
Monitoring Service Choreographies
from Multiple Sources

Amira Ben Hamida2, Antonia Bertolino1, Antonello Calabrò1,
Guglielmo De Angelis1, Nelson Lago3, and Julien Lesbegueries2

1 CNR–ISTI, Italy
{antonia.bertolino,antonello.calabro,guglielmo.deangelis}@isti.cnr.it

2 Linagora R&D Toulouse, France
{amira.benhamida,julien.lesbegueries}@linagora.com

3 University of São Paulo, Brazil
lago@ime.usp.br

Abstract. Modern software applications are more and more conceived
as distributed service compositions deployed over Grid and Cloud tech-
nologies. Choreographies provide abstract specifications of such com-
positions, by modeling message-based multi-party interactions without
assuming any central coordination. To enable the management and dy-
namic adaptation of choreographies, it is essential to keep track of events
and exchanged messages and to monitor the status of the underlying
platform, and combine these different levels of information into com-
plex events meaningful at the application level. Towards this goal, we
propose a Multi-source Monitoring Framework that we are developing
within the EU Project CHOReOS, which can correlate the messages
passed at business-service level with observations relative to the infras-
tructure resources. We present the monitor architecture and illustrate it
on a use-case excerpted from the CHOReOS project.

Keywords: Monitoring, Choreographies, Complex Event Processing,
SOA, SLA, QoS.

1 Introduction

The Future Internet (FI) context envisions a global environment that expands
itself along two key dimensions, the Internet of Services and the Internet of
Things. Among the others, a key feature offered by these dimensions concerns the
availability of loosely-coupled methods for the management of remote resources
allowing the execution of distributed and composite service-based applications.

In this vision, black-box entities (i.e., either the services, or the things) are
discovered, chosen and bound at run-time. Specifically, this run-time binding
can take place based on the functional interface each entity exports, or on the
Quality of Service (QoS) levels they manifest. Both negotiations and run-time
bindings leave space to unexpected events or scenarios that were not considered
when designing either the single services or the whole composition.

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 134–149, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Monitoring Service Choreographies from Multiple Sources 135

Because of this inherent nondeterminism and dynamism, system adaptation is
the key feature to pursue: paraphrasing Darwin, the applications that are going
to survive in the fight for survival among the plethora of arising services, will be
the ones that are the most adaptable to change. At the basis of adaption is aware-
ness: systems must be enhanced with the capability to monitor the behaviour
resulting from the composition of services and things and trigger adaption as
failures occur.

We investigate such concern in the context of service choreography. Choreogra-
phies are conceived as abstract specifications, typically defined and managed by
third party organizations, aimed at modeling dynamic and flexible composition
of services into complex business workflows [1]. Specifically, a service choreogra-
phy is a description of the peer-to-peer externally observable interactions that
cooperating services should put in place. Such multi-party collaboration model
focuses on message exchange, and no central coordination can be assumed.

The EU Project CHOReOS1 addresses the challenges posed by the develop-
ment, management and assessment of choreography-centric distributed appli-
cations, advocating a highly dynamic and user-centric model-driven approach.
The project is developing an Integrated Development and Runtime Environ-
ment (IDRE), as well as an associated development process. Part of the IDRE
is a framework for testing and monitoring the developed and enacted choreogra-
phies. Here, comprehensive testing techniques such as [2,3,4], have to be neces-
sarily complemented with run-time monitoring approaches that are essential to
support adaptation as well as informed run-time management activities [5].

Monitoring consists in collecting data from a running application so that they
can be analyzed to either notify, or predict run-time anomalies. Several works in
the literature deal with run-time software monitoring [6,7,8,9,10]. Nevertheless,
the emphasis of the service-oriented paradigm natively drives the building of
software systems as multi-layered [11]. Consequently, monitoring is often dealing
with layer-specific events, and addressing layer-specific issues.

The main contribution of this paper is to propose a Multi-source Monitoring
Framework that we are investigating within the CHOReOS project, and that can
correlate the messages monitored at business-service level, with the observations
captured by the infrastructure monitoring the low level resources.

The rest of the paper is organized as follows: Section 2 presents the overall
architecture of our multi-source monitoring approach; then the next three sec-
tions detail the features of each specific source. Section 5 illustrates a case study
while in Section 6 we contrast our results against related work. Finally, Section 7
closes the paper drawing conclusions and future work.

