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Abstract. In the paper we discuss a failure and servicing model of software ap-
plications that employ the service-oriented paradigm for defining cooperation 
with clients. The model takes into account a time-probabilistic relationship be-
tween different servicing outcomes and failures modes. We put forward a set of 
measures for estimating dependability of service provisioning from the client’s 
viewpoint and present analytical models to be used for the assessment of the 
mean servicing and waiting times depending on client’s timeout settings. 
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1 Introduction 

The Service-Oriented Architecture (SOA) supports rapid, low-cost and seamless 
composition of globally distributed applications, and enables effective interoperability 
in a loosely-coupled heterogeneous environment. Services are autonomous, platform-
independent computational entities that can be dynamically discovered and integrated 
into a single service to be offered to the users or, in turn, used as a building block in 
further composition. The essential principles of SOA and services provisioning form 
the foundation for various modern and emerging IT technologies, such as service-
oriented and cloud computing, SaaS (software as a service), etc.  

The service-oriented paradigm of cooperation between clients and providers is now 
widely used in e-science, critical infrastructures and business-critical systems. Fail-
ures of such applications can affect people’s lives and businesses (see, for example, 
the well-known incident at the London Stock Exchange on 8 Sept. 2008 or a spate of 
recent service outages on the Amazon S3 and Google cloud platforms). Thus, ensur-
ing dependability of SOA-based systems is a must, as well as a challenge.  
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Although the SOA and web services technologies have seen significantly improved 
in recent times, we believe that they have not yet revealed their full potential. In  
particular, SOA is still in its infancy when it comes to ensuring dependability of large-
scale dynamically composed service-oriented systems involving multiple independent 
web services. Dependability enhancing technologies will thus be essential in support-
ing mission and business critical application, for personal use or in enterprise, gov-
ernment or military. 

There is significant on-going research devoted to dependability and performance in 
service-oriented computing [1]. Recent related work (e.g. [2, 3, 4]) introduced several 
approaches to incorporating fault tolerance techniques (including voting, backward 
and forward error recovery mechanisms and replication techniques) into the web ser-
vice architectures. There has been work on fault analysis, dependability and perform-
ance evaluation and experimental measurements, e.g. [5, 6, 7]. However, coming 
from dispersed areas of research, the work addresses individual issues but do not yet 
advance them in unison or offer general solutions. Very often the researchers use 
simple and, hence, not realistic failure models or do not take into account the interde-
pendency between dependability and performance of service-oriented solutions that is 
in the very nature of such distributed interacting systems.  

To be more effective fault-tolerant techniques incorporated into the service-
oriented architecture should distinguish between evident failures of different types, 
like application exceptions, communication errors or timeouts and should be capable 
to minimize the probability of non-evident application errors. 

Experimental studies [10, 12] show that response time of web services very often can 
exceed ones minimal value in more than 10 or even 20 times. Moreover, sometimes 
clients await for the response from a web service for more than two hours instead of 
reporting an exception or resending a request. Therefore, right timeout setting is a key 
means improving performance of many distributed systems including web services.  

Besides most of the fault tolerance and error recovery mechanisms at the applica-
tion level also depend on timeout settings [1-4]. However, the existing work mainly 
focuses on optimizing timeouts used by communication protocols like TCP and HTTP 
without examining how timeout settings at the application level affect both perfor-
mance and dependability of web services.  

This is why the purpose of the paper is (i) to develop an advanced failure model for 
the service-oriented architecture taking into account a time-probabilistic interconnec-
tion between different servicing outcomes and (ii) to investigate analytical models 
assessing the average servicing and waiting times under certain timeout in case of 
probabilistic uncertainty of web services performance characteristics.  

The rest of the paper is organised as follows. In Section 2 we describe the proposed 
failure and servicing model capturing the fundamental principles of the service-
oriented architecture from the client’s point of view. Section 3 proposes analytical 
models aimed at estimation of average servicing and waiting time depending on time-
out settings in case of known response time probability density function. In Section 4 
we present a numeric example of using the proposed analytical solution.  
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2 SOA Failure and Servicing Model 

2.1 Servicing Outcomes and Web Services Failures 

Web services as any other complex software may contain faults which may manifest 
themselves in operation. On every request the web service may succeed, i.e. return a 
correct response, or fail, i.e. return an incorrect response or not return any response at 
all within waiting time. Such failure behaviour of the web services is characterised by 
the probability of failure on demand (pfd). This probability can be statistically meas-
ured as a ratio between r failures observed in n demands [8]. It can vary between the 
environments and the contexts (operational profiles) in which a web service is used.  

