

Lecture Notes in Computer Science 7527
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Paris Avgeriou (Ed.)

Software Engineering
for Resilient Systems
4th International Workshop, SERENE 2012
Pisa, Italy, September 27-28, 2012
Proceedings

13

Volume Editor

Paris Avgeriou
University of Groningen
Nijenborgh 9
9747 AG Groningen, The Netherlands
E-mail: paris@cs.rug.nl

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33175-6 e-ISBN 978-3-642-33176-3
DOI 10.1007/978-3-642-33176-3
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012945542

CR Subject Classification (1998): D.4.5, D.2.1-2, D.2.4-5, D.2.11, C.2.4, H.4

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The unprecedented level of complexity of modern software makes it difficult to
ensure its resilience - the ability of the system to persistently deliver its services
in a trustworthy way even when facing changes. Yet, we are observing the increas-
ingly pervasive use of software in such critical infrastructures as transportation,
health care, energy production etc. This trend urges the research community
to develop powerful methods for assuring resilience of software-intensive sys-
tems. The SERENE workshop was established as a means of disseminating such
research results and fostering discussion and cooperation between the growing
resilience research community.

This volume contains the proceedings of the 4th International Workshop on
Software Engineering for Resilient Systems (SERENE 2012). SERENE 2012 took
place in Pisa, Italy, during September 27–28, 2012. The SERENE workshop is an
annual event that brings together researchers and practitioners working on the
various aspects of the software engineering life-cycle for resilient systems, espe-
cially design, verification, and assessment. In particular it covers such areas as:

• Modelling of resilience properties: formal and semi-formal techniques
• Requirements engineering and re-engineering for resilience
• Verification and validation of resilient systems
• Resilience prediction and experimental measurement
• Error, fault, and exception handling in the software life-cycle
• Empirical studies in the domain of resilient systems
• Relations between resilience and other system quality attributes
• Frameworks, patterns, and software architectures for resilience
• Resilience at run-time: metadata, mechanisms, reasoning, and adaptation
• Engineering of self-healing autonomic systems
• Quantitative approaches to ensuring resilience
• CASE tools for developing resilient systems

SERENE 2012 featured two invited speakers: Andrea Zisman and Nuno Ferreira
Neves. Andrea Zisman is professor at the City University London (UK) and is
considered a leading expert in service engineering in combination with resilience.
She has worked, among others, in verification of service-based systems, consis-
tency management and traceability of software artifacts, design and verification
of secure software systems, and identification and composition of trusted ser-
vices as well as development of trust framework for cloud infrastructures. Nuno
Ferreira Neves is associate professor at the University of Lisbon (Portugal) and
is a distinguished researcher in the area of fault and intrusion tolerance. He has
worked on a range of topics, including security information and events man-
agement, critical infrastructure protection, dependable cloud computing, and
intrusion-tolerant sensor networks.

VI Preface

The workshop was established by the members of the ERCIM working group
SERENE. The group promotes the idea of resilient-centric development processes.
It stresses the importance of extending the traditional software engineering prac-
tice with theories and tools supporting modelling and verification of various as-
pects of resilience. We would like to thank the SERENE working group for their
hard work in publicizing the event and contributing to its technical program.

All submitted papers received at least three rigorous reviews. The accepted
set, consisting of 12 high-quality submissions, allowed us to build a technically
strong program that inspired lively discussion and future collaboration in the
resilience community. We would like to express our gratitude to the Program
Committee members and the additional reviewers who actively participated in
reviewing and discussing the submissions. Of course, we would like to gratefully
acknowledge and thank all the authors for their effort in submitting papers.

The organization of such a workshop is challenging. We would like to ac-
knowledge the help of technical and administrative staff of CNR-ISTI, Newcastle
University, and University of L’Aquila. SERENE 2012 was supported by ERCIM
(European Research Consortium in Informatics and Mathematics), CNR-ISTI
(Istituto di Scienza e Tecnologie dell’Informazione), and LASSY (Laboratory for
Advanced Software Systems, University of Luxembourg).

July 2012 Paris Avgeriou
Program Chair

Felicita Di Giandomenico
General Chair

Organization

General Chair

Felicita Di Giandomenico CNR-ISTI, Italy

Program Chair

Paris Avgeriou University of Groningen, The Netherlands

Autumn School Director

Elena Troubitsyna Åbo Akademi University, Finland

Steering Committee

Didier Buchs University of Geneva, Switzerland
Henry Muccini University of L’Aquila, Italy
Patrizio Pelliccione University of L’Aquila, Italy
Alexander Romanovsky Newcastle University, UK

Program Committee

Finn Arve Aagesen NTNU, Norway
Mehmet Aksit University of Twente, The Netherlands
Giovanna Di Marzo Serugendo University of Geneva, Switzerland
Xavier Franch Universitat Politècnica de Catalunya, Spain
Vincenzo Grassi University of Rome Tor Vergata, Italy
Brahim Hamid IRIT, France
Valerie Issarny INRIA, France
Mohamed Kaaniche LAAS-CNRS, France
Vyacheslav Kharchenko National Aerospace University, Ukraine
Linas Laibinis Åbo Akademi University, Finland
Tom Maibaum McMaster University, Canada
Jose Carlos Maldonado University of Sao Paulo, Brazil
Eda Marchetti CNR, Italy
Raffaela Mirandola Politecnico di Milano, Italy
Ivan Mistrik Indep. Consultant, Germany
Henry Muccini University of L’Aquila, Italy
Flavio Oquendo European University of Brittany/IRISA-UBS,

France

VIII Organization

Andras Pataricza BUTE, Hungary
Patrizio Pelliccione University of L’Aquila, Italy
Anthony Savidis FORTH, Greece
Peter Schneider-Kamp University of Southern Denmark
Francis Tam Nokia, Finland
Elena Troubitsyna Åbo Akademi University, Finland
Apostolos Zarras University of Ioannina, Greece

Subreviewers

Maurice H. Ter Beek
Silverio Martinez-Fernandez
Somayeh Malakuti
Nicolas Desnos
Pasqualina Potena

Table of Contents

Fault Tolerance and Exception Handling

Implementing Reusable Exception Handling Patterns with
Compile-Time Metaprogramming . 1

Yannis Lilis and Anthony Savidis

A Case Study in Formal Development of a Fault Tolerant Multi-robotic
System . 16

Inna Pereverzeva, Elena Troubitsyna, and Linas Laibinis

Fault-Tolerant Interactive Cockpits for Critical Applications:
Overall Approach . 32

Camille Fayollas, Jean-Charles Fabre, David Navarre,
Philippe Palanque, and Yannick Deleris

Safety Modeling

Linking Modelling in Event-B with Safety Cases . 47
Yuliya Prokhorova and Elena Troubitsyna

Safety Lifecycle Development Process Modeling for Embedded
Systems – Example of Railway Domain . 63

Brahim Hamid, Jacob Geisel, Adel Ziani, and David Gonzalez

Supporting Evolution

Language Enrichment for Resilient MDE . 76
Yasir Imtiaz Khan and Matteo Risoldi

Assume-Guarantee Testing of Evolving Software Product Line
Architectures . 91

Maurice H. ter Beek, Henry Muccini, and Patrizio Pelliccione

Resilience in Service-Oriented Computing

FAS: Introducing a Service for Avoiding Faults in Composite
Services . 106

Koray Gülcü, Hasan Sözer, and Barış Aktemur

X Table of Contents

Dependability of Service-Oriented Computing: Time-Probabilistic
Failure Modelling . 121

Anatoliy Gorbenko, Alexander Romanovsky,
Vyacheslav Kharchenko, and Olga Tarasyuk

Monitoring Service Choreographies from Multiple Sources 134
Amira Ben Hamida, Antonia Bertolino, Antonello Calabrò,
Guglielmo De Angelis, Nelson Lago, and Julien Lesbegueries

Applying Formal Methods in Case Studies

Supporting Field Investigators with PVS: A Case Study in the
Healthcare Domain . 150

Paolo Masci, Dominic Furniss, Paul Curzon,
Michael D. Harrison, and Ann Blandford

Model-Based Evaluation of the Availability of a CBTC System 165
Alessio Ferrari, Massimiliano L. Itria, Silvano Chiaradonna, and
Giorgio O. Spagnolo

Author Index . 181

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 1–15, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Implementing Reusable Exception Handling Patterns
with Compile-Time Metaprogramming

Yannis Lilis1 and Anthony Savidis1,2

1 Institute of Computer Science, FORTH
2 Department of Computer Science, University of Crete

{lilis,as}@ics.forth.gr

Abstract. We investigate in depth the adoption of compile-time meta-
programming to implement exception handling patterns. It is based on logic that
is executed at compile-time and outputs source fragments which substitute the
meta-code before compilation. Exception patterns are realized as metafunctions
capable to transparently generate the invocation details and the appropriate ex-
ception handling layout. This way, programmers are relieved from underlying
exception handling details, while the handling patterns can be standardized and
directly reused. Pattern libraries of directly editable code are enabled, while the
adoption of compile-time metaprogramming allows configuring the pattern dep-
loyment within the original client source based on application requirements. We
examine key exception handling scenarios and we implement them as configur-
able and reusable pattern libraries in an existing meta-language.

Keywords: Exception handling patterns, design patterns, pattern implementa-
tion, compile-time metaprogramming.

1 Introduction

Exception handling [1] is a key mechanism supporting structured error recovery, be-
ing an essential ingredient for resilient software systems. It allows effectively de-
couple normal code from error handling code through distinctive try-catch control
blocks. Once exceptions are raised with a throw statement the program control is
transferred to the closest handler matching the raised exception. The same exception
raised by different contexts may naturally be caught by different handlers, something
dependent on the calling context which led to the statement raising the exception.

Ideally, exception handling in a language should facilitate the construction of han-
dling code in a way that is modular and easy to reuse. But still the challenge of im-
plementing modular, generic and directly reusable exception handler code remains an
open issue for software developers. The main problem is that in real-life software
systems the normal code and the handling code are frequently tightly coupled. An
important factor in this context is that the exception handling logic is encompassed
within syntactically distinct blocks, meaning the chances for applying language reuse
approaches such as inheritance, abstraction, polymorphism and genericity, become
de facto restricted. Finally, although there are well known good and bad practices

2 Y. Lilis and A. Savidis

regarding exception handling [2, 3], none of the established exceptions patterns can
be directly reused in an implementation form across application contexts. In this con-
text, we thought that once we manage to parameterize the syntactic structures, essen-
tially treating syntax, and in effect source code, as a first-class value, we may succeed
in realizing exception patterns in a directly implementable and deployable form. This
line of thinking has driven us to consider compile-time metaprogramming, a power-
ful, promising and increasingly popularized programming approach which relies on a
special set of features that must be offered by the language.

Compile-time metaprogramming is an advanced language feature enabling to mix
programs with extra definitions that are executed at compile-time and transform the
original source code of the program. Metaprograms are usually denoted with special
language tags and operate on source code fragments in the form of abstract syntax
trees (ASTs). Constructs are supported to directly create ASTs from source text
(usually called quasi-quotes), to combine them with arbitrary ASTs produced by
functions (usually called escapes), and to finally insert them as an integral part of the
final source code that will be compiled (usually called inlines).

Fig. 1. The recursively-repeated structure of exception handling patterns generated via meta-
programming; stmts may contain exception handling code following the main pattern

Using metaprogramming, it is possible to express error handling patterns as para-
meterized source fragments in the form of AST templates with empty placeholders
ready to host client-supplied code. Each pattern is implemented by a respective meta-
function that can be invoked during compilation at the appropriate source context
with the desirable parameters in order to generate a concrete instantiation of the ex-
ception handling pattern. Such patterns may in general encompass complex exception
handling structures, combing arbitrary statements with nested and repeated try-catch
blocks (Fig. 1). Nevertheless, the client code need only be aware of the pattern beha-
vior, its corresponding metafunction and how to apply it. This way, not only pro-
grammers are relieved from underlying, sometimes transient, implementation details,

try {

}
catch …{

}
…
catch …{

}

stmts

stmts

stmts

stmts

stmts

 Implementing Reusable Exception Handling Patterns 3

but the exception handling patterns can be standardized and be directly reused. In this
sense, it is possible to produce libraries of parameterized exception handling patterns,
thus allowing configuring pattern deployment at generation-time based on the particu-
lar application requirements. This property is illustrated in Fig. 2. We support our
claim by examining key exception handling scenarios and by providing all respective
meta-implementations to eventually turn them into reusable pattern libraries.

Fig. 2. Deploying library metaprograms to generate exception handling patterns

2 Exception Handling Patterns

Our work has been carried out in the context of the untyped object-based language
Delta [4], thus, the implementations we present correspond to untyped exception han-
dling. Since our approach has nothing to do with type checking and type systems, it
can be well applied to any language, either typed or untyped, as long as they offer the
required metaprogramming features. Some examples of languages that can directly
use this approach include MetaML, Nemerle, MetaLua, Converge, Groovy, etc. Be-
fore discussing the exception handling patterns, we brief the metaprogramming ele-
ments offered by the Delta language, since they are adopted in all our patterns.

• Quasi-quotes (written <<…>>) may be inserted around most elements, such as
expressions, statements, functions, etc., and convert them to the respective AST
form. Quasi-quotes are the easiest way to create ASTs from source fragments.

• Escape (written ~(expr)) can be only used inside quasi-quotes to prevent convert-
ing expr to its AST form and evaluate it normally. Practically, escape is applied on
expressions already carrying AST values that need to be incorporated within an
AST being constructed via quasi-quotes. It can also be used on variables holding
ground values to transform them into constant values in the generated AST.

metafunctions for
generating exception

handling patterns

source code fragments and
templates for exception

handling patterns

alternative composition
policies for exception

handling patterns

fin
al

 c
lie

nt
 p

ro
gr

am

w
ith

 a
ut

om
at

ic
al

ly
 g

en
er

at
ed

ex
ce

pt
io

n
ha

nd
lin

g
pa

tt
er

ns

metaprogram for exception
patterns is run at compile-time

metafunction f (
composition control
arguments to combine
exception handling policies
,
original client-method
invocation code without
exception handling
,
client arguments being
source code fragments in
the form of ASTs

);

clients place invocations to
exception metafunctions

client program
is transformed

1 2 3

4 Y. Lilis and A. Savidis

• Inline (written !(expr)) will evaluate expr and then insert its value, which must be
of AST type, into the source code point where the inlines resides.

• Execute (written &stmt) will evaluate stmt normally at compile-time. It allows
including in a metaprogram any source code definition (e.g., variables, loops, func-
tions, etc.), since in the Delta language a program is defined as a sequence of
statements. Such definitions are not visible outside their enclosing metaprogram.

A simple example is provided in Fig. 3, where the RHS operand of the assignment is
generated using metaprogramming. In particular, foo is a function available only at
compile-time (prefixed with &) and its invocation combines the given argument with
the AST declared within foo’s body (<<1+~x>> part) to generate and return the AST
of 1+2. Then, the inline replaces the entire !foo(<<2>>) part with this AST value.
Thus, finally the source code becomes x=1+2.

&function foo(x)
 { return <<1+~x>>; }

x = !foo(<<2>>);
x = 1+2;

Fig. 3. Metaprograms as compile-time source-code transformations

2.1 Deploying Exception Handling

Design by Contract. Design by Contract (DbyC) [5] is a popular method towards
self-checking code improving software reliability. It proposes contracts, constituting
computable agreements between clients and suppliers. Clients have to respect method
preconditions prior to invocation while suppliers guarantee that the associated
postconditions will be satisfied once the invocation completes. Failure to satisfy the
promised obligations, on either the client or the supplier side, constitutes a contract
violation that will most likely result into an error, typically conveyed as an exception.

In this context, we will use metaprogramming to automatically generate contract
verification code for the supplier class. More specifically, we will iterate the supplier
class AST, seeking for precondition and postcondition tests. Once found, we use them
to enrich the associated methods by inserting method entry code throwing an excep-
tion on contract violation. Additionally, we generate code for the class clients, auto-
matically protecting method invocations that may actually raise contract exceptions
with try-catch blocks. This way, we can either insert custom logic for specific contract
violations, or allow uniform handling based on a predefined contract violation policy.
The discussed functionality can be implemented with the following code.