2 Proposed Approach

Figure 1 depicts the high-level architecture of our Multi-source Monitoring
Framework. Specifically, the architecture relies on the Distributed Service Bus

1 http://www.choreos.eu

http://www.choreos.eu

136 A. Ben Hamida et al.

Fig. 1. Multi-source Monitoring

(DSB) component, a shared and distributed communication channel for the mon-
itored events. The DSB distinguishes between a set of channels dedicated to the
monitoring activities (i.e., Control Plane), and other channels where both coor-
dination and application messages can flow (i.e. Data Plane). The data passing
through the Control Plane can be correlated and analyzed by means of a Com-
plex Event Processor (CEP).

The Multi-source Monitoring Framework integrates three different solutions
by means of the DSB. Each solution provides monitoring facilities for a specific
kind of source, specifically:

Infrastructure Monitoring: The monitoring elements belonging to this kind
of source are focused on the knowledge of the status of the environment where
both services and things are running. In this sense, these sources provide support
for the monitoring of resources, both in terms of utilization and health status.
As detailed in Section 3, among others approaches on resource monitoring, we
will mainly implement such sources by means of Ganglia [12].

Business Service Oriented Monitoring: This kind of source is responsible
for monitoring messages exchanged among services cooperating within either a
workflow or a choreography by means of the DSB. Specifically, distributed inter-
ceptors are deployed in the DSB in order to capture the messages that services
exchange. As reported in Section 3.1, the goal of this source is to analyze the
temporal sequence of messages passing through the bus and look for violations of
the choreography specification with respect to functional, QoS, or Service Level
Agreement (SLA) violations.

Event Monitoring: This kind of source belongs to a generic event-based mon-
itoring infrastructure able to bridge the notifications coming from the other two

Monitoring Service Choreographies from Multiple Sources 137

sources. As detailed in Section 4, such sources are based on Glimpse2, which can
include a coherent set of domain-specific languages, expressed as meta-models.
In this way, we can exploit the support for automation offered by model-driven
engineering techniques [13].

3 Infrastructure-Oriented Monitoring

Any large scale cloud-based system needs to support the monitoring of resources,
both in terms of utilization and health status. This is what allows the system to
perform corrective actions in order to maintain optimal resource usage (avoiding
both overloading and wasting resources) and to handle failures such as crashed
or overloaded nodes. A lot of sophisticated monitoring systems dedicated to
resource monitoring in large-scale computing environments such as grids already
exist (see Section 6); in our work, we leverage previous works by borrowing
heavily from Ganglia [12]. Ganglia is one of the most successful grid monitoring
systems, offering good performance, low overhead, and flexibility, which explains
why it is used in several high-performance computing clusters.

The resource monitor subsystem has two main components:

1. A set of data collectors that gather local information such as load aver-
age, I/O rates, and network utilization. These collectors run on every active
node of the cloud. Data for each node is both made available on demand
over TCP/IP and, at the same time, periodically pushed over UDP to be
replicated in nearby nodes.

2. A notification mechanism that detects potentially relevant events, such as
exceptional load average or too little available disk space, and generates a
corresponding notification that is forwarded to the event monitoring subsys-
tem so that this will trigger some corrective action. This might be replicating
an overloaded service, migrating services that communicate a lot to be closer
together etc.

For data collection, we simply reuse the gmond component of Ganglia, since it
offers rich functionality, low overhead, and depends on almost no configuration to
work. However, gmond depends on static pre-configuration to identify peers for
data replication, which is not adequate for a highly dynamic cloud environment.
In order to tackle this configuration problem, the notification daemon running on
each machine also continuously refines the list of replication peers and modifies
the configuration of gmond accordingly.

The notification mechanism simply polls gmond periodically and identifies
eventual relevant events according to some hard-coded rules, such as “load av-
erage above 3” or “free disk space less than 10%”. Such events are forwarded to
the higher-level event monitor system described in Section 4 for further analysis.
It should be noted that those constitute potentially relevant events; it is up to
the event monitor to make more refined decisions regarding what is and is not
2 See at http://labse.isti.cnr.it/tools/glimpse

http://labse.isti.cnr.it/tools/glimpse

138 A. Ben Hamida et al.

significant and what party to notify, according to the parameters defined by the
clients of the monitoring system. Therefore, these local rules do not need to be
reconfigured at run-time, which alleviates the need for communication from the
CEP (to deploy configuration rules on each node); instead, they just provide
“hints” about suspected problems. Accordingly, the provided information may
be either used or ignored according to the more dynamic monitoring rules that
are active in the CEP at each moment.