The various factors, which affect the pfd may be unknown with certainty, thus the 
value of pfd may be uncertain as well. This uncertainty can be captured by a probabil-
ity density series or probability distribution, built by aggregating usage experience of 
different clients. The response returned to the client by a web service may be of sev-
eral types: 

1. correct result; 
2. evident error – an error that needs no special means to be detected. It concerns ex-

ception messages of different types reported to the client and notifying him about 
denial of the requested service for some reason; 

3. non-evident (hidden) error – an error that can be detected only by using a multiver-
sioning at the application level (e.g. diversity of web services used). 

However, the distributed nature of the service-oriented architectural model does not 
guarantee that the client receives a response from the web service within the finite 
time. If this happens we face so-called timing failures when the response is received 
too late or is not received at all (see Table 1). Thus, the known dependability defini-
tion [9] should be extended for service oriented systems as the “ability to deliver ser-
vice within the expected time that can justifiably be trusted”. 

Table 1. Description of possible servicing outcomes 

Result’s  
correctness 

Time  
of receiving 

Servicing  
outcome 

Symbolic 
notation 

Correct result 

Until timeout 

Correct servicing OK 

Non-evident  
(hidden) error 

Hidden error HE 

Exception message Evident error EX 

Correct result 

After timeout 
No response during 
timeout (silence) 

TO 
Non-evident  
(hidden) error 

Exception message 
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In the Figure 1 we adopt the failure model introduced by Avizienis, et al. in [9] to 
the distributed nature of service-oriented systems. The model distinguishes between 
the two main failure domains: (i) timing failures when the duration of the response 
delivered to the client exceeds the specified waiting time – the application timeout 
(i.e. the service is delivered too late), and (ii) content failures when the content (value) 
of the response delivered to the client deviates from implementing the system function. 

Probabilities pok, phe and pex are conditional probabilities. They are conditioned on 
the arrival of some response within the timeout. Probabilities pex and phe refer to fail-
ure modes that in the Avizienis’s classification correspond to the detectability view-
point, where they are classified as: signaled and unsignaled failures, respectively. 

 

 

Fig. 1. Service failure modes from the failure domain viewpoint 

2.2 Simple and Complex Dependability Measures 

Four servicing outcomes form the set of collectively exhaustive events characterized 
by probabilities:  

• pok – probability of correct servicing within the specified waiting time (i.e. timeout); 
• phe – probability of non-evident incorrect servicing within the waiting time; 
• pex – probability of evident incorrect servicing (i.e. exception message reporting) 

within the specified waiting time; 
• pto – probability of timeout. 

These probabilities can be combined together to form complex dependability meas-
ures characterizing different dependability attributes of a web service or service-
oriented system from the client’s point of view (see Table 2). 
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We also introduce the following two measures to estimate the performance of a 
web service: 

• tav_srv – average servicing time (average time estimated for those invocations when 
a response of any type (OK, HE or EX) was received by a client until the timeout); 

• tav_wait – average waiting time (average time estimated for all invocations including 
those when the timeouts were triggered). It is obvious that tav_srv ≤ tav_wait. 

Table 2. Complex dependability measures for SOA and Web Services 

Dependability 
attribute 

Measure 

Accessibility 
(readiness for the 
response within  
the waiting time) 

1– (pex-con + pto),  
where pex-con is the probability of getting an exception message 
like “TCP connection times out” testifying to inability to es-
tablish a network connection with the remote host on the 
specified TCP port (pex-con is a part of pex); the closer to 1 the 
better  

Availability 
(readiness for the 
servicing within  
the waiting time) 

to

ex

exheok

ex

p

p

ppp

p

−
−=

++
−

1
11 , 

i.e. the probability of getting a response until timeout exclud-
ing evident errors, i.e. {OK, HE}; the closer to 1 the better 

Trustworthiness 
(assurance of a 
correct service 
within the  
waiting time) 

to

he

exheok

he

p

p

ppp

p

−
−=

++
−

1
11     or    

heok

he

pp

p

+
−1 , 

i.e. the probability that a web service returns a correct or evi-
dent incorrect response (i.e. a signalled failure), given that a 
response was received before the timeout; the closer to 1 the 
better 

 
Usually, clients of a remote service have limited possibility to measure its dependabil-
ity attributes. Most of the time it is only possible to count how many times a response 
from a web service is not received before the application timeout or how many times 
exceptional messages of different type are returned instead of the awaited response.  