=

x meta

=

x +

1 2

 Implementing Reusable Exception Handling Patterns 5

&function DbyCSupplier (class) { ← generator for the supplier class
 foreach (local m, class.getMethods()) { ← iterate over class methods
 local pre_id = "pre_" + m.getName(); ← precondition method id
 if (class.hasMethod(pre_id)) ← does the precondition method exist ?
 m.body.push_front(←add source (AST) at the beginning of the method
 << ← source fragment as AST begins here
 if (not self[~pre_id]()) ←has precondition call failed?
 throw [←then throw an exception
 @class : "ContractException",
 @type : "Precondition",
 @classId : ~(class.getName()),
 @method : ~(m.getName())
];
 >> ← source fragment as AST ends here
);
 …similar logic to add postcondition checking code at the method end here…
 }
}

A couple of compile-time generators for the DbyC clients are provided below:

&function DbyCClient (invocation_stmts, handler_stmts) {
 return << ←code template with parameters the invocation and the handler code
 try { ~invocation_stmts; }
 catch ContractException { ~handler_stmts; }
 >>;
}
&function DbyCClientLogging (invocation_stmts) { ←a logger generator
 return DbyCClient(← uses basic client generator
 invocation_stmts,
 << log(ContractException) >> ← handler only logs exception
);
}

An example of using the DbyC generator for suppliers in a Stack class follows:

function Stack() {
 return [
 method empty {…},
 method pre_pop {…},
 method pop {…},

 !(DbyCSupplier(
 context("class")
));

];
}
context is a compile-time
operator providing the AST of
the current identified construct
(here we request "class")

function Stack() {
 return [
 method empty {…},
 method pre_pop {…},
 method pop {
 if (not self["pre_pop"]())
 throw [
 @class : "ContractException",
 @type : "Precondition",
 @classId : "Stack",
 @method : "pop"
];
 … original body of pop method follows here…
 },
];
}

6 Y. Lilis and A. Savidis

!(DbyCClient(
 << st.pop() >>,
 << assert false; >>
));

try { st.pop(); }
catch ContractException
 { assert false; }

!(DbyCClientLogging(
 << st.pop() >>
));

try { st.pop(); }
catch ContractException
 { log(ContractException); }

Such an implementation can be modularly organized collecting all metafunctions
that generate DbyC code in a library module, used during compilation by supplier and
client classes. As shown in Fig. 4, apart from client-to-supplier normal dependencies,
client and supplier modules have a meta-code dependency on the DbyC library. The
same property applies to all exception pattern implementations we discuss later.

Fig. 4. Separation of software components involved in the DbyC exception pattern

Resource Failures. A typical error handling category relates to exceptions being
raised due to resource failures. This includes scenarios where the system runs out of
memory, a network connection fails, or a local database does not respond properly.
Through metaprogramming we can reduce the boilerplate code required to test vari-
ous resource failures, by automatic generation at the desirable client context. An im-
plementation and its deployment are provided below.

&function Resources (alloc_stmts, handler_stms)
 { return <<try {~alloc_stmts;} catch e {~handler_stmts;}>>; }
&function InitialMemoryAllocation (alloc)
 { return Resources(alloc, <<print("No memory!"); exit();>>; }
&function NormalMemoryAllocation (alloc)
 { return Resources(alloc, <<Collector(); ~alloc;>>; }

!(InitialMemoryAllocation(<< x = malloc(10) >>));
!(NormalMemoryAllocation(<< y = malloc(20) >>));
try { x = malloc(10); } catch e { print("No memory!"); exit(); }
try { y = malloc(20); } catch e { Collector(); y = malloc(20);}

High Level Architectural Exceptions. When implementing the interaction amongst
high-level architectural components, the exceptions that can be raised are usually
formalized and relate to predefined conditions that may fail during runtime. Along
these lines, a component is aware of the exceptions that may be raised by a certain
invocation and its reaction to them is typically predetermined: it either knows how to
handle errors, in which case it deals with them directly, or it does not and just filters
and propagates the exceptions to the calling component. These high-level exception

normal code dependency

DbyC
Exceptions

Meta Library

Stack Class
Implementation

Stack Class
Client

meta code
dependency

meta code
dependency

 Implementing Reusable Exception Handling Patterns 7

interactions can be turned to metacode, inserted at the appropriate sites of component
implementations. This allows standardizing exception interactions as component me-
ta-data and can lead to cleaner code that is easier to understand and maintain. Such
functionality can be achieved using the exception pattern implemented below.

&function ArchitecturalException (exception) {
 return [← returns a generator instance with meta methods for arch exceptions
 method Raise { return << throw ~exception; >>; },
 method Ensure(condition) ← if the condition fails will raise an exception
 { return << if (not (~condition)) ~(self.Raise()); >>; },
 method Filter(invocation_stmts, filter_stmts) {
 return << ← upon an exception execute the filtering statements and rethrow
 try { ~invocation_stmts; }
 catch e { assert e==~exception; ~filter_stmts; throw e; }
 >>;
 },
 method Handle(invocation_stmts, handler_stmts) {
 return << ← handle an exception executing the given handler statements
 try { ~ invocation_stmts; }
 catch e { assert e == ~exception; ~handler_stmts; }
 >>;
 }
];
}

An example of invoking the ArchitecturalException metafunction at compile-time and
the respective source code it introduces in its place is provided below:

&bank = ArchitecturalException("NegativeAmount");
!(bank.Ensure(<< acc.amount >= 0 >>);
!(bank.Handle(<< acc.Withdraw() >>, << acc.CancelTrans() >>);
if (not (acc.amount >= 0)) throw "NegativeAmount";
try { acc.Withdraw(); }
catch e { assert e == "NegativeAmount"; acc.CancelTrans(); }

Multiple Repeating Catch Blocks. A common scenario encountered in exception
handling relates to small source fragments, even single statements, which may raise
multiple distinct exceptions. Such code fragments may be found in various indepen-
dent locations of the program but the error handling strategy is usually similar. A
typical example of this scenario is the use of sockets, where various things may go
wrong (e.g. IOException, ConnectException, TimeoutException, SecurityException,
etc.), but each of them is usually handled in a custom manner. For instance, upon a
TimeoutException the program will typically wait and retry the operation after some
time, upon an IOException it will try to reestablish the IO stream, upon a SecurityEx-
ception it may try to elevate security privileges or notify the user about insufficient
permissions, and so on. Such cases require introducing comprehensive cascading
catch blocks that cannot be abstracted via polymorphism or genericity in any manner.
But it is possible to introduce metafunctions capturing the cascaded exception han-
dling logic and insert it at the appropriate client sites thus accomplishing the desirable
exception handling behavior. This is demonstrated by the following code:

8 Y. Lilis and A. Savidis

&function Cascading (invocation_stmts, alt_handlers) {
 ast = nil; ← will hold the AST enumerating all handler entries
 foreach (typeof exception : handlerfor exception, alt_handlers)
 ast = << ←make AST associating exceptions type with handler code
 ~ast, { ~type : function{ ~handler; } }
 >>;
 return <<
 try { ~invocation_stmts; }
 catch e {
 D = [~ast]; ← inserts previously made AST of handlers
 f = D[e.type]; ← get handlers dispatcher for this exception
 if (f) f(); else throw e; ← if the handler exists call it else throw
 }
 >>;
}

&FILE_IO_Handlers = [← hash table as <exception type>: <handler code>
 {"EOFException" : << reader.close(); >> },
 {"FileNotFoundException" : << print("no file")>> },
 {"UnknownEncodingException" : << load_encodings()>> }
];
!(Cascading(← generator produces the cascaded handling logic
 << reader = FileReader("foo.abc"); reader.read(); >>,
 FILE_IO_Handlers
));
try { reader = FileReader("foo.abc"); reader.read(); }
catch e {
 D = [
 {"EOFException" : function {reader.close(); }},
 {"FileNotFoundException" : function {print("no file");}},
 {"UnknownEncodingException" : function {load_encodings();}}
];
 f = D[e.type]; if (f) f(); else throw e;
}

Our examples are untyped so the cascading catch blocks are modeled through a
single catch block, using a dispatcher to choose a handler via the runtime exception
type tag. In a typed language, the generated code would consist of successive catch
blocks for typed exceptions, each with the respective handler invocation.

2.2 Exception Policies

Exception handling is known to be a global design issue [6] that affects multiple
system modules, mostly in an application-specific way. In this sense, it should be
possible to select a specific exception handling policy for the entire system or apply
different policies for different components of the system. Using typical object-
oriented techniques, the only solution would be to abstract the desired exception
handling policy within a function (or object method) and place a corresponding invo-
cation to every applicable catch block. However, it does not avoid the boilerplate code

 Implementing Reusable Exception Handling Patterns 9

required for declaring the handler and performing the function call, nor does it
support arbitrary exception handling structures or context-dependent information. As
before, each policy will be implemented through a respective metafunction and it will
be used in multiple different contexts and call sites. Additionally, it is possible to
parameterize the actual policy being applied, thus allowing the interchangeable use of
different policies based simply on configuration parameters and without requiring
even a single change at the actual call sites inside client code. We have implemented a
set of exception handling policies incorporating some of the strategies discussed in
[7]. Specifically we support the following use cases implemented in the code below:

• None – Do not handle exceptions
• Inaction – Ignore any raised exceptions
• Logging – Log any raised exceptions
• Retry – Repeatedly attempt an operation that raised an exception
• Cleanup Rethrow – Perform any cleanup actions and propagate the exception
• Higher Level Exception – Raise a higher level exception
• Guarded Suspension – Suspend execution until a condition is met and then retry

&function None (stmts) { return stmts; }← no handling, just return stmts
&function Inaction (stmts)
 { return << try { ~stmts; } catch e {} >>; }
&function Logging (stmts)
 { return << try { ~stmts; } catch e { log(e); } >>; }
&function ConstructRetry (data) { ← constructor for a custom retry policy
 return function (stmts) { ←return a function implementing the code pattern
 return << ←the returned function returns an AST
 for (local i = 0; i < ~(data.attempts); ++i)
 try { ~stmts; break; } ← try & break loop when successful
 catch e { Sleep(~(data.delay)); } ←catch & wait before retrying
 if (i == ~(data.attempts)) ←maximum attempts were tried?
 { ~(data.failure_stmts); } ←then give-up & invoke failure code
 >>;
 };
}
&function ConstructCleanupRethrow (cleanup_smts) {
 return function (smts) {
 return <<
 try { ~stmts; } ← try the code and on error cleanup and rethrow
 catch e { ~cleanup_stmts; throw e; }
 >>;
 };
}
&function ConstructHigherLevelException (exception) {
 return function (stmts) {
 return <<
 try { ~stmts; } ← try the code and on error throw a higher-level exception
 catch e { throw [~exception, @source : e]; }
 >>;
 };
}

10 Y. Lilis and A. Savidis

&function ConstructGuardedSuspension(condition) {
 return function (stmts) { return <<
 while (true)
 try { ~stmts; break; } ← try the given code and break on success
 catch e { while (not ~condition); } ← else wait condition to hold
 >>;
 };
}

An example of using metaprogramming to create exception handling policies and the
respective source code generated by their deployment is provided below:

&Policies.Install("LOG", Logging);
&Policies.Install("RETRY", ConstructRetry([
 @attempts : 5, @delay : 1000, @fail : <<post("FAIL")>>
]));

&p = Policies.Get("RETRY");
!p(<<f()>>);

for (i = 0; i < 5; ++i)
 try { f(); break; }
 catch e { Sleep(1000); }
if (i == 5) { post("FAIL"); }

&p = Policies.Get("LOG");
!p(<<g()>>);

try { g(); }
catch e { log(e); }

The policy implementations are straightforward, placing the given invocation code
in a try block and the handler logic in a catch block. Notably, the pattern for express-
ing the handler policy is specified once and reused across all generated catch blocks.
This way, programmers need not be aware of the pattern details or be forced to im-
plement it multiple times; policies are standardized within a library and can be reused
based on the application requirements.

Some of the policies discussed require no additional information to be expressed
(e.g. Inaction, or Logging), while others receive such information as construction
parameters. For example, the Retry policy requires the number of attempts for retry-
ing the operation, the delay to wait between them in case an exception occurs and
code to be executed if all attempts fail. It is important to note that any parameters are
required only once upon construction and are not repeated per policy application.
This relieves programmers from repeatedly supplying the required parameters, but
more importantly, it allows the invocation style of policy metaprograms to be uni-
form, allowing them to be used interchangeably without changes in their call sites.

An approach for parameterized exception handling policies is presented in [8]
through a library filtering already caught exceptions. This means boilerplate code is
repeated per handler, but more importantly it cannot support scenarios with more
elaborate exception handling logic (for example Retry, Guarded Suspension, etc.).

2.3 Process Modeling Patterns

Exception handling is not limited to the scope of specific functions or software mod-
ules, but also applies in the more general context of a process model. In both cases it
is important to specify the normal execution path as well as the possible exceptional
behaviors along with the tasks required to handle them properly. In this sense,

 Implementing Reusable Exception Handling Patterns 11

exception handling patterns observed in the one world can also be beneficial to the
other. To this end, we adopt the trying other alternatives and inserting behavior
process modeling patterns described in [9] and provide for them meta-
implementations.

Trying other Alternatives. It is possible for a single task to be accomplished in mul-
tiple ways, possibly involving different components and relying on different condi-
tions. Instead of explicitly using such information in the code structure, it is preferable
to abstract the functionality in distinct operations, where all of them achieve the same
task, and if one fails another alternative may be tried in its place. Below we provide
an exception handling pattern implementation for this scenario. The alternatives ar-
gument contains a list with the alternative code fragments for the given task, while the
ex argument is the exception that signals failure of a task so as to try an alternative.

&function TryAlternatives (alternatives, ex) {
 ast = << local success = false; >>; ← guard for successful alternative
 foreach (local alt, alternatives)
 ast = << ~ast; ← merge with previously produced AST
 if (not success) ← skip rest of alternatives if task has succeeded
 try { ~alt; success = true; } ← if no exception we succeeded
 catch e { if (e != ~ex) throw e; } ← throw all other exceptions
 >>;
 return << ~ast; if (not success) throw ~ex; >>; ← throw if all fail
}

An example of invoking the TryAlternatives metafunction at compile-time and the
respective source code it introduces in its place is provided below:

&alternatives = list_new(<<hotel1.Book()>>, <<hotel2.Book()>>);
&Order(alternatives); ← optionally apply client-specific ordering
!(TryAlternatives(alternatives, "FullyBookedException"));
local success = false;
if (not success)
 try { hotel1.Book(); success = true; }
 catch e { if (e != "FullyBookedException") throw e; }
if (not success)
 try { hotel2.Book(); success = true; }
 catch e { if (e != "FullyBookedException") throw e; }
if (not success) throw "FullyBookedException";

Inserting Behavior. When errors occur during the execution of a series of tasks, they
may not be fatal, but may instead require specific actions to be performed to fix the
problems that caused them. This inserted behavior may have to be executed directly
after the occurrence of an error before any later tasks are executed, (immediate fixing),
or it may be possible to just note the error and handle it accordingly after all tasks are
completed (deferred fixing). Below we provide a pattern implementation supporting
both scenarios. The tasks argument contains all relevant information (normal code,
exceptions that they may raise and handler code) about the tasks to be executed, while
the immediate argument specifies when to apply the error handling code.

12 Y. Lilis and A. Savidis

&function InsertBehavior (tasks, immediate) {
 ast = nil, err = nil, i = 0;
 foreach (local task, tasks) {
 ast = << ~ast; ← merge with previously produced AST if any
 try { ~(task.stmts); } ← insert the task-related stmts

 catch e {
 if (e != ~(task.except)) throw e; ← throw all other exceptions
 ~(immediate ? task.handler : << errors[~i] = true >>);
 } ← if immediate-fixing insert directly the task handler else record the error
 >>;
 if (not immediate) ← if deferred fixing insert code to handle recorded errors
 err = << ~err; if(errors[~i]) { ~(task.handler); } >>;
 ++i;
 }
 return immediate ? ast : << local errors=[]; ~ast; ~err >>;
}

!(InsertBehavior(list_new(
[@stmts: << LoadConfig()>>,
 @except: "NotFound",
 @handler : <<LoadDefault()>>],
 [@stmts: <<SendData()>>,
 @except: "ConnError",
 @handler :<<RepairConn()>>]
), true));

try { LoadConfig(); }
catch e {
 if(e!="NotFound") throw e;
 LoadDefault();
}
try { SendData(); }
catch e {
 if(e!="ConnError") throw e;
 RepairConn();
}

2.4 Pattern Combinations

The previously discussed patterns target different implementation layers ranging from
low level operations on sockets to high level component interactions towards a com-
mon task. All these patterns are orthogonal and can be combined with each other to
form more elaborate and custom exception handling styles (Fig. 5). It is important to
note that using this approach the pattern combination maintains a linear code com-
plexity level. Even though the generated code may contain multiple levels of nested
and/or cascading catch blocks, the original code involves mainly independent pattern
implementations, typically provided as a library, and the pattern combination that
essentially behaves as a code decoration process. For example, consider the task of

Fig. 5. Modular composition of exception-handling patterns as decorator stacks

Client
code

Pa
tt

er
n

A

Pa
tt

er
n

C

+ + + = Client
Code

Pa
tt

er
n

B Pattern A
Pattern B
Pattern C

 Implementing Reusable Exception Handling Patterns 13

booking a hotel. Various alternative hotel objects may be available for booking, each
object involving DbyC contractual tests, while the system may adapt a retry policy to
handle any raised exceptions. Clearly, addressing all these requirements by manually
inserting exception handling code would result into error-prone code that will be hard
to read, understand and maintain. However, using metaprogramming we can combine
applications of the Retry Policy, Try Alternatives and Design by Contract patterns.