Beyond detecting problems, this monitoring subsystem may also be used to
detect under-used virtual nodes, which may in turn guide the deployment of
new services to reuse such nodes or trigger their removal altogether. Some of
this may be accomplished by rules that provide notifications if some resource
utilization is below some predefined rule. However, inspecting the recent history
of each node’s resource utilization is much more useful in this regard. We are
currently working on a layer dedicated to the collection and usage of such data
by making use of Ganglia’s gmetad, but that is not yet integrated with the rest
of the system in the current implementation.

3.1 Business Service Monitoring

The Business Service Monitoring (BSM) [14] is responsible for providing the
monitoring functionality that relates to business services and choreographies. It
ensures a multilevel service supervision, from the QoS of a service to the global
business workflow control, realizing an incremental supervision from a finer to a
coarse-grained level.

Basically, we take benefit from the Enterprise Service Bus (ESB) technology to
build the BSM architecture on a distributed topology of bus nodes. A BSM node
is considered as a bus node, onto which a particular “profile” is added in order
to fulfill the requirements of the monitoring of Service Oriented Architecture
(SOA). This profile provides an additional administration service, and deploys
monitoring components specific for QoS and SLA management as well as for
Choreographies.

Figure 2 depicts the overall architecture of the BSM. Specifically, it is com-
posed of a Service Level Monitoring, a Choreography Level Monitoring and
a Data Collector components. The BSM is exclusively based on the WS-
Notifications standard that brings loosely coupled and event-driven capabili-
ties. We assume that business services are exposed thanks to a middleware, for
our case, we rely on the Petals Distributed Service Bus (DSB). The BSM can
also be applied to other kinds of middleware, provided that they expose a WS-
Notification producer interface.

More precisely, we implement specific interceptors that are able to send re-
ports summarizing the message exchanges between services. We design and im-
plement a report model for formalizing the exchange information. These reports
are named Raw Reports, we detail them in Section 3.2.

Furthermore, we rely on the Data Collector that is in charge of the subscrip-
tion to the middleware. For instance, when a connection to this node is requested,

Monitoring Service Choreographies from Multiple Sources 139

Fig. 2. Business Service Monitoring Architecture

it acts as a WS-Notifications broker. Then, Components that are interested in
specific topics subscribe on its events.

In the following, the internal mechanisms of the BSM are detailed. Specifically,
Section 3.2 details the interception mechanisms enabling the monitoring when
deployed on the middleware. Then, Section 3.3 presents the Runtime Quality
Assessment. Finally, Section 3.4 describes the choreography monitoring.

3.2 Interception Mechanisms

Targeting ultra-large scaled environments, the monitoring mechanisms needs
to be as transparent and non intrusive as possible. Adopting lightweight and
decoupled architectures enhances the ability of the system to be maintained in
a flexible way. To that purpose, we adopt an interception mechanism that we
deploy in the middleware automatically for enabling services monitoring when
activated. Each time an endpoint to a service is created into the middleware, we
assign to it an interceptor that will listen to the calls from and to the service.

In each exchange a set of basic information can be extracted. In order to
formalize this information, we create a dedicated model that we call Raw Report.
Raw Reports contain useful data such as the identifiers for the consumer and the
provider, the monitored exchange id, the called operation, a date, the size of the
message, and informs if the response is a fault or not. It is important to notice
each Raw Report contains two reports, corresponding to the different places
the interception is made. Indeed, the interception mechanism allows to perform
interceptions at 4 different time stamps (see Figure 3), at the following steps:
(i) T1, before the request goes from the client to the provider, (ii) T2, after the
request reaches the provider, (iii) T3, before the response goes from the provider
to the client, and (iv) at T4, after the response reaches the consumer.

We exploit these Raw Reports in order to assess the services are behaving
as contracted in the SLA. In the following section, we detail the operated QoS
run-time assessment.

140 A. Ben Hamida et al.

Data collector

ESB

Business Service Monitoring

WS

Fig. 3. Raw Reports time stamps illustration

3.3 Runtime Quality Assessment

We rely on a standard based mechanism for ensuring the services run-time qual-
ity monitoring and assessment. The use of standards increases the compliance
with a wider range of services. We implement standards coming from the Web
Services domain, namely, the Web Services Distributed Management (WS-DM3)
and the Web Services Agreement4.

