. Then a is contradictory
relative to a set C of inclusion constraints iff λ = ε and Q(t) is unsatisfiable.

Proof. (If) Identical to the if-part of the proof of the Proposition 1.
(Only If) We use the same reasoning as in Proposition 1. If λ 	= ε then we can always

find an interpretation I0 such that λI0(a) 	= ∅; indeed, we can use I0 = ∅, if −∩ occurs
in λ, and use I0 = HBΠ , i.e., the set of all ground atoms, otherwise. ��

4.2 Tautologic DL-atoms

Next we investigate how the list of tautologies is modified when inclusion constraints
are put on the predicates involved in them.

As we have noted above, the minimal forms of tautologic DL-atoms with concept
(resp., role) queries involve only concepts and unary input predicates (resp., roles and
binary input predicates).

An inclusion constraint of the form (6) in C (or the DL-program) will not al-
low us to get any further tautologic forms. E.g., consider the tautologic DL-atom
DL[R −∩ p,R −∪ p; ¬R](t) we intuitively should get that DL[R −∩ r, R −∪ p; ¬R](t) is also
tautologic. However, this is not a legal DL-atom, as the role R is extended by the unary
predicate r.

Dependencies of the form (5) do not allow us to obtain new tautologic DL-atoms
either. For example, consider a ground DL-atom DL[R −∪ p,R −∩ p; ¬R](a, b), which
has the form of axiom a1. If we replace the first occurrence of p by q, the resulting
DL-atom DL[R −∪ q, R −∩ p; ¬R](a, b) is not tautologic. However, for a constraint (4), it
is tautologic; it also would be in the former case if the query argument is (a, a).
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The following can be shown. For any DL-atom a = DL[λ; Q](t) and set C of ICs,
let inpa(C) denote the set of all q(Y ) ← p(X) in C such that p and q occur in λ. We
call C separable for a, if every ic ∈ inpa(Cl (C)) involves predicates of the same arity.

Proposition 8. Let a = DL[λ; Q](t) be a ground DL-atom and C a separable set of
ICs for a. Then a is tautologic relative to C iff it is tautologic relative to C′ which
contains, depending on the type of Q(t), the following constraints: (1) C′ = ∅, in case
of a (negated) concept inclusion; (2) every p ⊆ q in inpa(Cl(C)) where p, q are unary,
in case of a (negated) concept instance; (3) every p ⊆ q and p ⊆ q− in inpa(Cl(C))
where p, q are binary, in case of a (negated) role instance.

Proof (Sketch). Every model I of C is a model of C′. On the other hand, by the form of
the ICs, every model I ′ of C′ can be extended to an interpretation I such that I |= C. In
general, the intersection I of all models I ′′ ⊇ I ′, which is given by the answer set of
C ∪ I ′, fulfills the claim. Indeed, a fact a = q(c) can be in I iff it is provable from I ′

using a sequence r1, r2, . . . , rk of rules from C. As all rules are unary, a can be proved
from some fact a′ = p(c′) in C; unfolding the rules, we obtain a rule r of the form
q(Y ) ← p(X), where Y = Y1, . . . , Ym are distinct variables from X = X1, . . . , Xn.
As C |= r and C is separable for a, it follows that m = n and thus r ∈ C′, which implies
a′ ∈ I ′. Consequently, I is an extension of I ′ as claimed. ��

That is, for negative role queries we must in general take inverse predicate inclusions
into account. To this end, we consider a language including for every p ∈ Pp a name p−

for its inverse (as defined in the paper). Such an inverse can be also effected by means
of inclusions q(Y,X) ← p(X,Y ) and p(Y,X) ← q(X,Y ) in the set C of inclusion
constraints (where q is then p− and p is q−).

Each rule q(Y1, Y2) ← p(X1, X2) in C is then either an inclusion p ⊆ q or an
inclusion p ⊆ q−. Note that p ⊆ q iff p− ⊆ q− and that for unary predicates, p− = p
and is thus immaterial; furthermore, viewing ·− as an operator, (p−)− = p. We let

P(−)
p = Pp ∪ {p− | p ∈ Pp}. To see some examples, consider the tautologic form (c1)

in Proposition 5. Taking the inclusion constraint p ⊆ q into account, we obtain the
following new tautologic form:

- DL[λ, S −∩ p, S′ −∪ q; ¬S](t).

The form (c2) yields

- DL[λ, S −∩ p, S′ −∪ q, S′ � p; ¬S](t),
- DL[λ, S −∩ p, S′ −∪ p, S′ � q; ¬S](t), and
- DL[λ, S −∩ p, S′ −∪ q, S′ � q; ¬S](t),

From the tautological DL-atom for (c3), we get for n = 0 and p0 = p, C0 = S′, and
p′0 = p1 = r:

- DL[λ, S −∩ p, S′ � q, S′ −∩ r, S −∪ r; ¬S](t).

etc. For the cases when the DL-query has any of the forms S(c), C 
 D or C 	
 D,
where S is either a concept or a role and C,D are concepts, there are no new tautologies.
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4.3 Axiomatization for Tautologies

The results presented above allow us to define rules of inference for deriving tautologies
when inclusion constraints are put on the input predicates of a DL-atom.

Inclusion DL[λ, S −∪ p; Q](t) p ⊆ q

DL[λ, S −∪ q; Q](t)
(i1),

(8)

DL[λ, S � p; Q](t) p ⊆ q

DL[λ, S � q; Q](t)
(i2). (9)

The “increase” rules are slightly adapted, in comparison to the general case by taking
into account that p ⊆ q iff p− ⊆ q−:

Increase

DL[λ, S�p; Q](t)

DL[λ, S�q, S′�p, S′−∩q; Q](t)
(in	),

DL[λ, S−∪p; Q](t)

DL[λ, S−∪q, S′�p, S′−∩q; Q](t)
(in−∪),

DL[λ, S�p; Q](t)

DL[λ, S�q, S′�p−, S′−∩q−; Q](t)
(in−

� ),
DL[λ, S−∪p; Q](t)

DL[λ, S−∪q, S′�p−, S′−∩q−; Q](t)
(in−

−∪),

where p, q ∈ P(−)
p are of the same arity.

We consider the following extended set of axioms compared to the case without
inclusion constraints:

a0. DL[; Q](),
a1. DL[S −∩ p, S −∪ p; ¬S](t),
a2. DL[S −∩ p, S′ � q, S′ −∪ q; ¬S](t), where q ∈ {p, p−},

and Q=S 
 S, Q=S 
 �, or Q=� 	
 ⊥, S, S′ are either distinct concepts or
distinct roles; moreover, p is a unary or binary predicate.

The described axioms and rules together with the expansion rule defined above, form
a calculus for the derivation of tautologic DL-atoms, which we denote by K⊆

taut . The
main result of this section, following next, is its soundness and completeness.

Theorem 2. The calculusK⊆
taut is sound and complete for tautologic ground DL-atoms

a relative to any closed set of inclusion constraints C (i.e., such that C = Cl(C)) that is
separable for a.

We use our running example to illustrate the application of K⊆
taut .

Example 8 (cont’d). Reconsider the DL-program in Example 1, and recall that no
ground instance of its DL-atom, in particular

a = DL[H � vi,H −∪ sw,A −∩ ex; ¬A](pineapple)
is tautologic. Now let us take the predicate constraints in P into account. Recall that
essentially by the rules (2) and (3), we have that {ex ⊆ vi, ex ⊆ sw}⊆Cl(C) (which
is also separable for a). We thus can derive a in K⊆

taut given C as follows:
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DL[H � ex,H −∪ ex,A −∩ ex; ¬A](pineapple)

DL[H � ex,H −∪ ex,A −∩ ex; ¬A](pineapple) ex ⊆ vi

DL[H � vi,H −∪ ex,A −∩ ex; ¬A](pineapple)
(i2)

ex ⊆ sw

DL[H � vi,H −∪ sw,A −∩ ex; ¬A](pineapple)
(i1)

The leaf of the proof tree is a DL-atom DL[H � ex,H −∪ ex,A −∩ ex; ¬A](pineapple).
It has the form of axiom a2. Hence the initial DL-atom a is, by virtue of Theorem 2,
tautologic relative to C.

The results of this section can be readily used for optimization or reasoning tasks on
DL-programs that involve ground DL-atoms, e.g. in diagnosis and repair [16,8]. They
can moreover be exploited for dealing with non-ground DL-atoms. We may call a such
a DL-atom a = DL[λ; Q](t) independent (resp. contradictory, tautologic), if each of
its ground instances has this property. From the results above, we obtain that there are
no contradictory nonground DL-atoms, and that to prove a tautologic, it is sufficient
to consider a single instance a (particular constants do not matter, and for role queries
(¬)R(t1, t2), consider different constants if possible).

Example 9. In our running example, e.g., the instance of a for X = pineapple is tauto-
logic relative to the constraints; hence a is tautologic and can be removed from rule (5).

5 Complexity

Let us now consider the complexity of determining whether a DL-atom a is indepen-
dent. To determine whether a is contradictory is trivial, given the simple forms of unsat-
isfiable DL-queries. For determining whether a is tautologic, we can use the calculus
K⊆

taut established above, and aim at a derivation of a. In the search, we need an ora-
cle for deciding whether ic ∈ Cl (C), for a given IC ic and C, to see whether a rule is
applicable.

The complexity of this oracle is in fact the dominating factor for the search. Indeed,
the inclusion rules of K⊆

taut work strictly local, in the sense that they only replace one
occurrence of an input predicate by another one, and few independent rule applications
are needed to arrive at an axiom (see below).

The complexity of deciding, given an IC ic and a set C of ICs, whether ic ∈ Cl(C),
depends on the form of the ICs. In general, the problem is decidable in polynomial
space, and it is NLogSpace-complete if the arities of the predicates in C are bounded by
a constant k. In particular, for k = 2 deciding ic ∈ Cl(C) if all predicates in ic have the
same arity, is possible using the following inference rules:

X ⊆ Y Y ⊆ Z

X ⊆ Z

X ⊆ Y

X− ⊆ Y −
X− ⊆ Y −

X ⊆ Y (10)

where X,Y, Z are meta variables which denote unary (binary) predicates. On the other
hand, the problem is NLogSpace-hard for every k ≥ 1 as it subsumes graph reachability.

We have the following result.
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Theorem 3. Given a DL-atom a and a separable set C of ICs for a, deciding whether
a is tautologic relative to C is (i) NLogSpace-complete and NLogSpace-hard even if
C = ∅, and is (ii) in LogSpace, and in fact expressible by a fixed first-order formula
(hence in AC0), if the DL query Q of a is not a negative concept resp. role query.

Proof (Sketch). By the above results on K⊆
taut , we need an oracle for ic ∈ Cl(C),

where ic involves only unary resp. binary predicates. Due to the special form of ICs,
ic ∈ Cl(C) iff ic ∈ Cl([C]2), where [C]2 is the set of all ICs in C that involve only
unary and/or binary predicates. Thus, by the observation above, an NLogSpace oracle
is sufficient.

To prove that a = DL[λ; Q](t) is tautologic, we can guess an instance of an axiom
ai from which we want to arrive at a by application of rules in K⊆

taut . Checking that
Q(t) matches the query of ai is easy, and we can check in case of a1, a2 that S−∩p
occurs in λ; we then can check whether S−∪p resp. S′�p(−), S′−∪p(−) occur in λ, and if
not, in case of a1 build nondeterministically a “chain” q0(= p) ⊆ q1 ⊆ · · · ⊆ qk such
that S′−∪qk ∈ λ and in case of a2 also a “chain” r0(= p) ⊆ r1 ⊆ · · · ⊆ rk′ such that
S′ � qk′ ∈ λ, where for every qi, we have that either qi−1 ⊆ qi (which can be checked
with the oracle), or some pair S′′ � q

(−)
i−1, S

′′−∩q(−)
i occurs in λ and similarly, for every

rj we have that either rj−1 ⊆ rj (an oracle check), or some pair S′′ � r
(−)
j−1, S

′′−∩r(−)
j

occurs in λ; building a chain stops as soon as S′−∪qi ∈ λ resp. S′ � ri ∈ λ is found (it
may else stop after a certain number of steps, but this is irrelevant here).

A simple analysis reveals that this overall algorithm is feasible, relative to the oracle,
in logarithmic space (one can cycle through the few guesses with constantly many vari-
ables, and building chains as above is feasible in nondeterministic logarithmic space, as
we just need to memorize qi, p0, pn+1 resp. p′n+1, and S′). It follows that in general,
the problem is in NLogSpace.

The problem is shown to be NLogSpace-hard via a reduction from the canonical
graph reachability problem. Let G = (V,E) be a directed graph and let s, t ∈ V
be nodes. We view each node v ∈ V as a unary predicate, and define the DL-atom
a = DL[C−∩s, λ, C−∪t; ¬C](a) where λ contains for each edge (v, w) ∈ E the elements
C(v,w) � v, C(v,w)−∩w, where C(v,w) does not occur elsewhere. Then it holds that a is
tautologic (wrt. C = ∅) iff t is reachable from s in G. Indeed, note that by its form,
a must be derived from an instance DL[C−∩s, C−∪t; ¬C](a) of a1, and that for this a
chain q0 = s ⊆ q1 ⊆ · · · ⊆ qk = t must be built to obtain C−∪t, and only the rule
(in−∪) is applicable. This chain corresponds to a path in G from s to t. Conversely from
any path s = v0, v1, . . . vk = t in G, we can build a corresponding chain with elements
C(v,w) � v, C(v,w)−∩w in λ using the rule (in−∪).

Finally, if Q is not a negative concept resp. role query, then for a to be tautologic it
must be an instance of a0, which is checkable in logarithmic space and also expressible
by a FOL formula φ over a relational structure (roughly, a plain SQL query over a
database) that stores in suitable relations: all triples Si opi pi in λ, using Si, opi, and pi
as constants; the query Q(t); and all inclusions p ⊆ q(−) from Cl(C). In fact, φ can be
fixed, and the relations are easily assembled from a and C. As evaluating a fixed FOL
formula over relational structures is in AC0, we obtain the result. ��
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6 Conclusion and Future Work

To the best of our knowledge, the notion of independent DL-atom has not been consid-
ered before, which is of use in optimization and for reasoning tasks on DL-programs.
We investigated the forms of tautologic and contradictory ground DL-atoms in the gen-
eral case, as well as in the case when inclusion constraints on the input predicates are
known. We showed that contradictory DL-atoms have a simple form, and we presented
a sound and complete calculus for determining tautologic DL-atoms. Based on it, we
determined the complexity of deciding this problem, and showed that the problem is
very efficiently solvable in general, as well as relative to the predicate constraints. Fur-
thermore, the results for ground DL-atoms can be easily lifted to deal with nonground
DL-atoms, and an implementation of the calculus using logic programming is rather
straightforward.

Outlook. Several issues remain for further investigation. A possible extension is to
consider DL queries which allow for non-atomic concepts, respectively roles. Some of
our results can be readily extended to such queries (e.g., to conjunctive concept/role
queries), but to get a clear picture further work is needed.

As an alternative, or in addition to ICs, further information about the DL-program
might be available relative to which independence of a DL-atom can be established.

Regarding predicate constraints, one issue is non-separable sets of inclusion con-
straints., i.e., to permit projections among input predicates of DL-atoms, for which the
presented calculus is sound but not complete. One can also imagine more general in-
clusion constraints, by relaxing the conditions to allow e.g. repetition of arguments, or
inclusion of intersections. Other possibilities are to consider exclusion constraints, or
(non-)emptiness constraints on predicates. Adopting a technical view, we could con-
sider arbitrary sets of constraints that describe an envelope of the set of answer sets of
the underlying DL-program. The study of different forms of constraints remains to be
done.

Orthogonal to rules, one may exploit information about the ontology Φ. So far, no
information about the concepts (roles) in Φ was assumed to be available, viewing Φ
as blackbox under full information hiding. However, information about Φ may lead
to further independent DL-atoms. For example, knowing that Φ |= C 
 D and that
DL[λ,C −∪ p; Q](t) is tautologic, we can infer that DL[λ,D −∪ p; Q](t) is also tauto-
logic. Incorporating such and further information into the calculus remains for future
work.
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Abstract. One of the most prominent applications of description logic ontolo-
gies is their use for accessing data. In this setting, ontologies provide an abstract
conceptual layer of the data schema, and queries over the ontology are then used
to access the data. In this paper we focus on extensions of conjunctive queries
(CQs) and unions of conjunctive queries (UCQs) with restricted forms of nega-
tions such as inequality and safe negation. In particular, we consider ontologies
based on members of the DL-Lite family. We show that by extending UCQs with
any form of negated atoms, the problem of query answering becomes undecidable
even when considering ontologies expressed in the core fragment of DL-Lite. On
the other hand, we show that answering CQs with inequalities is decidable for
ontologies expressed in DL-LiteHcore. To this end, we provide an algorithm match-
ing the known CONP lower bound on data complexity. Furthermore, we identify
a setting in which conjunctive query answering with inequalities is tractable. We
regain tractability by means of syntactic restrictions on the queries, but keeping
the expressiveness of the ontology.

1 Introduction

In recent years, the use of ontologies for accessing data has been recognised as one
of the most prominent applications of description logics (DLs) in the Semantic Web
(SW) and relational databases. The characteristic feature of ontology-based data access
(OBDA) is the use of ontologies to enrich instance data with background knowledge,
thus providing users with an interface for querying potentially incomplete data. The
importance of OBDA as a key technology for the SW has been acknowledged by the
introduction of Web Ontology Languages (OWL) and its profiles based on tractable
DLs. In the OBDA paradigm the study of query answering has mainly been focused on
answering (unions of) conjunctive queries (CQs). In particular, a fairly clear landscape
of the computational complexity of CQ answering has emerged, and specific algorith-
mic approaches have already been developed. Recently, some investigations on query
answering using query languages beyond CQs have been initiated [19,6]. In particular, a
desirable way to extend CQs, which belong to the positive existential fragment of first-
order logic, is with some form of negation. Following the large body of literature on re-
lational databases, we consider two ways of adding restricted forms of negation to CQs:

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 75–89, 2012.
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inequalities as atomic formulas (CQ �=) and safe negation (CQ¬s). In the OBDA setting,
besides the class of queries, the DL for representing the ontology needs to be specified.
Of special interest are those DLs allowing OBDA to scale to large amounts of data by
answering queries in relational database management systems (RDBMSs). This is the
case for the members of the DL-Lite family of DLs: DL-Litecore and DL-LiteHcore [4].
Remarkably, CQ answering in these logics is AC0 in data complexity, which is an im-
portant measure of complexity when large amounts of data are considered.

The aim of this paper is to continue the study initiated by Rosati [19] on answer-
ing (U)CQs�= and (U)CQs¬s in DLs of the DL-Lite family. In particular, we provide
undecidability and complexity results for answering (U)CQs�=, along with algorithmic
approaches. Moreover, inspired by recent works we introduce syntactical restrictions to
obtain tractable CQ �= answering.

Related Work

In recent years, extensions of CQs with some form of negation have been studied in
different areas of computer science related to management of incomplete information.
The main research done in this respect focuses on establishing decidability boundaries,
complexity results and algorithms for query answering. We outline relevant results in
some of these areas below.

CQs with Inequalities and Negation in Description Logics. Calvanese et al. [9]
showed that in contrast to CQs, answering CQs �= in highly expressive DL DLR is un-
decidable. Later on, Rosati [18,19] presented a deeper study on query answering with
restricted forms of negation in several DLs by considering not only inequalities but also
safe negation. Rosati shows undecidability of answering CQs with any form of negation
in the DL AL. Furthermore, Rosati shows that also answering UCQs with any form of
negation in fairly inexpressive DLs EL and DL-LiteHcore (called DL-LiteR in the paper)
is undecidable. For the case of answering CQs�= and CQs¬s in DL-LiteHcore Rosati pro-
vides a CONP-hardness result in data complexity, leaving the exact complexity of the
problem (and even decidability) open.

CQs with Inequalities in Data Exchange (DE). In their seminal work, Fagin et al. [12]
showed that in the DE setting answering UCQs�= with target constraints given by
weakly acyclic TGDs is CONP-complete. To provide an upper complexity bound
they presented a procedure based on a variant of the disjunctive chase introduced by
Deutsch et al. [11]. A remarkable contribution of this work is a PTIME algorithm for
computing certain answers of UCQs with at most one inequality per disjunct. The lower
bound for an arbitrary number of inequalities follows from a result previously estab-
lished by Abiteboul et al. [1].

CQs�= with Bounded Number of Inequalities. It is known that the complexity of
answering UCQs�= can be affected by the number of inequalities allowed per query [15].
In settings dealing with incomplete information, Abiteboul et al. [1,2] showed in their
work on answering queries via views that answering UCQs �= is CONP-complete. In
particular, their CONP-hardness proof (also utilized as a lower bound in the DE setting)
requires six inequalities. However, later on Madry [17] closed the gap in the DE setting
by showing that even the case of two inequalities is intractable.
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CQs�= with Other Syntactic Restrictions. An orthogonal restriction to that on the
number of inequalities has recently been proposed and investigated in the DE setting
by Arenas et al. [3] on extensions of Datalog with negated atoms. Their approach is to
define syntactic restrictions over the variables that can occur in inequalities. In particu-
lar, under such conditions one can have more than one inequality per disjunct without
losing tractability.

Our paper is organized as follows. In Section 2, we provide Description Logic defi-
nitions. Section 3 is dedicated to the presentation of lower complexity bounds. Section
4 investigates the establishment of matching upper bounds. Section 5 studies syntactic
restrictions over conjunctive queries with inequalities. Finally, in Section 6 we conclude
with an outlook of the contribution and future research lines.

2 Preliminaries

In this section we recall some basics on description logics (DLs) and extensions of
conjunctive queries (CQs) with negated atoms.

The Description Logic DL-LiteHcore: Syntax and Semantics

The language of DL-LiteHcore [4] contains individual names a0, a1, . . ., concept names
A0, A1, . . ., and role names P0, P1, . . .. We define complex roles R and basic concepts
B using the following grammar:

R ::= Pi | P−
i ,

B ::= ⊥ | Ai | ∃R.

A DL-LiteHcore TBox T is a finite set of concept and role inclusion axioms of the form:

B1 
 B2, B1 
 ¬B2, R1 
 R2, R1 
 ¬R2.

Whenever we find it convenient we might use B1 � B2 
 ⊥ instead of the equivalent
B1 
 ¬B2. An ABox A is a finite set of assertions of the form:

Ak(ai), Pk(ai, aj).

A DL-LiteHcore knowledge base (KB) K is a pair (T ,A) with T a TBox andA an ABox.
In the following, we denote by ind(A) the set of individual names occurring in A, and
by role±(K) the set of roles that consists of Pk and P−

k , for each role name Pk in K.
DL-Litecore is the fragment of DL-LiteHcore without role inclusion axioms in the TBox.

An interpretation I = (ΔI , ·I) consists of a nonempty domain ΔI and an interpre-
tation function ·I that assigns an element aIi ∈ ΔI to each object name ai, a subset
AI

k ⊆ ΔI to each concept name Ak, and a binary relation P I
k ⊆ ΔI × ΔI to each

role name Pk. As usual for DL-Lite, we adopt the unique name assumption (UNA):
aIi 	= aIj , for all distinct individuals ai, aj .
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The interpretation function ·I is then extended to basic concepts and complex roles:

(P−
k )I = {(y, x) ∈ ΔI ×ΔI | (x, y) ∈ P I

k }, (inverse role)

⊥I = ∅, (empty set)

(∃R)I =
{
x ∈ ΔI | there is y ∈ ΔI with (x, y) ∈ RI}. (domain/range constraints)

We define the satisfaction relation |= in a standard way:

I |= B1 
 B2 iff BI
1 ⊆ BI

2 , I |= R1 
 R2 iff RI
1 ⊆ RI

2 ,

I |= B1 
 ¬B2 iff BI
1 ∩BI

2 = ∅, I |= R1 
 ¬R2 iff RI
1 ∩RI

2 = ∅,
I |= Ak(ai) iff aIi ∈ AI

k , I |= Pk(ai, aj) iff (aIi , a
I
j ) ∈ P I

k .

A KB K = (T ,A) is satisfiable if there is an interpretation I satisfying all members of
T andA. In this case we write I |= K (as well as I |= T and I |= A) and say that I is
a model of K (and of T and A).

Conjunctive Queries with Restricted Forms of Negation

A conjunctive query (CQ) is an expression of the form

q(x) = ∃y ϕ(x,y), (1)

where x and y denote sequences of variables from a set of variables, and ϕ is conjunc-
tion of concept atoms A(t) and role atoms P (t, t′) with t, t′ terms, i.e., individual names
or variables from x,y. We call variables in x answer variables and those in y (exis-
tentially) quantified variables. We denote by var(q) the set of variables, by avar(q) the
set of answer variables x, by qvar(q) the set of quantified variables y and by term(q)
the set of terms in q. A conjunctive query with inequalities (CQ �=) is an expression of
the form (1) with each conjunct of ϕ(x,y) being either a concept or role atom, or an
expression of the form t 	= t′, where t and t′ are terms. A conjunctive query with safe
negation (CQ¬s) is an expression of the form (1) where ϕ(x,y) is formed by literals,
i.e., atoms or negated atoms, and such that each variable of each literal occurs in at least
one positive atom. A union of conjunctive queries (UCQ) is a disjunction of conjunctive
queries. UCQ �= and UCQ¬s are defined accordingly.

Query Answering over DL-Lite KBs. Let I be an interpretation and q(x) a query
with x = x1, . . . , xk. A map π : term(q) → ΔI with π(a) = aI , for a an individual
name in term(q), is called a match for q in I if I satisfies q under the variable assign-
ment that maps each answer variable xi to π(xi). For a k-tuple of individual names
a = a1, . . . , ak, a match π for q in I is called an a-match if π(xi) = aIi . We say that a
is an answer to q in an interpretation I if there is an a-match for q in I. We denote by
ans(q, I) the set of all answers to q in I. We say that a ⊆ ind(A) is a certain answer
to q over a KB K = (T ,A) if I |= q[a] for all models I of K. The set of all certain an-
swers to q overK is denoted by cert(q,K). We consider the following query answering
problem:

INPUT: A query q, a DL-LiteHcore KB K and a tuple of individuals a.
QUESTION: Is a in cert(q,K)?
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3 Lower Complexity Bounds

First, we analyse the case of unions of conjunctive queries and show that query answer-
ing with inequalities is undecidable even in the simplest of DL-Lite languages. In fact,
the following proof will demonstrate that even though the ontology language is quite
inexpressive, undecidable problems can still be encoded by means of (mostly) UCQs.
In a nutshell, the proof uses the existential quantifiers of the TBox concept inclusion
axioms to create an unbounded supply of elements, whereas the UCQ �= allows one to
express universal constraints in the following sense: the query has a positive answer iff
there is no model of the KB satisfying the negated UCQ�=, which is a conjunction of
universal sentences. This result is claimed in Theorem 8 [19], but no proof is given.

Theorem 1. Answering UCQs�= is undecidable over DL-Litecore KBs.

Proof. The proof is by reduction of (the complement of) the N × N-tiling problem,
which is known to be undecidable [14]. The N × N tiling problem is formulated as
follows: given a set T of square tile types with the four sides of each tile type t in
T coloured by top(t), right(t), bottom(t), left(t), respectively, and a tile type t0 ∈ T,
decide whether N×N can be tiled by T with t0 placed at the origin, i.e., whether there is
a function τ : N×N→ T such that τ(0, 0) = t0 and top(τ(i, j)) = bottom(τ(i, j+1))
and left(τ(i, j)) = right(τ(i + 1, j)), for all (i, j) ∈ N× N.

Given an instance of the N×N-tiling problem, we construct a DL-Litecore KB (T ,A)
that encodes the tiling problem by placing tiles over objects in its model. The top and
right neighbours of a tile are referred to by roles H and V , respectively (from the hori-
zontal and vertical successor). To represent the type of a tile we take ABox individuals
ti, for ti ∈ T, and a role T that connects a tile to its type. So, the TBox T contains the
following concept inclusions:

∃T 
 ∃H, ∃H− 
 ∃T, ∃T 
 ∃V, ∃V − 
 ∃T.

We also require two roles, NH and HV , that define impossible horizontal and vertical
tile neighbours: let AT contain

NH(ti, tj), for each ti, tj ∈ T with right(ti) 	= left(tj),

NV (ti, tj), for each ti, tj ∈ T with top(ti) 	= bottom(tj).

Consider now the UCQ �= q (without answer variables) which consists of the negations
of the following sentences:

∀x, y
(
T (x, y)→

∨
i(y = ti)

)
,

∀x, y, z, v, u
(
H(x, y) ∧ V (y, v) ∧ V (x, z) ∧H(z, u)→ (u = v)

)
,

∀x, y, x′, y′
(
H(x, y) ∧ T (x, x′) ∧ T (y, y′) ∧NH(x′, y′)→ ⊥

)
,

∀x, y, x′, y′
(
V (x, y) ∧ T (x, x′) ∧ T (y, y′) ∧NV (x

′, y′)→ ⊥
)
.

It can be shown that q has a negative answer over (T ,AT∪{T (a, t0)}) iff T tiles N×N

with t0 placed at the origin. Indeed, if q has a negative answer then the above formulas
guarantee that each tile object is related to one of the ti, that the H- and V -successors
from a proper N× N-grid and, finally, that the adjacent colours match.
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We remark in passing that answering UCQs with safe negation is undecidable even
over extremely simple ontology languages [19], including DL-Litecore. Although the
proof of Theorem 15 [19] does not directly apply to DL-Litecore, it can easily be adapted
for our language:

Theorem 2 ([19]). Answering UCQs¬s is undecidable over DL-Litecore KBs.

We show that even in the case of conjunctive queries adding inequalities makes the
query answering problem in DL-Litecore harder. In particular, we show that answer-
ing CQs�= is CONP-hard in data complexity in contrast to answering CQs, which is
in AC0. Our result strengthens Theorem 15 [19], which claims CONP-hardness for
DL-LiteHcore and refers to Abiteboul and Duschka [2] for the proof. That proof, however,
is for a different first-order setting and, if translated to the language of DL, would re-
quire role inclusions and a sort of a counting quantifier in the CQ, which of course, can
be expressed using inequality. We mention in passing that this proof would also imply
CONP-hardness (in data complexity) of the satisfiability problem for the extension of
DL-Litecore with arbitrary number restriction (cf. Theorem 8.4 [4]). Although the proof
we present below is inspired by Theorem 3.4 [2], it does not use role inclusions and
requires a more sophisticated query instead.

Theorem 3. Answering CQs�= over DL-Litecore KBs is CONP-hard in data complexity.

Proof. The proof is by reduction of the complement of 3CNF. Suppose we are given
a 3CNF ϕ with n clauses and m variables. We construct a KB (T ,Aϕ) and a query q
such that both T and q are fixed (i.e., do not depend on ϕ) and ϕ is satisfiable iff q has
a negative answer over (T ,Aϕ). We present the construction in two steps. To aid our
explanations, we consider a model of (T ,Aϕ) in which q is false.

First, we take a concept name V to stand for the set of variables of ϕ and three indi-
viduals v0j , v

1
j , xj , for each of the m variables xj of ϕ: one may think that v0j represents

the literal ¬xj and v1j represents the literal xj . The ABoxAϕ contains, for each xj , the
following assertions:

V (xj), P0(xj , v
0
j ), P1(xj , v

1
j ), P2(xj , xj) and R1(xj , t),

where t is a fresh individual (t stands for true) and P0, P1, P2 and R1 are role names.
So, every xj has a Pi-successor, for each 0 ≤ i ≤ 2, and an R1-successor; moreover,
by the UNA, the R1-successor is distinct from the Pi-successors. Then, the TBox T
contains the following two concept inclusions

V 
 ∃R0 and V � ∃R−
0 
 ⊥,

where R0 is a fresh role name, to ensure that every xj also has an R0-successor and
that R0-successor is not xj itself; see Fig. 1 (a).

Consider now a CQ �= q (without answer variables) which is equivalent to the follow-
ing sentence:

∀x, y1, y2, y3, z0, z1
( 2∧
i=0

Pi(x, yi) ∧
∧

k=0,1

Rk(x, zk) →
∨

k=0,1

2∨
i=0

(yi = zk)
)
.
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Fig. 1. Constellations of points in the proof of Theorem 3

If q has a negative answer then, for any point with Pi- and Rk-successors, either its
R0- or its R1-successor coincides with one of the Pi-successors. In particular, when
applied to individuals xj , this means that the R0-successor must coincide either with
v0j or v1j —in the latter case the literal ¬xj (represented by v0j ) is chosen false by R0

(and so, we say the variable xj takes value true) and in the former case the literal xj

(represented by v1j ) is chosen false by R0 (and we say xj takes value value false).
Second, we encode clauses in a similar way: we take a concept name C to stand for

the set of clauses of ϕ and an individual ci, for each of the n clauses of ϕ. Then the
ABox Aϕ contains the following assertions, for each clause ci = Li0 ∨ Li1 ∨ Li2:

C(ci), P0(ci, �i0), P1(ci, �i1), P2(ci, �i2) and R0(ci, f),

where �ik = v0j if Lik = ¬xj and �ik = v1j if Lik = xj , for each 0 ≤ k ≤ 2, and f
is a fresh individual (f stands for false). Similarly to the case of variables, we need the
following concept inclusion in TBox T :

C 
 ∃R1,

which, together with the ABox, ensures that every ci has Pi-successors, for 0 ≤ i ≤ 2,
an R0-successor (distinct from the Pi-successors) and an R1-successor; see Fig. 1 (b).
But then, if q has a negative answer, the R1-successor must coincide with one of the
Pi-successors. This choice of the Pi determines the literal of the clause that is required
to be true—if the R1-successor of ci is v0j then the variable xj needs to be false and if
it is v1j then xj needs to be true.

To sum up, the R1-successors of the ci identify the literals v0j /v1j required to be true,
while the R0-successors of the xj choose the literals v0j /v1j required to be false. So, the
last concept inclusion of T ensures the choices are consistent:

∃R−
0 � ∃R−

1 
 ⊥.

It should be clear that q has a negative answer over (T ,Aϕ) iff the 3CNF ϕ is satisfiable.

4 Answering CQs�= in DL-LiteHcore: Upper Complexity Bound

In this section, a CONP in data complexity algorithm to decide CQ �= answering in
DL-LiteHcore is provided. We begin by recalling some important notions and properties
of canonical models.
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Canonical Model

The notion of the canonical model in DLs [8,4,16] is related to those of the chase, uni-
versal model and universal solution present in data exchange and data integration set-
tings [11]. A key characteristic of DL-LiteHcore ontologies is that they can be regarded as
sets of Horn clauses, and so, for every satisfiable DL-LiteHcore KBK, there is a universal
model U that can be homomorphically embedded into every other modelJ ofK. Since,
the positive classes of queries such as CQs are preserved under homomorphisms, uni-
versal models clearly become handy in tackling the query answering problem in Horn
DLs such as DL-LiteHcore [8,16]. Next, we recall the definition of universal and canonical
models, as well as, some properties to be used in the rest of the paper.

Definition 1. Given two interpretations I = (ΔI , ·I) and J = (ΔJ , ·J ), a homo-
morphism from I to J is a mapping h : ΔI → ΔJ satisfying the following conditions:
1. h(aI) = aJ , for each individual name a,
2. h(d) ∈ AJ , for every d ∈ AI and each concept name A,
3. (h(d), h(e)) ∈ PJ , for every (d, e) ∈ P I and each role name P .

An interpretationU is said to be a universal model of a KBK if, for every interpretation
J with J |= K there exist a homomorphism from U to J .

Since CQs, and more generally UCQs, are positive existential formulas, they are
preserved under homomorphisms and so, a standard way of computing certain answers
to a given UCQ q over a KB K is evaluating q in a universal model U of K:

Lemma 1. Let K be a satisfiable DL-Lite KB and let U be a universal model of K.
Then cert(q,K) = ans(q,U), for each UCQ q.

Kontchakov et al. [16] present a way of constructing a universal model of a given a KB
K = (T ,A). The constructed model is called the canonical model of K and is denoted
UK.

(i) First, the ABox A is saturated by applying the concept and role inclusions of T
in a bottom-up fashion: e.g., if A(a) ∈ A and T |= A 
 A′ then the ABox is
extended by A′(a). Note that at this stage existential quantifiers do not create any
new individuals. We denote the resulting ABox byA+.

(ii) On a second stage, new individuals dR for roles R are created to witness all ex-
istential quantifiers that are not witnessed in the ABox A+: e.g., if A(a) ∈ A+

and T |= A 
 ∃R but A+ does not contain R(a, b), for any b, then the ABox is
extended by all S(a, dR)1 for all T |= R 
 S and all A(dR) with T |= ∃R− 
 A;
the generating relation � is extended by (a, dR); note that a here is not necessarily
an individual from the ABox A and can also be another dS .

The ABox resulting from applying (i) and (ii) is clearly finite; the interpretation de-
termined by this ABox is called the generating interpretation and is denoted by IK.
However, IK is not necessarily a universal model. A standard way to construct a uni-
versal model from IK is to unravel it into a forest-shaped interpretation. A path in IK is
a finite sequence adR1 · · · dRk

k ≥ 0, where a ∈ ind(A), a � dR1 and dRi � dRi+1 .

1 We write R(a, b) ∈ A for P (a, b) ∈ A if R = P and P (b, a) ∈ A if R = P−.
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We use paths(IK) to denote the set of all paths in IK and tail(σ) to denote the last
element of a path σ ∈ paths(IK). The canonical model UK of K is then defined as
follows:

ΔUK = paths(IK),
aUK = a, for all a ∈ ind(A),
AUK = {σ ∈ ΔUK | tail(σ) ∈ AUK},
PUK = {(a, b) ∈ ind(A)× ind(A) | P (a, b) ∈ A} ∪

{(σ, σ · dR) ∈ ΔUK ×ΔUK | T |= R 
 P} ∪
{(σ · dR, σ) ∈ ΔUK ×ΔUK | T |= R 
 P−}.

The canonical model UK of K enjoys the following structural properties:

(abox) (ai, aj) ∈ RUK iff R(ai, aj) ∈ A+, for all individuals ai, aj and roles R;

(forest) the graph G = (ΔUK , E) with E = {(σ, σ · dR) | σ · dR ∈ ΔUK} is a forest;
moreover, each ABox individual a induces a partitioning of the graph into disjoint
labelled trees Ta = (Ta, Ea, �a) with nodes Ta = {σ ∈ ΔUK | σ = a · σ′}, edges
Ea = E ∩ (Ta × Ta) and labelling function �a : Ea → role±(K) such that, for
every σ, σ′ ∈ Ta, we have (σ, σ′) ∈ PUK iff

either �a(σ, σ′) = R and T |= R 
 P or �a(σ
′, σ) = R and T |= R 
 P−;

(iso) for each role R, all labelled subtrees generated by σ · dR ∈ ΔUK are isomorphic.

The following lemma is a consequence of the results by Kontchakov et al. [16]:

Lemma 2. A DL-LiteHcore KB K is satisfiable iff UK |= K.

In contrast to the classical CQ answering problem, certain answers to CQ �=s over a
KB K cannot be obtained by evaluating queries in the canonical model UK. The main
reason for this is that CQ �=s are not preserved under homomorphisms. Hence, the fact
that a ∈ ans(q,UK) does not necessarily imply that a ∈ ans(q, I), for every model I
of K. We illustrate this situation by the following example, which is adapted from [11].

Example 1. Let K = (T ,A) be a KB and q a CQ �= with

T = {∃R1 
 ∃R2, ∃R−
1 
 ∃R−

3 , ∃R−
2 
 ∃R3},

A = {R1(a1, b1)},
q(x, z) = ∃y, y′

(
R1(x, z) ∧R2(x, y) ∧R3(y

′, z) ∧ (y 	= y′)
)
.

The canonical model UK is depicted in Fig. 2 on the left; it can be seen that
ans(q,UK) = {(a1, b1)}. However, there is a model J of K, depicted in Fig. 2 on
the right, where ans(q,J ) = ∅. Therefore, cert(q,K) = ∅.

The Decision Procedure

We proceed to show that the CONP lower complexity bound from Theorem 3 is in fact
tight for answering CQs�= over DL-LiteHcore KBs and provide an algorithm for deciding
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Fig. 2. The canonical model UK of K and another model J of K

CQ �= answering: this non-determinist algorithm will require time polynomial in the
size of the given ABox. We observe that the problem of deciding, given a CQ �= q and
a KB K, whether a ∈ cert(q,K) can be reduced to the problem of deciding whether
cert(q(a),K) 	= ∅, where q(a) is the query obtained by substituting x in q by a; thus,
q(a) has no answer variables and is usually called a Boolean query. Furthermore, by the
certain answer semantics, we can consider the problem of answering Boolean queries
as a logical entailment problem, i.e., cert(q,K) 	= ∅ iff K |= q, i.e., I |= q in every
model I of K. So, cert(q,K) = ∅ iff

K ∪ ¬q is satisfiable, i.e., there is a model I of K such that I |= ¬q. (2)

It is not hard to see that there is a correspondence between negated CQ �=s and so-called
disjunctive EGDs.

We remind the reader that an equality-generating dependency (EGD) [5] is a formula
of the form ∀x

(
φ(x) → (x1 = x2)

)
, where x1, x2 are among the variables in x. A

disjunctive EGD [12] is a formula of the form

∀x
(
φ(x)→

n∨
i=1

(x1
i = x2

i )
)
. (3)

Note that an EGD is a disjunctive EGD whose right-hand side has only one equality.
Given a Boolean CQ �= q = ∃x (φ(x)∧

∧
i(x

1
i 	= x2

i )), whereφ(x) is a conjunction of
concept and role atoms, it should be clear that ¬q is logically equivalent to a disjunctive
EGD of the form (3). Disjucntive EGDs are clearly able to express concept inclusion
axioms with arbitrary number restrictions (in particular, functionality of roles), which
is known to increase the complexity of reasoning in DL-Lite [7].

The previous discussion suggests the following algorithm to check condition (2):
non-deterministically guess a modelJ ofK and then check in polynomial time whether
J satisfies ¬q. In order to obtain the CONP result, J needs not only to be finite but also
small enough—at most polynomial in the size of the ABox of K. Unfortunately, this
straightforward approach is too naive. Indeed, since disjunctive EGDs allow to express
global functionality of roles, and the extension of DL-LiteHcore with functional roles does
not enjoy the finite model property then we cannot guess a finite model J and check
whether J |= ¬q, as shown by the following example.

Example 2. Let K = (T ,A) with T = {∃P− 
 ∃P, A 
 ¬∃P−, A 
 ∃P},
A = {A(a)} and q = ∃x, y1, y2

(
P (y1, x) ∧ P (y2, x) ∧ (y1 	= y2)

)
, which ‘says’ that
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P− is functional. The canonical model UK is an infinite P -chain starting at a, whence
UK |= ¬q. However, there is no finite model ofK satisfying ¬q. In fact, for every model
J of K with J |= ¬q there is an injective homomorphism from UK to J .

In order to have an effective algorithm we need then to find a way to simulate the
possibly infinite model of a KB K in a small finite initial fragment of the canonical
model UK of K. We start by recalling that for answering CQs only a linear number (in
the size of the TBox of K) of existential witnesses are need to be considered [4,16].
Next, we show that for answering CQs�= in DL-LiteHcore it is also enough to consider
only a linear number of existential witnesses for falsifying the inequalities in q. The
main difference is that for answering CQs�= we need to try all possible configurations
of identifying objects in the initial fragment of the model, and hence the increase in
complexity.

Let us fix a DL-LiteHcore KB K = (T ,A) and a CQ �= q for the rest of this section. An
expansion A′ of A is a (possibly infinite) set of assertions (in the signature of T ) that
contains A and whose individuals are taken from the domain of the canonical model
UK of K. In other words, an expansion is a description of a part of the canonical model
UK. Consider now a disjunctive EGD of the form (3) which is equivalent to ¬q. We
associate with it the following set E of individual EGDs:

E =
{
∀x

(
φ(x)→ (x1

1 = x2
1)
)

︸ ︷︷ ︸
e1

, . . . , ∀x
(
φ(x)→ (x1

n = x2
n)
)

︸ ︷︷ ︸
en

}
.

Definition 2. Let A′ be an ABox expansion ofA and h a homomorphism from φ(x) to
A′. We say that ei is applicable toA′ with h if h(x1

i ) 	= h(x2
i ) and the result of applying

ei to A′ with h is one of the following:

(fail) a failure, in which case we write A′ h,ei−→ ⊥, if either
1. h(x1

i ), h(x
2
i ) ∈ ind(A), or

2. B1(h(x
1
i )), B2(h(x

2
i )) ∈ A′, for some T |= B1 �B2 
 ⊥, or

3. R1(a, h(x
1
i )), R2(a, h(x

2
i )) ∈ A′, for a ∈ ind(A′) and T |= R1 
 ¬R2;

(id) an ABox expansion A′′ (written A′ h,ei−→ A′′) obtained by identifying h(x1
i ) and

h(x2
i ): every occurrence of x1

i and x2
i is replaced by xk

i , if h(xk
i ) ∈ ind(A) for

k = 1 or 2, and by x1
i , otherwise (the choice of x1

i here is arbitrary as neither of
them is in the ABox).

We say that E is applicable to A′ with h if ei is applicable to A′ with h for every
1 ≤ i ≤ n. The result of applying E to A′ with h is the set {A′

1, . . . ,A′
n}, where each

A′
i is the result of applying ei toA′ with h; we writeA′ h,E−→ {A′

1, . . .A′
n} in this case.

If everyA′
i = ⊥we say that the application of E toAwith h fails, and writeA′ h,E−→ ⊥;

otherwise we say it is non-failing.
We first show some technical results on disjucntive EGD applications. The following

is an easy consequence of the definition of (non-failing) application of E to an ABox
expansionA′:
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Proposition 1. Let A′ be a finite ABox expansion of A and A′ h,E−→ {A′
1, . . .A′

n} a
non-failing application of E to A′. Then dom(A′) ⊇ dom(A′

i), for all 1 ≤ i ≤ n with
A′

i 	= ⊥.

In fact, given any model J of K, every homomorphism from an ABox expansion to J
can be extended to a homomorphism from a non-failng application of E:

Lemma 3. Let A′ be a finite ABox expansion of A and A′ h,E−→ {A′
1, . . .A′

n} a non-
failing application of E to A′ with h and J a model of K such that J |= ¬q and there
is a homomorphism g from A′ into J . Then there exists a homomorphism gj from A′

j

into J for some 1 ≤ j ≤ n.

Now we consider non-failing sequence of application of E, which are sequence of the

form A′ h1,ei1−→ A′
1

h2,ei2−→ . . .
hk,eik−→ A′

k with 1 ≤ ij ≤ n and A′
j 	= ⊥, for every

1 ≤ i ≤ k. It turns out that after applying a non-failing application of EGD in some
part of the ABox expansion the successive applications of the disjunctive EGD do not
“use the same match”, and therefore, the process will eventually either succeed on the
application or fail:

Proposition 2. For every non-failing sequence A′ h1,ei1−→ A1
h2,ei2−→ . . .

hk,eik−→ Ak of
applications of E, we have hj(x) 	= hj′(x), for all 1 ≤ j < j′ ≤ k and all x ∈ x.

Next, we show that for checking whether there is a model I ofKwith I |= ¬q it suffices
to apply E to an ABox expansion Â that corresponds to the canonical model ‘truncated’
to points of depth up to N = |role±(K)| + |q|. More formally, given a natural number
N , the truncation UN

K of the canonical model UK to depth N is the restriction of UK to
the following domain:

ΔUN
K = {σ ∈ ΔUK | ‖σ‖ ≤ N},

where ‖σ‖ is the length of a path σ. By Proposition 2, there is a bound on the num-
ber of possible applications of E to Â. More precisely, the length of every application
sequence of E to Â is bounded by a polynomial in the size of A.

Finally, we show the following:

Lemma 4. Let Â the ABox expansion ofA induced the truncation UN
K of the canonical

model UK ofK to depth N = |role±(K)|+|q|. The following statements are equivalent:
1. there exists a model J of K such that J |= ¬q;

2. there is a sequence e1, . . . , ek of elements of E such that Â h1,e1−→ A1
h2,e2−→ . . .

hk,ek−→
Ak is non-failing andAk satisfies ¬q.

Now, given a DL-LiteHcore KB K = (T ,A) and a CQ �= q, our algorithm for checking
condition (2) works as follows:
1. It constructs the ABox expansion Â ofA induced by UN

K , forN = |role±(K)|+|q|.
2. Guesses a sequence Σ of elements of E.
3. Checks whether E is satisfied after the application of Σ to Â.

It is not hard to see that this non-deterministic algorithm runs in polynomial time in
the size of the ABox. So, by (2) and Lemma 4, we obtain a matching upper bound for
Theorem 3, which results in the following:
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Theorem 4. Answering CQs�= over DL-LiteHcore KBs is CONP-complete in data
complexity.

5 Tractable Cases

In this section, we define syntactic restrictions on the class of CQs�= in order to achieve
tractability of CQ �= answering in DL-LiteHcore. In the data exchange setting (DE) it has
been shown that answering CQs�= with at most two inequalities in the presence of tar-
get constraints expressed by weakly acyclic TGDs is CONP-complete in data complex-
ity [17]. In the case of DLs, we note that even very simple DL-LiteHcore TBoxes are not
weakly acyclic. On the other hand, the reductions used for proving CONP-hardness of
the CQ �= answering problem in the DE setting make use of ternary relations, which is
outside the expressive power of DL-LiteHcore. Up to this point, we can only conjecture
that answering CQs�= in DL-LiteHcore that contain at least two inequalities is CONP-hard.
Therefore, we based our syntactic restrictions on the latter assumption.

We shall consider CQs with at most two inequalities. Roughly, in order to have a
polynomial algorithm in data complexity for checking that K |= q or alternatively that
K ∪ ¬q is unsatisfiable, we need to be able 1) to simulate the infinite chase in a finite
search space and 2) perform the evaluation using a small amount of space (e.g., constant
in the size of the ABox). In order to have a correct and complete algorithm fulfilling
these conditions, we impose syntactic restrictions enforcing that, for every possible
match π for a query q in a given interpretation I and for every inequality x1

i 	= x2
i in q,

either π(x1
i ) = a or π(x2

i ) = a, for some individual name a. This condition is enough
to ensure polynomial-time query evaluation because, although this kind of inequalities
are not preserved under homomorphisms, they induce only few possible models.

We adopt and adapt the notions of constant joins and almost constant inequalities
introduced by Arenas et al. [3]. For defining these notions in the DL setting, it is conve-
nient to identify the concepts that may need to be ‘realised outside’ the ABox in every
model of a KB.

Definition 3. Let T be a DL-LiteHcore TBox. A concept ∃R is called affected in T if
either
1. T |= A 
 ∃R−, for some concept name A, or

2. T |= ∃S 
 ∃R−, for some role S with T 	|= S 
 R−.

We say an inequality (x1 	= x2) in q is almost constant for T if q contains either some
R(t, x1) or some R(t, x2) such that ∃R− is not affected in T . Intuitively, queries with
almost constant inequalities ensure that at least one variable in each inequality is forced
to be an ABox individual. A query q is said to have constant joins for T if either ∃R−

1

or ∃R−
2 is not affected in T , for every join R1(t1, t), R2(t2, t) in q. This means that t

has to be mapped to an ABox individual by every possible match for q in any model of
the KB.

Definition 4. A CQ �= q is said to be safe if one the following conditions holds:
1. q has no inequalities,
2. q has exactly one inequality, which is almost constant,
3. q has exactly two inequalities, which are almost constant, and constant joins.
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Intuitively, to falsify the inequalities in a safe CQ �= it suffices to consider only inequal-
ities of the form a1 	= d and a1 	= a2, where a1, a2 ∈ ind(A) and d is an anonymous
individual in the canonical model, i.e., a path in ΔUK of the form σ · dR. This means,
that q can actually be evaluated in the ABox expansion corresponding to the generating
interpretation IK.

Given a safe CQ�=, we need to provide an algorithm for deciding whether K |= q.
The algorithm presented in Section 4 considers a truncation of the canonical model UK
of K for evaluating ¬q. However, in this case—as we argued above—by the syntactic
restrictions on q, the evaluation requires only to consider the generating interpretation
IK as in the case for queries without inequalities and suggests that we can adapt the
combined approach for query answering [16] by making minor changes to the rewriting
of q. Thus, we obtain the following result:

Theorem 5. Answering safe CQ �= over DL-LiteHcore KBs is in AC0 in data complexity.

6 Conclusions

The known and obtained complexity results on answering CQs and UCQs with safe
negation and inequalities are presented in the table below:

CQ �= UCQ �= CQ¬s UCQ¬s

DL-Litecore
CONP

Thms. 3, 4
undec.
Thm. 1

CONP-hard
[19, Thm. 13]

undec.
Thm. 2

DL-LiteHcore
CONP

[19, Thm. 6]
Thm. 4

undec.
[19, Thm. 8]

CONP-hard
[19, Thm. 13]

undec.
[19, Thm. 15]

We have presented some further steps towards a systematic study of query answering
in DLs when extensions of CQs with negated atoms are considered. In particular, we
build on previous work by Rosati [19], and extend this investigation by adapting tech-
niques from such areas as data exchange to identify tractable cases of CQ �= answering
in logics from the DL-Lite family. Clearly, more investigations needs to be done to con-
struct a complete picture of the computational complexity and to develop algorithmic
approaches. We outline below some research questions we will address in the future:

1. Investigating query answering with inequalities in other logics of DL-Lite family
and EL family.

2. Closing the gap on the number of inequalities needed to make CQ �= answering
intractable in DLs of the DL-Lite family.

3. An interesting and challenging problem is the development of a decision proce-
dures for answering CQs¬s. We also plan to consider other types of negation such
as Boolean combinations of CQs (BCCQs) advocated in areas related to the man-
agement of incomplete information [10,13].
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Abstract. Establishing a generic approach to representing and querying
temporal data in the context of Description Logics (DLs) is an important,
and still open challenge. The difficulty lies in that a proposed approach
should reconcile a number of valuable contributions coming from diverse,
yet relevant research lines, such as temporal databases and query answer-
ing in DLs, but also temporal DLs and Semantic Web practices involving
rich temporal vocabularies. Within such a variety of influences, it is crit-
ical to carefully balance theoretical foundations with good prospects for
reusing existing techniques, tools and methodologies. In this paper, we
attempt to make first steps towards this goal. After providing a compre-
hensive overview of the background research and identifying the core re-
quirements, we propose a general mechanism of defining temporal query
languages for time-stamped data in DLs, based on combinations of linear
temporal logics with first-order queries. Further, we advocate a controlled
use of epistemic semantics in order to warrant practical query answering.
We systematically motivate our proposal and highlight its basic theoret-
ical and practical implications. Finally, we outline open problems and
key directions for future research.

1 Introduction

The use of Description Logic (DL) ontologies for describing and interpreting
data is acknowledged by now as a self-standing paradigm of data management
in different areas of computer science — most prominently on the Semantic Web
(SW), where DL-based ontology languages play a key architectural role. One big
and yet unresolved challenge in this context, called for by numerous applications,
is to formally incorporate and operationalize the notion of data’s validity time,
i.e. the explicitly declared time span within which the data is known to be true.

Problem: In this paper, we study the problem of managing temporal data in the
framework of DLs. Our goal is to make first steps towards establishing a unifying
approach to representing and querying such data under DL ontologies. Given the
multifaceted nature of the problem and the scope of expected applications, one
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of main challenges which must be faced lies in reconciling a number of valuable
contributions developed within diverse research areas. In particular:

– temporal databases : for ensuring commensurability with the commonly adop-
ted temporal data models for representing validity time and with standard
query languages based on temporal first-order logic,

– query answering in DLs: for enabling transfer of known query answering
techniques, complexity results, and facilitating reuse of existing tools,

– temporal DLs : for enabling the possibility of managing temporal data under
DL ontologies which capture temporal constraints on the intensional level,

– SW temporal vocabularies : for supporting typical SW practices involving
OWL-based time ontologies, which provide rich temporal vocabularies em-
ployed on the level of queries and data annotations.

Clearly, under such a variety of influences, it is critical to carefully balance
theoretical foundations of a proposed approach with good prospects for reusing
existing techniques, tools and methodologies.

Contributions: We introduce a basic framework for representing temporal data
in arbitrary DLs, where the data takes the form of time-stamped ABox assertions
[t1, t2] : α, stating validity of the assertion α during the interval [t1, t2]. Then
we propose a general mechanism of defining corresponding temporal query lan-
guages, based on combinations of linear temporal logics with classes of first-order
queries — specifically, with well-known conjunctive queries. In particular:

– we systematically motivate the proposed mechanism, present the syntax and
certain answer semantics for the query languages that the mechanism gen-
erates, and the relationship of those languages to temporal first-order logic.

– we advocate a controlled use of epistemic semantics in order to warrant
practical query answering in the defined setting. Under this restriction, we
deliver a PSpaceQA(L)-completeness bound for the combined complexity of
answering temporal queries in an arbitrary DL L, where QA(L) is an oracle
answering conjunctive queries in L. We highlight some essential theoretical
and practical implications of this result.

– we discuss the possibility of pushing the approach further towards integration
with temporal DLs and SW temporal vocabularies.

Structure of the Paper: In Section 2, we provide a comprehensive overview of
the background research and identify the core requirements for the proposed
approach. Next, we discuss DL preliminaries in Section 3 and introduce the
temporal data model in Section 4. In Section 5, we present and study the pro-
posed mechanism of defining temporal query languages. In Section 6 we discuss
similarities to existing approaches and outline some future research directions.
We conclude the paper in Section 7.

2 Overview and Background

Extending information systems with capabilities for managing temporal informa-
tion has been deeply studied and advocated in many areas of computer science,
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particularly, in those concerned with relational databases and knowledge rep-
resentation. Surprisingly, despite the successful use of the ontology-based data
access (OBDA) paradigm as an application of DL technologies in databases,
the development of mechanisms for extending the OBDA approach towards ac-
cessing temporal data have not been yet investigated. A proposed mechanism
should naturally take into account the already well-founded research lines on rep-
resenting and querying temporal information, as well as valuable contributions
in related areas, which we outline in the following paragraphs.

Ontology-Based Data Access. The ontology-based data access is a paradigm
of managing data in presence of background knowledge, represented as a formal
ontology, enabling convenient query answering over incomplete data. In recent
years, special attention has been given to ontologies based on DL languages. A
considerable amount of research has been devoted to the problem of query an-
swering in DLs, focusing predominantly on conjunctive queries (CQs). This has
lead to establishing a clear picture of the computational complexity of CQ an-
swering, and to the development of algorithmic approaches. The study has been
focused on two major lines: 1) utilization of classical DLs with high expressive
power, where the complexity of query answering turns out typically too high
for practical applications [1]; 2) development of DLs allowing efficient query an-
swering over large amounts of data. Calvanese et.al. [2] introduced the DL-Lite
family of DLs, for which efficient OBDA can be achieved by reduction to query
answering in relational database management systems (RDBMSs). One of the
key motivations behind the design of the temporal query languages presented in
this paper is to enable easy, modular reuse of the known techniques and results
on query answering in DLs in the context of temporal data querying.

Temporal Databases. During the 90s, the database community conducted an
exhaustive study on temporal extensions of the standard relational data models,
supporting management of temporal information. The common way of construct-
ing temporal relational databases (TDBs) is to enrich traditional data models
with time-stamps representing data’s validity time, i.e. the time span within
which the data is known to be true. As one of the crucial requirements for our
approach we pose formal compatibility with the TDB paradigm of represent-
ing temporal data. Inspired by the notion of concrete temporal database [3], we
construct a temporal ABox by time-stamping every ABox assertion with a weak-
interval of the form [t1, t2], compactly representing a set of time points in which
the assertion is valid. The semantics of a temporal ABox, by analogy to TDBs
case [3], is given by mapping each time point in the underlying time domain
to the non-temporal (standard) ABox — a so-called snapshot — containing
exactly the assertions valid in that point. Eventually, the OBDA paradigm is
applied within the scope of respective snapshots.

Regarding the choice of the time domain, the TDB literature reports on a num-
ber of possible representations, each one having far-reaching philosophical, logical
and computational consequences [4]. The available degrees of freedom concern,
among others: the nature of the atomic time entities (points vs. intervals), their
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ordering relationships (linear vs. branching vs. partial orders), the density (discrete
vs. continuous), the boundaries (finite vs. infinite). Although strict commitment
to any representation is always arbitrary to some extent, arguably one of the most
natural and commonly used setups in TDBs, which we also adopt here, is the one
capturing the intuition of a point-based time line [4].

A temporal data model is complemented by an adequate temporal query lan-
guage for querying temporal data. In this aspect, we ground our proposal in
two well-known research lines. 1) Following the research on TDBs, we consider
languages based on fragments of temporal first-order logic, which has been ad-
vocated as a suitable high-level formalism for querying TDBs [3]. It has been
shown, that queries expressed in temporal first-order logic can be translated di-
rectly to TSQL2 [5] — a temporal extension of the standard database query
language SQL — and thus efficiently handled using existing TDB systems. 2)
Given the known landscape of complexity results and developed techniques for
query answering in DLs, we pay special attention to the expressiveness of the
first-order component within the intended fragments of temporal first-order logic.
As explained in detail in Section 5, our motivation is to provide a mechanism
for defining such fragments in a controlled, modular manner, by selecting par-
ticular sets of temporal operators and particular classes of first-order queries to
be combined. By specifying those two parameters one should effectively obtain
a ready query language of a well-characterized computational behavior. To this
end we make use of the methodology of temporalizing logic systems [6].

Semantic Web and Temporal DLs. In recent years, the problem of managing
time-varying knowledge has gained a lot of interest also in the Semantic Web
research community. Particularly, the need for describing temporal information
on the Web gave rise to various time ontologies [7], which formalize common
temporal notions, such as temporal instants, temporal intervals and calendar
terms, and offer standardized formats for representing different types of temporal
information. Although such ontologies succeed in facilitating exchange of time-
oriented data among Web agents, they are not accompanied by any formally
grounded methodologies of processing such information. Specifically, they offer
no inference mechanisms to support genuinely temporal reasoning. This lack of
rigorous logical foundations, is in practical scenarios partially remedied by the
use of programming tools and ad-hoc hybrid architectures [8,9].

Some alternative approaches, building more systematically on the TDB phi-
losophy, were also proposed for representing and querying temporal data in
RDFs [10,11] and OWL [12]. Although employing the same or similar temporal
data models as in our case, these frameworks are mostly technology-driven and
do not consider the design of query languages in sufficient generality.

A somewhat orthogonal research effort has gone into designing a family of
temporal description logics (TDLs) [13] tailored for representing and reasoning
with inherently temporal terminologies. As proper combinations of temporal
logics with DLs, TDLs count with a well-defined temporal semantics, which
makes them very appealing from the theoretical perspective. Nevertheless, most
of the contributions in this area focus on traditional reasoning tasks such as
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satisfiability and subsumption, related mostly to conceptual modeling rather
than querying temporal data, with very few, limited exceptions [14]. In general,
a potential transfer of the known query answering techniques for DLs to the
TDL setting seems highly non-trivial.

Although in this paper we do not address the problems related to querying
temporal data with support of SW temporal vocabularies or in presence of TDL
ontologies, we do acknowledge them as worthwhile challenges for future research,
and we briefly reconsider them in Section 6.

3 Description Logic Preliminaries

We use the standard nomenclature and notation for the syntax and semantics
of DLs (see [15] for full details). A DL language L is defined over a vocabulary
Σ = (NC,NR,NI), where NC,NR,NI are countably infinite sets of concept names,
role names and individual names, respectively. By convention, we use letters A,B
to denote concept names, r, s for role names and a, b for individual names. The
grammar for complex concepts, roles and axioms is defined relative to a given DL
dialect. For instance, the DL ALC provides the following concept constructors:

¬C | C �D | C �D | ∃r.C | ∀r.C

where C,D are (possibly complex) concepts. A TBox T is a finite set of concept
inclusions of the form C 
 D, whereas an ABox A is a finite set of assertions of
types A(a) and r(a, b). By following the DL-based OBDA paradigm, we consider
a TBox to be the ontology through which one accesses the data represented as
an ABox.

The semantics of L is given through interpretations I = (ΔI , ·I), where ΔI

is a non-empty domain of individuals and ·I is an interpretation function, which
maps AI ⊆ ΔI , for every A ∈ NC, r

I ⊆ ΔI×ΔI , for every r ∈ NR, and aI ∈ ΔI ,
for every a ∈ NI, and is inductively extended over complex expressions according
to the fixed conditions associated with each constructor [15]. An interpretation
I is a model of a TBox T (resp. ABox A), written I |= T (resp. I |= A) iff
it satisfies all the concept inclusions in T (resp. assertions in A), where the
satisfaction relation for concept inclusions and assertions is defined in the usual
way. An ABox A is consistent w.r.t. a TBox T iff there exists an interpretation
I which is a model of both A and T , written as I |= T ,A.