!(Policies.Get("RETRY")(←apply the Retry pattern
 TryAlternatives(←apply the Try Alternatives pattern
 list_new(
 DbyCClientLogging(<<hotel1.Book()>>), ←apply DbyC pattern
 DbyCClientLogging(<<hotel2.Book()>>), ←apply DbyC pattern
), "FullBookedException"
)
));
for (local i = 0; i < 5; ++i)
 try { ← try-catch generated by Retry
 local success = false;
 if (not success)
 try { ← try-catch generated by TryAlternatives
 try { hotel1.Book(); } ← try-catch generated by DbyC
 catch ContractException { log(ContractException); }
 success = true;
 } catch e { if (e != "FullyBookedException") throw e; }
 …if statement with similar code structure for alternative hotel2.Book();
 if (not success) throw "FullyBookedException";
 break;
 } catch e { Sleep(1000); }
if (i == 5) { post("FAIL"); }

3 Related Work

Our work targets the delivery of modular and reusable error handling code. As such, it
is closely related to aspect-oriented programming (AOP) [10], an approach for im-
proving the separation of crosscutting concerns in software design and implementa-
tion. In this context, there is a lot of work in the direction of separating exception
handling code from application code and modularizing it into aspects.

Introductory texts [10, 11] describe exception handling as a potential target for ap-
plying AOP and there are refactoring catalogues [12, 13] that include procedures for
moving exception-handling code to aspects; however they do not assess the suitability
or effectiveness of the approach. An initial study on this subject [14] showed that
aspects can decrease the number of LOC, but a later more in-depth study [15] showed
that there are cases where aspects may bring more harm than good. In general, current
AOP languages have some limitations when used for exception handling. Firstly, they
cannot express certain exception handlers without leading to program anomalies [16].
Secondly, they do not help much in making the interface between normal and error
handling code explicit [15]. Additionally, aspectizing context dependent handlers
requires introducing artificial changes, thus causing software maintenance issues [17].
Finally, mixing exception handling with AO programs can hinder program reliability
as the exception flow is complicated, leading to several possible bugs [18].

14 Y. Lilis and A. Savidis

Using metaprogramming to generate exception handling code structures can help
overcoming limitations found in AO solutions. Firstly, the exception handling code is
generated in-place meaning that any required context is directly available to it, avoiding
the need for explicitly providing it as additional aspect parameters. Secondly, code gen-
eration allows creating any code structure including nested and cascading exception
handlers without having to specify multiple advices. Additionally, combining multiple
exception handling patterns is explicit and straightforward; there can be no conflicts
from independently deployed aspects where no ordering is specified. Finally, metapro-
gramming allows parameterizing code structures and thus combining similar functional-
ity, something not always possible through typical AO advice. Table 1 highlights the
pros and cons of each approach with respect to exception handling.

Table 1. Comparison of AOP and metaprogramming in the context of exception handling

 Aspects Metaprograms
Automation Pointcuts match multiple sites Pattern is repeated per site
Combination May impose explicit ordering Free user-defined ordering

Context
 Handlers depending on local
 context break encapsulation

 Handlers are generated in-place
 and always access local context

Reuse
 Similar code fragments must be
 repeated every time
 Reuse via aspect inheritance

 Similar code fragments can be
 composed and reused as ASTs
 Reuse via metafunctions

Expressiveness Bound by pattern matching Allows any handler scenario

4 Conclusion

We have presented a methodology for implementing exception handling patterns as
reusable and composable libraries. Our approach is based on compile-time metapro-
gramming and relies on two axes: (i) encapsulating and abstracting the pattern logic
as a metacode library manipulating source fragments as ASTs; and (ii) applying the
metacode during compilation to generate the pattern implementation details based on
the exception handling parameters of the application. As AST fragments can express
any source code structure, this approach can support any exception handling pattern
as well as any of their possible combinations, regardless of the complexity.

Essentially, metaprogramming relieves programmers from maintaining error-prone
implementation details and allows them to easily use and combine exception handling
pattern libraries. We examined various exception handling scenarios, from typical
cases involving DbyC and resource failures, to generic policies and process modeling
patterns. For each of them we applied our methodology and expressed the handling
patterns with metafunctions. As part of the evaluation process, we also applied it on
various projects. Results showed that the effort required in producing, understanding
and maintaining exception handling code is reduced, while developers noted that
patterns allowed them to better separate normal code from error handling code.

Overall, we consider this work to be a step forward in enabling directly programm-
able standardized exception handling patterns. The adoption of compile-time meta-
programming allows reuse and modularity beyond what is possible with current ob-
ject-oriented and aspect-orientated practices.

 Implementing Reusable Exception Handling Patterns 15

References

1. Goodenough, J.B.: Exception handling: Issues and a proposed notation. Communications
of the ACM 18(12), 683–696 (1975)

2. Doshi, G.: Best practices for exception handling (2003),
http://www.onjava.com/pub/a/onjava/2003/11/19/
exceptions.html (accessed May 11, 2012)

3. McCune T.: Exception-handling antipatterns (2006),
http://today.java.net/pub/a/today/2006/04/06/
exceptionhandling-antipatterns.html (accessed May 11, 2012)

4. Savidis, A.: Delta Language (2010),
http://www.ics.forth.gr/hci/files/plang/Delta/Delta.html
(accessed May 11, 2012)

5. Bertrand, M.: Design by Contract. In: Mandrioli, D., Meyer, B. (eds.) Advances in Object-
Oriented Software Engineering, pp. 1–50. Prentice Hall (1991)

6. Garcia, A., Rubira, C., Romanovsky, A., Xu, J.: A comparative study of exception han-
dling mechanisms for building dependable object oriented software. Journal of Systems
and Software 59(2), 197–222 (2001)

7. Wirfs-Brock, R.: What it Really Takes to Handle Exceptions in Use Cases. In: Use 2002
Conference Proceedings, pp. 341–370 (2002)

8. Newton, K.: The Exception Handling Application Block. From. The Definitive Guide to
the Microsoft Enterprise Library, pp. 221–257. Apress (2007)

9. Lerner, B.S., Christov, S., Osterweil, L.J., Bendraou, R., Kannengiesser, U., Wise, A.: Ex-
ception handling patterns for process modelling. IEEE Transactions on Software Engineer-
ing 36(2), 162–183 (2010)

10. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP 1997. LNCS,
vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

11. Laddad, R.: AspectJ in Action. Manning 512 (2003)
12. Cole, L., Borba, P.: Deriving refactorings for Aspectj. In: Proc. of the 4th ACM Confe-

rence on Aspect-Oriented Software Development, Chicago, USA, pp. 123–134 (March
2005)

13. Laddad R. Aspect-Oriented refactoring, parts 1 and 2. The Server Side (2003),
http://www.theserverside.com (accessed May 11, 2012)

14. Lippert, M., Lopes, C.V.: A study on exception detection and handling using aspect-
oriented programming. In: Proc. of the 22nd ICSE, Limerick, Ireland, pp. 418–427 (June
2000)

15. Castor, F., Cacho, N., Figueiredo, E., Maranhao, R., Garcia, A., Rubira, C.: Exceptions and
aspects: The devil is in the details. In: Proceedings of the 14th SIGSOFT FSE, Portland,
U.S.A., pp. 152–162 (November 2006)

16. Castor, F., Garcia, A., Rubira, C.: Extracting Error Handling to Aspects: A Cookbook. In:
Proceedings of the 23rd ICSM, Paris, France (2007)

17. Greenwood, P., Bartolomei, T., Figueiredo, E., Dosea, M., Garcia, A., Cacho, N.,
Sant’Anna, C., Soares, S., Borba, P., Kulesza, U., Rashid, A.: On the Impact of Aspectual
Decompositions on Design Stability: An Empirical Study. In: Bateni, M. (ed.) ECOOP
2007. LNCS, vol. 4609, pp. 176–200. Springer, Heidelberg (2007)

18. Coelho, R., Rashid, A., von Staa, A., Noble, J., Kulesza, U., Lucena., C.: A catalogue of
bug patterns for exception handling in aspect-oriented programs. In: Proc. of the 15th Con-
ference on Pattern Languages of Programs, New York, NY, USA, pp. 1–13 (2008)

A Case Study in Formal Development

of a Fault Tolerant Multi-robotic System

Inna Pereverzeva1,2, Elena Troubitsyna2, and Linas Laibinis2

1 Turku Centre for Computer Science
2 Åbo Akademi University

Joukahaisenkatu 3-5, 20520 Turku, Finland
{inna.pereverzeva,elena.troubitsyna,linas.laibinis}@abo.fi

Abstract. Multi-robotic systems are typical examples of complex multi-
agent systems. The robots – autonomic agents – cooperate with each
other in order to achieve the system goals. While designing multi-robotic
systems, we should ensure that these goals remain achievable despite
robot failures, i.e., guarantee system fault tolerance. However, designing
the fault tolerance mechanisms for multi-agent systems is a notoriously
difficult task. In this paper we describe a case study in formal devel-
opment of a complex fault tolerant multi-robotic system. The system
design relies on cooperative error recovery and dynamic reconfiguration.
We demonstrate how to specify and verify essential properties of a fault
tolerant multi-robotic system in Event-B and derive a detailed formal
system specification by refinement. The main objective of the presented
case study is to investigate suitability of a refinement approach for spec-
ifying a complex multi-agent system with co-operative error recovery.

Keywords: Event-B, formal modelling, refinement, fault tolerance,
multi-robotic system.

1 Introduction

Over the last decade, the field of autonomous multi-robotic systems has grown
dramatically. There are several research directions that are continuously receiv-
ing significant attention: autonomous navigation and control, self-organising be-
haviour, architectures for multi-robot co-operation, to name a few. The robot
co-operation is studied from a variety of perspectives: delegation of authority
and control, heterogeneous versus homogeneous architectures, communication
structure etc. In this paper we focus on studying the fault tolerance aspects of
multi-robotic co-operation. Namely, we show by example how to formally derive
a specification of a multi-robotic system that relies on dynamic reconfiguration
and co-operative error recovery to achieve fault tolerance.

Our paper presents a case study in formal development of a cleaning multi-
robotic system. That kind of systems are typically employed in hazardous areas.
The system has a heterogenous architecture consisting of several stationary de-
vices, base stations, that coordinate the work of respective groups of robots.

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 16–31, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Formal Development of a Fault Tolerant Multi-robotic System 17

A base station assigns a robot to clean a certain segment. Since both base sta-
tions and robots can fail, the main objective of our formal development is to
formally specify co-operative error recovery and verify that the proposed design
ensures goal reachability, i.e., guarantees that the whole territory will be eventu-
ally cleaned. The proposed development approach ensures goal reachability ”by
construction”. It is based on refinement in Event-B [2] – a formal top-down ap-
proach to correct-by-construction system development. The main development
technique – refinement – allows us to ensure that a resulting specification pre-
serves the globally observable behaviour and properties of the specifications it
refines. The Rodin platform [8] automates modelling and verification in Event-B.

In this paper we demonstrate how to formally define a system goal and, in a
stepwise manner, derive a detailed specification of the system architecture. While
refining the system specification, we gradually introduce a representation of the
main elements of the architecture – base stations and robots – as well as failures
and the fault tolerance mechanisms. Moreover, we identify the main properties
of a fault tolerant multi-robotic system and demonstrate how to formally specify
and verify them as a part of the refinement process. In particular, we show how
to derive a mechanism for cooperative error recovery in a systematic way.

Traditionally, the behaviour of multi-robotic systems is verified by simulation
and model checking. These approaches allow the designers to investigate only a
limited number of scenarios and require a significant reduction of the state space.
In our paper, we discuss advantages and limitations of a refinement approach to
achieve full-scale verification of a multi-robotic system.

The paper is structured as follows. In Section 2 we briefly overview the
Event-B formalism. Section 3 describes the requirements for our case study – a
multi-robotic cleaning system – and outlines the development strategy. Section
4 presents a formal development of the cleaning system and demonstrates how
to express and verify its properties in the refinement process. Finally, in Section
5 we conclude by assessing our contributions and reviewing the related work.

2 Modelling and Refinement in Event-B

The Event-B formalism – a variation of the B Method [1] – is a state-based formal
approach that promotes the correct-by-construction development paradigm and
formal verification by theorem proving. In Event-B, a system model is specified
using the notion of an abstract state machine [2]. An abstract state machine
encapsulates the model state represented as a collection of variables and defines
operations on the state, i.e., it describes the behaviour of the modelled system.
Usually, a machine has an accompanying component, called context, which may
include user-defined carrier sets, constants and their properties given as a list
of model axioms. In Event-B, the model variables are strongly typed by the
constraining predicates. These predicates and the other important properties
that must be preserved by the model constitute model invariants.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

18 I. Pereverzeva, E. Troubitsyna, and L. Laibinis

where e is the event’s name, a is the list of local variables, the guard Ge is
a predicate over the local variables of the event and the state variables of the
system. The body of the event is defined by the next-state relation Re. In Event-
B, Re is defined by a multiple (possibly nondeterministic) assignment over the
system variables. The guard defines the conditions under which the assignment
can be performed, i.e., when the event is enabled. If several events are enabled at
the same time, any of them can be chosen for execution non-deterministically.
If an event does not have local variables, it can be described simply as:

e =̂ when Ge then Re end.

Event-B employs a top-down refinement-based approach to system develop-
ment. A development starts from an abstract system specification that non-
deterministically models the most essential functional requirements. In a se-
quence of refinement steps, we gradually reduce non-determinism and introduce
detailed design decisions. In particular, we can add new events, split events as
well as replace abstract variables by their concrete counterparts, i.e., perform
data refinement. When data refinement is performed, we should define so called
gluing invariant as a part of the invariant of the refined machine. The gluing
invariant defines the relationship between the abstract and concrete variables.

Often a refinement step introduces new events and variables into the abstract
specification. The new events correspond to the stuttering steps that are not
visible at the abstract level, i.e., they refine implicit skip. To guarantee that the
refined specification preserves the global behaviour of the abstract machine, we
should demonstrate that the newly introduced events converge. To prove it, we
need to define a variant – an expression over a finite subset of natural numbers –
and show that the execution of new events decreases it. Sometimes, convergence
of an event cannot be proved due to a high level of abstraction. Then the event
obtains the status anticipated. This obliges the designer to prove, at some later
refinement step, that the event indeed converges.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is formally
demonstrated by discharging the relevant proof obligations generated by the
Rodin platform [8]. Rodin also provides an automated tool support for proving.

3 Multi-robotic Systems

Our paper focuses on formal modelling and development of multi-robotic systems
that should function autonomously , i.e., without human intervention. Such kind
of systems are often deployed in hazardous areas, e.g., nuclear power plants,
disaster areas, minefields, etc.

Typically, the main task or goal that a multi-robotic system should accomplish
is split between the deployed robots. The robot activities are coordinated by a
number of stationary units – base stations. Since both robots and base stations
may fail, to ensure success of the overall goal we should incorporate the fault
tolerance mechanisms into the system design. These mechanisms rely on co-
operative error recovery that allows the system dynamically reallocate functions
from the failed agents to the healthy ones.

Formal Development of a Fault Tolerant Multi-robotic System 19

Designing co-operative error recovery for multi-agent systems is a notoriously
complex task. The complexity is caused by several factors: asynchronous com-
munication, a highly decentralised system architecture and the lack of the ”uni-
versally known” global system state. Yet, the designers should guarantee that
the system goals are achievable despite failures. A variety of failure modes and
scenarios makes verification of goal reachability of the co-operative error re-
covery difficult and time-consuming. Therefore, there is a clear need for rigorous
approaches that support scalable design and verification in a systematic manner.

Next we present the requirements of our case study – a multi-robotic system
for cleaning a territory. Then we will demonstrate how we can formally develop
the system in Event-B and prove its essential properties.

3.1 A Case Study: Cleaning a Territory

The goal of the system is to get a certain territory cleaned by robots. The whole
territory is divided into several zones, which in turn are further divided into a
number of sectors. Each zone has a base station that coordinates the cleaning
activities within the zone. In general, one base station might coordinate several
zones. In its turn, each base station supervises a number of robots attached to
it by assigning cleaning tasks to them.

A robot is an autonomous electro-mechanical device that can move and clean.
A base station may assign a robot a specific sector to clean. Upon receiving the
assignment, the robot autonomously moves to this sector and performs cleaning.
After successfully completing its mission, the robot returns back to the base
station to receive a new assignment. The base station keeps track of the cleaned
and non-cleaned sectors. Moreover, the base stations periodically exchange the
information about their cleaned sectors.

While performing the given task, a robot might fail which subsequently leads
to a failure to clean the assigned sector. We assume that a base station is able
to detect all the failed robots attached to it. In case of a robot failure, the base
station may assign another active robot to perform the failed task.