We adopt the following process. At the beginning, services contract service
level agreements that describe their performances (time, security, etc.). Once
deployed, services face the run-time conditions and their real performances may
be different from the ones stated in the SLA. More precisely and referring to
the BSM architecture in Figure 2, the WSDM Manager receives the Raw Re-
ports from the DataCollector and computes QoS metrics for each service. A
prior subscription-based mechanism (with CreationResource topic) triggers the
creation of a non-functional endpoint in the BSM, for each functional endpoint
deployed, then a notification is sent to the BSM when a connected DSB declares
a new endpoint. This non-functional endpoint stores current metrics, computed
thanks to the gathered Raw Reports. These metrics are updated each time the
monitored service is invoked.

The second component dedicated to the Service Level Monitoring is the SLA
Manager which is in charge to check if the SLA metrics are being violated. To
fulfill this, the SLA component receives the Raw Reports from the DataCollec-
tor and checks if a particular exchange is violating an agreement (Service Level
Agreement). When an agreement is loaded in the SLA Manager, we define a con-
sumer. Then, an SLA alert can potentially be sent as an upper level monitoring
notification. We apply the Common Alerting Protocol (CAP5) to formalize the
alert.

3 http://www.oasis-open.org/committees/wsdm
4 http://www.ogf.org/documents/GFD.107.pdf
5 http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

http://www.oasis-open.org/committees/wsdm
http://www.ogf.org/documents/GFD.107.pdf
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

Monitoring Service Choreographies from Multiple Sources 141

In addition to the performances and QoS verification, the BSM is also able
to detect if a service deployed on a remote machine is answering or not thanks
to the interceptions that we realize at 2 times. Indeed, once the T1/T2 report
is received by the SLA Manager, a timer is started (provided the agreement
is about latency) and if the time waiting the T3/T4 report is higher than the
latency defined in the SLA, a first potential alert is sent. If the T3/T4 report
is finally received and the effective latency is really violating the SLA, then a
confirmation alert is sent. The alert can also be invalidated and the confirmation
alert is canceled. The latency computed is the difference between T3 and T2
dates values. This calculus represents the time taken by the service request and
response outside the DSB. The times taken between T1 and T2, and T3 and T4
are considered as negligible. However, if a problem occurring in the middleware
provokes the violation of the SLA, the service is not considered as the origin
of the violation. The collected events are sent to the CEP that identifies the
nature of the violation and forwards an alert to a governing decision entity
(e.g. a Choreography Governing Board) that would trigger when needed the
reconfiguration of the choreography by the replacement of the failed services.
Meanwhile, detailing the applied decision mechanism is beyond of the scope of
this paper.

3.4 Choreography Level Monitoring

In addition to the Runtime Quality Assessment, the BSM dedicates a compo-
nent for the monitoring of the choreographies, the Choreography Level Moni-
toring Manager. It is responsible for the communication level and gathers the
messages exchanged within services collaborations and interactions. The main
functionality of this component is to ensure that the choreographies are behaving
according to the specification policies.

The Choreography Level Monitoring Manager takes as input the choreography
specification written in BPMN 2.0 and put interceptors on the services involved
in the choreography and exposed thanks to the middleware. The services are
event producers that trigger Raw Report as described in Section 3.2.

We realize a correspondence between the choreography model and the mon-
itoring activities generated from the model. A specific structure called MEMB
(for Message Exchange Monitoring Behavior) is implemented for this sake. Each
MEMB subscribes to Raw Reports, related to the choreography coordination
logic. Then, it waits for the expected notifications and checks the several times-
tamps validity. In case of timeout or not acceptable timestamps, alerts are sent
to the CEP 4.

4 Event-Oriented Monitoring

In [13], the authors proposed a distributed event-based monitoring infrastructure
called Glimpse, developed with the goal of decoupling the event specification
from the analysis mechanism. We reuse Glimpse as a component of the Multi-
source Monitoring framework.

142 A. Ben Hamida et al.

Glimpse (see Figure 4) collects a representative set of raw observation data,
and then needs to interpret such raw information in order to recognize composite
events that may be relevant at higher abstraction levels. The proper combina-
tion and correlation of such raw events make it possible either to timely detect
unexpected behaviors of the systems, or to predict failures for enhancing system
resilience.

Fig. 4. Glimpse: high-level architecture

Probes are in charge to collect and/or send raw data deriving from the ex-
ecution of a process within a choreography. Any instance of a Glimpse probe
can implement a component in execution at a given observation layer of the
software, for example at the infrastructure level (i.e. interacting with Ganglia
– see Section 3), or at business level (i.e. interacting with the BSM – see Sec-
tion 3.1). These two kind of probes can provide data that Glimpse can use to
infer complex pattern of events. A detailed description about the communication
interfaces defined by a Glimpse probe can be found in [15].