Next, we recall the standard notion of conjunctive queries — the most com-
monly studied query formalism in the context of DLs [1]. Let NV be a countably
infinite set of variables. A conjunctive query (CQ) over a DL vocabulary Σ is
a first-order formula ∃�y.ϕ(�x, �y), where �x, �y are sequences of variables. The se-
quence �x denotes the free, answer variables in the query, while �y the quantified
ones. The formula ϕ is a conjunction of atoms over Σ of the form A(u), r(u, v),
where u, v ∈ NV ∪ NI are called terms.

Let I be an interpretation and q(�x) a CQ with the answer variables �x =
x1, . . . , xk. By term(q) we denote the set of all terms occurring in q. For a
sequence �a = a1, . . . , ak ∈ NI, an �a-match to a query q(�x) in I is a mapping
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μ : term(q) �→ ΔI , such that μ(xi) = ai
I , for every 1 ≤ i ≤ k, μ(a) = aI , for

every a ∈ NI ∩ term(q), for every A(u) in q it is the case that μ(u) ∈ AI and
for every r(u, v) in q it is the case that (μ(u), μ(v)) ∈ rI . We write I |= q[�a]
whenever there exists an �a-match to q in I, and T ,A |= q[�a] whenever there
exists an �a-match to q in every model of T and A. In the latter case �a is called
a certain answer to q w.r.t. T and A.

In what follows we implicitly assume that all considered TBoxes, ABoxes and
CQs are expressed over the same DL vocabulary Σ.

4 Temporal Data Model

A temporal data model is formally specified by two basic characteristics: the
choice of the underlying time domain and the syntax and semantics of temporal
annotations linking data to a time domain. As outlined in Section 2, a time
domain permitted in our scenario is a structure defined as a linear ordering of a
set of time instants [4].

Definition 1 (Time domain). A time domain is a tuple (T,<), where T is
a nonempty set of elements called time instants and < is an irreflexive, linear
ordering on T .

Some popularly considered structures satisfying this definition are based on sets
of numbers, e.g. naturals (N, <), integers (Z, <), reals (R, <), with the ordering
< being interpreted as the usual smaller-than relation. By convention, we write
≤ to denote the reflexive closure of <.

Temporal annotations are based on the weak-interval time-stamping mech-
anism. Intuitively, a time-stamped ABox assertion [t1, t2] : α states that the
axiom α is valid in all time instants within the interval [t1, t2]. Additionally, we
allow special symbols −∞ and +∞ to represent possibly unbounded intervals.

Definition 2 (Temporal ABox). Let (T,<) be a time domain. A temporal
assertion is an expression in one of the following forms:

[t1, t2] : α | [−∞, t1] : α | [t1,+∞] : α | [−∞,+∞] : α

where α is an ABox assertion and t1, t2 ∈ T . A temporal ABox AT is a finite
set of temporal ABox assertions. A t-snapshot of AT , for t ∈ T , is the smallest
ABox AT (t) containing all assertions α, for which any of the following conditions
hold:

[t1, t2] : α ∈ A and t1 ≤ t ≤ t2,
[−∞, t1] : α ∈ A and t ≤ t1,
[t1,+∞] : α ∈ A and t1 ≤ t,

[−∞,+∞] : α ∈ A.

The standard DL semantics is extended in a natural way by adding the temporal
dimension and assigning a single DL interpretation to every time instant.



96 V. Gutiérrez-Basulto and S. Klarman

Definition 3 (Snapshot semantics). Let (T,<) be a time domain, T a TBox
and AT a temporal ABox. A temporal interpretation of T and AT is a tuple
M = (T,<, I), where I is a function assigning to every t ∈ T a DL interpretation
I(t) = (Δ(t), ·I(t)). We say that M is a model of T and AT , whenever I(t) is
a model of T and AT (t), for every t ∈ T .

5 Temporal Query Language

In this section, we define and study a novel temporal query language T QL,
or strictly speaking, a family of such languages for querying temporal ABoxes
w.r.t. standard TBoxes. At its core, our contribution should be seen as a general
mechanism for constructing practical query formalisms, based on combinations
of temporal logics with certain classes of first-order queries over DLs. This mech-
anism can be shortly described as follows. Consider a temporal logic T L and a
class of queries Q. We aim at identifying a fragment of temporal first-order logic,
based on the operators of T L, whose first-order component coincides with the
class Q. To this end, we follow the well-studied methodology of temporalization
of logic systems, introduced by Finger and Gabbay [6]. Essentially, T QL is de-
fined as the set of all T L-formulas whose atomic subformulas are substituted
with Q-queries. The central motivation behind such a construction is to enable
decoupling the problem of answering embedded Q-queries from reasoning in T L,
which can be both efficiently addressed by existing, specialized tools. As it turns
out, some potential interactions between the Boolean operators of T L-formulas
with those of Q-queries make such decoupling still impossible in general. Hence,
as a solution, we advocate a controlled use of epistemic semantics for interpret-
ing the embedded Q-queries, along the lines proposed by Calvanese et al. [16].
This, as we argue in Section 5.2, leads to a desirable theoretical and practical
characterization of T QL.

In our scenario, we focus on the class of conjunctive queries, as the most
popular type of queries studied in the context of DLs. As the baseline tempo-
ral language we consider first-order monadic logic of orders (FOMLO), which
is known to be expressively complete w.r.t. all linear orders [17], and thus sub-
sumes a number of most popular linear temporal logics, including the prominent
Propositional Linear Temporal Logic (PLTL).

5.1 Syntax and Semantics

To keep the design of T QL possibly modular, and yet maximally generic, we first
introduce a mechanism of abbreviating the temporal components of the queries
into customary temporal connectives. Those connectives, defined analogical to
Chomicki and Toman [18], are used as templates to be instantiated with partic-
ular CQs and further combined by means of Boolean operators. The syntax of
FOMLO is based on a countably infinite set TV of time instant variables, such
that TV ∩ NV = ∅, one binary predicate < and a countably infinite set PV of
monadic predicate variables.
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Definition 4 (Temporal connectives: syntax). A φ-formula is an expres-
sion constructed according to the grammar:

φ ::= u < v | ¬φ | φ ∧ φ | ∀x.φ | X(u)

where u, v ∈ T ∪ TV, x ∈ TV and X ∈ PV. An n-ary temporal connective is a
φ-formula containing k ≥ 0 free variables x1, . . . , xk ∈ TV, called the temporal
answer variables, and n ≥ 0 predicate variables X1, . . . , Xn ∈ PV. We define
Ω to be a finite set of temporal connectives, where each connective ω ∈ Ω is
given via a definition consisting of a name ω(�x)( �X), with �x = x1 . . . , xk and
�X = X1, . . . , Xn, and a (definitional) φ-formula ω∗.

Intuitively, the predicate variables are place holders for CQs, which we add in
the next step. The temporal answer variables range over time instants, which
are explicitly represented in the answers to temporal queries.1 A small sample
of possible temporal connectives is given in Figure 1. Note, that we use some
common abbreviations, such as ∃,→,≤, as well as compositions x1 < x2 < x3,
whose meaning is as expected.

always(X1) � ∀x1.X1(x1)

sometime(X1) � ∃x1.X1(x1)

in(x1)(X1) � X1(x1)

after(x1, x2) � x2 < x1

during-interval(x1, x2)(X1) � x1 ≤ x2 ∧ ∀x3.(x1 ≤ x3 ≤ x2 → X1(x3))

in-since(x1)(X1, X2) � ∃x2.(x2 < x1 ∧X2(x2) ∧ ∀x3.(x2 < x3 ≤
x1 → X1(x3)))

in-until(x1)(X1, X2) � ∃x2.(x1 < x2 ∧X2(x2) ∧ ∀x3.(x1 ≤ x3 <
x2 → X1(x3)))

Fig. 1. Examples of temporal connectives

The satisfaction relation is defined in terms of the standard first-order seman-
tics,modulo an extra condition warranting the satisfaction of predicate variables.

Definition 5 (T -substitution). For a time domain (T,<), a T -substitution is
a mapping π : T ∪ TV �→ T such that π(t) = t for every t ∈ T .

Definition 6 (Temporal connectives: satisfaction relation). Let M =
(T,<, I) be a temporal model and ω ∈ Ω a temporal connective with the defini-
tional formula ω∗. For a T -substitution π, the satisfaction relation M, π |= ω∗

is defined inductively as follows:

1 In practice, the range of answer variables might need to be further restricted in order
to finitize the number of possible answers. In the context of temporal databases, it
is common to consider only time instants that are explicitly mentioned in the data
(in our case: temporal ABox). This, however, might require certain normalization of
the used time-stamps — a problem which we do not address here.
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– M, π |= u < v iff π(u) < π(v),
– M, π |= ¬φ iff M, π 	|= ¬φ,
– M, π |= φ ∧ ψ iff M, π |= φ and M, π |= ψ,
– M, π |= ∀x.φ iff for every t ∈ T it is the case that M, π[x �→ t] |= φ,
– M, π |= Xi(u) iff the CQ associated with Xi is satisfied in M, π(u) (see

Definition 8).

where π[x �→ t] denotes a T -substitution exactly as π except for that we fix
π(x) = t.

Finally, we define the syntax and semantics of the temporal query language.

Definition 7 (Temporal query language: syntax). The temporal query
language T QL is induced by the following grammar:

ψ ::= ω(�x)(q1(�y1), . . . , qn(�yn)) | ¬ψ | ψ ∧ ψ

where ω ∈ Ω is an n-ary temporal connective with temporal answer variables
�x, and every qi(�yi) is a CQ with answer variables �yi, for 1 ≤ i ≤ n. We write
ψ(�x, �y), to denote a T QL query ψ with temporal answer variables �x and CQ
answer variables �y.

An answer to a T QL query is a pair of sequences of time instants from T and
individual names from NI, which substituted for the respective temporal and CQ
answer variables must satisfy the query. The answer variables of both types can
be shared among different CQs and temporal connectives occurring in the query,
thus facilitating descriptions of complex dependencies between temporal data (cf.
Example 1). To formally introduce the semantics of T QL queries, we first fix
useful notation for handling subsequences of CQ answers. Let �y = y1, . . . , yk
be a sequence of answer variables and �a = a1, . . . , ak a corresponding sequence
of individual names. For an arbitrary subsequence �y′ ⊆ �y, i.e. a subset of �y
preserving the ordering, we write �a|�y′ to denote the subsequence of �a such that
for every 1 ≤ i ≤ k, ai occurs in �a|�y′ iff yi occurs in �y′.

Definition 8 (Temporal query language: semantics). Let ψ(�x, �y) be a
T QL query, with �x = x1, . . . , xk and �y = y1, . . . , yl. For a pair of sequences
(�t,�a), where �t = t1, . . . , tk ∈ T and �a = a1, . . . , al ∈ NI, a (�t,�a)-match to ψ
in a model M = (T,<, I) is a T -substitution π, such that π(xi) = ti, for ev-
ery 1 ≤ i ≤ k, and M, π |=�a ψ, where the satisfaction relation |=�a is defined
inductively as follows:

– M, π |=�a ω(�xi)(q1(�y1), . . . , qn(�yn)) iff M, π |= ω∗ (see Definition 6), where
for every 1 ≤ i ≤ n and any T -substitution π′ we set:

M, π′ |= Xi(π
′(u)) iff I(π′(u)) |= qi[�a|�yi

], (†)

– M, π |=�a ¬ϕ iff M, π 	|=�a ϕ,
– M, π |=�a ϕ ∧ ψ iff M, π |=�a ϕ and M, π |=�a ψ.
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We write M |= ψ[�t,�a] whenever there exists a (�t,�a)-match to ψ in M and
T ,AT |= ψ[�t,�a], whenever there exists a (�t,�a)-match to ψ in every model of
T and AT . In the latter case �t,�a is called a certain answer to ψ w.r.t. T ,AT .

Example 1. We formulate a T QL query ψ(x1, x2, y) requesting all patients y who
have been ever diagnosed with some allergy, at some point x1 were administered
a new drug, and at some point x2, after x1, had symptoms of an allergic reaction.
The precise meaning of the temporal connectives used in the query is as defined
in Figure 1.

ψ(x1, x2, y) ::= sometime(∃x.(Patient(y) ∧ diagnosedWith(y, x) ∧ Allergy(x)))
∧ in(x1)(∃x.(administered(y, x) ∧ NewDrug(x))) ∧

∧ after(x2, x1)
∧ in(x2)(∃x.(hasSymptom(y, x) ∧ AllergicReaction(x)))

Consider the TBox T containing axioms:

AllergicPatient � Patient � ∃diagnosedWith.Allergy
TestPatient � Patient � ∃administered.NewDrug

and the temporal ABox A containing time-stamped assertions:

[1, 5] : AllergicPatient(john) [2, 3] : Patient(carl)
[1, 2] : hasSymptom(john, id1) [1, 2] : hasSymptom(carl , id3)
[2, 2] : AllergicReaction(id1) [2, 2] : AllergicReaction(id3)
[4, 5] : TestPatient(john) [2, 3] : diagnosedWith(carl, id4)
[6, 6] : hasSymptom(john, id2) [2, 3] : Allergy(id4)
[6, 6] : AllergicReaction(id2) [5, 5] : TestPatient(carl)

Given the time domain of natural numbers (N, <) there are two certain answers
to the query ψ(x1, x2, y), namely: (4, 6, john) and (5, 6, john).

5.2 Practical Query Answering

As it turns out, under the introduced semantics the expressive power of T QL is
still too high to provide reasonable guarantees for the worst-case complexity of
temporal query answering, and for the possibility of reusing the existing query
answering techniques and tools. The level of interaction between the Boolean
operators of the temporal language with CQs is sufficient to enable encoding
Boolean combinations of conjunctive queries (BCCQs) over DLs, i.e. formulas
induced by the grammar:

ϕ ::= q | ¬ϕ | ϕ ∧ ψ.

where q is a CQ. The decidability of BCCQs answering over DLs is, to the
best of our knowledge, an open problem. Some of the largest classes of queries
whose decidability has been studied so far are in fact unions (disjunctions) of
CQs [1] and their syntactic generalization — positive existential queries [19]. In
order to render query answering in T QL practical, we therefore need to employ
some means of constraining the language. Quite a trivial fix is to tame the
expressiveness of CQs, for instance by considering only CQs without existentially
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bounded variables — thus a variation of instance queries. In such case, the query
answering can be reduced to reasoning with temporalized ABox axioms w.r.t.
global TBox. As explained in [13], for a temporal logic coinciding with PLTL and
an arbitrary DL with at least PSpace-hard satisfiability problem, the complexity
of the task remains the same as for the satisfiability in the underlying DL.

A much more interesting way of alleviating the problem of handling BCCQs,
however, is to restrict the level of interaction between the operators of the tempo-
ral language with those of the embedded CQs, without reducing the expressive-
ness of the queries. To this end we propose to apply a limited form of the Closed
World Assumption (CWA). Although essentially incompatible with the open-
world semantics of DLs, a controlled use of CWA is claimed to be justified and
beneficial in various application scenarios related to OBDA and Semantic Web
reasoning [20,16,21]. In our case, we are interested in restricting T QL in a way
that would enable answering individual CQs under the standard semantics, but
at the same time, interpreting negation in front of CQs as Negation-As-Failure,
and reducing the problem of answering BCCQs to Boolean operations over the
certain answers to CQs. A clean and straightforward method of achieving this
effect, advocated and studied in depth in [16], is to bind every occurrence of a
CQ in a T QL query with the autoepistemic K-operator. Essentially, the operator
K enforces that a bounded CQ is satisfied in a model, for a given answer, only
if this answer is known to be certain, or formally:

I |= Kq[�a] iff T ,A |= q[�a]

where I is a model of T andA. This immediately entails the requested reductions
of a limited, closed-world flavor:

T ,A |= Kq[�a] iff T ,A |= q[�a]
T ,A |= ¬Kq[�a] iff T ,A 	|= q[�a]

T ,A |= Kq1[�a] ∨Kq2[�b] iff T ,A |= q1[�a] or T ,A |= q2[�b]

Observe that the set of certain answers to a single CQ is invariant to the possi-
ble application of the K-operator in front of the query. Thus, the closed-world
reasoning, emerging only on the level of Boolean combinations of CQs, does not
affect the basic assumption of possible incompleteness of data, inherent to the
OBDA paradigm.

Eventually, by replacing every q in T QL queries with Kq, or simply by in-
terpreting it as if it was bounded by K (as we do below), we obtain the desired,
well-behaved temporal query language.

Definition 9 (T QL semantics with epistemic interpretation of CQs).
The semantics of T QL with epistemic interpretation of embedded CQs is exactly
the same as in Definition 8, modulo the replacement of the condition (†) with
the following one:

M, π′ |= Xi(π
′(u)) iff T ,AT (π

′(u)) |= qi[�a|�yi
]. (‡)

To witness the difference between evaluating T QL queries under the two com-
pared semantics, consider an example involving TBox T = {A 
 ¬D, B�C 
 D},
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temporal ABox A = {[1, 1] : A(a), [1, 2] : B(a), [2, 3] : C(a)} and query
ψ(x, y) ::= ¬in(x)(D(y)). Under the original semantics, presented in Defini-
tion 8, the query returns a unique certain answer (1, a). On the other hand, by
enforcing the epistemic interpretation of the embedded CQ q(y) ::= D(y), as
argued above, and setting the time domain of natural numbers, we obtain an
infinite set of certain answers {(t, a) | 2 	= t ∈ N}.

Notably, the condition T ,AT (π
′(u)) |= qi[�a|�yi

] in (‡) is an instance of the
standard CQ answering problem. Moreover, it is the only point in the revised
semantics where DL reasoning is intertwined with reasoning over the temporal
language. What follows, is that the most natural algorithm answering T QL
queries can be constructed by augmenting any standard decision procedure for
the satisfiability in the temporal language with an oracle answering CQs over
the designated snapshots of the ABox w.r.t. the TBox. As the decision problem
in FOMLO is known to be PSpace-complete [17], we thus obtain a result on
the combined complexity of answering T QL queries.

Theorem 1 (Combined complexity of T QL query answering). Let ψ be
a T QL query over a temporal ABox AT w.r.t. TBox T , where ABox and TBox
axioms are expressed in a DL language L. The combined complexity of deciding
T ,AT |= ψ[�t,�a], for a pair of sequences �t,�a, under the epistemic interpretation

of the CQs embedded in ψ, is PSpaceQA(L)-complete, where QA(L) is an oracle
answering CQs in L.

This seemingly unsurprising result has some significant theoretical and practical
implications. On the theoretical side, it guarantees that answering T QL queries
under the epistemic interpretation of CQs remains decidable, as long as answer-
ing CQs over the respective DLs is decidable. Moreover, it establishes a bridge
for an immediate transfer of the combined complexity results. For instance,
when L = ALC, answering T QL queries is PSpaceExpTime-complete, thus ef-
fectively ExpTime-complete, as the combined complexity of CQ answering in
ALC is ExpTime-complete [22]. Analogically, for L = SHIQ, the problem is
PSpace2ExpTime-complete, and effectively 2ExpTime-complete. In general, the
combined complexity of answering T QL queries for an arbitrary DL L is equal
to the complexity of answering CQs in L, provided that the latter problem is
at least PSpace-hard. This observation naturally generalizes over query lan-
guages based on combinations of FOMLO with arbitrary classes of first-order
queries. Whenever the complexity of answering Q-queries over L, for a given
query class Q and a DL L, is at least PSpace-hard then answering the result-
ing temporal queries over L remains in the same complexity class. Otherwise
it is PSpace-complete. This demonstrates that the temporalization technique
employed here yields computationally cheap, yet expressive, temporal query lan-
guages over temporal ABoxes. In fact, temporalization of query languages for
expressive DLs, subsuming ALC, comes for free.

From the practical perspective, the restricted interaction between the tem-
poral component and CQs, reflected in Theorem 1, promises relatively straight-
forward implementations of T QL query engines based on existing technologies,
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e.g.: temporal theorem provers and CQ answering tools. Roughly, to determine
whether a candidate answer to a query ψ is certain for T ,AT , it suffices to
check whether the direct rendering of ψ into FOMLO is satisfiable, where every
CQ embedded in ψ is seen as a predicate variable, whose truth-value in a given
time instant is determined by a call to an external CQ answering tool over the
respective snapshot of AT w.r.t. T .2

Some further interesting prospects concern answering T QL queries over the
DL-Lite family of DLs, enjoying the FO-rewritability property [2]. It is known
that CQ answering in DL-Lites can be carried out efficiently using highly opti-
mized RDBMSs. In a nutshell, for TBox T , ABox A and a CQ q, one can always
find a first-order query qT , such that for every �a it is the case that T ,A |= q[�a]
iff A |= qT [�a], where the latter problem can be solved directly in an RDBMS.
Clearly, an analogical approach should enable rewriting a T QL query over T ,AT

into a temporal first-order formula, which could be then efficiently encoded and
evaluated as a TSQL2 query [5] over a temporal database AT . Although pro-
viding precise definition of such a translation and proving its correctness is left
as future work, we expect it to be straightforward given that every T QL query
corresponds to a temporal formula with embedded CQs, where each CQ q can
be replaced with the corresponding first-order formula qT obtained by means of
established FO-rewritability techniques.

6 Discussion and Outlook

The design of the language T QL follows closely the principles of query languages
for temporal databases, as outlined in e.g. [18]. In the general TDB setup, the
query componentQ is based on the full first-order logic, while temporal operators
defined in FOMLO can be nested within each other. Hence, the resulting lan-
guage is expressively equivalent to the temporal first-order logic. In T QL, we are
deliberately constraining the query component and disallow nesting of operators
in order to enable practical decoupling of the DL-level from the temporal-level
reasoning. In the context of the SW, similar approaches have been proposed to
deal with time-stamped RDF data [10,12] and OWL axioms [12]. Both contri-
butions, however, lack the generality of our proposal. The temporal component
of the query languages is in both cases highly restricted in order to ensure finite
answer sets. In particular, Motik [12] introduces a specially fixed number of most
practical temporal operators that can be combined with the data-level queries.
All these can be easily restated in FOMLO, and so the language of [12] can be
easily defined using the T QL mechanism.

An interesting open challenge is a potential integration of the framework with
two orthogonal approaches to managing temporal information in the context of
DLs, mentioned in Section 2, i.e. SW temporal vocabularies and temporal DLs.

2 For time domains based on natural numbers and integers, FOMLO formulas can
be translated into PLTL [17], and thus decided using off-shelf PLTL provers, such
as listed in http://www.cs.man.ac.uk/~schmidt/tools/. CQ answering in selected
DLs is supported by such systems as QuOnto, REQUIEM, Presto.

http://www.cs.man.ac.uk/~schmidt/tools/
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As argued below, our choice of standard temporal semantics and logic-based
query formalism, renders such prospects quite realistic. A remarkable feature,
shared by the two potential extensions, is that unlike the current framework,
they aim to support reasoning with incomplete data, where the incompleteness
occurs in the temporal dimension. Such characteristic might be conceptually
attractive considering the open-world philosophy of DLs.

Supporting Temporal Vocabularies and Semantic Annotations. The practice of
representing and reasoning with temporal information on the Semantic Web,
for instance in the field of health care support [23], suggests that the presented
data model and query language might not be sufficiently flexible for real-life
applications. In particular, we are incapable of:

– directly expressing typical temporal patterns occurring in temporal queries
and constraints used in clinical applications, such as:
• Visit 17 must occur at least 1 week but no later than 4 weeks after the
end of 2003 ragweed season.

• Administer Rapamune 1 week from Visit 0 daily for 84 days.
– supporting semantic annotations whose meaning could be described in terms

of rich temporal vocabularies, e.g. for a temporal assertion τ : α:
• τ is a time interval from 15.05.2005 until some day on 06.2005,
• τ is a periodic interval, of duration 5 hours, recurring 5 times every 10
hours, starting some time on 12.05.2008.

In practice, such functionalities are supported by ad-hoc architectures, which
retrieve temporal information encoded in OWL-based time ontologies and pro-
cess it with application-specific tools, thus sacrificing some theoretical rigor and
formal transparency of provided inferences [9]. Within our framework, a natu-
ral solution to this problem is to extend the temporal language with additional
predicates (e.g. involving periodicity constraints [24]) to enable ontological-style
axiomatization of the background knowledge about the underlying time domain
per se, e.g. the Gregorian calendar. Such predicates could be then meaningfully
used and reasoned with on the query- and annotation-level. Such a philosophy
motivates to a great extent the framework proposed by Zimmerman et al. [11].
There, however, the annotation language is a non-standard, task-specific formal-
ism, which cannot be directly translated into temporal logics or OWL.

Integration with TDLs. The framework studied in this paper is focused on query-
ing temporal data with respect to a fixed, time-invariant terminology. A natural
extension to this approach is to introduce means of querying temporal ABoxes
in presence of temporal constraints occurring on the intensional, terminological
level. Temporal DLs are a family of two-dimensional DLs, developed intensively
in the recent years [13], intended specifically for the representation of this kind of
terminologies. By allowing operators of temporal logics to occur in DL concepts,
TDLs enable, for instance, to express the following axiom:

Patient � ∃diagnosedWith.Allergy 
 AllergicPatient U ∀diagnosedWith.¬Allergy
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The axiom states that whenever a patient is diagnosed with an allergy, she
should be considered an allergic patient until (U) she is diagnosed with no aller-
gies. Interestingly, TDL TBoxes are interpreted over the same type of semantic
structures as used in our framework, i.e. tuples M = (T,<, I). This means, that
from the formal perspective integration of T QL with TDLs can be achieved
seamlessly. Obviously, query answering in such setting should likely be compu-
tationally more expensive, considering that already the satisfiability problem in
TDLs is usually harder than in the underlying DLs. So far the only query lan-
guage for TDLs has been proposed by Artale et al. [14]. Differently than here,
the queries are defined as unions of CQs, where the atomic predicates can be
possibly preceded by temporal operators. As a consequence, the reuse of existing
CQ answering techniques is not directly possible within this approach.

7 Conclusions

We believe that the framework proposed in this paper marks a first promising
step towards establishing a generic approach to representing and querying tem-
poral data under DL ontologies. Naturally, a number of important problems,
which we merely touched upon, are left open to future research. Among others,
it is critical to conduct a systematic study of possible ways of restricting the
T QL-like languages, in order to turn the query answering problem feasible in
practice. The use of epistemic semantics, suggested here, is only one of possible
options. Other might involve more fine-grained constraints on the expressiveness
of the temporal component, the first-order component or both. We also advo-
cate a study of possible extensions of the framework towards integration with
temporal DLs and rich SW temporal vocabularies.
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Abstract. A smart space is an ecosystem of interacting computational objects
embedded in some environment. The space seamlessly provides users with infor-
mation and services using the best available resources. In this paper, the inter-
operability of heterogeneous objects participating in a smart space is enhanced
by publishing their behavioral rules as RDF triples, i.e., in the same way as any
other information in the space. This enables the use of answer-set programming
(ASP) as the underlying paradigm for rule-based reasoning. The main idea of this
paper is to apply meta programming techniques to reified ASP rules published in
the smart space. Such techniques enable syntactic and semantic transformations
of rules without essentially changing the underlying computational platform so
that standard ASP tools can be used to implement inference over rules. These
ideas are illustrated in several ways. In addition to basic meta evaluation tasks,
we describe a meta grounder for ASP rules involving variables. Moreover, we
demonstrate how the qualitative aspects of reasoning can be taken into account in
our approach and how meta programming techniques are made available to users.

1 Introduction

The number of embedded communicating devices is growing constantly. Services and
information provided by these devices benefit human users as well as other devices,
all of which attempt to use the best resources available at a given time and a place. A
smart space is an ecosystem of interacting computational objects embedded in some
environment having mechanisms for the seamless use of information and resources.
This can be seen as a realization of the ubiquitous computing vision [27].

To fully exploit the wide variety of heterogeneous devices existing today, the inter-
operability of the devices becomes an issue that must be addressed. In [16], four levels
of interoperability are distinguished: machine-level, syntactic, semantic, and organiza-
tional interoperability. It is also argued that only the first two levels and a part of the
third can be achieved by standardization activities. Semantic interoperability presumes
the same understanding of the information by all participants whereas organizational
interoperability insists that operations performed on the information produce consistent
results understood by all participants. A partial solution for the semantic interoper-
ability can be achieved by formalizing agreements [22] by domain-specific ontologies.
The mechanisms for this are provided by Semantic Web [3] where the information is
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minimally described in terms of resource description framework (RDF)1 triples. In ad-
dition, dedicated knowledge representation languages such as RDFS2 and OWL3 allow
the specification of more complex structures on top of RDF triples.

One approach for implementing the combined vision of ubiquitous systems and Se-
mantic Web is provided by Smart-M3,4 an interoperability platform which allows de-
vices to share and to access semantic information in RDF format through a single logical
blackboard. The concept and the architecture of Smart-M3 are explained in [4] where
two kinds of logical components are identified: a semantic information broker (SIB)
and a number of independent knowledge processors (KP) exchanging RDF triples with
the SIB by a dedicated protocol. There is no notion of a single application, but one
is formed by the KPs which share an ontology and are able to produce and consume
information. A new KP committed to the same ontology may contribute to the applica-
tion by reusing the information in a new way or augmenting it with new information.
This is partly enabled by the semistructured form of semantic web definitions and the
self-describing nature of semantic information. There are several use case and applica-
tion implementations on this architecture [9,14,15,18,23,24] which follow the approach
described above and aim at semantic interoperability as described in [16].

Answer-set programming (ASP) [17,20,21] techniques have been applied when im-
plementing a generic resource allocation and conflict resolution mechanism [19] for
smart spaces. The use of ASP primitives provides a straightforward mapping of seman-
tic concepts as first class components in rules. Furthermore, the required optimization,
dynamic context constraint modeling, and extendibility are well-supported by the ASP
methodology. Essentially, the approach of [19] defines an ontology for the required in-
formation and, in addition, rules specifying behavior. There is a good impedance match
with handling of semantic information as already noted in [28]. In further work [2],
the rule-based resource allocator is extended to work in fully scalable and distributed
manner—allowing an arbitrary number of rule engines to be used.

Our vision is that the participants in a smart space publish information and concepts
in a semantic format together with rules used to define new concepts. This enables
the other participants to reason about the concepts and assumptions of others, thus in-
creasing interoperability in the sense proposed in [13]. The new concepts described
by the rules refer to information defined in ontologies which contain the agreement of
the meaning of these concepts (semantic level interoperability). The rules contain the
agreement of how new concepts and operations are defined using the existing semantic
level concepts (organizational interoperability). Thus the meaning of information and
intended operations over it become fully accessible in the smart space.

In this paper, we describe methodology to interpret and modify published rules.
Eventually, rules are to be represented as any other information in a smart space, but
for brevity we use a simple PROLOG-style notation, which can nevertheless easily be
rendered using semantic web techniques. The rules are published in a reified format
rather than plain text—allowing us to build ASP programs which reason and operate

1 http://www.w3.org/RDF/
2 http://www.w3.org/TR/rdf-schema
3 http://www.w3.org/2004/OWL/
4 http://sourceforge.net/projects/smart-m3/

http://www.w3.org/RDF/
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http://sourceforge.net/projects/smart-m3/
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on the rules themselves. We demonstrate this proof-of-concept firstly by a meta eval-
uation program which directly interprets the reified rules to produce the same answer
sets as current tools would produce for the non-reified ones. Secondly, we explore the
possibilities of modifying the semantics of reified rules by giving a syntactic transla-
tion as well as a meta-interpreter as alternative implementations to achieve the same
effect. Furthermore, we examine possibilities of including qualitative elements, such as
time stamps, to existing reified rules and show how to include them in the evaluation
of rules. As there are several participants in the smart space, we may need this kind of
mechanisms for managing the provenance and validity of rules. In addition, we explore
the possibilities of isolating the interface between the grounding and solving phases of
ASP in the smart space setting. For this reason, we present a meta-level grounder as a
further application of the meta programming techniques addressed in this work.

The rest of this paper is organized as follows. First, in Section 2, we briefly review the
main concepts of answer-set programming in the case of normal rules involving term
variables. This forms the basic syntax for answer-set programs considered in this paper.
The idea of reification is then presented in Section 3 and the respective representation
of normal rules as syntax trees as well as sets of facts is then laid out. In Section 4,
we illustrate the compatibility of our approach with the meta modelling framework
of [10] but essentially in the variable-free case. Next, we demonstrate the potential of
meta programming when it comes to changing the syntax and semantics of rules in
Section 5. In Section 6, we turn our attention to rules with variables and show how
meta programming techniques can be used to implement grounding—a basic step in
ASP. Domain information plays an important role in this step and it is possible to query
the smart space in question to determine variable domains. As further illustrated in
Section 7, meta-level techniques can be used to implement reasoning when rules are
annotated by tags which describe their qualitative properties. Such features may include
time stamps (such as time of issue, date of expiry), provenance, and reliability. A brief
account of related work is provided in Section 8 and Section 9 concludes the paper.

2 Answer-Set Programming

In this section, we present the syntax and answer-set semantics of normal programs
with variables. This forms the basic fragment of answer-set programs supported by
most ASP systems. The syntax is based on the primitives of first-order logic. Hence,
terms are defined as either constants, denoted by a, b, . . . , or variables, denoted by X ,
Y , etc. An atom is an expression of the form p(t1, . . . , tn) where p is a predicate symbol
of arity n and t1, . . . , tn are terms. A normal rule is an expression of the form

α← β1, . . . , βn,not γ1, . . . ,not γm. (1)

where α, β1, . . . , βn, and γ1, . . . , γm are atoms and “not” denotes default negation.
The variables X1, . . . , Xk appearing in a rule (1) are universally quantified so that
the rule stands for any instance obtained by substituting X1, . . . , Xk with constants
c1, . . . , ck. Given such a substitution σ = [X1/c1, . . . , Xk/ck], we write ασ for an
atom α where all occurrences of X1, . . . , Xk in α have been substituted by the respec-
tive constants c1, . . . , ck. The reading of (1) subject to σ is that the head ασ of the rule
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can be inferred if the body conditions of the rule are satisfied, i.e., the positive conditions
β1σ, . . . , βnσ can be inferred whereas none of the negative conditions γ1σ, . . . , γmσ.

Example 1. Consider the following two rules which formalize an access policy:

denied(C, S)← not granted(C, S), customer(C), service(S). (2)

granted(C, S)← registered(C), subscribed(C, S),

customer(C), service(S). (3)

The intuitive reading of the rules is as follows. The access to a service is denied by
default and granted only for registered customers who have subscribed to the service.
It is easy to add further reasons why the access should be granted. This nicely illus-
trates how default negation can be used to concisely encode exceptions. Given a partic-
ular customer and a service, denoted by constants j and g, the rule (2) instantiates to
denied(j, g)← not granted(j, g), customer(j), service(g) under [C/j, S/g]. �

An answer-set program is a finite set of rules of the form (1). The Herbrand universe
of P , denoted by HU(P ), is a finite non-empty set of constants which contains all
constants that appear in the rules of P . The Herbrand base of P , denoted by HB(P ),
consists all ground atoms of the form p(c1, . . . , cn) where p is an n-ary predicate sym-
bol appearing in P and c1, . . . , cn are constants from HU(P ). The ground instance of
P , denoted by Gnd(P ), consists of all ground instances of its rules (1) obtained by
substitutions σ over HU(P ). The answer-set semantics of rules is based on the idea of
a reduction: Given a set S ⊆ HB(P ), the reduced ground program Gnd(P )S contains
a positive rule ασ ← β1σ, . . . , βnσ for each rule (1) and for each substitution σ over
HU(P ) such that γ1σ 	∈ S, . . . , γmσ 	∈ S. Given the set R = Gnd(P )S , we write
cl(R) for the least subset of HB(P ) closed under R, i.e., for each ασ ← β1σ, . . . , βnσ
in R, if β1σ ∈ cl(R), . . . , βnσ ∈ cl(R), then also ασ ∈ cl(R).

Definition 1 (Answer sets). Let P be a program. A set S ⊆ HB(P ) is an answer set
of P if and only if S = cl(Gnd(P )S).

Example 2. Consider a program P based on the rules of Example 1 in the presence
of facts5 customer(j) and service(g). The unique answer set S of P is generated by
the rule denied(j, g) ← customer(j), service(g) included in cl(Gnd(P )S) so that
S = {customer(j), service(g), denied(j, g)}. To infer granted(j), we would further
need registered(j) and subscribed(j, g)—excluding the preceding ground rule. �

In a typical ASP system, the computation of answer sets for an input program P pro-
ceeds in two steps. The first is called intelligent grounding which tries to produce a
reasonably small subset of Gnd(P ) without affecting answer sets. The grounding step
is typically implemented as a separate tool called a grounder. E.g., the instances of the
rules (2) and (3) obtained by a substitution σ = [C/j, S/j] are unnecessary because
their positive body condition service(j) is false by default. 6 The second step is the
actual search for answer sets natively implemented by an answer set solver.

5 Facts are rules (1) which have an empty body (n = m = 0) and no variables.
6 In practice, grounding presumes some notion of safety of a rule (1), e.g., all variables appearing

in the head or in the negative body conditions must appear in the positive body conditions, too.
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hasrule
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pred
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alist1

”C”
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body

�
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pred

20

alist1

”S”

var

21

body

�

pos

”customer”

pred

22

alist1

”C”

var

23

body

�

neg

”granted”

pred

24

alist1

”C”

var
25

alist2

”S”

var

Fig. 1. Parse tree of a single rule

There are many syntactic extensions that have been proposed for normal rules (1).
For instance, cardinality and weight rules [26] enable more concise encodings com-
pared to normal rules. Moreover, the front-ends used to ground answer-set programs
support further extensions some of which are also completely evaluated once the con-
stants substituted for variables are known. For the purposes of this work, a useful ex-
tension is given by a parameterized conjunction p(t1, . . . , tn) : q(s1, . . . , sm) which
stands for the conjunction of all atoms p(t1, . . . , tn) subject to a specifier q(s1, . . . , sm)
being true. The same notation extends to negative conditions and multiple specifiers. For
instance, a rule ok ← colored(X) : node(X) states the everything is OK if all nodes
(of a graph) have been colored. The nice feature of this construct is that the number of
conjuncts in the rule body is determined dynamically at the time of grounding.

3 Reification

In this section, we describe the structure of abstract syntax trees which essentially pro-
vide the basis for the publication of rules. E.g., the rule (2) from Example 1 can be
parsed into a syntax tree illustrated in Figure 1. Each node of the syntax tree has been
assigned a unique identifier. For the purposes of this paper, it is sufficient to use integers
as identifiers and, moreover, no similarity checks between nodes are performed when
parsing a rule. This means, e.g., that nodes representing variable “C” within the same
rule will get a different identifiers 17, 22, and 24 even though they refer to occurrences
of the same variable in the rule. A root node, identified as the node 1 in the tree, collects
all parsed rules under hasrule arcs which point out the individual rules of the program.
Each rule has exactly one head-labeled subtree whereas arbitrarily many body-labeled
subtrees are allowed. The latter represent the body conditions of the rule.

The declarative nature of ASP insists that the orders between rules and the body-
labeled subtrees within rules are not significant. Thus we intentionally abstract on this
and do not represent the original syntactic order in the tree. In contrast, the ordering
information must be maintained for the arguments of predicates and explicitly encoded
using an indexing scheme: the order of arguments is expressed using labels of the form
alistn where n gives the position of an argument. The tree shown in Figure 2 can be
reified as a set of facts. This step turns a rule into data accessible by meta-level rules—
in terms of predicates whose names coincide with the labels used in syntax trees. The
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hasrule(1, 15).
rule(15).
pos(16).
head(15, 16).
pred(16, ”denied”).
var(17, ”C”).
alist(16, 1, 17).
var(18, ”S”).
alist(16, 2, 18).

pos(19).
body(15, 19).
pred(19, ”service”).
var(20, ”S”).
alist(19, 1, 20).
pos(21).
body(15, 21).
pred(21, ”customer”).
var(22, ”C”).
alist(21, 1, 22).

neg(23).
body(15, 23).
pred(23, ”granted”).
var(24, ”C”).
alist(23, 1, 24).
var(25, ”S”).
alist(23, 2, 25).

Fig. 2. Reified representation for a rule

predicates head(·, ·) and body(·, ·) associate the head and body conditions, respectively,
with the rule. The predicate pred(·, ·) is used to attach predicate symbols—treated as
strings—for these conditions. The signs of these conditions are expressed using predi-
cates pos(·) and neg(·). The predicate alist(·, ·, ·) represents the argument list: the order
of n arguments is encoded by selecting the second argument from the range 1 . . . n. The
third argument refers to another node capturing either a constant or a variable expressed
in terms of predicates const(·, ·) and var(·, ·).

As mentioned in the introduction, it is possible to create an ontology definition (in
RDFS or OWL) corresponding to the concepts above in a straightforward way. This
provides the basis for storing syntax trees, such as the one shown in Figure 1, in RDF.

4 Meta-level Evaluation of Rules

The goal of this section is to illustrate how the evaluation of rules can be formalized
at meta level in ASP. For the ease of presentation, we start with the case of ground
programs and predicates of arity 0, i.e., effectively propositional normal programs, and
then address potential generalizations. For a propositional normal program P , the re-
sulting reified program Rfy(P ) does not contain any var(·, ·) and alist(·, ·, ·) entries.

The key idea is to introduce an auxiliary predicate in(H) for each rule head H . The
intuitive reading of in(H) is that H belongs to an answer set being formalized. Then,
according to the meta evaluation rule (4) below, the atom in(H) is derived if and only
if in(P ) is derivable for all positive body conditions P of the rule but in(N) is not
derivable for any negative body conditions N . The two parameterized conjunctions in
the rule body are expanded when grounding the program for a particular (reified) input
program. In view of meta evaluation, this is a crucial feature of ASP grounders.

in(H)← rule(R), head(R,H), in(P ) : body(R,P ) : pos(P ),

not in(N) : body(R,N) : neg(N). (4)

In addition, we have to synchronize the (likely) multiple occurrences of atoms in the
program. These are easily collected from the positive and negative occurrences recorded
in the reified program using rules (5) and (6). Then any distinct occurrences which have
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the same predicate, or the name of the atom, can be identified as formalized by the rule
(8). Finally, the rule (9) ensures that any two such atoms A1 and A2 equally hold.

atom(A)← pos(A). (5)

atom(A)← neg(A). (6)

equal(A,A)← atom(A). (7)

same(A1, A2)← pred(A1, P ), pred(A2, P ),

atom(A1), atom(A2), not equal(A1, A2). (8)

in(A1)← in(A2), same(A1, A2). (9)

The downside of the rule (9) is that it leads to a quadratic blow-up upon grounding. Such
an effect can be linearized by picking a unique representative amongst the multiple
occurrences of a particular atom, or removed altogether by introducing unique node
numbers in the parse tree created by the reifying program, thus making (5)–(9) obsolete.

Theorem 1. Let P be a propositional normal logic program, Rfy(P ) its reification,
and Q the meta program consisting of rules (4)–(9) above.

1. If S is an answer set of P , then Rfy(P ) ∪Q has an answer set T such that

S = {p | ∃n,m : head(n,m) ∈ T , pred(m, ”p”) ∈ T , and in(m) ∈ T }. (10)

2. If T is an answer set of Rfy(P ) ∪Q, then S defined by (10) is an answer set of P .

This result shows that our meta programming approach is compatible with that of [10]
and hence provides means to program with reified rules that have been imported from
somewhere else. However, to cover non-propositional programs which have predicates
of arities greater than 0 a further refinement of (8) becomes necessary:

same(C1, C2)← const(C1, S), const(C2, S). (11)

diffarg(A1, A2)← alist(A1, N, C1), alist(A2, N, C2), not same(C1, C2),

atom(A1), atom(A2). (12)

same(A1, A2)← pred(A1, P ), pred(A2, P ), not diffarg(A1, A2),

atom(A1), atom(A2), not equal(A1, A2). (13)

According to the revised definition (13), the (ground) atoms A1 and A2 based on a
predicate P must not have differing arguments. This condition is formalized by the rule
(12) for which we also define when two nodes C1 and C2 in a syntax tree refer to the
same constant symbol S. Yet another possibility is to treat ground atoms p(c1, . . . , cn)
as structural names for propositional atoms, and to apply reification and (8) as such. We
defer the treatment of variables until Section 6 where meta-level grounding is addressed.

5 Changing the Syntax and Semantics of Rules

Having achieved a basic understanding how meta evaluation of reified rules is feasible
in ASP, our next objective is to show how analogous meta programming techniques can
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be used to modify rules. Such modifications are usually syntactic by nature but they can
also be motivated by the desire of tampering with the semantics of rules. In order to
be able to address the semantic dimension, we first present an alternative semantics for
normal logic programs with variables. A motivating example is provided as a starter.

Example 3. Consider the following rule capturing a social aspect of services:

uses(U1, S)← knows(U1, U2), uses(U2, S),

user(U1), user(U2), service(S). (14)

This oversimplified rule states that a user U1 uses the services S used by other users
U2 known by U1. The meaning of this rule deserves further attention in the presence of
circularities demonstrated by the following set F of facts:

service(f). user(a). user(b). knows(a, b). knows(b, a).

Actually, the set F forms the unique answer set of (14) subject to the facts listed above,
i.e., neither a nor b would use the service. However, one could also argue for an al-
ternative scenario where both a and b are using the service f since they know each
other, hence capturing the social aspect of the service f . More formally, the symmetric
instances of (14) provide circular support for uses(a, f) and uses(b, f) being true. �
Example 3 essentially illustrates the difference between answer sets and supported sets
[1]. Following the presentation from Section 2, a supported set S ⊆ HB(P ) for a pro-
gramP is closed under the rules ofGnd(P )S and for each atom p(c1, . . . , ck) ∈ S there
is a supporting rule (1) in P and a substitution σ over HU(P ) such that the head ασ =
p(c1, . . . , ck), β1σ ∈ S, . . . , βnσ ∈ S, and γ1σ 	∈ S, . . . , γmσ 	∈ S. The alternative se-
mantics based on supported sets admits a further set S = F ∪ {uses(a, f), uses(b, f)}
given the set of facts F . In this scenario, uses(a, f) is supported by (14) under the
substitution σa = [U1/a, S/f, U2/b]: the atom uses(a, f) is the head and all body con-
ditions are satisfied. The same can be stated about uses(b, f) under the substitution
σb = [U1/b, S/f, U2/a]. The seminal paper [25] shows how the difference between an-
swer sets and supported sets can be grasped within the answer-set semantics. Roughly
speaking, the idea is to replace a ground positive body condition p(c1, . . . , cn) by a neg-
ative condition not p(c1, . . . , cn) where p is a new complementary predicate symbol
defined by rules of the form p(c1, . . . , cn) ← not p(c1, . . . , cn). In practice, it makes
only sense to apply this transformation to particular predicates which may be limited
by rule safety in the presence of variables.

Example 4. To modify the meaning of the predicate uses(·, ·) in Example 3, the rule
(14) can be rewritten using an auxiliary predicate not-uses(·, ·) as follows:

uses(U1, S)← knows(U1, U2), not not-uses(U2, S),

user(U1), user(U2), service(S). (15)

not-uses(U, S)← not uses(U, S), user(U), service(S). (16)

These rules allow for an answer set with uses(a, f) and uses(b, f) for the set of facts F
from Example 3. The predicates knows(·, ·), user(·), and service(·) cannot be similarly
transformed due to rule safety: the variables U1, U2, and S appearing in the head and
negative body conditions of (14) would no longer be bound by positive conditions. �
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In what follows, we illustrate how meta programming techniques can be applied in
order to change the semantics of rules if appropriate. For the sake of simplicity, we
concentrate on the case of propositional normal programs and assume that all atoms
are subject to Schlipf’s transformation [25]. This contrasts with Example 4 but does not
endanger rule safety since rules are variable-free. Given a reified propositional program
as input, most of its structure can be copied as such by meta rules listed below:

hasrule′(P,R)← hasrule(P,R). rule′(R)← rule(R).
body′(R,A)← body(R,A). head′(R,A)← head(R,A).

The idea is that primed predicates represent the new structure after the syntactic modi-
fications. E.g., by the first meta-level rule of the ones listed above, for each rule in the
input program, there will be a corresponding rule in the translation.

neg′(A)← neg(A). (17)

pred′(A,S)← body(R,A), neg(A), pred(A,S). (18)

neg′(A)← pos(A). (19)

pred′(A,S)← head(R,A), pred(A,S). (20)

pred′(A, cat(”not -”, S))← body(R,A), pos(A), pred(A,S). (21)

By (17) and (18), negative body conditions remain untouched. The same applies to rule
heads by (20) but, in contrast, positive body conditions are negated (19) and the pred-
icate symbol in question is prefixed by “not -” (21). The function cat(·, ·) is supposed
to implement the concatenation of two strings in the grounder.7 In addition to these, we
need meta rules for creating new rule instances that define the complementary atoms.

create(new(A), A)← body(R,A), pos(A). (22)

head′(R, new(R))← create(R,A). (23)

pos′(H)← create(R,A), head′(R,H). (24)

pred′(H, cat(”not -”, S))← create(R,A), head′(R,H), pred(A,S). (25)

body′(R, new(R))← create(R,A). (26)

neg′(B)← create(R,A), body′(R,B). (27)

pred′(B,S)← create(R,A), body′(R,B), pred(A,S). (28)

The rule (22) creates a new node corresponding to the rule being formed and (23) adds
the new head node for it. The function new(·) is evaluated by the grounder and it returns
a new identity for a node. The rule (24) makes the head node positive whereas (25)
defines its name. Similarly, the rules (26)–(28) create the syntax tree for the respective
negative body condition. Finally, we have to link these new rules to the program.

hasrule′(P,R)← hasrule(P,R′), create(R,A). (29)

As regards the use of rules listed above, the idea is that they are first joined with a
reified input program. The syntactically transformed program can be extracted in the

7 For instance, the GRINGO grounder has a Lua extension for implementing such functionality
but in our preliminary experiments we implemented this via textual substitution.
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reified form by looking at the instances of primed predicates in the resulting unique
answer set. These facts can then be rendered back to a propositional rule which is the
outcome of the overall syntactic transformation.

As the second objective of this section, we show how the semantics of reified rules
can be changed at meta level. E.g., the shift from answer-set semantics to the supported
one is feasible using a variant of the meta-evaluation rule (4).

in(H)← rule(R), head(R,H), not out(P ) : body(R,P ) : pos(P ),

not in(N) : body(R,N) : neg(N). (30)

out(P )← not in(P ), pos(P ). (31)

In contrast to (4), the idea is to express positive body conditions via double negation,
i.e., not out(P ) aims to capture in(P ). However, due to different treatment of positive
and negative recursion under answer-set semantics, the meaning shifts to supported sets.
The idea can be further restricted to positive conditions not crucial for rule safety.

Theorem 2. Let P be a propositional normal logic program, Rfy(P ) its reification,
and Q the meta program consisting of rules (5)–(9), (30), and (31) above.

1. If S is a supported set of P , then Rfy(P ) ∪Q has an answer set T such that (10).
2. If T is an answer set of Rfy(P )∪Q, then S defined by (10) is a supported set of P .

Theorem 2 shows how meta rules can implement semantic shifts. Further examples in
this direction can be found in [10] but for the class of disjunctive programs. We expect
that such features can be very useful when putting together rules published by different
participants of a smart space. This is even more realistic aspect given that knowledge
processors are allowed to interact with several smart spaces simultaneously [4] meaning
that different forms of meta interpretation may have to be applied to different spaces.

6 Meta-level Grounding of Rules

Rules containing variable occurrences can be published in a smart space using the ab-
stract representation devised in Section 3. This leaves the grounding step of published
rules open and, in order to use such rules in practice, raises two basic questions to be
answered. The first concerns the domains of variables involved whereas the second is
about how and when the substitution of variables by appropriate constants takes place.
The goal of this section is to address these questions in our meta-level framework.

Due to the grounding phase, domains of variables play an important role in ASP
modeling. Typically they are specified in terms of dedicated predicates called domain
predicates which are either decided by the programmer beforehand or automatically de-
tected by the grounder. E.g., in Example 3, the predicates user(·) and service(·) give the
domains of variables U1, U2, and S. Once the respective extensions of these predicates
are known, i.e., {f} and {a, b}, the instances of the rule (14) can be intelligibly created.
For the purposes of this paper, we assume that the domains of variables appearing in
published rules can be determined from the context formed by the smart space(s) in
question. We hypothesize that this forms a natural control point between the data re-
siding in the space and any associated rules. The symbolic names of domain predicates



116 T. Janhunen and V. Luukkala

or predicates in general can be presented as part of the underlying ontology. The same
applies to the extensions of domain predicates involved, if appropriate for the use of
rules, which thus can be recovered as sets of facts by posing queries on the ontology.

Let us then address the substitution of variables by constants. In principle, a rule (1)
stands for its all Herbrand instances. But many of them are void because their positive
body conditions remain false under answer-set semantics. Thus, for the purposes of this
paper, we assume that the domains of variables are determined by domain predicates
which are provided as a set of facts8 amongst the rules subject to grounding and in the
reified form. The following meta rules distinguish the structures of interest:

nonfact(R)← rule(R), body(R,A). (32)

nonfact(R)← rule(R), head(R,H), alist(H,N, V ), var(V, S). (33)

poscond(R,A)← rule(R), body(R,A), pos(A). (34)

The rules (32) and (33) detect rules which are not facts. The positive body conditions of
(other) rules are determined by the rule (34). To realize meta-level grounding, we aim
at an encoding whose answer sets capture the rules of the resulting ground program.
Thus, the first objective is to choose a rule which is not a fact for grounding:

ground(R)← not other(R), nonfact(R). (35)

other(R1)← ground(R2), nonfact(R1), nonfact(R2), R1 	= R2. (36)

By (35), a rule R is subject to grounding if no other rule is. This concept is formalized
by (36). Next, we match facts with the positive conditions of the rule being grounded.

fact(R)← rule(R), not nonfact(R). (37)

carg(A,N, S)← alist(A,N,C), const(C, S). (38)

match(A,F )← not differ(A,F ), poscond(R,A), ground(R), fact(F ). (39)

differ(A,F )← pred(A,S1), pred(F, S2), S1 	= S2,

poscond(R,A), ground(R), fact(F ). (40)

differ(A,F )← carg(A,N, S1), carg(F,N, S2), S1 	= S2,

poscond(R,A), ground(R), fact(F ). (41)

differ(A,F1)← match(A,F2), poscond(R,A), ground(R),

fact(F1), fact(F2). (42)

The rule (37) extracts facts into a distinguished relation whereas (37) detects the oc-
currences of constant symbols in atoms. The net effect of rules (39)–(42) is that each
positive condition of the rule being grounded is matched against a unique fact having
the same predicate symbol and constants in argument positions where the positive con-
dition also has constants. What remains is to ensure that each variable gets a unique
value when matched against constants appearing in the facts.

varg(A,N, S)← alist(A,N, V ), var(V, S). (43)

value(R,S1, S2)← varg(A,N, S1), carg(F,N, S2), match(A,F ),

poscond(R,A), ground(R), fact(F ). (44)
8 Meta evaluation techniques from Section 4 can be used to infer such facts in an extra pass.
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Fig. 3. An architecture for meta-level grounding

For space reasons, we omit rules analogous to (11)–(13) for checking the uniqueness of
S2 for each S1 in R. Moreover, if some variable in the rule head or in the negative body
conditions does not receive a value in the matching, a safety warning must be issued.

The overall architecture for meta-level grounding is illustrated in Figure 3. Ground-
ing proceeds as follows. First, we read rules and extract domain information from the
smart space and represent them as reified rules. Second, when combined with the meta-
level grounding program, the resulting ground rules can be read off from the answer
sets of the program and rendered as ASP rules. Third, the ground program is then fed as
input to an ASP solver and the answer sets hereby obtained provide the basis for further
reasoning. It is also possible to publish part of the information back to the smart space.

We also considered alternative formalizations of the grounding phase based on pa-
rameterized conjunctions discussed in the end of Section 2. Although such expressions
are very convenient in the meta evaluation of propositional rules, as embodied in the
rule (4), it is not easy to collect varying-length argument lists for predicate symbols.
When grounding rules (1) with variables, the setting becomes very similar and it seems
inherently difficult to specify the respective ground rules using a single meta-level rule
whose ground instances would correspond to the ground instances of reified rules with
variables. If this were possible, then even a single call to a grounder would be sufficient
to ground rules at meta level—leading to an architecture different from Figure 3.

7 Qualitative Aspects of Reasoning

So far, we have concentrated on applying meta programming techniques to implement
standard reasoning tasks in ASP. The objective of this section is to illustrate that such
techniques enable us to address many qualitative aspects of rule-based reasoning. These
needs easily arise in applications and, in particular, in the highly dynamic and hetero-
geneous environment provided by a smart space. In environments like this, rules may
exist or may be available for limited periods of time and understanding their provenance
and reliability becomes a major issue. If these aspects of rules matter, it is necessary to
enrich reasoning mechanisms with appropriate pieces of meta information. This further
suggests to use meta programming techniques when implementing actual inference.
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In what follows, we assume that rules stored in a smart space are tagged with infor-
mation regarding their validity, provenance, and integrity. For instance, each rule could
have a time stamp indicating the time when it was published. It is straightforward to
extend the reification procedure to yield facts of the form time(R, T ) which annotates
a rule R with its time T of publication. To incorporate this information to actual rea-
soning, the meta evaluation rule (4) could be refined with time stamps as follows:

in(H)← rule(R), time(R, T ), s < T < e, head(R,H),

in(P ) : body(R,P ) : pos(P ),

not in(N) : body(R,N) : neg(N). (45)

In the rule above, constants s and e specify a time interval which takes effect at the
time of grounding. Consequently, only rules published within the given time interval
are available for inference. In this way, answer sets become dependent on the interval
and the technique can be used to analyze conclusions back in history if published rules
are never removed from the smart space. Such considerations might involve both brave
and cautious conclusions, i.e., whether an atom belongs to some or all answer sets
of the selected rules. Having Example 1 in mind, one could analyze whether the user
potentially or necessarily had access to a particular service given the provider’s policies.

Assuming further that rules are tagged with their creators’ identities it is possible to
perform reasoning relative to who published the rules. E.g., by incorporating an addi-
tional argument to the predicate in(·) above, the derivation of in(A, I) for an atom A
and an identity I could mean that A can be derived by the rules published by I . Given
this, a meta rule like in(A) ← in(A, I) : id(I) would express that A is an unanimous
conclusion given the rules published by the participants of the space. With a little bit
of elaboration, further concepts like majority vote can be formalized, e.g., using the
extended rule types [26] supported by contemporary ASP systems. There are further
objectives when reasoning about the provenance of rules. Since smart spaces form an
open architecture, it may be desirable in the long run to endow rules with their publish-
ers’ signatures in order to prevent malicious users from forging rules. Similar crypto-
graphic primitives can be introduced to ensure the integrity of rules in the first place.
Since the verification of signatures and check sums involves non-trivial arithmetic op-
erations, appropriate extensions are needed in grounders. To relieve the integration of
rules, it is also possible to tag rules with syntactic and semantic descriptors. The latter,
for instance, can be used to condition the meta rules used in their evaluation.

8 Related Work

In [6], a generalization of answer-set programs, viz. the class of HEX-programs, is in-
troduced. The aim is to enable meta-level reasoning in the context of Semantic Web.
The approach is based on syntactic extensions called higher-order atoms and external
atoms which provide the means to extend answer-set programs in a systematic way and
to interface an answer-set program with external sources. Thus ASP rules can be used at
meta level to reason about information accessible through these kinds of special atoms.
In particular, the goal is to provide an extended support for ontological languages. In
contrast with HEX-programs, we explicitly focus on meta programming, i.e., having
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ASP rules as input for ASP programs, and consider the applications of this feature
in the context of smart spaces. The case of HEX-programs is further elaborated in [7]
where the interdependencies of atoms, rule safety, and modularization are addressed.

A representation of answer-set programs in RuleML, i.e., the markup language for
semantic web rules, is proposed in [8]. The syntax resembles that of XML and, in
contrast with the RDF-based representation of syntax trees sketched in Section 3, it
provides an alternative format to publish ASP rules in Semantic Web. Nevertheless,
conversions between the formats are easy if the underlying ASP dialects coincide.

The framework described in this paper was sparked by the meta programming ap-
proach [10] where the reification of programs is performed analogously but partly using
function symbols. The idea of meta evaluation (cf. Section 4) is already presented and
further elaborated to change the semantics of disjunctive answer-set programs subject
to optimization statements in order to grasp more complex optimization criteria. Our
approach is quite similar as it counts on the meta-level interpretation of ASP rules.
The application context, however, is different and we also highlight syntactic trans-
formations and grounding as further tasks to be implemented via meta programming.
The very same techniques provide a basis for debugging answer-set programs. E.g.,
the approach of [11] treats propositional disjunctive programs as object level programs
whereas meta-level normal rules with variables are used to describe the central notions
required to debug such programs. Analogous ideas can be exploited in smart spaces to
reason about potential conclusions or to explain conclusions drawn by published rules.

Multi-context systems [5] formalize a reasoning mechanism for multiple contexts
in each of which a different logic can be used to represent knowledge. The flow of
information is modeled in terms of bridge rules which superficially resemble normal
rules (1) but may refer to different contexts with context-specific conditions. The overall
semantics is defined in terms of equilibria and the notion of a reduct in analogy to
answer-set semantics. In contrast with multi-context systems, our meta programming
framework aims at using a single formalism, i.e., logic programs subject to answer-set
semantics, to represent the rules required for inference. Rules similar to bridge rules, if
appropriate, can thus be used locally. The computational complexity results [5] suggest
that the expressive power of our approach is lower than that of multi-context systems
trading off computational costs. Moreover, since the semantics of rules is determined by
answer-sets semantic shifts like the one illustrated in Section 5 may become necessary.

In database research, the notions of provenance [12] have been extensively studied.
The idea is to annotate relations with algebraic structures and to deduce various kinds of
justifications for queries over the relations. For the moment, we aim at a much simpler
way to reason about provenance in our meta programming framework.

9 Conclusion

In this paper, we envision the potential of ASP in a setting where semantic rules aris-
ing in a smart space are represented as ASP rules and then published in the space. The
idea is to reason with such rules by applying ASP techniques at meta level, i.e., when
ASP rules are reified as facts and used as basis for meta programming. The encodings9

9 Some are available under http://research.ics.aalto.fi/software/asp/

http://research.ics.aalto.fi/software/asp/
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provided in Sections 4–7 illustrate the amenability of existing ASP technology to meta
evaluation, syntactic and semantic transformations required in information integration,
and addressing the qualitative aspects of underlying reasoning tasks. However, ground-
ing at meta level is still challenging for existing grounders as discussed in the end of
Section 6: it is difficult to reconstruct ground atoms with varying numbers of arguments
out of logical conditions appearing in the meta rule. Hence the current architecture for
grounding (recall Figure 3) counts on the use of an ASP solver for grounding purposes
and a correspondence between answer sets and ground rules.

We anticipate that grounding is an essential step when rules published in a smart
space are exploited by knowledge processors implemented using ASP technology. We
view the grounding step as a potential control point where the domains of variables are
dynamically determined and the applicability of particular public rules is partially de-
cided. Since smart spaces are inherently dynamic and typically require context sensitive
reasoning, we think that the primitives of ASP such as default negation and exceptions
are well-suited for the needs arising in context-dependent knowledge processing.

In the future, we aim to trial the meta programming approach presented here in use
cases similar to [2,23] paying particular attention to qualitative aspects (cf. Section 7)
arising in the management of multi-user environments. The ideas of reification and meta
evaluation are applicable in much wider sense than presented herein. When collecting
rules from a number of sources there are safety risks that have to be dealt with, e.g.,
by introducing special mechanisms for rule selection. In this respect, the provenance
of information is very central and we foresee use cases where tags, certificates, signa-
tures, and check sums are widely applied. We also plan to pursue new solutions to meta
grounding since it underlies the computationally challenging combinatorial problem of
choosing appropriate values for variables. Moreover, we expect that an efficient imple-
mentation will require modularization of reasoning tasks as well as natural distribution
amongst the entities present in a smart space.
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content aware information management. In: Proc. ICITST 2009, pp. 1–7. IEEE (2009)

5. Brewka, G., Eiter, T.: Equilibria in heterogeneous nonmonotonic multi-context systems. In:
Proc. AAAI 2007, pp. 385–390. AAAI Press (2007)

6. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: Proc. IJCAI 2005, pp. 90–96.
Professional Book Center (2005)



Meta Programming with Answer Sets for Smart Spaces 121

7. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules
with External Evaluations for Semantic-Web Reasoning. In: Sure, Y., Domingue, J. (eds.)
ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006)

8. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A RuleML syntax for answer-set program-
ming. In: Proc. ALPSWS 2006, pp. 107–108 (2006)
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Abstract. We address the issue of Ontology-Based Data Access which con-
sists of exploiting the semantics expressed in ontologies while querying data.
Ontologies are represented in the framework of existential rules, also known as
Datalog+/-. We focus on the backward chaining paradigm, which involves rewrit-
ing the query (assumed to be a conjunctive query, CQ) into a set of CQs (seen as a
union of CQs). The proposed algorithm accepts any set of existential rules as in-
put and stops for so-called finite unification sets of rules (fus). The rewriting step
relies on a graph notion, called a piece, which allows to identify subsets of atoms
from the query that must be processed together. We first show that our rewriting
method computes a minimal set of CQs when this set is finite, i.e., the set of rules
is a fus. We then focus on optimizing the rewriting step. First experiments are
reported.