A base station might fail as well. We assume that a failure of a base station can
be detected by the others base stations. In that case, the healthy base stations
redistribute control over the robots coordinated by the failed base station.

Let us now to formulate the main requirements and properties associated with
the multi-robotic system informally described above.

(PR1) The main system goal: the whole territory has to be cleaned.
(PR2) To clean the territory, every its zone has to be cleaned.
(PR3) To clean a zone, every its sector has to be cleaned.
(PR4) Every cleaned sector or zone remains cleaned during functioning of the

system.
(PR5) No two robots should clean the same sector. In other words, a robot gets

only non-assigned and non-cleaned sectors to clean.
(PR6) The information about the cleaned sectors stored in any base station has

to be consistent with the current state of the territory. More specifically, if a
base station sees a particular sector in some zone as cleaned, then this sector

20 I. Pereverzeva, E. Troubitsyna, and L. Laibinis

is marked as cleaned in the memory of the base station responsible for it.
Also, if a sector is marked as non-cleaned in the memory of the base station
responsible for it, then any base station sees it as non-cleaned.

(PR7) Base station cooperation: if a base station has been detected as failed then
some base station will take the responsibility for all the zones and robots of
the failed base station.

(PR8) Base station cooperation: if a base station has no more active robots, a
group of robot is sent to this base station from another base station.

(PR9) Base station cooperation: if a base station has cleaned all its zones, its
active robots may be reallocated under control of another base station.

The last three requirements essentially describe the co-operative recovery mech-
anisms that we assume to be present in the described multi-robot system.

3.2 Formal Development Strategy

In the next section we will present a formal Event-B development of the described
multi-system robotic system. We demonstrate how to specify and verify the given
properties (PR1)–(PR9). Let us now give a short overview of this development
and highlight formal techniques used to ensure the proposed properties.

We start with a very abstract model, essentially representing the system be-
haviour as a process iteratively trying to achieve the main goal (PR1). The next
couple of data refinement steps decompose the main goal into a set of subgoals,
i.e., reformulate it in the terms of zones and sectors. We will define and prove
the relevant gluing invariants establishing a formal relationship between goals
and the corresponding subgoals.

While the specification remains highly abstract, we postulate goal reachability
property by defining anticipate status for the involved events. Once, as a result
of the refinement process, the model becomes sufficiently detailed, we change
the event status into convergent and prove their termination by supplying the
appropriate variant expression.

Next we introduce different types of agents (i.e., base stations and robots).
The base stations coordinate execution of the tasks required to achieve the cor-
responding subgoal, while the robots execute the tasks allocated on them. We
formally define the relationships between different types of agents, as well as
agents and respective subgoals. These relationships are specified and proved as
invariant properties of the model.

The consequent refinement steps explicitly introduce agent failures, the in-
formation exchange as well as co-operation activities between the agents. The
integrity between the local and the global information stored within base stations
is again formulated and proved as model invariant properties.

We assume that communication between the base stations as well as the robots
and the base stations is reliable. In other words, messages are always transmitted
correctly without any loss or errors. The main focus of our development is on
specifying and verifying the co-operative recovery mechanisms.

Formal Development of a Fault Tolerant Multi-robotic System 21

4 Development of a Multi-robotic System in Event-B

4.1 Abstract Model

We start our development by abstractly modelling the described multi-robotic
system. We aim to ensure the property (PR1). The main system goal is to clean
the whole territory. The process of achieving this goal is modelled by the simple
event Body presented below. A variable goal ∈ STATE models the current
state of the system goal. It obtains values from the enumerated set STATE=
{incompl, compl}, where the value compl corresponds to the situation when
the goal is achieved, otherwise it is equal to incompl. The system continues its
execution until the whole territory is not cleaned, i.e., while goal stays incompl.

Body =̂
status anticipated
when

goal �= compl
then

goal :∈ STATE
end

The event Body has the status anticipated. This means that goal reachability
is postulated rather than proved. However, at some refinement step it also obliges
us to prove that the event or its refinements converge, i.e., to prove that the
process of achieving goal eventually terminates.

4.2 First Refinement: Zone Cleaning

Our initial model represents the system behaviour at a high level of abstraction.
The objective of our first refinement step is to elaborate on the process of cleaning
the territory. Specifically, we assume that the whole territory is divided into n
zones, where n ∈ N and n ≥ 1, and aim at ensuring the property (PR2).

We augment our model with a representation of subgoals. We also associate
the notion of a subgoal with the process of cleaning a particular zone. A subgoal
is achieved only when the corresponding zone is cleaned. A new variable zones
represents the current subgoal status for every zone:

zones ∈ 1..n→ STATE.

In this refinement step we perform a data refinement: we replace the abstract
variable goal with a new variable zones. To establish the relationship between
those variables, we formulate the following gluing invariant:

goal = compl⇔ zones[1..n] = {compl}.
The invariant can be understood as follows: the territory is considered to be
cleaned if and only if its every zone is cleaned. Hence, hereby we have formalised
the property (PR2). The refined event Body is presented below:

Body =̂ refines Body
status anticipated
any z, res
when

z ∈ 1..n ∧ zones(z) �= compl ∧ res ∈ STATE
then

zones(z) := res
end

22 I. Pereverzeva, E. Troubitsyna, and L. Laibinis

Moreover, while a certain subgoal is reached, it stays such, i.e., the system always
progresses towards achieving its goals. Thereby we ensure the property (PR4).

4.3 Second Refinement: Sector Cleaning

In the next refinement step we further decompose system subgoals into a set of
subsubgoals. Specifically, we assume that each zone in our system is divided into
k sectors, where k ∈ N and k ≥ 1, and aim at formalising the property (PR3). We
establish the relationship between the notion of a subsubgoal (or simply a task)
and the process of cleaning a particular sector. A task is completed when the
corresponding sector is cleaned. A new variable territory represents the current
status of each sector:

territory ∈ 1 .. n→ (1 .. k → STATE).

The refinement step is again an example of a data refinement. Indeed, we replace
the abstract variable zones with a new variable territory. The following gluing
invariant expresses the relationship between subgoals and subsubgoals (tasks)
and correspondingly ensures the property (PR3):

∀j ·j ∈ 1 .. n⇒ (zones(j) = compl⇔ territory(j)[1 .. k] = {compl}).
The invariant postulates that a zone is cleaned if and only if each of its sectors
is cleaned.

The abstract event Body is further refined. It is now models cleaning of a
previously non-cleaned sector s in a zone z. The task is achieved when this
sector is eventually cleaned, i.e., result becomes compl.

Body =̂ refines Body
status anticipated
any z, s, result
when

zone ∈ 1..n ∧ s ∈ 1 .. k ∧ territory(z)(s) �= compl ∧ result ∈ STATE
then

territory(z) := territory(z)�− {s �→ result}
end

Let us observe that the event Body also preserve the property (PR4).
At this refinement step we have achieved a sufficient level of detail to intro-

duce an explicit representation of the agents – base stations and robots. This
constitutes the main objective of our next refinement step.

4.4 Third Refinement: Introducing Agents

We start by defining, in the model context, the abstract finite set AGENTS
and its disjointed non-empty subsets RB and BS that represent the robots and
the base stations respectively. To define a relationship between a zone and its
supervising base station, we introduce the variable responsible, which is defined
as the following total function:

responsible ∈ 1 .. n→BS.

Each robot is supervised by a certain base station. During system execution
robots might become inactive (failed). We model the relationship between robots
and their supervised station by a variable attached, defined as partial function:

attached ∈ RB �→BS.

Formal Development of a Fault Tolerant Multi-robotic System 23

The new function variables asgn z and asgn s model respectively the zone and
the sector assigned to a robot to clean. When a robot is idle, i.e., it does not
have a task assigned to it, the corresponding function value is 0:

asgn z ∈ RB �→ 0 .. n, asgn s ∈ RB �→ 0 .. k.

We require that only the robots that have a supervisory base station might
receive a cleaning task:

dom(attached) = dom(asgn z), dom(asgn z) = dom(asgn s).

Now we can formulate the property (PR5) – no two robots can clean the certain
sector at the same time – as a model invariant:

∀rb1, rb2·rb1 ∈ dom(attached)∧rb2 ∈ dom(attached)∧asgn z(rb1) = asgn z(rb2) ∧
asgn s(rb1) 	= 0 ∧ asgn s(rb2) 	= 0 ∧ asgn s(rb1) = asgn s(rb2)⇒ rb1 = rb2.

To coordinate the cleaning process, a base station stores the information about
its own cleaned sectors and periodically updates information about the status
of the other cleaned sectors. Therefore, we assume that each base station has a
“map” – a knowledge about all sectors of the whole territory. To model this, we
introduce a new variable, local map:

local map ∈ BS → (1 .. n �→ (1 .. k → STATE)).

The “maps” are defined only for the base stations that have any zone cleaning
to coordinate, i.e., bs ∈ ran(responsible):

∀bs·bs ∈ ran(responsible)⇒ local map(bs) ∈ 1 .. n→ (1 .. k → STATE),

∀bs·bs ∈ BS ∧ bs /∈ ran(responsible)⇒ local map(bs) = ∅.

The abstract variable territory represents the global knowledge on the whole
territory. For any sector and zone, this global knowledge has to be consis-
tent with the information stored by the base stations. Namely, if in the lo-
cal knowledge of any base station bs a sector s is marked as cleaned, i.e.,
local map(bs)(z)(s) = compl, then it should be cleaned according to the global
knowledge as well, i.e., territory(z)(s) = compl; and vice versa: if a sector s is
marked as non-cleaned in the global knowledge, i.e., territory(z)(s) = incompl,
then it remains non-cleaned according the local knowledge of any base station
bs, i.e., local map(bs)(z)(s) = incompl. To establish those relationships, we for-
mulate and prove the following invariants:

∀bs, z, s·bs ∈ ran(responsible)∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ⇒
(local map(bs)(z)(s) = compl⇒ territory(z)(s) = compl),

∀bs, z, s·bs ∈ ran(responsible)∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ⇒
(territory(z)(s) = incompl⇒ local map(bs)(z)(s) = incompl).

For each base station, the local information about its zones and sectors always
coincides with the global knowledge about these zones and sectors:

∀bs, z, s·bs ∈ ran(responsible)∧ z ∈ 1 .. n ∧ responsible(z) = bs ∧ s ∈ 1 .. k ⇒
(territory(z)(s) = incompl⇔ local map(bs)(z)(s) = incompl).

24 I. Pereverzeva, E. Troubitsyna, and L. Laibinis

All together, these three invariants formalise the property (PR6).
A base station assigns a cleaning task to its attached robots. This behaviour

is modelled by a new event NewTask. In the event guard, we check that the
assigned sector s is not cleaned yet, i.e., local map(bs)(z)(s) = incompl, and no
other robot is currently cleaning it. The last condition can be formally expressed
as s /∈ ran((dom(asgn z � {z}))� asgn s), i.e., the sector s is not assigned to
any robot that performs cleaning in the zone z:

NewTask =̂
any bs, rb, z, s
when

bs ∈ BS ∧ rb ∈ dom(attached) ∧ attached(rb) = bs ∧ z ∈ 1 .. n ∧
responsible(z) = bs ∧ asgn z(rb) = 0 ∧ s ∈ 1 .. k ∧ asgn s(rb) = 0 ∧
local map(bs)(z)(s) = incompl ∧ s /∈ ran((dom(asgn z � {z})) � asgn s)

then
asgn s(rb) := s
asgn z(rb) := z

end

The robot failures have impact on execution of the cleaning process. The
cleaning task cannot be performed if a robot assigned for this task has failed.
To reflect this behaviour in our model, we refine the abstract event Body by
two events TaskSuccess and TaskFailure, which respectively model successful and
unsuccessful execution of the task. If the task has been successfully performed
by the assigned robot rb, its supervising base station bs changes the status of the
sector s to cleaned, i.e., we override the previous value of local map(bs)(z)(s)
by the value compl.

TaskSuccess =̂ refines Body
status convergent
any bs, rb, z, s
when

bs ∈ BS ∧ rb ∈ dom(attached) ∧ attached(rb) = bs ∧
z ∈ 1 .. n ∧ responsible(z) = bs ∧ asgn z(rb) = z ∧
s ∈ 1 .. k ∧ asgn s(rb) = s ∧ local map(bs)(z)(s) = incompl

then
territory(z) := territory(z)�− {s �→ compl}
local map(bs) := local map(bs) �− {z �→ local map(bs)(z) �− {s �→ compl}}
asgn s(rb) := 0
asgn z(rb) := 0
counter := counter − 1

end

The dual event TaskFailure abstractly models the opposite situation caused by
a robot failure. As a result, all the relationships concerning the failed robot rb
are removed:

TaskFailure =̂ refines Body
status convergent
any bs, rb, z, s
when

bs ∈ BS ∧ rb ∈ dom(attached) ∧ attached(rb) = bs ∧
z ∈ 1 .. n ∧ responsible(z) = bs ∧ asgn z(rb) = z ∧
s ∈ 1 .. k ∧ asgn s(rb) = s ∧ local map(bs)(z)(s) = incompl

then
territory(z) := territory(z)�− {s �→ incompl}
asgn s := {rb} �− asgn s
asgn z := {rb} �− asgn z
attached := {rb} �− attached

end

Formal Development of a Fault Tolerant Multi-robotic System 25

At this refinement step, we are ready to demonstrate that the events
TaskSuccess and TaskFailure converge. To prove it, we define the following variant
expression over system variables:

counter + card(dom(attached)),

where counter is an auxiliary variable that stores the number of all non-cleaned
sectors of the whole territory. The initial value of counter is equal to n ∗ k.
When a robot fails to perform a task, it is removed from the corresponding
set of the attached robots dom(attached). This in turn decreases the value of
card(dom(attached)) and consequently the whole variant expression. On the
other hand, when a robot succeeds in cleaning a sector, the variable counter de-
creases and consequently the whole variant expression decreases as well. If there
are no sectors to clean, the events become disabled and the system terminates.

A base station keeps track of the cleaned and non-cleaned sectors and repeat-
edly receives the information from the other base stations about their cleaned
sectors. This knowledge is inaccurate for the period when the information is sent
but not yet received. In this refinement step we abstractly model receiving the
information by a base station. In the next refinement step, we are going to define
this process of information broadcasting more precisely.

The new event UpdateMapmodels updating the local map of a base station bs.
Here we have to ensure that the obtained information is always consistent with
the global one. Specifically, the base station updates a sector s as cleaned only if it
has this status according to the global knowledge, i.e., territory(z)(s) = compl.

UpdateMap =̂
any bs, z, s
when

bs ∈ BS ∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ∧
responsible(z) �= bs ∧ bs ∈ ran(responsible)∧
territory(z)(s) = compl

then
local map(bs) := local map(bs) �− {z �→ local map(bs)(z) �− {s �→ compl}}

end

In this refinement step we also introduce an abstract representation of the
base station co-operation defined by the property (PR7). Namely, we allow to
reassign a group of robots from one base station to another. This behaviour is
defined by the event ReassignRB. In the next refinement steps we will elaborate
on this event and define the conditions under which this behaviour takes place.

Additionally, we model a possible redistribution between the base stations
their pre-assigned responsibility for zones and robots. This behaviour is defined
in the new event GetAdditionalResponsibility presented below. The event guard
defines the conditions when such a change is allowed. A base station bs j can
take the responsibility for a set of new zones zss if it has the accurate knowledge
about these zones, i.e., the information about their cleaned and non-cleaned
sectors. Specifically, in the guard we check that the global status of each sector
s from the zone z, i.e., territory(z)(s), coincides with the local information that
the base station bs j has about this sector. In that case, we reassign responsibility
for the zone(s) zss and the robots rbs to the base station bs j:

26 I. Pereverzeva, E. Troubitsyna, and L. Laibinis

GetAdditionalResponsibility =̂
any bs i, bs j, rbs, zs
when

bs i ∈ BS ∧ bs j ∈ BS ∧ zs ⊂ 1 .. n ∧
zs = dom(responsible � {bs i}) ∧ rbs ⊂ dom(attached) ∧
rbs = dom(attached� {bs i}) ∧ bs i �= bs j ∧ bs j ∈ ran(responsible) ∧
(∀z, s·z ∈ zs ∧ s ∈ 1 .. k ⇒ territory(z)(s) = local map(bs j)(z)(s))

then
responsible := responsible �− (zs × {bs j})
attached := attached �− (rbs × {bs j})
asgn s := asgn s �− (rbs × {0})
asgn z := asgn z �− (rbs × {0})
local map(bs i) := ∅

end

Modelling this behaviour allows us to formalise the property (PR9). Our next
refinement step will elaborate on our chosen communication model that is needed
to achieve such co-operative recovery.