Glimpse implements the data transmission layer by means a publish-subscribe
bus, that constitutes the communication backbone conveying all information
(events, requests, notifications) flowing among all components. With respect
to our Multi-source Monitoring architecture depicted in Figure 1, this bus is
implemented by the DSB, as anticipated in Section 2.

The core of the event-oriented monitoring system offered by Glimpse is the
CEP. Specifically, the CEP is a rule engine which analyzes the raw events, gener-
ated from the probes belonging to all sources (i.e. infrastructure, business service
message), and infers complex events matching a set of rules that can be dynam-
ically loaded. In this sense the resilience of the monitored system is enhanced
by dynamically adapting to the evolving criticalities of the system. As detailed
in [13], the current implementation of the CEP is based on the Drools Fusion
rule language6.

6 See http://www.jboss.org/drools/drools-fusion.html

http://www.jboss.org/drools/drools-fusion.html

Monitoring Service Choreographies from Multiple Sources 143

Finally, the Manager component is the orchestrator of the Glimpse archi-
tecture. It manages all communications between the various instances of the
Glimpse components. Specifically, the Manager fetches requests received from
consumer, analyzes them and instructs the CEP. It then creates a dedicated
channel on which it will provide the results produced by the CEP.

5 Case Study

We present one of the use-cases developed within the CHOReOS project. Specif-
ically, it is based on the “Passenger-friendly Airport” [16] scenario, modeling the
interactions that take place among different actors (i.e. both services and things)
in an airport by means of a set of choreographies. In particular, this case study
refers to the monitoring of non-functional properties during the interactions be-
tween a Weather Forecast Service (i.e. WF) and a smart-device referred to as
Mobile Internet Device (i.e. MID).

In the following we describe how an SLA violation can be due to two possible
issues that our Multi-source Monitoring framework contributes to analyze and
discover. Specifically, we assume that monitoring the interactions between the
WF and the MID as described in Section 3.1, an SLA violation is revealed. Such
violation could be due to either the current status of the infrastructure hosting
WF, or the implementation of the service WF.

In the former case, the monitoring system reveals that the SLA is going to be
violated due either an overload, or a crash of the machine hosting the service.
Thus, the rule can suggest a migration of the service on another (more powerful,
more reliable) machine in the infrastructure. While in the latter, the monitoring
system reveals that the SLA is going to be violated even though the machine is
available and is not overloaded. Here, the CEP can notify the redeployment of
an updated version of the service WF.

Configuration of the Infrastructure Monitoring: On each created node, we
set up the DSB server, deploy the Ganglia gmond daemon and the notification
mechanism, and inject the address for the Glimpse CEP onto its configuration
file. Finally, we deploy the actual services we are interested in. The notification
mechanism periodically sends an “alive” message to the Glimpse CEP; this allows
Glimpse to detect node failures. Other than that, we set it to notify the CEP
whenever the load average of any node goes above 37. While the typical load
average on a production system may vary a lot depending on the application,
such a value is a common indicator that the machine is overloaded either because
of too much I/O or too much CPU utilization. More sophisticated information
might be used, but we leave these out of scope for this example.

Configuration of the BSM Mechanism: First, the BSM receives raw reports
giving information about each service exchange, in particular involving the WF

7 On Unix-like systems, the load average is the average number of processes in the
queue waiting for processor time in the last minute.

144 A. Ben Hamida et al.

service. This is done thanks to a prior subscription to the ESB middleware on
Raw Report topic. In addition, a SLA between the WF and the MID services
is loaded. This action launches a routine that uses raw reports notifications to
check for possible violations. When a violation occurs, the BSM sends a SLA
alert to the CEP.

Presentation of the Rules for the CEP: The CEP must be instructed with
a set of rules matching the event set that satisfies the monitoring request.

1 <ComplexEventRuleActionList ... >
2 <Insert RuleType="drools">
3 <RuleName>Machine Overloaded</RuleName>
4 <RuleBody>
5 ...
6 rule "Check for overloads"
7 ...
8 when
9 $aEvent : GlimpseBaseEventImpl(this.serviceID == "WF", this.serviceInstanceID == "

WF1234", this.getConsumed == false, this.isException == false);
10 $bEvent : GlimpseBaseEventImpl(this.machineID == "hubble.eclipse.ime.usp.br", this

.data == "Machine overload", this.isException == false, this.getConsumed == false,
this after $aEvent);

11 then
12 $aEvent.setConsumed(true);
13 update($aEvent);
14 retract($aEvent);
15 ResponseDispatcher.NotifyMeValue(... ...);
16 end
17 </RuleBody>
18 </Insert>
19 </ComplexEventRuleActionList>