However, as it was shown in [13], typically the exception message does not pro-
vide enough information to understand what exactly happened and to distinguish for 
sure between numerous client, network or service failures. In table 2 we discuss sev-
eral dependability attributes that can be practically used by a client of a service-
oriented systems among those, provided in [9]: 

• Accessibility – readiness of a service for the response of any type, i.e. {OK, HE, EX}, 
given that a response is received by a client before the timeout. To account the ac-
cessibility attribute client should take out the consideration a client-side exception 
caused by inability to establish a connection with a web service. 
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• Availability – readiness for the servicing within the waiting time. In the contrast to 
the classical definition of availability [9] we count here both correct and incorrect 
servicing (i.e. unsignalled failures) as a client usually cannot distinguish between 
them without applying application-specific failure detection techniques. 

• Trustworthiness – assurance of a correct service within the waiting time. This at-
tribute can be measured by applying the voting procedure making use of the re-
dundancy of functionally-equivalent diverse web services provided by different 
vendors. A more sensitive measure that can be used in addition to the one already 
presented in Table 2 is the probability of getting an incorrect unsignaled response, 
given that a response was received (the closer to 0 the better). 

2.3 Failure Model Assumptions and Properties 

Probabilities pok, phe, pex and pto are interconnected and their values depend on the time-
out settings used by a client. In our failure model we use the following assumption cap-
turing the time-probabilistic dependence between different servicing outcomes. 

Assumption 1. The sum of probabilities of all servicing outcomes {OK, HE, EX, TO} 
is equal to one as they form the set of collectively exhaustive events: 
pok + phe + pex + pto = 1 

Assumption 2. Servicing time is a random variable with the known probability distri-
bution function ft(t) and certain parameters. This function and values of its parameters 
can be determined by hypothesis checking using experimental data in a way, de-
scribed in [10]. 

Assumption 3. Time during which a client waits for the response is limited by the 
timeout parameter.  

Assumption 3. Probabilities of the correct (OK), evident and non-evident incorrect 
(EX and HE) servicing does not depend on the time when the response was received 
by a client. This assumption can be used if we take out of consideration some specific 
exceptions mainly caused by networking errors and failures. For example, usually 
exceptions arisen 21 seconds after a web service has been invoked by a Windows 
client are caused by inability of client software to establish a TCP connection with the 
remote host. This time depends on client’s OS settings. For example, for Linux it is 
set  at about 180 seconds by default.  

The interdependency between probabilities of different servicing outcomes under 
the specified assumptions is shown in Fig. 2. Based on the analysis of Fig. 1 and tak-
ing into account the assumptions used we can formulate the set of properties of the 
proposed web services failure model.  

Property 1. Value of the probability of timeout depends on the application timeout 
used by a client: pto = f(timeout). The bigger timeout value the bigger the probability 
of getting a response (the less the probability of timeout):  

∀ timeout1, timeout2: timeout1 > timeout2  dt(t)fdt(t)f
timeout

0
t

timeout

0
t  >

21

. 
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Fig. 2. Time-probabilistic interconnection between different servicing outcomes 

Property 2. Changing of timeout value causes changing the probability of timeout 
and, hence changing (redistribution) values of pok, phe, pex as long as the sum of all 
probabilities must be equal to one. Hence, pok, phe, pex are functions of a timeout value.  

Property 3. Probability of timeout is equal to the integral of ft(t) over the interval 
[timeout…∞]:  

 dt(t)fdt(t)fp
timeout

0
t

timeout
t

to  −==
∞

1 . (1) 

Property 4. The sum of probabilities of getting a correct, evident and non-evident erro-
neous result pok’, phe’, pex’ after a timeout is equal to the probability of a timeout pto:  

otex'he'ok' pppp =++ . 