4.5 Fourth Refinement: A Model of Broadcasting

In the fourth refinement step we aim at defining an abstract model of broad-
casting. After receiving a notification from a robot about successful cleaning the
assigned sector, a base station updates its local map and broadcasts the message
about the cleaned sector to the other base stations. In its turn, upon receiving
the message, each base station correspondingly updates its own local map. We
assume that the communication between base stations is reliable: no message is
lost and eventually every base station receives it. In further refinement steps, this
model of the broadcasting can be further refined by a more concrete mechanism.

To model the described behaviour, we introduce a new relational variable,
msg, that models the message broadcasting buffer:

msg ∈ BS ↔ (1 .. n× 1 .. k).

If a message (bs �→ (z �→ s)) belongs to this buffer, this means that the sector
s from the zone z has been cleaned, i.e., territory(z)(s) = compl. The first
element of the message, bs, determines the base station the message is sent to.
We formulate this property by the following system invariant:

∀z, s·z ∈ 1 .. n ∧ s ∈ 1 .. k ∧ (z �→ s) ∈ ran(msg)⇒ territory(z)(s) = compl.

If there are no messages in the msg buffer for any particular base station then
the local map of this base station is accurate, i.e., it coincides with the global
knowledge about the teritory:

∀bs, z, s·z ∈ 1 .. n ∧ s ∈ 1 .. k ∧ bs ∈ ran(responsible) ∧ (bs �→ (z �→ s)) /∈ msg⇒
territory(z)(s) = local map(bs)(z)(s),

∀bs·bs ∈ ran(responsible)∧ bs /∈ dom(msg)⇒
(∀z, s·z ∈ 1 .. n ∧ s ∈ 1 .. k ⇒ territory(z)(s) = local map(bs)(z)(s)).

After receiving a notification about successful cleaning of a sector, a base station
marks this sector as cleaned in its local map and then broadcasts the message
about it to other base stations. To model this, we refine the abstract event
TaskSuccess. Specifically, in the event body we add a new assignment msg :=
msg ∪ (bss× {z �→ s}) to add a new message to the broadcasting buffer.

Formal Development of a Fault Tolerant Multi-robotic System 27

We also refine the abstract event UpdateMap. In particular, we replace the
guard territory(z)(s) = compl by the guard (bs �→ (z �→ s)) ∈ msg. This guard
checks that there is a message for the base station bs about the cleaned sector s
from the zone z. As a result of the event, the base station bs reads the message
and marks the sector s in the zone z as cleaned in its local map.

UpdateMap =̂ refines UpdateMap
any bs, z, s
when

bs ∈ BS ∧ z ∈ 1 .. n ∧ s ∈ 1 .. k ∧ responsible(z) �= bs ∧
bs ∈ ran(responsible) ∧ (bs �→ (z �→ s)) ∈ msg

then
local map(bs) := local map(bs) �− {z �→ local map(bs)(z) �− {s �→ compl}}
msg := msg \ {bs �→ (z �→ s)}

4.6 Fifth Refinement: Introducing Robot Failures

Now we aim at modelling possible robot failures and elaborate on the abstract
events concerning robot and zone reassigning.We start by partitioning the robots
into active and failed ones. The current set of all active robots is defined by a
new variable active with the following invariant properties:

active ⊆ dom(attached), active ⊆ dom(asgn s), active ⊆ dom(asgn z).

Initially all robots are active, i.e., active = RB. A new event RobotFailuremodels
possible robot failures that can happen at any time during system execution:

RobotFailure =̂
any rb
when

rb ∈ active ∧ card(active) > 1
then

active := active \ {rb}
end

We make an assumption that the last active robot can not fail and add the cor-
responding guard card(active) > 1 to the event RobotFailure to restrict possible
robot failures. Let us note that for multi-robotic systems with many homoge-
neous robots this constraint is not unreasonable.

A base station monitors all its robots and detects the failed ones. The abstract
event TaskFailure abstractly models such robot detection.

To formalise the property (PR8), we should model a situation when some base
station bs j does not have active robots anymore, i.e., dom(attached�{bs j}) �
active. In that case, some group of active robots rbs has to be sent to this
base station bs j from another base station bs i. This behaviour is modelled by
the event ReassignNewBStoRBs that refines the abstract event ReassignRB. As a
result, all the robots from rbs become attached to the base station bs j:

ReassignNewBStoRBs =̂ refines ReassignRB
any bs i, bs j, rbs
when

bs i ∈ BS ∧ bs j ∈ BS ∧ rbs ⊂ active ∧
ran(rbs � attached) = {bs} ∧ bs i ∈ ran(responsible) ∧
ran(rbs � asgn s) = {0} ∧ rbs �= ∅ ∧ bs j ∈ ran(responsible) ∧
bs i �= bs j ∧ bs i ∈ ran(rbs �− attached) ∧ dom(attached� {bs j}) � active

then
attached := attached �− (rbs × {bs j})

end

28 I. Pereverzeva, E. Troubitsyna, and L. Laibinis

This event can be further refined by a concrete procedure to choose a particular
base station that will share its robots (e.g., based on load balancing).

Finally, to ensure the property (PR9) , let us consider the situation when all
the sectors for which a base station is responsible are cleaned. In that case, all
the active robots of the base station may be sent to some other base station that
still has some unfinished cleaning to co-ordinate. This functionality is specified
by the event SendRobotsToBS (a refinement of the event ReassignRB):

SendRobotsToBS =̂ refines ReassignRB
any bs i, bs j, rbs
when

bs i ∈ operating ∧ bs j ∈ operating ∧ rbs ⊂ active ∧
ran(rbs � attached) = {bs i} ∧ bs i ∈ ran(responsible) ∧
ran(rbs � asgn s) = {0} ∧ rbs �= ∅ ∧ bs j ∈ ran(responsible) ∧
bs i �= bs j ∧ bs i ∈ ran(rbs �− attached) ∧ rbs = dom(attached� {bs i}) ∧
(∀z ·z ∈ 1 .. n ∧ responsible(z) = bs i ⇒ local map(bs i)(z)[1 .. k] = {compl})

then
attached := attached �− (rbs × {bs j})

end

4.7 Sixth Refinement: Introducing Base Station Failures

In the final refinement step presented in the paper, we aim at specifying the
base station failures. Each base station might be either operating or failed. We
introduce a new variable operating to define the set of all operating base stations.
The corresponding invariant properties are as follows.

operating ⊆ BS,

∀bs· bs ∈ BS ∧ local map(bs) = ∅ ⇒ bs /∈ operating.

Also, similarly to the event RobotFailure, we introduce a new event
BaseStationFailure to model a possible base station failure.

In the fourth refinement step we assumed that a base station can take over the
responsibility for the robots and zones of another base station. This behaviour
was modelled by the event GetAdditionalResponsibility. Now we can refine this
event by introducing an additional condition – only if a base station is detected
as failed, another base station can take over its responsibility for the respective
zones and robots:

GetAdditionalResponsibility =̂ refines GetAdditionalResponsibility
any bs i, bs j, za, rbs
when

bs i ∈ BS ∧ bs j ∈ operating ∧ zs ⊂ 1 .. n ∧
zs = dom(responsible � {bs i}) ∧ rbs ⊂ active ∧ rbs = dom(attached� {bs i}) ∧
bs i �= bs j ∧ bs j /∈ dom(msg) ∧ bs i /∈ operating

then
responsible := responsible �− (zs × {bs j})
attached := attached �− (rbs × {bs j})
asgn s := asgn s �− (rbs × {0})
asgn z := asgn z �− (rbs × {0})
local map(bs i) := ∅

end

As a result of the presented refinement chain, we arrived at a centralised model
of the multi-robotic system. We can further refine the system to derive its dis-
tributed implementation, relying on the modularisation extension of Event-B to
achieve this.

Formal Development of a Fault Tolerant Multi-robotic System 29

5 Discussion

Assessment of the Development. The development of the presented multi-
robotic system has been carried out with the support of the Rodin platform [8].
We have derived a complex system specification in six refinement steps. In gen-
eral, the refinement approach has demonstrated a good scalability and allowed
us to model intricate dependencies between the system components. We have
been able to express and verify all the desired properties defined for our system.
Therefore, we can make a general conclusion about suitability of the refinement
technique for formal development and verification of the multi-robotic systems.

However, we have also identified a number of problems. Firstly, in spite of
seeming simplicity, the relationships between the base stations, zones and sec-
tors have been modelled using quite complex nested data structures (functions).
The Rodin platform could not comfortably handle the proofs involving manipula-
tions with the nested functions and required rather time-consuming interactive
proving efforts. Secondly, the Rodin platform does not support the direct as-
signment to a function with nested arguments. For instance, instead of simply
specifying local map(bs)(z)(s) := compl, we have to express it as the following
intricate statement local map(bs) �− {z �→ local map(bs)(z) �− {s �→ compl}},
i.e., use the overriding relation twice. These two problems can be alleviated
with a mathematical extension of the Rodin platform that is currently under
development.

Despite certain technical difficulties, we have found the refinement approach
as such to be beneficial for deriving precise requirements and the corresponding
model of a multi-robotic system. In the refinement process, we have discovered a
number of subtleties in the system requirements. The proving effort has helped
us to localise the present problems and ambiguities and find the appropriate so-
lutions. For instance, we had to impose extra restrictions on the situations when
a base station takes a new responsibility for other zones and robots. Moreover,
we had to make our assumptions about robot failures more precise.

Related Work. Formal modelling of multi-agent systems has been undertaken
in [10,9,11]. The authors have proposed an extension of the Unity framework to
explicitly define such concepts as mobility and context-awareness. Our modelling
have pursued a different goal – we have aimed at formally guaranteeing that the
specified agent behaviour achieves the pre-defined goals. Formal modelling of
fault tolerant MAS in Event-B has been undertaken by Ball and Butler [3].
They have proposed a number of informally described patterns that allow the
designers to incorporate well-known (static) fault tolerance mechanisms into
formal models. In our approach, we have implemented a more advanced fault
tolerance scheme that relies on goal reallocation and dynamic reconfiguration to
guarantee goal reachability.

The foundational work on goal-oriented development has been done by van
Lamsweerde [4]. The original motivation behind the goal-oriented development
was to structure the requirements and derive properties in the form of temporal
logic formulas that the system design should satisfy. Over the last decade, the

30 I. Pereverzeva, E. Troubitsyna, and L. Laibinis

goal-oriented approach has received several extensions that allow the designers to
link it with formal modelling [5,6,7]. These works aimed at expressing temporal
logic properties in Event-B. In our work, we have relied on goals to facilitate
structuring of the system behaviour and derived a detailed system model that
satisfies the desired properties by refinement.

Conclusions. In this paper we have presented a formal development of a fault
tolerant multi-robotic system. The development has been carried out by refine-
ment in Event-B. As a result of the formal development process, we have achieved
the desired goal – formally specified the complex system behaviour and proved
the desired properties. The formal development has allowed us to uncover miss-
ing requirements and rigorously define the relationships between agents. The
refinement approach has also allowed us to derive a complex mechanism for
cooperative error recovery in a systematic manner.

Our approach has demonstrated a number of advantages comparing to var-
ious process-algebraic approaches used for modelling multi-agent systems. The
reliance on a proof-based verification has allowed us to derive a quite complex
model of the behaviour of a multi-agent robotic system. We have not needed to
avoid complex data types and could comfortably express intricate relationships
between the system goals and the employed agents. As a result, our approach
scales well with respect to the number of system states, agents, and their com-
plex interactions. We believe that, once the mentioned technical difficulties of
handling complex nested functions are resolved in the Rodin platform, Event-B
and the associated tool set will provide a suitable framework for formal modelling
of complex multi-robotic systems.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (2005)

2. Abrial, J.-R.: Modeling in Event-B. Cambridge University Press (2010)

3. Ball, E., Butler, M.: Event-B Patterns for Specifying Fault-Tolerance in Multi-
agent Interaction. In: Butler, M., Jones, C., Romanovsky, A., Troubitsyna, E. (eds.)
Methods, Models and Tools for Fault Tolerance. LNCS, vol. 5454, pp. 104–129.
Springer, Heidelberg (2009)

4. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
In: RE, pp. 249–263 (2001)

5. Landtsheer, R.D., Letier, E., van Lamsweerde, A.: Deriving tabular event-based
specifications from goal-oriented requirements models. Requirements Engineer-
ing 9(2), 104–120 (2004)

6. Matoussi, A., Gervais, F., Laleau, R.: A Goal-Based Approach to Guide the De-
sign of an Abstract Event-B Specification. In: 16th International Conference on
Engineering of Complex Computer Systems. IEEE (2011)

7. Ponsard, C., Dallons, G., Philippe, M.: From Rigorous Requirements Engineering
to Formal System Design of Safety-Critical Systems. ERCIM News (75), 22–23
(2008)

Formal Development of a Fault Tolerant Multi-robotic System 31

8. Rodin: Event-B Platform, http://www.event-b.org/
9. Roman, G.-C., Julien, C., Payton, J.: A Formal Treatment of Context-Awareness.

In: Wermelinger, M., Margaria-Steffen, T. (eds.) FASE 2004. LNCS, vol. 2984, pp.
12–36. Springer, Heidelberg (2004)

10. Roman, G.-C., Julien, C., Payton, J.: Modeling adaptive behaviors in Context
UNITY. Theoretical Computure Science, 376, 185–204 (2007)

11. Roman, G.-C., McCann, P., Plun, J.: Mobile UNITY: Reasoning and Specification
in Mobile Computing. ACM Transactions of Software Engineering and Methodol-
ogy (1997)

http://www.event-b.org/

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 32–46, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Fault-Tolerant Interactive Cockpits
for Critical Applications: Overall Approach

Camille Fayollas1,2,3, Jean-Charles Fabre3, David Navarre2,
Philippe Palanque2, and Yannick Deleris1

1 AIRBUS Operations, 316 Route de Bayonne, 31060, Toulouse, France
Yannick.Deleris@airbus.com

2 ICS-IRIT, University of Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France
{fayollas,navarre,palanque}@ irit.fr

3 LAAS-CNRS, 7 avenue du colonel Roche, F-31077 Toulouse, France
Jean-Charles.Fabre@laas.fr

Abstract. The deployment of interactive facilities in avionic digital cockpits for
critical applications is a challenge today. The dependability of the user interface
and its related supporting software must be consistent with the criticality of the
functions to be controlled. The approach proposed in this paper aims at describ-
ing how fault prevention and fault tolerance techniques can be combined to
address this challenge. Following the ARINC 661 standard, a model-based de-
velopment of interactive objects (namely widgets and layers) aims at providing
zero-default software. Regarding remaining software faults in the underlying
runtime support and also physical faults, the approach is based on fault toler-
ance design patterns, like self-checking components and replication techniques.
The proposed solution relies on the space and time partitioning provided by the
executive support following the ARINC 653 standard. Defining and designing
resilient interactive cockpits is a necessity in the near future as these command
and control systems provide a great opportunity to improve maintenance and
evolutivity of avionic systems.

Keywords: Interactive Systems, Self Checking Components, Widgets,
Dependability, Fault Tolerance, Resilient Computing.

1 Introduction

In the late 70’s the aviation industry developed a new kind of display system integrat-
ing multiple displays and known as “glass cockpit”. Using integrated displays it was
possible to gather under a single screen a lot of information usually statically attached
to multiple independent traditional mechanical gauges. This generation of glass cock-
pits uses several displays with electronic technology. It receives information from
aircraft system applications of embedded equipment, then processes and displays this
information to crew members. In order to send controls to the aircraft systems, the
crew members have to use physical buttons usually made available next to the
displays. Control and display are processed independently (different hardware and

 Fault-Tolerant Interactive Cockpits for Critical Applications: Overall Approach 33

software) and without integration. This is something that is about to change radically
with interactive cockpit applications which have started to replace (e.g. with Airbus
A380) the glass cockpit. The main reason is that it makes possible to integrate infor-
mation from several aircraft systems in a single user interface in the cockpit. This
integration is nowadays required in order to allow flight crew to handle the always
increasing number of instruments which manage more and more complex informa-
tion. Such integration takes place through interactive applications featuring graphical
input and output devices and interaction techniques as in any other interactive con-
texts (web applications, games, home entertainment, mobile devices …). The interac-
tive system in the cockpit is called Control and Display System (CDS). It performs
various operational services of major importance for flight crew and allows the dis-
play of aircraft parameters using LCD screens (as in the glass cockpit), but it also
allows the pilots to graphically interact with these parameters using a keyboard and a
mouse to control aircraft systems.

If the information displayed on (or controlled by) the CDS is critical, its general
architecture must be fault-tolerant. Similarly, on the user side, the information flow
between the pilot and the CDS has to ensure safe flight operations, avoiding the enter-
ing of wrong or incomplete data and displaying only correct information (with respect
to the inner state of the aircraft). Ensuring such dependability of information is not an
easy task due to the high number of hardware and software components involved.