Listing 1. Check for machine overload rule

1 <ComplexEventRuleActionList ... >
2 <Insert RuleType="drools">
3 <RuleName>Machine Overloaded No Ganglia Notification</RuleName>
4 <RuleBody>
5 ...
6 rule "Machine Overloaded No Ganglia Notification"
7 ...
8 when
9 $aEvent : GlimpseBaseEventImpl(this.serviceID == "WF", this.serviceInstanceID ==

"WF1234", this.getConsumed == false, this.isException == false)
10 not (GlimpseBaseEventImpl(this.machineID == "hubble.eclipse.ime.usp.br"

, this.isException == false, this.getConsumed == false, this after
[0s, 30s] $aEvent))

11 then
12 $aEvent.setConsumed(true);
13 update($aEvent);
14 retract($aEvent);
15 ResponseDispatcher.NotifyMeValue(... ...);
16 end
17 </RuleBody>
18 </Insert>
19 </ComplexEventRuleActionList>

Listing 2. SLA Violation and machine is not answering

Monitoring Service Choreographies from Multiple Sources 145

1 <ComplexEventRuleActionList ... >
2 <Insert RuleType="drools">
3 <RuleName>SLAViolation</RuleName>
4 <RuleBody>
5 ...
6 rule "SLAViolation"
7 ...
8 when
9 $aEvent : GlimpseBaseEventImpl(this.serviceID == "WF", this.serviceInstanceID == "

WF1234", this.getConsumed == false, this.isException == false);
10 $bEvent : GlimpseBaseEventImpl(this.machineID == "hubble.eclipse.ime.usp.br", this

after $aEvent, this.data == "ALIVE");
11 $cEvent : GlimpseBaseEventImpl(this.machineID == "hubble.eclipse.ime.usp.br", this

after $bEvent, this.data == "ALIVE");
12 then
13 $aEvent.setConsumed(true);
14 update($aEvent);
15 retract($aEvent);
16 $bEvent.setConsumed(true);
17 update($bEvent);
18 retract($bEvent);
19 $cEvent.setConsumed(true);
20 update($cEvent);
21 retract($cEvent);
22 ResponseDispatcher.NotifyMeValue(... ...);
23 end
24 </RuleBody>
25 </Insert>
26 </ComplexEventRuleActionList>

Listing 3. SLA Violation due to uncorrect service behaviour rule

According to this case study, three rules have been implemented in order
to cover the possible behaviors of the services involved. Such implementations
correlate the events notified from the BSM related to a violation of an SLA, with
the status/overload events coming from Ganglia.

Listing 1 reports a first rule that reveals if any of the machines used in the
infrastructure is overloaded. Specifically, in this case the rule matches if two
events are triggered to the CEP : the notification of an SLA violation form the
BSM about service WF (see at line 9); the notification that the specific machine
hosting the service is overloaded (see at line 10). In this case, the body of the rule
specifies to consume the event about the SLA notification (see lines 12-14) , and it
notifies possibly to an entity (e.g. a Choreography Governing Board) responsible
for the correct operativeness of the choreography (see line 15). Similarly, the rule
reported at Listing 2, matches if any SLA violation has been notified by the BSM
at the service-level, and if one of the machine at the infrastructure level failed to
send the “alive-notification” to the CEP. This rule highlights the case that either
a machine crash occurred, or anyhow that it is not reachable anymore. Finally,
the last rule (see Listing 3) correlates a notification from the BSM that the service
WF is violating the SLA (see line 9), with the monitoring of the infrastructure
revealing that the machine hosting the service is not overloaded. Specifically, in
this case study a machine is not overloaded when the CEP receives at least two
“alive” messages after the notification of the SLA violatoin (see lines 10-11). As
introduced above, in this case the rule infers that the violation might be due
to the incorrect (non-functional) behavior of WF. Note that, in these examples

146 A. Ben Hamida et al.

we used a hard-coded hostname here, but more sophisticated means of defining
this or querying a remote list of machines might be feasible. For example, within
the scope of the CHOReOS project we will rely on the specific API that the
CHOReOS IDRE will provide.

6 Related Work

As we are arguing in this work, also [11] discusses how monitoring in SOA cannot
separately address layer-specific issues. In fact, problems that from one layer af-
fect the others cannot be captured and understood. Nevertheless, the work in [11]
focused on the monitoring and adaptation of service orchestrations (i.e. BPEL
processes) that are deployed onto a dynamic infrastructure. Thus, the solution
does not directly refer to distributed choreographies where service aggregation
is coordinated in a decentralised way. In this sense, our approach cannot rely
on any entity that is specifically responsible of enacting the choreography, or of
restructuring and adapting any running instance.