1 Introduction

In recent years, there has been growing interest in exploiting the semantics expressed in
ontologies when querying data, an issue known as ontology-based data access (OBDA).
To address this issue, several logic-based formalisms have been developed. The domi-
nant approach is based on description logics (DLs), with the most studied DLs in this
context being lightweight DLs, such as DL-Lite and EL families [Baa03, CGL+07]
and their Semantic Web counterparts, so callso-calleded tractable fragments of OWL2.
A newer approach, to which this paper contributes, is based on existential rules. Exis-
tential rules have the ability of generating new unknown individuals, a feature that has
been recognized as crucial in an open-world perspective, where it cannot be assumed
that all individuals are known in advance. These rules are of the form body → head,
where the body and the head are conjunctions of atoms (without functions), and vari-
ables that occur only in the head are existentially quantified, hence the name ∀∃-rules in
[BLMS09, BLM10] or existential rules in [BMRT11, KR11]. They are also known as
Datalog +/-, a recent extension of plain Datalog to tuple-generating dependencies (ex-
pressive constraints that have long been studied in databases and have the same logical
form as existential rules) [CGK08, CGL09].

In this paper, we consider knowledge bases composed of a set of facts -or data- and
of existential rules. The basic problem, query answering, consists of computing the set
of answers to a query in the knowledge base. We consider conjunctive queries (CQs),
which are the standard basic queries. CQs can be seen as existentially quantified con-
junctions of atoms. The fundamental decision problem associated with query answering
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can be expressed in several equivalent ways, in particular as a CQ entailment problem:
is a given (Boolean) CQ logically entailed by a knowledge base?

CQ entailment is undecidable for general existential rules. There is currently an
intense research effort aimed at finding decidable subsets of rules that provide good
tradeoffs between expressivity and complexity of query answering (see [Mug11] for a
synthesis). With respect to (lightweight) DLs, these decidable rule fragments are more
powerful and flexible. However, the rule-based ODBA framework is rather new and it
does not come yet with practically usable algorithms, with the exception of very simple
classes of rules, which can be seen as slight generalizations of lightweight DLs. In this
paper, we undertake a step in this direction.

There are two classical paradigms for processing rules, namely forward chaining and
backward chaining, schematized in Figure 1. Both can be seen as ways of integrating
the rules either into the facts or into the query (denoted by Q in the figure). Forward
chaining uses the rules to enrich the facts and the query is entailed if it maps by homo-
morphism to the enriched facts. Backward chaining proceeds in the “reverse” manner:
it uses the rules to rewrite the query in several ways and the initial query is entailed if a
rewritten query maps to the initial facts.

Fig. 1. Forward / Backward Chaining

In the context of large data, the obvious advantage of backward chaining is that it
does not make the data grow. When the set of rewritten queries is finite, this set can
be seen as a single query, which is the union of the conjunctive queries in the set. An
approach initiated with DL-Lite consists of decomposing backward chaining into two
steps: (1) rewrite the initial query as a union of CQs (2) use a database management
system to answer this union query. This approach aims to benefit from the optimiza-
tions developed for classical database queries. Since the CQs are independent, their
processing can be easily parallelized. This approach can be generalized to rewritings
into first-order queries, which are the logical counterpart of SQL queries (with closed-
world assumption). It is at the core of several systems, such as Nyaya [GOP11], QuOnto
[CGL+07] and Requiem [PUHM09]. Such rewritings are usually of exponential size
with respect to the initial query (however [KKZ11] exhibits specific cases where the
rewriting is of polynomial size). In [RA10] another method, also devoted to DL-Lite,
is proposed: it consists of rewriting the query into a non-recursive Datalog program,
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which in turn can be translated into a first-order query of smaller size than the union
of CQs that would be output. [GS12] defines such a rewriting with polynomial size in
both Q and R for some specific classes of rules. However, distributed processing of
non-recursive Datalog programs is not as easy as for UCQs.

While these works focus on specific rule sublanguages, in this paper we consider
backward chaining with general existential rules, i.e., our algorithm accepts as input
any set of existential rules, but of course is guaranteed to stop only for a subset of
them (so-called “finite unification sets” of rules in [BLM10], which includes expressive
classes of rules, see Section 3).

The originality of our method lies in the rewriting step, which is based on a graph
notion, that of a piece. Briefly, a piece is a subset of atoms from the query that must be
erased together during a rewriting step. The backward chaining mechanisms classically
used in logic programming process rules and queries atom by atom: at each step, an
atom a of a query Q is unified with the head of a rule R (which is composed of a single
atom) and a new query is generated by replacing a in Q by the body of R (precisely: let
u be the unifier, the new query is u(body(R))∪u(Q\{a}). Here, existential variables in
rule heads have to be taken into account, which prevents the use of atomic unification.
Instead, subsets of atoms ( “pieces”) have to be considered at once. We present below a
very simple example (in particular, the head of the rule is restricted to a single atom).

Example 1. Let the rule R = q(x)→ p(x, y), which corresponds to the logical formula
∀x (q(x) → ∃y p(x, y)), and the Boolean CQ Q = p(u, v) ∧ p(w, v) ∧ p(w, t) ∧
r(u,w) (a closed existential formula), where all the terms are variables. Assume we
want to unify p(u, v), the first atom in Q, with p(x, y) by a substitution {(u, x), (v, y)}.
Since v is unified with the existential variable y, all other atoms containing v must also
be considered: indeed, simply rewriting Q into q(x) ∧ p(w, y) ∧ p(w, t) ∧ r(x,w) as
would be done in a “classical” backward chaining step would be incorrect (intuitively,
the fact that the atoms p(u, v) and p(w, v) in Q share a variable would be lost with
q(x) and p(w, y)). Thus, p(u, v) and p(w, v) are both unified with the head of R by
means of the following substitution: {(u, x), (v, y), (w, x)}. Since w is associated with
a non-existential variable, there is no need to include p(w, t) in the set, although in
this example it could be added. {p(u, v), p(w, v)} is called a piece. The corresponding
rewriting of Q is q(x) ∧ p(x, t) ∧ r(x, x).

Pieces come from earlier work on conceptual graph rules, whose logical translation is
exactly existential rules [SM96]. This notion has then been recast in the framework of
existential rules in [BLMS09][BLMS11]. In this paper, we start from the definition of
a piece-unifier, which unifies part of a rule head and part of the query, while respecting
pieces: when it unifies an atom in the query, it must unify the whole piece to which this
atom belongs. Backward chaining based on piece-unifiers is known to be sound and
complete (e.g. [BLMS11], and basically [SM96] for conceptual graphs). An alternative
method would be to consider the Skolem form of rules, i.e., to replace existential vari-
ables in the head by Skolem functions of variables occurring in the body, however we
think it is simpler and more intuitive to keep the original rule language.

This framework established, we then posed ourselves the following questions:

1. Can we ensure that we produce a minimal set of rewritten conjunctive queries, in
the sense that no sound and complete algorithm can produce a smaller set?
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2. How to optimize the rewriting step? The problem of deciding whether there is a
piece-unifier between a query and a rule head is NP-complete and the number of
piece-unifiers can be exponential in the size of the query.

With respect to the first question, let us say that a set Q of rewritten CQs from a CQ Q
and a set of rulesR is sound and complete if the following holds: for any set of facts F ,
if Q is entailed by F andR then there is a query Qi in Q such that Qi is entailed by F
(completeness), and reciprocally (soundness). We point out that any sound and complete
set of CQs (w.r.t. the same Q andR) remains sound and complete when it is restricted to
its most general elements (w.r.t. the generalization relation induced by homomorphism).
We then show that all sound and complete sets of CQs restricted to their most general
CQs have the same cardinality, which is minimal w.r.t. the completeness property. It
is easily checked that the algorithm we propose produces such a minimal set. If we
moreover delete redundant atoms from the obtained CQs (which can be performed by
a linear number of homomorphism tests for each query), we obtain a unique sound and
complete set of CQs that has both minimal cardinality and elements of minimal size
(unicity is of course up to a bijective variable renaming).

With respect to the second question, we consider rules with an atomic head. This
is not a restriction in terms of expressivity, since any rule can be decomposed into an
equivalent set of atomic-head rules by simply introducing a new predicate for each rule
(e.g. [CGK08], [BLMS09]). Besides, many rules found in the literature have an atomic
head. Restricting our focus to atomic head rules allows us to obtain nice properties. We
first show that it is sufficient to consider piece-unifiers that (1) are most general unifiers,
and (2) process a single piece at once.1 We then show that the number of most general
single-piece unifiers of a query Q with the (atomic) head of a rule R is bounded by the
size of the query. Finally, we exploit the fact that each atom in Q belongs to at most
one piece with respect to R (which is false for general existential rules) to efficiently
compute a rewriting step, i.e., generate all queries obtained from R and Q by most
general single-piece unifiers of Q with R. A backward chaining algorithm benefiting
from these results has been implemented.

The paper is organized as follows. Section 2 introduces our framework. Sections 3
and 4 are respectively devoted to the first and to the second question. Finally, Section
5 reports first experiments and outlines further work. A long version of this paper with
all proofs is available as a technical report [KLMT12].

2 Framework

An atom is of the form p(t1, . . . , tk) where p is a predicate with arity k, and the ti are
terms, i.e., variables or constants (we do not consider other function symbols). Given an
atom or a set of atoms A, vars(A), consts(A) and terms(A) denote its set of variables,
of constants and of terms, respectively. In the following examples, all the terms are
variables (denoted by x, y, z, etc.) unless otherwise specified. |= denotes the classical
logical consequence.

1 Actually, this property should be extendable to rules with non-atomic head, but this would first
involve defining a suitable comparison operation between piece-unifiers, operation which is
simply defined with atomic-head rules.
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Given atom sets A and B, a homomorphism h from A to B is a substitution of
vars(A) by terms(B) such that h(A) ⊆ B. We say that A maps to B by h. If there is
a homomorphism from A to B, we say that A is more general than B (or B is more
specific than A), which is denoted A ≥ B (or B ≤ A).

A fact is the existential closure of a conjunction of atoms.2 A conjunctive query
(CQ) is an existentially quantified conjunction of atoms. When it is a closed formula, it
is called a Boolean CQ (BCQ). Note that facts and BCQs have the same logical form.
In the following, we will see them as sets of atoms. It is well-known that, given a fact
F and a BCQ Q, F |= Q iff there is a homomorphism from Q to F .

The answer to a BCQ Q in a fact F is yes if there is a homomorphism from Q to
F . Otherwise, let x1 . . . xq be the free variables in Q: a tuple of constants (a1 . . . aq)
is an answer to Q in F if there is a homomorphism from Q to F that maps xi to ai
for each i. In the following, we consider only Boolean queries for simplicity reasons.
This is not a restriction, since a CQ with free variables x1 . . . xq can be translated into a
BCQ by adding the atom ans(x1 . . . xq), where ans is a special predicate not occurring
in the knowledge base. Since ans can never be erased by a rewriting step, it guarantees
that the xi can only be substituted and will not “disappear”. Note that we could also
consider unions of conjunctive queries, in this case each conjunctive subquery would
be processed separately.

Definition 1 (Existential rule). An existential rule (or simply rule when clear from the
context) is a formula R = ∀x∀y(B[x,y] → (∃zH [y, z])) where B = body(R) and
H = head(R) are conjunctions of atoms, resp. called the body and the head of R. The
frontier of R, noted fr(R), is the set of variables vars(B)∩vars(H) = y. The existential
variables in R, noted exist(R), is the set of variables vars(H) \ fr(R) = z.

In the following, we will omit quantifiers in rules as there is no ambiguity.
A knowledge base (KB) K = (F,R) is composed of a finite set of facts (seen as

a single fact) F and a finite set of existential rules R. The (Boolean) CQ entailment
problem is the following: given a KBK = (F,R) and a BCQ Q, does F,R |= Q hold?

This question can be solved with forward chaining: F,R |= Q iff there exists a finite
sequence (F0 = F ), . . . , Fk , where each Fi for i > 0 is obtained by applying a rule
fromR to Fi−1, such that Fk |= Q (see e.g. [BLMS11] for details).

As explained in the introduction, backward chaining relies on a unification opera-
tion between a query and a rule head. The following definition of piece-unifier is an
alternative definition of the operation defined in [BLMS11].

Other Notations: Throughout the paper we note respectively R and Q the considered
rule and query. We assume that R and Q have no variables in common. When needed,
a “fresh copy” of R is obtained by bijectively renaming the variables in R into “fresh”
variables. We note C the set of constants occurring in the set of rulesR and in Q. Given
Q′ ⊆ Q, we note Q̄′ the set Q \ Q′. The variables in vars(Q′) ∩ vars(Q̄′) are called
separating variables and denoted sep(Q′).

A piece-unifier is defined as a pair (Q′, u), where Q′ is a non-empty subset of Q,
and u is a substitution that “unifies” Q′ with a subset H ′ of head(R), in the sense

2 We generalize the classical notion of a fact in order to take existential variables into account.
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that u(Q′) = u(H ′); H ′ is the subset of head(R) composed of atoms a such that
u(a) = u(b) for some b ∈ Q′. The substitution u can be decomposed as follows:
(1) it specializes the frontier of R, thus head(R), while leaving existential variables
unchanged; (2) it maps Q′ to u(head(R)), while satisfying the following constraint: the
separating variables in Q′ are not mapped to existential variables, i.e., they are mapped
to u(fr(R)) or to constants.

Definition 2 (Piece-unifier). Let Q be a CQ and R be a rule. A piece-unifier of Q with
R is a pair μ = (Q′, u) with Q′ ⊆ Q, Q′ 	= ∅, and u is a substitution of fr(R)∪vars(Q′)
by terms(head(R)) ∪ C such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R)∪C (for technical convenience, we allow u(x) = x);
2. for all x ∈ sep(Q′), u(x) ∈ fr(R) ∪ C;
3. u(Q′) ⊆ u(head(R)).

u is divided into uR with domain fr(R) and uQ′
with domain vars(Q′).

Note that instead of C, we could consider consts(Q′) ∪ consts(head(R)), however C is
convenient for proof purposes.

Example 2. Let us take again R = q(x) → p(x, y) and Q = p(u, v) ∧ p(w, v) ∧
p(w, t) ∧ r(u,w). Here are three piece-unifiers of Q with R:
μ1 = (Q′

1, u1) with Q′
1 = {p(u, v), p(w, v)} and u1 = {(u, x), (v, y), (w, x)}

Note that we will omit identity pairs in all examples; f.i. u1 contains (x, x)
μ2 = (Q′

2, u2) with Q′
2 = {p(w, t)} and u2 = {(w, x), (t, y)}

μ3 = (Q′
3, u3) with Q′

3 = {p(u, v), p(w, v), p(w, t)} and u3 = {(u, x), (v, y), (w, x),
(t, y)}
These piece-unifiers will be called the “most general piece-unifiers” of Q with R in
Section 4.

In the previous example, R has an atomic head, thus a piece-unifier of Q′ with R actu-
ally unifies the atoms from Q′ and the head of R into a single atom. In the general case,
a piece-unifier unifies Q′ and a subset H ′ of head(R) into a set of atoms, as shown by
the next example.

Example 3. Let R = q(x) → p(x, y) ∧ p(y, z) ∧ p(z, t) ∧ r(y) and Q = p(u, v) ∧
p(v, w) ∧ r(u). A piece-unifier of Q with R is (Q′

1, u1) with Q′
1 = {p(u, v), p(v, w)}

and u1 = {(u, x), (v, y), (w, z)}. H ′ = {p(x, y), p(y, z)} and u1(Q
′) = u1(H

′) =
H ′. Another piece-unifier is (Q′

2, u2) with Q′
2 = Q and u2 = {(u, y), (v, z), (w, t)};

in this case, H ′ = {p(y, z), p(z, t), r(y)}.

Finally, the next example illustrates the role of constants (in the query here, but con-
stants may also occur in rules).

Example 4. Let R = q(x, y) → p(x, y, z) and Q = p(u, a, v) ∧ p(a, w, v), where a
is a constant. The variable v has to be mapped to the existential variable z. The unique
piece-unifier is here (Q, {(x, a), (y, a), (u, a), (w, a), (v, z)}).
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We are now able to formally define pieces. A piece of Q can be seen as a minimal subset
Q′ satisfying the above definition of a piece-unifier. Generally speaking, a set of atoms
can be partitioned into subsets called pieces according to a set T of variables acting as
‘cutpoints”: two atoms are in the same piece if they are connected by a path of variables
that do not belong to T [BLMS11]. Note that constants do not allow to connect atoms.
Here, T is the set of variables from Q′ that are not mapped to existential variables by u.

Definition 3 (Piece). [BLMS11] Let A be a set of atoms and T ⊆ (vars(A)). A piece
of A according to T is a minimal non-empty subset P of A such that, for all a and a′ in
A, if a ∈ P and (vars(a) ∩ vars(a′)) 	⊆ T , then a′ ∈ P .

Definition 4 (Cutpoint, Piece of Q). Given a piece-unifier μ = (Q′, u) of Q with R,
a variable x ∈ Q′ is a cutpoint if u(x) 	∈ exist(R) (equivalently: u(x) ∈ fr(R) ∪ C).
The set of cutpoints associated with μ is denoted by TQ(μ). We call piece of Q (for μ)
a piece of Q according to TQ(μ).

Example 3 (contd) Q′
1 and Q′

2 are pieces. Note that an atom may belong to different
pieces according to different unifiers (it is the case here for p(u, v) and p(v, w)).

The following property is easily checked and justifies the name ”piece-unifier”:

Property 1. For any piece-unifier μ = (Q′, u), Q′ is a set of pieces of Q. In particular,
sep(Q′) ⊆ TQ(μ).

To summarize, a piece of Q is a minimal subset of atoms that must be considered
together once cutpoints in Q have been defined. A piece-unifier may process several
pieces. In Section 4, we will focus on unifiers processing a single piece. Finally, note
that in rules without existential variables, such as in plain Datalog, each piece is re-
stricted to a single atom. Concerning the next definitions, we recall the assumption that
vars(R) ∩ vars(Q) = ∅:

Definition 5 (Rewriting). Given a CQ Q, a rule R and a piece-unifier μ = (Q′, u) of
Q with R, the rewriting of Q according to μ, denoted β(Q,R, μ) is uR(body(R)) ∪
uQ′

(Q̄′).

Definition 6 (R-rewriting of Q). Let Q be a CQ and R be a set of rules. An R-
rewriting of Q is a CQ Qk obtained by a finite sequence (Q0 = Q), Q1, . . . , Qk such
that for all 0 ≤ i < k, there is Ri ∈ R and a piece-unifier μ of Qi with Ri such that
Qi+1 = β(Qi, R, μ).

Theorem 1 (Soundness and completeness of piece-based backward chaining).
(basically[SM96]) Let a KB K = (F,R) and a (Boolean) CQ Q. Then F,R |= Q
iff there is anR-rewriting of Q that maps to F .

The soundness and completeness of the piece-based backward chaining mechanism can
be proven via the following equivalence with forward chaining: there is anR-rewriting
from Q to Q′ that maps to F iff there is a sequence of rule applications leading from F
to F ′ such that Q maps to F ′.

To evaluate the quality of rewriting sets produced by different mechanisms, we in-
troduce the notions of soundness and completeness of a set of CQs with respect to Q
andR (such a set is called a rewriting set hereafter):
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Definition 7 (Sound and Complete (rewriting) set of CQs). Let R be a set of exis-
tential rules and Q be a (Boolean) CQ. Let Q be a set of CQs. Q is said to be sound
w.r.t. Q and R if for all facts F , for all Qi ∈ Q, if Qi maps to F then R, F |= Q.
Reciprocally, Q is said to be complete w.r.t. Q and R if for all fact F , if R, F |= Q
then there is Qi ∈ Q such that Qi maps to F .

As expressed by Theorem 1, the set of R-rewritings that can be produced with piece-
unifiers is sound and complete. In the next section, we will address the issue of the size
of a rewriting set.

3 Minimal Rewriting Sets

We first point out that only the most general elements of a rewriting set need to be
considered. Indeed, let Q1 and Q2 be two elements of a rewriting set such that Q2 ≤ Q1

and let F be any fact: if Q1 maps to F , then Q2 is useless; if Q1 does not map to
F , neither does Q2; thus removing Q2 will not undermine completeness (and it will
not undermine soundness either). The output of a rewriting algorithm should thus be a
minimal set of incomparable queries that “covers” all rewritings of the initial query:

Definition 8 (Cover). Let Q be a set of BCQs. A cover of Q is a set of BCQs Qc ⊆ Q
such that:

1. for any element Q ∈ Q, there is Q′ ∈ Qc such that Q ≤ Q′,
2. elements of Qc are pairwise incomparable w.r.t. ≤.

Note that a cover is inclusion-minimal. Moreover, it can be easily checked that all covers
of Q have the same cardinality.

Example 5. Let Q = {Q1, . . . , Q6} and the following preorder over Q : Q6 ≤ Q5;
Q5 ≤ Q1, Q2; Q4 ≤ Q1, Q2, Q3; Q1 ≤ Q2 and Q2 ≤ Q1 (Q1 and Q2 are thus
equivalent). There are two covers ofQ, namely {Q1, Q3} and {Q2, Q3}.

Note that the set of rewritings of Q can have a finite cover even when it is infinite, as
illustrated by Example 6.

Example 6. Let Q = t(u), R1 = t(x) ∧ p(x, y)→ r(y), R2 = r(x) ∧ p(x, y)→ t(y).
The set of R-rewritings of Q with {R1, R2} is infinite. The first generated queries are
the following (note that rule variables are renamed when needed):

Q0 = t(u)
Q1 = r(x) ∧ p(x, y) // from Q0 and R2 with {(u, y)}
Q2 = t(x0) ∧ p(x0, y0) ∧ p(y0, y) // from Q1 and R1 with {(x, y0)}
Q3 = r(x1) ∧ p(x1, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q2 and R2 with {(x0, y1)}
Q4 = t(x2) ∧ p(x2, y2) ∧ p(y2, y1) ∧ p(y1, y0) ∧ p(y0, y) // from Q3 and R1

and so on . . .

However, the set of the most general R-rewritings is {Q0, Q1} since any other query
than can be obtained is more specific than Q0 or Q1.
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A set of rules R for which it is ensured that the set of R-rewritings of any query has
a finite cover is called a finite unification set (fus). The fus property is not recogniz-
able [BLMS11], but several fus recognizable classes have been exhibited in the litera-
ture: atomic-body [BLMS09], also known as linear TGDs [CGL09], domain-restricted
[BLMS09], (join-)sticky [CGP10]. Following Algorithm 1 is a breadth-first algorithm
that, given a fus R and a query Q, generates a cover of the set of R-rewritings of Q.
“Exploring” a query consists of computing the set of immediate rewritings of this query
with all rules. Initially,Q is the only query to explore; at each step (while loop iteration),
all queries generated at the preceding step and kept in the current cover are explored.

Algorithm 1. A BREADTH-FIRST REWRITING ALGORITHM

Data: A fus R, a conjunctive query Q
Result: A cover of the set of R-rewritings of Q
QF ← {Q}; // resulting set
QE ← {Q}; // queries to be explored
while QE �= ∅ do

Qt ← ∅; // queries generated at this rewriting step
for Qi ∈ QE do

for R ∈ R do
for μ piece-unifier of Qi with R do

Qt ← Qt ∪ β(Qi, R, μ);

Qc ← ComputeCover(QF ∪ Qt);
QE ← Qc\QF ; // select unexplored queries of the cover
QF ← Qc;

return QF

For any fus, CQ entailment is solvable in AC0 for data complexity.3 However, data
complexity hides the complexity coming from the query: the size of the rewriting set
can be exponential in the size of the original query. Most of the literature about rewriting
techniques focuses on minimizing the size of the output rewritings. We will show that
this size should not be a decisive criterion for comparing algorithms that output a union
of CQs.

All covers of a given set have the same (minimal) cardinality. We now prove that this
property can be extended to the covers of all sound and complete rewriting sets of Q,
no matter of the rewriting technique used to compute these sets.

Theorem 2. LetR be a fus, Q be a BCQ, and letQ be a sound and complete rewriting
set of Q with R. Any cover of Q is of minimal cardinality among sound and complete
rewriting sets of Q with R.

Proof. Let Q1 and Q2 be two arbitrary sound and complete rewriting sets of Q with
R, and Qc

1 and Qc
2 be one of their respective covers. Qc

1 and Qc
2 are also sound and

3 AC0 is a subclass of LOGSPACE itself included in PTIME. Data complexity means that Q and
R are fixed, thus the input is restricted to F .



A Sound and Complete Backward Chaining Algorithm for Existential Rules 131

complete, and are of smaller cardinality. We show that they have the same cardinality.
Let Q1 ∈ Qc

1. There exists Q2 ∈ Qc
2 such that Q1 ≤ Q2. If not, Q would be entailed

by F = Q1 and R since Qc
1 is a sound rewriting set of Q (and Q1 maps to itself), but

no elements of Qc
2 would map to F : thus, Qc

2 would not be complete. Similarly, there
exists Q′

1 ∈ Qc
1 such that Q2 ≤ Q′

1. Then Q1 ≤ Q′
1, which implies that Q′

1 = Q1

by assumption on Qc
1. For all Q1 ∈ Qc

1, there exists Q2 ∈ Qc
2 such that Q1 ≤ Q2

and Q2 ≤ Q1. Such a Q2 is unique: indeed, two such elements would be comparable
for ≥, which is not possible by construction of Qc

2. The function associating Q2 with
Q1 is thus a bijection from Qc

1 to Qc
2, which shows that these two sets have the same

cardinality. ��

From the previous observation, we conclude that any sound and complete rewriting
algorithm can be “optimized” so that it outputs a set of rewritings of minimal cardinality.
Please note that the algorithm presented in the sequel of this paper fullfils this property.

Furthermore, the proof of the preceding theorem shows that, given any two sound
and complete rewriting sets of Q, there is a bijection from any cover of the first set to
any cover of the second set such that two elements in relation are equivalent. However,
these elements are not necessarily isomorphic (i.e., equal up to a variable renaming)
because they may contain redundancies. It is well-known that the preorder induced by
homomorphism on the set of all BCQs definable on some vocabulary is such that any
equivalence class for this preorder possesses a unique element of minimal size (up to
isomorphism), called its core (notion introduced for graphs, but easily transferable to
queries). Every query can be transformed into its equivalent core by removing redun-
dant atoms. From this remark and Theorem 2, we obtain:

Corollary 1. Let R be a fus and Q be a BCQ. There is a unique sound and complete
rewriting set of Q with R that has both minimal cardinality and elements of minimal
size.

4 Single-Piece Unification

We will now focus on rules with atomic head, which are often considered in the lit-
erature. Any rule can be decomposed into an equivalent set of rules with atomic head
by introducing a new predicate gathering the variables of the original head, thus this
restriction does not yield a loss in expressivity (e.g. [CGK08, BLMS09]).

What is simpler with these rules? The definition of a piece-unifier in itself does not
change. The difference lies in the number of piece-unifiers that have to be considered in
the backward chaining mechanism. We show it is sufficient to only keep most general
single-piece unifiers. Moreover, the number of such unifiers is linear in the size of Q.
Indeed, there is a unique way of associating any atom in Q with head(R).

4.1 Correctness of Rewriting Restricted to Most General Single-Piece Unifiers

We recall that, given substitutions s1 and s2, s1 is said to be more general than s2 if s2
can be obtained from s1 by composition with an additional substitution (i.e., there is s
s.t. s2 = s ◦ s1). Piece-unifiers can be compared via their substitutions, provided that
they are defined on the same subset of Q.
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Definition 9 (Most general piece-unifier). Let Q be a CQ, R be a rule, and μ1 =
(Q′, u1), μ2 = (Q′, u2) be two piece-unifiers of Q with R, defined on the same set of
pieces Q′ ⊆ Q. μ1 is said to be more general than μ2, noted μ1 ≥ μ2, if u1 is more
general than u2. Let μ be a piece-unifier of Q with R defined on Q′ ⊆ Q, μ is called a
most general piece-unifier if for all μ′ piece-unifier of Q with R defined on Q′, we have
μ ≥ μ′.

Property 2. Let μ1 and μ2 be two piece-unifiers with μ1 ≥ μ2. μ1 and μ2 have the
same pieces.

Definition 10 (Single-piece unifier). A piece-unifier μ = (Q′, u) of a CQ Q with a
rule R is a single-piece unifier if Q′ is a piece of Q according to TQ(μ).

From Property 2, it follows that a single-piece unifier can be compared only with other
single-piece unifiers. The next results show that it is sufficient to consider (1) most
general piece-unifiers (Theorem 3) (2) single-piece unifiers, (Theorem 4) and finally
most general single-piece unifiers (Theorem 5).

Property 3. Let μ1 = (Q′, u1) and μ2 = (Q′, u2) be two piece-unifiers such that
μ1 ≥ μ2. Then β(Q,R, μ1) ≥ β(Q,R, μ2).

Lemma 1. If Q1 ≥ Q2 then for all piece-unifiers μ2 of Q2 with R: either (i) Q1 ≥
β(Q2, R, μ2) or (ii) there is a piece-unifier μ1 of Q1 with R such that β(Q1, R, μ1) ≥
β(Q2, R, μ2).

The following theorem follows from Property 3 and Lemma 1:

Theorem 3. Given a BCQ Q and a set of rulesR, the set ofR-rewritings of Q obtained
by considering exclusively most general piece-unifiers is sound and complete.

Let μ = (Q′, u) be a piece-unifier of Q with R. μ can be decomposed into several
single-piece unifiers: for each piece P of Q according to TQ(μ), there is a single-piece
unifier (P, uP ) of Q with R where uP = uR ∪uQ′ |vars(P ). However, applying succes-
sively each of these underlying single-piece unifiers may not lead to a CQ equivalent
to β(Q,R, μ): the resulting query may be strictly more general than β(Q,R, μ), as the
following example illustrates it.

Example 7. Let R = p(x, y) → q(x, y) and Q = q(u, v) ∧ r(v, w) ∧ q(t, w). μ =
(Q′, u) with Q′ = {q(u, v), q(t, w)} and u = {(u, x), (v, y), (t, x), (w, y)} is a piece-
unifier of Q with R, which contains two pieces: P1 = {q(u, v)} and P2 = {q(t, w)}.
The rewriting of Q according to μ is β(Q,R, μ) = p(x, y)∧ r(y, y). If we successively
apply the two underlying single-piece unifiers, noted μP1 and μP2 (we note R′ the fresh
copy of R used for the second computation), we obtain β(β(Q,R, μP1 ), R

′, μP2) =
β(p(x, y)∧ r(y, w)∧ q(t, w), R′ , μP2) = p(x, y)∧ r(y, y′)∧p(x′, y′), which is strictly
more general than β(Q,R, μ).

Property 4. For any piece-unifier μ of Q with R, there is a sequence of rewritings of
Q with R using only single-piece unifiers and leading to a CQ Qs such that Qs ≥
β(Q,R, μ).
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From Lemma 1 and Property 4, it follows that:

Theorem 4. Given a BCQ Q and a set of rulesR, the set ofR-rewritings of Q obtained
by considering exclusively single-piece unifiers is sound and complete.

Property 5. For any piece-unifier μ of Q with R, there is a sequence of rewritings of Q
with R using only most general single-piece unifiers and leading to a CQ Qs such that
Qs ≥ β(Q,R, μ).

From Lemma 1 and Property 5, we obtain:

Theorem 5. Given a BCQ Q and a set of rulesR, the set ofR-rewritings of Q obtained
by considering exclusively most general single-piece unifiers is sound and complete.

4.2 Computing all the Most General Single-Piece Unifiers

We first check that properties of most general unifiers in the classical logical meaning
also hold for piece-unifiers (that operate on the same subset of Q): unicity of a most
general piece-unifier up to a bijective variable renaming and existence of a most general
piece-unifier.

Lemma 2. If two piece-unifiers μ1 = (Q′, u1) and μ2 = (Q′, u2) are equivalent (i.e.,
μ1 ≥ μ2 and μ2 ≥ μ1), then μ1 and μ2 can be obtained from each other by a bijective
variable renaming.

Lemma 3. If two piece-unifiers μ1 = (Q′, u1) and μ2 = (Q′, u2) are incomparable
(i.e., μ1 	≥ μ2 and μ2 	≥ μ1), then there exists a piece-unifier μ = (Q′, u) with μ ≥ μ1

and μ ≥ μ2.

The next property follows from the two previous lemmas:

Property 6. Let Q be a CQ and R be a rule. For any Q′ ⊆ Q, if Q′ is a piece for a piece-
unifier of Q with R, then Q′ is part of a unique most general (single-piece) piece-unifier
of Q with R (up to a bijective variable renaming).

Lemma 4. Let Q be a CQ and R be a rule. For all atoms a ∈ Q, there is at most one
Q′ ⊆ Q such that a ∈ Q′ and Q′ is a piece for a piece-unifier of Q with R.

Property 6 and the above lemma entail the following result:

Theorem 6. Every atom in Q participates in at most one most general single-piece
unifier of Q with R (up to a bijective variable renaming).

It follows that the number of most general single-piece unifiers of Q with R is less or
equal to the cardinality of Q.

To compute most general single-piece unifiers, we first introduce the notion of pre-
(piece)-unifier of a set of atoms with the head of a rule. A pre-unifier is an adaptation
of a classical logical unifier, that takes existential variables into account, and chooses
to keep variables from the head of the rule in the resulting atom. To become a piece-
unifier, a pre-unifier has to satisfy an additional constraint on sep(Q′) (Condition 2 in
piece-unifier definition).
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Definition 11 (pre-unifier). Let Q′ ⊆ Q and R be a rule. A pre-unifier u of Q′ with R
is a substitution of fr(R) ∪ vars(Q′) by terms(head(R)) ∪ C such that:

1. for all x ∈ fr(R), u(x) ∈ fr(R)∪C (for technical convenience, we allow u(x) = x);
2. u(Q′) = u(head(R)).

Algorithm 2 computes a most general pre-unifier of a set of atoms, in a way similar to
Robinson’s algorithm.

Algorithm 2. MostGeneralPreUnifier
Data: A: a set of atoms with the same predicate p, A ⊆ head(R) ∪Q
Result: a most general pre-unifier of A if it exists, otherwise Fail
u ← ∅;
foreach i ∈ positions of p do

E ← set of terms in position i in A;
if E contains two constants or two existential variables or (a constant and an
existential variable) or (a frontier variable and an existential variable) then

return Fail
if E contains a constant or an existential variable then

t ← this term
else

// E contains at least one frontier variable
t ← one of these frontier variables

u′ ← {(v, t) | v is a variable in E and v �= t}
u ← u′ ◦ u;
A ← u′(A);

return u

The fact that an atom from Q participates in at most one most general single-piece
unifier suggests an incremental method to compute these unifiers. Assume the head of R
has predicate p. We start from each atom a ∈ Q with predicate p and compute the subset
of atoms from Q that would necessarily belong to the same piece as a; more precisely,
we build Q′ such that Q′ and head(R) can be pre-unified, then check if sep(Q′) satisfies
the additional condition of a piece-unifier. If there is a piece-unifier of Q′ built in this
way with head(R), all atoms in Q′ can be removed from Q for the search of other
single-piece unifiers; otherwise, a is removed from Q for the search of other single-
piece unifiers but the other atoms in Q′ still have to be taken into account.

Example 8. Let R = q(x) → p(x, y) and Q = p(u, v) ∧ p(v, t). Let us start from
p(u, v): this atom is unifiable with head(R) and p(v, t) necessarily belongs to the
same pre-unifier (if any) because v is mapped to the existential variable y; however,
{p(u, v), p(v, t)} is not unifiable with head(R) because, since v occurs at the first and
at the second position of a p atom, x and y should be unified, which is not possible since
y is an existential variable; thus p(u, v) does not belong to any pre-unifier with R. How-
ever, p(v, t) still needs to be considered. Let us start from it: p(v, t) is unifiable with
head(R) and forms its own piece because its single variable t mapped to an existential
variable is not shared with another atom. There is thus one (most general) piece-unifier
of Q with R, namely ({p(v, t)}, {(v, x), (t, y)}).
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More precisely, Algorithm 3 first builds the subset A of atoms in Q with the same
predicate as head(R). While A has not been emptied, it initializes a set Q′ by picking
an atom a in A, then repeats the following steps:

1. compute the most general pre-unifier of the current Q′ with head(R) if it exists; if
there is no pre-unifier, the attempt with a fails;

2. if the found pre-unifier satisfies the condition on sep(Q′), then it is a single-piece
unifier, and all the atoms in Q′ are removed from A;

3. otherwise, the algorithm tries to extend Q′ with all atoms from Q containing a
variable from sep(Q′) that is mapped to an existential variable by the pre-unifier; if
these atoms are in A, Q′ can grow, otherwise the attempt with a fails.

Algorithm 3. Compute all most general single-piece unifiers
Data: a CQ Q and an atomic-head rule R
Result: the set of most general single-piece unifiers of Q with R
begin

U ← ∅; // resulting set
A ← {a ∈ Q | predicate(a) = predicate(head(R))};
while A �= ∅ do

a ← choose an atom in A ;
Q′ ← {a} ;
u ←MostGeneralPreUnifier(Q′ ∪ head(R)) ;
while u �= Fail and sep(Q′) \ TQ(u) �= ∅ do

Q′′ ← {a′ ∈ Q | a′ contains a variable in sep(Q′) \ TQ(u)} ;
if Q′′ ⊆ A then

Q′ ← Q′ ∪Q′′;
u ← MostGeneralPreUnifier(Q′ ∪ head(R))

else
u ← Fail

if u �= Fail then
U ← U ∪ {u} ;
A ← A \Q′

else
A ← A \ {a}

return U

5 First Experiments and Perspectives

The global backward chaining algorithm (cf. Algorithm 1), based on most general
single-piece unifiers (cf. Algorithm 3), has been implemented in Java. First experiments
have been made with the same rules and queries as in [GOP11]. The considered sets of
rules are translations from ontologies expressed in DL-LiteR developed in several re-
search projects, namely ADOLENA (A), STOCKEXCHANGE (S), UNIVERSITY (U)
and VICODI (V). See [GOP11] for more details. The obtained rules have atomic head
and body, which corresponds to the linear Datalog+/- fragment. Queries are canonical
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examples coming from projects in which the ontologies have been developed. For these
first experiments, we compared our prototype to the NY* prototype, dedicated to linear
Datalog+/- and part of the Nyaya system [GOP11]. The running time of both implemen-
tations are comparable. Concerning the sizes of the rewritings of the sample queries (i.e.
the cardinalities of the output sets), they are equal for ontologies S, U and V, but not
for ontology A (cf. Table 1, columns “final size”). Note that in [GOP11] the size of the
rewritings output by NY* was already shown to be smaller than the one obtained with
Requiem and QuOnto with substantial differences in some cases. Surprisingly, none of
these systems computes a rewriting set of minimal size.

Table 1. Results with Nyaya and Piece-Based Rewriting

NY∗ Piece-Based Rewriting
final size final size # explorated # generated

A Q1 249 27 457 1307
Q2 94 50 1598 4658
Q3 104 104 4477 13871
Q4 456 224 4611 15889
Q5 624 624 50508 231899

S Q1 6 6 6 9
Q2 2 2 48 256
Q3 4 4 64 536
Q4 4 4 240 1760
Q5 8 8 320 3320

U Q1 2 2 5 4
Q2 1 1 42 148
Q3 4 4 48 260
Q4 2 2 2196 9332
Q5 10 10 100 1280

V Q1 15 15 15 14
Q2 10 10 10 9
Q3 72 72 72 117
Q4 185 185 185 328
Q5 30 30 30 59

These first experimental results need to be extended by considering larger and more
complex queries and rule bases, as well as comparing to other systems based on query
rewriting. The size of the rewriting set should not be a decisive criterion (indeed, as-
suming that the systems are sound and complete, a minimal rewriting set is obtained
by selecting most general elements, cf. Theorem 2). Therefore, other criteria have to be
taken into account, such as the running time or the total number of CQs built during the
rewriting process. As a first step in this direction, we indicate in Table 1 the number of
explorated CQs (# explorated) and of generated CQs (# generated) with our system. The
generated rewritings are all the rewritings built during the rewriting process (excluding
the initial Q and possibly including some multi-occurrences of the same rewritings).
Since we eliminate the subsumed rewritings at each step of the breadth-first algorithm,
only some of the generated rewritings at a given step are explored at the next step.
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Finally, our backward chaining mechanism is yet far from being optimized. Indeed,
we have greatly simplified the unification operation —conceptually and algorithmically,
which is important in itself— but in a way we have pushed the complexity into the
composition of several rewritings. The question of whether it is worthwhile, when rules
do not have atomic heads, to deal directly with them, still needs to be addressed.

Acknowledgements. We thank Giorgio Orsi for providing us with rule versions of the
ontologies.
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Abstract. Database query optimizers rely on data statistics in selecting
query execution plans and rule-based systems can greatly benefit from
such optimizations as well. To this end, one first needs to collect data
statistics for base and propagate them to derived predicates. However,
there are two difficulties: dependencies among arguments and recursion.
Earlier we developed an algorithm, called SDP, for estimating Datalog
query sizes efficiently by estimating statistical dependency for both base
and derived predicates [16]. Base predicate statistics were summarized as
dependency matrices, while the statistics for derived predicate were esti-
mated by abstract evaluation of rules over the dependency matrices. This
previous work had several limitations. First, it only considered Datalog
predicates. Second, only predicates of arity at most 2 were allowed—a
very serious limitation of the approach. The present paper extends SDP
to general rules and n-ary predicates. It also handles negation and mutual
recursions as well as other operations. We also report on our experiments
with SDP.

Keywords: derived predicate statistics, cost estimate, query optimiza-
tion, rule-based systems, logic programming.

1 Introduction

Database query optimizers depend on accurate and fast algorithms for estimat-
ing predicate (relation) sizes, which in turn depend on joint data distributions of
values in different arguments. Traditionally, query optimizers estimate these sizes
using statistical summaries for base predicates and propagate them to relational
expressions assuming argument independence [5]. Assuming that distributions of
values in different arguments of a predicate are independent, joint data distri-
bution can be derived relatively easily.

To make size estimates practical, data distributions must be summarized ac-
curately and efficiently. Histograms is one such summarization technique that is
in wide use in all major database systems (DB2, Oracle, Microsoft, etc.). Briefly,
histograms groups values of similar frequencies into buckets and estimates the
frequencies of values in each bucket in a uniform and efficient way. Different
types of histograms have been proposed in the literature, which differ in their
complexity, cost, and accuracy. As usual, accuracy comes at the expenses of time
and space, and the problem of achieving the balance between these conflicting
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requirements was discussed in [13]. Comprehensive surveys and classification of
various histograms can be found in [10,21].

There are several challenges in applying cost-based query optimization for
rule-based systems. First, the argument independence assumption is rarely true
for real world datasets, so size estimates based on histograms can be off by orders
of magnitude [29]. It has been shown that estimation errors grow exponentially
with the number of joins involved [12,16]. For rules, this problem is exacerbated
by the presence of recursive predicates and it is the focus of this paper. Sec-
ond, optimization algorithms have to take into account indexing and the basic
operations performed by logic engines.

In [16], we addressed the problems associated with the argument independence
assumption, but only for Datalog predicates. Further limiting the approach, only
unary and binary predicates were allowed. In that work, we used dependency
matrices to store predicate dependency statistics and an algorithm, called SDP,
to compute dependency matrices for derived predicates. To address the prob-
lems with [16], the present paper extends both dependency matrix and SDP
to permit n-ary predicates and more general types of rules, including mutual
recursion, negation, selection, union, intersection and join. These extensions are
essential in order for SDP to be useful for optimizing logic engines such as XSB
[24,30], FLORA-2 [34], and SILK [33]. We also note that SDP-estimates of the
distribution statistics are independent of optimization algorithms. Since virtu-
ally all cost-based optimizers use size estimates, our cost estimates may benefit
most of such optimizers.

The rest of this paper is organized as follows. Section 2 extends dependency
matrices to arbitrary n-ary predicates and defines related concepts. Section 3
extends SDP. Section 4 describes our experiments. Section 5 discusses related
works and Section 6 concludes the paper.

2 Dependency Matrix

Dependency matrices were introduced in [16] to represent joint distribution of
values in predicate arguments. To compute dependency matrices, we developed
an algorithm, called SDP, which was limited to binary predicates and certain
types of rules. This section extends dependency matrices to n-ary predicates.

Consider a n-ary predicate p(x1, . . . , xn). If p is a base predicate, then its
associated set of facts will be denoted by factset(p). The value sequence, v̄d
(1 ≤ d ≤ n), is the sorted sequence of xd-values that are present in factset(p),
and v̄id is the i-th value of v̄d. The frequency, f̄ i

d, of v̄
i
d is the number of facts in

factset(p) with xd = v̄id. We will use v̄i to denote the i-th element of a sequence
v̄, “•” to denote sequence concatenation, and ‖...‖ to denote the length of a
sequence or the cardinality of a set. Since we are dealing with discrete values in
finite relations, all argument values can be assumed to be integers. Without loss
of generality, we adopt this assumption in the sequel, for simplicity.
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Definition 1. Given a fact-set for an n-ary predicate p(x1, . . . , xn), the data
distribution, Td, for xd is the sequence of value-frequency pairs [(v̄1d, f̄

1
d ), . . . ,

(v̄md , f̄m
d )] where m = ‖v̄d‖. �

Data distribution is the basis for size estimation in all cost-based query optimiz-
ers, but this information is normally too large to store and use efficiently. One
key step of all size estimation algorithms is to partition data distributions into
distribution segments and summarize these segments in such a way that they can
be approximated efficiently both in time and space. We proposed dependency
matrices in [16] as one such summarization technique which keeps argument de-
pendency information. There, data distributions are partitioned using one par-
ticularly popular partition rule called the maxdiff rule [10]. However, our size
estimation algorithms do not depend on the choice of any particular partition
rule and we can simply assume that distributions are partitioned according to
some partition rule.

Example 1. Consider a predicate p(x1, x2) with the following fact-set factset(p):

p(2,2). p(3,7). p(3,8). p(4,4). p(5,5). p(5,7).

p(5,8). p(6,6). p(7,5). p(7,6). p(8,1). p(8,3).

Its data distributions are T1 = [(2, 1), (3, 2), (4, 1), (5, 3), (6, 1), (7, 2), (8, 2)] and
T2 = [(1, 1), (2, 1), (3, 1), (4, 1), (5, 2), (6, 2), (7, 2), (8, 2)]. Their three partition seg-
ments using the maxdiff rule are T1 = [(2, 1), (3, 2), (4, 1)] • [(5, 3)] • [(6, 1), (7, 2),
(8, 2)] and T2 = [(1, 1)] • [(2, 1), (3, 1), (4, 1)] • [(5, 2), (6, 2), (7, 2), (8, 2)]. �

Consider a distribution T and its partition segments T 1, ..., T n, each T i has
three parameters: floor, ceiling, size which are the minimal argument value, the
maximal argument value, and the number of argument values contained in T i.
The set of values that are contained in T i is approximated as vals(T i) = {v ∈
integers | T i.f loor ≤ v ≤ T i.ceiling}. These three parameters constitute the
summary of a partition segment and they are stored by dependency matrices.

Example 2. Consider the fact-set of Example 1, it can be represented by a 2-
dimensional fact-matrix F shown in Figure 1(a), where F(x, y) = 1 if and only
if p(x, y) is true, i.e., p(x, y) ∈ factset(p). If we segment the rows of F according
to the partition of the distribution T1, i.e., |2, 3, 4|5|6, 7, 8|, and the columns ac-
cording to the partition of T2, i.e., |1|2, 3, 4|5, 6, 7, 8|, we obtain a partition of the

Fig. 1. A Dependency Matrix
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matrix into rectangular regions as shown in Figure 1(b). The dependency matrix
shown in Figure 1(c) is a summary of Figure 1(b): each region of Figure 1(b)
is reduced to a single square in Figure 1(c) and the number in the square rep-
resents the number of 1’s in the corresponding region of (b). In addition, the
three parameters of each distribution segment are stored in (c) in the form of
(floor, ceiling, size). For instance, the floor, ceiling, and size of the last distribu-
tion segment of T1 are 6, 8, and 3 respectively. Therefore, the bottom coordinate
on the vertical axis is annotated with (6,8,3). �

Definition 2. Let p(x1, . . . , xn) be an n-ary predicate and let Ti (1 ≤ i ≤ n)

be the distribution for xi. Suppose each Ti is partitioned into βi segments T ji
i ,

1 ≤ ji ≤ βi. The dependency matrix for p, denoted M〈p〉, is a matrix whose
(j1, . . . , jn)-th element, M〈p〉(j1, . . . , jn), is

‖{p(x1, . . . , xn) ∈ factset(p) | ∧1≤i≤n xi ∈ vals(T ji
i )}‖

In addition, the ji-th coordinate on its i-th axis, denoted M〈p〉jii , is associated
with three parameters: floor, ceiling, and size whose values are the same as
the corresponding values associated with the distribution segment T ji

i . �

As in Definition 2, we often use M〈p〉i to denote the i-th axis of a matrix M〈p〉
and M〈p〉jii to denote the ji-th coordinate on M〈p〉i. For instance, if M〈p〉 is the
2-dimensional matrix in Figure 1(c), then M〈p〉1 denotes the first axis of M〈p〉,
i.e., the vertical axis, and M〈p〉31 denotes the third coordinate on M〈p〉1.

From Definition 2, we know that the matrix element M〈p〉(j1, . . . , jn) sum-
marizes vals(T j1

1 ) × ... × vals(T jn
n ), and M〈p〉(j1, . . . , jn) stores the number of

(x1, . . . , xn)-values that are in the fact-set and summarized by this matrix ele-
ment. For instance of Example 2(c), M〈p〉(1, 3) summarizes {2, 3, 4}×{5, 6, 7, 8},
of which only p(3, 7) and p(3, 8) are in the fact-set. Thus, M〈p〉(1, 3) = 2.

Given a β1× . . .×βn dependency matrix M〈p〉, the size estimate of p, size(p)
or size(M〈p〉), can be computed as the sum of all dependency matrix elements,
i.e., size(p) =

∑
i1,...,in

M〈p〉(i1, . . . , in). Note that if p is a base predicate then
size(p) is its actual size. Therefore, one could estimate the size of a predicate by
computing its dependency matrix.

3 Statistics for Derived Predicates

The dependency matrices for the base predicates can be computed according to
some partition rule, such as the maxdiff rule [11] and Definition 2, as illustrated in
Example 2. This section extends our earlier SDP algorithm [16], which estimated
sizes for various types of binary derived predicates, to handle more general rule
formats, including arbitrary n-ary predicates.

Consider a βp
1× . . .×βp

m dependency matrix M〈p〉, a βq
1× . . .×βq

n dependency
matrix M〈q〉, and two integers 1 ≤ dp ≤ m and 1 ≤ dq ≤ n. We say that the
dp-th axis of M〈p〉, M〈p〉dp

, and the dq-th axis of M〈q〉, M〈q〉dq
, are aligned if

βdp = βdq , M〈p〉
i
dp
.f loor = M〈q〉idq

.f loor, and M〈p〉idp
.ceiling = M〈q〉idq

.ceiling
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for all 1 ≤ i ≤ βdp . That is,M〈p〉dp
andM〈q〉dq

are aligned if all their coordinates
have the same floor and ceiling parameters. For any pair of dependency matrices
M〈p〉 andM〈q〉, and a pair of axis indexes dp and dq, we can always makeM〈p〉dp

and M〈q〉dq
aligned by refining the associated partition segments. Details of

these operations can be found in [15].
Let M〈p〉 and M〈q〉 both be β1× . . .×βn matrices. It follows directly from the

definitions that M〈p〉(j1, ..., jn) and M〈q〉(j1, ..., jn) summarize the same values
for all j1, ..., jn if and only if M〈p〉d and M〈q〉d are aligned for all d = 1, ..., n.
Since, as noted above, matrices can always be aligned, it follows that any pair
matrices can be refined so that they will summarize exactly the same values.

The rest of this section presents the algorithms for computing M〈q〉 for dif-
ferent operations.

3.1 Dependency Matrix for Selection

Let M〈r〉 be the n-dimensional β1× ...×βn dependency matrix for r(x1, ..., xn).
We consider the following two types of selections: selection with constant equal-
ities (s1) and selection with range restrictions (s2)

p(X1,...,Xn) :- r(X1,...,Xn), Xd = val. (s1)

p(X1,...,Xn) :- r(X1,...,Xn), Xd >= l, Xd =< h. (s2)

where 1 ≤ d ≤ n. Observing that s1 is a special case of s2 when l = h = val,
we can focus on computing M〈p〉 for s2. M〈p〉 can be computed by extracting
the part of M〈r〉 whose xd-values satisfy l ≤ xd ≤ h, as select(M〈r〉, d, l, h) in
Algorithm 1.

Line 1 of the algorithm computes perc(d, id) — the percentage of the id-th
coordinate on d-th axis that satisfies the selection condition, and line 1 computes
the dependency matrix values. Then, line 1 copies floor and ceiling parameters
from M〈r〉 to M〈p〉, and line 1 computes the size parameters.

perc(d, id) := max{min{h,M〈r〉id
d

.ceiling}−max{l,M〈r〉id
d

.floor}+1

M〈r〉id
d

.ceiling−M〈r〉id
d

.floor+1
, 0} for 1 ≤ id ≤ βd;

1

M〈p〉(i1, ..., in) := M〈r〉(i1, ..., in)× perc(d, id) for 1 ≤ i1 ≤ β1, ..., 1 ≤ in ≤ βn;2

for all 1 ≤ j ≤ n and 1 ≤ ij ≤ βj do3

M〈p〉ijj .{floor, ceiling} := M〈r〉ijj .{floor, ceiling};4

perc(j, ij) :=
∑

1≤k≤n,k �=j,1≤lk≤βk
M〈p〉(l1,...,lj−1,ij ,lj+1,...,ln)

∑
1≤k≤n,k �=j,1≤lk≤βk

M〈r〉(l1,...,lj−1,ij ,lj+1,...,ln)
;5

M〈p〉ijj .size := M〈r〉ijj .size× perc(j, ij);6

end7

return M〈p〉;8

Algorithm 1. select(M〈r〉, d, l, h)
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3.2 Dependency Matrix for Union

Consider the predicate p defined as the union of r and s:

p(X1,...,Xn) :- r(X1,...,Xn).

p(X1,...,Xn) :- s(X1,...,Xn).

Before performing the union, we assume thatM〈r〉 andM〈s〉 are both β1×...×βn

dependency matrices and they summarize exactly the same sets of values. As
noted earlier, this means that M〈r〉d and M〈s〉d are aligned for 1 ≤ d ≤ n.

The dependency matrix for the union is also a n-dimensional β1 × ... × βn

dependency matrix that can be computed by the operation union(M〈r〉,M〈s〉)
given in Algorithm 2. Lines 2 to 2 compute the floor, ceiling, and size parameters
in a natural way, where line 2 is based on the containment assumption [25]. This
assumption states that each individual value in a smaller set always matches
some value from the larger set. It is a common assumption in the literature
on size estimation. Then line 2 computes the values of M〈p〉 by integrating
information from M〈r〉 and M〈s〉.

We should note that besides taking the maximum on line 2 of the algorithm,
there are other ways of performing point-wise integration of summaries from
dependency matrices [15].

for all 1 ≤ d ≤ n and 1 ≤ id ≤ βd do /* parameters */1

M〈p〉idd .{floor, ceiling} := M〈r〉idd .{floor, ceiling};2

M〈p〉idd .size := max{M〈r〉idd .size,M〈s〉idd .size};3

end4

M〈p〉(i1, ..., in) := max{M〈r〉(i1, ..., in),M〈s〉(i1, ..., in)} for 1 ≤ i1 ≤ β1, ..., 1 ≤5

in ≤ βn;
return M〈p〉;6

Algorithm 2. union(M〈r〉,M〈s〉)

3.3 Dependency Matrix for Intersection

Consider the predicate p defined as the intersection of r and s:

p(X1,...,Xn) :- r(X1,...,Xn), s(X1,...,Xn).

Similar to the case of union, we assume thatM〈r〉 andM〈s〉 are both β1×...×βn

dependency matrices and M〈r〉d and M〈s〉d are aligned for 1 ≤ d ≤ n.
Algorithm 3 computes the n-dimensional β1× ...× βn dependency matrix for

the above intersection, intersect(M〈r〉,M〈s〉). The outline of the algorithm is
the same as in the previous cases, but the details are simpler. Lines 3 and 3 are
based on the containment assumption [25].
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for all 1 ≤ d ≤ n and 1 ≤ id ≤ βd do1

M〈p〉idd .{floor, ceiling} = M〈r〉idd .{floor, ceiling} ; /* parameters */2

M〈p〉idd .size = min{M〈r〉idd .size,M〈r〉idd .size};3

end4

M〈p〉(i1, ..., in) = min{M〈r〉(i1, ..., in),M〈s〉(i1, ..., in)} for 1 ≤ i1 ≤ β1, ..., 1 ≤5

in ≤ βn;
return M〈p〉;6

Algorithm 3. intersect(M〈r〉,M〈s〉)

3.4 Dependency Matrix for Projection

Consider a projection on predicate r(x1, ..., xn) that projects out a subset of
arguments out args = {xout1 , ..., xoutk} and leaves in args = {xin1 , ..., xinm}.
Such a projection can be defined using a rule of the form

p(Xin1 , ..., Xinm) :- r(X1, ..., Xn).

LetM〈r〉 be a n-dimensional β1×...×βn dependency matrix. Them-dimensional
βin1 × ... × βinm dependency matrix, project(M〈r〉, in args, out args), is com-
puted via Algorithm 4, below. As in the case of union , alternative approaches
to compute dependency matrix values can be founded in [15].

3.5 Dependency Matrix for Join

The most complicated part of any size estimation algorithm in a query optimizer
is finding accurate estimates for the result of a join. Consider the following join:

p(Z1,...,Zk,Xk+1,...,Xm,Yk+1,...,Yn) :- r(Z1,...,Zk,Xk+1,...,Xm),

s(Z1,...,Zk,Yk+1,...,Yn).

M〈p〉idd .{floor, ceiling, size} := M〈r〉idind
.{floor, ceiling, size} for 1 ≤ d ≤ m1

and 1 ≤ id ≤ βind ;
M〈p〉(i1, ..., im) := max{M〈r〉(j1, ..., jn) | i1 = jin1 , ..., im = jinm} for2

1 ≤ i1 ≤ βin1 , ..., 1 ≤ im ≤ βinm ;
return M〈p〉;3

Algorithm 4. project(M〈r〉, in args, out args)

where r and s join on k arguments, z1, ..., zk, which are listed first, for simplicity.
Assume M〈r〉 and M〈s〉 are m-dimensional βr

1 × ... × βr
m and n-dimensional βs

1 ×
... × βs

n dependency matrices respectively, and the first k axes of M〈r〉 and M〈s〉
are aligned. The (m+n−k)-dimensional dependency matrix for p can be computed as
join(M〈r〉,M〈s〉) by Algorithm 5. The abstract evaluation of the join is inspired by
the sort-merge-join algorithm (e.g., [14]).

The overall outline of the algorithm is the same as before, but the details of compu-
tation of the values for the individual members of the matrix are somewhat involved.
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βp
d := βr

d for 1 ≤ d ≤ m; βp
d := βs

d−m+k for m < d ≤ m+n−k;1

M〈p〉idd .{floor, ceiling} := M〈r〉idd .{floor, ceiling} and M〈p〉idd .size :=2

min{M〈r〉idd .size,M〈s〉idd .size} for all 1 ≤ d ≤ k and 1 ≤ id ≤ βp
d ;

M〈p〉idd .{floor, ceiling, size} := M〈r〉idd .{floor, ceiling, size} for all k < d ≤ m3

and 1 ≤ id ≤ βp
d ;

M〈p〉idd .{floor, ceiling, size} := M〈s〉idd−m+k.{floor, ceiling, size} for all4

m < d ≤ m+n−k and 1 ≤ id ≤ βp
d ;

M〈r〉′ := project(M〈r〉, {z1, ..., zk}, {xk+1, ..., xm});5

M〈s〉′ := project(M〈s〉, {z1, ..., zk}, {yk+1, ..., yn});6

M〈p〉(i1, ..., im+n−k) := min{M〈r〉′(i1, ..., ik),M〈s〉′(i1, ..., ik)}× M〈r〉(i1,...,im)
M〈r〉′(i1,...,ik) ×7

M〈s〉(i1,...,ik,im+1,...,im+n−k)

M〈s〉′(i1,...,ik) for all 1 ≤ i1 ≤ βp
1 , ..., 1 ≤ im+n−k ≤ βp

m+n−k;

return M〈p〉;8

Algorithm 5. join(M〈r〉,M〈s〉)

They are inspired by [4], and we briefly describe the computation of dependency matrix
values below and details can be founed in [15].

Lines 5 to 5 compute M〈r〉′ and M〈s〉′ as projections of M〈r〉 and M〈s〉 which
keep only join arguments. M〈r〉′(i1, ..., ik) is the estimated number of (z1, ..., zk)-
values such that zd ∈ vals(M〈r〉idd ) for 1 ≤ d ≤ k, and M〈s〉′(i1, ..., ik)
is the estimated number of (z1, ..., zk)-values such that zd ∈ vals(M〈s〉idd ) for
1 ≤ d ≤ k. Now, consider each fixed (z1, ..., zk)-value. There are, on aver-

age, M〈r〉(i1,...,im)
M〈r〉′(i1,...,ik) facts of the form r(z1, ..., zk, xk+1, ..., xm) that are summarized

by M〈r〉(i1, ..., im), and
M〈s〉(i1,...,ik,im+1,...,im+n-k)

M〈s〉′(i1,...,ik) facts of the form s(z1, ..., zk,

yk+1, ..., yn) that are summarized by M〈s〉(i1, ..., ik, im+1, ..., im+n-k). Thus, the num-
ber of resulting p(z1, ..., zk, xk+1, ..., xm, yk+1, ..., yn) from the join on each (z1, ..., zk)-

values can be estimated as M〈r〉(i1,...,im)
M〈r〉′(i1,...,ik)×

M〈s〉(i1,...,ik,im+1,...,im+n−k)

M〈s〉′(i1,...,ik) . The contain-

ment assumption [25] says the number of such (z1, ..., zk)-values can be estimated as
min{M〈r〉′(i1, ..., ik),M〈s〉′(i1, ..., ik)}, which gives the formula at line 5.

3.6 Dependency Matrix for Cross Product

Consider the following cross product

p(X1,...,Xm,Y1,...,Yn) :- r(X1,...,Xm), s(Yk,...,Yn).

βp
d := βr

d for 1 ≤ d ≤ m; βp
d+m := βs

d for 1 ≤ d ≤ n;1

M〈p〉idd .{floor, ceiling, size} := M〈r〉idd .{floor, ceiling, size} for all 1 ≤ d ≤ m2

and 1 ≤ id ≤ βp
d ; /* parameters */

M〈p〉idd .{floor, ceiling, size} := M〈s〉idd−m.{floor, ceiling, size} for all3

m < d ≤ m+n and 1 ≤ id ≤ βp
d ;

M〈p〉(i1, ..., im+n) := M〈r〉(i1, ..., im)×M〈s〉(im+1, ..., im+n) for all 1 ≤ i1 ≤ βp
1 ,4

..., 1 ≤ im+n ≤ βp
m+n ; /* values */

return M〈p〉;5

Algorithm 6. product(M〈r〉,M〈s〉)
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where M〈r〉 and M〈s〉 are m-dimensional βr
1 × ...×βr

m and n-dimensional βs
1 × ...×βs

n

dependency matrices respectively. The (m+n)-dimensional βp
1 × ... × βp

m+n depen-
dency matrix for p can be estimated via the operation product(M〈r〉,M〈s〉) defined in
Algorithm 6.

3.7 Dependency Matrix for Negation

Let M〈r〉 be a n-dimensional β1 × ... × βn dependency matrix for r and M〈s〉 be
a m-dimensional β1 × ... × βm dependency matrix for s. We consider the following
negation

p(X1,...,Xn) :- r(X1,...,Xn), not s(X1,...,Xm).

where m ≤ n and the first m arguments are chosen to be common to r and s, for
simplicity.

We assume that the first m axes of M〈r〉 and M〈s〉 are aligned. Algorithm 7 com-
putes the operation minus(M〈r〉,M〈s〉). Detailed explanations and alternative meth-
ods to compute matrix values at line 7 are available in [15].