In this paper, we propose an approach for assessing dependability of interactive
cockpits. The approach is based on conventional fault tolerance techniques applied to
interactive objects, at various abstraction levels. The approach also relies on the error
confinement facilities provided by the runtime support, namely an ARINC 653 oper-
ating system kernel [2]. Such runtime platform provides both space and time parti-
tioning. Today the interaction is devoted to non-critical avionic functions and the
management of the interaction is located into one partition for the whole interactive
system. The basic idea is to design fault tolerant interactive entities using multiple
partitions providing error confinement on redundant Display Units.

The paper is organized as follows. In section 2 we describe the problem statement
in more details before illustrating the architecture of interactive cockpits using the
A380 example in section 3. We put focus in this section to the organization of a digi-
tal interactive system following the ARINC 661 standard [1]. In section 4, we de-
scribe our approach to improve the dependability of interactive systems for avionic
critical applications. The architecture of our fault tolerant solution is described in
section 5 and is based on a conventional approach for fault tolerant computing in
avionics, the COM-MON approach [15]. Section 6 concludes this paper.

2 Problem Statement

It is worth noting that, currently, the interactive approach is only used in avionics for
non-safety critical functions. The challenge is now to use this interactive approach for
critical functions.

34 C. Fayollas et al.

The interactive system can be viewed at various levels of abstraction, from indi-
vidual widgets at the bottom level up to more complex interactive entities associated
to so-called user applications, namely the interactive counterpart of avionic functions.
The specifications of interactive objects (widgets and layers) are defined in the
ARINC 661 standard. Such complex system is subject to faults that can impair the
correct rendering of information and the delivery of input information to avionic func-
tions. In this work, we focus on dependability issues of the CDS, as a computer-based
system so the type of faults considered ranges from software to hardware faults and
we do not consider human errors. We understand that such errors are definitely of
interest as far as man-machine interface and interactive systems are considered. How-
ever the evolution of conventional cockpits to total digital cockpits is a revolution and
raises the challenge of its dependability with respect to conventional software and
hardware faults. The dependability of such complex computer-based systems should
be as high as possible depending on the associated failure cases considered: as far as
critical functions are concerned, the system must be developed in compliance with the
highest assurance level, so-called DAL A (Design Assurance Level A) according to
the D0178B development process standard [15].

The approach proposed in this work is two-fold and relies both on fault prevention
and fault tolerance approaches. To deal with software faults, we advocate the use of a
model-based approach of interactive applications, limiting as far as possible software
faults in the resulting interactive entities. A formalism based on Petri Nets is used to
formalize the specifications of interactive objects (widgets and layers). This formal
representation of the interactive objects is interpreted at runtime by a virtual machine.
Regarding physical faults, we advocated a fault tolerance approach relying on the N-
Self Checking Programming paradigm [3] and taking advantage of the ARINC 653
features and redundant hardware.

The long-term interest of such digital cockpit is its flexibility. The lifetime of a
civil aircraft is about 40 years and is subject to many evolutions and updates. This
digital cockpit approach vs. the physical approach offers a clear benefit in this respect,
provided the dependability of the interactive system is guaranteed when changes oc-
cur. This calls thus for resilient computing [15] solutions by definition, which is the
long-term aim of this work.

3 Interactive Cockpit Architecture

3.1 Cockpit Architecture Overview: An Example

In this paper, we will take the example of the Airbus A380 cockpit (see Fig. 1). The
interactive control and display system (CDS) of the Airbus A380 is composed of 2
input devices called KCCUs (Keyboard and Cursor Control Unit) and 8 output devic-
es called DUs (Display Unit). Only some of the 8 DUs allow the crew to use the inte-
ractivity, the other ones are only used for displaying information.

A DU device is composed of a LCD screen, a graphic processing unit and a central
processing unit running an ARINC 653 [2] operating system kernel. The software
responsible for the interactivity is processed in the DU within one partition.

 Fault-Tolerant Interacti

Fi

The type of user interfac
661 specification [1]. Beyon
defines the communication
components of an interactiv
server architecture.

Fig. 2. Simplified Architectur
(b) CDS, (c) ARINC 661 Proto

The server is part of the
composed of the following e

• Input and output device
screens. They allow crew

• Window and widget man
and a set of graphical e
rendered on the LCD scr
creation of widgets, man
the corresponding widge
screens.

ve Cockpits for Critical Applications: Overall Approach

ig. 1. Airbus A380 interactive cockpit

ces that can be proposed on these DUs is based on ARI
nd that user interface aspect, ARINC 661 specification a

n protocol (see Fig. 2(c)) between the various architectu
ve cockpit (see Fig. 2). The ARINC 661 is based on clie

re compliant with ARINC 661 specification standard : (a) Cr
ocol; (d)Aircraft System

e CDS (Control & Display System) in Fig. 2 (b) and i
elements:

s: KCCUs (Keyboard and Cursor Control Unit) and L
w members to interact with the application.
nagers: composed of an event manager, a display mana
elements (called widgets) distributed in a set of windo
reens. For instance, the CDS is responsible for handling
naging KCCU graphical cursors, dispatching the event
ets and the rendering of graphical information on the L

35

INC
also
ural
ent-

rew;

it is

LCD

ager
ows
the

s to
LCD

36 C. Fayollas et al.

The CDS manages informat

• Aircraft Systems (Fig.
through dedicated so-ca
turing a graphical user
event notifications sent b
cal aircraft components
methods called SetParam
cording to state changes

• Crew members (Fig. 2 (
monitoring the aircraft s
craft system through inp
instance, they can click o
value in an EditBoxNum

3.2 Interactive Softwar

The cockpit interactive use
be compared to a desktop c

Fi

Each DU display surface
in one or more layers. A la
the interactive facilities req
data within this layer and
can be seen as a widget tree
the basic interactive compo

• Pushbutton: dedicated to

• Radio buttons: selection

• EditBoxNumeric: for ent

The construction of the str
called containers that can c
the widgets they contain ch

tion for two types of clients:

2(d)): information to and from aircraft systems flo
lled User Applications (UAs) which are applications f
interface for a given avionic function. They process

by the widgets (and might trigger commands on the phy
s).They can also update the widgets (by calling upd
meters) in order to provide feedback to the flight crew
which occurred in the aircraft systems.
(a)): they have the responsibility of flying the aircraft
systems through the LCD screens and controlling the
put devices. They interact with the displayed widgets.
on a button in order to trigger a command, enter a nume

meric to send a value to an avionic function.

re Organisation

er interfaces use a windowing concept (see Fig. 3) that
omputer system windowing.

ig. 3. ARINC 661 windowing concept

e is divided into windows. Each window can be subdivi
yer is associated to one UA and represents the display

quired by an avionic function. The UA and the CDS sh
its hierarchical structure. The layer hierarchical struct

e. The layer is the highest level of this tree. The widgets
nents such as:

o commands triggering.

of one option amongst a set of available ones.

tering numeric values.

ructural widget tree is made possible by specials widg
contain other widgets. We called the containers parents
ildren.

ows
fea-
the

ysi-
date
ac-

t by
air-
For
eric

can

ded
and

hare
ture
are

gets
and

 Fault-Tolerant Interactive Cockpits for Critical Applications: Overall Approach 37

4 Overall Approach

In this section, we first present the main assumptions we make, the functional failures
we want to prevent and the fault model we consider to select the appropriate fault
tolerance strategies. Then we propose our approach for embedding dependability
mechanisms within an interactive cockpit. Our approach is two-fold, we first use a
model-based approach to develop our software and deal with software faults, then we
introduce well-known dependability mechanisms to deal with physical faults.

4.1 Main Hypotheses and Functional Failures to Cover

The focus of this paper is on the interactive system dependability, more precisely, the
CDS dependability. Human-errors are out of the scope of our study, the target being
here the dependability of CDS as a computer-based system. As the CDS is a really
large and complex entity, we decided to focus first on the server reliability. To con-
centrate on this problem, we assume the following:

• The communication between the CDS and aircraft system is reliable. The data
transfer is without corruption and this can easily be achieved using conventional
reliable protocols on a FIFO communication channel.

• The reliability of user applications (UA), the display related part of an avionic
function, is out of the scope of this work, we consider that all information received
by the CDS from aircraft systems is correct.

• The displays of the CDS are reliable, graphical commands sent to the LCD screen
are always correctly displayed.

• The KCCU is sending reliable data to the server.

Our main interest is to ensure that the server processes correctly input events from
crew members, and send graphical commands to the LCD screen according to the
data received from user applications. Three possible failures must be avoided:

• Erroneous Display: Transmission of an erroneous value to the display according
to the data received from aircraft systems (e.g. a widget receives the value x to
render and transmits to the display another value);

• Erroneous Control: Transmission of a different action from the one done by crew
members (e.g. a crew member clicks on Button1 but the event Click-Button2 is
sent to the application);

• Inadvertent Control: Transmission of an action without any crew members’
action (e.g. an event click is sent to the application without crew action on input
devices).

The fault model considered in our study encompasses physical faults ranging from
crash faults, due to a power supply failure of an electronic board for instance, to more
subtle faults like Single Event Effects [15]. Regarding software faults, the model-based
design approach proposed in the next section aims at limiting very much the introduc-
tion of design faults in the development process. Furthermore, to consider transient

38 C. Fayollas et al.

software faults the interactive software and the base executive software, namely the
ARINC 653 kernel will be developed at the highest assurance level (DAL A) and thus
considered as a zero-default piece of software.

4.2 Using ICO Formal Modeling to Design Interactive Cockpits

In the domain of the design of safety-critical interactive systems, the use of a formal
specification technique is extremely valuable because it provides non-ambiguous,
complete and concise models. The advantages of using such formalisms are widened
if they are provided with formal analysis techniques that allow proving properties
about the design [3], thus giving an early verification to the designer before the appli-
cation is actually implemented [5].

The Interactive Cooperative Objects (ICO) is a formal description technique dedi-
cated to the specification and verification of interactive systems [11]. It uses concepts
borrowed from the object-oriented approach (dynamic instantiation, classification,
encapsulation, inheritance, client/server relationship) to describe the structural or
static aspects of interactive systems, and uses high-level Petri nets [7] to describe their
dynamic or behavioural aspects. As an extension of the Cooperative Objects formal-
isms it has been designed to describe behavioural aspects of objects-based distributed
systems [4]. The formalism is able to handle the specific aspects of interactive sys-
tems. In a nutshell, the ICO formalism can be described as follows:

• ICO is Petri net based, suitable to specify the behaviour of event driven-interactive
systems and concurrent human-computer interactions, but also able to describe the
inner states of the Interactive Application.

• The formalism enables the handling of more complex data structure (typed places
and tokens, transitions with actions and preconditions, variable names on arcs).

• ICO objects react to external events according to their internal state and they can
produce events.

• An object is defined as the set of four elements: an extended Petri Net describing
the behaviour of the interactive object, a presentation part, and two functions (the
activation function and the rendering function) that make the link between the co-
operative objet and the presentation part (events from input devices and output on
the LCD screens).

In previous work [3], we have proposed the use of ICO formal modeling for describ-
ing in a complete and unambiguous way both standard widgets and interactive appli-
cations following ARINC 661 specifications.

Any widget corresponds to a collection of interconnected Petri Nets. For instance,
the ICO model of the PicturePushButton (PPB) may be divided in 7 sub-parts (one
handling mouse click events and the other 6 for managing one parameter each: Visi-
ble, Enable, PictureReference, LabelString, StyleSet, Highlighted).

To illustrate the model, we show in Fig. 4 the handling of mouse click events. The Pic-
turePushButton has two internal states: it can be (i) pressed or (ii) released. State changes
are due to user actions (mouse down events, mouse click events). The mouse click events
are relayed to the widget via the processMouseClicked method. They are handled only if

 Fault-Tolerant Interacti

the widget is enable and vis
otherwise, the mouse click e
PicturePushButton ICO mod
modeled as (i) the various st
method calls he can proces
events it can trigger (e.g. A66
Fig. 4). The entire behavioral

Fig. 4. ICO model of the m

4.3 Introducing Depen

Many dependability strateg
duced in [3] and [15], ideal
self-checking component pr
fail-stop component. The e
expected to be very high, m
vice continuity. This concep
nic systems: the COM/MO
Programming (NSCP)-base
approach to two abstractio
widgets, the second one bei

According to [3], "a self
and an acceptance test or
with this definition, we can
ponent associated with a con
for the implementation of a

• Option 1: A copy of the
voting mechanism (calle

• Option 2: A diversified
voting mechanism (the c

• Option 3: A safety prop
for the verification of a
object semantics in its op

In the two first self-check
are processing inputs at th

ve Cockpits for Critical Applications: Overall Approach

sible. In this case, the event A661_EvtSelection is trigger
events are discarded. Fig. 4 is only a small part of the en
del, which is composed of 37 places and 24 transitions. I
tates it can be in (e.g. visible, enable, pressed), (ii) the se
ss (e.g. processMouseClick, setLabelString), (iii) the set
61_EvtSelection) and (iv) when such events are triggered (
l description of the PPB can be found in [14].

management of mouse click events for the PicturePushButton

dability Mechanisms into Interactive Cockpits

gies rely on the notion of self-checking component as in
lly grouping a function and its corresponding controller
rovides error-confinement and can be thus considered a
error detection coverage of a self-checking componen
making thus replication strategies possible to provide
pt has been used for many safety-critical functions in av

ON approach [15] is the basis for various N-Self-Check
ed architectures [3]. We decided to apply the self-check
n levels of our interactive system, the first one being
ing the layers.
lf-checking software component consists of either a vari
two variants and a comparison algorithm". In accorda
 generalize a self-checking component to a functional co
ntroller or checker. Then, several options can be conside
self-checking interactive object:

e functional component (called controller or checker) an
ed comparator).

variant of the functional component (as a controller) an
comparator)
perties checker, the controller being responsible in this c
 number of safety properties associated to the interact
perational context.

king options, the functional and the controller compone
he same time, the comparator then compares both outp

39

red;
ntire
It is

et of
t of
(see

ntro-
r. A
as a

nt is
ser-
vio-
king
king

the

iant
ance
om-
ered

nd a

nd a

case
tive

ents
puts

40 C. Fayollas et al.

and sends an error if the functional outputs and the controller ones are different. Both
options tolerate transient software faults, the second aiming at tolerating design faults.

In the last self-checking options, the safety properties checker checks some proper-
ties defined as safety ones. We check if the outputs are consistent with the inputs.
This last option tolerates transient faults or remaining design faults that impair the
safety properties.

Self-Checking Widgets
As a start, we have used the option 1 to implement self-checking widgets. A self-
checking widget [14] is made up of 5 interconnected components (see Fig. 5):

• The self-checking widget (or façade) is the global widget, coordinating the data
flow to and from the other sub-components. This encapsulation of the other inner
components makes it possible to hide (as much as possible) the self-checking na-
ture of the component which can interact with the rest of the application.

• The dispatcher: events received by the self-checking widget are received by the
dispatcher. The dispatcher duplicates this event and sends it both to the functional
and controller using a simple atomic broadcast protocol (all or nothing semantics).

• The functional component is the behavioral model of the non-fault-tolerant wid-
get. The outputs are sent both to the self-checking widget and the comparator.

• The controller is a second version of the widget. It only implements the functional-
ities that have to be supervised by the controller. The controller sends its output to
the comparator.

• The comparator is in charge of comparing the functional and controller outputs.

The dispatcher and the comparator have obviously important roles and should be
zero-default. They are quite simple and are subject to intensive testing.

The comparator raises errors that may invalidate outputs as shown in Fig. 5. Two
kinds of comparison that can be performed: one related to parameters modification
and the other related to event notification. When the comparator receives an output
from the functional component (resp. the controller) it waits for the corresponding
output from the controller (resp. the functional component). Following the reception
of these two outputs, 3 types of errors can occur: (i) one of the outputs is not received,
(ii) one of the outputs is received too late with respect to the defined temporal win-
dow, (iii) the outputs don’t carry the same value. In case of error, the comparator
raises an error event.

One of the key aspects of the proposed architecture is that it allows the segregation
of the five sub-components (e.g. each sub-component may be executed on different
processors with different resources). Indeed, a self-checking mechanism is not enough
to ensure fault-tolerance if a fault occurring on one component might interfere with
the behavior of another component. This would be the case if all the components of
the architecture were executed in the same partition. ARINC 653 [2] defines such
partitioning in avionic systems and our contribution relies on this notion (section 5).

 Fault-Tolerant Interacti

Fig. 5. S

As presented in Fig. 5, a
is the result of the merge of
ture (the self-checking-com
classic non-self-checking w
comparator). Each compon
space, we will not present th

Self-Checking Layers
The approach presented ab
without any knowledge of t
basic interactive componen
Indeed, to cover both transi
functional component and i
tion, self-checking interact
following the principle of N
for every widget does not
noting that an interactive a
ber will then be really very
hundreds of widgets) even
will need to be fault-toleran

To solve this issue, we p
level: the layer. The layer is
for one UA. In this case, t
level, but safety properties
its attached UA. The granu
stract and semantic level.