Also in [17], a multi-layered service-oriented monitoring framework that fo-
cuses on both the platform and the infrastructure layers is presented. The pri-
mary goal of that approach is to collect and aggregate monitored information
with regard to specific performance constraints. Two are the main differences
with our framework. First, our architecture is based on a distributed service bus
implementing publish/subscribe communication mechanisms, while the core of
the monitoring framework in [17] is implemented as a centralized orchestrator
(i.e. a Globus Service) monitoring all the applications on the connected virtual
environments. Thus, our architecture appears more scalable, since the publish/-
subscribe paradigm natively allows to adapt the number of component instances
by replicating them over the bus. Note that also the DSB can be implemented by
federating several distributed instances of a bus. As a second difference between
the two solutions is that our Multi-source Monitoring framework explicitly sup-
ports a correlation technique that makes use of complex event processing, while
the approach in [17] mainly focuses in collecting, and storing the monitored
indexes in suitable repositories.

In [18] the authors proposed a monitoring approach that enables autonomous
service provisioning in federated clouds. Among the others, the framework was
mainly conceived to support either the deployment, or the decommission of the
requested services as virtual machines on a specific IaaS. Thus the main difference
with our approach is that such solution conceives the sources of the monitoring
mainly as layers of the same kind. In our approach we combine events that
happen onto different abstraction layers.

Another family of works related to this paper concerns those monitoring
solutions that are tailored to capture events at a specific abstraction layer (i.e.
the infrastructure level). Accordingly, basic monitoring of hardware system
resources is an essential component of virtually any production environment.

Monitoring Service Choreographies from Multiple Sources 147

There are many reasonably similar monitoring systems available today that focus
on hardware resources8.

Furthermore, a lot of sophisticated monitoring systems that deal with large-
scale computing environments such as grids also exist [12,19,20,21]. Some of
them have been designed with a specific environment in mind [22,23,24] and,
therefore, are either tied to characteristics of these environments or serve some
specific purpose within them. Most, however, try to be generic. Accordingly, a
proposal for the general characteristics expected of a monitoring system has been
prepared [25].

7 Conclusions and Future Work

The FI world challenges the SOA by raising scalability, distribution and hetero-
geneity issues. In this vision, either the services, or the things are discovered,
chosen and bound at run-time. In this context, usually cooperations are regu-
lated by means of choreographies, modeling dynamic and flexible composition of
services/things. Nevertheless, as choreographies are abstract specifications, they
may include interaction schemas that can evolve after the design phase, so that
unexpected events or scenarios may actually take place at run-time.

In this work we presented a Multi-source Monitoring Framework, through
which the non-functional properties of choreographies can be kept under obser-
vation. Specifically, it supports the observation at run-time of anomalies that
are due to phenomena originated from sources operating at different abstraction
layers.

Both the overall architecture of the framework, and the application case study
are developed within the context of the CHOReOS project. So, as future work
we will keep working of the refinement of the implementation we already have,
and we are planning to extensively validate our framework by applying it on
final version of one the use-cases of ultra-large scale service choreographies that
will be released by the CHOReOS project.

Acknowledgements. This paper is supported by the EU FP7 Projects:
CHOReOS (IP 257178), NESSoS (NoE 256980), and CONNECT (FET IP
231167).

References

1. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE T.
Services Computing 2(2), 152–166 (2009)

2. Besson, F.M., Leal, P.M., Kon, F., Goldman, A., Milojicic, D.: Towards automated
testing of web service choreographies. In: Proc. of AST, pp. 109–110. ACM, Waikiki
(2011)

8 Popular examples are Nagios (www.nagios.org), Big Brother and Xymon
(www.bb4.org, xymon.sourceforge.net), cacti (www.cacti.net), and zabbix
(www.zabbix.com).

www.nagios.org
www.bb4.org
xymon.sourceforge.net
www.cacti.net
www.zabbix.com

148 A. Ben Hamida et al.

3. Bertolino, A., De Angelis, G., Kellomäki, S., Polini, A.: Enhancing service federa-
tion trustworthiness through online testing. IEEE Computer 45(1), 66–72 (2012)

4. De Angelis, F., De Angelis, G., Polini, A.: A counter-example testing approach for
orchestrated services. In: Proc. of ICST, pp. 373–382. IEEE CS, Paris (2010)