M〈p〉idd .{floor, ceiling, size} := M〈r〉idd .{floor, ceiling, size} for all 1 ≤ d ≤ n1

and 1 ≤ id ≤ βd; /* parameters */

M〈r〉′ := project(M〈r〉, {x1, ..., xm}, {xm+1, ..., xn});2

M〈p〉(i1, ..., in) := max{1- M〈s〉(i1,...,im)
M〈r〉′(i1,...,im)

, 0} ×M〈r〉(i1, ..., in) for all 1 ≤ i1 ≤ β1,3

..., 1 ≤ in ≤ βn;
return M〈p〉;4

Algorithm 7. minus(M〈r〉,M〈s〉)

3.8 Recursive Predicates

The matrix for recursive predicates are computed iteratively until their size estimates
reach approximate fixed points. For a set of mutually recursive predicates, the compu-
tation stops when all size estimates reach approximate fixed points.

Definition 3. Consider a recursive predicate p. According to the definitions in Sec-
tions 3.1 – 3.7, the dependency matrix for p can be defined by the following recur-
rent equation: M〈p〉 = expr(M〈p〉, other), where expr is an expression in the al-
gebra of estimation operators defined in earlier subsections. This equation is recur-
sive in M〈p〉 but expr may take other arguments as well. We say that In+1 is an

α-approximation of M〈p〉, where 0 ≤ α < 1, if |size(In+1)−size(In)|
size(In)

≤ α, where

I0 = ∅ and Ii+1 = expr(Ii, other). We will use α-approximations for estimating the size
of p. �

Example 3. Consider the following recursive program, which defines two mutually re-
cursive predicates tcp and tcq:

tcp(X1,X2,X3) :- p(X1,X2,X3).

tcq(X1,X2,X3) :- q(X1,X2,X3).

tcp(X1,X2,X4) :- tcq(X1,X2,X3), p(X2,X3,X4). (recp)

tcq(X1,X2,X4) :- tcp(X1,X2,X3), q(X2,X3,X4). (recq)
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Initially, the dependency matrices M〈p〉 and M〈q〉 are computed and propagated to
M〈tcp〉 and M〈tcq〉 using the first two rules. Then, the following iterative steps are
performed.

1. Compute M〈tcp〉 using the rule recp as in the case of a join followed by a pro-
jection, and then union with current dependency matrix M〈tcp〉, i.e., M〈tcp〉 =
union(M〈tcp〉, project(join(M〈tcq〉,M〈p〉), {x1, x2, x4}, {x3})).
Thus, in this case, the expression used in Definition 3 is expr(M〈tcp〉,M〈tcq〉,
M〈p〉) = union(M〈tcp〉, project(join(M〈tcq〉,M〈p〉), {x1, x2, x4}, {x3})).

2. Similarly, M〈tcq〉 = union(M〈tcq〉, project(join(M〈tcp〉,M〈q〉), {x1, x2, x4},
{x3})) and the expression in this case is similar: expr(M〈tcq〉,M〈tcp〉,M〈q〉)
= union(M〈tcq〉, project(join(M〈tcp〉,M〈q〉), {x1, x2, x4}, {x3})).

3. If the iteration reaches α-approximation for M〈tcp〉 and M〈tcq〉 (as defined in
Definition 3), the computation stops. Otherwise, we keep iterating. �

In Example 3, one can also first compute M〈tcq〉 and then M〈tcp〉, i.e., switch the first
two steps, during each iteration. That is to say, there exist many abstraction evaluation
orders at each iteration step if multiple predicates are mutually recursive. We choose the
order in which these predicates are first defined by rules in our current implementation.
Since we are computing α-approximations, we assume that this evaluation order is
trivial with respect to final estimates. However, more experimental studies are needed
to validate this assumption.

The parameter α can be selected in various ways. Larger values make computation
reach α-approximation sooner, while smaller α’s cause longer computations, but pro-
duce better estimates. Note, however, that the evaluation is not guaranteed to reach
an approximate fixed point for a chosen α, since size(In) in Definition 3 may oscillate.
In this case, we can stop the iteration over In once oscillation of size(In) is detected
and, as a practical measure, we can do with a coarser approximation.

3.9 Dependency Matrices for All Predicates

This section presents an algorithm for computing size estimates for all predicates in a
bottom-up fashion using the algebra over matrices defined earlier.

Definition 4. Given a knowledge base K, its predicate dependency graph is a di-
rected graph Gpdg(K) = (N , E) where the set of nodes, N , consists of all predicates
contained in K and (p1, p2) ∈ E if and only if there is a rule in K such that p1 is the
rule’s head predicate and p2 is one of the body predicates. �

A graph is strongly connected if there is a path from one node to every other node.
The strongly connected components (SCC) of a directed graph are its maximal strongly
connected subgraphs. An SCC in a predicate dependency graph contains a maximal
subset of recursive predicates that mutually depend on one another. Thus, the depen-
dency matrices for all predicates in the same SCC should be iteratively computed until
their size estimates all become α-approximate for some chosen α.

The condensation of a predicate dependency graph Gpdg(K) = (N , E), written as
Gc

pdg(K) = (N c, Ec), is a directed acyclic graph (a forest of trees) where N c consists
of all the SCC’s of Gpdg(K). Let scc1 = (N1, E1) and scc2 = (N2, E2) be two SCC’s of
Gpdg(K), there is an edge (scc1, scc2) ∈ Ec if and only if there exists p1 ∈ N1, p2 ∈ N2

such that (p1, p2) ∈ E .
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Fig. 2. Predicate Dependency Graph of Example 3

Example 4. Let K be the set of rules of Example 3, then its predicate dependency
graph Gpdg(K) = (N , E) is given in Figure 2(a). There are three SCC’s: scc1 =
({tcp, tcq}, {(tcp, tcq), (tcq, tcp)}), scc2 = ({p}, ∅), and scc3 = ({q}, ∅); they are given
in Figure 2(b). The condensation of Gpdg(K) is shown in Figure 2(c). �

Given a knowledge base K, let Gc
pdg(K) be the condensation of its predicate depen-

dency graph. The dependency matrices for the set of predicates in each tree in the
condensation can be computed by a bottom-up traversal of the tree, as shown in Algo-
rithm 8. The algorithm resembles the usual naive bottom-up procedure for evaluating
Horn rules except that here we employ abstract computation over the size estimation
algebra. For instance, let Gc

pdg(K) be the graph in Figure 2(c) and T be its (only) tree.
Initially, sccs = {scc2, scc3} at line 8 of the algorithm. During the first iteration of
the while-loop, the dependency matrices for predicates contained in scc2 and scc3, i.e.,
M〈p〉 and M〈q〉, are computed, and then, on line 8, we follow the edges of T upwards
and set sccs = {scc1}. After the second iteration of the while-loop, all dependency
matrices are computed.

Let Gc
pdg(K) = (N c, Ec) be the predicate dependency condensation graph of K;1

for each tree T ∈ Gc
pdg(K) do2

Let sccs be set of leaf SCC’s of T ; /* start with leaves */3

while sccs �= ∅ do /* bottom-up traversal of T */4

Compute dependency matrices for predicates in each SCC in sccs;5

sccs = {scc1 | (scc1, scc2) ∈ Ec, scc2 ∈ sccs};6

end7

end8

Algorithm 8. Compute Dependency Matrices for All Predicates in K

Algorithm 8 computes dependency matrices for all predicates in the knowledge base
in a bottom-up manner, without considering the query. If a query is given then we only
need to evaluate one tree in the condensation graph, the one that contains the query
predicate. Moreover, we need to perform the computation only for the subtree rooted
in the clique that contains the query predicate.

Note that, given a set of rules for a predicate p, we can apply estimation operators
for computing M〈p〉 in different orders, and this may yield different estimates.

3.10 Complexity Analysis

To estimate the complexity of our algorithms, assume that all predicates are n-ary,
fact-set sizes of base predicates are bounded by fs, domains of the arguments sizes
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are bounded by ds, and dependency matrices are all n-dimensional sparse matrices
of sizes β × . . . × β. The complexity of SDP operations that are defined in earlier
subsections is summarized in Table 1, and detailed analysis can be found in [15]. It
is worth mentioning that typical applications on the semantic Web mostly use triple
stores and the arities are bounded by 4, which makes the overhead for computing
predicate sizes affordable.

Table 1. Complexity of SDP Operations

Operation Complexity

construct M〈p〉 O(n× (ds× lg(ds) + fs))
project(M〈r〉, in args, out args) O(βn)
union(M〈r〉,M〈s〉) O(n× βn)
intersect(M〈r〉,M〈s〉) O(n× βn)
minus(M〈r〉,M〈s〉) O(n× βn)

join(M〈r〉,M〈s〉) O(βm+n−k)
product(M〈r〉,M〈s〉) O(βm+n)

Consider a knowledge base with m predicates whose maximal arity is n. The number
of space units needed to store their dependency matrices is m × (βn + 3 × n × β),
where unit is the amount of bytes to store one dependency matrix value or coordinate
parameter. If n = 4 and β = 30 (a reasonably high predicate arity bound and very
accurate segmentation of distributions), these storage requirements translate into less
than 4Mb per matrix.

4 Experiments

We experimented with SDP using several rule sets. Due to space limitations, we only
include the results for the mutual recursive transitive closure rules of Example 3. More
extensive experiments and analysis are available at [15]. All tests were performed on a
dual core 2.4GHz Lenovo X200 with 3GB of main memory. The machine was running
Ubuntu 11.04 with Linux kernel 2.6.38. Our implementation is based on XSB-Prolog
version 3.3.5 (Pignoletto).

Test Datasets. Datasets for predicates p and q are generated from homogeneous
Poisson process using system R [2]. Each dataset has one million facts for p and q each,
with argument values in the range [1, 1000]. We generated 6 data sets with different
data dependencies. In Figure 3, the lower value of the box parameter means that the
data set has high dependency among the different arguments of the predicates, while
higher values of box mean that the data is more evenly distributed.

Test Parameters. In all tests, we used β × . . . × β dependency matrices for β =
5, 10, 20, 30, 40, and tested different ways to compute the dependency matrix for union
and project—some more accurate (and more complex) than the one given in this paper.
Here we show the results using only one of these methods. The interested reader is
referred to [15] for further details.

Results. Figure 3 compares size estimates to the real sizes of tcp and tcq for dif-
ferent datasets and dependency matrix sizes. First, observe that increasing the sizes
of dependency matrices from β = 5 to β = 40 makes size estimates closer to the
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real sizes. Second, increasing box values from box = 6 to box = 16 makes dependency
among the predicate arguments lower, so the size of the dependency matrix becomes
less significant for the accuracy of the estimates, as expected. Third, for reasonably
large dependency matrix sizes (β = 30, 40), our size estimates preserve the relative
order of the real sizes. Since many query optimization algorithms use relative sizes to
decide on the proper join orderings, this means that our size estimates are sufficiently
accurate to be used for that purpose. Fourth, all base datasets have the same size in our
experiments, so it is data dependencies that determine the real result sizes. It further
validates the importance of considering argument dependencies in doing size estimates.

We also compare the running times of SDP (in seconds) compared to the real times
needed to compute the actual queries (the transitive closures). Overall SDP’s overhead
is within 3% of the actual query time, which is acceptable. This overhead could be
probably further reduced by improving our implementation.

Fig. 3. Size Estimates Against Real Sizes

5 Related Work

We classify the work related to this paper into traditional approaches, approaches based
on dependency graphs, work on multidimensional histograms, and cost estimation for
recursion.

Traditional Estimation Techniques. Traditional size estimates use base table statis-
tics and propagate them through derived predicates by assuming independence among
arguments. However such estimates could be off by orders of magnitude [29], which was
confirmed by our implementation of the histogram algorithms [16] proposed in [4]. In
contrast, SDP maintains argument dependencies of both base and derived predicates,
providing more accurate estimates.

Graph-Based Approaches. The present paper was inspired by the size estimation
techniques based on dependency graphs [26] and on the graph-based selectivity estimate
approach [28]. In [26], statistics for predicates (both base and derived) were kept in
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dependency graphs, which were essentially 1 × . . . × 1 dependency matrices. Recur-
sive predicates were unfolded up to three steps without considering data distribution.
Our dependency matrices keep more fine-grained dependency information and SDP
computes the statistics for recursive predicates via an incremental evaluation that ap-
proximates fixpoints and takes base dataset distributions into account. It is unclear how
to do this using the framework of [26] and whether such a generalization is possible
at all.

Graph based selectivity estimates were proposed in [28], where relational data sets
were modeled as graphs and join queries as graph traversals. Fixing a specific set of
binary joins, the task in [28] was to summarize base data distributions and joins within
the given storage allowance. There are two obvious points that differentiate our work.
First, [28] required a priori knowledge of all the joins of interest, while SDP does not
and thus is more flexible. Second, SDP handles recursion, while [28] dealt only with
relational queries.

Multi-dimensional histograms. Multidimensional histograms have been proposed to
keep argument dependency information [19,22,8,7]. For instance, [22] proposed several
definitions of multi-dimensional histograms and compared their performance with tra-
ditional histograms. Multi-dimensional histograms are able to accurately capture argu-
ment dependency since they approximate joint data distributions directly by heuristi-
cally grouping similar values. They have been used to estimate the selectivity of spacial
data in Geographic Information Systems [1]. Dynamic multi-dimensional histograms
for continuous data streams were also studied in [31]. However, multi-dimensional his-
tograms are quite expensive to compute and for an n-ary predicate, there is an expo-
nential number of multi-dimensional histograms to compute [22]. It is also unclear how
to efficiently compute multi-dimensional histograms for joins and recursions.

Size Estimation for Recursive Predicates. Computing the expected sizes for recur-
sive predicates was studied in [17,27]. [17] proposed an adaptive sampling algorithm
to estimate the sizes of transitive closures, which provided estimates within certain
confidence intervals of the real sizes. [27] studied the expected sizes of transitive clo-
sure, same generation, and canonically factorable recursion of uniformly distributed
base datasets. There, they proved many asymptomatic expressions about the expected
sizes. Our method, SDP, also performs size estimates for recursive predicates, but it is
different in that SDP summarizes base relations using dependency matrices and does
not assume any specific data distribution although our experimental datasets were
generated from homogeneous Poisson distributions. Second, [27] focused on deriving
theoretical asymptotic expressions for the expected sizes, while SDP computes size
estimates by maintaining data statistics for both base and derived predicates.

Finally, we need to place our work relative to a host of works on query optimization
in rule systems [23,20,18,32,6,9,3,25]. In this regard, our work is about predicate size
estimation, which is a major data point used by most optimizers that aim to reorder
predicates in rule bodies. Thus our work is orthogonal to most of those works and could
enhance these other approaches if combined with them. This, in fact, is our next goal.

6 Conclusions

In this paper, we extended dependency matrices and the SDP algorithm proposed in
[16] to arbitrary n-ary predicates and more general rule formats including mutual re-
cursion, negation, selection, union, intersection and join. These extensions are essential
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in order for SDP to be useful for optimizing declarative knowledge base engines such
as XSB [24], FLORA-2 [34], and SILK [33]. Experimental studies were performed on a
variety of rule sets to demonstrate the efficacy of our approach, which takes argument
dependency for estimating predicate sizes. These experiments also show that our ap-
proach produces estimates that are in keeping with the relative order of real predicate
sizes. This property is crucial for cost based optimization. To further validate the effi-
cacy of SDP, we plan to add a cost-based optimization module to the XSB engine and
explore other cost models and optimization algorithms.
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Abstract. The Datalog+/– family of ontology languages is especially useful for
representing and reasoning over lightweight ontologies, and has many applica-
tions in the context of query answering and information extraction for the Se-
mantic Web. It is widely accepted that it is necessary to develop a principled way
to handle uncertainty in this domain. In addition to uncertainty as an inherent
aspect of the Web, one must also deal with forms of uncertainty due to incon-
sistency. In this paper, we take an important step in this direction by developing
inconsistency-tolerant semantics for query answering in a probabilistic extension
of Datalog+/–. The main contributions of this paper are: (i) extension and gen-
eralization to probabilistic ontologies of the well-known concepts of repairs and
consistent answers to queries from databases; (ii) complexity analysis for the
problems of consistency checking, repair identification, and consistent query an-
swering; and (iii) adaptation of the intersection semantics (a sound heuristic for
consistent answers) to probabilistic ontologies, yielding a subset of probabilistic
Datalog+/– that is tractable modulo the cost of computing probabilities.

1 Introduction

It is widely acknowledged, both in the database and the Semantic Web community, that
inconsistency is a central issue when dealing with knowledge bases. When integrating
data from many different sources, either as a means to populate an ontology or simply
to answer queries, integrity constraints are very likely to be violated in practice. In this
paper, we address the problem of handling inconsistency in ontologies and the Semantic
Web, where scalability is an important issue. We adopt a probabilistic extension of the
recently developed Datalog+/– family of ontology languages [4] in which ontological
axioms are annotated with constraints specifying the probabilistic events that must oc-
cur in order for them to hold. In this paper, the probabilistic model is left unspecified;
in this sense, the language is a generalization of the one adopted in [7].

Our main goal is to develop inconsistency-tolerant semantics for query answering
in this setting. We thus adapt and generalize the well-known concepts of repair and
consistent answers from databases [1]. In the database community, repairs constitute
consistent models of a set of constraints that are as close as possible to the original
(possibly inconsistent) database. In our work, a repair consists of a subset of the origi-
nal ontology, where only probabilistic atoms can be removed. Consistent query answer-
ing (CQA) is the most widely accepted semantics for querying a possibly inconsistent
database. Instead of repairing an ontology, the result of a query returns consistent an-
swers, the set of tuples (atoms) that appear in the answer to the query over every possible
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repair. That is, those are the answers that hold no matter what measures are taken to re-
pair the database. CQA has already been adopted for various families of description
logics (DLs) [9] and recently for guarded Datalog+/– ontologies [11]. In this work, we
generalize CQA to the case of probabilistic Datalog+/– ontologies. The contributions
of this paper are: (i) extension and generalization of the concepts of repairs and con-
sistent answers to queries over probabilistic ontologies; (ii) complexity analysis for the
problems of consistency checking, repair checking (deciding whether a probabilistic
ontology is a repair of another one), and CQA; (iii) adaptation of the intersection se-
mantics (a sound heuristic for consistent answers developed in DLs) to the setting of
probabilistic ontologies; (iv) description how consistent answers under the intersection
semantics can be obtained by means of traversing an annotated version of the classical
chase graph for non-probabilistic Datalog+/–; and (v) identification of a fragment of
probabilistic Datalog+/– for which CQA under the intersection semantics is tractable,
modulo the cost of computing probabilities of arbitrary events.

2 Preliminaries

We briefly recall some basics on Datalog+/– [4], namely, on relational databases, (Bool-
ean) conjunctive queries ((B)CQs), tuple- and equality-generating dependencies (TGDs
and EGDs, respectively), negative constraints, and ontologies in Datalog+/–.

Databases and Queries. We assume (i) an infinite universe of (data) constants Δ
(which constitute the “normal” domain of a database), (ii) an infinite set of (labeled)
nulls ΔN (used as “fresh” Skolem terms, which are placeholders for unknown values,
and can thus be seen as variables), and (iii) an infinite set of variablesV (used in queries,
dependencies, and constraints). Different constants represent different values (unique
name assumption), while different nulls may represent the same value. We assume a
lexicographic order on Δ∪ΔN , with every symbol in ΔN following all symbols in Δ.
We denote by X sequences of variables X1, . . . , Xk with k � 0.

We assume a relational schema R, which is a finite set of predicate symbols (or
simply predicates). A term t is a constant, null, or variable. An atomic formula (or
atom) a has the form P (t1, ..., tn), where P is an n-ary predicate, and t1, ..., tn are
terms. A conjunction of atoms is often identified with the set of all its atoms.

A database (instance)D for a relational schemaR is a (possibly infinite) set of atoms
with predicates from R and arguments from Δ. A conjunctive query (CQ) over R has
the form Q(X) = ∃Y Υ (X,Y), where Υ (X,Y) is a conjunction of atoms (possibly
equalities, but not inequalities) with the variables X and Y, and possibly constants, but
without nulls. A Boolean CQ (BCQ) over R is a CQ of the form Q(), often written as
the set of all its atoms, without quantifiers. Answers are defined via homomorphisms,
which are mappingsμ : Δ∪ΔN∪V → Δ∪ΔN∪V such that (i) c∈Δ implies μ(c)= c,
(ii) c∈ΔN implies μ(c)∈Δ ∪ ΔN , and (iii) μ is naturally extended to atoms, sets of
atoms, and conjunctions of atoms. The set of all answers to a CQ Q(X)= ∃Y Υ (X,Y)
over a database D, denoted Q(D), is the set of all tuples t over Δ for which there exists
a homomorphismμ : X∪Y→Δ∪ΔN such that μ(Υ (X,Y))⊆D and μ(X)= t. The
answer to a BCQ Q() over a database D is Yes, denoted D |=Q, iff Q(D) 	= ∅.
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Tuple-Generating Dependencies. Tuple-generating dependencies describe constraints
on databases in the form of generalized Datalog rules with existentially quantified con-
junctions of atoms in rule heads. Given a relational schema R, a tuple-generating de-
pendency (TGD) σ is a first-order formula of the form ∀X∀Y Υ (X,Y)→∃ZΨ(X,Z),
where Υ (X,Y) and Ψ(X, Z) are conjunctions of atoms overR (without nulls), called
the body and the head of σ, denoted body(σ) and head(σ), respectively. Such σ is sat-
isfied in a database D for R iff, whenever there exists a homomorphism h that maps
the atoms of Υ (X,Y) to atoms of D, there exists an extension h′ of h that maps the
atoms of Ψ(X,Z) to atoms of D. We usually omit the universal quantifiers in TGDs,
and all sets of TGDs are finite here. Since TGDs can be reduced to TGDs with only
single atoms in their heads, in the sequel, every TGD has w.l.o.g. a single atom in its
head. A TGD σ is guarded iff it contains an atom in its body that contains all univer-
sally quantified variables of σ. The leftmost such atom is the guard atom (or guard)
of σ. A TGD σ is linear iff it contains only a single atom in its body.

Query answering under TGDs, i.e., the evaluation of CQs and BCQs on databases
under a set of TGDs, is defined as follows. For a database D forR, and a set of TGDs Σ
on R, the set of models of D and Σ, denoted mods(D,Σ), is the set of all (possibly
infinite) databases B such that (i) D⊆B and (ii) every σ ∈Σ is satisfied in B. The set
of answers for a CQ Q to D and Σ, denoted ans(Q,D,Σ), is the set of all tuples a
such that a ∈ Q(B) for all B ∈mods(D,Σ). The answer for a BCQ Q to D and Σ
is Yes, denoted D ∪ Σ |=Q, iff ans(Q,D,Σ) 	= ∅. Note that query answering under
general TGDs is undecidable [2], even when the schema and TGDs are fixed [3]. The
two problems of CQ and BCQ evaluation under TGDs are LOGSPACE-equivalent [6,5].
Moreover, the query output tuple (QOT) problem (as a decision version of CQ evalua-
tion) and BCQ evaluation are AC0-reducible to each other. Henceforth, we thus focus
only on BCQ evaluation, and any complexity results carry over to the other problems.
Decidability of query answering for the guarded case follows from a bounded tree-width
property. The data complexity of query answering in this case is P-complete [4].

The Chase. The chase was introduced to enable checking implication of dependen-
cies [12], and later also for checking query containment [8]. It is a procedure for repair-
ing a database relative to a set of dependencies, so that the result of the chase satisfies
the dependencies. By “chase”, we refer both to the chase procedure and to its output.
The TGD chase works on a database through so-called TGD chase rules (an extended
chase with also equality-generating dependencies is discussed below). The TGD chase
rule comes in two flavors: restricted and oblivious, where the restricted one applies
TGDs only when they are not satisfied (to repair them), while the oblivious one always
applies TGDs (if they produce a new result). We focus on the oblivious one here; the
(oblivious) TGD chase rule defined below is the building block of the chase.

TGD CHASE RULE. Consider a database D for a relational schemaR, and a TGD σ
onR of the form Υ (X,Y)→ ∃ZΨ(X, Z). Then, σ is applicable to D if there exists a
homomorphismh that maps the atoms of Υ (X,Y) to atoms of D. Let σ be applicable to
D, and h1 be a homomorphism that extends h as follows: for each Xi ∈ X, h1(Xi) =
h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ΔN , zj does
not occur in D, and zj lexicographically follows all other nulls already introduced. The
application of σ on D adds to D the atom h1(Ψ(X,Z)) if not already in D.
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The chase algorithm for a database D and a set of TGDs Σ consists of an exhaustive
application of the TGD chase rule in a breadth-first (level-saturating) fashion, which
leads to a (possibly infinite) chase for D and Σ. Formally, the chase of level up to 0
of D relative to Σ, denoted chase0(D,Σ), is defined as D, assigning to every atom
in D the (derivation) level 0. For every k� 1, the chase of level up to k of D rela-
tive to Σ, denoted chasek(D,Σ), is constructed as follows: let I1, . . . , In be all pos-
sible images of bodies of TGDs in Σ relative to some homomorphism such that (i)
I1, . . . , In⊆ chasek−1(D,Σ) and (ii) the highest level of an atom in every Ii is k − 1;
then, perform every corresponding TGD application on chasek−1(D,Σ), choosing the
applied TGDs and homomorphisms in a (fixed) linear and lexicographic order, respec-
tively, and assigning to every new atom the (derivation) level k. The chase of D relative
to Σ, denoted chase(D,Σ), is then defined as the limit of chasek(D,Σ) for k →∞.

The (possibly infinite) chase relative to TGDs is a universal model, i.e., there exists
a homomorphism from chase(D,Σ) onto every B ∈mods(D,Σ) [5,3]. This result
implies that BCQs Q over D and Σ can be evaluated on the chase for D and Σ, i.e.,
D∪Σ |= Q is equivalent to chase(D,Σ) |= Q. In the case of guarded TGDs Σ, such
BCQs Q can be evaluated on an initial fragment of chase(D,Σ) |= Q of constant
depth k · |Q|, and thus can be done in polynomial time in the data complexity.

Negative Constraints. Another crucial ingredient of Datalog+/– for ontological mod-
eling are negative constraints (or simply constraints) γ, which are first-order formulas
∀XΥ (X)→⊥, where Υ (X) (called the body of γ) is a conjunction of atoms (with-
out nulls and not necessarily guarded). We usually omit the universal quantifiers, and
all sets of constraints are finite here. Under the standard semantics of query answering
of BCQs Q in Datalog+/– with TGDs, adding negative constraints is computationally
easy, as for each ∀XΥ (X)→⊥, we only have to check that the BCQ Υ (X) evaluates
to false in D under Σ; if one of these checks fails, then the answer to the original BCQ
Q is true, otherwise the constraints can simply be ignored when answering the BCQ Q.

Equality-Generating Dependencies (EGDs). A further important ingredient of Data-
log+/– for modeling ontologies are equality-generating dependencies (or EGDs) σ,
which are first-order formulas ∀XΥ (X) →Xi=Xj , where Υ (X), called the body
of σ, denoted body(σ), is a conjunction of atoms (without nulls and not necessarily
guarded), and Xi and Xj are variables from X. Such σ is satisfied in a database D
for R iff, whenever there exists a homomorphism h such that h(Υ (X,Y))⊆D, it
holds that h(Xi)=h(Xj). We usually omit the universal quantifiers in EGDs, and all
sets of EGDs are finite here. Adding EGDs over databases with guarded TGDs along
with negative constraints does not increase the complexity of BCQ query answering
as long as they are non-conflicting (we will not introduce this concept formally here
for reasons of space; cf. [4] for details). Intuitively, this ensures that, if the chase fails
(due to strong violations of EGDs), then it already fails on the database D, and if it
does not fail, then whenever “new” atoms (from the logical point of view) are cre-
ated in the chase by the application of the EGD chase rule, atoms that are logically
equivalent to the new ones are guaranteed to be generated also in the absence of the
EGDs. This guarantees that EGDs do not have any impact on the chase with respect
to query answering. Non-conflicting EGDs can be expressed as negative constraints of



160 T. Lukasiewicz, M.V. Martinez, and G.I. Simari

the form ∀XΥ (X), Xi 	=Xj →⊥. In the following, for ease of presentation, all non-
conflicting EGDs are expressed as such special forms of negative constraints.

A (linear) Datalog+/– ontology consists of a (finite) database D, a finite set of (lin-
ear) TGDs ΣT , and a finite set of negative constraints and separable EGDs ΣNC. We
use the notation (D,Σ), where Σ = ΣT ∪ΣNC.

Example 1. The following database D, set of TGDs ΣT , and set of negative con-
straints ΣNC form together a linear Datalog+/– ontology KB = (D, ΣT ∪ΣNC):

D = {a(x1), b(x1), b(x2), d(x1), e(x1)};
ΣT = {σ1 : d(X)→ i(X), σ2 : e(X)→ i(X), σ3 : a(X)→ m(X)};
ΣNC = {υ1 : a(X) ∧ b(Y ) ∧ X 	= Y → ⊥, υ2 : d(X) ∧m(X) → ⊥}. �

3 Probabilistic Guarded Datalog+/–

Recall that we have, as discussed in Section 2, a finite set of relation names ROnt, an
infinite universe of (data) constants ΔOnt, an infinite set of labeled nulls ΔN , and an
infinite set of variables VOnt.

We assume the existence of a probabilistic model M that represents a probability
distribution PM over some set X = {X1, . . . , Xn} of Boolean variables. Note that we
use the term probabilistic model in reference to a particular instance of a probabilistic
formalism; this term should not be confused with other uses of model elsewhere in the
paper. Relative to the specification of the probabilistic model, we assume the existence
of a finite set of constants ΔM, an infinite set of variables VM, and a finite set of predicate
namesRM such that RM ∩ ROnt = ∅. Finally, there is a 1-to-1 mapping from X to the
set of all ground atoms overRM and ΔM.

Examples of the type of probabilistic models that we assume in this work are Markov
logic networks and Bayesian networks. The work in [7] is a special case of the general
model presented here, where Markov logic networks (MLNs) [13] are the probabilistic
models underlying the probabilistic Datalog+/– ontology, and the model is assumed to
be fixed with respect to data complexity (an assumption not made here).

As usual, a substitution maps variables to variables or constants. Two sets S and T
unify via a substitution θ iff θS = θT , where θA denotes the application of θ to all
variables in all elements of A (here, θ is a unifier). A most general unifier (mgu) is a
unifier θ such that for all other unifiers ω there is a substitution σ such that ω = σ ◦ θ.

Definition 1. Let M be a probabilistic model. Then, a (probabilistic) annotation λ rel-
ative to M is a (finite) set of expressions of the form 〈Ai = xi〉, where: (i) Ai is an atom
overRM, VM, and ΔM; and (ii) xi ∈{0, 1}. A probabilistic annotation is valid iff for any
two different expressions 〈A = x〉, 〈B = y〉 ∈ λ, there does not exist a substitution
that unifies A and B.

Intuitively, a probabilistic annotation is used to describe the class of events in which
the random variables in a probabilistic model M are compatible with the settings of
the random variables described by λ, i.e., each Xi has the value xi. A probabilistic
scenario is a valid probabilistic annotation λ for which |λ|= |X | and all 〈A = xi〉 ∈ λ
are such that A is ground. We use scn(M) to denote the set of scenarios in M . A
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probabilistic annotation is equivalent to a formula that consists of the disjunction of all
the scenarios that belong to the set denoted by the annotation. Therefore, with a slight
abuse of notation, we sometimes combine annotations with logical operators. We use
vars(λ) to denote the set of variables VM in λ (note that vars(λ) = ∅ for scenarios λ).

Example 2. Let the set of random variables in M be X = {p(x1), p(x2), r(x1), r(x2)},
i.e., the set of all ground atoms overRM and ΔM. The set {〈p(X) = 1〉, 〈r(x1) = 0〉} is
a probabilistic annotation, whereas {〈p(x1) = 1〉, 〈p(x2) = 1〉, 〈r(x1) = 0〉, 〈r(x2) =
1〉} is a probabilistic scenario (which is a special case of a probabilistic annotation). �

Informally, a probabilistic Datalog+/– ontology consists of a finite set of probabilis-
tic atoms, TGDs, negative constraints, and separable EGDs, along with a probabilistic
model M over the set X .

Definition 2. If a is an atom, σT is a TGD, σNC is a negative constraint (or EGD), and λ
is a valid probabilistic annotation, then: (i) a : λ is a probabilistic atom; (ii) σT : λ is a
probabilistic TGD (pTGD); (iii) σNC : λ is a probabilistic (negative) constraint (pNC).
Such probabilistic atoms, TGDs, and (negative) constraints are annotated formulas.

Intuitively, annotated formulas hold whenever the events associated with their proba-
bilistic annotations occur. Note that whenever a random variable’s value is left unspec-
ified in an annotation, the variable is unconstrained; in particular, an empty annotation
means that the formula holds in every possible scenario. Given a set S of annotated
formulas, we use det(S) to denote the set of formulas in S without the corresponding
probabilistic annotations.

Definition 3. Let O be a set of probabilistic atoms, TGDs and (negative) constraints,
andM be a probabilistic model. A probabilistic Datalog+/– ontology is of the formΦ =
(O,M), where the annotations in formulas in O are relative to M .

In the following, we assume that probabilistic ontologies are of the form Φ = (O,M)
with O = D ∪Σ, where D is a set of probabilistic atoms and Σ is a set of pTGDs and
pNCs. Thus, to avoid repetition, these components are often left implicit.

Recall that random variables in the probabilistic model are Boolean and written in
the form of atoms over RM, VM, and ΔM; if a is such an atom, a = 1 (resp., a = 0)
denotes that the variable is true (resp., false).

Definition 4. Let Φ = (O,M) be a probabilistic Datalog+/– ontology, and λ be a
probabilistic scenario. The (non-probabilistic) Datalog+/– ontology induced from Φ
by λ, denoted Oλ, is the set:

{θiFi | ∃Fi:λi ∈ O such that there exists an mgu θi for λi and some λ′ ⊆ λ}.

As in the case of non-probabilistic Datalog+/– ontologies, we assume that, given a sce-
nario λ, the (uniquely determined) ontologyOλ contains non-conflicting key dependen-
cies [4] to ensure the separability of the constraints. The annotation of formulas offers
a clear modeling advantage by enabling a clear separation between the task of ontolog-
ical modeling and of modeling the uncertainty in the ontology. More precisely, in our
formalism, it is possible to express the fact that the probabilistic nature of a formula is
determined by elements that are outside of the domain modeled by the ontology.
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Example 3. Consider the linear Datalog+/– ontology from Example 1, and let the set
of random variables in M be X = {p(x1), p(x2), r(x1), r(x2)}. We annotate formulas
in the Datalog+/– ontology with classes of scenarios built from the random variables
in X . Atoms are annotated in the following way:

a(x1) : {〈p(x1) = 1〉, 〈r(x2) = 1〉}, b(x1), b(x2) : {〈p(X) = 1〉, 〈r(x1) = 0〉},

d(x1), e(x1) : {〈p(x1) = 1〉, 〈r(x2) = 1〉, 〈p(x2) = 0〉}.

The annotations for the rest of the atoms is {}; recall that formulas with annotation “{}”
hold irrespective of the setting of the random variables in M . The annotations for the
rest of the formulas are:

σ1, σ2 : {}, σ3 : {〈p(x2) = 0〉}, υ1 : {〈r(x1) = 1〉}, υ2 : {}. �

In the following, we use the concept of decomposition of probabilistic ontologies in
their constituent (non-probabilistic) ontologies induced by the scenarios.

Definition 5. Let Φ = (O,M) is a probabilistic Datalog+/– ontology; the decompo-
sition of Φ, denoted decomp(Φ), is the structure: decomp(Φ) = ([Oλ1 , . . . , Oλn ],M)
where {λ1, . . . , λn} = scn(M); we also refer to this structure as the decomposed form
of Φ. To simplify notation, we assume that scenarios are ordered according to a lex-
icographical order of the values of the variables, and therefore the i-th ontology in a
decomposition corresponds to the i-th scenario in this ordering.

Example 4. Consider again the ontology Φ = (O,M) from Example 3. There are 16
scenarios. Therefore, the decomposition of Φ has the form decomp(Φ) = ([Oλ1 , . . . ,
Oλ16 ],M). The scenario λ5 is given by the set {〈p(x1) = 1〉, 〈p(x2) = 0〉, 〈r(x1) =
1〉, 〈r(x2) = 1〉}, while λ7 is given by {〈p(x1) = 1〉, 〈p(x2) = 0〉, 〈r(x1) = 0〉,
〈r(x2) = 1〉}. It is easy to see that Oλ5 consists of the set of atoms {a(x1), d(x1),
e(x1)}, along with the constraints in Σ, and Oλ7 consists of the set of atoms {a(x1),
b(x1), b(x2), d(x1), e(x1)} and the set of constraints {σ1, σ2, σ3, υ2}. �

3.1 Semantics

The semantics of probabilistic Datalog+/– ontologies is given relative to probabilistic
distributions over interpretations of the form I = (D, v), where D is a database over
ΔOnt ∪ΔN , and v is a scenario. In the following, we abbreviate “true : λ” with “λ”.

Definition 6. An interpretation I = (D, v) satisfies an annotated formula F : λ, de-
noted I |= F : λ, iff whenever there exists an mgu θ such that for all 〈Vi = xi〉 ∈ λ,
it holds that Xi = θVi and v[i] = xi, then D |= θF .

A probabilistic interpretation is then a probability distribution Pr over the set of all
possible interpretations such that only a finite number of interpretations are mapped to
a non-zero value. The probability of an annotated formula F : λ, denoted Pr(F : λ), is
the sum of all Pr(I) such that I satisfies F : λ.

Definition 7. Let Pr be a probabilistic interpretation, and F : λ be an annotated for-
mula. We say that Pr satisfies (or is a model of) F : λ iff Pr(F : λ) = 1. Further-
more, Pr satisfies (or is a model of) a probabilistic Datalog+/– ontology Φ = (O,M)
iff: (i) Pr satisfies all annotated formulas in O, and (ii) 1− Pr(false : λ) = PrM (λ) for
all scenarios λ, where PrM (λ) is defined as PrM (

∧
〈Vi,xi〉∈λ Vi = xi) in M .
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In Definition 7 above, condition (ii) is simply stating that the probability values that Pr
assigns are in accordance with those of M (note that the equality in the definition im-
plies that Pr(true : λ) = PrM (λ)) and that they are adequately distributed (since
Pr(true : λ) + Pr(false : λ) = 1).

We now define the notion of a probabilistic answer for a conjunctive query to a
probabilistic Datalog+/– ontology.

Definition 8. Let Φ = (O,M) be a probabilistic Datalog+/– ontology and Q(X) be
a CQ. A probabilistic answer for Q(X) in Φ is a pair (θ, p) consisting of a ground
substitution θ for the variables in Q(X) and some real number p ∈ [0, 1], such that
p =

∑
λ∈scn(M), Oλ|=θQ(X) PrM (λ).

Intuitively, (θ, p) is a probabilistic answer for Q(X) iff p is the sum of the probabilities
of the scenarios for which θQ(X) holds in the corresponding induced ontology. Alter-
natively, we say that Φ entails Q(X) with probability p, iff there exists some ground
substitution θ such that (θ, p) is a probabilistic answer for Q(X) to Φ.

Example 5. Consider again the ontology Φ = (O,M) from Example 1 and the query
Q(X) = a(X). A probabilistic answer for Q(X) to Φ (the only one in this case) is the
pair ([X/x1], p), where p =

∑
λi|=〈p(x1)=1〉∧〈r(x2)=1〉 Pr(λi) = Pr(λ1) + Pr(λ3) +

Pr(λ5)+Pr(λ7). Note that λi |= 〈p(x1) = 1〉∧〈r(x2) = 1〉 denotes the set of scenarios
in M in which p(x1) and r(x2) are true. �

3.2 Annotated Chase

We now modify the chase procedure for probabilistic Datalog+/– ontologies in order
for it to account for the correct propagation of probabilistic events associated with the
atomic consequences derived from the ontology.

pTGD Chase Rule. Consider a probabilistic Datalog+/– ontology Φ = (O,M) and
a pTGD σ ∈ O of the form Υ (X,Y) → ∃ZΨ(X, Z) : eσ. Let D be the set of
probabilistic atoms in O. Then, σ is applicable to D if there exists a homomorphism h
that maps the atoms in Υ (X,Y) to probabilistic atoms β1 : e1, . . . , βk : ek of D such
that h(eσ ∧

∧
i=1,...,k ei) is a valid probabilistic annotation. Let σ be applicable to D,

and h1 be a homomorphism that extends h as follows: for each Xi ∈ X, h1(Xi) =
h(Xi); for each Zj ∈ Z, h1(Zj) = zj , where zj is a “fresh” null, i.e., zj ∈ ΔN , zj
does not occur in O, and zj lexicographically follows all other nulls already introduced.
The application of σ on D adds to D the probabilistic atom h1(Ψ(X,Z)) : h(eσ ∧∧

i=1,...,k ei), if not already in D.

The chase algorithm for a probabilistic ontologyΦ consists of an exhaustive application
of the pTGD chase rule in a breadth-first (level-saturating) fashion, which outputs a
(possibly infinite) annotated chase for Φ. In the construction of the annotated chase for
a probabilistic Datalog+/– ontology, we annotate each atom not only with its derivation
level, but also the probabilistic event associated with its derivation. Note that there might
be several ways of obtaining an atom through the application of different pTGDs and
therefore associated with different probabilistic events; if the events are different, then
different probabilistic atoms are created.
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Fig. 1. Annotated chase graph for the probabilistic Datalog+/– ontology Φ from Example 1. The
events shown are defined as: e1 = {〈p(x1) = 1〉, 〈r(x2) = 1〉}, e2 = {〈p(x1) = 1〉, 〈p(x2) =
1〉}, e3 = {〈p(x1) = 1〉, 〈r(x2) = 1〉, 〈p(x2) = 0〉}, and e4 = {〈p(x2) = 0〉}.

The annotated chase of level up to 0 of Φ = (O,M) relative to the set of pT-
GDs ΣT ⊆ O, denoted annChase0(Φ), is defined assigning to every probabilistic
atom in O the (derivation) level 0 and the probabilistic annotation associated with it
in the ontology. For every k� 1, the annotated chase of level up to k of O relative
to ΣT , denoted annChasek(Φ), is constructed as follows: let I1, . . . , In be all possi-
ble images of bodies of pTGDs in ΣT relative to some homomorphism such that (i)
I1, . . . , In⊆ annChasek−1(Φ) and (ii) the highest level of an atom in every Ii is k− 1;
then, perform every corresponding pTGD application on annChasek−1(Φ), choosing
the applied pTGDs and homomorphisms in a (fixed) linear and lexicographic order, re-
spectively, and assigning to every new atom a probabilistic annotation equal to the con-
junction of the probabilistic annotations associated with the atoms in Ii and that of the
pTGD σ, and the (derivation) level k. The annotated chase of Φ, denoted annChase(Φ),
is then defined as the limit of annChasek(D,Σ) for k → ∞. The chase graph for
a probabilistic (guarded) Datalog+/– ontology Φ is the directed graph consisting of
annChase(Φ) as the set of nodes and having an arc from a to b iff b is obtained from a
by a one-step application of a pTGD.

Example 6. Figure 1 shows the annotated chase graph for the probabilistic Datalog+/–
ontology Φ from Example 1. The atom m(x1) is added to level 1 of the annotated chase
with probabilistic annotation e1 ∧ e4 = {〈p(x1) = 1〉, 〈r(x2) = 1〉, 〈p(x2) = 0〉}.
Note that the atom i(x1) is annotated with e3, because it is derived either from d(x1)
or e(x1), both annotated with e3 in O, through the application of σ1 or σ2, respectively,
whose annotations are both true. The pair ([X/x1], p) is a probabilistic answer for the
query i(X) with p = PrM (e3) = PrM (λ5) + PrM (λ7). �

The following result shows the relationship between the chase in non-probabilistic
Datalog+/– ontologies and the annotated chase in the probabilistic case. Intuitively, the
process of constructing the annotated chase is equivalent to constructing the classical
chase in parallel for every non-probabilistic ontology induced by some scenario.

Proposition 1. If Φ = (O,M) is a probabilistic Datalog+/– ontology and k ≥ 0, then:
(i) det(annChasek(Φ)) =

⋃
λ∈scn(M) chasek(Oλ),

(ii) if A = {α : ei |α : ei ∈ annChasek(Φ)} for some atom α and e =
∨

α:ei∈A ei

then for every λ ∈ scn(M) such that λ |= e, it holds that α ∈ chasek(Oλ), and
(iii) there is no λ ∈ scn(M) such that α ∈ chasek(Oλ) and λ 	|= e.
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Note that using Proposition 1, we can directly conclude that det(annChase(Φ)) =⋃
λ∈scn(M) chase(Oλ), and therefore, as in the case of (classical) guarded Datalog+/–

ontologies, whenever (homomorphic images of) the query atoms are contained in the
(annotated) chase, then the entire derivation of the query atoms are also contained in
a finite, initial portion of the annotated guarded chase graph, whose size is determined
only by the query and the schema.

The following proposition establishes the link between probabilistic answers for a
conjunctive query to a probabilistic ontology and the corresponding annotated chase;
it allows to compute probabilistic answers for a query to a probabilistic ontology by
means of computing the annotated chase, thus avoiding the brute-force approach of
computing every classical chase as described above.

Proposition 2. Let Φ be a probabilistic guarded Datalog+/– ontology and Q be a CQ.
Then, (θ, p), p> 0, is a probabilistic answer for Q to Φ iff p = PrM (

∨
Si∈S

∧
α:ej∈Si

ej)

where S is the set of all sets Si such that Si is a smallest subset of annChase(Φ) (in the
set-theoretic inclusion sense) for which there is a homomorphism from the atoms in θQ
to the atoms in det(Si).

4 Inconsistent Probabilistic Datalog+/– Ontologies

Inconsistency in probabilistic Datalog+/– ontologies can be characterized as follows.

Definition 9. Let Φ=(O,M) be a probabilistic Datalog+/– ontology. Then,Φ is incon-
sistent iff there exists a scenario λ in M such that Oλ is inconsistent, i.e., chase(Oλ) |=
body(ν), for some (negative) constraint ν ∈ Σλ. Otherwise, Φ is consistent.

Example 7. Consider again the ontology from Example 3. Both Oλ5 and Oλ7 are in-
consistent, since in both we have the atom a(x1), and therefore, through σ3, the atom
m(x1), which, together with the atom d(x1), violates the negative constraint υ2. �

In this setting, the data complexity is defined as: the set of pTGDs and pNCs are consid-
ered to be fixed; on the other hand, the sets ΔOnt and ΔM are not, and therefore the set of
ground atoms on the ontology side and the set of random variables on the probabilistic
model side are not considered to be fixed, either. The following proposition shows that
the problem of checking consistency is intractable in the data complexity. The result
holds both for guarded and linear probabilistic Datalog+/– ontologies.

Theorem 1. Given Φ = (O,M), a probabilistic guarded Datalog+/– ontology, the
problem of deciding whether Φ is inconsistent is NP-complete in the data complexity.

The treatment of inconsistency that we approach in this work is based on the concept
of repairs and consistent answers. We first define the notion of repair of probabilis-
tic Datalog+/– ontologies as an extension of the notion of repair from the relational
database setting [1]. A data repair for a non-probabilistic Datalog+/– ontology (D,Σ)
is a database instance D′ such that the Datalog+/– ontology (D′, Σ) is consistent and
D′ minimally differs from D in the set-inclusion sense. Clearly, there can be more than
one maximal subset of D that is consistent relative to the sets of constraints. We denote
the set of data repairs for O=(D,Σ) by DRep(O). The fact that an arbitrary data repair
for a non-probabilistic Datalog+/– ontology can be computed in polynomial time in the
data complexity follows almost directly from the results in [1].
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Definition 10. Let Φ = (O,M) be a (possibly inconsistent) probabilistic Datalog+/–
ontology such that decomp(Φ) = ([(D1, Σ1), . . . , (Dn, Σn)],M). Then, a probabilis-
tic Datalog+/– ontology Φ′ = (O′,M) is a repair for Φ iff Φ′ is consistent and is
such that decomp(Φ′) = ([(r1, Σ1), . . . , (rn, Σn)],M) where ri ∈ DRep((Di, Σi)),
1 ≤ i ≤ n. We denote with Rep(Φ) the set of repairs for Φ.

Intuitively, a repair for a probabilistic ontology Φ = (O,M) is a consistent proba-
bilistic ontology that corresponds to choosing a data repair for each non-probabilistic
Datalog+/– ontology induced by some scenario in M .

Example 8. LetΦ be the probabilistic ontology from Example 3 with the decomposition
decomp(Φ) = ([(D1, Σ1), . . . , (D16, Σ16)],M). The ontologyΦ has four repairs of the
form Φi = ([(ri1, Σ

i
1), . . . , (r

i
16, Σ

i
16)],M), where we have:

r15 = {a(x1), e(x1)}, r17 = {b(x1), b(x2), d(x1), e(x1)},
r25 = {a(x1), e(x1)}, r27 = {a(x1), b(x1), b(x2), e(x1)},
r35 = {d(x1), e(x1)}, r37 = {a(x1), b(x1), b(x2), e(x1)},
r45 = {d(x1), e(x1)}, r47 = {d(x1), b(x1), b(x2), e(x1)}. �

Repairs for a probabilistic Datalog+/– ontology are defined as the combination of data
repairs for each Datalog+/– ontology induced by each scenario. Unfortunately, in con-
trast with the non-probabilistic case, checking if a probabilistic Datalog+/– ontology is
a repair for another one is intractable in the data complexity if no restrictions are made
over the number of scenarios in M .

Theorem 2. Let Φ = (O,M) and Φ′ = (O′,M) be probabilistic guarded Datalog+/–
ontologies. Deciding whether Φ′ is a repair of Φ is coNP-complete in data complexity.

4.1 Consistent Answers for Probabilistic Datalog+/– Ontologies

The area of consistent query answering (CQA) enforces consistency at query time. The
work of [1], one of the seminal works in the area, provides a model-theoretic construct
of a database repair. The most widely accepted semantics for querying a possibly incon-
sistent database is that of consistent answers, which yields the set of tuples (atoms) that
appear in the answer to the query over every possible repair. CQA allows to focus on a
smaller portion of the database and, in general, it is not necessary to materialize every
possible repair. Here, we generalize the notion of consistent answers to the setting of
probabilistic guarded Datalog+/– ontologies.

Definition 11. LetΦ=(O,M) be a probabilistic (guarded) Datalog+/– ontology,Q(X)
be a CQ, and θ be a ground substitution for the variables in X. A pair (θ, [�, u]) is a con-
sistent answer for Q(X) to Φ iff for every repair Φ′ ∈ Rep(Φ), we have that (θ, p) is
a probabilistic answer for Q(X) to Φ′ and � ≤ p ≤ u. We say that (θ, [�, u]) is a tight
consistent answer iff (θ, �) and (θ, u) are both probabilistic answers for Q to some (not
necessarily the same) repair Φ′ ∈ Rep(Φ).

Intuitively, the fact that (θ, [�, u]) is a tight consistent answer for Q means that every
repair that derives θQ does it with a probability within [�, u] and the endpoints of the
interval are tight in the sense that they are the minimum and the maximum probabilities
with which θQ is derived in every repair. That is, under every possible way of fixing the
probabilistic ontology, we can derive θQ with a probability within that interval.
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Example 9. Consider again the ontology Φ from Example 3 (which has four repairs as
shown in Example 8) and the query Q(X)= i(X). We can easily check that ([X/x1],
[p, p]), with p = PrM (λ5) + PrM (λ7), is a tight consistent answer for Q to Φ. On
the other hand, suppose that PrM (λ1) = 0.1, PrM (λ3) = 0.3, PrM (λ5) = 0.2, and
PrM (λ7) = 0.2; for Q′(X) = a(X), the pair ([X/x1], [�, u]), with � = PrM (λ1) +
PrM (λ3) = 0.4 and u = PrM (λ1)+PrM (λ3)+PrM (λ5)+PrM (λ7) = 0.8, is a tight
consistent answer for Q′. �

The next result shows that deciding whether (θ, [�, u]) is a consistent answer is coNP-
complete in the data complexity even when the number of scenarios in scn(M) is re-
stricted to be polynomial in the size of the data in the ontology.

Theorem 3. Let Φ = (O,M) be a guarded probabilistic Datalog+/– ontology, Q(X)
be a CQ, and θ be a ground substitution for the variables in Q(X). If |scn(M)| is
polynomial in the size of O, and PrM (e) can be computed in polynomial time for an
arbitrary event e, then deciding whether (θ, [�, u]) is a consistent answer for Q to Φ is
coNP-complete in the data complexity.

The above result shows that it is intractable to compute consistent answers even if we
restrict the probabilistic model M . This is unfortunate but expected, since even for non-
probabilistic guarded Datalog+/– ontologies, the consistent query answering problem
is coNP-complete [11]. In pursuit of tractable CQA, in the next section we adopt and
generalize for the case of probabilistic guarded (and in particular linear) Datalog+/– on-
tologies the notion of consistent answers under the intersection semantics, previously
studied for non-probabilistic guarded Datalog+/– ontologies [11] and originally intro-
duced by [9] for the case of certain families of tractable description logics.

4.2 Computing Consistent Answers under the Intersection Semantics

In the case of non-probabilistic ontologies, the work in [9] proposes an alternative se-
mantics that considers only the atoms that are in the intersection of all data repairs,
which constitutes a sound approximation to consistent answers. We now study the gen-
eralization of this semantics to probabilistic guarded Datalog+/– ontologies.

Let Φ1 = (O1,M), . . . , Φk = (Ok,M) be probabilistic ontologies; the intersection
of Φ1, . . . , Φk, denoted

⋂
i=1,...,k Φi, is a probabilistic ontology Φ = (O,M), such that

for each λ ∈ scn(M), Oλ = (
⋂

i=1,...,k Diλ ,
⋂

i=1,...,k Σiλ), where Oiλ = (Diλ , Σiλ).

Definition 12. Let Φ=(O,M) be a probabilistic Datalog+/– ontology, and Q be a CQ.
Then, (θ, p) is a consistent answer under the intersection semantics for Q to Φ, iff (θ, p)
is a probabilistic answer for Q to

⋂
Φi∈Rep(Φ) Φi.

As in the classical case, the intersection semantics is a sound approximation to consis-
tent answers; it is easy to see that, if (θ, p) is a consistent answer for a query under the
intersection semantics, then every repair derives the query with probability p∗ ≥ p.

Example 10. Consider Φ from Example 3. The intersection of Φi ∈ Rep(Φ) yields
Φ′ = (O′,M) where O′

λ5
= ({e(x1)}, Σλ5), O

′
λ7

= ({b(x1), b(x2), e(x1)}, Σλ7), and
O′

λ = (Oλ, Σλ) for any other λ ∈ scn(M). Example 9 shows that ([X/x1], [p, p]), with
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p = PrM (λ5) + PrM (λ7), is a consistent answer for Q(X) = i(X) to Φ. We can see
that ([X/x1], p) is a consistent answer for Q to Φ under the intersection semantics since
Φ′ entails i(x1) with probability p through e(x1) : e3 and σ2 in Φ′. �

In [11], it was shown that computing consistent answers under the intersection seman-
tics in a non-probabilistic Datalog+/– ontology (D,Σ), is the same as computing classi-
cal answers on the ontology (D−C,Σ), where C corresponds to the union of minimal
inconsistent subsets relative to the set of negative constrains in Σ. We obtain a similar
result for the case of consistent answers under the intersection semantics for probabilis-
tic ontologies. First, we define the notion of a culprit relative to a set of probabilistic
negative constraints, which is informally a minimal inconsistent set (under set inclu-
sion) of probabilistic atoms relative to the set of constraints.

Definition 13. Let Φ = (O,M) be a probabilistic Datalog+/– ontology, and D be the
set of probabilistic atoms in O. A culprit in Φ is a pair 〈ec, c〉, where ec is a valid
probabilistic annotation and c ⊆ D, such that for every scenario λ ∈ scn(M), det(c) is
a minimal inconsistent subset in Oλ iff λ |= ec.

Example 11. In our running example, {a(x1), d(x1)} is a minimal inconsistent subset
of Oλ5 and Oλ7 , and therefore 〈e3, c = {a(x1) : e1, d(x1) : e3}〉 is a culprit (the only
one) in Φ. Suppose now that we add to Φ a pNC υ3 : i(X)→ ⊥ : {}. Now, 〈e3, c〉 is no
longer a culprit, since there exists c1 = {d(x1) : e3} ⊂ c such that c1 is an inconsistent
subset of Oλ5 and Oλ7 . Furthermore, 〈e3, {e(x1) : e3}〉 is a culprit for Φ, since from it
and σ2 we can derive i(x1) and therefore violate constraint υ3 in Oλ5 and Oλ7 . �

We now establish the relationship between culprits and consistent answers under the
intersection semantics. Intuitively, (θ, p), p> 0, is a consistent answer under the inter-
section semantics forQ in Φ iff there is at least one way of deriving θQ fromO such that
there is no scenario in which the atoms involved in the derivation belong to a culprit.
We now introduce the notion of root set for Q(X) in Φ, which is, intuitively, a minimal
set of probabilistic atoms from which a probabilistic answer for Q can be computed in
O.

Definition 14. Let Φ = (D ∪ ΣT ∪ ΣNC,M) be a probabilistic guarded Datalog+/–
ontology, and Q(X) be a CQ. A root set for Q(X) in Φ is a pair 〈er, r〉 such that: (i) r ⊆
D, (ii) there exists a ground substitution θ such that annChase((r∪ΣT ,M)) |= θQ with
probability PrM (er), and (iii) there is no r′ ⊂ r such that annChase((r′ ∪ΣT ,M)) |=
θQ with probability PrM (e′r), where er ∧ e′r is a valid probabilistic annotation. We
denote with roots(Q(X), Φ) the set of root sets for Q(X) in Φ.

Example 12. Consider Example 3; the set of root sets for i(X) in Φ is roots(i(X), Φ) =
{〈e3, r1 = {d(x1) : e3}〉, 〈e3, r2 = {e(x1) : e3}〉}. If we consider the query Q′(X) =
d(X) ∧m(X), then roots(Q′(X), Φ) = {〈e3, r′1 = {a(x1) : e1, d(x1) : e3}〉}. �

The probabilistic annotation of the root set represents the set of scenarios in which
the probabilistic atoms in the root set, together with the applicable pTGDs, derive an
answer for Q(X). Note that if Q(X) is atomic, then each root set for Q(X) in Φ is a
singleton whenever Φ is a probabilistic linear Datalog+/– ontology.

Root sets for a conjunctive query Q(X) in a probabilistic guarded Datalog+/– ontol-
ogy are simple to compute: the basic idea is to traverse the annotated chase graph back
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Algorithm findCulprits(Φ, annChaseGraph G)
1. culp:= ∅;
2. for each pNC υ : eυ ∈ O do
3. culp:= culp∪ findRootSets(ΣT , G, body(υ));
4. let GC = (V,E):= computeContainmentGraph(culp);
5. for every node ni ∈ V (corresponding to 〈ei, ci〉 ∈ culp) with in-degree zero do
6. for every nj ∈ V (corresponding to 〈ej , cj〉 ∈ culp) s.t. (ni, nj) ∈ E do
7. if ei ∧ ej is a valid probabilistic annotation then
8. if ei ∧ ¬ej is valid then change ei to ei ∧ ¬ej in 〈ei, ci〉 ∈ culp;
9. else remove 〈ei, ci〉 from culp;

10. remove ni from V and every edge (ni, nj) from E;
11. return culp;

Fig. 2. Computing the set of culprits in a probabilistic guarded Datalog+/– ontology

from the last level up to level 0, following each possible derivation of Q(X) until each
necessary minimal subset of annChase0(Φ) that produces an answer for Q(X) is iden-
tified. The annotation in a root set corresponds to the event with which that particular
answer is obtained in the last level of the annotated chase graph.

Such an algorithm can also be used to compute the set of culprits in a probabilistic
(guarded) Datalog+/– ontology in the following way. Let Q(X) = body(υ) for some
pNC υ ∈ O, where X are the universally quantified variables appearing in body(υ);
we can compute the set of culprits in Φ relative only to υ by computing the root sets
of Q(X). For instance, in our running example, let Q(X) = d(X) ∧ m(X) (which
corresponds to the body of υ2); the set of root sets is roots(Q,Φ) = {〈e3, r′1 =
{a(x1), d(x1)}〉}, and actually {a(x1) : e3, d(x1) : e3} is the unique culprit in Φ
relative only to υ2. The set of culprits in Φ is not necessarily the union of the culprits of
individual pNCs, since they might violate the minimality requirement. Therefore, after
computing the culprits for individual pNCs we must check and eliminate any root set
for body(υ) that is a strict superset of a root set for another body(υ′) (to check this we
need to check containment of atoms and the overlapping of probabilistic annotations).
Algorithm findCulprits in Figure 2 shows how to compute the set of culprits in a prob-
abilistic Datalog+/– ontology assuming there is available a subroutine findRootSets
that computes the root sets of a query, and computeContainmentGraph that produces
a directed graph in which there is an edge between two culprits c1 and c2 iff the set of
probabilistic atoms in c1 is a superset of those in c2.

Proposition 3. Let Φ be a probabilistic (guarded) Datalog+/– ontology and G its anno-
tated chase graph. Algorithm findCulprits(Φ,G) correctly computes the set culprits(Φ).

Intuitively,(θ, p), p> 0, is a consistent answer under the intersection semantics for Q in
Φ iff there is at least one way of obtaining θQ from O with probability p such that there
is no scenario in which the atoms involved in the derivation belong to a culprit.

Proposition 4. Given a probabilistic Datalog+/– ontology Φ and a CQ Q(X), (θ, p),
p> 0, is a consistent answer for Q under the intersection semantics iff there is rs =
〈e, r〉 ∈ roots(Q,Φ) and p= Pr(e′), with e′ = e∧¬

∧
〈ec,rc〉∈culprits(Φ),det(rc)∩det(r) �=∅ ec.
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Example 13. Consider the root sets for the query Q(X) = i(X) shown in Exam-
ple 12. Note that r1 has a non-empty intersection with c = {a(x1) : e1, d(x1) : e3},
which is part of a culprit for Φ. That is not the case for the root set r2, and therefore
([X/x1],Pr(e3)) is a consistent answer for Q to Φ under the intersection semantics. �

Proposition 4 provides a direct way of computing the consistent answers for a query Q
under the intersection semantics. That is, we can compute the root sets for Q (the set
of all probabilistic answers for Q) to Φ and then verify which of them is a consistent
answer under the intersection semantics by inspecting the culprits and checking for
intersections between root sets and the culprits. The following theorem states that this
procedure is tractable for probabilistic linear Datalog+/– ontologies, as long as the cost
of probabilistic inference in the model remains tractable as well.

Theorem 4. Let Φ = (D ∪ Σ,M) be a linear probabilistic Datalog+/– ontology and
Q(X) be a CQ. If |scn(M)| is polynomial in the size of D, then the consistent answers
under the intersection semantics for Q(X) to Φ can be computed in time O(poly(|O|)+
CP(M)), where poly(|O|) is the time needed to compute the culprits and the root sets
for Q(X) in Φ, and CP(M) is the time needed to compute the probability of an arbitrary
probabilistic annotation in M .

5 Related Work

In databases, the fields of database repairing and consistent query answering (CQA)
have gained much attention since the work of [1], which provided a model-theoretic
construct of a database repair. The most widely accepted semantics for querying a pos-
sibly inconsistent database is that of consistent answers, which yields the set of tuples
(atoms) that appear in the answer to the query over every possible repair. CQA en-
forces consistency at query time as an alternative to enforcing it at the instance level, as
conventional data cleaning techniques do. More recently, several works have focused
on inconsistency handling for several classes of DLs, adapting and specializing gen-
eral techniques previously considered for traditional logics. The work in [9] studies the
adaptation of CQA for DL-Lite ontologies, and presents the intersection semantics as
a sound approximation of consistent answers, which is easier to compute for DL-Lite.
In [11], an adaptation of this semantics is provided for guarded Datalog+/– ontologies.

The closest approach in the literature is perhaps the one in [10] for CQA over prob-
abilistic databases, in which tuples are annotated with probability values. In contrast,
the probabilistic Datalog+/– language adopted here allows the separation of the proba-
bilistic model from the data model, yielding a tool that is more suitable for applications
related to the Semantic Web. Finally, the extension of CQA proposed here adheres to
the widely adopted criterion of minimal change, which is not the case in [10].