To illustrate more concr
layer grouping 138 widgets
trol Unit (FCU) Backup. Th
such as buttons, knobs, disp
Information System (EFIS)

ve Cockpits for Critical Applications: Overall Approach

Self-checking widget functional architecture

adding fault-tolerance mechanism to the PicturePushBut
f the five subparts of the self-checking component archit
mponent façade, the dispatcher, the functional, i.e.
widget as presented in section 4.3, the controller and
nent is modeled in a different Petri Net model. For lack
hese components here.

bove is very generic as it can be applied to each wid
the application: as explained in section 3, the widget is
nt. Therefore, this approach can be resource consumi
ient and permanent hardware faults, we need to isolate
its controller in different partitions (see section 5). In ad
tive objects must be replicated on different display un
N-Self Checking Programming. Four partitions on 2 D
seem acceptable due to resource overheads. It is wo

application can contain a lot of widgets, the partition nu
y high (a standard user application requires about seve
if not every widgets will be considered as critical and t

nt.
propose to apply the self-checking mechanism to an up
s a logical unit merging all the widgets for one applicati
the objective is not to validate every output at the wid
related to a sequence of interactions between the layer

ularity of the verification is done in this case at a more

etely a layer, we give an example in Fig. 6 containing
s: it is an interactive cockpit application called Flight C
he FCU is a hardware panel (i.e. several electronic devi
plays …) providing two types of services: Electronic Fli
 and Auto Flight System (AFS).

41

tton
tec-
the
the

k of

get,
the

ing.
the

ddi-
nits,
DUs
orth
um-
eral
then

pper
ion,
dget
and
ab-

one
Con-
ices
ight

42 C. Fayollas et al.

Fig. 6. Snapshot of the FC

The FCU Backup applic
cover all FCU functions in
interactive pages: EFIS Co
the eight LCD screens (for
for the First Officer. Both
KCCUs which gathers in th

As the layer is directly co
associated with the applicati
quences of widget actions, w

A simple example can b
EditBoxNumeric on the lef
displayed in two different u
sen using the PicturePushB
correspond to the verificatio
a click on the PicturePushB

A self-checking layer i
properties checker (option
viously, the layer is a very
el. The application of the s
properties have to be check

5 Fault-Tolerant A

The self-checking interactiv
detection coverage regardin

CU Backup application in Airbus A380 (left EFIS, right AFS)

ation (see Fig. 6) is designed as an ARINC 661 layer to
case of failure of the physical FCU. It is composed of t

ontrol Panel (CP) and AFS CP and is displayed on two
the A380) in the cockpit, one for the Captain and the ot

h crew members can interact with the application via
he same hardware component a keyboard and a trackball
onnected to an application, it is easy to define safety asserti
ion semantics. Beyond self-checking widgets and generic

we have to consider safety properties that can be checked.
be found on the FCU-Backup application (see Fig. 6). T
ft of EFIS CP displays the atmospheric pressure. It can
units (inHg or hPa). The atmospheric pressure unit is c

Button just behind the EditBoxNumeric. A safety prope
on that the unit and value are modified in a right way up

Button.
mplementation relies in part on a controller as a saf
3 defined in section 4.3). Furthermore, as explained p

big and complex entity and thus very complicated to m
self-checking pattern to a layer is of interest when saf

ked, because of their semantic nature.

Architecture

ve objects (widgets and layers) aim at improving the er
ng the fault model described previously. The execution

o re-
two
o of
ther
the

l.
ions

c se-

The
n be
cho-
erty
pon

fety
pre-

mod-
fety

rror
n of

 Fault-Tolerant Interactive Cockpits for Critical Applications: Overall Approach 43

an interactive object developed using ICO relies on several software layers: a Petri
Net simulator (e.g. PetShop [11] in our case) or code generated from the model, a
virtual machine (a JVM in our case), display and event managers belonging to the
CDS and at last the ARINC 653 operating system kernel.

To cover both transient faults and permanent hardware faults, it is mandatory to
take into account error confinement areas to isolate the functional part and the con-
troller part of the self-checking objet, whatever it is a widget or a layer.

5.1 Architectural Issues

Ideally the functional part should be located in one partition, the controller in a second
partition and the dispatcher and the comparator in a third partition. A simplification
can be to locate the controller, the dispatcher and the comparator in a single partition,
the three components being considered as a verification logic. A partition providing
space and time segregation prevent faults having an impact on both the function and
its controller counterpart.

To tolerate crash faults, two copies of the self-checking widget should be located
on two different DUs, as a physical unit. Only one is considered active at a given
point in time. This approach follows the N-Self-Checking Components principle early
mentioned in this paper. Because interactive objects hold a persistent state, a master-
slave replication strategy is mandatory. Two design patterns of duplex protocols can
be envisaged: a checkpointing-based strategy (primary-backup replication protocol)
or an active replication strategy (e.g. a leader-follower replication protocol). In short
the architecture can be sketched as follows:

a) the functional part F1 of the interactive object is located in P1 on DU1
b) the controller part C1 of the interactive object is located in P1 on DU2
c) a replica of the functional part F2 is located on P2 on the DU2
d) the controller part C2 of the functional part replica is located in P2 on DU1

Fig. 7 illustrates these implementation choices: F1/C1 is the master and F2/C2 is the
slave. The slave does not interact with the crew, only the master does. This means that
inputs from the crew on the master ICO object are forwarded to the slave object.
Events produced by the slave, if it is an active copy, are not forwarded to the UA,
only events from the master are delivered to the UA. More details on design patterns
for resilient computing can be found in [8].

Each partition contains an ARINC 661 server, implemented as an ICO model al-
lowing the communication between the ICO interactive object (layer or widget) and
the UA or the input and output devices. In order to execute ICO models all partitions
include a JVM on top of which our Petshop tool is running. This is the option we
consider now in our experiments, which is conformant to the fault assumptions early
described. This option does not consider remaining development faults within the
Petshop tool or the JVM, i.e. common mode faults in the executive software. We
come back to this point in the next section.

44 C. Fayollas et al.

It is worth noting that the
ing 2 DUs. Yet, depending
DUs can also be studied bas

5.2 Performance Issues

The performance of the arc
analyzed through different a

From a dependability vi
model-based development
ARINC 661 standard defin
scription is obtained using
and implements the expecte
a so-called user application
and the UA or the input and
eled in ICO. The execution
a JVM. The remaining des
even the server) can be a
first solution can be to use
part (F1/P1/DU1 in Fig. 7
controller is a copy of the f
ent. One can also consider u
in different partitions. A si
has been used in the B777 a

Whatever the option is,
653 kernel clearly isolates
from other ICO objects run
and infinite loops have no s
on the same DU. In option
from the functional interact

Fig. 7. Fault tolerant architecture

e proposed fault tolerant architecture implementation is
on the requirements, other implementations with 3 or m
sed on this principle.

s: Discussion

chitectural solution proposed in the previous section can
angles: dependability and resource overheads.
iewpoint, the proposed solution relies first on the use o

that minimizes the introduction of design faults. T
nes the behavior of the widgets and a non-ambiguous

the ICO formalism. The model is interpreted at runti
ed interactive objects for a given avionic function throu

n (UA). The communication between the interactive obj
d output devices is insured by an ARINC 661 server m

n relies on a specific Petri Net interpreter running on top
sign faults in the executive support (Petshop, the JVM
problem for critical applications. To address this issue
the Petri Net interpreter in one partition for the functio

7) and generate code for the controller (C1/P1/DU2). T
functional part, but in this case the runtime image is dif
using several implementations of the JVM (diversificati
imilar approach based on different ADA runtime suppo
architecture [17].

the space and time partitioning provided by the ARI
s the functional part of a self-checking interactive obj
nning in different partitions. Errors due to memory fa
side effects on ICO objects running in companion partiti
ns 2 and 3 proposed in Section 4.3, the controller diff
tive objects. A reduced version of the functional interact

us-
more

n be

of a
The
de-
ime
ugh
ject

mod-
p of

M, or
e, a
onal
The
ffer-
ion)
orts

INC
ject

aults
ions
ffers
tive

 Fault-Tolerant Interactive Cockpits for Critical Applications: Overall Approach 45

object specification can be implemented as a controller if some aspects of the ICO
object have no impact on dependability and can be ignored. Moving forward with this
approach leads in fact to the third option, where the controller only checks safety
properties, i.e. executes user-defined executable assertions. A white box approach
enables assertions to benefit from deeper observability of the ICO object behavior.

Whatever the implementation option is (widget or layer), the resource overhead
(timing, communication, etc.) has to be considered. We plan to provide measures
related to (i) the complexity of the model (number of states and transitions) but also
(ii) to communication overheads (number and size of messages) between functional
and controller partitions.

6 Conclusion and Perspectives

In this paper, we have shown that safety critical applications (such as interactive
cockpits applications) raise specific concerns with regard to fault-tolerance and resi-
lience. We have presented an approach to increase safety critical interactive system
resilience by enriching them with fault-tolerance mechanisms. We proposed to intro-
duce a self-checking mechanism at two abstraction levels of the interactive system:
the widget and the layer.

These two approaches can be used separately or jointly. The design choice (self-
checking widget or self-checking layer) is left open to the UA designer according to
the criticality of the avionic function considered in general, but also with respect to
the criticality of the parameter (or event) to be obtained or the parameter to be dis-
played. For instance, the UA designer can choose to use the layer approach yet, he
can use jointly the widget approach for really critical information. We also presented
an architecture compliant with our approach. To go further, we are currently applying
our approach to the FCU Backup application mentioned in the paper.

The approach presented in this paper has been implemented in Java as a first proof
of concepts, but the final implementation might be different. We are currently investi-
gating in more details the notion of self-checking layer and plan to implement the
FCU Backup case study on a realistic platform.

Acknowledgment. This work is partly funded by Airbus under the contract R&T
Display System X31WD1107313.

References

1. ARINC 661 Cockpit Display System Interfaces to User Systems. ARINC Specification
661. Airlines Electronic Engineering Committee (2002)

2. ARINC 653 Avionics Application Software Standard Interface. ARINC Specification 653.
Airlines Electronic Engineering Committee, July 15 (2003)

3. Barboni, E., Conversy, S., Navarre, D., Palanque, P.: Model-Based Engineering of
Widgets, User Applications and Servers Compliant with ARINC 661 Specification. In:
Doherty, G., Blandford, A. (eds.) DSVIS 2006. LNCS, vol. 4323, pp. 25–38. Springer,
Heidelberg (2007)

46 C. Fayollas et al.

4. Bastide, R., Sy, O., Palanque, P.: A formal notation and tool for the engineering of
CORBA systems. Concurrency: Practice and Experience (Wiley) 12, 1379–1403 (2000)

5. Degani, A., Heymann, M.: Analysis and Verification of Human-Automation Interfaces.
Human Centered Computing: Cognitive, Social and Ergonomic Aspects. In: Proceedings
of the 10th Int. Conf. on HCI, vol. 3, pp. 185–189. Erlbaum, Mahwah (2003)

6. DO-178B: Software Considerations in Airbone Systems and Equipment Certification.
RTCA Inc., EUROCAE (December 1992)

7. Genrich, H.J.: Predicate/Transitions Nets. In: Jensen, K., Rozenberg, G. (eds.) High-Levels
Petri Nets: Theory and Application, pp. 3–43. Springer, Heidelberg (1991)

8. Gibert, V., Machin, M., Fabre, J.-C., Stoicescu, M.: Design for Adaptation of Fault Toler-
ance Strategies. Rapport LAAS no 12198, 35 p (April 2012)

9. Laprie, J.-C.: From Dependability to Resilience. In: IEEE/IFIP International Conference
on Dependable Systems and Networks, Anchorage, Alaska, USA (June 2008)

10. Laprie, J.-C., Arlat, J., Béounes, C., Kanoun, K.: Definition and Analysis of hardware and
software Fault-Tolerant Architectures. IEEE Computer 23(7), 39–51 (1990)

11. Navarre, D., Palanque, P., Bastide, R.: A Tool-Supported Design Framework for
Safety Critical Interactive Systems in Interacting with computers, vol. 15/3, pp. 309–328.
Elsevier, Amsterdam (2003)

12. Navarre, D., Palanque, P., Ladry, J.-F., Barboni, E.: ICOs: a Model-Based User Interface
Description Technique dedicated to Interactive Systems Addressing Usability, Reliability
and Scalability. ACM Trans. on Computer-Human Interaction 16(4), 1–56 (2009)

13. Normand, E.: Single-event effects in avionics. IEEE Transactions on Nuclear
Science 43(2), 461–474 (1996)

14. Tankeu-Choitat, A., Navarre, D., Palanque, P., Deleris, Y., Fabre, J.-C., Fayollas, C.: Self-
checking components for dependable interactive cockpits using formal description tech-
niques. In: Proc. of 17th IEEE Pacific Rim Int. Symp. on Dependable Computing (PRDC
2011), Pasadena, California, USA (2011)

15. Traverse, P., Lacaze, I., Souyris, J.: Airbus Fly-by-Wire: A Total Approach to Dependabil-
ity. In: Proceedings 18th IFIP World Computer Congress, Building the Information Socie-
ty, Toulouse, France, August 22-27, pp. 191–212 (2004)

16. Yau, S.S., Cheung, R.C.: Design of self-Checking Software. In: Proc. Int. Conf. on Relia-
ble Software, pp. 450–457. IEEE Computer Society Press, Los Angeles (1975)

17. Yeh, Y.C. (Bob): Design Considerations in Boeing 777 Fly-By-Wire Computers. In: Third
IEEE International High-Assurance Systems Engineering Symposium, p. 64 (1998)

Linking Modelling in Event-B with Safety Cases

Yuliya Prokhorova1,2 and Elena Troubitsyna2

1 TUCS – Turku Centre for Computer Science
2 Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 A, 20520 Turku, Finland
{Yuliya.Prokhorova,Elena.Troubitsyna}@abo.fi

Abstract. Safety cases are adopted in the certification process of many
safety-critical systems. They justify why a system is safe and whether the
design adequately incorporates safety requirements defined in a system
requirement specification. The use of formal methods facilitates mod-
elling and verification of safety-critical systems. In our work, we aim
at establishing a link between formal modelling in Event-B and con-
structing a safety case. We propose an approach to incorporating safety
requirements in a formal specification in such a way that it allows the
developers to derive a safety case sufficient to demonstrate safety. We
present a small case study illustrating the proposed approach.

Keywords: Event-B, formal specification, safety case, safety
requirements, safety-critical systems.

1 Introduction

The use of formal methods in specification and verification of safety-critical
systems has increased during the last decade. However, Habli and Kelly [1] point
out that the use of an evidence generated from formal analysis is still an open
issue in the system certification process. Basir et al. in [2] also state that formal
methods, specifically formal proofs, provide justification for the validity of claims
and widely deployed in software development. Nevertheless, the formal proofs
are often too complex which causes uncertainties about trustworthiness of using
formal proofs as the evidence in safety cases of safety-critical systems.

Another open issue related to the formal modelling process is whether the
obtained formal model adequately represents safety requirements described in a
system requirement specification. Several works address the question of require-
ments elicitation and traceability into a formal model [3,4,5]. Formal proofs as
the evidence are only reasonable if those proofs are demonstrated to support
incorporated safety requirements.

In this paper, we propose an approach to linking formal modelling in Event-
B [6,7] with safety cases. We give the classification of safety requirements and
define how each class can be represented in a formal specification. Additionally,
we propose to split up a safety case into two main branches: argumentation
over safety requirements and argumentation over the whole design. We define a
number of invariants and theorems to support the argumentation. We use the

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 47–62, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

48 Y. Prokhorova and E. Troubitsyna

Event-B framework to automatically generate the respective proof obligations
which can be used in the safety case as the evidence that requirements have
been met. The approach permits the developers to obtain a consistent system
specification that allows for deriving a ”sufficient” safety case. The problem what
amount or what types of evidence to consider as ”sufficient” is addressed in [8].
The authors determine the sufficiency of the evidence as ”its capability to address
specific explicit safety assurance claims in a safety argument”.

The paper is structured as follows. The safety case concept and modelling
in Event-B principles are described in Section 2. In Section 3 we present our
approach. In particular, in Subsection 3.1 we classify safety requirements and
show the corresponding elements of an Event-B model. The link between Event-
B and the main parts of a system safety case (represented using GSN) is given in
Subsection 3.2. The verification support provided by the Event-B formalism for
safety case arguments is discussed in Subsection 3.3. We illustrate our approach
by an example – the sluice gate control system in Section 4. Finally, in Section 5
we give concluding remarks as well as discuss future and related work.

2 Background

2.1 Safety Cases

A safety case is ”a structured argument, supported by a body of evidence that
provides a compelling, comprehensible and valid case that a system is safe for a
given application in a given operating environment” [9,10].