5. Bertolino, A., De Angelis, G., Polini, A.: Validation and verification policies for gov-
ernance of service choreographies. In: Proc. of WEBIST. SciTePress (April 2012)

6. Bianculli, D., Ghezzi, C.: Monitoring conversational web services. In: Di Nitto, E.,
et al. (eds.) IW-SOSWE, pp. 15–21. ACM (2007)

7. Campos, J.: Survey paper: Development in the application of ict in condition mon-
itoring and maintenance. Comput. Ind. 60(1) (2009)

8. Hofmann, R., Klar, R., Mohr, B., Quick, A., Siegle, M.: Distributed perfor-
mance monitoring: Methods, tools, and applications. IEEE Trans. Parallel Distrib.
Syst. 5(6), 585–598 (1994)

9. Maia, J.L., Zorzo, S.D.: Socket-Masking and SNMP: A Hybrid Approach for QoS
Monitoring in Mobile Computing Environments. In: Proc. of JCC, p. 106. IEEE
CS, Washington, DC (2002)

10. Wang, C., Xu, L., Peng, W.: Conceptual design of remote monitoring and fault
diagnosis systems. Inf. Syst. 32(7), 996–1004 (2007)

11. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered Monitoring
and Adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

12. Sacerdoti, F.D., Katz, M.J., Massie, M.L., Culler, D.E.: Wide area cluster moni-
toring with ganglia. In: Proc. of CLUSTER (2003)

13. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a
Model-Driven Infrastructure for Runtime Monitoring. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011)

14. Lesbegueries, J., Ben Hamida, A., Salatgè, N., Zribi, S., Lorrè, J.: Experience re-
port: Multilevel event-based monitoring framework for the petals enterprise service
bus. In: Proc. of DEBS. ACM (to appear, 2012)

15. Bertolino, A., De Angelis, G., Polini, A. (eds.): V&V tools and infrastructure –
strategies, architecture and implementation. Number Del. D4.2.1. The CHOReOS
Consortium (2012)

16. Chatel, P., Leger, A., Lockerbie, J. (eds.): ”Passenger-friendly airport” scenarios
specification and requirements analysis. Number Del. D6.1. The CHOReOS Con-
sortium (2011)

17. Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis, D., Menychtas, A.,
Varvarigou, T.: A self-adaptive hierarchical monitoring mechanism for clouds.
JSS 85(5), 1029–1041 (2012)

18. Kertész, A., Kecskemeti, G., Marosi, C.A., Oriol, M., Franch, X., Marco, J.: Inte-
grated monitoring approach for seamless service provisioning in federated clouds.
In: Stotzka, R., Schiffers, M., Cotronis, Y. (eds.) PDP, pp. 567–574. IEEE (2012)

19. Newman, H.B., Legrand, I.C., Galvez, P., Voicu, R., Cirstoiu, C.: Monalisa: A
distributed monitoring service architecture. In: Talk from the Computing in High
Energy and Nuclear Physics (2003)

20. Truong, H.-L., Fahringer, T.: SCALEA-G: A Unified Monitoring and Performance
Analysis System for the Grid. In: Dikaiakos, M.D. (ed.) AxGrids 2004. LNCS,
vol. 3165, pp. 202–211. Springer, Heidelberg (2004)

21. Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Rubini, G.L., Tortone, G.,
Vistoli, M.C.: GridICE: a monitoring service for grid systems. Future Generation
Computer Systems 21(4) (April 2005)

Monitoring Service Choreographies from Multiple Sources 149

22. Boulon, J., Konwinski, A., Qi, R., Rabkin, A., Yang, E., Yang, M.: Chukwa, a
large-scale monitoring system. In: Proc. of CCA (2008)

23. Park, K.S., Pai, V.S.: CoMon: a mostly-scalable monitoring system for PlanetLab.
OSR 40(1), 65–74 (2006)

24. Wolski, R., Spring, N.T., Hayes, J.: The network weather service: a distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems 15(5-6) (October 1999)

25. Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., Wolski, R.:
A grid monitoring architecture. Memo GFD-I.7. Global Grid Forum (2002)

	Monitoring Service Choreographies from Multiple Sources
	Introduction
	Proposed Approach
	Infrastructure-Oriented Monitoring
	Business Service Monitoring
	Interception Mechanisms
	Runtime Quality Assessment
	Choreography Level Monitoring

	Event-Oriented Monitoring
	Case Study
	Related Work
	Conclusions and Future Work
	References