Property 5. The sum of probabilities of getting a correct, evident and non-evident 
erroneous result before (pok, phe, pex) and after (pok’, phe’, pex’) the specified timeout is 
equal to 1: 

1)()()( =+++++ ex'exhe'heok'ok pppppp . 

We hold properties 4 and 5 under the hypothesis that each computation eventually 
terminates. In practice, the client can face rare cases of a never-ending computation 
due to some network or service failures. If we use the TCP ‘keep-alive’ option these 
connections will be automatically terminate after two hours with the exceptional mes-
sage “Connection timed out” returned to the client. 

Property 6. There is a constant ratio between the corresponding probabilities of get-
ting a correct, evident and non-evident erroneous result before (pok, phe, pex) and after 
(pok’, phe’, pex’) the specified timeout: 



128 A. Gorbenko et al. 

ex'

ex

he'

he

ok'

ok

p

p

p

p

p

p == . 

Property 7. Pairwise sums of the corresponding probabilities of getting a correct, evident 
and non-evident erroneous result before (pok, phe, pex) and after (pok’, phe’, pex’) the specified 
timeout are equal to the constant values independently of the timeout value:  

∞=+ okokok ppp )'( , ∞=+ hehehe ppp )'( , ∞=+ exexex ppp )'( , 

where ∞okp , ∞exp , ∞hep  are the probabilities of getting a correct, evident and non-

evident erroneous result with the unlimited waiting time, i.e. when timeout →∞. 

Property 8. There are analytic dependencies between probabilities of getting a correct, 
evident and non-evident erroneous result before (pok, phe, pex) and after (pok’, phe’, pex’) 
the specified timeout and a probability of this timeout triggered, i.e. pto:  

∞⋅−= oktook ppp )1( , ∞⋅−= hetohe ppp )1( , ∞⋅−= extoex ppp )1( . 

Taking into account the third property we can define: 

 dt(t)fpp
timeout

0
t

okok ⋅= ∞  (2) 

 dt(t)fpp
timeout

0
t

hehe ⋅= ∞  (3) 

 dt(t)fpp
timeout

0
t

exex ⋅= ∞  (4) 

3 Average Servicing and Waiting Time Assessment Models 

The average servicing time can be estimated by using a well-known equation for the 
mean value of the independent variable defined by its probability density function:  

 
∞

⋅==
0

)(][ dttftTEt t
av . 

The expectation of a probability density function ft(t) truncated from the right by a 
timeout can be defined as [11]: 

 
)(

)(

)(
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][ 0

0

0_

timeouttF

dttft

dttf

dttft

TEt
t

timeout

t

timeout

t

timeout

t
srvtruncav_srv

≤

⋅

=

⋅

==





. (5) 
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However, equation (5) is correct only if we are interested in the average servicing 
time tav_srv of those invocations in which a response of any type (OK, HE or EX) is 
received by a client before the specified timeout.  

The average waiting time tav_wait estimated for all invocations including those when 
a timeout is triggered can be defined as a sum of the average servicing time tav_srv 
under the specified timeout and a product of the timeout value and the probability of 
timeout: 

 

( ).)(1)(

)()(][

0

0

__

timeouttFtimeoutdttft

dttftimeoutdttftTEt

t

timeout

t

timeout
t

timeout

t
waittruncwaitav

≤−⋅+⋅=

=⋅+⋅==




∞

. (6) 

This is due to the fact that the waiting time for those invocations for which a timeout 
is triggered is equal to the timeout value. Hence, the weight of a tail of the probability 
density function ft(t) truncated by the timeout is concentrated at the truncation border 
(see Fig. 3). 