6 Conclusion

In this paper, we have extended consistent query answering and its approximation by
the intersection semantics to the case of probabilistic Datalog+/– ontologies. We have
analyzed the complexity of deciding the existence of repairs, consistent answers, and
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consistency checking, and we have identified a fragment of our formalism for which
consistent query answering under the intersection semantics is tractable.
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Abstract. Conjunctive query (CQ) answering is a key reasoning service
for ontology-based data access. One of the most prominent approaches
to conjunctive query answering is query rewriting where a wide variety
of systems has been proposed the last years. All of them accept as input
a fixed CQ q and ontology O and produce a rewriting for q,O. However,
in many real world applications ontologies are very often dynamic—that
is, new axioms can be added or existing ones removed frequently. In
this paper we study the problem of computing a rewriting for a CQ
over an ontology that has been contracted (i.e., some of its axioms have
been removed) given a rewriting for the input CQ and ontology. Our
goal is to compute a rewriting directly from the input rewriting and
avoid computing one from scratch. We study the problem theoretically
and provide sufficient conditions under which this process is possible.
Moreover, we present a practical algorithm which we implemented and
evaluated against other state-of-the-art systems obtaining encouraging
results. Finally, axiom removal can also be relevant to ontology design.
For each test ontology we study howmuch the removal of an axiom affects
the size of the rewriting and the performance of systems. If the removal
of a single axiom causes a significant decrease either in the size or in the
computation time then this part of the ontology can be re-modelled.

Keywords: Ontologies, Query Rewriting, Ontology contraction, Axiom
Removal.

1 Introduction

A recent application of ontologies that continuously gains momentum is ontology-
based data access (OBDA) [17]. Ontologies aim to provide a formal semantically
rich conceptualization of the (possibly distributed) data layer, thus simplifying
numerous data management problems such as information integration [13], data
exchange [9], data warehousing [23] and more. The main advantages of OBDA
are that, firstly, the conceptual data description does not directly reflect the
specific system/storage specifications and restrictions and, secondly, the data
access can be performed by answering conjunctive queries (CQs) expressed in
terms of the ontology [17], which is usually more intuitive for the user.

Unfortunately, the problem of answering conjunctive queries over ontologies
expressed using expressive ontology languages (like those underpinning the Web

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 172–187, 2012.
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Ontology Language OWL 2) has been proved to be very difficult [14]. Conse-
quently, less expressive languages (like those underpinning the OWL 2 QL and
OWL 2 EL fragments) have been proposed in the literature. For these languages
query answering is tractable [5,16,11] and thus efficient systems can be imple-
mented. One of the widely used methods to query answering over such languages
is query rewriting. Given a query q and an ontology O, a rewriting r of q,O is a
set of clauses (usually Datalog rules or unions of CQs) such that for any database
the answers of q over the database and the ontology coincide with the answers
of the rewriting over the database and discarding the ontology. Thus, r can be
used for finding the answers by translating it into an (recursive) SQL query.

So far many algorithms and systems for computing the rewriting of a query
over an ontology have been developed in the literature [5,16,19,11,6,15,22]. Sev-
eral of them, like Presto, Quest,1 Nyaya,2 Rapid,3 and IQAROS4 employ sophis-
ticated optimisations in order to reduce either the size of the computed rewriting
or the computation time. Despite very encouraging results it is clear that the
problem of query rewriting remains open since there are several problematic
cases for which either the computation time or the computed rewriting are quite
large. The latter is a significant problem as it is well-known that large rewritings
are likely to cause a problem when evaluated over a database (a large rewriting
implies a large SQL query with many unions and joins) [11].

All the aforementioned systems assume a fixed query and ontology and for
this input they employ a set of ‘rewriting’ rules in order to compute the tar-
get rewriting. However, in many applications ontologies are very often dynamic
and can change in time [7,3,18]. More precisely, an ontology can be extended
by adding new axioms or be contracted—that is, some of its axioms might be
removed because they no longer hold. For example, the NCI ontology (a well-
known medical ontology) has been updated more than 85 times [10]. In such
scenarios all aforementioned algorithms would compute a rewriting for the input
(fixed) query over the updated ontology from scratch discarding any informa-
tion previously computed, although it is expected that the new rewriting has a
significant overlap with the initial one. In the current paper we study the fol-
lowing problem: Given a query q, an ontology O, a rewriting r for q,O and a
set of axioms A, compute a rewriting for q,O \A ‘directly’ from r and by avoid-
ing using any of the known rewriting algorithms. Firstly, we study the problem
theoretically to investigate its feasibility. We thus develop sufficient conditions
that if satisfied by r then this process is possible. Subsequently, we present a
practical algorithm for computing the rewriting of a query over a contracted
ontology. Finally, we have implemented our algorithm and we have conducted
an experimental evaluation using the evaluation framework proposed in [16]. We
compared the performance of our system to the performance of cutting-edge
query rewriting systems and we obtained encouraging results.

1 http://obda.inf.unibz.it/protege-plugin/quest/quest.html
2 http://mais.dia.uniroma3.it/Nyaya/Home.html
3 http://www.image.ece.ntua.gr/~achort/rapid.zip
4 http://code.google.com/p/iqaros/

http://obda.inf.unibz.it/protege-plugin/quest/quest.html
http://mais.dia.uniroma3.it/Nyaya/Home.html
http://www.image.ece.ntua.gr/~achort/rapid.zip
http://code.google.com/p/iqaros/
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To the best of our knowledge there is no previous study of the problem of
query rewriting over contracted ontologies. We believe that such an algorithm
can be helpful in cases where computing the rewriting for a large and complex
ontology is time consuming. In such cases an initial rewriting can be computed
once while then rewritings for contractions of the input ontology can be com-
puted using a lightweight algorithm. Additionally, ontology contraction can also
be interesting in designing ontologies for practical applications. More precisely,
given an ontology O and query q the proposed method can be used to investigate
which of the axioms of O affect the size of the rewriting for q,O. More precisely,
if r is a rewriting for q,O while for some α ∈ O r′ is a rewriting for q,O \ {α}
that is significantly smaller than r, then we can deduce that the presence of α
makes rewriting particularly ‘hard’ and hence should be revised. The specific
idea has lately gained attention in the area of terminological reasoning over ex-
pressive DLs with important theoretical and practical results [10]. However, as
far as we know it has not been studied in the area of query rewriting. Finally,
our techniques are also relevant to the problem of ontology repairing for incom-
plete reasoners [21], which provides an alternative and very promissing way to
scalable ontology-based data access. More precisely, our methods can be used to
compute a repair for a contracted ontology by avoiding re-computing one from
scratch.

2 Preliminaries

We use standard notions of first-order constants, variables, function symbols,
terms, substitutions, predicates, atoms, (ground) formulae, sentences, and en-
tailment (|=). A fact is a ground atom and an instance is a finite set of facts.
A tuple (vector) of variables (constants) is denoted by �x (�a). For φ a formula,
with φ(�x) we denote that �x are the free variables of φ, while for σ a substitution,
φσ is the result of applying σ to φ. Satisfiability and entailment are defined as
usual.

Existential Rules. An existential rule [2,4], often called axiom, is a sentence
of the form

∀�x.∀�z.[φ(�x, �z)→ ∃�y.ψ(�x, �y)] (1)

where φ(�x, �z) and ψ(�x, �y) are conjunctions of atoms and �x, �y and �z are pair-wise
disjoint. Formula φ is the body, formula ψ is the head, and universal quantifiers
are often omitted. If �y is empty, the rule is called datalog. An ontology R is a
finite set of existential rules.

Many popular Description Logics, such as ELHI [16], as well as database
constraint languages, such as tuple generating dependencies [1], can be captured
by existential rules.

Queries. A datalog query Q is a tuple 〈QP , P 〉, where QP is a query predicate
and P is a set of datalog rules such that the body of each clause in P does
not contain QP . A datalog query Q = 〈QP , P 〉 is called a union of conjunctive
queries (UCQ) if QP is the only head predicate in the head of the rules in
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P ; furthermore, Q is a conjunctive query (CQ) if it is a union of conjunctive
queries and P contains exactly one rule—that is, Q = 〈QP , {QC}〉 and QC is a
datalog rule with QP as a head predicate. We often abuse notation and write
Q = QC if Q is a CQ in which case the head of QC is the query predicate. A
tuple of constants �a is a certain answer of a datalog query Q = 〈QP , P 〉 over an
ontology R and an instance I if and only if R∪ I ∪P |= QP (�a). We denote with
cert(Q,R∪ I) the set of certain answers of the datalog query Q over R∪ I.

Given two datalog rules r1, r2 we say that r2 subsumes r1 if there exists a
substitution σ such that (r2)σ ⊆ r1.

Query Rewriting. Intuitively, a rewriting of Q w.r.t. an ontology R is another
query that captures all the information from R relevant for answering Q over R
and an arbitrary instance I. Today several query rewriting algorithms for many
ontology languages such as DL-Lite, ELHI, linear -TGDs and many more have
been presented [5,16,11,15]. For all these works, UCQs and datalog are common
target languages for computing a query rewriting.

Definition 1. A datalog rewriting of a conjunctive query Q = 〈QP , {QC}〉
w.r.t. an ontology R is a datalog query Q′ = 〈QP , P 〉 such that the following
properties hold:

– each r ∈ P either does not mention QP or contains QP only in the head,
– for each r ∈ P we have R∪Q |= r,
– for each instance I using only predicates from R we have cert(Q,R ∪ I) =

cert(Q′, I).

If the rewriting Q′ is a UCQ then it is called UCQ rewriting.

Many state-of-the-art systems often normalise the input ontologyR by introduc-
ing new (fresh) predicates that do not appear in R and then compute a rewrit-
ing using the normalised ontology. For example, the ontology R = {R(x, y) ∧
C(y) ∧D(y)→ A(x)} would usually be normalised to R′ = {R(x, y) ∧A0(y)→
A(x), C(x) ∧ D(x) → A0(x)}, where A0 is a new predicate. For such systems
the second condition of Definition 1 is likely not to hold. However, the rules of
the rewriting that contain such fresh predicates can be eliminated by ‘unfolding’
the definition of the fresh symbols creating new rules for which the condition
holds.

3 Rewriting Reduced TBoxes

In this section we study the problem of computing a rewriting for a conjunctive
query Q over an ontology R′ given a rewriting for Q and an ontology R ⊇ R′—
that is, given a rewriting for Q over a superset of R′. Since rewriting over large
ontologies can be a rather time consuming process our motivation is to avoid
computing the new rewriting from scratch using any of the standard algorithms,
but instead to re-use the previously computed information as much as possible.
In the following, we first study the problem at a theoretical level providing illus-
trative examples that highlight important technical points and motivate several
assumptions that are required and, then, we present the algorithm in detail.
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Example 1. Consider the ontology R1 = {α1, α2, α3}, where α1, α2, and α3 are
defined as follows:

α1 = Painting(x)→ ManMadeObject(x),
α2 = isSimilarTo(x, y) ∧ Painting(y)→ Painting(x),
α3 = isCopyOf(x, y)→ isSimilarTo(x, y)

The ontology states that a painting is a man made object, that if some object
is similar to a painting then it is also a painting and anything that is a copy
of an entity is also similar to this entity. Consider now the CQ Q = Q(x) ←
ManMadeObject(x). The datalog query Q′ = 〈Q,P 〉, where P is the program
consisting of the rules defined below, is a datalog rewriting of Q over R1:

q = Q(x)← ManMadeObject(x) (2)

q1 = Q(x)← Painting(x) (3)

r1 = Painting(x)← isSimilarTo(x, y) ∧ Painting(y) (4)

r2 = Painting(x)← isCopyOf(x, y) ∧ Painting(y) (5)

This rewriting can be computed by any state-of-the-art query rewriting system
that at-least supports the DL language ELHI.

Assume now that we remove axiom α3 from R1 obtaining the new ontology
R′

1 = {α1, α2}. A new rewriting for Q and R1 can be computed using again the
same algorithm; the rewriting would consist of rules (2)–(4). ♦
Although the new rewriting can be computed using again our rewriting system
we can see that when applied over Q and R′

1 this system would re-compute the
rules (2)–(4). Moreover, we can see that one can compute a rewriting directly
from Q′ simply by removing rule (5) from the program P . Intuitively, this rule
is produced by resolving rule (4) with axiom α3 which has been removed from
the initial ontology. Hence, this rule cannot be produced using the axioms of R′

1.
This suggests that if one has additionally annotated the elements of a rewriting
with the subset of the ontology that is required to generate them, then a new
rewriting would be easily computable.

Definition 2. Let Q = 〈QP , {QC}〉 be a CQ, let R be an ontology, let QD =
〈QP , P 〉 be a datalog rewriting of Q w.r.t. R and let some r ∈ P . We say that
R′ ⊆ R is minimal for r if the following conditions hold:

1. r ∈ P ′ for some P ′ ⊆ P s.t. 〈QP , P
′〉 is a datalog rewriting for Q w.r.t. R′.

2. For all R′′ ⊂ R′ condition 1 does not hold.

Intuitively, R′ is minimal for some r if r occurs in some rewriting for Q and R′,
but if we remove any rule from R′ then r no longer occurs in any rewriting for
Q and the modified ontology.

In our running example (Example 1) we have the following minimal sets for
each element of P :

Rq := ∅ is minimal for q
Rq1 := Rq ∪ {α1} is minimal for q1
Rr1 := {α2} is minimal for r1
Rr2 := Rr1 ∪ {α3} is minimal for r2
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Hence, since the minimal subset for r2 contains the axiom α3 that was previously
removed from R1 to obtain R′

1, we can deduce that r2 cannot be part of a
rewriting for Q,R′

1.
Note here that for a rule r of a rewriting for some query and ontology R

there may be many minimal subsets. For example, for ontology R = {A(x) →
B(x), C(x) → B(x)} and CQ Q = 〈Q(x), {Q(x) ← A(x), B(x), C(x)}〉 the
rewriting would contain the rule r = Q(x) ← A(x), C(x) and both {A(x) →
B(x)} and {C(x)→ B(x)} are minimal for r. Hence, for each r ∈ P the rewrit-
ing needs to contain all minimal subsets for a member of the rewriting.

Definition 3. Let Q = 〈QP , {QC}〉 be a CQ and let R be an ontology. A la-
belled datalog rewriting is a triple 〈QP , P, ρ〉 where 〈QP , P 〉 is a datalog rewriting
for Q w.r.t. R and ρ is a mapping from P to sets of subsets of R such that for
each r ∈ P , ρ(r) contains all R′ ⊆ R that are minimal for r.

Note that to compute a labelled rewriting for a CQ Q = 〈Q, {QC}〉 over an input
set R one has to modify the internals of the used rewriting algorithm. This can
be done easily by initialising the empty set ∅ as the minimal set for QC and the
singleton set {α} for each axiom α ∈ R and then track the axioms that are used
to generate the elements of the output rewriting. For example, if r′ is produced
by resolving rule r with axiom α, then ρ(r′) = ρ(r′) ∪ {ρ(r) ∪ ρ(α)}.

An important technical question at this point is whether we can compute a
rewriting for a CQ over a reduced ontology R′ given any rewriting for the input
ontology R ⊇ R′. As the following example shows, this is not always possible.

Example 2. Consider the following ontology R2 and CQ:

R2 = {Creator(x)→ Agent(x)}
Q = Q(x)← Creator(x),Agent(x)

The tuple Q1 = 〈Q(x), {r, r1}〉, where r = Q(x) ← Creator(x),Agent(x) and
r1 = Q(x)← Creator(x) is a rewriting for Q, R2. However, r1 subsumes r, hence
Q2 = 〈Q(x), {r1}〉, is also a rewriting for Q,R2.

Assume now that axiom α1 = Creator(x) → Agent(x) is removed from R2

obtaining a new ontology R′
2. A rewriting for Q,R′

2 consists of the query Q3 =
〈Q(x), {r}〉. However, it is quite clear that we cannot compute Q3 from the (non-
redundant) rewriting Q2, as it does not contain the rule r at all. Instead, Q3

can be computed from Q1 that contains rule r simply by removing r1. ♦

Intuitively, the issue in the previous example is that although r is redundant in
Q1 the query that subsumes it (r1) is not part of all rewritings for Q,R′

2 because
the axiom that is used to generate it (i.e., α1) has been removed. Hence, r is no
longer redundant in rewritings of Q,R′

2.
As we will show next, the following condition that was first introduced in

[8], provides a sufficient condition for computing a rewriting for an ontology R′

given a rewriting for an ontology R ⊇ R′.
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Definition 4. A datalog rewriting 〈QP , P 〉 of a CQ Q = 〈QP , {QC}〉 w.r.t. an
ontology R is subset-closed if for each R′ ⊆ R there exists P ′ ⊆ P such that
〈QP , P

′〉 is a datalog rewriting for Q w.r.t. R′.

Example 3. Consider the ontology R2 and CQ Q from Example 2. For R′′
2 = ∅

no subset of Q2 is a datalog rewriting for Q,R′′
2 . Instead, for the rewriting Q1

the query Q′
1 = 〈Q(x), {r}〉 is a datalog rewriting for Q,R′′

2 . Therefore, Q1 is
subset-closed while Q2 is not. ♦

As noted in [8], however, from a practical point of view subset-closed rewritings
are not straightforward to compute. As also illustrated by the above example,
to compute such rewritings one would typically need to disable (at least par-
tially) subsumption-based optimisations, whereas many rewriting systems are
optimised hence their output is typically not subset-closed. However, on the one
hand, there exist highly efficient algorithms and systems that compute subset-
closed rewritings [22] and on the other hand, we argue that one can compute
a subset-closed rewriting once as an off-line procedure and then a lightweight
algorithm can be used to compute rewritings for the revised ontologies.

Concluding our presentation of the technical issues of the algorithm we show
that there are certain kinds of dependencies between the elements of a labelled
rewriting which the algorithm can exploit in order to compute the new rewriting
more efficiently.

Example 4. Consider our running example (Example 1) and assume that instead
of α3 we remove axiom α2 creating the new ontologyR′′

1 = {α1, α3}. A rewriting
for Q,R′′

1 consists only of rules (2) and (3). The algorithm can compute this by
checking whether for all Rr1 ∈ ρ(r1) we have α2 ∈ Rr1 , which holds hence r1 is
removed, and then the same for r2, which again holds hence r2 is also removed
obtaining finally the correct rewriting.

However, the latter check can be avoided if we order the elements of the rewrit-
ing according to the order induced by their minimal sets in ρ. More precisely,
in our running example the (only) minimal set for r2 is a superset of the (only)
minimal set for ρ(r1); hence if r1 is removed because α2 ∈ Rr1 then all rules
produced “after” r1 (i.e., r2) can be discarded from further processing. ♦

To exploit the above idea the algorithm introduced in the next section first orders
the elements of a rewriting according to their minimal sets. This is performed
using the function order that is defined next.

Definition 5. Let QD = 〈QP , P, ρ〉 be a labelled rewriting for a CQ Q w.r.t. an
ontology R. The function order(QD) returns a directed graph G = 〈P,H〉 where
〈r1, r2〉 ∈ H iff for all R1 ∈ ρ(r1) there exists R2 ∈ ρ(r2) such that R1 ⊂ R2

and no r′ ∈ P exists such that for some R′ ∈ ρ(r′) we have R1 ⊂ R′ ⊂ R2.

In our running example the function order(Q′) would return G = 〈P,H〉 where
H = {〈q, q1〉, 〈r1, r2〉}.
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Algorithm 1. DELETE(A,QD)

Input: QD = 〈QP , P, ρ〉 is a labelled datalog rewriting and A a set of axioms.

1: G := order(QD)
2: Initialise a triple Q′

D = 〈QP , P
′, ρ′〉, where P ′ = ∅ and ρ′ is an empty mapping

3: Initialise a stack S to contain all vertices r of G s.t. �r′.〈r′, r〉 ∈ G
4: while S �= ∅ do
5: Pop an element r from S
6: if Ri ∈ ρ(r) exists s.t. A ∩ Ri = ∅ then
7: Add r to P ′

8: if ρ′(r) is undefined then
9: Initialise ρ′(r) := ∅
10: end if
11: for all Rj ∈ ρ(r) do
12: if A ∩Rj = ∅ then
13: ρ′(r) = ρ′(r) ∪ {Rj}
14: end if
15: end for
16: Push all r′ such that 〈r, r′〉 ∈ G to S
17: end if
18: end while
19: return Q′

D

3.1 The Delete Algorithm

As described previously it is possible to compute a rewriting for a CQ Q and
an ontology R′ from some subset-closed labelled rewriting for Q and a superset
of R′ without relying at all on traditional rewriting algorithms. Such a detailed
algorithm is depicted in Algorithm 1.

Algorithm Delete accepts as input a labelled datalog rewriting QD for a query
Q and ontologyR and a set A ⊆ R of axioms to be removed fromR and produces
a new datalog rewriting for Q,R \ A. First, the algorithm calls function order
to sort the elements of QD and create a directed graph G (line 1) while then it
initialises a new labelled datalog rewriting Q′

D which will be the output of the
algorithm. Then G is traversed in a depth-first manner (using a stack S) and
checks if for some element r of the graph there exists a minimal subset in ρ(r)
that does not contain any element of A. This implies that r can be generated
by not using any of the removed axioms and hence should be in the output of
the algorithm. Thus, r is added to the new rewriting (line 7) and ρ′(r) is set to
all minimal subsets of r that do not contain any axiom from A (lines 11–15).
Finally, all successor nodes of r in the graph are added to the stack (line 16).

Example 5. Consider the ontology R1 of the running example (Example 1) ex-
tended by the set of axioms {α′

1, α
′
2, α

′
3}, where α′

1, α
′
2, α

′
3 are defined as follows:

α′
1 = Potrait(x)→ Painting(x)

α′
2 = Fossil(x)→ ManMadeObject(x),

α′
3 = ResinFossil(x)→ Fossil(x)
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The new ontology R′
1 = R1 ∪ {α′

1, α
′
2, α

′
3} additionally states that a potrait is a

painting, a fossil is a man made object and a resin fossil is a fossil. Consider again
the CQ of Example 1. The query Q′ = 〈Q,P ′, ρ〉, where P ′ = P ∪ {q′1, q′2, q′3}
and q′1, q

′
2, q

′
3 are defined as follows, is a labelled subset-closed datalog rewriting

of Q,R′
1:

q′1 = Q(x)← Potrait(x) (6)

q′2 = Q(x)← Fossil(x) (7)

q′3 = Q(x)← ResinFossil(x) (8)

Assume now that we remove the axiom α′
2. We will show how Algorithm 1 will

compute a rewriting for Q,R \ {α′
2}.

The algorithm would first initialise a rewriting Q′
D = 〈QP , P

′, ρ′〉, with P ′ = ∅
and ρ′ an empty mapping. Then, it would execute the function order(Q’) which
would return the directed graph G = 〈P,H〉, where

H = {〈q, q1〉, 〈q1, q′1〉, 〈q, q′2〉, 〈q′2, q′3〉, 〈r1, r2〉}

Then, initially S would contain q and r1. Suppose that q is popped. Since Rq = ∅
CQ q would be added to P ′ and ρ′(q) is set to ∅. Since 〈q, q1〉, 〈q, q′2〉 ∈ H, the
CQs q1, q

′
2 are pushed in the stack. Suppose that q1 is popped from the stack

next. Since Rq1 = {α1} the condition in line 6 is satisfied and q1 would also be
added to P ′ while the algorithm sets ρ′(q1) = {α1}. Similarly, q′1 is added to P ′

and so far we have P ′ = {q′1, q1, q}.
Now since there is no q′ s.t. 〈q′1, q′〉 ∈ H nothing is pushed in the stack. Next,

q′2 is popped from the stack. Since Rq′2 = {α′
2} the condition of line 6 is not

satisfied; therefore the algorithm continuous with the next element of the stack
which is r1. Following the same process as before the algorithm would add r1
and r2 to P ′, hence we will have P ′ = {r1, r2, q′1, q1, q}. It can be verified that
the datalog rewriting 〈Q(x), P ′〉 returned by the algorithm is a rewriting for
Q,R \ {α2}. ♦

Next we show correctness of Algorithm 1.

Theorem 1. Let R be an ontology, let Q = 〈Q,P0〉 be a CQ and let QD =
〈Q,P, ρ〉 be a labelled datalog rewriting for Q,R that is subset-closed. Let also A
be a subset of R. When applied to A and QD Algorithm 1 terminates. Let Q′ be
the tuple produced by the algorithm; then, Q′ is a rewriting for Q,R \ A that is
subset-closed.

Proof. First we show termination. Let G be the graph computed at line 1 of
Algorithm 1. First, we show that G is a directed acyclic graph. Assume that
there is a cycle in G—that is, there exist vertices r1, r2 such that r2 is reachable
from r2 and r1 from r2. By Definition 5 we have that for all R1 ∈ ρ(r1) there
exists R2 ∈ ρ(r2) s.t. R1 ⊂ R2. Let an arbitrary R1 and R2. From the latter we
also get that for this specific R2 there exists R′

1 ∈ ρ(r1) s.t. R2 ⊂ R′
1. Hence,

we have that R1 ⊂ R′
1 which contradicts the assumption that R′

1 is minimal
for r1.
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Now, since G is a directed acyclic graph and Algorithm 1 performs a standard
depth-first traversal of G the algorithm clearly terminates.

Next we show that Q′ = 〈Q,P ′〉 computed by the algorithm is a rewriting for
Q,R\A. In order to show this it suffices to show that for all instances I we have
cert(Q,R \ A ∪ I) = cert(Q′,A).

First, we show that cert(Q,R \ A ∪ I) ⊇ cert(Q′, I). By construction, a rule
r is in P ′ only if there exists R′ ∈ ρ(r) such that R′ ⊆ R \ A. This implies
that R \ A |= R′. Moreover, by definition of ρ we have that r belongs in some
rewriting for Q,R′ hence we have that R′ ∪ Q |= r. From both conditions and
monotonicity it follows that R \ A ∪ Q |= r. This holds for all members of P ′

hence we have (R\A) ∪Q |= P ′ which implies that for any I the answers of Q′

over I are also answers of Q over (R \ A) ∪ I.
Second, we show that cert(Q,R \ A ∪ I) ⊆ cert(Q′, I). Since QD = 〈Q,P 〉 is

subset-closed there exists P ′′ ⊆ P such that 〈Q,P ′′〉 is a rewriting for R \ A.
Clearly for each r ∈ P ′′ and for each R′ ∈ ρ(r) we have R′ ⊆ R \ A. Hence, it
follows easily by construction of P ′ that it contains r and thus we have P ′′ ⊆ P ′;
hence, P ′ |= P ′′ and it follows that any answer of Q over (R \ A) ∪ I is also an
answer of Q′ over I.

Finally, we show that Q′ = 〈Q,P ′〉 is subset-closed. Consider some arbitrary
subset Rs ⊆ R \ A. Clearly, Rs ⊆ R and since Q = 〈Q,P 〉 is subset-closed then
there exists some Ps ⊆ P s.t. 〈Q,Ps〉 is a rewriting for Q,Rs. By the latter we
get that for all rs ∈ Ps we have Rs ∪Q |= rs, hence there exists R′

s ∈ ρ(rs) that
is minimal for rs. It follows easily that rs ∈ P ′. Since rs is an arbitrary rule we
have that Ps ⊆ P ′. Moreover, also note that Rs is arbitrary. Hence, it follows
that Q′ is subset-closed. ��

The performance of Algorithm 1 can be further improved if one additionally
has pre-computed and stored the subsumption relations between the elements
of the input rewriting QD. This can be accomplished by executing the standard
subsumption checking algorithm over QD and creating an additional mapping
λ such that for a clause r, λ(r) contains the subsumers of r in QD. Algorithm 1
uses λ as follows:

– When it selects a new clause r in line 5 it proceeds in processing r only if
λ(r) = ∅ or none of the clauses in λ(r) is already in P ′; otherwise r and all
the clauses that are “after” r in the graph can be discarded by continuing
with the next element in the stack.

– In line 16 it checks whether for some clause rk such that 〈r, rk〉 ∈ H we have
rk ∈ λ(r). In such case, only rk is pushed to the stack.

The correctness of this optimisation is a straightforward consequence of the
correctness of subsumption for First-Order logic. More precisely, if a clause r
subsumes a clause r′, then any resolution inference using r′ will produce clauses
that are subsumed by clauses produced using resolution over r. Hence, if r is
already in P ′, then both r′ and all descendant rules are redundant and can be
discarded from the output. Note, however, that the output of this optimised
algorithm is clearly not guaranteed to be subset-closed.
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Concluding this section we comment on the problem of query answering. Note
that a subset-closed rewriting Q for a query Q0 and ontology R can typically be
much larger than an equivalent non-redundant one. Hence, for an instance I it
would not be very practical to use Q to compute the answers of Q0 overR∪I. In
such setting one should use Q to compute a rewriting for further constructions
of R while to evaluate the computed rewriting a non-redundant one should be
computed from Q. Note that given λ this is a fairly easy task.

4 Evaluation

We have developed a prototype tool for computing the rewriting of a conjunctive
query w.r.t. a contracted ontology based on Algorithm 1. Our implementation
is based on the query rewriting system ProgRes [20]—that is, we have modified
ProgRes to extract subset-closed labelled rewritings.5 Then, Algorithm 1 is exe-
cuted over the subset-closed rewriting and a set of axioms. We have developed
two versions of the algorithm; an unoptimised one, called Del, and one that uses
the optimisations outlined at the end of Section 3, called DelOpt.

We have compared our implementations against the standard (non-modified)
version of ProgRes and a recently developed highly-optimised query rewriting
system IQAROS which has been shown to outperform many existing rewriting
systems [12]. For the evaluation we used the framework proposed in [16]. It
consists of nine test ontologies together with a set of five hand-crafted test queries
for each of them. All experiments were conducted on a Intel(R) Core (TM) with
a 3.20GHz processor and 4GB of RAM.

For each test ontology and query we compute a subset-closed labelled rewrit-
ing and then execute Del and DelOpt by selecting one axiom of the input ontology.
Finally, we remove the subsumed (redundant) clauses. This process is repeated
for all axioms of the ontology. For ProgRes and IQAROS we measure the time
to compute the rewriting for the respective contracted ontology from scratch.
Table 1 shows the average computation time for each ontology and query. Note
that all four tools returned rewritings of the same size so for brevity reasons we
do not present these numbers.

Comparing Del with DelOptwe see that DelOpt is in most cases faster than Del.
This is due to the optimisations that have been implemented which prune the
search space of Algorithm 1 significantly by discarding parts of the graph G that
are redundant, e.g., because for some r in line 5 we have λ(r) 	= ∅. However,
in ontology P5X queries Q4 and Q5, Del performs better than DelOpt. We
concluded that this is due to the overhead of the implemented optimisations of
DelOpt. More precisely, DelOpt needs to perform several checks over potentially
large sets in order to decide whether a selected clause can be skipped. However,
as shown by the table this is noticeable only in these two queries.

Compared to ProgRes and IQAROS, both Del and DelOpt are faster in the vast
majority of cases. Actually, in most ontologies and queries DelOpt can compute
a new rewriting almost instantaneously in less than 10 milliseconds. A large

5 However, we plan to use other systems as well in the future.
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Table 1. Performance results for Del, DelOpt, ProgRes, and IQAROS

V S
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Del 0 0 0 0 0 0 1 7 8 88

DelOpt 0 0 0 0 0 0 0 3 3 26

ProgRes 2 2 11 36 15 1 5 23 25 157

IQAROS 1 1 2 3 3 0 1 8 6 98

P5 P5X
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Del 0 0 0 0 0 1 1 8 152 3014

DelOpt 0 0 0 0 0 0 1 8 158 3384

ProgRes 3 9 4 5 6 3 11 131 2891 123094

IQAROS 0 0 0 2 12 0 3 13 280 8431

U UX
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Del 0 0 1 9 39 0 0 3 30 95

DelOpt 0 0 0 3 10 0 0 1 13 25

ProgRes 1 4 7 73 46 1 4 30 223 141

IQAROS 1 2 4 9 10 1 2 7 13 14

A AX
Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

Del 1 0 0 1 1 1 2 15 26 -

DelOpt 0 0 0 0 1 1 2 16 17 -

ProgRes 34 9 30 122 604 117 2587 44104 41154 -

IQAROS 3 4 32 11 204 8 59 559 405 31125

difference compared to these systems can be noticed in P5X query Q5 as well
as in ontologies A and AX which are particularly hard for them. However, note
that we were not able to obtain results for ontology AX query Q5 as the ProgRes
implementation that we based Del did not terminate after 9 hours. Moreover,
Del was slower than IQAROS in ontologies U , UX . By investigating these cases
we concluded that this is due to the large size of the rewriting QD that is
given as an input to Algorithm 1 as well as that for α the removed axiom and
for most CQs q in the rewriting we have α 	∈ ρ(q); hence, the algorithm also
produces a large output. For instance, for ontology UX and query Q5 the graph
contains on average 6622 queries most of which also belong in the rewriting
Q′

D computed by Algorithm 1. But subsequently, most of them are redundant
and need to be removed. In contrast due to the optimisations implemented in
DelOpt the algorithm is able to identify on the fly many redundant CQs and
avoid traversing this large graph that is given as an input.

The goal of our second experiment was to assess and interpret the extent
to which an axiom of an ontology affects the size and computation time of a
computed rewriting for fixed queries. If by removing an axiom the size of the
rewriting or the computation time is significantly smaller than the original one
then we can conclude that its existence in the specific ontology is particularly
‘problematic’ for the rewriting systems and hence in practical settings one would
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Fig. 1. Size of rewriting for ontologies S, P5X,UX, and AX for CQs Q1–Q5 when
axiom αi is removed

probably need to revise it. Note that even if the rewriting can be computed fast
the database system would likely not be able to answer it as large rewritings
imply large complex SQL queries.

For this experiment we proceeded as follows: for each ontology and query
we removed iteratively each axiom and measured the size of the resulting UCQ
using our system Del. We did not eliminate subsumed clauses in order to have a
better picture of the number of clauses that could be produced during a rewriting
process. Then, we drew plots of rewriting size vs. removed axiom in order to see
for which and how many axioms there is a significant reduction in the size of the
rewriting. Figure 1 presents the plots for ontologies S, P5X,UX , and AX which
according to Table 1 are the ones that are the most difficult for the systems.

A first interesting observation is that indeed there are axioms that affect the
size of the rewriting significantly. For example, in AX the removal of one of
the axioms α32, α40, α72 and α78 causes the size of the rewriting to drop to less
than half. Especially, if we remove axiom α40 then the rewriting of Q4 drops
from 7000 CQs to just 528 CQs. Similar observations can be made for the other
ontologies as well. A second interesting observation is that for all ontologies the
set of axioms that demonstrates the largest reduction is the same regardless of
which query we examine. This shows that most queries are interrelated (i.e., they
mention the same predicates) and that there are usually specific points in the
ontology that are hard for a given query. A third interesting observation is that
for all ontologies and queries the number of axioms that affect the size of the
rewriting is usually small. More precisely, for each ontology there are usually less
than five axioms which if removed the size of the rewriting drops significantly.
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Subsequently, we wanted to investigate the reason why these axioms affect
the size of the rewriting. For AX one such axiom is α40 = AssistiveDevice(x)→
Device(x) (AssistiveDevice 
 Device in DL notation). By inspecting manually
the ontology we concluded that concept Device appears very high in the hi-
erarchy of this ontology,6 it has many descendant concepts (that is, there are
many unary predicates A in the ontology such that AX |= A(x) → Devise(x)),
and finally it appears in all test queries. In contrast, although axiom α47 =
VisualDisability(x)→ Disability(x) also refers to Disability that is also high in the
hierarchy it does not affect the size of the rewriting as the hierarchy below it is
rather ‘shallow’. After examining all ontologies we concluded that this is a main
reason for hardness. However, note that in many cases this is not immediately
obvious by inspecting the ontology. For example, in case an axiom involves bi-
nary predicates the interpretation is more difficult since these can participate in
axioms with unary predicates (e.g., in axioms of the form C(x)→ R(x, f(x)) or
R(x, y)→ C(y)) which are not reflected in the hierarchy.

Finally, we also wanted to check whether a large reduction in the size of a
rewriting also implies a large reduction in computation time for each of the
tested systems. Indeed the computation time decreases in a similar way as the
size of the rewriting. An interesting case is the system ProgRes and query Q5 of
ontology AX . Although the system is not able to terminate when processing the
original input ontology even after several hours, by removing axiom α40 (i.e., one
of the problematic ones) it can compute a rewriting for AX\{α40} in 16 seconds.
Hence, we see that this analysis can indeed be very helpful when designing an
ontology for practical applications.

5 Conclusions

In the current paper we present and study a novel problem in the area of query
rewriting. More precisely, we have studied query rewriting of fixed queries over
contracted ontologies—that is, over ontologies for which one or more axioms
have been removed. We presented a practical algorithm which, given a rewriting
Q′ for the input query Q and ontology O (that satisfies certain conditions)
and a set of axioms A to be removed from O it computes a rewriting Q′′ for
Q,O \ A directly from Q. We have implemented and evaluated the algorithm
over state-of-the-art rewriting systems and have obtained encouraging results.
Moreover, we have used the algorithm to analyse the role that each axiom of an
ontology plays to the ‘complexity’ of the final rewriting. More precisely, we have
measured how much the size of a rewriting is reduced if one removes an axiom
of the ontology making interesting observations.

Regarding future work we plan to investigate the same problem under ontology
extensions—that is, when new axioms are added to the ontology, further optimise
and evaluate our algorithm and also delve more into the role that each axiom
plays in the rewriting.

6 That is, there are few (if any) unary predicates A in the ontology such that AX |=
Devise(x) → A(x).
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Abstract. Linked Data principles allow for processing SPARQL queries
on-the-fly by dereferencing URIs. Link-traversal query approaches for
Linked Data have the benefit of up-to-date results and decentralised
execution, but operate only on explicit data from dereferenced docu-
ments, affecting recall. In this paper, we show how inferable knowledge—
specifically that found through owl:sameAs and RDFS reasoning—can
improve recall in this setting. We first analyse a corpus featuring 7 million
Linked Data sources and 2.1 billion quadruples: we (1) measure expected
recall by only considering dereferenceable information, (2) measure the
improvement in recall given by considering rdfs:seeAlso links as previous
proposals did. We further propose and measure the impact of addition-
ally considering (3) owl:sameAs links, and (4) applying lightweight RDFS
reasoning for finding more results, relying on static schema information.
We evaluate different configurations for live queries covering different
shapes and domains, generated from random walks over our corpus.

1 Introduction

Recently, a rich lode of RDF data has been published on the Web as Linked Data
by governments, academia, industry, communities and individuals alike [15].
Publishing Linked Data is governed by four principles, here summarising [2]:
P1 use URIs to name things, such that P2 those URIs can be dereferenced via
HTTP, such that P3 dereferencing yields useful RDF content about that which
is named, such that P4 the returned content includes links (mentions external
URIs) for further discovery. Given that the URIs used to name resources map
(through HTTP) to the physical location of structured information about them,
information published as Linked Data can be viewed as forming a scale-free,
decentralised database, consisting of millions of structured Web documents [13].
Further still, thanks to the provision of typed “RDF links” between such docu-
ments [15, § 4.5], agents can traverse and navigate the resulting Web of Data in
a manner analogous to browsing through the Web of Documents.

Tangentially, SPARQL [22]—the W3C standardised RDF query language—
provides the declarative means to formulate structured queries against these
data. Traditional approaches for posing queries against Linked Data retrieve
and cache data in local indexes; however, the dynamicity and scope of Web data

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 188–204, 2012.
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implies that results are often stale or missing. Hartig et al. [12] propose using
dereferenceable URIs in a SPARQL query—and recursively, in the intermediate
results—to automatically determine a focussed set of sources that, by Linked
Data principles, are likely to be query relevant, retrieving them live from the
Web at query-time and processing them for answers. By operating over compliant
Linked Data, their approach bypasses the need for source graphs to be explicitly
named or pre-indexed, allowing for ad hoc, live discovery. Later work [10] calls
this approach Link Traversal Based Query Execution (LTBQE). A core challenge
for LTBQE is to identify, retrieve and process a minimal number of sources that
yield maximal results, keeping response times low while maximising answers.

In this paper, we first reintroduce the LTBQE approach, and highlight the
core assumptions under which it operates well. We then show to what extent
these assumptions hold in practice—i.e., measuring how much data is attain-
able from dereferencing—through empirical analysis of a corpus of ∼7.4 m RDF
Web documents. We further propose extensions of LTBQE to (i) minimise the
number of sources accessed by being more selective about links followed; (ii)
increase recall by considering some lightweight semantics of Linked Data that
allow for (ii.a) finding additional query-relevant sources and data through con-
sideration of owl:sameAs links, and (ii.b) finding additional query-relevant data
through rule-based materialisation with respect to a lightweight subset of RDFS
(viz. ρDF [20]). We measure the expected effect on recall for each of these ex-
tensions through similar analysis of our data. Finally, we generate a diverse set
of benchmark queries from our corpus and run them live over remote sources,
comparing different LTBQE configurations and extensions.

2 Background and Related Work

Traditional approaches to query Linked Data locally replicate the content of
remote Linked Data sources and execute SPARQL queries over the local copy.
In previous years, we supported such a service powered by YARS2 [9] allowing
for querying over millions of RDF Web documents (and their entailments), but
discontinued the endpoint due to prohibitive running costs. Current centralised
SPARQL endpoints harvesting Linked Data include “FactForge” [3]1 (powered
by BigOWLIM [4]), OpenLink’s LOD cache2 and Sindice’s “Semantic Web In-
dex” [21]3 (both powered by Virtuoso [7]). The primary targets for these engines
are (i) to have a broad coverage of the Web of Data, (ii) to keep results up to
date, (iii) to have fast response times. These objectives are (partially) met using
distribution techniques, replication, optimised indexes, compression techniques,
data synchronisation, and so forth [4, 7, 9, 21]. However, maintaining a broad,
up-to-date and optimised local index is a Sisyphean task.

Federated SPARQL engines execute queries over a group of independent end-
points, dividing and routing sub-queries to individual endpoints [1,23,24]. Given
1 http://factforge.net/sparql
2 http://lod.openlinksw.com/sparql
3 http://sparql.sindice.com/

http://factforge.net/sparql
http://lod.openlinksw.com/sparql
http://sparql.sindice.com/
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the recent spread of SPARQL endpoints on the Web of Data, federation is a
timely topic and enjoys increasing attention. However, our techniques operate
over raw source documents, not SPARQL endpoints.

Recently, various authors have proposed methods for performing live query-
ing, accessing remote data at runtime. Ladwig and Tran [17] categorise these
approaches as follows: (i) top-down query evaluation, (ii) bottom-up query evalu-
ation, and (iii) mixed strategy query evaluation. Top-down evaluation determines
remote, query-relevant sources using a source-selection index : a local reposi-
tory summarising information about sources that can vary from inverted-index
structures [19, 21], to query-routing indexes [26], schema-level indexes [25], or
lightweight hash-based structures [27]. The bottom-up query evaluation strategy
involves discovering relevant sources on-the-fly during the evaluation of queries
by selectively and recursively following links starting from a “seed set” of URIs
taken from the query [12]. The third strategy uses (in a top-down fashion) some
knowledge about sources to generate the seed list, then discovering additional
relevant sources using a bottom-up approach [17]. All such approaches rely on
time-consuming remote lookups, but conversely offer fresh results.

An appealing use-case for live querying is to combine both centralised and
live querying results: to complement the fast but potentially stale results of a
centralised engine with slower but fresher live results. A number of works have
tackled this combination on a variety of levels (see, e.g., [13, 18, 28]).

3 Preliminaries

We now present some preliminaries. Before we continue, we introduce a moti-
vating example that will be used to explain the concepts involved: Figure 1 illus-
trates an RDF (sub)graph taken from four (real) interlinked sources on the Web
of Data. The graph contains structured information about one publication (dblp-
Pub:HartigBF09), “four” people (oh:olaf, cb:chris, dblpAuth:Olaf_Hartig,
dblpAuth:Christain_Bizer) and four dereferenceable documents.

Presented below Figure 1 are three example queries. For Query 1, the LTBQE
approach dereferences oh:olaf, finds cb:chris as a binding, and dereferences it
to look for depictions; however the URI does not dereference, and so the LT-
BQE resorts to following the rdfs:seeAlso link, as supported in the original pro-
posal [12]. For Query 2, oh:olaf is again dereferenced, the FOAF file of cb:chris
is found through a see-also link; however, to traverse further and find answers,
the query-processor needs to traverse the owl:sameAs link and also support the
semantics thereof. We propose and evaluate this extension later. Finally, the
FOAF vocabulary defines foaf:name to be a sub-property of rdfs:label, where
RDFS reasoning is required to answer Query 3; we also propose this extension.

We now formally define these concepts, covering preliminaries relating to RDF
and Linked Data (§ 3.1), SPARQL (§ 3.2) and RDFS & OWL (§ 3.3).

3.1 RDF and Linked Data

We first provide some notation for dealing with RDF and Linked Data principles.
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rdfs:seeAlso owl:sameAs

rdfs:label,
 foaf:name

dblpPub     =http://dblp.l3s.de/d2r/resource/publications/conf/semweb/
dblpAuth =http://dblp.l3s.de/d2r/resource/authors/
dblpAuthP. =http://dblp.l3s.de/d2r/page/authors/
oh              =http://olafhartig.de/foaf.rdf#   ohDoc..=http://olafhartig.de/foaf.rdf
cb      .... =http://www.bizer.de#              cbDoc..=http://www4.wiwiss.fu-berlin.de/bizer/foaf.rdf

cb:chris

oh:olaf

foaf:knows

"Chris Bizer"

owl:s
ameAs

dblpAuth:Christian_Bizer

foaf:img

foaf:depiction

http://....

http://....

ohDoc:

cbDoc:

dblpPub:HartigBF09

dc:creator
foaf:maker

dblpAuth:Olaf_Hartig

"Olaf Hartig"

foaf:name

dc:creator   foaf:maker dblpAuthP:Christian_Bizer

dblpAuthP:Olaf_Hartig

dereferenceable

foaf:name

Fig. 1. Snapshot of a sub-graph from the Linked Open Data Web

SELECT ?f ?img WHERE {
oh:olaf foaf:knows ?f .
?f foaf:depiction ?img }

Query 1. Friends’ images

SELECT ?f WHERE {
oh:olaf foaf:knows ?f .
?pub dc:creator ?f, oh:olaf }

Query 2. Coauthors

SELECT ?f ?l WHERE {
oh:olaf foaf:knows ?f .
?f rdfs:label ?l }

Query 3. Friends’ labels

Definition 1 (RDF Term, Triple and Graph).
The set of RDF terms consists of the set of URIs U, the set of blank-nodes
B and the set of literals L. An RDF triple t := (s, p, o) is an element of the
set G := UB × U × UBL (where, e.g., UB is a shortcut for set-union). A set
of RDF triples G ⊂ G is called an RDF graph. We use the functions subj(G),
pred(G), obj(G), terms(G), to denote the set of all terms projected from the resp.
triple position (terms gives all positions).

Definition 2 (Data Source and Linked Dataset).
We define the http-download function get : U → 2G as the mapping from URIs
to RDF graphs provided by means of HTTP lookups that directly return status
code 200 OK and data in a suitable RDF format. We define the set of (RDF)
data sources S ⊂ U as the set of URIs S := {s ∈ U : get(s) �= ∅}. We define a
Linked Dataset as Γ ⊂ get; i.e., a finite set of pairs (u, get(u)), and merge(Γ ) :=⊎

(u,G)∈Γ G as the RDF merge of graphs in Γ , which preserves the uniqueness
of blank-node labels across graphs [14].

Definition 3 (Dereferencing RDF). A URI may issue a HTTP redirect to
another URI with a 30x response code; we denote this function as redir : U →
U, which strips the fragment identifier of a URI (if present) and which would
(thereafter) map a URI to itself in the case of failure (e.g., where no redirect
exists). We denote the fixpoint of redir as redirs, denoting traversal of a number
of redirects (a limit may be imposed to avoid cycles). We denote dereferencing by
the composition deref := get◦redirs, which maps a URI to an RDF graph retrieved
with status code 200 OK after following redirects, or which maps a URI to the
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empty set in the case of failure. We denote the set of dereferenceable URIs as
D := {d ∈ U : deref(d) �= ∅}; note that S ⊂ D and we place no expectations on
what deref(d) returns (as long as it returns some valid RDF).

Taking Figure 1, e.g., redir(oh:olaf) = ohDoc:, deref(oh:olaf) = deref(ohDoc:) =
{(oh:olaf, foaf:name, "Olaf Hartig") . . .} and deref(cb:chris) = ∅.

3.2 SPARQL

We now introduce some concepts relating to SPARQL [22]. Note that herein, we
focus on evaluating simple, conjunctive, basic graph patterns (BGPs) .

Definition 4 (Variables, Triple Patterns and Queries (BGPs)).
Let V be the set of variables ranging over UBL. A triple pattern tp := (s, p, o)
is an element of the set Q := VUL × VU × VUL. For simplicity, we do not
consider blank-nodes in triple patterns (they could be replaced with variables). A
finite (herein, non-empty) set of triple patterns Q ⊂ Q is called a Basic Graph
Pattern, or herein, simply a query. We use vars(Q) ⊂ V to denote the set of
variables in Q. Finally, we may overload graph notation where, e.g., terms(Q)
returns all elements of VUL in Q.

Definition 5 (SPARQL solutions).
Call the partial function μ : dom(μ) ∪ UL → UBL a solution mapping, which
binds variables in dom(μ) ⊂ V to UBL and which is the identify function for
UL. Overloading notation, let μ : Q → G and μ : 2Q → 2G also resp. denote a
solution mapping from triple patterns to RDF triples, and basic graph patterns to
RDF graphs such that μ(tp) := (μ(s), μ(p), μ(o)) and μ(Q) := {μ(tp) | tp ∈ Q}.
Now, we define the set of solutions for a query Q over a Linked Dataset Γ as
Ω(Γ, Q) := {μ | μ(Q) ⊆ merge(Γ ) ∧ dom(μ) = vars(Q)}. Note that herein, and
unlike SPARQL, solutions are given as sets (not multi-sets), implying a default
DISTINCT semantics for queries.

Taking an example, if we let Γ be Figure 1 and Q be Query 3, then Ω(Γ, Q) =
{(?f, cb:chris), (?l, "Chris Bizer")}.

3.3 RDFS and OWL

We define some preliminaries relating to RDFS and OWL. In particular, we sup-
port a miniature subset of OWL 2 RL/RDF rules for supporting owl:sameAs
entailments, given in Table 1. Our RDFS rules are the subset of ρDF rules pro-
posed by Muñoz et al. [20], which deal with instance data entailments.4 Our
subset of OWL rules are specifically chosen to support the semantics of equal-
ity (particularly replacement) for owl:sameAs. Note that these rules support
the RDFS/OWL features originally recommended for use by Bizer et al. when
publishing Linked Data [5, §4.2, §6]. The rules we consider are given in Table 1.
4 We drop implicit typing [20] rules but allow generalised RDF in interim inferences.
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Table 1. ρDF and owl:sameAs rules with OWL 2 RL/RDF naming

ID Body Head
prp-spo1 ?p1 rdfs:subPropertyOf ?p2 . ?s ?p1 ?o . ?s ?p2 ?o .
prp-dom ?p rdfs:domain ?c . ?s ?p ?o . ?p a ?c .
prp-rng ?p rdfs:range ?c . ?s ?p ?o . ?o a ?c .
cax-sco ?c1 rdfs:subClassOf ?c2 . ?s a ?c1 . ?s a ?c2 .
eq-sym ?x owl:sameAs ?y . ?y owl:sameAs ?x .
eq-trans ?x owl:sameAs ?y . ?y owl:sameAs ?z . ?x owl:sameAs ?z .
eq-rep-s ?s owl:sameAs ?s′ . ?s ?p ?o . ?s′ ?p ?o .
eq-rep-p ?p owl:sameAs ?p′ . ?s ?p ?o . ?s ?p′ ?o .
eq-rep-o ?o owl:sameAs ?o′ . ?s ?p ?o . ?s ?p ?o′ .

Definition 6 (Entailment Rules and Closure). Given a ruleset R and
a Linked Dataset Γ , we denote by RΓ := Γ ∪ (υ, G) the closure of Γ wrt. R,
where (abusing notation) G contains the materialised inferences from recursively
applying the rules in R over merge(Γ ) � G up to a fixpoint, and where υ is a
built-in URI for naming the materialised graph.

4 Link Traversal Based Query Execution

We first introduce the Link Traversal Based Query Execution (LTBQE) ap-
proach introduced by Hartig et al. [12] (§ 4.1), and then look at extensions of
the approach (§ 4.2). Our formalisms are tailored for the purpose of this work;
a comprehensive study of semantics and computability is presented in [11].

4.1 Baseline LTBQE

Definition 7 (LTBQE Query Relevant Sources and Answers). Define
derefs : 2U → U× 2G; U → {(redirs(u), deref(u)) | u ∈ U)} as the mapping from
a set of URIs to the Linked Dataset it represents by dereferencing all URIs.
Given a BGP query Q as before, let UQ := terms(Q) ∩ U denote the set of
URIs appearing in Q. Let ΓQ

0 := derefs(UQ) represent the dataset retrieved by
dereferencing all query URIs.5 Next let uris(μ) := {u ∈ U | ∃v s.t. (v, u) ∈ μ}
denote the set of URIs in a solution mapping μ, and let Ui := {u ∈ uris(μ) |
∃μ, ∃tp ∈ Q s.t. μ({tp}) ⊆ merge(ΓQ

i−1)} for i ∈ N be the set of URIs that
appear as a solution mapping for a triple pattern in Q for the dataset ΓQ

i−1, and
let ΓQ

i := derefs(Ui) ∪ ΓQ
0 .6 The set of LTBQE query relevant sources for Q

is given as the least n such that ΓQ
n = ΓQ

n+1, denoted simply ΓQ. The set of
LTBQE query answers for Q is given as Ω(ΓQ, Q), or simply ΩQ.

With regards to completeness, let get denote the dataset (theoretically) repre-
sented by the entire Web of Data (note: get ⊂ U× 2G). One may then ask when
ΩQ is complete with respect to get. A trivial sufficient condition for completeness
5 One could consider Γ Q

0 as also containing “seed” data [12].
6 Or, equivalently (for static data) Γ Q

i := Γ Q
i−1 ∪ derefs(Ui \ Ui−1).
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SELECT * WHERE { cb:chris ?p ?o . }

Query 4. Not dereferenceable

SELECT ?olaf ?name WHERE {
oh:olaf foaf:name ?name . ?olaf foaf:name ?name . }

Query 5. Connected by literal

SELECT ?s WHERE { ?s owl:sameAs dblpAuth:Olaf_Hartig . }

Query 6. Not in dereferenceable document

SELECT ?paper WHERE {
cb:chris owl:sameAs ?dblpC .
oh:olaf owl:sameAs ?dblpO .
?dblpC foaf:maker ?paper .
?dblpO foaf:maker ?paper .

}

Query 7. Query answer
only reachable from the
seed URI oh:olaf

is given by ΓQ = get; such a case is, however, infeasible. Otherwise the com-
pleteness condition is rather simple and entirely unverifiable: ΓQ must contain
all of the data relevant on the Web to answer the query. Of course, verifying that
the condition does not hold is significantly easier in many cases. The implica-
tions are that: first, given a query with no dereferenceable URIs, LTBQE cannot
return results (as per Query 4 where cb:chris does not dereference). Second,
given a query with multiple URIs, different reachability conditions can occur
from different starting points (as per Query 7 where the answer is only reach-
able starting from ol:olaf); thus, all query URIs must be initially retrieved [12].
Third, answers “connected” by literals or involving blank-nodes in unreachable
documents will often affect completeness (as per Query 5 where the answer is
connected by the literal "Olaf Hartig"’, here not yet considering owl:sameAs).
Fourth, in the general case, reachability is heavily dependent on the amount of
data returned by the deref(u) function, which would ideally return all triples
mentioning u on the Web of Data (e.g., in Query 6, the owl:sameAs inlinks for
dblpAuth:Olaf_Hartig are not in its dereferenced document and will not be
found). The fourth assumption is clearly idealised; hence, in Section 5 we will
empirically analyse how much the assumption holds in practice, giving insights
into the recall of LTBQE. First, however, we propose our reasoning extensions.

4.2 Extending LTBQE

1. Following rdfs:seeAlso: The first extension to LTBQE is proposed by Hartig
et al., and uses rdfs:seeAlso links to extend the set of query sources. Adapting
Definition 7, let Γ̄Q

0 := ΓQ
0 and let:

Ūi := Ui ∪ {u ∈ U | ∃u′ ∈ Ui s.t. (u′, rdfs:seeAlso, u) ∈ merge(Γ̄Q
i−1)} ,

let Γ̄Q
i := derefs(Ūi)∪ΓQ

0 , and finally let Γ̄Q be the fixpoint as before and let Ω̄Q

be the respective solutions. This extends LTBQE to find more sources through
rdfs:seeAlso links. An example for this has been presented in Query 1.

2. Following and Reasoning Over owl:sameAs: We propose an extension of LT-
BQE to consider owl:sameAs inferences. Let R denote the set of rules of the
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form eq-* in Table 1. Let now eΓQ
0 := RΓQ

0 (recalling RΓ from Def. 6 and ΓQ
0

from Def. 7), and let:

U ′
i := {u ∈ uris(μ) | ∃μ, ∃tp ∈ Q s.t. μ({tp}) ⊆ merge(eΓQ

i−1)} ,

eUi := {u ∈ U | ∃u′ ∈ U ′
i s.t. (u′, owl:sameAs, u) ∈ merge(eΓQ

i−1)} ,

where eΓQ
i := Rderefs(eUi)∪eΓQ

0 , and finally let eΓQ be the fixpoint as before and
let eΩQ be the respective solutions. Here, owl:sameAs links are used to expand
the set of query relevant sources, and owl:sameAs rules are used to materialise
inferable knowledge given by the OWL semantics, potentially generating addi-
tional answers. An example for this has been presented in Query 2.

3. Reasoning for ρDF: We propose a final novel extension of LTBQE to consider
a subset of RDFS reasoning as per the prp-* and cax-sco rules in Table 1, which
we again denote here by R. We currently consider a static set of schema data
representing vocabularies on the Web, which we denote by Γ voc. This serves
as input into the LTBQE algorithm. In future work, we plan to investigate
dereferencing schema knowledge live from the Web of Data.

Now, adapting Definition 7, let ρΓQ
0 := Γ voc ∪ RΓQ

0 and let:

ρUi := {u ∈ uris(μ) | ∃μ, ∃tp ∈ Q s.t. μ({tp}) ⊆ merge(ρΓ
Q
i−1)} ,

whereρΓQ
i := Rderefs(ρUi)∪ρΓQ

0 , and finally letρΓQ be the fixpoint as before and
let ρΩQ be the respective solutions. Here, RDFS rules and background schema
knowledge (Γ voc) are used to materialise inferable knowledge, potentially gener-
ating additional answers (and thus possibly finding new query relevant sources).
An example for this has been presented in Query 3.

Combined. Of course, the above methods can be combined in a natural fashion,
where, e.g., for combining all extensions, the query relevant sources are denoted
e
ρΓ̄

Q and the answers by e
ρΩ̄

Q.

5 Empirical Study

In Section 4.1, we mentioned that the recall of the LTBQE approach is—in the
general case—dependent on the dereferenceability of data. Along those lines,
we now present the results of our empirical study of a Linked Data corpus. We
survey the ratio of all triples mentioning a URI in our corpus against those re-
turned in the dereferenceable document of that URI; we do so for different triple
positions. We also look at the comparative recall of data considering (1) explicit,
dereferenceable information; (2) including rdfs:seeAlso links [12]; (3) including
owl:sameAs links and inferable knowledge; (4) including RDFS reasoning.
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Empirical Corpus. We use the Billion Triple Challenge 2011 dataset for our sur-
vey, which was crawled in mid-May 2011 from 7.4 million RDF/XML documents
spanning 791 pay-level domains (data providers). The resulting corpus contains
2.15 g quadruples (1.97 g unique triples) mentioning 538 m RDF terms, of which
52 m (10%) are Literals, 382 m (71%) are blank nodes, and 103 m (19%) are
URIs. We denote the corpus as Γ∼. It’s important to note that this corpus is
only a sample of the Web of Data; in particular, we only use the information
about HTTP lookups provided by the dataset. We found that a total of 25.4 m
lookups were performed (excluding robots.txt). As such, we only have knowl-
edge of redir and deref functions for 18.65 m URIs; all of these URIs are HTTP
and do not have non-RDF file-extensions. We denote these URIs by U∼. Of the
18.65 m, 8.37 m (44.8%) dereferenced to RDF; we denote these by D∼. Further
note that, wrt. the Web of Data, our sample recall measures specify an upper
bound.

RDFS Schema. From our corpus, we extract a static set of schema data for the
RDFS reasoning. As argued in [6], schema data on the Web is often noisy, where
third-party publishers “redefine” popular terms outside of their namespace; for
example, one document defines nine properties as the domain of rdf:type, which
would have a drastic effect on our reasoning.7 Thus, we perform authoritative rea-
soning, which conservatively discards certain third-party schema axioms (cf. [6]).
Our schema data only considers triples of the following form:

(s, rdfs:subPropertyOf, o) ∈ deref(s), (s,rdfs:subClassOf, o) ∈ deref(s)
(s, rdfs : domain, o) ∈ deref(s), (s, rdfs : range, o) ∈ deref(s)

We extracted a total of 397 thousand such authoritative RDFS triples from
98 PLDs as follows: 334 thousand rdfs:subClassOf (82 PLDs); 11 thousand
rdfs:subPropertyOf (67 PLDs); 26 thousand rdfs:domain (79 PLDs); and 26
thousand rdfs:range (77 PLDs).

5.1 Recall for Baseline

We first measure the average dereferenceability of information in our sample.
For a dereferenceable uri d, we compute the sample dereferencing recall sdr(d)
as the ratio of the number of unique triples mentioning d in deref(d) vs. unique
triples mentioning d across the entire sample. We denote by sdr∼ the average
sdr(d) for all d ∈ D∼. We also analyse the sdr(d) restricting the specific triple
positions where d appears. We ignore d in the average if it does not appear in the
relevant triple position in the sample. Table 2 presents the results for different
triple positions. Column type-object considers d only when appearing as object
in a triple with the predicate rdf:type (a class position).

The analysis provides some interesting initial insights into the LTBQE ap-
proach. Given a HTTP URI without a common non-RDF extension, we have a

7 viz. http://www.eiao.net/rdf/1.0

http://www.eiao.net/rdf/1.0
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Table 2. Dereferenceability results for different triple positions

Measure any subject predicate object type-
object

|U∼| 18.65 m 9.55 m 47.67 k 9.73 m 213.38 k
|D∼| 8.37 m 8.09 m 745 4.5 m 21.1 k
|U∼|/|D∼| 0.44 0.85 0.01 0.46 0.09

average sdr∼ 0.51 0.95 0.00007 0.438 0.002
std. dev. ± sdr∼ 0.5 ±0.195 ±0.008 ±0.458 ±0.05

44.8% success ratio to receive RDF/XML content regardless of the triple posi-
tion. If such a URI dereferences to RDF, we receive on average (at most) 51%
of all triples in which it appears on the Web. Given a pattern with a URI in the
subject position, the dereferenceable ratio increases to 95%; for objects, the ratio
drops to 43.8%; LTBQE would perform poorly for triple patterns with (only)
a URI in the predicate position (0.007%); etc. High standard deviations imply
that the dereferenceability is often “all or nothing”. In summary, LTBQE per-
forms well when URIs appear as the subject of triple patterns, moderately when
URIs appear in the object, but will perform poorly when URIs appear in the
predicate or object of an rdf:type triple. In practice, documents dereferenced by
property and class terms do not host a high percentage of their extension.

5.2 Recall for Extensions

We now measure the sdr increase given by extending LTBQE to also consider
rdfs:seeAlso and owl:sameAs links, as well as inferable knowledge given by
owl:sameAs and RDFS reasoning.

Benefit of Following rdfs:seeAlso Links. We measured the percentage of deref-
erenceable URIs in D∼ which have at least one rdfs:seeAlso link in their derefer-
enced document to be 2% (201 k URIs). Where such links exist, following them
increases the amount of unique triples by a factor of 1.006× vs. triples in the
dereferenced document alone. We conclude that, in the general case, considering
rdfs:seeAlso triples will only marginally affect the recall increase of LTBQE.

Benefit of Following owl:sameAs Links & inferable Knowledge. We measured the
percentage of dereferenceable URIs in D∼ which have at least one owl:sameAs
link in their dereferenced document to be 16% for our sample. Where such links
exist, following them and applying the eq-* entailment rules over the result-
ing information increases the amount of unique triples by a factor of 2.5× vs.
the unique (explicit) triples in the dereferenced document alone. We conclude
that, in the general case, owl:sameAs links are only sometimes found for def-
erenceable URIs, but where available, following them and applying entailment
generates significantly more data for generating answers (albeit potentially pro-
ducing “duplicate” answers under different URI aliases).
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Benefit of Including ρDF Inferable Knowledge. We measured the percentage
of dereferenceable URIs in D∼ whose dereferenced documents given non-empty
unique entailments through authoritative ρDF reasoning with respect to Γ voc as
81%. Where such entailments are non-empty, they increase the amount of unique
triples by a factor of 1.78× vs. the unique (explicit) triples in the dereferenced
document. We conclude that such reasoning often increases the amount of data
available for LTBQE query answering, and by a significant amount.

6 Evaluation

In order to test our methods for queries covering a diverse set of sources and
query types, we evaluate our proposed LTBQE extensions for a set of pseudo-
randomly generated queries extracted from our Linked Data corpus. These
queries are then applied live to determine real-world behaviour. Our aim is to
compare and contrast different setups and assess our proposed extensions in a
realistic scenario. To the best of our knowledge, we are the first work to evaluate
the original LTBQE proposal in a live and diverse environment.

Implementation: We have (re-)implemented Hartig et al.’s iterator-based al-
gorithm for LTBQE (which was shown to be complete) [12]. We use ARQ to
parse and process input SPARQL queries.8 We further use the LDSpider crawl-
ing framework for performing live Linked Data lookups; LDSpider respects the
robots.txt policy, blacklists typical non-RDF URI patterns (e.g., .jpeg) and en-
forces a half-second delay between two consequential lookups for URIs hosted
at the same domain.9 We use the SAOR engine to support the aforementioned
rule-based reasoning extensions [6]. Note that we use the same input RDFS data
as used in the empirical study of the previous section.

Optimised LTBQE: Inspired by our empirical analysis, we also implement and
evaluate a variation of the LTBQE approach which does not dereference URIs
appearing only in the predicate position of a (possibly partially bound) triple-
pattern. Further, we add another optimisation to avoid dereferencing URIs that
are only bound by non-distinguished variables not appearing elsewhere in the
query (i.e., variables whose value is not used elsewhere). Since these optimisation
reduce the number of query-relevant sources, they may in theory lead to less
results, though in practice (and as per our empirical survey), we would expect
a minimal change in recall over the baseline.

Evaluation Queries: We benchmark queries of elemental graph shapes, viz., en-
tity, star and path queries.

Entity Queries. (entity-[s|o|so]) ask for all available triples for an entity. We
generate three types of entity queries, asking for triples where a URI appears as
8 http://jena.sourceforge.net/ARQ/
9 http://code.google.com/p/ldspider/

http://jena.sourceforge.net/ARQ/
http://code.google.com/p/ldspider/
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the subject (entity-s); as the object (entity-o); as the subject and object (entity-
so). An example for entity-so would be {<d> ?p1 ?o . ?s ?p2 <d> .}. These type
of queries are very common in Linked Data browsers or display interfaces.

Star Queries. (star-[s3|o3|s1-o1|s2-o1|s1-o2 ]) contain three acyclic triple pat-
terns which share exactly one URI (called the centre node) where predicate terms
are constant. We generate four variations of such queries, differing in the number
of triple patterns where the centre node appears as the subject (s) or object (o).
An example for star-s2-o1 would be {<d> foaf:knows ?o ; foaf:name ?o1 . ?o3
dc:creator <d> .}

Path Queries. ([s|o]-path-[2|3 ]) consist of 2 or 3 triple patterns that form a path
where precisely two triple pattern share the same variable. Exactly one triple
pattern has a URI at either the subject or object position and all predicate terms
are constant. We generate four path sub-types: path shaped queries of length 2
and 3 where either the subject or object of one triple pattern is a constant. An
example for s-path-2 is Query 1.

Query Generation: In total, we generate 100 SELECT DISTINCT queries for
each of the above 11 query shapes using random walks in our corpus. To help
ensure that queries return non-empty results (in case there are no HTTP connec-
tion errors or time outs) we consider dereferenceable information for the query
generation which (1) picks randomly a pay-level-domain available in the deref-
erenceable URIs D∼, (2) selects randomly a URI from D∼ for that PLD and (3)
generates appropriate triple patterns from the dereferenceable document of the
selected URI. For path shaped queries, when performing steps (2) and (3), the
URI for the next triple pattern is selected out of the URIs contained for the previ-
ous triple pattern, as per a random walk of dereferenceable URIs. Distinguished
variables are picked by randomly choosing a single variable as distinguished and
make further variables distinguished with a probability of 0.5.

Benchmark Stable Queries: We observed that the results for the same query
varied over different runs and thus introduce the notion of “benchmark stable
queries” which are queries for which the response codes for the baseline URIs
are the same across all setups runs. The variation of results for different runs is
caused by remote server or connection failures while dereferencing content, e.g.,
we sometimes encountered 503 - Service unavailable response codes possibly due
to temporarily high loads on remote servers. Only considering stable queries im-
proves the comparability of results across different setups. Table 3 shows that in
average ∼94% (1,029

1,100 ) of the queries are stable from which ∼38% ( 389
1,029 ) returned

empty results. We inspected the causes for the empty result set for all “stable”
queries (right side of Table 3). The typewritten numbers correspond to HTTP
server response codes.10 The column “mixed ” indicates that there are at least
two URIs with different response codes and the column “data” indicates that the
10 Aside from common response codes, a 498 code denotes robots.txt forbidden access,

499 denotes that a server returned a mime type different to application/rdf+xml,
602 denotes socket timeouts and 603 denotes unknown host exceptions.
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Table 3. Statistics about stability of queries

Breakdown (1,100) Causes for empty results (389)

stable (empty) unstable 403 404 498 499 500 502 602 603 mixed data

1,029 (389) 71 15 110 15 38 18 2 6 85 7 93
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Fig. 2. Average time and recall increase relative to baseline for entity queries

missing results are not HTTP-related (e.g., the data changed). The main rea-
sons for empty “stable” queries are (i) either query relevant documents are not
available any more (404), (ii) the IP address of a host could not be determined
(indicated by 603) or (iii) the underlying data changed (last column).

Results per Query Class: We execute each query with six different setups: legacy
denotes the original LTBQE approach; base denotes optimised LTBQE; select
denotes seeAlso, sameAs, and ρDF which all extend base; comb denotes all
extensions of base applied together. We discuss the results for each query-type,
presented as bar plots showing the average recall and time increase per setup vs.
base (represented as the x-axis). For ρDF, we do not include the time needed
to load schema data, which can be done prior to query time.

Entity Queries. Figure 2a shows that the original source selection approach
requires between 60% to 110% additional time compared to our source selection
optimisation and increases the recall by 3%, shown in Figure 2b. All such figures
include the absolute baseline results (represented by the x-axis) in the legend. Our
extensions increase the recall for all entity queries with a maximum increase of
200% for entity-so queries and the combination of all extensions. To enable such
increases in recall, the query time increases by up to 55%.

Star Queries. The results for the star shaped queries, presented in Figure 3a
and Figure 3b show similarities with the observations for the entity queries.
The query times increase without an improvement of the recall if we dereference
all appearing URIs and our extensions improve the recall by a maximum of
140% for 3 out of the 4 query classes. It is worth noting the small volume of
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Fig. 4. Average time and recall increase relative to baseline for path queries

results for the baseline, which may skew average relative increases. Further, we
observed some extreme outliers for the query class star-1-2 due to one query
which took around 1 hour to terminate because of a document download from
the ecowlim.tfri.gov.tw provider (which did not even contribute to the results).

Path Queries. The results for the path shaped queries show an average time
increase of up to 420% vs. legacy compared to our optimised selection for the
two o-path query classes in Figure 4a. In contrast to the previous query classes,
we see in Figure 4b that the seeAlso extension improves the recall by over 50%
for the s-path-3 query class, which is the highest measured improvement for
that extension across all query classes. In addition, we observe a recall increase
of at least 50% for s-path-* queries with the ρDF and comb setups, whereas we
measured only a marginal increase for o-path-* queries.

7 Conclusion

Proposed link-traversal query approaches for Linked Data have the benefit of up-
to-date results and decentralised execution, but operate over incomplete knowl-
edge available in dereferenced documents, thus affecting recall for results.

ecowlim.tfri.gov.tw
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We empirically study this issue for a large sampling of the Web of Data,
consisting of 7.4 million Linked Data documents and 2.1 billion quadruples. We
further propose to improve recall by considering inferable knowledge, specifically
that found through owl:sameAs and RDFS reasoning. We again validate our
extensions by analysis of our corpus, where we show increases in data available
to the LTBQE approach (1) of 1.006× considering rdfs:seeAlso information as
proposed in [12], (2) of 2.5× considering owl:sameAs and (3) of 1.8× if we
apply ρDF reasoning using static schema information. We generate and run
queries (of eleven different shapes) live over the Web of Data, comparing six
different setups, demonstrating the degree to which our extensions find additional
results at the cost of accessing more sources and thus taking longer. In addition,
our comprehensive experiment also highlights the problem of unreliable server
behaviour, which affects query processing and is symptomised by outliers in
results and unavailability of data for certain queries.

Future Work. We plan to extend our entailment rules to cover more of OWL
2 RL/RDF and to investigate changes in recall when considering dynamically
dereferenced schema data vs. static schema data. We also plan to use owl:sameAs
optimisations for canonicalising equivalent URIs as opposed to materialising all
equivalent data. Another open issue relates to that of data quality, where, e.g.,
Halpin et al. [8] suggest that owl:sameAs may often be unreliable; we have
experiences of dealing with data-quality issues for reasoning in other works [16].
From such work, we herein borrowed the notion of authoritative RDFS reasoning;
further measures to make results more “robust” are a subject for future work.

Given the relatively slow response times from the LTBQE approach (where
1% of all queries returned in less than a second, whereas 67% of the queries
executed in less than 10 seconds), our ultimate goal is to use such live querying
techniques, in a best-effort manner, to compliment centralised query services
with fresh answers, particularly for query patterns that are determined to be
dynamic and for which data should be retrieved directly from source. In this
scenario, our optimisations should help to get faster live-query answers and our
extensions to find further answers. In general, combining different Linked Data
querying techniques to find a sweet-spot between fast response times and a high
recall of (fresh) answers is an open question, the solution to which is likely to
be user- and query-specific. Along such lines, in this paper we have formalised,
proposed and evaluated the feasibility in a real-world setting of several novel live
querying techniques, a selection of which also incorporate lightweight reasoning.
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1 Introduction

In the area of data and knowledge management, ontology-based query answering (OB
QA) is becoming more and more a relevant task [2,3]. In fact, many organizations and
autonomous contributors are generating the so called “Web of Data”, making publicly
available Semantic Web repositories built either from scratch or by translation of ex-
isting data in ontological form. Contemporarily, database technology providers – such
as Oracle, Ontotext, and Ontoprise – have started to build ontological reasoning mod-
ules on top of their existing software. Ontological reasoning is also the goal of several
research-based systems, such as Quest, Owlgres, Owlim, and QuOnto, just to cite a few.

A main stream of research concerning OBQA aims at extending the expressiveness
of tractable ontological theories (see, e.g., [5]). The results obtained on data complexity
for query answering over the most significant fragments of the Ontology Web Lan-
guage (OWL) revealed the practical unfeasibility of handling large amounts of data.
To overcome this limitation, several restrictions were imposed on ontology languages,
originating the so-called lightweight ontologies. These include, e.g., the DL-Lite fam-
ily and the EL family, which ensure cheap (i.e., from LOGSPACE up to polynomial)
data-complexity bounds for query answering.

Several approaches to OBQA rely on query reformulation, where the original query
posed on the ontology is rewritten into an equivalent set of “cheap” queries that can be
evaluated directly on the ontology instances. Many query rewriters exist, but they often
miss the evaluation layer. In this paper we do not focus on a specific language/profile,
but we provide a framework for evaluating queries over ontologies that can be Datalog-
rewritable (see [4] for an overview). This setting is particularly interesting since the
evaluation of the corresponding queries can be delegated to Datalog evaluators, which
may possibly rely on DBMSs [8]. A further issue in this context is that existing ap-
proaches do not explicitly take into account distribution of data on different sites. Ac-
tually, the basic problem of linking data coming from different sources to a formal
conceptualization of the domain of interest, has been addressed in [6], where data stored
in data management systems like relational databases is linked to ontology theories by
the notion of virtual Abox. However, [6] does not specifically deal with the efficient
evaluation of queries on distributed data. A naı̈ve solution to the distribution problem
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clearly includes copying all distributed data on a centralized ontology storehouse; how-
ever, this kind of solution is clearly not well suited when the ontologies are numerous,
large, frequently changing, or when the applications need to operate on “fresh” data.

From the considerations above it comes out that the capability to carry out efficient
distributed OBQA is a crucial task. This paper provides a contribution in this setting.
Specifically, it deals with the efficient management of (Datalog-rewritable) queries
posed on light ontologies possibly distributed over physically-different sites. In par-
ticular, we propose a framework for the efficient distributed evaluation of ontological
queries via Datalog programs, where we adopt an evaluation technique based on struc-
tural query-decomposition methods. Moreover, we report on the results of some pre-
liminary experiments in the context of OBQA, based on a well-established ontology
benchmark, which demonstrates the applicability of our approach.

2 Query Evaluation Framework for Distributed Ontology-Based
Data Access

The notion of Ontology-Based Data Access (OBDA) was originally introduced in [6],
Here we elaborate on it to allow for querying distributed data in a Datalog-based envi-
ronment. In the original framework, a set of pre-existing data sources are assumed to
form the Data Layer of an information system. The conceptual view of data contained
in the system is expressed in terms of an ontology which is linked to the Data Layer
by a set of mapping assertions (virtual ABox). In complex scenarios, it is natural to
assume that this data is natively distributed among a set of autonomous and indepen-
dent data sources, and that these do not necessarily reside on the same host computer.
In the framework of [6] each mapping assertion is intended to be an SQL Query over
a database DB. Here we extend the setting by allowing each mapping assertion to be
expressed as a generic set of Datalog rules (possibly with stratified negation and recur-
sion), where each rule may refer to relations possibly distributed on a set of relational
databases DB1, . . . , DBn (n > 0).

In this framework, the ontology not only models the domain of interest, but also
represents a global access point for clients to interact with the distributed system. In
our approach, we assume that the ontology ABox is stored in different databases, and
query rewritings are Datalog programs which include the mappings for virtual ABox.
Moreover, each DBMS involved by the query rewriting can be used both as a source
site of data and as a server site for computation. Clearly, if some site limits its visibility
only to data accesses, it will not be considered among the possible sites for computation
in the optimization process.

An efficient query evaluation layer can, thus, be obtained by developing a distributed
Datalog evaluator. To this end, we employ an evaluator which is able to deal with
DBMSs. This is repeatedly invoked by an external evaluation manager which, in turn,
optimizes both the flow of data among available sites and the execution of rules.

The distributed Datalog evaluator that we propose to exploit was preliminarily intro-
duced in [1] and is based on the DLVDB system [8]. As far as the evaluation manager
is concerned, it takes the input program and first applies query optimization methods.
Then, it determines the parallel execution workflow of rules, according to the partial or-
der induced by rule-head dependencies. Finally, it optimizes the distributed evaluation
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Table 1. Query evaluation runtimes in seconds. (N) Naı̈ve – (D) Distributed.

Presto (N) Presto (D) Requiem (N) Requiem (D)
Query-1 687.5 45.1 618.3 43.6
Query-2 469.4 86.3 447.4 179.1
Query-3 265.0 1.4 284.9 2.3
Query-4 348.1 3.3 324.6 2.8

of single rules by structural decomposition methods. As a part of the parallel execu-
tion workflow the system chooses where to store partial results of each rule evaluation.
These choices, in turn, impact on the optimization of the rules depending on these in-
termediate results. Several techniques could be adopted for this task. One possibility is
to chose the rule output sites globally, over all the program rules. While this approach
could optimize data transfers for the evaluation of several rules, its main drawback is
that it requires a quite precise estimation of the cardinality of intermediate relations.
The latter is a difficult task (especially for recursive rules), and a wrong estimation at
this stage can compromise the entire optimization process. As a consequence, in our ap-
proach, we decided to dynamically choose the rule output site on a per-rule basis, when
the evaluation of a rule can be actually fired. In more detail, the evaluation of a Datalog
program in our approach is done by combining (i) rule unfolding with three methods
for parallel/distributed evaluation of rules based on structural properties, i.e., (ii) inter-
component and (iii) intra-component parallelism, and (iv) optimized distributed evalu-
ation of (single) rules [1] which is based on Weighted Hypertree-Decomposition [7].

3 Experiments

In order to verify the applicability of the proposed approach, we generated a proof-of-
concept instance of the framework presented in Section 2. As far as the data layer is con-
cerned, we considered a variant of the well assessed ontology benchmark LUBM (see
http://swat.cse.lehigh.edu/projects/lubm/) obtained as follows: A
first copy obtained with the Univ-Bench data generator tool (UBA) has been replicated
twice by randomly changing a fixed percentage of symbols (30% in our tests). The
resulting set of three ontologies shares the same TBox, and has partially overlapping
ABoxes. The three ontologies (for a total amount of about 20Gb), have been distributed
over three different servers on our network, and have been linked with a set of virtual
ABoxes, one for each concept and each role in the TBox.

For instance, given a role r(X,Y ) and its instances r@s1(X,Y ), r@s2(X,Y ),
r@s3(X,Y ) on the three servers, the adopted virtual mapping had the form r(X,Y ) :
−r@s1(X,Y ), r@s2(K,Y ), r@s3(Z, Y ) (analogous rules have been expressed for
entities).

As for the Ontology and Query Rewriting layer, we considered the rewriting of four
LUBM queries produced by Presto and Requiem on the standard ontology; the resulting
Datalog programs have been enriched with the rules implementing the virtual ABox.

The Query Evaluation Layer has been realized with our distributed evaluation ap-
proach, which received as input the rewritten query and the specification of data dis-
tribution, and produced as output query results on the desired site. In order to verify

http://swat.cse.lehigh.edu/projects/lubm/
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the effectiveness of the approach, we compared running times of the setting presented
above with a “naı̈ve” one, where data involved by the query is first moved onto the des-
tination site; in this way, the query evaluation process becomes completely local and is
carried out by the standard version of DLVDB. The computers used for the experiments
are three rack mount HP ProLiant DL120 G6 equipped with Intel Xeon X3430, 2.4
GHz, with 4 Gb Ram, two of them running Windows 2003 Server Operating System
and MS SQL Server, and one running Linux Debian Lenny and PostgreSQL. We set a
time limit of 1200s (20 min) after which the execution of a system has been stopped.

The results of our experiments are shown in Table 1. This reports the execution
times obtained by running the queries rewritten with both Presto and Requiem; for each
query we report side by side (to be easily compared) the performance of the “naı̈ve”
evaluation and the one obtained by the “distributed” approach. The table shows the very
good performance obtained by the distributed evaluator which is faster than the “naı̈ve”
strategy, even by an order of magnitude, independently of the query rewriting. This
confirms that our techniques are both effective and orthogonal to the adopted rewriting
technique. Our approach is, thus, a good candidate for the development of an efficient
layer for the evaluation of queries posed on ontologies, and in particular when data is
distributed among several sites.
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Abstract. We describe a new argumentation method for analysing opin-
ion exchanges between on-line users aiding them to draw informative,
structured and meaningful information. Our method combines different
factors, such as social support drawn from votes and attacking/supporting
relations between opinions interpreted as abstract arguments. We show
a prototype web application which puts into use this method to offer an
intelligent business directory allowing users to engage in debate and aid
them to extract the dominant, emerging public opinion.

1 Introduction

Social web platforms have grown exponentially in recent years creating new
opportunities that were unthinkable in the pre-social web era. However, the
amount of available information and its loose structure and semantics creates
technical obstacles for exploiting such opportunities. Therefore, more intelligent
systems are required that can filter and recommend information as well as pro-
vide resiliency against reputation attacks within such systems. Examples of such
websites include business directories and e-commerce sites where it is very time-
consuming to wade through opinions and combine rankings, which, in addition
only give a partial view and do not identify important aspects.

We describe a prototype of an intelligent, user-empowering business directory
that employs a method, based upon argumentation and extends the method of
[4] for sharing and evaluating information in the Social Web. In this prototype,
information may be qualitative, in terms of dialectical exchanges (where infor-
mation can support or criticise other information), or quantitative, in terms of
votes. These (voted) dialectical exchanges provide an abstraction for justified
opinions and controversy amongst them. The evaluation of information takes
into account the dialectical strength of opinions in terms of (i) their justifica-
tions, (ii) how they stand against criticism, and (iii) the aggregation of votes
they and their supporters/critics receive, mediated by the dialectical strength of
their justifications in turn.

2 Extended Social Abstract Argumentation

The Social Abstract Argumentation (SAA) Framework [4] is an extension of
Abstract Argumentation [2] that incorporates a voting mechanism to take into
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account positive and negative votes on arguments. Instead of just having (i) a
set of arguments A and (ii) a binary relation R on the arguments indicating the
attacks between them, the framework also includes a function that maps each
argument to a number of positive and negative votes. SAA is equipped with a
method to evaluate the strength of each individual argument based on its votes
and its attacks. This is calculated through the use of the Social Model.

We use a new Extended SAA which enhances the Social Abstract Argu-
mentation Framework by including an additional binary relation R+ indicating
support between the arguments. Extended SAA incorporates a method to eval-
uate the strength of arguments (that we call the Admissible Social Model).
Our new model produces intuitive results, that comply with admissibility [2],
in the cases where an argument has not yet received any social support or
when it only received negative votes as social support. To illustrate the use
of the Social Model and the differences and enhancements by our proposed
Admissible Social Model, lets consider A = {a, b, c} and R = {(b, a), (c, a)}.
Note that {b}, {c} are both admissible sets of arguments in the abstract argu-
mentation sense [2]. Let V (a) = V (b) = V (c) = (5, 5), namely all arguments
have accumulated the same amount of positive and negative votes (i.e. 5 posi-
tive and 5 negative votes). We can now calculate their social support τε (given
by the simple Vote Aggregation Function [4]) which will be (with ε = 0.1):
τε(V (a)) = τε(V (b)) = τε(V (c)) " 0.50. According to the Social Model [4]
their strength will be: M(a) = τε(a)(1 − (M(c) + M(b) −M(c)M(b)) " 0.13,
M(b) = τε(V (b)) " 0.50, M(c) = τε(V (c)) " 0.50. Fig. 1 shows the graphical
representation of the framework, where nodes correspond to the arguments in
the framework and the edges indicate the attack relations. Node sizes are scaled
to their strength (M-valuation).

Fig. 1. The arguments of
the example scaled to their
strength

Let instead V (b) = (0, 5), then M(b) = 0. This
defies the concept of admissibility, since an un-
attacked argument is not accepted. Our proposed
Admissible Social Model provides a definition for
a new a vote aggregation function, the Admissi-
ble Simple Vote Aggregation function which solves
this problem by introducing new conditions and a
constant strength evaluation i in such cases. Ac-
cording to the new model the strength will be:
M ′(a)=τε(a)(1−(M ′(b)+M ′(c)−M ′(b)M ′(c))"0.245,

M ′(b) = τε(b) "
i

5
where i ∈ (0, 0.5], a prede-

fined initial value (we assume here i = 0.1) and
M ′(c)= τε(c)"0.50. The Admissible Social Model
satisifies a number of intuitive properties [5].

3 Prototype

The prototype web application, which is based on the Admissible Social Model,
takes the form of an online business directory that lets users discuss about
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enlisted businesses in an expressive and interactive way. It gives users the capa-
bilities of posting comments as structured arguments, giving feedback through
votes, and engage into a meaningful debate over any business in the directory.
Additionally, this information is visualised providing an intuitive and easy to
understand structure of the conversation.

Fig. 2. A screen shot of the prototype application showing the user interface

A screenshot of the application is shown in Fig. 2 were five users (A, B, C, D,
E) share opinions, and those of users D and B are displayed on the right. Opinions
are organised in a tree structure (depicted on the left). Supporters are indicated
by links labeled with ”+” and critics (attacks) are indicated by links labeled
with ”-”. The pie chart (bottom-left) indicates positive (”+”) and negative (”-”)
votes for the opinion of user B (the node selected). The strength of opinions,
computed as per the Admissible Social Model, determines the size of nodes in
the tree. For example, user E has the strongest opinion as no user disagrees with
him. User B has the next strongest opinion due to indirect support (critic of
critic) by the strongest opinion of E, combined with more positive than negative
votes. The strength of opinions can help users with deciding whether to choose
the item or service being discussed (use of a specific plumber in this case). Each
user, when posting an argument, has to explicitly state beforehand the nature
of the argument (i.e. support or attack to another argument). Additionally, the
strength evaluation of the arguments is not static; a filtering mechanism provides
a dynamic way of excluding or including arguments. For example a user can
filter out all arguments from users that do not share the same interests or the
same education/work background. This is done through the use of a social login
mechanism which grants access to a user’s public profile and arguments are
filtered using this information.
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4 Conclusions and Related Work

Several online platforms exist (e.g. debategraph.org, debate.org, livingvote.org)
that enforce or visualise online debates on any subject. Such tools have not found
their way into business directories or e-commerce sites in which users post un-
structured reviews and no intelligent mechanism exists to aid them understand
and evaluate the dominant public opinion. Through our prototype business di-
rectory, users are able to interact, exchange opinions and capture the overall idea
about an enlisted business. An interesting approach is shown in [6] where the
authors analyse an exchange of comments on Facebook in order to formalise and
validate the opinions being expressed. We believe that our proposed extended
Social Abstract Argumentation Framework, its semantics and the Admissible
Social Model is a step towards the formalisation and analysis of such online
conversations since it can successfully endorse relations of support between ar-
guments and also take into account user voting. Some frameworks exist [1] that
incorporate supporting relations but do not combine any notion of social sup-
port for the arguments. Additional planned future research includes sentiment
analysis for automatically identifiying relations between arguments, as described
in [3], and the introduction of different degrees for agreement and disagreement
rather than having only attacks and supports; this would provide greater ex-
pressiveness and flexibility.
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Abstract. ASPDA is a framework for expressing defeasibility in Answer Set
Programs via so-called argumentation theories, proposed by Wan, Kifer, and
Grosof in [2]. The authors describe a reduction from ASPDA to plain Answer
Set Programming, which however exponentially inflate programs. In this note,
we present an alternative reduction, which does not suffer from this problem. As
a side-effect, complexity results for ASPDA are established.

1 Introduction

ASPDA is a framework for expressing defeasibility in Answer Set Programs via so-
called argumentation theories, proposed by Wan, Kifer, and Grosof in [2]. ASPDA pro-
grams provide a very general means for defeating literals and rules and capture several
earlier proposals for defeasibility in logic programming. In [2], the authors also pro-
vide a reduction from ASPDA to ASP (in the sense of [1]). However, this reduction
can easily lead to ASP programs that are exponentially larger than the original ASPDA
programs. In this paper, we show that this exponential behavior is not necessary, by pro-
viding an alternative reduction. Different to the reduction in [2], ours introduces new
symbols and also needs a concept of rule identifier, which make proving correctness of
the reduction slightly more cumbersome. However, this reduction immediately provides
complexity results for ASPDA, in particular showing that (virtually all) computational
tasks over ASPDA programs have the same complexity as those over ASP programs.

2 ASPDA: Syntax and Semantics

We briefly review syntax and semantics of ASPDA, for details we refer to [2]. The
language assumes a set of atoms; in [2] this set is not fixed, here we assume it to consist
of first-order or propositional atomic formulas. There are two kinds of negation, and a
literal is either an atom A, neg A, naf A, or naf neg A. A rule is of the form

@r L1 ∨ · · · ∨ Lk :− Body (1)

where k ≥ 0, r is a term and the tag of the rule (different rules can share the same rule
tag), each Li (0 < i ≤ k) is a literal, and Body is a conjunction of literals. Given a rule

� This work was supported by M.I.U.R. within the PRIN project LoDeN.
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of the form (1), the term h(r, Li) (handle(r, Li) in [2]) is the handle for each of the
head literals Li (0 ≤ i ≤ k). Each rule can be either defeasible or strict.

An argumentation theory AT is a set of strict rules of the form (1), which makes
use of a distinguished predicate $defeatedAT that may occur only in rule heads. The
subscript AT is usually omitted when the context is clear. An answer-set program with
defaults and argumentation theories (ASPDA) is a set of rules of the form (1), which
may comprise an argumentation theory. In [2], the argumentation theory is usually con-
sidered separated from the program, but since it is syntactically and semantically the
same as a special kind of program, we consider it as part of the program for simplicity.

Herbrand universe and base are defined in the standard way, where the Herbrand
base consists not just of ground atoms, but of ground naf-free literals. An (Herbrand)
interpretation is a subset of the Herbrand base, and we will assume consistent interpre-
tations, i.e. no interpretation contains both A and neg A.

A naf-free literal L is true in an interpretation I if L ∈ I , naf L is true in I if L 	∈ I;
otherwise these literals are false in I . A strict rule is satisfied in I if at least one head
literal is true in I whenever all body literals are true in I . A defeasible rule of the form
(1) is satisfied if it either meets the condition for a strict rule or if $defeated(h(r, Li))
is true in I for all 0 < i ≤ k. As usual, an interpretation I is a model of an ASPDA
program P if I satisfies all rules in P . A model of a program P is minimal if none of
its subsets is a model of P .

For defining answer sets, [2] define the quotient P
I for an ASPDA program P and an

interpretation I in four steps: (i) Delete every rule in P in which a naf body literal is
false in I; (ii) in each defeasible rule of the form (1), delete all Li that are true in I; if
all Li are deleted, delete the complete rule; (iii) remove all naf-literals of the remaining
rules; (iv) remove tags from the remaining rules. An interpretation I is an answer set of
an ASPDA P if I is a minimal model of P

I .
Traditional ASP can be viewed as a special case of ASPDA. ASPDA programs that

have no defeasible rules and empty argumentation theory can be viewed as ASP pro-
grams. It is easy to show that the quotient P

I coincides with the reduct P I [1] for such
programs (the only difference are the rule tags, which are irrelevant for these programs).

3 A Polynomial Reduction from ASPDA to ASP

In [2] a reduction from ASPDA to ASP is provided that preserves answer sets, which
however, produces an exponential number of rules in general. We provide an alternative
reduction, which does not suffer from this exponential increase in size.

Definition 1. Given an ASPDA P , for each defeasible rule of the form (1), create

$der(r, L1) ∨ · · · ∨ $der(r, Lk) :− Body, naf $rdef(rid) (2)

$rdef(rid):− $defeated(h(r, L1)), . . . , $defeated(h(r, Lk)) (3)

where $rdef and $der are fresh predicates, rid is a rule identifier (obtained for exam-
ple by the index of a fixed enumeration of rules; note that the rule tag cannot serve as
the rule identifier), and for each 0 < i ≤ k create

Li :− $der(r, Li) (4)
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$der(r, Li) :− Li, naf $defeated(h(r, Li)) (5)

:− $der(r, Li), $defeated(h(r, Li)) (6)

For each strict rule, delete its rule tag. We refer to the obtained program as tr(P ).

Example 1. For @r a ∨ b :− the reduction of [2] generates

a ∨ b :− naf $defeated(h(r, a)), naf $defeated(h(r, b))

a :− naf $defeated(h(r, a)), $defeated(h(r, b))

b :− $defeated(h(r, a)), naf $defeated(h(r, b))

(and also :−$defeated(h(r, a)), $defeated(h(r, b)), but this seems to be due to a
typo). The reduction of Definition 1 generates

$der(r, a) ∨ $der(r, b) :− naf $rdef(rid) a :− $der(r, a) b :− $der(r, b)
$rdef(rid) :− $defeated(h(r, a)), $defeated(h(r, b))
$der(r, a) :− a, naf $defeated(h(r, a)) :− $der(r, a), $defeated(h(r, a))
$der(r, b) :− b, naf $defeated(h(r, b)) :− $der(r, b), $defeated(h(r, b))

In general, for each rule with k head literals, the reduction of Definition 1 creates 3k+2
rules, while the one of [2] creates 2k − 1 rules.

Theorem 1. Given an ASPDA P , there is a one-to-one relationship between the answer
sets of P and those of tr(P ). In particular, for each answer set A of P , tr(A) =
A ∪ {$der(r, L) | a defeasible rule with tag r in P exists with true body and L in its
head, s.t. $defeated(h(r, L)) 	∈ A and L ∈ A }∪{$rdef(rid) | a defeasible rule with
identifier rid and tag r in P exists s.t. for each head literal L, $defeated(h(r, L)) ∈ A
holds } is an answer set of tr(P ), and these are the only answer sets of tr(P ).

Proof. Assume that A is an answer set of P (hence a minimal model of P
A ). We show

that tr(A) is a minimal model of tr(P )
tr(A) . First observe that for each rule in P which is

deleted in step (i) of the definition of P
A , the rule itself or its corresponding rule (4) is

not in tr(P )
tr(A) either. Moreover, a defeasible rule in P for which $defeated(h(r, L)) ∈

A holds for all head literals L is not in P
A due to step (ii) of the definition of P

A ,

and no reduct of the corresponding rule (4) is in tr(P )
tr(A) either, since by construction

$rdef(rid) ∈ tr(A). For all other defeasible rules of form (1) in P (i.e. those not
deleted in steps (i) and (ii) of the definition of P

A ), P
A contains

∨
L∈K L :−Body′, s.t. K

is the set of head literals s.t. $defeated(h(r, L) 	∈ A and Body′ is Body without naf-
literals. tr(P )

tr(A) instead has $der(r, L1)∨· · ·∨$der(r, Lk) :− Body′, $der(r, Li) :− Li

for Li s.t. $defeated(h(r, Li)) 	∈ A and also all rules of type (3), (4), and (6). By con-
struction, tr(A) is a model of tr(P )

tr(A) . To see minimality, observe that $der(r, Li) take

the place of Li in rule heads of reducts in tr(P )
tr(A) . So if there is a model N � tr(A) for

tr(P )
tr(A) not containing some $der(r, Li), then also Li must not be in that model because

of a rule of type (4). Removing other literals from tr(A) cannot yield a model of tr(P )
tr(A) .
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Assume now that M is an answer set for tr(P ). We show that M = tr(A) for some
answer set A of P . Let M ′ denote the set M after removing all literals $der(r, L) and
$rdef(rid). First we note that M ′ satisfies all strict rules in the reduct P

M ′ . Concerning
defeasible rules, if $rdef(rid) ∈ M , then the rule with identifier rid is not in P

M ′ .

Otherwise, rule (2) is in tr(P )
M and a corresponding rule r′ obtained from r is also in

P
M ′ . Note that r′ in general has fewer head literals than (2), however, we observe that
for each Li that was removed from r when creating r′ in P

M ′ there is a rule (6) and
for each of these Li, $defeated(h(r, Li)) ∈ M ′ and $defeated(h(r, Li)) ∈ M and
so $der(r, Li) 	∈ M . Hence if rule (2) has a true body in M , $der(r, Lj) ∈ M holds
only if $defeated(h(r, Lj)) 	∈ M and $defeated(h(r, Lj)) 	∈ M ′. Moreover, rules
(4) enforce that Lj ∈ M and Lj ∈ M ′. It follows that all rules in P

M ′ that stem from
defeasible rules are satisfied by M ′ and hence M ′ is a model of P

M ′ . Minimality of
M ′ then follows from the minimality of M and the fact that the satisfaction patterns of
rule heads of the reducts of defeasible rules and the corresponding reducts of rules (2)
coincide. Therefore M ′ is an answer set of P and M = tr(M ′).

The computational complexity of reasoning tasks over ASPDA programs was left open
in [2]. It is obvious that the reduction in Definition 1 runs in polynomial time, hence the
reduction provides a tight upper bound for the complexity of all computational tasks of
ASPDA, where the corresponding task for ASP is at least polynomial.

Corollary 1. Given a computational task over ASP programs wwhich is complete for
located a complexity class that contains P , the corresponding task over ASPDA pro-
grams is located in the same complexity class.

Since traditional ASP programs are a special case of ASPDA, lower bounds extend
trivially from ASP to ASPDA.

4 Conclusion

We have provided an alternative reduction from ASPDA to ASP, which avoids an ex-
ponential increase in space and thus is an immediate improvement over an analogous
reduction in [2]. Contrary to the earlier reduction, it makes use of additional symbols
and also needs the concept of a rule identifier. As an immediate consequence of the re-
duction, we obtain results on the computational complexity of computational tasks over
ASPDA, which coincide with those of ASP for practically all relevant tasks.

References

1. Gelfond, M., Lifschitz, V.: Classical Negation in Logic Programs and Disjunctive Databases.
New Generation Computing 9, 365–385 (1991)

2. Wan, H., Kifer, M., Grosof, B.N.: Defeasibility in Answer Set Programs via Argumentation
Theories. In: Hitzler, P., Lukasiewicz, T. (eds.) RR 2010. LNCS, vol. 6333, pp. 149–163.
Springer, Heidelberg (2010)



The Definability Abduction Problem for Data Exchange
(Abstract)

Enrico Franconi1, Nhung Ngo1, and Evgeny Sherkhonov2

1 KRDB Research Center for Knowledge and Data, Free University of Bozen-Bolzano, Italy
2 ISLA, University of Amsterdam, The Netherlands

1 Introduction
Data exchange is the problem of transforming data structured according to a source
schema into data structured according to a target schema, via a mapping specified by
means of rules in the form of source-to-target tuple generating dependencies – rules
whose body is a conjunction of atoms over the source schema and the head is a con-
junction of atoms over the target schema, with possibly existential variables in the head.
With this formalization, given a fixed source database, there might be more than one
target databases satisfying a given mapping. That is, the target database is actually an
incomplete database represented by a set of possible databases. Therefore, the prob-
lem of query answering the target data is inherently complex for general (non-positive)
relational or aggregate queries.

In order to recover the good computational properties of standard relational data-
base technologies, the data exchange framework restricts the target query language to
just (unions of) conjunctive queries ((U)CQ): as a matter of fact, the answers to such a
query over the incomplete target database are the same as the answers of the same query
over a single specific unique database (called a universal solution) [7]. So, the goal in
the data exchange framework is to have one single database in the target once the source
database is fixed. Then this database can be considered as a normal complete database
and which can be queried with SQL – restricted to positive select-from-where queries.

The goal of this work is to enrich the data exchange framework to allow for general
relational and aggregate queries, by suggesting “reasonable” amendments to the initial
mapping so that the new extended mapping will then produce a unique materialized
target instance depending only on the given source instance and the mapping. To this
end, we formalize the property for the target being unique, and introduce and solve the
novel problem of definability abduction. We consider a specific semantic minimality
criterion and propose minimal abductive solutions of specific form.

2 Data Exchange and Typical Problems
For a more detailed discussion of data exchange problem, see [7,4,6]. We fix two dis-
joint source (S) and target (T ) schemas. Then a sentence over S ∪ T of the form
∀x̄(ϕ(x̄)→ ψ(x̄)), where (1) ϕ is a L1-formula over S and (2) ψ a L2-formula over T ,
is called S-T (or source-to-target (s-t)) L1-to-L2 dependency. A tupleM = (S, T,Σ),
where Σ is a set of s-t L1-to-L2 dependencies, is called a data exchange problem.
The set Σ is called a schema mapping. Intuitively, Σ specifies how and what source
data must be translated to the target. A solution to the data exchange problem M for
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a source instance I is a target instance J such that (I, J) |= Σ. Commonly, schema
mappings are specified with the help of s-t CQ-to-CQ dependencies (also called as s-t
tuple generating dependencies (tgd)) [7].

The data exchange framework gives rise to the following problems [3,9,8]. (1) Non-
rewritability over a distinguished “uniformly” computed target instance [3], (2) non-
intuitive answers to queries with negation [9,8] and (3) semantics for aggregative quer-
ies is trivial [1]. For each of the problems different solutions were proposed by con-
sidering different query answering semantics and notions of solutions. Among them,
the notions of CWA-solutions [9], GCWA∗-solutions [8], and endomorphic images of
the canonical solution [1]. Overall, there is no uniform approach to solve the above
problems. Ultimately, one would like to have a data exchange setting where one can
materialize a target database and be able to use the full SQL over it. In fact, the prob-
lems can be avoided by restricting a set of possible solutions to a single target database.
Next we formalize the property of uniqueness of the target instance for a given source
instance under the schema mapping. Also we propose a framework for fixing schema
mappings to guarantee this property.

3 Definability and Definability Abduction in Data Exchange

How can we characterize the case when the target is uniquely defined given a source
instance? This semantic property is given by the notion of definability from FOL [5,10].

Definition 1. Let Σ be a set of sentences in FOL. A predicate p is definable from the
set of predicates P under Σ if for every two interpretations I = 〈DI , ·I〉 and J =
〈DJ , ·J 〉 such that they are models of Σ, it holds that P I = PJ implies pI = pJ .
Intuitively, in all models of Σ the extension of p is fully determined by the extension of
the predicates in P . Note, if Σ is specified by s-t tgds then the extensions of the target
predicates are not determined by the extensions of the source predicates.

Proposition 1. Let Σ be a set of s-t tgds. Then for every p ∈ T it holds that p is not
definable from S under Σ.

Note that not every schema mapping gives non-definability, e.g. the FO-to-FO mapping
Σ = {p(x)→ q(x),¬p(x)→ ¬q(x)} ensures that q is definable from p. Proposition 1
says that the classical schema mapping language is not powerful enough to enforce
unique data exchange solutions. Therefore, given a schema mapping specified by s-t
tgds we want to extend it with new dependencies which would thus lead to definabil-
ity of the target from the source. Then some natural questions arise such as how these
dependencies should look and which ones we prefer. In fact, similar problems arise in
abductive reasoning [11,2]. This motivates us to introduce the following general prob-
lem. Here σ(Σ) means the signature of Σ.

Definition 2. Let Σ be a set of FOL sentences. A triple D = (P1,P , Σ) is a defin-
ability abductive problem (DAP) if it holds that Σ ∪ Σ̃ 	|= ∀x̄.p(x̄) ↔ p̃(x̄) for every
p ∈ P , where p̃ is a fresh predicate of the same arity as p, and Σ̃ is obtained from Σ by
replacing all predicates from σ(Σ) \ P1 with fresh predicates with the same arity.

The non-entailment in Definition 2 means that no predicate in P is definable from P1

under Σ. A set of sentences Δ is called a solution to a DAP D = (P1,P , Σ) if every
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p ∈ P is definable from P1 under Σ∪Δ. A solution Δ is consistent if Σ∪Δ is consist-
ent, relevant if P is not definable from P1 under Δ, and minimal if for every solution
Δ1 such that Σ ∪Δ |= Δ1 it holds that Σ ∪Δ1 |= Δ. These restrictions are natural as
we are interested in finding meaningful solutions which minimally change the intended
meaning of the schema mapping.

In view of Proposition 1, every data exchange setting (S, T,Σ), where Σ is a set of
s-t tgds, can be viewed as a DAP. We are now interested in definability abduction for
data exchange. First, however, how should the DAP solutions look like?

Definition 3 (sts mapping). A set of sentences Δ over S ∪ T is an sts mapping if it
consists of s-t CQ-to-CQ and t-s CQ-to-UCQ= dependencies.

Thus given a DAP solution Δ in the form of sts, the interplay of both s-t and t-s de-
pendencies together with Σ gives us definability of T from S. Moreover, we believe the
proposed solutions in this form could be easily verified by the user.

Now our goal is to provide a user with solutions to a given DAP problem. There
are two alternative scenarios related to this. In the first one, one is interested in an
algorithm for generating all solutions (which might be infinitely many). The known
tableaux and resolution techniques [2] can only generate abductive solutions in the form
of a conjunction of literals, and it is not clear if these techniques can be modified to
generate dependencies. In the second scenario, the user might only be interested in
some solutions, e.g. minimal ones. Then redundant computation of the entire set of
solutions is avoided. This scenario is more practically feasible, as only a restricted class
of solutions needs to be found which are more likely to be acceptable by the user. Let’s
now consider a DAPM = (S, T,Σ). We distinguish the cases how Σ is specified.

Full tgds. These are s-t tgds that do not contain existential variables in the head.
In this case we can always assume that a full s-t mapping has the following form:
Σ = ∪pi∈T ∪ni

j=1 {ϕ
j
i (x̄, z̄i) → pi(x̄)}, where ϕj

i is a conjunction of source atoms, pi
contains no constant and the variables in the attributes of pi are distinct.

Example 1. Let Σ = {p(x, y)→ q(x, x)∧t(x, y)∧h(x, c)} be a full schema mapping,
c a constant. Then Σ is logically equivalent to Σ′ = {p(x, y)→ t(x, y), p(x, y) ∧ z =
x→ q(x, z), p(x, y) ∧ u = c→ h(x, u)}.
We single out a good solution to a DAP in the case of full dependencies. This kind of
solution is both intuitive and enjoys being relevant and minimal.
Theorem 1. Let M = (S, T,Σ) be a DAP specified by full s-t tgds. Then Δ =⋃

pi∈T {pi(x̄)→ ∨j∃z̄jϕi
j(x̄, z̄j)} is a minimal relevant consistent sts solution to M.

Example 2. Consider a DAPM = (S, T,Σ) where S = {GradStudent(·),
UGradStudent(·)}, T = {Student(·)}, andΣ = {GradStudent(x)→ Student(x),
UGradStudent(x)→ Student(x)}. ThenΔ = {Student(x)→ UGradStudent(x)
∨GradStudent(x)} is a minimal solution toM.

Emebdded tgds. These are s-t tgds containing existential variables in the head.
Example 3. Let M = (S, T,Σ) be a DAP, with Σ = {Person(x)→ ∃y.PhoneN
(x, y)}. This DAP doesn’t have a relevant sts solution and other solutions are not intuit-
ive at all, e.g. Δ = {Person(x)∧Person(y)↔ PhoneN(x, y)} is hardly acceptable.
One way to solve the problem with non-intuitive solutions is to relax the notion of a
DAP solution by allowing additional source predicates.
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Definition 4. Let M = (P1,P , Σ) be a DAP and Δ a set of sentences. Δ is a weak
solution to M if it is a solution toM′ = (P2,P , Σ) for some P2 such that P1 ⊆ P2.
One can see the motivation for weak DAP solutions in data exchange: the additional
source predicates can tell us more information about existential values described by
the embedded mappings. Thus, we might be able to find though weak, but minimal
solutions which could be intuitive from practical point of view. It appears that a solution
where we ask the user for the existential values in the target by using fresh predicates in
the source, is minimal. For every p ∈ T we pick a fresh predicate ps of the same arity.

Theorem 2. LetM = (S, T,Σ) be a DAP where Σ is a set of pure embedded s-t tgds.
Then Δ =

⋃
p∈T {ps ↔ p} is a minimal weak sts solution to M.

Example 4. Consider a DAP M = (S, T,Σ) where S = {Person(·), Phone(·, ·)},
T = {Contact(·, ·)}, and Σ = {Person(x) → ∃y.Contact(x, y)}. Then we have
Δ = {Contact(x, y)↔ Phone(x, y)} is a minimal solution ofM. It also implies that
every source instance must satisfy the source constraint Person(x)→ Phone(x, y).

4 Conclusions
We considered the problem of gaining definability of the target from the source schema.
We showed that this problem is abductive in nature, and that in the case of full mappings
there are interesting minimal sts solutions. Embedded schema mappings, on the other
hand, seem to be bad mappings for finding conservative solutions. Therefore, the notion
of a DAP solution has to be relaxed and fresh source predicates are sometimes needed.

The third author is supported by NWO (project 612.001.012 (DEX)).
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Abstract. This paper presents a rule-based architecture that enables
causal and temporal reasoning of events and supports their relevance
assessment given the user’s situation, in order to provide contextualized
services for citizens inhabiting a smart city. Our approach for context
reasoning and assessment is illustrated by emergency scenarios.

Keywords: rule-based reasoning, context-awareness, context
assessment.

1 Introduction

Urban environments are highly dynamic, with unexpected incidents, such as car
collisions, arising at any time. People affected by such incidents act in different
roles (e.g., citizens and first responders) and need to receive information relevant
to the current context at real-time, in order to perform effective decision-making.
Urban ecosystems are thus required to exploit the semantics of events and create
urban-specific Linked Data. To facilitate the context representation and reason-
ing, the integration of Semantic Web technologies for realizing an adaptable
context-aware infrastructure has attracted much research attention. For exam-
ple, the MobiSem framework is designed specifically to operate on mobile sys-
tems [4], the software architecture of GEPSIR aims to manage the situation
awareness [1], and the DBpedia Mobile provides a location-enabled linked data
browser1. Rule-based architectures are explored, building on their flexibility and
their simplicity in specifying the behavior of a system. However, few approaches
exploit the causal properties of the events that comprise an incident or assess the
relevance of information that reaches interested entities given urban situations.

In the context of the European PEOPLE project2 that aims to realize smart
cities, our research focuses on reasoning and assessing the relevancy of infor-
mation for users involved in critical urban situations. Our contributions in this
paper are two-folds: (1) from an application perspective, we design an architec-
ture for the provision of information relevant to the current situation of users
acting in different roles; and (2) from a technical perspective, we propose a rule-
based approach for information relevance assessment given domain descriptions
axiomatized as Event Calculus declarative rules.

1 wiki.dbpedia.org/DBpediaMobile
2 http://www.people-project.eu

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 221–224, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

wiki.dbpedia.org/DBpediaMobile
http://www.people-project.eu


222 B. Hu et al.

2 Motivating Scenarios

Assume a smart city, where bus stations are equipped with sensors to track
the physical context in real-time. To handle the incidents, the command center
operators use a system that connects to sensors and standard databases.

Scenario I – Citizen Rescue. At the Paul Armangot bus stop around 5pm,
an old man has suddenly fallen down and remains unconscious. One emergency
ambulance is sent to rescue this citizen. According to the fact that the incident
occurs near the UPEC university around closing time, the system infers that
there will be a large crowd of students on the street, and further decides to send
a traffic alert to the approaching ambulance. After ambulance arrival, the system
searches the medical records of the patient with his identification provided by a
witness and sends a heart attack record to the ambulance crews.

Scenario II – Collision Incident. Two buses collide at the intersection of two
avenues, resulting in a traffic jam. This incident is reported by several sensors in-
stalled at different bus stations, providing data from specific observation scopes.
The system can recognize that those different sensor data refers to the same
event and avoids sending redundant information.

3 A Rule-Based Architecture

The same piece of information may have different levels of significance for people
acting in different roles in the same urban space. Urban ecosystems, flooded by
a bulk of events arriving from different sources, need to recognize important in-
formation given user’s context. Our research hypothesis consists in going beyond
the location-related information and exploiting the causal relationships among
events, reasoning on how context affects their consequences and understating the
common sense behind the pattern of event occurrences. We design a rule-based
architecture as shown in Figure 1, consisting of a contextual information store,
the Casual and Temporal Reasoner (CTR) and the Relevance Assessment Rule
Engine (RARE). Exploiting the knowledge produced by CTR, the relevance of
information can be assessed by RARE in a given context. The main function of
each component is explained below:

Contextual Information Store. It stores low-level sensor context, high-level
context from CTR, background information (e.g., medical records), and linked
open data (e.g., school time schedules). The relationships between context di-
mensions, including user, activity, event, information items, time and location,
are represented in our ontology-based context model, partially shown in Figure
1. Specifically, the User class has subclasses for defining the role of first respon-
ders and citizens; the Event class, subclass of which is the initiating incident,
refers to both atomic and compound events; the Information Item class is related
to the Incident class and provides high-level context inferred from CTR.

Causal and Temporal Reasoner. To formally characterize the causal and
temporal properties of events and the way they affect the environment we apply
Event Calculus axiomatizations. The Event Calculus [3] is an influential formal-
ism that can be used to reason about action, change and time for a wide range of
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Fig. 1. A Rule-based Architecture

common sense phenomena. A set of axioms describes the properties of a domain
and enables the modeling and derivation of the direct context-dependent effects
of events, as well as their ramifications and qualifications. The contribution of
CTR is twofold. First, the determination of which emergency entities to contact
is decided, creating a connection between an occurring incident and the “Role”
concept of the ontology. Second, the derivation of high-level context knowledge is
attempted, given dynamic information from sensors and available urban-related
data, such as hour schedules of nearby activities, medical profiles of involved
persons if available etc. These are used to categorize the type of incident and to
better characterize its features. For example, axioms (1), (2) below trigger an
alert to inform about road activity conditions, whenever an incident occurs near
a university around closing time (scenario I):

(1) ¬ HoldsAt(PublicHoliday(?day),?t) ⇒
Initiates(UniversityEnd(IUT,?day),DenseRoadActivity(RoadSegmentX),?t)

(2) Happens(Incident(?e),?t1) ∧ HoldsAt(LocatedAt(?e,Loc1),?t1) ∧
HoldsAt(DenseRoadActivity(Loc2),?t2) ∧ (?t1-?t2 ≤ 15min)∧
HoldsAt(Near(Loc1,Loc2),?t1) ⇒ Happens(InformativeEvent(Traffic,Loc2),?t1)

Notice that although the university closure occurs at a future time, the alert is
triggered at the current time, in order to enable the RARE component evaluate
its relevancy to the entities assigned to handle the incident. To accommodate
reasoning tasks given such a scheme, we have designed a forward-chaining pro-
duction system that can perform causal and temporal reasoning both offline
and online. This component is implemented on top of Jess, an efficient rule
engine that uses an enhanced version of the Rete algorithm to process rules.
CTR combines the declarative semantics of the Event Calculus with features
that enhance efficient online reasoning, such as rule-based operational seman-
tics, semi-destructive assignment, negation-as-failure (NaF) and others.

Relevance Assessment Rule Engine. A rule engine (RARE) [2] is imple-
mented for relevancy evaluation of information items inferred from CTR by
taking into account conditions, such as the spatio-temporal relation between
an event and a user’s activity. Unlike SWRL that can infer facts, the Context
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Rating Rule Language (CRRL) is defined for generating a cumulative rating for
a given user/info pair. The body of CRRL rule contains a list of conditions that
are combined together with logical operators such as the logical conjunction “&”.
Two special variables are appointed in the rule body: ?info and ?user. The head
of rule, with a numerical rating level in line with users’ judgements from our user
studies [2], specifies how the rating of a given item (?info) is updated for a given
user (?user). Let us consider two rules for scenario I, for the same type of item
– Traffic Alert, R1 specifies the relevance needed to be increased “+5.0” for the
ambulance; while R2 specifies that the relevance should be decreased “-1.0” for
the citizens. To deal with scenario II, certain rules are defined to decrease the
rating, in case that a certain item has been presented.

R1 : type(?info, TrafficAlert) & happens(?info, ?aleloc) & nearBy (?aleloc,

?eveloc ) & holds(?eveloc, ?event) & isHandledBy(?event, ?user) & starts(?user,

DepartureActivity) & hasRole(?user, Ambulance) ⇒ updateRating (+5.0)

R2 : type(?info, TrafficAlert) & hasRole(?user, Citizen) ⇒ updateRating (−1.0)

RARE is triggered to execute CRRL rules once context is updated. For each
rule, RARE translates the rule body into a SPARQL query which is evaluated
by the Sesame query engine, and computes the relevance rating indicated in
the rule head. All the translated rules interact together to increase or decrease
the relevance, adding up the effect to produce a final ranking in a given con-
text. To update the relevance, all the triples specifying the current values are
firstly removed and then SPARQL construct queries are executed to create triple
patterns with new values.

4 Conclusion and Future Work

We have presented a rule-based architecture for contextualized information pro-
vision in a smart city. Next, we will define a mechanism, which allows the rele-
vance ratings generated by RARE to influence the weight of context knowledge
inferred by CTR. We will implement a prototype and evaluate its behavior based
on our scenarios. By measuring the results on different datasets, we will further
investigate how our approach is feasible for providing relevant information to
support user’s urban activities.
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Abstract. As part of the quest for a unifying logic for the Semantic Web
Technology Stack,1 a central issue is finding suitable ways of integrating
description logics based on theWebOntology Language (OWL) with rule-
based approaches based on logic programming. Such integration is difficult
since naive approaches typically result in the violation of one ormore desir-
able design principles. For example, while both OWL 2 DL and RIF Core
(a dialect of the Rule Interchange Format RIF) are decidable, their naive
union is not, unless carefully chosen syntactic restrictions are applied.

We report on recent advances and ongoing work by the authors in
integrating OWL and rules. We take an OWL-centric perspective, which
means that we take OWL 2 DL as a starting point and pursue the ques-
tion of how features of rule-based formalisms can be added without jeop-
ardizing decidability. We also report on incorporating the closed world
assumption and on reasoning algorithms. This paper essentially serves as
an entry point to the original papers, to which we will refer throughout,
where detailed expositions of the results can be found.

1 Rule-Extensions of OWL

In [4], Grosof et al. describe a fragment of the description logic SHOIN (a.k.a.
OWL 1 DL) which, if syntactically transferred to first-order predicate logic
(FOL) in a straightforward way, results in a set of function-free Horn clauses, i.e.
a Datalog program under FOL semantics. This naive approach has been subse-
quently lifted to OWL 2 DL and given rise to the OWL 2 RL fragment [10]. This
work does not, however, address the problem of identifying the rules of Datalog
(under FOL semantics) expressible in OWL and its variants, and indeed recent
results, including the work on description logic rules by Krötzsch et al. [7], show
that OWL 2 RL can be improved significantly in this respect.

To formulate the recent findings, we first note that a directed graph Gr can
be constructed from any given binary Datalog rule r, i.e. a rule containing only
unary and binary predicates. The nodes of Gr are the variables occurring in the
rule body of r, and there is exactly one directed edge between two variables x
and y if there is at least one binary atom of the form P (x, y) appearing in the

1 http://www.w3.org/2007/03/layerCake.png
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body of r. The following results then hold,2 where z is the variable in the first
argument of the head atom.

– IfGr is a tree with root z, then r can be expressed in SROEL (OWL 2 EL) [7].
– If Gr, with any edges inverted, is a tree with root z, then r can be expressed

in SROIEL [7].
– If Gr, with edges considered undirected, does not contain four nodes which

are path-connected by mutually disjoint paths in such a way that they con-
stitute a 4-clique, then r can be expressed in SROIEL(�), i.e., in SROIEL
extended by role conjunction [1].

The results above are based on the idea of retaining decidability by syntactically
restricting the rules which are allowed to be used together with a DL knowledge
base. A complementary line of work is based on the idea of weakening the se-
mantics of rules in a suitable way. This was first voiced in the notion of DL-safe
rules [13], which are rules in which the variables can bind only to known indi-
viduals, i.e. to constants present in the knowledge base, resulting in so-called
DL-safe SWRL. This approach was then generalized in [9] in such a way that
only some variables in rules—called DL-safe variables—were restricted this way.
In [8], Krötzsch et al. ported this concept to description logics, resulting in a new
syntactic construct called nominal schemas.

Nominal schemas can be understood as variable nominals. Syntactically, this
new construct {x} resembles a nominal, save that x is a variable rather than an
individual, and it can only bind to individuals appearing in the knowledge base
such that each occurrence of the nominal schema within one axiom is bound to
the same individual. Semantically, this is realized by extending the interpreta-
tion with a first-order variable assignment binding variables to domain elements
named by individuals in the knowledge base [8].

A DL extended with nominal schemas not only completely covers DL-safe
SWRL, it also makes it possible to completely express any Datalog program
under the Herbrand semantics—without any restriction on arities of predicates
or on forms of rules [5,8]. Furthermore, SROIQ extended with nominal schemas,
called SROIQV , is of the same computational complexity as SROIQ [8].

So far, onlymonotonic rules are considered, despite the fact that the closedworld
assumption is often requested in order to be able tomodel defaults, exceptions, and
integrity constraints. Following the spirit of description logics of minimal knowl-
edge and negation as failure (MKNF) [3], twomodal operatorsK andA are added
to SROIQV , yielding a more expressive yet still uniform formalism [5]. The two
operators allow the inspection of the knowledge base, i.e. K represents minimal
knowledge, while A is interpreted as autoepistemic assumption and corresponds
to ¬not, where not is identical with default negation in non-monotonic rules. As
is common in MKNF semantics, a set of interpretations is used instead of one in-
terpretation, and the non-monotonic semantics is defined based on a preference
relation among such sets, minimizing derivable knowledge.

This language trivially covers SROIQV (hence SROIQ, the tractable OWL
2 profiles, and arbitrary Datalog rules as pointed out above), and ALCKNF
2 Some of these statements can be improved, as detailed in the indicated papers.
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[3]. Thus, default reasoning, epistemic queries, closure of roles and concepts,
and integrity constraints are available in the language. It also covers Hybrid
MKNF [12], a tight integration of DLs and non-monotonic rules based on MKNF
logics. Indeed, it is the first approach that covers the two distinct MKNF-based
formalisms, [3] and [12]. Moreover, a decidable fragment of the full language is
identified in [5], which contains most of the covered languages.

2 Algorithms for Reasoning with Nominal Schemas

There is a naive way of algorithmizing reasoning with nominal schemas, which
we call full grounding: Replace each axiom with all grounded axioms, where
nominal schemas are replaced by nominals, in all possible combinations which
respect variable bindings. This yields a semantically equivalent knowledge base
without nominal schemas, and a traditional reasoning algorithm can then be
used. While this approach permits reasoning with nominal schemas, it is prob-
lematic in the sense that it is combinatorially explosive in cases involving axioms
having many nominal schemas [2]. We have therefore started to investigate al-
ternative approaches which ground nominal schemas in a dynamic fashion, thus
reducing the overhead of full grounding. We briefly report on the preliminary
findings of this ongoing work.

An alternative approach for dealing with nominal schemas is to extend stan-
dard tableau algorithms with grounding rules in such a way that grounding can
be delayed until required [6]. In the following situations, grounding a nominal
schema {x} occurring within a concept C in the label of a tableau node is re-
quired before any standard tableau rules can be applied: (i) when C = D � E
and {x} occurs in both D and E; (ii) when C = ∃R.D and {x} occurs in the
top level of D, e.g., ∃R.({x} � E) needs grounding whereas ∃R.∃S.(A � {x})
does not. On the other hand, when C is a conjunction or a universal restriction,
grounding can be safely delayed. Other details such as when grounding should
be performed, which variables should be grounded first, or to which individual
names they are grounded are left for an actual implementation to specify. Work
is still in progress to extend this idea to other expressive constructors, such as
qualified number restrictions.

In addition to intelligent grounding as in the tableau approach just described,
can we avoid grounding from the beginning? In pursuit of this idea, we have also
started to investigate the resolution calculus for algorithmization, where ground-
ing is handled on the fly via unification. Previous work on general resolution for
DLs [11] was unable to deal with role chains, as it introduces further compli-
cations with termination. We solved this problem by using ordered chaining
rules such that the inferred clauses will not be longer than the premises. Nom-
inal schemas add yet another complication to the termination issue as normal
forms of globally limited size are no longer readily available. We successfully ad-
dressed this by using a lifting lemma to show that resolution on nominal schema
axioms takes fewer resolution steps than performing resolution on fully grounded
knowledge bases. Details can be found in [14].
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1 Introduction

Advances in remote sensing technologies have enabled public and commercial
organizations to send an ever-increasing number of satellites in orbit around
Earth. As a result, Earth Observation (EO) data has been constantly increasing
in volume in the last few years, and is currently reaching petabytes in many
satellite archives. For example, the multi-mission data archive of the TELEIOS
partner German Aerospace Center (DLR) is expected to reach 2PB next year,
while ESA estimates that it will be archiving 20PB of data before the year
2020. As the volume of data in satellite archives has been increasing, so have the
scientific and commercial applications of EO data. Nevertheless, it is estimated
that up to 95% of the data present in existing archives has never been accessed,
so the potential for increasing exploitation is very big.

TELEIOS1 is a recent European project that addresses the need for scalable
access to PBs of Earth Observation data and the effective discovery of knowledge
hidden in them. TELEIOS started on September 2010 and it will last for 3 years.
Up to now, the project has made significant progress in the development of state-
of-the-art techniques in Scientific Databases, Semantic Web and Image Mining
and have applied them to the management of EO data.

In the rest of this technical communication we outline the contributions of
TELEIOS, and explain why it goes significantly beyond operational systems

� This work has been funded by the FP7 project TELEIOS (257662).
1 http://www.earthobservatory.eu/

M. Krötzsch and U. Straccia (Eds.): RR 2012, LNCS 7497, pp. 229–233, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Pre-TELEIOS EO data centers and the Virtual Earth Observatory

currently deployed in various EO data centers and Earth Observation portals
such as EOWEB-NG. We also present its main technical contributions related
to ontologies and linked geospatial data.

2 Basic Concepts of the Virtual Earth Observatory

Satellite missions continuously send to Earth huge amounts of EO data providing
snapshots of the surface of the Earth or its atmosphere. The management of
the so-called payload data is an important activity of the ground segments of
satellite missions. Figure 1(a) gives a high-level view of some of the basic data
processing and user services available at EO data centers today, e.g., at the
German Remote Sensing Data Center (DFD) of TELEIOS partner DLR through
its Data Information and Management System (DIMS).

Raw data, often from multiple satellite missions, is ingested, processed, cata-
logued and archived. Processing results in the creation of various standard prod-
ucts (Level 1, 2, etc., in EO jargon; raw data is Level 0) together with extensive
metadata describing them. For example, in the NOA application of TELEIOS
[2], images from the SEVIRI sensor are processed (cropped, georeferenced and
run through a pixel classification algorithm) to detect pixels that are hotspots.
Then these pixels are stored as standard products in the form of shapefiles. Raw
data and derived products are complemented by auxiliary data, e.g., various
kinds of geospatial data such as maps, land use/land, and cover data.