 

Fig. 3. Concentration of the mass of a probability of a timeout at the truncation border 

4 An Example of Average Servicing and Waiting Times 
Estimation 

This section presents an example of estimating the average servicing time tav_srv and 
the average waiting time tav_wait in case of the exponential distribution of a web service 
response time. By applying equations (4) and (5) we have:  

 ( )timeout-

timeouttimeout-

timeout

timeout
t

srvav

e

1-etimeout+e
-

e

et

timeoutt ⋅μ

⋅μ⋅μ

⋅μ−

⋅μ−

−⋅μ
⋅⋅μ=

−

⋅μ⋅

=


11
)( 0_ , (7) 
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⋅μ
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1-e

-etimeoutettimeoutt
timeout-

timeout
timeout

twaitav

0

_ )( . (8) 

Corresponding curves of tav_wait and tav_srv, as well as pto depending on the timeout 
value are shown on Fig. 4 and Fig. 5. The curves were plot using parameter μ which 
is equal to 0.01 that corresponds to 100 ms of average response time in case of the 
unlimited waiting time. Figures 4 and 5 show that, actually, there is no point in wait-
ing for a response from a web service for more than 600 ms as the probability of 
timeouting by that time is less than 2,47⋅10-3. At the same time an average servicing 
time in this case is equal to 98.5 ms. If the response time of a web service is subject to 
one of the heavy-tailed distributions, which is more realistic in practice, the profit will 
be more significant.  

 

Fig. 4. Curves of the average servicing time tav_srv and average waiting time tav_wait depending 
on timeout value in case of the exponential distribution of the random response time with the 
parameter μ=0.01 

Finally, we can solve the equation (1) relatively to timeout and then put the result into 
(5) and (6). This will allow us to resolve a trade-off problem between the dependability 
and performance of a particular Web service. In our example (in case of exponential dis-
tribution of the Web service response time) the timeout can be expressed by the formula: 

 timeoutt-

timeout

to edtetimeoutp ⋅μ−⋅μ
∞

=⋅μ= )(  => 
μ

= )(
)(

to
to p nl

-ptimeout . (9) 



 Dependability of Service-Oriented Computing: Time-Probabilistic Failure Modelling 131 

Putting it into (7) and (8) we can get equations estimating tav_wait and tav_srv depending 
on specified probability of timeout pto. This dependency, shown in Fig. 6, can be used 
to setup application timeout and to assess performance of a web-service (using tav_wait 
and tav_srv measures) with regards to dependability requirements expressed in form of 
maximal allowed value of pto. 

 

 

Fig. 5. Curve of the probability of timeout pto depending on timeout value in case of the expo-
nential distribution of the random response time with the parameter μ=0.01 

 

Fig. 6. Curves of the average servicing time tav_srv and average waiting time tav_wait depending 
on the probability of timeouting pto in case of the exponential distribution of the random re-
sponse time with the parameter μ=0.01 
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5 Conclusions 

Ensuring and assessing dependability of complex service-oriented systems are com-
plicated when these systems are dynamically built or when their components (i.e. web 
services) are dynamically replaced by the new ones with the similar functionality but 
unknown dependability characteristics.  

The lack of sufficient evidence about the characteristics of the communication me-
dium, components and their possible dependencies makes it extremely difficult to 
achieve and predict (composite) service dependability which can vary over a wide 
range in a very random manner. This uncertainty of services running over the Internet 
and clouds exhibits itself through the unpredictable response times and complex fail-
ure model, resulting from the distributed and loosely-coupled cooperation between the 
service provider and consumers in the unpredictable Internet-environment. 

In the paper we introduce a failure model for service-oriented applications, that can 
be considered as a specialization for this domain of the general failure model pre-
sented by Avizienis, Laprie, Randell and Landwehr in their IEEE TDSC 2004 paper 
[9]. Based on this failure model, we discuss the relationship between different failure 
modes and timeout settings, and propose the set of simple and complex measures 
estimating dependability of SOA solutions from the client’s point of view. We also 
propose analytical models for average servicing and waiting times estimation depend-
ing on the application timeout settings used by the client software.  

The proposed equations for estimation of a probability of different servicing out-
comes and average servicing and waiting times can help in choosing the right applica-
tion timeouts which are the fundamental part of all fault-tolerant mechanisms working 
over the Internet used as the main error detection mechanism here. Making use these 
equations software developers can solve a trade-off problems between maximizing 
the probability of a correct servicing and minimizing the waiting or servicing time. 

Acknowledgement. We are grateful to Aad van Moorsel for his feedback on the ear-
lier version of this work. The work is partially supported by the FP7 KhAI-ERA 
project and by the TrAmS-2 EPSRC/UK platform grant. 
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