Raw data, derived products, metadata and auxiliary data are stored in various
storage systems and are made available using a variety of policies depending on
their volume and expected future use. For example, in the TerraSAR-X archive
managed by DFD, long term archiving is done using a hierarchy of storage
systems (including a robotic tape library) which offers batch to near-line access,
while product metadata are available on-line by utilizing a relational DBMS and
an object-based query language.

EO data centers such as DFD also offer a variety of user services. For example,
for scientists that want to utilize EO data in their research, DFD offers the Web
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interface EOWEB-NG for searching, inspection, and ordering of products. Space
agencies such as DLR and NOA might also make various other services available
aimed at specific classes of users. For example, the Center for Satellite Based
Crisis Information (ZKI) of DLR provides a 24/7 service for the rapid provision,
processing and analysis of satellite imagery during natural and environmental
disasters, for humanitarian relief activities and civil security issues worldwide.
Similar emergency support services for fire mapping and damage assessment are
offered by NOA through its participation in the GMES SAFER program.

We now summarize the TELEIOS advancements to today’s state of the art
in EO data processing that are shown graphically with yellow color in Figure
1(b). Firstly, traditional raw data processing is augmented by content extraction
methods that deal with the specificities of satellite images and derive image de-
scriptors (e.g., texture features, spectral characteristics of the image). Knowledge
discovery techniques combine image descriptors, image metadata and auxiliary
data (e.g., GIS data) to determine concepts from a domain ontology (e.g., forest,
lake, fire, burned area) that characterize the content of an image [1]. Hierarchies
of domain concepts are formalized using OWL ontologies and are used to an-
notate standard products. Annotations are expressed in RDF and are made
available as linked data so that they can be easily combined with other pub-
licly available linked data sources (e.g., GeoNames, LinkedGeoData, DBpedia)
to allow for the expression of rich user queries.

Web interfaces to EO data centers and specialized applications (e.g., rapid
mapping) can now be improved significantly by exploiting the semantically-
enriched standard products and linked data sources made available by TELEIOS.
For example, the advanced query builder for EO data archives that is now being
developed in TELEIOS based on the data model stRDF and the query language
stSPARQL can enable end-users to pose easily very expressive queries.

stRDF is an extension of the W3C standard RDF that allows the representa-
tion of geospatial data that changes over time [3,5]. stRDF is accompanied by
stSPARQL, an extension of the query language SPARQL 1.1 for querying and
updating stRDF data. stRDF and stSPARQL use OGC standards (WKT and
GML) for the representation of temporal and geospatial data [5,4]. stRDF and
stSPARQL have been implemented in the system Strabon which is freely avail-
able as open source software2. Strabon extends the well-known open source RDF
store Sesame 2.6.3 and uses PostGIS as the backend spatially-enabled DBMS.
Recent work on geospatial extensions to SPARQL has also resulted in the cre-
ation of an OGC standard for querying geospatial data encoded in RDF, called
GeoSPARQL [7], which is a superset of stSPARQL. To the best of our knowledge,
Strabon and the implementation of GeoSPARQL Parliament3 are currently the
RDF stores offering the richest functionality regarding geospatial data.

In TELEIOS, stRDF is used to represent satellite image metadata (e.g., time
of acquisition, geographical coverage), knowledge extracted from satellite images
(e.g., a certain image pixel is a fire hotspot), and auxiliary geospatial data sets

2 http://www.strabon.di.uoa.gr/
3 http://parliament.semwebcentral.org/

http://www.strabon.di.uoa.gr/
http://parliament.semwebcentral.org/
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encoded as linked data. One can then use stSPARQL to express in a single query
an information request such as the following: “Find an image taken by a Me-
teosat second generation satellite on August 25, 2007 which covers the area of
Peloponnese and contains hotspots corresponding to forest fires located within
2 km from a major archaeological site”. Encoding this information request today
in a typical interface to an EO data archive such as EOWEB-NG is impossible,
because domain-specific concepts such as “forest fires” are not included in the
archive metadata, thus they cannot be used as search criteria. In EOWEB-NG
and other similar Web interfaces, search criteria include a hierarchical organiza-
tion of available products (e.g., high resolution optical data, Synthetic Aperture
Radar data) together with a temporal and geographic selection menu.

We have been developing image information mining techniques that allow us
to characterize satellite image regions with concepts from appropriate ontologies
(e.g., landcover ontologies with concepts such as water-body, lake, and forest, or
environmental monitoring ontologies with concepts such as forest fires, and flood)
[1,6]. These concepts are encoded in OWL ontologies and are used to annotate
EO products. Thus, we attempt to close the semantic gap that exists between
user requests and searchable information available explicitly in the archive.

But even if semantic information was included in the archived annotations,
one would need to join it with information obtained from auxiliary data sources
to answer the above query. Although such open sources of data are available
to EO data centers, they are not used currently to support sophisticated ways
of end-user querying in Web interfaces such as EOWEB-NG. In TELEIOS, we
assume that auxiliary data sources, especially geospatial ones, are encoded in
stRDF and are available as linked geospatial data, thus stSPARQL can easily
be used to express information requests such as the above. The linked data web
is being populated with geospatial data quickly, thus we expect that languages
such as stSPARQL and GeoSPARQL [7] will soon be mainstream extensions of
SPARQL that can be used to access such data effectively.
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Nominal schema is an expressive description logic (DL) construct that was pro-
posed in recent efforts to integrate DLs and (logic programming) rule-based
paradigms for the Semantic Web [1] represented by two “diverging” W3C1 stan-
dards: the DL-based Web Ontology Language (OWL) [2] whose major variant,
OWL 2 DL, is based on the description logic (DL) SROIQ [3]; and the rule-
based Rule Interchange Format (RIF) whose core variant, called RIF Core [4],
is essentially Datalog, i.e., function-free Horn logic.

Nominal schema is introduced to description logics (DLs) as a way to ex-
press DL-safe rules [5] with predicates of arbitrary arity within the DL syntax
[6,7]. Syntactically, a nominal schema is a nominal-like expression {x} with x
a variable, instead of an individual name. Semantically, each occurrence of the
same nominal schema within one axiom binds to the same individual and the
axiom is then understood as a macro that represents all axioms obtained by
completely instantiating the variables. This makes DLs with nominal schemas
decidable, in fact, adding nominal schemas to the DL SROIQ does not increase
the worst-case complexity [6]. This decidability result, however, hinged upon a
straightforward but inefficient algorithmization based on full grounding upfront
which induces an exponential blow up already at the beginning of reasoning.

In this paper, we explore one alternative for full grounding upfront by adapting
a standard tableau algorithm for the DL ALCOV , i.e., ALCO plus nominal
schemas, with for a delayed grounding strategy. The rationale is that by delaying
the grounding until it is absolutely necessary to do so we can minimize the blow
up compared to performing it fully at the beginning of reasoning. Due to space
restrictions, we refer the reader to [8] for the corresponding formal definitions,
proofs, and other technical details.

A Tableau Algorithm for DL with Nominal Schemas

We now briefly describe tableau-based algorithm for the DL ALCOV which,
given an ALCOV KB K, determines whether K is satisfiable. Since nominals
are allowed, we assume that the ABox part of K is internalized: its axioms
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are rewritten into equivalent TBox axioms. The general framework remains the
same as in standard tableau algorithms for other DLs. The algorithm works
on the so-called completion graph whose nodes (resp. edges) are labeled with
concepts (resp. roles) occurring in the KB. The nodes themselves are divided
into nominal nodes, whose label contains some nominal, and blockable nodes
whose label contains no nominal.

Suppose that there are n nominals {a1}, . . . , {an} occurring in K. Then, the
completion graph is initialized with n nominal nodes r1, . . . , rn where the label
L(ri) := {{ai},�}, i = 1, . . . , n. After the initialization, tableau rules are then
applied exhaustively to the graph until no rule is applicable (in which the graph
is said to be complete) or a clash occurs, i.e., when there is some node r such that
⊥ ∈ L(v) or {C,¬C} ⊆ L(r) where C is either a concept name or a nominal. If the
algorithm terminates and no clash occurs, then K is satisfiable. Otherwise, K is
unsatisfiable. As in standard tableau algorithms, blocking is employed to ensure
termination. For ALCOV , it suffices to employ equality blocking as defined here:
a node r is blocked if r is blockable and one of the following holds: (i) either r has
a blocked ancestor; or (ii) r has a blockable ancestor r′ such that L(r) = L(r′)
and the path between r and r′ consists only of blockable nodes. Termination is a
consequence of blocking and the fact that there are only finitely many possible
labels to the nodes and edges in the graph. The latter holds partly because there
can only be finitely many possible groundings of nominal schemas in a node’s
label. Soundness and completeness of this tableau algorithm are shown using
standard technique of unraveling the completion graph.
ALCOV tableau rules are obtained from standard ALCO tableau rules [9],

but sufficiently modified and extended with grounding rules to handle nominal
schemas. Fig. 1 the adaptation of standard tableau rules for ALCOV . Note that
tableau rules for dealing with conjunction, universal restriction, nominals and
adding TBox axioms to a node are omitted because those rules are the same as in
standard tableau algorithms. On the other hand, rules for handling disjunction
and existential restriction are modified, and grounding rules are added.

In Fig. 1, Var(C) is the set of all variables appearing (as nominal schemas)
in C. The set Tvar(C) is defined as: Tvar({v}) = {{v}} for any v ∈ NV ;
Tvar(¬C) = Tvar(C); Tvar(C � D) = Tvar(C � D) = Tvar(C) ∪ Tvar(D);
Tvar(∀R.C) = Tvar(∃R.C) = ∅; and Tvar(C) = ∅ if Var(C) = ∅. In grounding
rules, given a concept C, C[v/a] is the concept obtained from C by grounding
the nominal schema {v} into the nominal {a}. The mapping M is used to store
for each node r, all grounding pairs v/a that have been used earlier. All ground-
ing rules non-deterministically choose a variable assignment that can be used
to partially ground the corresponding concept. This provides some flexibility for
incorporating some heuristics that allow an implementation to ground variables
in such a way that a clash can be found as early as possible.

The intuition behind the grounding rules comes from the way concept ex-
pressions with nominal schemas are read as FOL formulas with equality. For
example, consider a concept C := ∃R.({x} � ∃S.{y}) occurring in the label of
some node s. Assume that a, b ∈ NI appear in KB, so initialization implies the
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�-rule: if: C �D ∈ L(r), Var(C) ∩ Var(D) = ∅, and {C,D} ∩ L(r) = ∅
then: L(r) := L(r) ∪ {C′} for some C′ ∈ {C,D}

∃	-rule: if: ∃R.(C �D) ∈ L(r), Var(C) ∩ Var(D) = ∅,
then: L(r) := L(r) ∪ {∃R.C′} for some C′ ∈ {C,D}

∃-rule: if: ∃R.C ∈ L(r), C is not a disjunction C′ � D′, Tvar(C) = ∅, r has no
R-successor s with C ∈ L(s)

then: create a node s with L(r, s) := {R} and L(s) := {C}
grv-rule: if: (i) for some v ∈ NV and some a ∈ NI , either {v} ∈ L(r) and {a} /∈ L(r),

or ¬{v} ∈ L(r) and ¬{a} /∈ L(r); (ii) v/a /∈ M(r);
then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)} and M(r) := M(r) ∪ {v/a}

gr�-rule: if: (i) C �D ∈ L(r); (ii) (C �D)[v/a] /∈ L(r) for some v ∈ Var(C)∩Var(D)
and a ∈ NI ; (iii) v/a /∈ M(r);

then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)} and M(r) := M(r) ∪ {v/a}
gr∃	-rule: if: (i) ∃R.(C�D) ∈ L(r); (ii) ∃R.(C�D)[v/a] /∈ L(r) for some v ∈ Var(C)∩

Var(D) and a ∈ NI ; (iii) v/a /∈ M(r);
then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)} and M(r) := M(r) ∪ {v/a}

gr∃-rule: if: (i) ∃R.C ∈ L(r) and C is not a disjunction; (ii) ∃R.C[v/a] /∈ L(r) for
some v ∈ Tvar(C) and a ∈ NI ; (iii) v/a /∈ M(r);

then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)} and M(r) := M(r) ∪ {v/a}
gr-rule: if: (i) C ∈ L(r); (ii) C[v/a] /∈ L(r), but v/a ∈ M(r) for some v ∈ Var(C)

and some a ∈ NI ;
then: L(r) := L(r) ∪ {D[v/a] | D ∈ L(r)}

Fig. 1. Tableau expansion rules for ALCOV with rules for conjunction, universal re-
striction, nominal and TBox axiom omitted. All rules require r to be not blocked

existence of two nodes sa and sb whose label resp. contains {a} and {b}. The
above concept can be read as the formula

(1) ∀x.∀y.∃z′.(R(s, z′) ∧ x = z′ ∧ ∃z′′.(S(z′, z′′) ∧ y = z′′))

where s is the meta-variable that represents a domain element for which the
formula holds. The variables x, y and z are universally quantified in a special way:
they range over the set of named individuals, i.e., not the whole domain. Thus,
grounding the nominal schemas to every possible individual names is equivalent
to dropping those universal quantifiers.

The gr∃-rule grounds C to yield: ∃R.({a} � ∃S.{y}) and ∃R.({b} � ∃S.{y})
which can be read as: ∀y∃z′.(R(s, z′) ∧ a = z′ ∧ ∃z′′.(S(z′, z′′) ∧ y = z′′)) and
∀y∃z′.(R(s, z′) ∧ b = z′ ∧ ∃z′′.(S(z′, z′′) ∧ y = z′′)). The algorithm will process
these two concepts in by generating two new nodes, each of which are then
merged by the nominal rule to sa and sb. This makes both sa’s and sb’s labels
contains ∃S.{y}. This situation is the same as having the following two formulas:

R(s, a) ∧ ∀y∃z′′.(S(a, z′′) ∧ y = z′′)(2)

R(s, b) ∧ ∀y∃z′′.(S(b, z′′) ∧ y = z′′)(3)
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Clearly, the conjunction of (2) and (3) is equivalent to (1) if we interpret x to
range only over named individuals. More importantly, notice that the univer-
sal quantifier that binds y now correctly moves “inside” because the existential
quantifier that binds z′ has been instantiated beforehand and all possible in-
stantiations of z′ must be equal to some named individuals which generate, in
this case, two different formulas. Note that this cannot be done for the universal
quantifier that binds x on (1) because even if z′ is instantiated beforehand, there
is only one formula which does not capture all possible instantiations of z′.

The above example also illustrates that grounding y can be done after ∃-rule is
applied. This epitomises the delayed grounding strategy. A full grounding upfront
would have fully grounded y (in addition to x) in the labeling of s. This results
in four new labels, instead of two as in the above example. If this is followed
by applications of ∃-rule, there will be four new individuals generated, although
they will eventually be merged into two due to nominal rule. This unnecessary
creation of new individuals is avoided if grounding y can be delayed.
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1 Introduction

The Resource Description Framework (RDF) is one of the major representa-
tion standards for the Semantic Web. RDF Schema (RDFS) is used to describe
vocabularies used in RDF descriptions.

Recently, there is an increasing interest to express additional information on
top of RDF data. Several extensions of RDF were proposed in order to deal
with time, uncertainty, trust and provenance. All these specific domains can be
modeled by a general framework called annotated RDF data [3][5]. A recent work
reported millions of triples with temporal information [1] and the number is still
increasing. It is reasonable to expect more annotated RDF triples to be handled
by semantic web applications. Therefore scalability will become an important
issue for these applications.

Existing work [4] has shown that MapReduce is a scalable framework to per-
form large scale RDFS reasoning. This inspires us to solve the large scale an-
notated RDFS reasoning problem using MapReduce. We find that most of the
optimizations for RDFS reasoning is also applicable for annotated RDFS rea-
soning. However, to reason with an arbitrary annotation domain, there are still
some unique challenges that need to be handled. In this paper, we will discuss
these challenges and solutions to tackle them. Our preliminary results show that
our method is scalable for a specific domain: fuzzy domain.

2 Annotated RDFS Reasoning

2.1 Syntax

An annotated RDF triple is in form of (s, p, o) : λ ∈ UBL × UB × UBL ×
D1. Here U, B and L are the sets of URI references, blank nodes and literals
respectively. D is an annotated domain which is an idempotent commutative
semi-ring D = 〈L,⊕,⊗,⊥,�〉, where ⊕ is �-annihilating, ⊗ is ⊥-annihilating,
and ⊗ is distributive over ⊕.
1 Here we allow the predicate to be blank node to avoid the implicit typing rules.
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2.2 Deductive System

Our discussion is based on the annotated extension of ρdf proposed in [5]. It is
easy to extend to the full annotated RDFS semantics. For the annotated RDFS
framework, there is a complete and sound rule set for an arbitrary annotation do-
main D = 〈L,⊕,⊗,⊥,�〉. The rule set contains the following rules. Please note
that the generalisation rule is destructive, i.e., this rule removes the premises as
the conclusion is inferred.

Table 1. Annotated RDFS Entailment Rules

Subproperty (a) (A, sp, B) : λ1, (B, sp, C) : λ2 (A, sp, C) : λ1 ⊗ λ2

Subproperty (b) (D, sp, E) : λ1, (X,D, Y ) : λ2 (X,E, Y ) : λ1 ⊗ λ2

Subclass (a) (A, sc, B) : λ1, (B, sc, C) : λ2 (A, sc, C) : λ1 ⊗ λ2

Subclass (b) (A, sc, B) : λ1, (X, type, A) : λ2 (X, type, B) : λ1 ⊗ λ2

Typing (a) (D, dom, B) : λ1, (X,D, Y ) : λ2 (X, type, B) : λ1 ⊗ λ2

Typing (b) (D, range, B) : λ1, (X,D, Y ) : λ2 (Y, type, B) : λ1 ⊗ λ2

Generalisation (X,A, Y ) : λ1, (X,A, Y ) : λ2 (X,A, Y ) : λ1 ⊕ λ2

3 MapReduce Algorithm for Annotated RDFS Reasoning

3.1 Naive Implementation

We will use typing rule (a) to illustrate how to use MapReduce program to
encode a rule. To apply this rule, we essentially need to perform a join between
(D, dom, B) : λ1 and (X,D, Y ) : λ2. Algorithm 1 and Algorithm 2 provide the
map and reduce function for this rule respectively. In this MapReduce program,
the mappers scan all the annotated triples, and check for each triple if it has the
form (D, dom, B) : λ1 or (X,D, Y ) : λ2. If so, the mapper will emit a key/value
pair where the key is D and the value is the triple. Then the reducers collect all
triple pairs, and output the derived results.

Algorithm 1. map function for typing rule (a)

Input: key, triple
1: if triple.predicate == ’dom’ then
2: emit({p=triple.subject}, {flag=0, u=triple.object, a=triple.annotation};
3: end if
4: emit({p=triple.predicate}, {flag=1, u=triple.subject, a=triple.annotation};

3.2 Challenges and Solutions

Such a naive implementation, however, suffers severe efficiency problem. For ex-
ample, the naive join implementation will introduce an expensive shuffling stage;
arbitrary attempts of rule applications will result in fixpoint iterations. For this
reason, previous work [4] for RDFS reasoning has proposed several optimizations.
These optimizations include loading schema triples into memory, grouping data
to avoid duplicates, and ordering the rule applications to avoid fixpoint iterations.
For the annotated RDFS reasoning problem, most of these optimizations are also
applicable. However, there are still additional challenges to deal with the annota-
tion. In the following, we shall discuss these challenges and their solutions.
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Algorithm 2. reduce function for typing rule (a)

Input: key, iterator values
1: set[0].clear(); set[1].clear();
2: for value ∈ values do
3: set[value.flag].update(value.u, value.a);
4: end for
5: for (i, j) ∈ set[0]×set[1] do
6: emit(null, new AnnotatedTriple(i.u, ’type’, j.u, i.a⊗j.a));
7: end for

Generalization Rule. One major difference between the general annotated
RDFS reasoning and the RDFS reasoning is the generalization rule. In RDFS
reasoning, we can use data grouping technique to avoid generating duplicates,
and therefore the generalization rule is not necessary. In the general setting,
however, this optimization is not applicable. We have to reproduce the whole
dataset for this rule, which is expensive. On the other hand, such generalization
rule is important to improve the efficiency in both time and space. Therefore
the challenge is what is the best tradeoff. For annotated RDFS reasoning, the
best decision is to apply the generalization rule twice: once at the beginning
and once at the end. Furthermore, even though an explicit application of the
generalization rule is unavoidable, the grouping technique is still useful to avoid
duplicates as many as possible.

Unnecessary Derivation. If applying a rule derives an annotated triple τ : λ
where λ = ⊥, such derivation is an unnecessary derivation. Unnecessary deriva-
tions will cause the reasoner to waste a lot of time to perform useless rule appli-
cations. Therefore we want to have as few unnecessary derivations as possible.
To tackle this problem, we can design the map key according to the annotation
such that two annotated triples, which definitely produce empty result, will not
be grouped together. Therefore the reducers can generate fewer empty results.
Notice that these optimizations for specific domains might not be applicable for
the general setting. However, our general methods can handle the general an-
notated RDFS reasoning, even though they might be inefficient. Therefore we
can treat these specific optimizations as ‘plugins’ to the general reasoner so that
they do not affect the generality.

Fixpoint Calculation. Calculating the complete results by applying the sub-
class rules and subproperty rules requires fixpoint iteration. For RDFS reason-
ing, as discussed in [4], we can load all schema triples into memory to solve
this problem. The key problem is how to calculate the subclass (or subproperty)
closure. In RDFS semantics, calculating the subclass (or subproperty) closure is
essentially calculating the transitive closure over the subclass (or subproperty)
graph. In the general setting, however, calculating the transitive closure is not
enough: we have to deal with the annotations. To handle this challenge, we find
that calculating the closure is essentially a variation of all-pairs shortest path
calculation problem, i.e., calculating the shortest pathes between each pair of
nodes in a weighted graph. We can modify the shortest path algorithm to deal
with this problem.
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Table 2. Scalability for fuzzy RDFS reasoning

Number of units 128 64 32 16 8 4 2

Time (seconds) 122.653 136.861 146.393 170.859 282.802 446.917 822.269

Speedup 6.70 6.01 5.62 4.81 2.91 1.84 1.00

4 Preliminary Results

We have implemented a reasoner for fuzzy domain. In this section, we will re-
port some preliminary results of our fuzzy RDFS reasoner. These results were
originally reported in our journal paper [2].

We use Hadoop as our MapReduce platform. We randomly generate fuzzy
degrees on top of the DBPedia core ontology as our dataset. After performing
fuzzy RDFS reasoning algorithm, 133656 new fuzzy triples were derived from the
original dataset which contains 26996983 fuzzy triples. Table 2 lists the running
time results. The results show that the running time speedup increases along
with the number of computing units used. However, this speedup increase is
not as linear as expected. The reason is that there is a warmup overhead of the
Hadoop system which is unavoidable no matter how many computing units we
used. Therefore we basically conclude that our method is scalable with respect
to that the running time decreases as the number of units increases.

5 Conclusion

In this paper, we showed how to use MapReduce techniques to achieve scalable
annotated RDFS reasoning. We discuss some major challenges that will cause
efficiency issues, and propose several solutions to tackle them. We report our
preliminary results over fuzzy RDFS dataset, and the results show that our
method is scalable.
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Abstract. A central and much debated topic in the Knowledge Representation
and Reasoning community is how to combine open-world with closed-world for-
malisms, such as Description Logics (DLs) with Logic Programming. We pro-
pose an approach to defining the semantics of hybrid theories, composed of a DL
and a Normal Logic Program (NLP) parts, which employs standard open-world
semantics for the former and Pinto and Pereira’s Minimal Hypotheses semantics
(MHs) for the latter. As opposed to the currently employed semantics for hy-
brid DL-NLP KBs based on Stable Model (SM) semantics, our hybrid semantics
guarantees the existence of models for any hybrid DL-NLP theory with consistent
DL fragment and consistent DL-NLP ensemble. Because MHs features beneficial
theoretical properties, like relevance and cumulativity, existential query answer-
ing tasks may not need to consider the whole hybrid KB, as it is necessarily the
case with current state-of-the-art approaches based on the SM semantics.

1 Introduction

Description Logics (DLs) are a family of knowledge representation formalisms that are
decidable fragments of first-order logic [2], where decidability is ensured via several
syntactic restrictions. These restrictions lead to problems when expressing some non-
tree like relationships. Such relations can easily be expressed using logic programming
rules. Nevertheless, rule-based formalisms have their own shortcomings because typi-
cally they do not allow reasoning with unbounded infinite domains and hence cannot
be used in many scenarios where modeling incomplete information is required.

A hybrid knowledge base (KB) has two components: a DL-KB1 and a Logic Pro-
gram (LP). In this work we focus on the same direction as, say, [8] and present a new
approach of integrating DLs with normal Logic Programs (NLPs). Unlike the SM [3]
based approaches like [8,6], in our approach, odd loops over negation2 in the rule part of

� Supported by the DFG project ExpresST.
1 DL-KBs are usually called ontologies in the Semantic Web community. In this paper, we use

these two terms interchangeably.
2 When two rules depend on each other we say they form a loop. When such a loop is formed

through default negated literals (DNLs) in the bodies of rules, we dub it loop over negation
(LON). When there is an even (odd) number of DNLs through which the LON is formed we
dub it even (odd) loop over negation (ELON/OLON).
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a hybrid KB are not treated as modeling errors and hence not every hybrid KB contain-
ing OLONs needs to be inconsistent. Approaches based on Well-Founded Semantics
(WFS) like [5] are three-valued and handle OLONs via the third undefined truth value.

Example 1. The affordable car problem.
Consider an online recommendation system for selling vehicles. The knowledge of the
car sales company is described by the following ontology and NLP rule:

Vehicle ≡ Car � Van � Truck (1)
Car ≡ ABS � Airbagged � Automatic (2)

AffordableCar ≡ Car � ¬(ABS � Airbagged � Automatic) � StandardSeats (3)
LuxuryCar ≡ Car � ABS � Airbagged � Automatic � LeatherSeats (4)

StandardSeats(C) ← not LeatherSeats(C) (5)

Vehicles for sale are cars, vans, or trucks (Axiom (1)); all cars always come with at
least one additional feature (Axiom (2)); affordable car misses at least one of these
features (Axiom (3)) and has standard seats; luxury cars have all three features and
special leather seats (Axiom (4)). By default, a car is sold with standard seats, unless it
is explicitly demanded by the customer that the car must have leather seats – Rule (5).

Suppose now there is a customer who will be happy if she gets an affordable car c,
and her preferences regarding car systems are given as in the following rules:

Automatic(c) ← not ABS(c) (6) ABS(c) ← not Airbagged(c) (7)
Airbagged(c) ← not Automatic(c) (8) Happy ← AffordableCar(c) (9)

We need to find an affordable car while satisfying her preferences. Using the stable
models as the semantic basis for the NLP part leads to no solution because the SMs are
unable to assign models to the OLON formed by the rules (6), (7) and (8). However,
such a system is easily realizable in our approach. ♦

LONs in NLPs can be used to represent alternative choices, not unlike SAT problems,
and in these cases the existence of a solution is guaranteed as long as no Integrity
Constraints3 (ICs) are added to the program. The Closed World Assumption (CWA)
principle associated with the not operator is intended to enforce a skeptical stance, i.e.,
holding minimal beliefs. Although with LPs with no LONs we can always apply the
CWA, with LPs with LONs there are several alternative minimal sets of beliefs one can
assume — in this case we no longer use the CWA, but instead a Alternative World As-
sumption (AWA). The approach taken by the Minimal Hypotheses (MH) semantics [9],
upon which our current work is based, considers its models to be the consequences of
(set-inclusion) minimally assumed hypotheses, where the assumable hypotheses come
from the atoms of DNLs in LONs. In the example the NLP part is used to represent

3 An IC is a special kind of logic rule where the head is ⊥. ICs are not part of NLPs, but (non-
Normal) LPs are unions of “normal” rules with ICs. This way, a generate-and-test problem can
be modeled by a LP using the normal rules as generators of candidate solutions (the models),
and using the ICs as filters to discard unsatisfying candidate solutions.
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a customer’s preferences which we want to satisfy in a 2-valued fashion: a SM-based
approach provides no solution, whereas a MH-based one does.

2 Minimal Hypotheses-Based Semantics for Hybrid DL-NLP KBs

Our semantics for hybrid DL-NLP KBs is based upon a guess-and-check declarative
fixed-point definition, an approach not unlike that of SMs (which are fixed-points of the
Gelfond-Lifschitz[3] operator and are also defined via a guess-and-check).

A hybrid DL-NLP KB is a pair K = (O,P) where O is a DL-KB and P is an
NLP. ΣO denotes the signature (the set of predicate symbols and constants occurring
in) of O, ΣP denotes the signature of P , and ΣK denotes the common signature of
K — ΣK = ΣO ∩ ΣP . ABΣ denotes the set of all possible atoms over signature Σ.
Our semantics for K takes into account the semantics of both of its components O
and P , where we consider the MH semantics for P . MHs allows for several alternative
models for P , and theO has several models, thus the hybridKmust have several hybrid
models. The literals of a model of each of O and P must be used by the other to allow
for the possible entailment of more consequences. Coherence is enforced: explicitly
negated literals entailed from O imply their default negated shared ΣK counterparts
in P .

Definition 2. MH-based semantics of hybrid KB.
Let O be a consistent DL theory and K = (O,P) be a hybrid DL-NLP KB. A pair
(I,M) is an MH-based hybrid model of K iff

– M is an MH model of P ∪ (I+ ∩ ABΣK) with
– {not B : ¬B ∈ I− ∧B ∈ ABΣK} ⊆M− (coherence) and
–

(
O ∪ (M+ ∩ ABΣK) ∪ ({¬B : not B ∈M− ∧B ∈ ABΣK})

)
∪ I is consistent,

where M = M+ ∪M−, M+ ⊆ ABΣP , M− = {not B : B ∈ ABΣP \M+}; and
I = I+ ∪ I−, I+ ⊆ ABΣO , I− = {¬B : B ∈ ABΣO \ I+}. We use the term hybrid
model instead of MH-based hybrid model whenever it is obvious from the context. ♦

In words, we define the semantics as a coupling of two different semantics via a syn-
chronizing “interface” of ground atoms. A work closely related thereto is that of the
so-called multi-context systems (MCSs): a framework that allows for combining arbi-
trary monotonic and non-monotonic logics [1]. A Hybrid KB in our approach can be
taken as a multi-context system with two contexts, an ontology context and a program
context. See [7] for a detail comparison with existing approaches.

In Example 1, a hybrid model would be (I,M) with (abbreviating predicate names)

I = {SS(c),¬LS(c), Air(c), ABS(c), AC(c),¬Aut(c),Car(c),¬LC(c), Veh(c)} and
M = {SS(c), not LS(c), Air(c), ABS(c), not Aut(c),H, AC(c)}.

Non-monotonicity in the NLP part is naturally supported by our formalism.
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3 Reasoning

Given a model (I,M) for K = (O,P) and an atom A, (I,M) |= A iff

– O ∪ (M+ ∩ ABΣK) ∪ ({¬B : not B ∈ M− ∧ B ∈ ABΣK}) ∪ I |= A whenever
A ∈ ABΣO , and

– A ∈M whenever A ∈ ABΣP

Two reasoning tasks are essential: consistency and entailment.K is consistent iff there
is at least one MH-based model for K. For a given first-order atom A we say A is cred-
ulously/skeptically entailed from K (written as K |=C A/K |= A) iff for some/every
MH-based hybrid model (I,M) of K we have (I,M) |= A. The rules never violate
the DL-safety restriction as the only way for O and P to communicate is via a finite
set of shared ground atoms. Hence, the DL-safety restriction is trivially satisfied for
all the rules. It follows from Def. 2 that both the consistency and entailment problems
require guessing sets I and M such that the conditions imposed by the definitions are
satisfied. In [7] we have shown that the complexity of these problems highly depends
on the DL in the which the ontology part of the hybrid DL-NLP KB is formulated. E.g.,
for SROIQ [4] we get:

Theorem 3. Complexity of the entailment and consistency problems.
The consistency and the entailment problems in a hybrid DL-NLP KB are both
N2EXPTIME-complete.

For the proof, we refer to [7] where we also provide a straight forward method for
checking the entailment of an atom from a hybrid DL-NLP KB.
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1 Introduction

In view of the practical deployment of OWL [9] based on description logics [2], the
importance of non-standard reasoning services for supporting ontology engineers was
pointed out, for instance, in [8]. An example of such reasoning services is that of uni-
form interpolation: given a theory using a certain vocabulary, and a subset Σ of “rel-
evant terms” of that vocabulary, find a theory that uses only Σ terms and gives rise to
the same consequences (expressible via Σ) as the original theory. In particular for the
understanding and the development of complex knowledge bases, e.g., those consisting
of general concept inclusions (GCIs), the appropriate tool support would be beneficial.
We consider the task of uniform interpolation in the very lightweight description logic
EL, the basic member of the EL family [1] which provides the logical backbone of
the OWL EL profile. The existing related approaches ([3,6,4]) do not provide a so-
lution for the task of uniform interpolation in general EL terminologies. Up to now,
also the bounds on the size of uniform EL interpolants have been unknown. We pro-
pose a worst-case-optimal approach to computing a finite uniform EL interpolant for
a general terminology. After a normalization, we construct two regular tree grammars
generating subsumees and subsumers of atomic concepts interpreted as tree languages.
Using a Gentzen-style proof calculus for general subsumptions in EL, we show that, in
case a uniform interpolant exists, the corresponding sublanguages with an exponential
bound on the role depth are sufficient to obtain a uniform EL interpolant of at most
triple exponential size. Further, we show that, in the worst-case, no smaller interpolants
exist, thereby establishing the triple exponential tight bounds on the size of uniform
interpolants in EL. This is a report on our recent work accepted at ECAI 2012 [7].

2 Preliminaries

Let NC and NR be countably infinite and mutually disjoint sets of concept symbols
and role symbols. An EL concept C is defined as C ::= A|�|C � C|∃r.C, where A
and r range over NC and NR, respectively. In the following, we use symbols A, B to
denote atomic concepts and C,D to denote arbitrary concepts. A terminology or TBox
consists of concept inclusion axioms C � D and concept equivalence axioms C ≡ D
used as a shorthand for C � D and D � C. While knowledge bases in general can also
include a specification of individuals with the corresponding concept and role assertions
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(ABox), in this paper we do not consider them. The signature of an EL concept C or
an axiom α, denoted by sig(C) or sig(α), respectively, is the set of concept and role
symbols occurring in it. To distinguish between the set of concept symbols and the set
of role symbols, we use sigC(C) and sigR(C), respectively. The signature of a TBox
T , in symbols sig(T ) (correspondingly, sigC(T ) and sigR(T )), is defined analogously.
The semantics of the above introduced DL constructs is standard and can be found, for
instance, in [2].

In this paper, we investigate uniform interpolation based on concept- inseparability,
i.e., the aim is to preserve all Σ-concept inclusions. Thus, the task of uniform interpo-
lation is defined as follows: Given a signature Σ and a TBox T , determine a TBox T ′
with sig(T ′) ⊆ Σ such that for all EL concepts C,D with sig(C) ∪ sig(D) ⊆ Σ holds:
T |= C � D iff T ′ |= C � D. T ′ is also called a uniform EL Σ-interpolant of T . In
practice, uniform interpolants are required to be finite, i.e., expressible by a finite set of
finite axioms using only the language constructs of EL.

3 Lower Bound

While deciding the existence of uniform interpolants in EL is exponential [4], i.e., one
exponential less complex than the same decision problem for the more complex logic
ALC [6], the size of uniform interpolants remains triple-exponential. We demonstrate
that this is in fact the lower bound by the means of the following example (obtained
by a slight modification of an example given in [5] originally demonstrating a double
exponential lower bound in the context of conservative extensions).

Example 1. The EL TBox Tn for a natural number n is given by

A1 � X0 � ... � Xn−1 (1)
A2 � X0 � ... � Xn−1 (2)

�σ∈{r,s}∃σ.(Xi � X0 � ... � Xi−1) � Xi i < n (3)
�σ∈{r,s}∃σ.(Xi � X0 � ... � Xi−1) � Xi i < n (4)

�σ∈{r,s}∃σ.(Xi � X j) � Xi j < i < n (5)
�σ∈{r,s}∃σ.(Xi � X j) � Xi j < i < n (6)

X0 � ... � Xn−1 � B (7)

InTn, the atomic concepts Xi and Xi represent the bit number i of a binary counter being
set and unset, respectively. Axiom 3 ensures that an unset bit will be set in the successor
number, if all smaller bits are already set. The subsequent Axiom 4 ensures that a set
bit will be unset in the successor number, if all smaller bits are also set. Axioms 5
and 6 ensure that in all other cases, bits do not flip. For instance, Axiom 5 states that,
if any bit before bit i is still unset, then bit i will remain unset also in the successor
number. If we now consider sets Ci of concept descriptions inductively defined by C0 =

{A1, A2}, Ci+1 = {∃r.C1 � ∃s.C2 | C1,C2 ∈ Ci}, then we find that |Ci+1| = |Ci|2 and
consequently |Ci| = 2(2i). Thus, the setC2n−1 contains triply exponentially many different
concepts, each of which is doubly exponential in the size of Tn (intuitively, we obtain
concepts having the shape of binary trees of exponential depth, thus having doubly
exponentially many leaves, each of which can be endowed with A1 or A2, giving rise to
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triply exponentially many different such trees). It can be shown that for each concept
C ∈ C2n−1 it holds Tn |= C � B and that there cannot be a smaller uniform interpolant
for Tn w.r.t. the signature Σ = {A1, A2, B, r, s} than {C � B | C ∈ C2n−1}.
Hence we have found a class Tn of TBoxes giving rise to uniform interpolants of triple-
exponential size in terms of the original TBox. In the following, we show that this is
also an upper bound by providing a procedure for computing uniform interpolants with
a triple-exponentially bounded output.

4 Upper Bound

The upper bound can be shown by providing an algorithm, which computes a uniform
interpolant, in case it exists, of at most triple-exponential size in the size of the original
TBox. The algorithm relies on a normalization, which assigns to each sub-expression
occurring in the original TBox and not being equivalent to any atomic concept a fresh
concept name. This can be done recursively by replacing sub-expressions C1 � ... � Cn

and ∃r.C by fresh concept symbols until each axiom in the TBox T is one of {A �
B, A ≡ B1� ...�Bn, A ≡ ∃r.B}, where A, B, Bi ∈ sigC(T )∪{�} and r ∈ sigR(T ). Given a
normalized TBox additionally extended with classification results, we can show using a
deduction calculus forEL terminologies that the uniform interpolant UI can be obtained
from the sets of subsumers and subsumees of all atomic concepts in T as follows.

Definition 1. Let T be a normalized EL TBox and , for each A ∈ sigC(T ), let R1(A)
and R2(A) be the set of subsumees and the set of subsumers of A in T . Then, the EL
TBox UI(T , Σ,R1,R2) is given by

{C � A | A ∈ Σ,C ∈ R1(A)} ∪ {A � D | A ∈ Σ,D ∈ R2(A)}∪
{C � D | there is A � Σ,C ∈ R1(A),D ∈ R2(A)}.

In our approach, we represent the (possibly infinite) sets of subsumees and subsumers as
tree languages L(G) generated by regular tree grammars G, where concept expressions
C are interpreted as a trees according to their term structure.

Theorem 1. Let T be a normalized EL TBox, Σ a signature. For each A ∈ sigC(T ),
we can compute from T in exponential time a grammar G�(T , Σ, A) generating sub-
sumees of A and a grammar G�(T , Σ, A) generating subsumers of A with the following
properties:

– G�(T , Σ, A) and G�(T , Σ, A) are exponentially bounded in the size of T , while the
number of non-terminals corresponds to the number of atomic concepts in T .

– For each C with sig(C) ⊆ Σ such that T |= C � A there is a concept C′ generated
by G�(T , Σ, A) such that C can be obtained from C′ by adding arbitrary conjuncts
to arbitrary sub-expressions.

– Each D satisfying sig(D) ⊆ Σ and T |= A � D is generated by G�(T , Σ, A).

While the languages generated by the grammars are usually infinite, we require finite
subsets of L(G�(T , Σ, A)) and L(G�(T , Σ, A)) to obtain the corresponding upper bound.
Based on the following lemma presented in [4], we obtain a bound on the role depth
of minimal uniform EL interpolants, allowing us to restrict the role depth of relevant
elements in L(G�(T , Σ, A)) and L(G�(T , Σ, A)):
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Lemma 1. Let T be a normalized EL TBox, Σ a signature. There exists a uniform EL
Σ-interpolant of T if and only if there exists a uniform EL Σ-interpolantT ′ of T whose
maximal role depth is exponentially bounded by |T |.

Based on this bound and the size of G�(T , Σ, A),G�(T , Σ, A), we can describe a way
to materialize a role-depth-bounded part of G�(T , Σ, A),G�(T , Σ, A) into subsumer and
subsumee sets R1(A) and R2(A), respectively, obtaining the following result:

Theorem 2. Given an EL TBox T and a signature Σ, there exists a uniform EL Σ-

interpolant of T iff there exists a uniform EL Σ-interpolant T ′ with |T ′| ∈ O(222|T |
).

5 Summary

In this paper, we summarize an approach to computing uniform interpolants of general
EL terminologies based on proof theory and regular tree languages. Moreover, we noted
that, if a finite uniform EL interpolant exists, then there exists one of at most triple
exponential size in terms of the original TBox, and that, in the worst-case, no shorter
interpolant exists, thereby establishing the triple exponential tight bounds.
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Abstract. We describe a technical solution for solving the following
entailment problem in the Description Logic EL: (T \U) ∪ f∗(T \ U) |=
C1 � C2, where T is a TBox, C1,C2 are concepts, U is a subset of axioms
of T , and f∗ is a renaming function which gives a copy of TBox with
some signature symbols injectively renamed. We introduce an enriched
model structure for EL TBoxes: once built for a given TBox T , it allows
for checking the entailment efficiently for different choices of C1,C2, U ,
and f∗. This problem is concerned with computing explicit definitions
of concepts wrt a signature and is an important part of the recently
proposed algorithms for ontology decomposition.

1 Introduction

In this paper, we address the problem of eliminating redundant axioms from
EL–Tboxes and deciding existence of explicit definition of a EL–concept wrt a
given signature in a EL–TBox. These procedures are the important part of the
decomposition algorithm for EL–TBoxes proposed in [2]. Given a TBox T , an
axiom ϕ ∈ T is called redundant if T \ {ϕ} |= ϕ. The notion has been discussed
in [4], where general algorithms for eliminating redundant axioms have been
proposed. In the decomposition algorithms of [2], eliminating redundant axioms
from the input TBox turns out to be very important and allows to avoid excessive
calls of computationally hard subroutines. Given a TBox T , a concept C is said to
be explicitly definable in T wrt a signatureΣ if T |= C ≡ E, where E is a concept
overΣ. Explicit definability was studied in Description Logics in context of query
rewriting (Sect. 3 in [5]) and is intimately related to modularity properties of
ontologies via the notion of uniform interpolation [3]. Unsurprisingly, it happens
to be the crucial point in the decomposition algorithms from [2]. As the logic EL
enjoys parallel interpolation property and concept interpolation (Theorems 13
and 45 in [2]), a concept C is explicitly definable in a EL–TBox T wrt a signature
Σ ⊆ sig (T ) (a subset of signature of T ) iff T ∪ T ∗ |= C∗ 
 C, where sig (T )∩
sig (T ∗) = Σ, sig (C∗)∩sig (C) ⊆ Σ, and T ∗ and C∗ are obtained from T and
C, respectively, by replacing all non-Σ-symbols simultaneously with fresh ones,
not present in sig (C) ∪ sig (T ). For instance, if A,B,C,D are concept names,

� This work was funded by the grant of the President of Russian Federation (Grant
No. MK-2037.2011.9), the Russian Academy of Sciences (Grant No. 15/10), and the
Siberian Division of the Russian Academy of Sciences (Integration Project No. 3).
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T = {A�B 
 C,A ≡ D,A 
 B} andΣ = {D} then T |= A�B ≡ D and we have
the entailment T ∪{A∗�B∗ 
 C∗, A∗ ≡ D,A∗ 
 B∗} |= A∗�B∗ 
 A�B proving
definability of concept A � B wrt Σ in T 1. Thus, definability is polynomially
reduced to entailment in EL which is tractable, although the explicit definition
itself can be of exponential length wrt the size of T and C (cf. Example 28 in
[2]). Deciding definability allows to avoid excessive search for explicit definitions
which is provably harder than checking entailment (in many Description Logics).
At the same time, it suffices for computing signature decompositions of EL–
TBoxes ([2]). There are two complications in this context, however. First, the
signature Σ may not be known in advance and only has to be a subset of sig (C)
(probably, in union with a subset Δ ⊆ sig (T )). Second, it may be necessary
to verify entailment of C∗ 
 C independently of some subset U ⊆ T of axioms
of TBox (cf. Figure 5 in [2]). For instance, in the example above, the axiom
A � B 
 C was not needed to prove the equivalence A � B ≡ D in T . We
introduce enriched models of EL–TBoxes, which, given a TBox T , allow for
deciding efficiently the entailment

(T \ U) ∪ f∗(T \ U) |= C1 
 C2

for different subsets U ⊆ T , concepts C1, C2, and function f∗ renaming signature
symbols injectively. By definition, this allows for efficiently removing redundant
axioms and checking for existence of explicit definitions of concepts wrt different
subsignatures of T . Since the main application of this procedure is the decompo-
sition algorithm working with a given TBox (Figure 5 in [2]), we restrict ourselves
to the case when C1, C2 are concepts occurring in axioms of (T \U)∪f∗(T \U).
Though, the proposed construction is straightforwardly extended to the case of
arbitrary concepts. The main idea behind the enriched models is the observation
applicable to any system with non-trivial search problems: do a preprocessing of
information in order to handle numerous standard calls to it faster.

2 Enriched Models of EL–TBoxes

An enriched model is a structure related to syntactic form of axioms in a TBox,
recall the syntactic model considered in the standard decision procedure for EL
[1]. It is built over a TBox in an enriched normal form obtained as follows.
Given a TBox T , the conservative extension Tprim of T is constructed which
satisfies the following property: for each axiom ϕ = (C 
 D) in T , there is a
formula A 
 B ∈ Tprim augmented with a link to the original axiom ϕ such
that A 
 B is equivalent to ϕ in Tprim and A,B are concept names. This
conservative extension is called primitivization of TBox T (for concept names
are primitive objects in TBox). Then Tprim is transformed into normal form in
a standard way [1] with the only exception that arbitrary number of conjuncts
is allowed on the left–hand side of concept inclusions and each formula in the
normal form is augmented with a link to the corresponding original axiom ϕ
from T . After these transformations, a TBox is said to be in enriched normal

1 The explicit definition is exactly the concept interpolant between A∗�B∗ and A�B.
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form (notation Tnorm). The main idea behind enriched model is that for every
concept inclusion A 
 B, with Tnorm |= A 
 B and A,B concept names from
sig (Tnorm), the enriched model stores paths corresponding to derivations of
A 
 B, with all the intermediate formulas from Tnorm used in these derivations
and links to the original axioms of T . If U ⊆ T , then T \ U |= A 
 B holds
iff there is a path corresponding to a derivation of A 
 B in T , where no
intermediate formula refers to an axiom of U . Specifically, an enriched model is
a bipartite graph 〈Γ+, Γ−, E〉 augmented with four mappings, where (informally
speaking) vertices of Γ+ (+–vertices) correspond to signature symbols of Tnorm
and vertices of Γ− correspond to axioms of Tnorm. The four mappings are:

– δ : Γ− → T which maps formula vertices to axioms of the original TBox;
– ρ : Γ+ → NT

C ∪(NT
C ×NT

C ) mapping +–vertices to concept names from Tnorm
(the set NT

C ) and pairs of concept names from NT
C × NT

C ;
– f c : NT

C → P(Γ+) giving a set of +–vertices corresponding to a concept
name;

– f r : NT
R → P(Γ+) giving a set of +–vertices corresponding to a role name

from Tnorm (the set NT
R ).

It holds that Tnorm |= A 
 B for concept names A and B iff there is a vertex
v ∈ Γ+ in the enriched model of Tnorm such that v ∈ f c(B) and ρ(v) = A.

Theorem 1. The standard model for TBox Tnorm is obtained by taking the set
NT

C as the universe and the composition mappings ρ ◦ f c : NT
C → P(NT

C ) and
ρ ◦ f r : NT

R → P(NT
C × NT

C ) as the interpretation for concept names and roles.

Given a TBox T , an enriched modelM of Tnorm, a subset U ⊆ T , and concepts
C1, C2 occurring in axioms of T , the entailment T \ U |= C1 
 C2 is decided as
follows. By primitivization and normalization steps, we may assume that we have
concept names A1 and A2 such that Tnorm |= Ai ≡ Ci, for i = 1, 2. We consider
the set of vertices f c(A2) ⊆ Γ+. If there is no v ∈ f c(A2) with ρ(v) = A1,
then Tnorm 	|= A1 
 A2 and hence, T \ U 	|= C1 
 C2. Otherwise, consider a
substructure N ⊆ M such that v ∈ Γ+ |N and for each vertex u ∈ Γ− |N , it
holds δ(u) 	∈ U . We call the substructure N witness for v in T \ U .

Theorem 2. T \ U |= A1 
 A2 holds iff there is a vertex v ∈ f c(A2) with
ρ(v) = A1 and a witness N for v in T \ U .

The algorithm for searching substructure N reduces to recursive traversal of
the graph representation of model M, starting from vertex v. In particular,
this procedure allows to check axioms of a TBox for redundancy using a single
prebuilt enriched model of TBox. To decide the entailment (T \ U) ∪ f∗(T \
U) |= C1 
 C2 for various selections of subset U and renaming function f∗, we
start from a prebuilt enriched model M0 of TBox (T ∪ T ′)norm, where T ′ is a
signature–disjoint copy of T (with all symbols from sig (T ) injectively renamed).
Having function f∗, w.l.o.g. we assume that f∗ agrees on fresh symbols with the
initial renaming used for T ′, sig (f∗(T )) ⊆ sig (T ′) ∪ sig (T ) and construct
the enriched model Mf for T ∪ f∗(T ) in two steps. First, we factorize model
M0 by identifying symbols from sig (T ) which are not changed by f∗ with their
counterparts from sig (T ′). Then we extend the factorized modelM0 to satisfy
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all concept inclusions from (T ∪ f∗(T ))norm which are not already contained
in (T ∪ T ′)norm. Finally, we use the obtained model Mf to decide (T \ U) ∪
f∗(T \ U) |= A1 
 A2, where A1 and A2 are concept names corresponding to
C1 and C2 as described above for redundancy testing. If the set of signature
symbols not renamed by f∗ is “small enough” in comparison with cardinality
of sig (T ) (this is the case for the decomposition algorithm in Figure 5 in [2]),
then computing Mf based on the prebuilt model M0 is cheaper than building
the enriched model for (T ∪ f∗(T ))norm from scratch.

3 Conclusions
An enriched model is an extended representation of a TBox employed for elimi-
nating redundant axioms from TBox and deciding definability of a concept wrt
TBox and concept subsignature. Essentially, computing an enriched model is a
preprocessing which gives a moderate increase in the size of representation of
a TBox in computer memory and allows to avoid multiple calls to an external
reasoner. To give an example, we provide some numerical data for one of the
versions of Plant Ontology (PO, Revision 1.64) consisting of 1274 EL subclass
axioms. In our implementation, the size of the internal representation of PO af-
ter loading was 941 Kb, while the size of the enriched model for POnorm required
4.43 Mb. The enriched model was computed in 0.97 seconds and, based on this
prebuilt model, a maximal irredundant subset of axioms of PO was found in
0.69 seconds. The order in which axioms were selected from PO for redundancy
testing was arbitrary; seven axioms have been found redundant. With the same
order on axioms, the simple algorithm for redundancy testing based on the stan-
dard reasoning procedure for EL computes the same maximal irredundant set
in more than two minutes. While redundancy elimination becomes efficient un-
conditionally, a gain in speed of deciding explicit definability with the proposed
technique depends much on the context of application. As the main purpose of
our methods is related to decomposition algorithms which are out of the scope
of this paper, we have to leave discussion of relevant details for the future.
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Abstract. Reasoning in pervasive computing has to face computational
issues inherited by mobile platforms. This paper presents a prototypical
reasoner for mobile devices, which leverages Semantic Web technologies
to implement both standard (subsumption, satisfiability, classification)
and non-standard (abduction, contraction) inferences for moderately ex-
pressive knowledge bases. System features are surveyed, followed by early
performance analysis.

1 Introduction

Semantic Web technologies have been proposed as a candidate to promote in-
teroperability and intelligent decision support in ubiquitous computing contexts
–e.g., supply chain management and u-commerce [6], peer-to-peer resource dis-
covery [7] and so on– keeping rich and structured the exchanged information.
Reasoning and query answering for resource discovery in ubiquitous contexts is
a critical issue. Mobile computing platforms –albeit increasingly effective and
powerful– are still featured by hardware/software limitations. Most mobile in-
ference engines currently provide only rule processing for materialization of en-
tailments in a Knowledge Base (KB) [4,5], not supporting advanced inferences
and extensive reasoning over ontologies [5]. Standard satisfiability and subsump-
tion provide only boolean “yes/no” answers to queries. Non-standard inferences,
like Concept Abduction and Concept Contraction, are needed to enable a more
fine-grained semantic ranking as well as explanations of outcomes [2]. Imple-
mentation of tableaux algorithms on mobile devices exhibited serious memory
impact [8]. Moreover, current Semantic Web reasoners cannot be ported with-
out a significant re-write effort. In [7] a different design approach was followed to
adapt non-standard inferences to ubiquitous computing. Expressiveness of logic
language and axioms was limited in a way that structural algorithms could be
adopted, but maintaining it enough for broad application areas. Similar princi-
ples motivated independent research work on EL++ structural reasoners [1] and
the definition of OWL 2 profiles. This paper introduces a prototypical mobile
reasoner1 compliant with Semantic Web technologies through the OWL API

1 Mini-ME, the Mini Matchmaking Engine –
http://sisinflab.poliba.it/swottools/minime/
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Table 1. Syntax and semantics of ALN constructs and simple-TBoxes

Name Syntax Semantics

Top � ΔI
Bottom ⊥ ∅

Intersection C � D CI ∩ DI
Atomic negation ¬A ΔI\AI

Universal quantification ∀R.C {d1 | ∀d2 : (d1, d2) ∈ RI → d2 ∈ CI}
Number restriction ≥ nR {d1 | �{d2 | (d1, d2) ∈ RI} ≥ n}

≤ nR {d1 | �{d2 | (d1, d2) ∈ RI} ≤ n}
Inclusion A � D AI ⊆ DI

Equivalence A ≡ D AI = DI

[3] and implementing both standard reasoning tasks (subsumption, classifica-
tion, satisfiability) and non-standard inferences for semantic-based matchmaking
(abduction and contraction [2]). It is developed in Java, with Android as tar-
get platform. The paper is so structured: Section 2 describes the system, while
Section 3 reports on early experiments before concluding in Section 4.

2 System Outline

The system prototype is compatible with the Android Platform version 2.1 (API
level 7) or later. It runs either as a service (i.e., a background daemon) invoked
by Android applications, or as a library. In the latter form, it runs unmodified
on Java Standard Edition, version 6 or later. The system supports OWL 2 on-
tology language, in all syntaxes allowed by the adopted OWL API library. The
adopted logic language is ALN (Attributive Language with unqualified Number
restrictions) Description Logics in simple-TBox hypothesis [7], which keeps poly-
nomial the computational complexity of standard and non-standard inferences.
Main constructs are summarized in Table 1. The reasoning framework is based
on structural algorithms. When a knowledge base is loaded, it is preprocessed
with unfolding and Conjunctive Normal Form (CNF) normalization [7]. Beyond
standard Concept Satisfiability (a.k.a. consistency) and Subsumption test ,
the proposed system supports Concept Contraction and Concept Abduc-
tion non-standard inferences, enabling a semantic matchmaking and relevance
ranking of available resources w.r.t. a request [2,7]. Ontology Satisfiability
and Classification reasoning services over ontologies are also supported.

3 Performance Evaluation

Performance evaluation has been carried out as a comparison with a previous
version [7] of the matchmaker, which was developed for the Java ME (Micro
Edition) platform. This choice is motivated due to the lack of a mobile device
supporting both Java ME and Android, hence it was unfeasible to test the old
and new versions on a unique target handheld. The comparison has been done
by running the same test suite with both matchmakers on a PC equipped with
an Intel Core2 Duo T7300 CPU, 2 GB of RAM, Fedora 16 operating system
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Fig. 1. Turnaround Time Fig. 2. Memory Usage

Fig. 3. Processing Time

and Oracle Java SE 7u3. The test performs unfolding and normalization on an
ontology in [7] –having a size of 528 kB– and 100 request/supply pairs –with
an average size of 4.2 kB– and finally executes Concept Contraction and Con-
cept Abduction inferences between each pair. The VisualVM Java profiler was
used to measure execution times and memory consumption. The computational
impact of the profiler is evident (see Figure 1): the actual execution time may
be up to 6 times smaller. We further analyzed the time required by the main
processing steps: loading and parsing input documents; unfolding and normal-
ization; abduction; contraction. As shown in Figure 3, most of the time (66.7%)
was spent by the OWL API to load and parse input files. It took about 15
seconds to process the ontology and 100 request/supply pairs whereas the pre-
vious code took 5.7 seconds (53.2% of total time). As far as normalization and
unfolding are concerned, the old tool completed in 2667 ms, while the new one
did the same in 2018 ms (1.32 times faster, approximately). Figure 3 also shows
execution times for the abduction and contraction tasks. The old reasoner ran
100 abduction tests in 593 ms, while the current one did the same in 145 ms,
i.e., 4 times faster. For the contraction service, the previous software called the
method 100 times without checking for concept compatibility first, resulting in
a total time of 503 ms. The new reasoner took only 26.4 ms to perform 100
compatibility checks; 64 of them returned false and triggered contraction for
a total of 262 ms, which is approximately 1.74 times faster than the old one.
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Figure 2 shows the heap –used for dynamic allocation of new class instances and
arrays– and permanent generation –where long-lived objects are moved– memory
peak that was reached during the test. Memory consumption appears to have
increased for both areas w.r.t. the previous system. Experiments evidence design
and adopted optimization resulted in faster execution of non-standard inference
services for semantic matchmaking w.r.t. previous tools. The integration of the
OWL API improved flexibility in using KBs, and compatibility with Semantic
Web languages. Nevertheless, it is a performance bottleneck for processing time
and presumably for memory consumption.

4 Conclusion

A prototypical reasoner for mobile computing was presented. Early experiments
evidenced correctness and efficiency of non-standard reasoning services, whereas
the integration of the OWL API introduced a performance penalty. Future work
will be devoted to OWL interface optimization and to the enhancement of both
allowed reasoning features and supported logic languages.

Acknowledgments. The authors acknowledge partial support of national
project ERMES (Enhance Risk Management through Extended Sensors) - PON
(2011-2014).
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Alois Haselböck2, and Herwig Schreiner2

1 Alpen-Adria Universität, Klagenfurt, Austria
{anna.ryabokon,gerhard.friedrich}@ifit.uni-klu.ac.at
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Abstract. Constraint-based configuration is – on the one hand – one of the clas-
sical problem domains in AI and also in industrial practice. Additional problems
arise, when configuration objects come from an open environment such as the
Web, or in case of a reconfiguration. On the other hand, (re)configuration is a
reasoning task very much ignored in the current (Semantic) Web reasoning liter-
ature, despite (i) the increased availability of structured data on the Web, particu-
larly due to movements such as the Semantic Web and Linked Data, (ii) numerous
practically relevant tasks in terms of using Web data involve (re)configuration. To
bridge these gaps, we discuss the challenges and possible approaches for recon-
figuration in an open Web environment, based on a practical use case leveraging
Linked Data as a “component catalog” for configuration. In this paper, we present
techniques to enhance existing review management systems with (re)configuration
facilities and provide a practical evaluation.

1 Introduction

Constraint-based configuration, i.e. picking and linking a suitable set of components
from a component catalog s.t. some predefined constraints are satisfied is a classical
problem in AI and also in industrial practice. As users of the Web, we often solve such
configuration tasks where in theory the “component catalog” is the Web, e.g. as private
persons configuring an itinerary (flight, accommodation, hotel, etc.), or as academics, in
the task of assigning expert reviewers to papers. Emerging availability of Linked Data
on the Web [6] allows us to apply known configuration techniques to such problems
that have been solved manually by Web search. However, Linked Data and adjacent
Semantic Web communities focus mainly on taxonomic reasoning and ontologies (RDF
Schema, OWL), to better structure Web data or infer implicit Web data, thus largely
ignoring, to the best of our knowledge, reasoning tasks required for the configuration.

In this paper we show how configuration can be implemented in the framework of
Linked Data. Moreover, we discuss an extension of the original problem for the cases

� This work was funded by FFG FIT-IT within the scope of the project RECON-
CILE (grant number 825071). An extended version of the paper can be found at
http://proserver3-iwas.uni-klu.ac.at/reconcile/index.php/
benchmarks
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when configuration does not start from scratch. In this case a previously consistent
configuration has to be adapted, i.e. a reconfiguration is required. Reconfiguration is
an important task in the after-sale life-cycle of configurable products and services, be-
cause requirements are changing and there is a need to keep a product or a service
up-to-date [2]. As it has been shown in the previous work [3], (re)configuration tasks
can be efficiently handled by Answer Set Programming (ASP) [1] which extends logic
programming and includes an expressive modeling language and solving tools [4].

The feasibility of (re)configuration based on Open Web Data in a practical scenario
is demonstrated on the reviewer assignment problem (RAP): The decision if a paper is
accepted on a conference depends on reviews made by the program committee. There-
fore, it is required to assign every paper to a number of reviewers such that on the one
hand these reviewers are interested in reading the paper and on the other hand have
enough expertise. Our experiments show that the reviewer (re-)assignment task, lever-
aging Open Data and deploying methods of reconfiguration using SPARQL[9] and ASP,
can efficiently be applied in practice.

2 (Re)Configuration Using Web Data

The reviewer assignment problem can be viewed as a configuration task where papers
must be linked to reviewers such that a set of problem specific constraints are fulfilled.
A preferred solution can be determined based on an optimization function which ranks
the set of valid reviewer/paper assignments (i.e. configurations). In addition, reviewers
typically specify their preferences in a process of bidding on the one hand, and on
the other hand papers should be reviewed by the most competent reviewers among
the program committee (PC). Whereas bidding preference are usually collected by a
conference management system, the “expertise match” between reviewers and papers
is normally not given explicitly and has to be estimated by program or area chairs while
assigning the papers in existing systems, if it is taken into account at all.

In our approach we consider four categories of expertise: conflict if a reviewer is
an author of the paper or biased by some other circumstances; low, moderate and high
expertise. Moreover, the preferences of reviewers provided by the bidding process are
encoded as: conflict of interest declared by a reviewer; indifference, i.e. no bid is pro-
vided; weak and strong willingness to review the paper. The latter two categories cor-
respond to “I can review” and “I want to review” in EasyChair. The goal is to find a
match between reviewers and papers s.t. different preferences are reconciled.

Goldsmith and Sloan [5] propose to view RAP as a variant of the stable marriage
problem. A paper/reviewer assignment (marriage) is stable if there does not exist an
alternative assignment in which paper and reviewer are individually better off than
in their current assignment. Consequently, a reviewer cannot spot a paper which she
prefers more and for which she has more competence compared to the current assign-
ments. There are several variants of the stable matching which differ from the classic
stable marriage problem: polygamy – reviewers can get more than one paper and vice
versa; incomplete lists – some reviewers or papers cannot be assigned to each other;
and indifference – the preferences express a preset number of preference classes. Each
variation of the Stable Marriage Problem mentioned above can be solved in polyno-
mial time [5]. The problem becomes more complicated and is known to be NP-hard
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if both incomplete lists and indifference occur [8] as in the paper assignment variant
of the stable marriage problem. Therefore, a problem solving method which is able to
deal with NP-hard problems is required and justifies the usage of ASP as a problem
representation and solving framework.

In order to reduce the load on the solver we consider stability as a soft constraint
and minimize the number of assignments which do not fulfill the stability property. In
addition, we minimize the number of assignments of papers to reviewers with low and
moderate expertise as well as of reviewers to papers with indifference and weak will-
ingness. The encoding includes also the following hard constraints: (1) each paper must
be assigned to a fixed number of reviewers and (2) fairness of the workload should be
achieved. In order to distribute the papers among the reviewers as uniformly as possi-
ble, we add a balancing criterion as a hard constraint, which limits the minimum and
maximum number of papers assigned to each reviewer.

We use Linked Data [6] to extract valuable information about connections between
authors, such as recent co-authorship, joint affiliation or create expertise profiles. The
first two types of connections allow automatic recognition of conflicts of interests.
The profiles can be used to compare abstracts or keywords of published papers to
submissions, thus determining the level of expertise. For a proof-of-concept imple-
mentation we have selected a fictitious set of reviewers composed of persons men-
tioned at data.semanticweb.org, as well as a subset of papers mentioned there
as fictitious set of submissions. We also retrieve information about recent co-authorship
from http://dblp.l3s.de/d2r/where we only link authors with unambiguous
unique names present in both DBLP and data.semanticweb.org. In this paper,
we make the reasonable assumption that the more similar the paper abstract and the
abstracts of a reviewer are, the more competent the reviewer is to evaluate the paper. In
order to compute these similarities we extracted abstracts of submitted papers and pa-
pers written by reviewers using SPARQL queries to data.semanticweb.org. The
set of abstracts was analyzed by established methods from information retrieval and rec-
ommender systems [7] as follows: First, we derived a list of keywords relevant to the
abstracts of papers and reviewers by considering only those terms which are provided by
the PC chair of a conference in form of keywords. Next, we clean the keywords by em-
ploying a lemmatizer such as http://morphadorner.northwestern.edu/.
The result of this process is a term vector for each reviewer and each paper, which we
use in a standard term frequency – inverse document frequency (TF/IDF) weighting of
the paper’s abstract as well as of the union of abstracts for each reviewer. The similari-
ties of vectors describing the papers and vectors describing the reviewers are computed
by the cosine similarity measure [7].

The similarities were used to generate RAP instances of different size including a set
of reviewers and papers as well as their bids and expertises. For each instance we ap-
plied ASP solver to find solutions of both configuration and reconfiguration problems.
The instances to the latter problem are obtained by modifying corresponding solutions
of the configuration problem. In the case of RAP modifications include situations when
reviewers may drop out, papers could be withdrawn, or additional conflicts of interests
may be discovered. The transformation of the legacy configuration possibly requires
that some of its parts are deleted. Therefore, each reconfiguration problem instance

data.semanticweb.org
http://dblp.l3s.de/d2r/
data.semanticweb.org
data.semanticweb.org
http://morphadorner.northwestern.edu/
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includes requirements and transformation knowledge regarding reuse or deletion of
parts of a legacy configuration.

We employ the modeling patterns described in [3] to formulate a reconfiguration
problem instance. The principle idea is that for every element of the legacy configu-
ration a decision has to be made whether or not to delete or reuse this element. The
reused elements are complemented on demand by addition of new elements in order to
fulfill all requirements. Note that in the reconfiguration case the optimization criteria
of a configuration problem are extended with a criteria minimizing the costs associated
with the transformation actions such as delete, reuse or create.

The evaluation results were performed using Potassco ASP collection [4] show that
the reasoner was able to find a solution for all test instances and we obtained the best
configuration solutions that can be computed within a timeout period of 900 seconds;
proving optimality for such (re)configuration instances seems to be infeasible in prac-
tice. Note that, the performed experiments have realistic number for PC members and
submissions comparable with e.g. the last ISWC conferences from which we took the
data. For the reconfiguration problem instances the solver was able to find solutions
with optimal reconfiguration costs in all but the two biggest cases from 16 which were
tested. In these two cases the solver found solutions which reconfiguration costs are
20% and 8% higher than the optimum. A solution with the optimal reconfiguration
costs was usually identified by the solver in the first 10 seconds of the solving process
excluding the grounding time. The obtained results show that the proposed method is
feasible for realistic reviewer assignment problems.
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1 Our Position

The OWL 2 QL profile, which is based on DL-LiteR, has been designed so that
query answering is possible using relational database technology via query rewrit-
ing. Unfortunately, given a query Q posed in terms of an OWL 2 QL ontology1

O, the size of the rewritten query, Qo, which can be evaluated directly on the
relational database, is worst case exponential w.r.t the size of Q and O [1]. This
means that the computation and evaluation of Qo can be costly. Recent research
focuses on creating rewriting algorithms that generatesQo with a smaller size [3].

In this paper, we propose a new approach to answering SPARQL queries
on OWL 2 QL ontologies over existing relationally stored data. Our proposal
is to replace answering queries via query rewriting with answering queries us-
ing views. Our position is that SQL infrastructure can be leveraged in order to
support effective SPARQL query answering on OWL 2 QL ontologies over ex-
isting relationally stored data. We present preliminary results that support our
position.

Our position is inspired by our previous work on Ultrawrap [5], a system that
can execute SPARQL queries at almost equivalent execution speed as its se-
mantically equivalent SQL queries. Previous experimental studies demonstrated
that existing approaches were several magnitudes slower. Our main insight was
to represent the relational data as RDF triples using views. SPARQL queries are
syntactically translated to SQL queries which operate on the views. We observed
that two relational optimizations are needed in order for relational database to
effectively execute SPARQL queries: detection of unsatisfiable conditions and
self-join elimination. Given this past history, we ask ourselves if we can apply
this same approach to answering SPARQL queries on OWL 2 QL ontologies.

We first present the status quo with a running example adapted from [3]. We
then present our proposed approach and show initial results that support our
position. Finally, we present the open issues and our next steps.

1 In this paper, we use the term OWL 2 QL ontology to refer only to a TBox. Therefore,
we assume that it only contains axioms.
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2 The Status Quo

The status quo of systems that answer queries over an OWL 2 QL ontology
mapped to a relational database, also known as Ontology-based Data Access
(OBDA), consists of the following input: an OWL 2 QL ontology O, a relational
database D and an initial mapping M from the database D to the ontology O.
Queries posed over the ontology O are answered in three steps:

1. Query Rewriting: given a conjunctive query Q, and the ontology O, compute
a union of conjunctive queries Qo, which is a rewriting of Q w.r.t O.

2. Query Unfolding: given the mapping M , and the rewritten query Qo, com-
pute a SQL query QSQL.

3. Query Evaluation: the SQL query QSQL is evaluated on the relational
database.

OBDA systems such as Quest [4] or Mastro [2] implement these three steps. Ad-
ditionally, Calvanese et al. [1] and Perez-Urbina et al. [3] present query rewriting
algorithms and part of systems such as QuOnto2, Owlgres3 and REQUIEM4.

Throughout this paper, we will use the following running example. Consider
the following OWL 2 QL ontology O with concepts Student, Professor and Per-
son, and the following axioms:

Student 
 Person

Professor 
 Person

Consider the following relational databaseD consisting of tables PROF(PID,NAME)
and STUD(SID,NAME), and consider a mapping M from the database D to the
ontology O defined as follows using Datalog notation:

Student(x)← STUD(x, y)

Professor(x)← PROF(x, y)

Now assume that Q(x) is the query Person(x) posed over O. The first step of the
methodology just described is query rewriting: given the query Q and ontology
O, Q is rewritten to Qo:

Qo(x) = Student(x) ∨ Professor(x)

The next step is query unfolding: given the mapping M and the rewritten query
Qo, generate a SQL query QSQL:

SELECT SID FROM STUD UNION ALL SELECT PID FROM PROF

Finally, query QSQL is sent to the RDBMS where it is evaluated. Note that
UNION ALL is used because it does not eliminate duplicate rows.

2 http://www.dis.uniroma1.it/quonto/
3 http://pellet.owldl.com/owlgres/
4 http://www.cs.ox.ac.uk/projects/requiem/
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3 Our Proposal: Answering Queries Using Views

Our proposal is to replace answering queries via query rewriting with answering
queries using views. We do this in two steps. First, we represent the mappings
using SQL views, which is a union of SQL queries. We call this view the Triple-
view. Second, we compile the axioms of the OWL 2 QL ontology into SQL queries
and add them to the Tripleview. Note that this is only done once and not for
each time a query is executed. With our approach, we avoid rewriting queries
at run time and let the relational database do the query unfolding. In order to
further explain our approach, consider the same running example: the OWL 2
QL ontology O, the relational database D and the initial mapping M shown in
Section 2. First, we represent the mapping M in the Tripleview:

CREATE VIEW Tripleview(s, p, o) AS

SELECT SID AS s, "rdf:type" AS p, "Student" AS o FROM STUD

UNION ALL

SELECT PID AS s, "rdf:type" AS p, "Professor" AS o FROM PROF

The next step is to compile the OWL 2 QL ontology axioms into SQL queries.
Following our example, we need to add two additional queries to the Tripleview,
generating the following:

CREATE VIEW Tripleview(s, p, o) AS

SELECT SID AS s, "rdf:type" AS p, "Student" AS o FROM STUD

UNION ALL

SELECT PID AS s, "rdf:type" AS p, "Professor" AS o FROM PROF

UNION ALL

SELECT SID AS s, "rdf:type" AS p, "Person" AS o FROM STUD

UNION ALL

SELECT PID AS s, "rdf:type" AS p, "Person" AS o FROM PROF

Everything up to now is done before any query is executed. After the Tripleview
is created, we can execute queries. For example, consider the query Q written in
SPARQL:

SELECT ?x WHERE { ?x rdf:type Person }

This query is then syntactically translated to a SQL query on the Tripleview
and evaluated directly on the RDBMS without any further processing:

SELECT s FROM Tripleview WHERE p = "rdf:type" AND o = "Person"

4 Does This Work in Practice?

To test if our approach works in practice, we created the example database and
implemented the Tripleview on Microsoft SQL Server and executed the query.
The resulting query plan is shown in Fig. 1.



Ontology-Based Data Access Using Views 265

Fig. 1. The physical query plan for our running example on Microsoft SQL Server

The logical query plan consists of the Tripleview with the union of four queries.
We observe that the physical query plan generated by SQL Server consists of a
union of two queries. Therefore, the SQL optimizer determined which queries in
the Tripleview were not going to satisfy the original query and transformed the
original logical query plan into the optimal physical plan shown in Fig. 1. This
transform is the detection of unsatisfiable conditions optimization. Additionally,
we observe that query QSQL generates the same query plan.

This preliminary result supports our position that by answering queries using
views, the SQL infrastructure can be leveraged to support effective SPARQL
query answering on OWL 2 QL ontologies over existing relationally stored data.
Notice that we are not claiming that query rewriting is not needed. On the con-
trary, we are trying to get the best of both worlds. For example, query rewriting
algorithms, such as the ones presented in [2,3], would need to be modified to
generate the views. Additionally, we need to investigate how much of OWL 2
QL can be represented in views. Our first findings show that any axioms that
is not of the form A 
 ∃R (i.e. sub-class, sub-property, equivalent class, equiva-
lent property, etc), can be represented in views. Nevertheless, the possibility of
representing existential axioms of the form A 
 ∃R depends on the ability of a
relational database to generate the equivalent of a blank node.

We are currently implementing this approach in Ultrawap and planning to
evaluate it against other OBDA systems.
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1 Problem Definition

1.1 Introduction

Data exchange is a field of database theory that deals with transferring data between
differently structured databases, with motivation coming from industry [21,17]. The
starting point of intensive investigation of the problem of data exchange was given in
[14] where it was defined as, given data structured under a source schema and a map-
ping specifying how it should be translated to a target schema, to transform the source
data into data structured under the target schema such that it accurately reflects the
source data w.r.t. the mapping. This problem has been studied for different combina-
tions of languages used to specify the source and target schema, and the mappings [8].
Most of the results in the literature consider tuple generating dependencies (tgds) as
the language to specify mappings. Tgds allow one to express containment of conjunc-
tive queries, and have been widely employed in other areas of database theory. Further-
more, once a target instance is materialized, one might want to perform query answering
over it.

A fundamental assumption in the traditional data exchange setting is that the source
is a complete database: every fact is either true or false. Conversely, it is not the case
for target instances: incomplete information can be introduced by the mapping layer
(see also [19]). This implies that we cannot perform data exchange repeatedly on the
obtained target instance. It also creates difficulties when combining composition and
inversion operators, which are basic operators for metadata management [9].

Recently there has been an interest in data exchange with data in the source in-
completely specified, which means that (possibly infinitely) many source instances are
implicitly represented. The work by [4] is fundamental in this respect: they propose
a general framework for exchanging incomplete information based on the notion of
representation system, as a mechanism to describe in a finite way (infinitely) many
complete instances of a data schema. And more importantly, they develop a general
knowledge exchange framework for the case when the source is a knowledge base, not
just a database instance.

1.2 My Research Problem

In this thesis, inspired by [4], we go beyond the traditional data exchange setting, and
study in depth knowledge base exchange, that is, exchange between knowledge bases.
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We start by refining the representation systems framework to Description Logic (DLs)
knowledge bases (KBs) [7]. DLs are decidable fragments of first order logic (FOL),
and widely used as (underlying logical basis for) formalisms in Knowledge Represen-
tation, Semantic Web, Ontology-Based Data Access, etc. They provide nice modeling
and reasoning capabilities exhibiting a trade-off between expressiveness of a logic and
computational complexity of reasoning in that logic1 [7,18].

DLs appeal as an appropriate specification language, both for representing mappings
and implicit knowledge in the source, as their limited expressive power does not allow
for complex cases that emerge when using tgds where one has the full expressive power
of conjunctive queries. Therefore many undecidable problems may turn our to be de-
cidable when using DLs. First candidates to be considered are logics of two families of
light-weight DLs: the DL-Lite family [11,5], and the EL family [6].

With the development of Semantic Web and Linked Data the problems of restructur-
ing, combining and translating DL KBs become relevant in many contexts. This could
be translating a KB in one natural language to another; combining several KBs in order
to create one in a new, unique vocabulary; simply modifying the structure of existing
KBs according to the needs.

The goal of my research work is to study exchange of DL KBs, namely:

– to define relevant notions and reasoning problems in the context of DL KB ex-
change,

– to develop results and techniques for KB exchange for various choices of DLs as
the specification language, establishing tractability and decidability bounds,

– to explore the behavior of the DL KB exchange framework w.r.t. metadata manage-
ment operators.

2 Related Work

2.1 Data Exchange

Data exchange deals with transferring data between differently structured databases. As
it was mentioned in the introduction, the basic problem of data exchange is to material-
ize an instance of the target schema given an instance of the source schema and a schema
mapping, where traditionally a schema mapping is constituted by a set of source-to-
target tuple generating dependencies (st-tgds) and a set of target constraints, which can
be target tgds or target equality generating dependencies (egds). Both tgds and egds are
classes of constraints widely explored in the database community, for formal definitions
refer to [14]. Thus, the materialized target instance (called solution) should be a correct
translation of the source instance with respect to the st-tgds such that it also satisfies the
target constraints. Various syntactic restrictions on (target) tgds have been considered
in order to guarantee termination of the chase procedure employed to compute solu-
tions: full tgds and weakly acyclic tgds. Full tgds do not contain existentially quantified
variables, so the chase is always finite. The latter notion of weak acyclicity allows for
more expressivity than full tgds, while still providing termination of the chase. Due to

1 See e.g., http://www.cs.man.ac.uk/˜ezolin/dl/ for a summary of complexity
results.

http://www.cs.man.ac.uk/~ezolin/dl/
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existentially quantified variables in arbitrary tgds, there can exist infinitely many non-
isomorphic solutions. Fagin et al. [14] argued that universal solutions are the preferred
solutions to be materialized in data exchange as they are the ‘most general’ solutions:
they can be homomorphically embedded into other solutions. Next, the ‘best’ universal
solution was defined to be the smallest universal solution, called the core [15].

Known results on data exchange can be summarized as follows.

– There exists a data exchange setting for which the problem of existence of a solution
is undecidable.

– For a source instance and a mapping consisting of a set of st-tgds, a set of target
egds, and a weakly acyclic set of target tgds the problems of deciding existence
of a solution and computing a universal solution [14]; computing the core of the
universal solutions [16]; and computing certain answers to a query over the target
solutions [14] can be solved in polynomial time.

2.2 Ontology Alignment

There exists a whole body of work on ontology alignment, also called ontology mapping
and ontology matching [12,13]. The task of ontology alignment is given two ontologies
to find correspondences between semantically related entities of ontologies resulting
in a mapping between the ontologies. Such a problem arises in the contest of ontol-
ogy merging, integration and alignment, which can be considered as an ontology reuse
process. Despite seeming similarity of the ontology alignment and knowledge base ex-
change problems, their problem can be seen as the opposite of ours, since we are given
a source KB and a mapping, and the task is to materialize a target KB, while they are
given two ontologies and their task is to find a mapping between them (which might not
have a direction).

2.3 Knowledge Exchange

The field of knowledge and/or incomplete data exchange is relatively new. Here we
shortly present the framework defined in [4].

Arenas, Perez and Reutter [4] proposed a general framework for exchange of incom-
plete data. It extends the standard data exchange framework by allowing the source data
to be incompletely specified and, thus, (possibly infinitely) many source instances to be
represented. A notion of representation system is introduced as a mechanism to repre-
sent multiple instances of a data schema. Then they consider the problem of knowledge
exchange, where KBs are constituted by database instances (explicit information) and
sets of tgds (implicit information), and mappings are sets of st-tgds, and show an unde-
cidability result for the case of arbitrary tgds (used to specify KBs) and full st-tgds, and
a tractability result for the case of full tgds and arbitrary st-tgds.

3 The Research Plan

3.1 Research Questions

In this PhD research work we deal with exchanging Description Logic (DLs) knowledge
bases (KBs). The main research tasks can be summarized as follows:
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– define the framework of DL KB exchange:
• give necessary definitions, and
• determine relevant reasoning problems.

– study the problem of KB exchange for various choices of DLs
• start with lightweight DLs, such as DL-Lite and EL,
• investigate which DLs have ‘nice’ properties in the context of KB exchange,

such as tractability, decidability and closure under metadata operators.

More precisely, the research questions we are trying to answer within this thesis are:

– what is a ‘good’ notion of solution in the context of KB exchange;
– for a given DL

• what is the complexity of computing a (good) solution;
• is a solution always expressible in the same DL;
• for each defined reasoning problem, what is the complexity of deciding it;
• how to compute composition and inverse of mappings, and can they be ex-

pressed in the same DL;
– which DL exploits nice computational and modeling properties for KB exchange.

3.2 Contribution

Firstly, we have specialized the framework for KB exchange proposed in [4] to the case
where as a representation system we use DL KBs constituted by a TBox, representing
implicit information, and an ABox, representing explicit information, and where map-
pings are sets of DL inclusions. In such a setting, one is given a source DL KB and a
DL mapping, and the problem is to materialize a target DL KB such that it is a solution
for the source KB under the mapping.

Then, we defined a novel notion of representability whose aim was to understand
the capacity of (universal) solutions to transfer implicit knowledge. Presence of the lat-
ter in the target is crucial: maximizing implicit knowledge (TBox axioms) allows for
minimizing explicit information (ABox assertions), hence, for having smaller solutions
(specially in the case of data intensive applications). A source TBox is said to be rep-
resentable under a mapping if there exists a target TBox such that combined with an
ABox that depends only on the source ABox and the mapping, for an arbitrary source
ABox, gives a universal solution for the source KB under the mapping. Representability
of a source TBox under a mapping implies that it only remains to transfer the source
ABox via the mapping.

Next, we argued that the preferred solutions in our framework should not be the
standard universal solutions based on the correspondence between models of source
and target KBs [2]. Indeed, we showed that such kinds of solutions present serious lim-
itations: if a universal solution exists then its TBox is empty, so it is impossible to rep-
resent implicit source information, which in turn may lead to exponentially large target
ABoxes. To overcome these drawbacks, we introduced the weaker notion of (universal)
Q-solution, for a query languageQ. Intuitively, these solutions cannot be distinguished
from the universal solutions by means of Q-queries, therefore they are as good as the
universal solutions in the scenarios where query answering is the reasoning task per-
formed over the target.
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Finally, we developed results and techniques for KB exchange and for the
Q-represent-ability problem in the case where Q is unions of conjunctive queries
(UCQs), and KBs are expressed in two significant DLs of the DL-Lite family [11],
namely DL-LiteRDFS and DL-LiteR. The case of DL-LiteRDFS is particularly interesting,
since this DL corresponds to the FOL fragment of RDFS [10], the widely adopted stan-
dard Semantic Web language. We obtained that for DL-LiteRDFS source TBoxes and
mappings, the problem of computing (universal) solutions is decidable in polynomial
time [1]. In the case of DL-LiteR, the problem of computing/checking (universal solu-
tions) turned out to be PSPACE-hard and in EXPTIME (not published yet). Moreover,
we showed that the problem of computing UCQ-representations can be solved in poly-
nomial time for DL-LiteR TBoxes and mappings without disjointness assertions [3].
Later we addressed also general DL-LiteR TBoxes and mappings, and showed that the
problem of checking whether the given target TBox is a UCQ-representation of the
given source TBox under the given mapping can be solved in polynomial time. Notice
that in DL-LiteR, representability of a TBox implies an algorithm to construct universal
UCQ-solutions of polynomial size. The results we have obtained till now can be found
in more detail in [1], [2], and [3].

3.3 Open Problems

The area of research on KB exchange, in particular DL KBs, is new and there are many
interesting problems that remain open. From the theoretical point of view, the investi-
gation can be done in two ‘ortogonal’ dimensions, one dimension along the reasoning
problems to be considered, another one along the logics used as the specification lan-
guage (for mappings, and source and target TBoxes). Below we list some open problems
and the logics for which they should be tackled.

1) reasoning problems:
- the problem of deciding (and computing) universal solutions (done for DL-LiteR);
- the problem of deciding (and computing) representability (done for DL-LiteR);
- the problem of deciding (and computing) composition and inversion of mappings;

2) DLs as the underlying formalism
- DL-LiteR, DL-LiteF , DL-LiteA, DL-LiteHhorn , DL-LiteHbool ,
- EL, ELH, EL+,
- other expressive DLs ? (decidability borders to be understood).

We also plan to implement some of the devised algorithms (first of all, representability)
and possibly a prototype system for KB exchange. It would be interesting to see how we
can exploit the existing systems such as Clio [17] for exchanging the ABox information
and, for instance, Quest [20] for answering queries over the target KB.
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Abstract. This paper presents the research summary of a Ph.D. plan
concerning the study of Ontology-Based Data Access (OBDA) for on-
tologies expressed in Datalog-based formalisms, i.e., Datalog rules that
allow the use of existential variables in the head.

1 Introduction

The research project I am undertaking during my Ph.D. program carries on
the work I started in my Master Thesis and concerns the use of Datalog-based
formalisms as an alternative to Description Logics for modeling ontologies in
Ontology-Based Data Access systems.

The interest in ontological languages has both theoretical reasons and prac-
tical implications in several fields such as Knowledge Representation, Semantic
Web and Information Integration. Despite the existence in the literature of sev-
eral works concerning this topic, the identification of an ontological language
showing an acceptable balance between its expressive power and the computa-
tional complexity of reasoning tasks is still an open challenge that is slowing
down the commercial spread of semantic tools.

I believe that Datalog-based formalisms could be the answer to this issue,
therefore I am carrying forward a formal investigation on a broad family of
languages, called Datalog±.

2 Current State of the Art of the Research Field

The last few years have seen a growing interest in ontologies, a flexible tool
for the formalization of knowledge bases whose use in Semantic Web [4] and
Information Integration is well-established.

Lately, the focus has been on their application to data access: Ontology-Based
Data Access (OBDA) systems are a new promising frontier for knowledge rep-
resentation and database research.

In OBDA systems, ontologies are used as an additional layer of information
placed upon traditional databases with the purpose of semantically enriching
them. Typically, the ontology contains only the terminological part of the knowl-
edge base, while the DBMS is used to manage the actual data. Query answering
in such systems is often accomplished through expansion techniques, such as
query rewriting [6,14,8].
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Up to now, Description Logics (DLs) have been used as the logical languages
for modeling ontologies. In the most expressive of these languages, the main
ontological reasoning and query answering tasks are undecidable, whereas even
in the decidable fragments they are still computationally very hard.

One recent research direction is to find more expressive formalisms for which
query answering is decidable and also tractable in data complexity, in order
to effectively use them on top of large relational databases. To this research
field belong both the DL-Lite family of languages [10], i.e., lightweight DLs
designed with the purpose of reducing the data complexity of query answer-
ing (polynomial-time data complexity), and the Datalog± family of languages
[5,6,7,9], i.e., formalisms whose syntax is based on variants of the Datalog lan-
guage [1,11].

More generally, in order to propose more expressive ontological languages,
there is a high interest in classifying rules with existential variables in the conclu-
sion (∀∃-rules) [3,15]. Since this feature, called value invention, typically makes
reasoning tasks such as conjunctive query answering undecidable, it is crucial to
identify classes that are decidable, tractable and FOL-Rewritable (see below).

3 Beyond the State of the Art

The most recent trend concerning ontologies suggests to use them not only as a
modeling tool, but also as a way for enhancing traditional databases. Currently
there is a huge interest in developing database management systems enhanced
with advanced reasoning and query processing mechanisms. This interest has not
only theoretical reasons, but also a practical one: developing a new technology
concerning data management is seen as a great commercial opportunity, since
enterprise data would be the ideal target for ontological reasoning.

The necessity of combining ontological reasoning with database techniques
has emerged both in the database and in the knowledge representation research
communities, but we have yet to see to the actual breakthrough of semantic
technologies.

In OBDA systems, an extensional relational database (the ABox) is com-
bined with an ontological theory (the TBox) describing rules and constraints
that derive new knowledge from the extensional data. A query is not just an-
swered against the database, but against the whole logical theory. This requires
a new approach to query answering, based on expansions and query rewriting
techniques.

To be actually competitive on the market, these systems must guarantee a
complexity of query answering not greater than that of the ones currently in
use. In other words, the current research challenge is to find formalisms for
representing ontologies that, on one hand, are powerful enough to satisfy the
most common modeling needs and, on the other hand, keep the tractability of
conjunctive query answering.

This is already true for some DLs, such as DL-Lite, for which the complexity of
conjunctive query answering is LOGSPACE, and for other formalisms belonging
to the Datalog± family, namely Linear, Sticky and Sticky Join Datalog±.
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These languages share one important and well-studied property: the FOL-
Rewritability of query-answering, i.e., a pair (Σ, q), where Σ is an ontology and
q is a conjunctive query (CQ), can be rewritten as a first order query q′ such
that, given a database D, it holds that D ∪Σ |= q iff D |= q′.

Since each FOL query can be equivalently written in SQL, this means that a
CQ q based on an ontology Σ can be rewritten as an SQL query over the original
database. This is an important property that can be conveniently exploited in
ontological reasoning applied to existing relational databases, therefore there is
a particular interest in languages that are FOL-Rewritable.

It has been shown that the languages of the DL-Lite family are the maximal
DLs supporting efficient query answering over large amounts of instances [10,2]
and that DLs are probably a more suitable tool for representing ontologies than
the Datalog-based formalisms [16], mostly because of the lack of value invention
in plain Datalog. However, in the last few years, the interest in Datalog-based
formalisms as an alternative to DLs for modeling ontologies has grown. Extend-
ing plain Datalog with the possibility of existential variables in the head rules
was the first step forward in this direction. In the following I will refer to this
extension as Datalog±, but in the literature such rules are also generally referred
to as ∀∃-rules [3], Datalog∃ [15] or tuple-generating dependencies (TGDs) and
equality-generating dependencies (EGDs).

Different syntactic restrictions on the form of rules determine the existence of
different variants of Datalog± that belong to the family and that are suited for
efficient ontological reasoning, in particular, for tractable ontology-based query
answering.

I want to take this study further by using the Datalog± class as a point
of reference. I believe that it is possible to identify classes in Datalog± that
generalize DL-Lite and other ontology languages, while, at the same time, keep
the property of FOL-Rewritability (or at least tractability) of query answering
with respect to data complexity.

Considering the advantages as well as the limits of the formalisms described
in the literature, I propose thus a broader approach to the problem, with the aim
of identifying more expressive formalisms that can be used in OBDA systems.

Hence, the research I am undertaking concerns pursuing the following
objectives.

1. The identification of new decidable and tractable classes of Datalog± pro-
grams. In particular, I am interested in FOL-Rewritable classes, for which
the technique of query answering through query rewriting has proved to be
successful.

2. The identification of effective algorithms for some of such classes, i.e., sound,
complete and terminating algorithms, which includes both techniques for
checking the membership of programs to such classes and techniques for
query answering under such classes.

3. The development of an actual OBDA system based on Datalog±, in order
to check the efficiency of the above-mentioned classes and to provide mea-
surements about their performance in real reasoning systems.
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In order to accomplish these results, I started from current studies on the subject
and I am trying to apply a mix of existing and new techniques. In particular:

1. I aim to accomplish the first objective with techniques used in current liter-
ature together with demonstration techniques used in DLs, in particular in
DL-Lite;

2. I aim to accomplish the second objective generalizing query answering and
query rewriting techniques used in DLs, together with answer set program-
ming (ASP) techniques;

3. I aim to accomplish the third objective following the path of QuOnto/Mastro
system, developed at Sapienza University of Rome, which is currently used
in real OBDA projects. The basic idea is to develop an analogous system
based on Datalog±.

4 Current Status of the Research Plan

During the first months of my Ph.D. program, I studied reasoning, and in
particular query answering, over databases with tuple-generating dependencies
(TGDs), focusing on classes of TGDs for which conjunctive query answering is
FOL-Rewritable.

In my first paper [12], we defined the class of weakly recursive TGDs and,
under some restrictions (i.e. we focused our attention on simple TGDs), we
proved that this class comprises and generalizes every previously known FOL-
rewritable class of TGDs. Moreover, we defined a new algorithm that is able to
compute the first-order rewriting of conjunctive queries over weakly recursive
TGDs.

The intuition behind weakly recursive TGDs is related to the notion of posi-
tion graph, a structure that encodes some important characteristics of a program
P that can be used to determine whether P is FOL-rewritable or not. In par-
ticular, through the concept of m-edges and s-edges, respectively related to the
“loss” of distinguished variables moving from the head to an atom of the body,
and to the “split” of a head variable in two or more atoms of the body, we are
able to identify “dangerous” cycles in the position graph. For more details on
the definition of weakly recursive TGDs refer to [12].

In another work [13], we studied query answering over ontologies expressed in
Datalog± from a different point of view, i.e. focusing on subclasses UCQs, rather
than on the whole class, through the introduction of the notion of conjunctive
query pattern (CQP). Given a class of queries Q expressed by a CQP, we studied
decidability and complexity of answering queries in Q over a Datalog± program,
and we defined an algorithm that, given a Datalog± program P and a class of
queriesQ, is able to compute a simplified Datalog± program P ′ that is equivalent
to P with respect to answering queries in Q.

Currently, we are studying more expressive classes of FOL-rewritable (or at
least decidable) TGDs that comprise the class of weakly recursive TGDs, as well
as more efficient algorithms for computing the first-order rewriting of conjunctive
queries over such TGDs.
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5 Expected Achievements

The main purpose of my Ph.D. research program is to generalize the OBDA
approach to classes of ontological languages that are more complex and more
expressive than DLs.

DLs, despite their good capabilities in modeling ontologies, cannot capture
everything that can be expressed through TGDs, in particular, they are unable
to express complex forms of joins. Considering the nature of OBDA systems,
in which the management of the factual part of the ontology is delegated to a
DBMS, such a lack in the ontological languages represents a huge limitation in
a significant amount of real life cases.

Actually, there is no need to give up on such an important feature: we already
know some Datalog-based formalism, like Sticky and Sticky-Join Datalog±, that
can express powerful joins and keep the FOL-Rewritability of conjunctive query
answering, while even Linear Datalog± is able to express inclusion dependencies
that generalize DL-Lite.

However, it is important to notice that there is a huge margin of development
in this field: up to now, the two most expressive classes known in the literature
do not maximize the set of Datalog± rules that can be translated in FOL. In
particular, Sticky Datalog± is able to express only body joins that involve distin-
guished variables, while Sticky-Join Datalog±, which can express more complex
forms of join, cannot be checked in polynomial time, i.e., the complexity of de-
ciding whether a Datalog program belongs to the class is PSPACE.

Therefore I believe that a broader approach to Datalog± rules, aimed at study-
ing classes that show relevant property such as FOL-Rewritability, could lead to
extremely important and valuable results.

The introduction of several new Datalog±-based formalisms for which query
answering is decidable, tractable and FOL-Rewritable would make it possible to
use already existing query answering techniques based on query rewriting. These
new formalisms could constitute an alternative to DLs for modeling ontologies in
OBDA systems and be useful in all the cases in which the modeling capabilities
of DLs have proved unsatisfactory.

Moreover, the introduction of sound, complete and terminating algorithms
for such new formalisms would allow to effectively check the membership of
Datalog± programs to such classes and to answer queries, in order to use them
in real working systems.

Finally, the development of an actual OBDA system based on Datalog±, on
one hand would be able to show the capabilities of such new formalisms, and,
on the other hand, could provide measurements about their performance in real
reasoning systems that could be compared to the ones of current analogous
systems.

Since OBDA is currently a hot topic of study in both knowledge representation
and database research community, I believe that these results would be an actual
breakthrough in these fields, with both theoretical and practical implications.
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In particular, such results would pave the way towards the development of
semantic-based data access systems much more powerful than the current tech-
nologies, and this is especially important in Semantic Web research.
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Abstract. This proposal is concerned with the addition of a time stamp (a date)
to the triples normally used in the representation of folksonomies. We motived
our approach by helping the detection of trends in social networks.

1 Problematic

In the current PhD research, we tackle the problem of mining and analyzing data from
social networks aka folksonomies [8]. Considered as a tripartite hyper-graph [11] of
tags, users and resources, a folksonomy also mimics the structure of a triadic context
[10]. The new data of folksonomy systems provides a rich resource for data analysis, in-
formation retrieval, and knowledge discovery applications. However, the main problem
with folksonomies is their huge size since such structures grasped increasingly attention
with the rise of the so called Web 2.0. Hence, many researches focuses on the extrac-
tion of lossless concise representations of interesting patterns, i.e., triadic concepts from
such structure. However, a scrutiny of the related work unveils that the time stamp di-
mension has not been considered [15]. The increasing use of these systems shows that
folksonomy-based works are then able to offer a better solution in the domain of Web In-
formation Retrieval (WIR) [9] by considering time when dealing with a query or during
the user’s taggings, i.e., by suggesting the appropriate trendy tags. Moreover, the WIR
will be without loss of information by keeping track all folksonomy’s actors: users, tags
and resources. Hence, we will consider a folksonomy commonly composed of triples
<users, tags, resources> and we shall consider time as a new dimension. Time is con-
sidered one of the most important factors in detecting emerging subjects. Thus, we are
getting a d-folksonomy composed of quadruples <users, tags, resources, dates> which
mimics the structure of a quadratic context [14]. Considering time when tackling this
problem aims to discover which users, tags or resources are the most relevant at identi-
fied periods w.r.t a specific social network/d-folksonomy.

For this task, we first introduce a new algorithm, called QUADRICONS, as an exten-
sion of TRICONS [13] dedicated to the triadic contexts. QUADRICONS aims at getting
out quadratic concepts, i.e., quadri-concepts from quadratic contexts/d-folksonomies.
A quadri-concept have the property that none of these sets can be extended without
shrinking one of the other three dimensions. We also introduce a new closure operator
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that splits the induced search space into equivalence classes whose smallest elements
are the quadri-minimal generators. Then, we use extracted quadri-concepts for the trend
detection and popularity analyze in d-folksonomies. Such quadri-concepts are also use-
ful to derive quadratic rules; reasoning about them in order to output relations between
tags, users or resources.

The problematic that we tackle is relevant due to the increasing popularity of folk-
sonomies, i.e., social networks which grasped attention since the last decade. Analyzing
data of such structure would be interesting and useful for a battery of potential applica-
tion that we discuss in the last section.

2 Related Work

Trend Detection in Folksonomies

In 2006, Hotho et al. presented an approach for discovering topic-specific trends within
folksonomies [7]. The authors analyze the emergence of common semantics by explor-
ing trends in social networks with the FOLKRANK algorithm. This algorithm is able to
compute topic-specific ranking on users, tags and resources. However, by transforming
the folksonomy into an hypergraph, the edges between any kind two-dimensions leads
to an information loss about the third dimension. For example, an edge between a user u
and a tag t tells us that there is a resource r such as (u,t,r) is a triple of the folksonomy,
however, we have no precise information concerning the resource r.

Dubinko et al. present in [4] a new approach based on a characterization of the most
interesting tags associated with a sliding interval of time. They introduce a new measure
called interestingness which is able to assess which tags are qualified by ”interesting”
within an interval of time. However, it turns out that the interestingness is better to
detect the most popular tags than the interesting ones. Indeed, it computes the total
number of occurence of tags over time regardless to users or resources related to these
tags. For example, a tag t used several times by a single user would be considered as
interesting even it is likely seen as a spam.

Considering the importance of time in folksonomies, Amitay et al. [1] discuss several
aspects and uses of the time dimension in the context of Web Information Retrieval. The
authors explain that they are able to detect and expose significant events and trends. A
new measure called TLP1 is introduced and used to gauge the relative number of times-
tamped (i.e., dated) links that are associated with every time interval. Several applica-
tions are proposed by the authors: predictions of events, studying popularity change,
etc. However, resources under study are not related to users or tags resulting in some
loss of information.

Quadratic Concept Mining

In [14], Voutsadakis generalized the constructs and results of Wille [10] to the n-adic
contexts. The author gives a definition of an n-adic concept. Voutsadakis gives an ex-
ample of quadratic concepts and their associated complete Boolean 4-lattice. Despite

1 Timestamped Link Profile.
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robust theoretical study, no algorithm has been proposed by Voutsadakis for an efficient
extraction of quadratic concepts. In addition, despite that of a n-adic concept, no basic
notion of data mining (minimal generator, equivalence class, etc.) was adapted to the
n-adic context. Indeed, it will be useful to localize small representative elements, i.e.,
minimal generators, when mining huge data in folksonomies. Recently, Cerf et al. pro-
posed the DATA-PEELER algorithm [2] which is able to extract all closed concepts from
n-ary relations. When n = 4, the DATA-PEELER algorithm is able to extract quadratic
concepts. However, DATA-PEELER is hampered by the large number of elements that
may contain any of the dimensions. Thus, its strategy becomes ineffective and leads to a
complex computation of n-adic concepts when dealing with large data as folksonomies.

3 Contributions and Research Plan

Contrarily to these aforementioned approaches, the approach that we introduce straight-
forwardly handles: (i) the detection of minimal generators for a scalable mining of
quadri-concepts and (ii) keeping track of differents elements (users, tags, resources,
dates) for an efficient trend detection in d-folksonomies. Visualizing the evolution of
users, tags and resources over time is therefore a challenging task. Our contribution is
summarized therefore to:

The Extraction of Quadratic Concepts from Four-Dimensional Contexts. We will
first introduce a new closure operator for a four-dimensional context that splits
the induced search space into equivalence classes whose smallest elements are the
quadri-minimal generators. Minimal Generators (MGs) have been shown to play an
important role in many theoretical and practical problem settings involving closure
systems. Such minimal generators can offer a complementary and simpler way to
understand the concept, because they may contain far fewer attributes than closed
concepts. Indeed, MGs represent the smallest elements within an equivalence class.
Complementary to closures, minimal generators provide a way to characterize for-
mal concepts [3].

Trend Detection in Social Networks. [7] As application to this approach, we analyze
trends in social networks through extracted quadratic concepts. According to each
dimension, we are looking to which users, tags or resources are gaining (or losing)
in popularity through time. Such approach is able to consider any kind of data in the
same analysis. Taking into account quadratic concepts for such analyze allows loss-
less information since such structure keeps track of all actors of the d-folksonomy:
users, tags, resources and dates. Moreover, to gauge the popularity of these actors
through time, we use a measure2 that takes into account the different elements of a
quadri-concept based on the notion enunciated in [7] ”A resource which is tagged
with important tags by important users becomes important itself. The same holds,
symmetrically, for tags and users.”

2 For instance, this measure consists in computing the number of quadri-concepts related to the
structure under study. We plan to improve this measure by integrating the social aspects related
to users and the relations between them.
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4 Current Status of the PhD Research

At this level, we made the following advancements in the current PhD research:

1. The proposition of the QUADRICONS algorithm for an efficient extraction of
quadri-concepts thanks to the first localisation of quadri-generators and the ap-
propriate use of a closure operator for a quadratic context. Besides regrouping un-
der one concept tags and resources shared in common by users of a d-folksonomy
(discovery of hidden conceptualizations [8]), the time dimension, that we consider,
plays a key role. Indeed, it turns out that the user’s mode of tagging depends on
time: a user who tagged a resource r with a tag t does perhaps not assign it the same
tag at a different period. Several experiments (c.f., Section 5) show that QUADRI-
CONS outperforms its competitor, i.e., DATA PEELER.

2. Since it is certainly not possible to analyze all the information provided by
d-folksonomies, this huge data must be ”cooked” into a succinct representation.
Therefore, the quadri-concepts extracted by QUADRICONS are used for the ex-
perimentations in order to discover trends in d-folksonomies. Thanks to the new
introduced dimension, i.e., time, we define a framework for the trend detection in
social networks in order to discover popular users, tags and resources within time.
The obtained diagrams depict which users are the most popular within a social net-
work, which tags are the most trendy through time or even which resources (movies,
artists, websites, . . .) made the buzz at particular periods of time.

Among perspectives under study for the current PhD research, the following can be
listed:

1. Discovering communities of interest (stable or volatile) in d-folksonomies based on
discovered popular users.

2. Defining the quadratic form of association rules according to quadri-concepts [12].
Such rules do not exist in the literature yet.

3. Finding more applications using quadri-concepts: tag recommendation, suggesting
friends, folksonomy evaluation [5], etc.

5 Experimental Results

For the experiments, we use two real-world datasets. First, MOVIELENS

(http://movielens.org) which is a movie recommendation website where users are asked
to note movies they like and dislike. Second, LAST.FM (http://last.fm) which is a mu-
sic website where users are asked to tag their preferred artists. The MOVIELENS and
LAST.FM datasets used for the experiments are freely downloadable from
http://movielens.org.

We compare the performances (in sec) of the QUADRICONS algorithm vs. those
of the DATA-PEELER algorithm for different values of the number of quadruples over
the aforementioned datasets. The experiments show that QUADRICONS outperforms its
competitor for both datasets and for all values of the number of quadruples. QUADRI-
CONS does not exceed 1, 51 seconds versus 667, 11 for its competitor. Note that the
number of extracted quadri-concepts reached, respectively, 991 and 897 for the MOVIE-
LENS and LAST.FM datasets.
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Trend Detection

Extracted quadri-concepts are useful for trend detection in d-folksonomies as the Figure
1 show some achievements carried on both datasets. The diagram on the left depicts
the evolution of tags that were affected to the movie ’Harry Potter’ between December
2005 and August 2008. It tell us how the users of MOVIELENS see the movie. Indeed,
it was seen first as a ’kid movie’ as the tags magic, kids and witch are massively used,
then, with the release of new films, the popularity of these tags faded due to the emer-
gence of new tags like fantasy with a rise of 200%. Interestingly enough, it is important
to consider these trends when recommending tags to describe that movie. While, The
diagram on the right of Figure 1 shows the evolution of users which tagged pop/rock
artists. In May 2011, we see the rise of four outstanding users; we decide to analyse
the first user’s data in the system, i.e., the user 470. We observe that he (she) has fifty-
one friends 3; such user must have some influence in this social network and could be
targeted by the social network to promote such artists. However, among his friends, no
one appears on the diagram in Figure 1. Hence, it could be interesting to recommend
him(her) the users 58, 392 or 227 which share common interests.

Fig. 1. (Left) Evolution of MOVIELENS’ tags related to the movie ’Harry Potter’ over time.
(Right) Evolution of LASTFM’ users related to the ’Pop Rock artists’ over time. User names are
omitted for privacy reasons.

Quadratic concepts are also useful in order to derive rules with a quadratic form as
explained in the following.

Quadratic Rules

The rule extraction is an active area of data mining and is applied in many domains
as the study of the consumer basket, the analysis of the behavior of Internet users,
computer security, bioinformatics and music to cite but a few. Starting from quadratic
concepts, we are able to define two kinds of rules: intra-class and inter-class such as
each quadri-concept represents an equivalence class. Such rules involve implication
between tags while keeping track of users, resources and dates as introduced in [12].

3 The LAST.FM dataset show us friendship relations between the users.



A Quadratic Approach for Trend Detection in Folksonomies 283

The same kind of rules holds, symmetrically, for resources, users and dates. The first
kind of rules (intra) are implications between a quadri-generator and the quadri-concept
of the same equivalence class while the second kind of rules (inter) involves implica-
tions between a quadri-generator and a quadri-concept of different equivalence classes.

Example 1. Considering a tri-concept {{u1,u2,u3}, {t2,t3,t4}, {r1}, {d1,d2}} and a
quadri-generator {{u1,u2,u3}, {t3}, {r1}, {d1}} of a same equivalence class, an ex-
ample of a quadratic rule (intra-class) is given as follows:
t3 →{u1,u2,u3},{r1},{d1,d2} t2t4. The rule tell us that the tag t3 implies the tags t2 and
t4 with respect to the users u1 ,u2 and u3, the resource r1 and the dates d1 and d2.

Such rule can be useful for tag recommendation, analyzing tag popularity in time or
spam detection. To the best of our knowledge, there are no approaches combining both
implications between tags and temporality in rules yet.

References
1. Amitay, E., Carmel, D., Herscovici, M., Lempel, R., Soffer, A.: Trend detection through

temporal link analysis. J. Am. Soc. Inf. Sci. Technol. 55(14), 1270–1281 (2004)
2. Cerf, L., Besson, J., Robardet, C., Boulicaut, J.F.: Closed patterns meet n-ary relations. ACM

TKDD 3, 3:1–3:36 (2009)
3. Dong, G., Jiang, C., Pei, J., Li, J., Wong, L.: Mining Succinct Systems of Minimal Generators

of Formal Concepts. In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS,
vol. 3453, pp. 175–187. Springer, Heidelberg (2005)

4. Dubinko, M., Kumar, R., Magnani, J., Novak, J., Raghavan, P., Tomkins, A.: Visualizing tags
over time. ACM Trans. Web 1(2), 193–202 (2007)

5. Helic, D., Strohmaier, M., Trattner, C., Muhr, M., Lerman, K.: Pragmatic evaluation of folk-
sonomies. In: Proc. of the 20th International Conference on WWW 2011, New York, NY,
USA, pp. 417–426 (2011)
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Abstract. There have been many studies in termination analysis of
logic programming but little has been done on analyzing non-termination
of logic programs, which is even more important in our opinion. Non-
termination analysis examines program execution history when non-
termination is suspected and informs the programmer of non-termination
causes and possible ways to fix them. In the first part of this thesis, we
study the problem of non-termination in tabled logic engines with sub-
goal abstraction, such as XSB,1 and propose a suite of algorithms, called
non-Termination analyzer, Terminyzer, for automatic detection and ex-
planation of non-termination.

The second part of this thesis focuses on cost-based query optimiza-
tion. Database query optimizers rely on data statistics in selecting query
execution plans and rule-based systems can greatly benefit from such
optimizations as well. To this end, one first needs to collect data statis-
tics for base and propagate them to derived predicates. However, there
are two difficulties: dependencies among arguments and recursion. To
address these problems, we implement a Cost-based query optimizer,
Costimizer, which consists of a cost estimator and an optimizing unit.
The optimizing unit performs a greedy search optimization based on
predicate statistics computed by the cost estimator. We validate the ef-
fectiveness of Costimizer on both size estimation and query optimization
through experimental studies.

Keywords: non-termination analysis, termination analysis, forest log-
ging, tabling, subgoal abstraction, derived predicate statistics, cost esti-
mation, query optimization, logic programming, rule-based systems.

1 Non-Termination Analysis

1.1 Motivation and Problem Statement

The development of high-level logic languages such as Flora-22 and SILK3

aims at making logic-based knowledge representation accessible to knowledge

1 http://xsb.sourceforge.net
2 http://flora.sourceforge.net
3 http://silk.semwebcentral.org
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engineers who are not programmers. This type of users cannot be expected to
debug the rule bases that they create and thus they require special support. In
the course of the SILK project we discovered that non-termination due to the
use of HiLog [2] and function symbols is one of the most vexing problems such
users are facing, which motivates the current work.

There are three main scenarios where programs may not terminate. First,
recursion can cause non-termination under the usual Prolog evaluation strategy.
For instance, the query ?- p(a) against the program with a single rule “p(X)
:- p(X).” will not terminate. This kind of problems have been successfully
addressed by adding SLG resolution (also known as tabling) [24] to Prolog, and
a number of systems support it to various degrees (XSB, Yap, B-Prolog, Ciao).

The second scenario where programs might not terminate, even under the SLG
resolution, occurs when increasingly deep nested calls are generated during the
evaluation. Consider the query ?- p(a) against the program with a single rule
“p(X) :- p(f(X)).”, the following calls will be successively generated: p(a),
p(f(a)), p(f(f(a))), and so on. Since neither call subsumes the other, tabling
will not be able to evaluate the query and terminate. However, the technique
known as subgoal abstraction [17] can take care of this problem. The essence of
the technique is to modify the calls by replacing (“abstracting”) subterms with
new variables once certain term depth limit has been reached. For instance, in
our example we could abstract calls once the depth limit of 4 has been reached.
As a result, p(f(f(f(f(a))))) and all the subsequent calls would be abstracted
to p(f(f(f(X)))).

For instance, in XSB (which to our knowledge is the only system that supports
both tabling and subgoal abstraction), the above program will terminate. Gen-
erally, tabling with subgoal abstraction will evaluate queries that have a finite
number of answers. Thus, the only remaining scenario is when both tabling and
subgoal abstraction are used, but query evaluation does not stop because the
number of answers to the query or its subqueries is infinite. Consider querying
?- p(X) against the rule set “p(a). p(f(X)) :- p(X).”, these answers will be
successively derived: p(a), p(f(a)), p(f(f(a))) and so on.

In general, such queries cannot be evaluated completely, but if the program is
what the user intended, the user could ask the system to stop after getting the
first few answers. The problem arises when this was not the intended result. For
small programs with only a few rules, expert programmers might be able to find
the causes of the problem. However, for large knowledge bases with hundreds
or thousands of rules this becomes a difficult task even for a seasoned logic
programmer. For a knowledge engineer who is not a programmer, debugging
non-termination is out of the question.

Note that the neither program termination (the halting problem) nor the
problem of whether the number of answers is finite is decidable [19,21]. Suffi-
cient conditions for termination of logic programs have been proposed in the
literature [19,10,1,13,14,18,12,16,26], but most dealt with Prolog or Prolog-like
evaluation strategies. Neither tabling nor subgoal abstraction were taken into
account. This thesis therefore takes a different track on the problem: developing
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techniques that can help users analyze the causes of non-termination when both
tabling and subgoal abstraction are used. We introduce a suite of algorithms,
called Terminyzer, which are based on the analysis of logs produced by table
operations for calls to tabled predicates [23]. The algorithms report the poten-
tial causes of non-termination with increasing level of fidelity and precision. As
expected, the higher-fidelity algorithms have higher complexity.

1.2 Terminyzer

Terminyzer includes four non-termination analysis approaches of different com-
putational complexity: call sequence, answer flow, functor pattern and rule se-
quence analyses. Call sequence analysis provides the sequences of tabled unfin-
ished calls (calls that have not been completely evaluated) that are likely involved
in non-termination, answer flow approach detects how information flows among
these unfinished calls, and functor pattern analysis finds the sequences of func-
tors that are applied repeatedly to generate infinitely many answers. The most
advanced algorithm in the suite, the rule sequence method, finds the actual se-
quence of repeated rule applications that are the cause of non-termination. Based
on these analysis, Terminyzer recommends to the programmer possible ways to
remove non-termination causes by delaying the evaluation of certain subgoals.

Example 1. Consider the evaluation of the query ?- r(X) against the following
program in XSB with all predicates tabled:

p(a). q(b). s(f(b)).

p(f(X)) :- q(X). %% rule1

q(g(X)) :- p(X). %% rule2

r(X) :- p(X), s(X). %% rule3

The following sequence of subgoal calls will be made: r(X) calls p(X), p(X) calls
q(X), and q(X) calls p(X). Since there are infinitely many answers for p(X) and
q(X) due to the recursion and the use of function symbols, the evaluation does
not terminate.

By analyzing the logs of table operations for this evaluation, call sequence
analysis provides the sequence of unfinished subgoal calls as [r(X), p(X),

q(X)], answer flow analysis identifies that answer information flows from subgoal
p to q and q to p, functor pattern analysis detects the functor sequences that are
applied repeatedly to produce new answers as [f], [f,g], [g], [g,f]. Rule
sequence analysis will identify the sequence of rules that are fired and caused
non-termination as [rule3, rule1, rule2].

Based on the analysis, we know that XSB are producing infinitely answers
for subgoals p(X) and q(X). Thus, Terminyzer can recommend users that the
evaluation of these two subgoals should be delayed until their argument X be-
comes bound. For instance, the rule rule3 can be rewritten as “r(X) :- s(X),

p(X).” to delay the evaluation of p(X). Then, the query will terminate success-
fully and output the correct answer r(f(b)). �
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2 Cost-Based Query Optimization

2.1 Motivation and Problem Statement

Database query optimizers depend on accurate and fast algorithms for estimat-
ing predicate (relation) sizes, which in turn depend on joint data distributions of
values in different arguments. Traditionally, query optimizers estimate these sizes
using statistical summaries for base predicates and propagate them to relational
expressions assuming argument independence [3]. To make size estimates practi-
cal, data distributions must be summarized accurately and efficiently. Histogram
is one such summarization technique that is in wide use in all major database
systems (DB2, Oracle, Microsoft, etc.). Different histograms have been proposed
in the literature, which differ in their complexity, cost, and accuracy [7,5]. Query
optimizers search to improve join orders within predetermined budgets of time
and space using statistics-based cost models. Research on optimization algo-
rithms is quite extensive [15,11,25,4], and database systems implement greedy
algorithms such as restricting the search space to left-deep trees [20].

However, there are several challenges in applying cost-based query optimiza-
tion for rule-based systems. First, the argument independence assumption is
rarely true for real world datasets, so size estimates based on histograms can be
off by orders of magnitude [22]. It has been shown that estimation errors grow
exponentially with the number of joins involved [6,8]. For rules, this problem
is exacerbated by the presence of recursive predicates. Second, optimization al-
gorithms have to take into account indexing and how the basic operations are
performed by logic engines.

2.2 Costimizer

To address the above problems, this thesis proposes a cost based query optimizer,
Costimizer, which is implemented as a pre-processor in XSB. The architecture
of Costimizer is given in Figure 1 and it consists of two major components: a
cost estimator and an optimizing unit. The cost estimator computes predicate
statistics and it implements two different estimation algorithms: log extraction
and statistics for derived predicates (SDP). These cost estimates from the esti-
mator are then fed into the optimizing unit whose task is to find the optimal join
ordering within given budget and to add necessary indexing commands. Finally,
the optimized query and knowledge base are loaded into XSB for evaluation.

Log extraction performs information retrieval on query execution traces and
provides the real (but partial) cost information. It can be used to optimize pro-
grams with many recursive rules which may not terminate. The SDP approach
computes predicate statistics, in the form of dependency matrices, by an abstract
evaluation of program rules [8,9] and it consists of a query spanning graph (QSG)
Builder and an interpreter. The SDP approach performs best when a knowledge
base has a relatively small number of rules but many more facts.

The optimizing unit implements a greedy search algorithm which finds a join
ordering for a set of predicates and adds appropriate indexing commands for
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Fig. 1. System Architecture of Costimizer

each predicate. It is worth mentioning that the cost estimator is independent of
the optimizing unit. Since virtually all cost-based optimizers use size estimates,
our cost estimation will benefit most of such optimizers.

3 Conclusion and Future Works

This thesis focuses on non-termination analysis and cost-based optimization of
logic programs. Terminyzer utilizes traces to help the programmer debug his pro-
grams. Currently, the call sequence, answer flow and functor pattern analyses are
already implemented in XSB. We have performed several tests of Terminyzer
and manually verified their results. Our future plan is to implement the rule
sequence analysis. For Costimizer, we have implemented SDP in XSB and ver-
ified that it provides better estimates than histograms [8,9]. We plan to fully
implement Costimizer and perform more extensive experiments.
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Abstract. The aim of this work is to investigate the integration of
data, knowledge, and processes. In particular, we study the combina-
tion of research in Ontology-Based Data Access (OBDA) with Data-
Centric Dynamic Systems (DCDSs). The idea of OBDA is to combine
data and knowledge by providing a conceptual view over data reposito-
ries in terms of an ontology, while DCDSs provide a holistic framework
for modeling business processes in which both data and processes are
treated as first-class citizens. Thanks to this combination, we obtain
Semantically-Governed Data-Aware Processes (SGDAPs), which repre-
sent a significant step towards the envisioned unifying framework. We
position SGDAPs in the state of the art and briefly discuss the current
status of our research. We then identify several research directions along
which we intend to continue our work.

1 Introduction

The marriage between data and knowledge has been studied extensively in the
Ontology-Based Data Access (OBDA) setting [5,19]. The idea is to provide a
conceptual view over data repositories through ontologies. On the other hand,
recent work in business processes, services, and databases brought about the
necessity of considering both data and processes as first-class citizens during sys-
tem design. This holistic view of data and processes together has given rise to a
line of research under the name of artifact-centric business processes [17,10,21,1]
that aims at avoiding the notorious discrepancy of traditional approaches where
these aspects are considered separately [4].

Verification is in this setting an important task to guarantee that the de-
signed systems obey to desired properties, but is highly challenging because the
presence of data causes them to be infinite-state in general. Recently, interest-
ing decidability results for verification of temporal properties over such systems
have been obtained (see e.g. [3,4,9]). In particular, [12,11] recently studied these
issues in the context of Data-Centric Dynamic Systems (DCDSs), in which the
data component is constituted by a relational database, and the process layer is
described declaratively through condition-action rules.
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Another line of research that spanned over the last years is related to the com-
bination of processes and knowledge. The purpose here is to represent the process
component of the system using semantically-rich representation languages that
can be processed by machines to realize different reasoning tasks such as au-
tomated discovery, execution support, composition and interoperation. Notable
examples in this area are Semantic Web Services (SWS) [16,20] and Semantic
Business Process Management (c.f. [22,13]).

Differently from all these approaches, our aim is to combine data, processes
and knowledge, in a setting where the process manipulates the data and the
knowledge component (ontology) is used to understand, govern, and verify the
overall system as well as its dynamics over time. Towards this goal, we are in-
terested in investigating how the line of research on OBDA can be fruitfully
combined with the one of DCDSs. In this setting the presence of the ontology
provides a unified, high-level conceptual view of the system, reflecting the rele-
vant concepts and relations of the domain of interest and abstracting away how
processes and data are concretely realized and stored at the concrete implemen-
tation level. This, in turn, is the basis for different important reasoning task such
as verification of conceptual dynamic properties, track and query the evolving
system through the conceptual level, regulate how new processes can be injected
into the system. synthesize new processes starting from high level conceptual
requirements, reasoning under implicit and incomplete information.

The interplay between the three components of data, knowledge, and process
requires to establish connections among different research directions, and paves
the way for several fascinating issues to be investigated. We identify some of
them and discuss them in the following.

2 Preliminaries

Ontology-Based Data Access System (c.f. [5]). An OBDA system pro-
vides a conceptual view over data stored in a relational database. It includes
(i) (the intensional level of) an ontology, (ii) a relational database schema, and
(iii) a mapping between the ontology and the database. In [5], the ontology
which represents the domain of interest, is represented as a TBox in DL-LiteA,id,
which is a Description Logic (DL) that has been specifically designed for effi-
cient ontology-based access to large amounts of data. In an OBDA system, a
relational database is connected to an ontology through mappings, which relate
queries over the database to queries over the ontology. Each mapping specifies
how to populate the concepts and roles of the ontology from the tuples contained
in the relational database. Function symbols are used to construct (abstract) ob-
jects from the concrete values retrieved from the database. However in practice
these objects are not concretely materialized. Instead certain answers of queries
formulated over the ontology can be computed by directly accessing the underly-
ing data. In fact, thanks to the first-order rewritability of lightweight DLs such
as DL-LiteA,id, a query over the ontology can be rewritten by compiling away
the TBox and the unfolded into SQL query over the database by exploiting the
mapping assertions [5].
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Data-Centric Dynamic System (c.f. [11]). A DCDS captures the manip-
ulation of the data that is done by the available processes in the system. A
DCDS consist of (i) The data component which represents the data of interest
in the application. (ii) The process component which represents the progression
mechanism for the DCDS. The semantic of DCDS is defined in terms of a possi-
bly infinite transition system whose states are labeled by databases and where
transitions represent the execution of process actions. Such transition system
represents all possible computations that the process component can do on the
data component starting from the initial database instance. In DCDSs, we are
interested in verifying whether the transition system of a given DCDS satisfies a
certain temporal dynamic property of interest, specified in some first-order tem-
poral logic. Even though this kind of verification is in general undecidable, suit-
able property specification languages (based on first-order variants of μ-calculus)
as well as restrictions on the allowed DCDSs that ensure decidability have been
proposed in [11].

3 Contributions: Semantically-Governed Data-Aware
Processes

In this section we briefly review the current status of our research. More details
can be found in [7]. Our idea is to augment DCDS with an ontology, connected
to the data layer of the DCDS through mappings, in the style of OBDA. The
resulting system is called Semantically-Governed Data-Aware Process (SGDAP)
and is constituted by three components: (i) An OBDA system, which keeps
all the data of interest and provides a conceptual view over it in terms of a
DL-LiteA,id TBox. (ii) A process component as in the DCDS, which characterize
the evolution (dynamic aspect) of the system. (iii) An initial database instance.
Intuitively, the OBDA system keeps all the data of interest, while the process
component modifies and evolves such data, starting from the initial database.
Conceptually, an SGDAP separates the system into two layers, the relational
layer and the semantic layer. The relational layer captures the database evo-
lution (manipulation) done by the process execution, while the semantic layer
exploits the ontology for providing a conceptual view of the system evolution.
This enables to: (i) understand and query the evolving system through the se-
mantic layer, and (ii) govern the evolution of the system at the semantic layer
by rejecting those process actions that, currently executed at the relational layer,
would lead to new system states that violates some constraint of the ontology.

The semantics of SGDAP is defined in terms of two transition systems: a
Relational Layer Transition System (RTS) and a Semantic Layer Transition
System (STS). The RTS is the same as the transition system of a classical DCDSs,
which captures the evolution of the systems at the relational layer, tracking
how the database is evolved by the process component. On the other hand,
the STS is a ”virtualization” of the RTS in the semantic layer and provides a
conceptual view of the system evolution. In particular, the STS maintains the
structure of the RTS unaltered, reflecting that the process component is executed
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Fig. 1. Verification of dynamic μLEQL
C properties over SGDAP

over the relational layer, but it associates to each state the set of concept and
role assertions obtained from the application of the mappings starting from the
corresponding database instance.

An interesting task that we have addressed for SGDAPs is the verification
of conceptual temporal properties, i.e., temporal properties that constrain the
dynamics of the system understood at the semantic layer. In particular we have
introduced the property specification language μLEQL

C which is a variant of μ-
calculus where epistemic conjunctive queries [6] are used to arbitrarily query the

states of the system. We have then shown that verification of μLEQL
C properties

over the STS of an SGDAP can be reduced to verification of corresponding
properties over the underlying RTS by exploiting the first-order rewritability of
DL-LiteA,id. The rough idea to tackle the verification problem is basically to bring
down the conceptually specified temporal properties into the relational layer, by
adopting the concept of “rewriting” and “unfolding” in OBDA, and then exploit
the decidability results of temporal specification property in DCDS (The idea of
the approach is depicted in Figure 1). This, in turn, allows to directly import all
the decidability results studied for DCDSs into the framework of SGDAPs.

4 Future Plan and Open Challenges

As far as now we have mainly studied the framework of SGDAPs and investigated
decidability issues related to verification of sophisticated temporal properties.
Ongoing work is being dedicated now to the investigation of complexity issues
and to the adoption of the framework in concrete case studies (see the ACSI EU
project1).

As further work, we plan to investigate different ways of combining data,
knowledge, and processes starting from SGDAPs. One interesting setting is to
consider the situation where the process component is specified over the semantic
layer. In this setting, we are interested in studying how the high level process
specification can be realized as a concrete process over the relational layer. This
leads to a problem of synthesizing a process in the relational layer from the
given high level specification in the semantic layer, which might also be expected
to satisfy some conceptual temporal properties. Another interesting setting is

1 http://www.acsi-project.eu/

http://www.acsi-project.eu/
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to consider the situation where we have a process specification on both the
semantic and relational layer. Here it is interesting to see how these two process
specifications relate to each other and to check whether they are aligned.

Another direction is to investigate the situation where there is a change ex-
plicitly over the ontology. The question here is how such a change will/can affect
the relational layer. This research direction has a closed relation to the research
on view updates [2]. A possible way to address this issue is to investigate bidi-
rectional transformations (c.f. [18]) to formalize the relation between the two
layer.

Another interesting line of research is to connect our approach to research on
verification of different classes of Petri Nets [14]. In particular we are interested
in considering classes of Petri Nets equipped with data, such as Colored Petri
Nets or Petri Data Nets. The success on this direction will open a connection
between two well-studied fields and enrich the results in each field.

Another direction is to consider quantitative properties of the system. In this
case, we are interested in verification and synthesis in presence of quantitative
requirements, by leveraging on [15,8].
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