A claim or a requirement, a safety argument and an evidence are the main
elements of a safety case. Bishop and Bloomfield [10] define a claim to be the
property of the system or some subsystem, while Kelly [11] defines a requirement
as the safety objectives that must be addressed to assure safety. An evidence is
the information extracted from analysis, testing or simulation of the system. The
evidence makes the basis of the safety argument. An argument is a link between
the evidence and the claim or requirements.

To represent the elements of a safety case and the relationships that exist
between these elements, a graphical argumentation notation called Goal Struc-
turing Notation (GSN) has been proposed by Kelly [11]. The principal elements
of the notation are shown in Fig. 1.

Goal

Strategy

Solution

Context

A

Assumption

In context ofIs solved by

A requirement, target or
constraint to be met by a system

A rule to be used in
solution of a goal. It also
can break down a goal
into a number of sub-goals

Provides
evidence to
show that a goal
has been met

Statement whose validity
has to be relied upon in
order to make an argument

Information necessary for an
argument to be understood

Undeveloped Goal

A goal that needs to be
developed later on

Fig. 1. Principal elements of GSN (detailed description is given in [11,12])

Linking Modelling in Event-B with Safety Cases 49

The safety case constructed in terms of GSN shows how goals (claims) are de-
composed into sub-goals until the claim can be supported by the direct evidence
(solution). It also defines the argument strategies and the context in which goals
are declared. GSN has been adopted by a wide range of European companies
from different domains: avionics, submarines, railways, etc. [1].

2.2 Modelling in Event-B

Event-B [6,7] is a state-based formal method for system level modelling and anal-
ysis. It is an extension of the B Method [13] that aims at facilitating modelling
of parallel, distributed and reactive systems. Automated support for modelling
and verification in Event-B is provided by the Rodin Platform [6].

In Event-B system models are defined using the notion of an abstract state
machine. An abstract machine encapsulates the state (the variables) of a model
and defines operations (events) on its state. The machine is uniquely identified
by its name MachineName. The state variables of the machine are declared in
the VARIABLES clause and initialised in the INITIALISATION event. The
variables are strongly typed by the constraining predicates in terms of invariants
given in the INVARIANTS clause. The data types and constants of the model
are stated in a separate component called CONTEXT, where their properties
are postulated as axioms. The behaviour of the system is determined by a number
of atomic EVENTS. An event can be defined as follows:

e =̂ ANY lv WHERE g THEN R END

where lv is a list of local variables, the guard g is the conjunction of predicates
defined over model variables, and the action R is a composition of assignments
on the variables executed simultaneously.

The guard denotes when an event is enabled. If several events are enabled si-
multaneously then any of them can be chosen for execution non-deterministically.
If none of the events is enabled then the system deadlocks. An assignment to a
variable can be either deterministic or non-deterministic.

The semantics of Event-B events is defined using before-after predicates [14].
A before-after predicate (BA) describes a relationship between the system states
before and after execution of an event. To verify correctness of a specification,
one needs to prove that the model preserves its invariants, i.e., each event ei of
the model preserves the given invariant:

A(d, c), I(d, c, v), gi(d, c, v), BAi(d, c, v, v
′) � I(d, c, v′) (INV)

where A stands for the conjunction of the axioms, I is the conjunction of the
invariants, gi is the guard of the event ei, BAi is the before-after predicate of
this event, d stands for the sets, c are the constants, and v, v′ are the variable
values before and after event execution.

2.3 Refinement and Verification in Event-B

Event-B employs a top-down refinement-based approach to formal development
of a system. The development starts from an abstract specification of the sys-
tem and continues with stepwise unfolding of system properties by introducing

50 Y. Prokhorova and E. Troubitsyna

new variables and events into the model. We call such kind of a refinement a
superposition refinement. Moreover, Event-B formal development supports data
refinement, allowing us to replace some abstract variables with their concrete
counterparts. In this case, the invariant of a refined model formally defines the
relationship between the abstract and concrete variables; this type of invariants
is called a gluing invariant.

To verify correctness of a refinement step, one needs to discard a number of
proof obligations (PO) for a refined model. For brevity, here we show only a few
essential ones. The full list of proof obligations can be found in [7].

Let us introduce a shorthand H(d, c, v, w) which stands for the hypotheses
while I(d, c, v) and I ′(d, c, v, w) are respectively the abstract and refined invari-
ants and v, w are respectively the abstract and concrete variables.

The event guards in a refined model can only be strengthened in refinement:

H(d, c, v, w), g′i(d, c, w) � gi(d, c, v) (GRD)

where gi, g
′
i are respectively the abstract and concrete guards of the event ei.

The simulation proof obligation (SIM) requires to show that the action (i.e.,
assignment on the state variables) of a refined event is not contradictory to its
abstract version:

H(d, c, v, w), g′i(d, c, w), BA′
i(d, c, w, w

′) � ∃v′.BAi(d, c, v, v
′) ∧ I ′(d, c, v′, w′)

(SIM)

where BAi, BA′
i are respectively the abstract and concrete before-after predi-

cates of the same event ei.
Finally, the Event-B formalism allows us to define theorems either in the

context T (d, c) or in the machine T (d, c, v). The theorem proof obligation (THM)
ensures that a proposed theorem is indeed provable. The first variant is defined
for a theorem in a context:

A(d, c) � T (d, c) (THM)

The second variant is defined for a theorem in a machine:

A(d, c), I(d, c, v) � T (d, c, v) (THM)

The described proof obligations are automatically generated by the Rodin Plat-
form [6] that supports Event-B. Additionally, the tool attempts to automatically
prove them. Sometimes it requires user assistance by invoking its interactive
prover. However, in general the tool achieves high level of automation (usually
over 80%) in proving.

3 An Approach to Linking Modelling in Event-B
with Safety Cases

In this section, we present an approach that establishes a link between formal
modelling of a system in Event-B and deriving a safety case for this system. We
aim at obtaining the safety case where the argumentation is based on formal

Linking Modelling in Event-B with Safety Cases 51

reasoning and supported by discharging proof obligations. To achieve this goal,
we firstly give the classification of the safety requirements and show how each
class is treated within the Event-B framework. Secondly, we show how the safety
requirements, invariants and theorems as well as proofs for them correspond to
the elements of the safety case. Finally, we provide verification support for safety
case arguments by defining safety invariants and theorems formally.

3.1 Requirements Classification

Let us now give a classification of safety requirements. To provide the reader
with the classification of safety requirements, we adopt and modify the taxonomy
proposed by Bitsch [15]. Following his approach, we divide safety requirements
into two groups: Static Safety Requirements and Dynamic Safety Requirements.
The former are those properties that must hold for the whole formal model. The
latter are those properties that must be true only in certain model states.

The Dynamic Safety Requirements (DSRs) cover a large group of safety re-
quirements. To simplify the task of mapping them on the Event-B framework, we
decompose the Dynamic Safety Requirements class into two sub-classes: DSRs
about General Access Guarantee and DSRs about Chronological Succession.

To ensure safety of a certain class of control systems, we should prove that
these systems are deadlock free. Therefore, DSRs about General Access Guaran-
tee are defined as requirements which describe the necessity to provide an access
to some property or to reach some state. While developing a formal model of a
safety-critical control system, we also might deal with requirements that are de-
pendent on the chronological occurrences of some properties, e.g., requirements
that define fault tolerance procedures. Since fault detection, isolation and re-
covery actions are strictly ordered, we also need to preserve their sequence in
a formal model of a system. The DSRs about Chronological Succession reflect
such requirements. Hence, these sub-classes of DSRs are addressed differently in
a formal model. Furthermore, the proposed classification can be extended with
respect to, for example, timing properties. However, we leave such sub-classes
out of the scope of this paper.

To define how each class of safety requirements can be treated in Event-B, we
have analysed several works that aim at tracing requirements in a formal specifi-
cation in Event-B [3,4,5]. For instance, Méry and Singh [3] propose to represent
safety requirements as invariants or theorems, while Jastram et al. [4] incorpo-
rate them as invariants and before-after predicates of events. Additionally, in [5]
Yeganefard and Butler state that requirements can be modelled in Event-B as
guards or actions of events. All these works show the mapping between particu-
lar requirements and the Event-B structure. However, they do not consider the
classification of the safety requirements. In contrast, we create the link between
the requirements classification and their representation in Event-B as shown in
Table 1. We propose to model Static Safety Requirements in the Event-B frame-
work as invariants or incorporate them in the process of guards strengthening
in refinement while Dynamic Safety Requirements, in general, can be related to
after predicates or actions simulation in refinement. DSRs about General access

52 Y. Prokhorova and E. Troubitsyna

Table 1. Mapping of the safety requirements classification on the Event-B framework

Safety requirements class Event-B framework

Static Safety Requirements Invariants; Guards strengthening in refinement

Dynamic Safety Requirements After predicates; Actions simulation in refinement

Dynamic Safety Requirements Deadlock freedom
about General access guarantee

Dynamic Safety Requirements Events order
about Chronological succession

guarantee are represented as the deadlock freedom condition, while DSRs about
Chronological succession are defined as events order in Event-B.

As soon as all safety requirements are assigned to respective classes and the
mapping on Event-B is done, we can argue that the system is safe.

3.2 Linking Safety Cases with the Event-B Framework

To provide an argument that the system is safe, we build a system safety case
using GSN (Fig. 2). We introduce the main Goal ”(G1): System is safe” that is
considered in the Context of formal modelling in Event-B (C1). Additionally,
we propose to split up the overall process of the safety case derivation into
two main parts: argumentation over each safety requirement and argumentation
that the design is satisfactory. To represent this in terms of GSN, we introduce
two respective Strategies: ”(S1): Argument over each safety requirement” and
”(S2): Argument that design is satisfactory”.

The complete safety case with respect to the system safety requirements is
obtained by providing an evidence that the safety requirements listed in the
Requirements Document (RD) are derived and adequately formalised. For this
purpose, we introduce an Assumption ”(A1): All safety requirements are de-
rived from RD”. We support this assumption by performing hazard analysis. In
this case, our goal is to obtain the safety requirements list (G2). The Solution
(or the evidence) is to conduct one or a combination of well-known hazard anal-
ysis techniques such as Failure Modes and Effects Analysis (FMEA), HAZard
and OPerability analysis (HAZOP), Preliminary Hazard Analysis (PHA), etc.

We arrange the derived safety requirements according to the classification
proposed in Section 3.1. Therefore, we introduce several Sub-goals (or goals)
that correspond to the given safety requirements classes and their mapping on
Event-B (proposed in Table 1):

(G3): Static Safety Requirements (invariants)
(G4): Static Safety Requirements (guards strengthening in refinement)
(G5): Dynamic Safety Requirements (after predicates)
(G6): Dynamic Safety Requirements (actions simulation in refinement)
(G7): Dynamic Safety Requirements. General access guarantee

(deadlock freedom)
(G8): Dynamic Safety Requirements. Chronological succession (events order)

Linking Modelling in Event-B with Safety Cases 53

S
ys
te
m
is
sa
fe

G
oa
l(
G
1)

A
rg
um
en
to
ve
re
ac
h

sa
fe
ty
re
qu
ire
m
en
t

R
eq
ui
re
m
en
ts

do
cu
m
en
t(
R
D
)

C
on
te
xt
(C
2)

A
rg
um
en
tt
ha
td
es
ig
n

is
sa
tis
fa
ct
or
y

Fo
rm
al
sp
ec
ifi
ca
tio
n

in
E
ve
nt
-B

C
on
te
xt
(C
1)

S
ta
tic
S
af
et
y

R
eq
ui
re
m
en
ts

(in
va
ria
nt
s)

A
ll
sa
fe
ty

re
qu
ire
m
en
ts
ar
e

de
riv
ed
fro
m
R
D A

St
ra
te
gy
(S
3)

H
az
ar
d
an
al
ys
is

D
yn
am
ic
S
af
et
y

R
eq
ui
re
m
en
ts
.

G
en
er
al
ac
ce
ss
gu
ar
an
te
e

(d
ea
dl
oc
k
fre
ed
om
)

G
7

D
yn
am
ic
S
af
et
y

R
eq
ui
re
m
en
ts
.

C
hr
on
ol
og
ic
al
su
cc
es
si
on

(e
ve
nt
s
or
de
r)

G
8

S
af
et
y

re
qu
ire
m
en
ts
lis
t

G
2

So
lu
tio
n

(S
n1
)

H
az
ar
d
an
al
ys
is

(F
M
E
A
,H
A
ZO
P
,

P
H
A
,e
tc
.)

A
ll
ax
io
m
s
in
th
e

C
O
N
TE
X
T
ar
e

co
ns
is
te
nt

G
10

G
ua
rd
s
ch
ec
k
–
ex
cl
us
io
n

of
no
n-
ex
ec
ut
ab
le
gu
ar
ds

G
9

C
on
ve
nt
io
ns
ta
ke
n
in
th
e

sp
ec
ifi
ca
tio
n
ca
n
be

tra
ce
d
to
th
e
co
de
le
ve
l

G
11

D
is
ch
ar
ge
d

pr
oo
fo
bl
ig
at
io
ns

th
m
_d
lf/
TH
M

P
ro
vi
de
th
e
de
ad
lo
ck

fre
ed
om

th
eo
re
m

D
is
ch
ar
ge
d

pr
oo
fo
bl
ig
at
io
ns

th
m
_a
x1
/T
H
M

D
is
ch
ar
ge
d

pr
oo
fo
bl
ig
at
io
ns

th
m
_a
x2
/T
H
M

A
rg
um
en
to
ve
ra
xi
om
s

co
ns
is
te
nc
y

N
am
e
m
ap
pi
ng

ch
ec
ke
d
by

re
vi
ew
er

P
ro
ve
th
eo
re
m
s
on
al
l

gu
ar
ds
of
al
le
ve
nt
s

D
is
ch
ar
ge
d

pr
oo
fo
bl
ig
at
io
ns

th
m
_g
rd
_e
vt
/

TH
M

P
ro
ve
th
eo
re
m
ab
ou
tg
ro
up

of
in
de
pe
nd
en
tA
xi
om
s
1

G
12

P
ro
ve
th
eo
re
m
ab
ou
tg
ro
up

of
in
de
pe
nd
en
tA
xi
om
s
2

G
13

D
yn
am
ic
S
af
et
y

R
eq
ui
re
m
en
ts

(a
ct
io
ns
si
m
ul
at
io
n

in
re
fin
em
en
t)

G
6

D
is
ch
ar
ge
d

pr
oo
fo
bl
ig
at
io
ns

E
ve
nt
/a
ct
/S
IM

S
ta
tic
S
af
et
y

R
eq
ui
re
m
en
ts

(g
ua
rd
s

st
re
ng
th
en
in
g
in

re
fin
em
en
t)

G
4

D
is
ch
ar
ge
d

pr
oo
fo
bl
ig
at
io
ns

E
ve
nt
/g
rd
/G
R
D

D
yn
am
ic
S
af
et
y

R
eq
ui
re
m
en
ts

(a
fte
rp
re
di
ca
te
s)

G
5

D
is
ch
ar
ge
d

pr
oo
fo
bl
ig
at
io
ns

th
m
_a
p/
TH
M

P
ro
vi
de
a
th
eo
re
m
fo
r

a
pa
rti
cu
la
re
ve
nt

St
ra
te
gy
(S
1)

St
ra
te
gy
(S
2)

St
ra
te
gy
(S
4)

St
ra
te
gy
(S
5)

St
ra
te
gy
(S
7)

St
ra
te
gy
(S
6)

G
3

So
lu
tio
n

(S
n3
)

So
lu
tio
n

(S
n4
)

So
lu
tio
n

(S
n5
)

So
lu
tio
n

(S
n6
)

So
lu
tio
n

(S
n2
)

So
lu
tio
n

(S
n7
)

So
lu
tio
n

(S
8)

So
lu
tio
n

(S
n9
)

A
ss
um
pt
io
n

(A
1)

F
ig
.
2
.
S
y
st
em

S
a
fe
ty

C
a
se

54 Y. Prokhorova and E. Troubitsyna

The goals (G4) and (G6) simply require a solution that can be provided in
terms of Event-B by discharged proof obligations (Sn3) and (Sn5), respectively.
However, the goals (G3), (G5), (G7) and (G8) need to be decomposed before
deriving the evidence for them.

The safety requirements given as invariants (G3) must be supported by an
argumentation concerning their proper formalisation: assumption (A3.1) and
respective strategy (S3.3) as shown in Fig. 3. We also need to prove that the
invariant holds for all events by providing an argument over each event indepen-
dently, e.g., (G3.1). The discharged proof obligations for each event serve as
solutions for this branch of the safety case, e.g., (Sn3.1), (Sn3.2), etc.

Solution
(Sn3.4)

Discharged PO
thm_grd_ent/

THM

Argument based on formal proof of
the formalized requirement SR1

Strategy
(S3.2) Invariant “safety1” is

the proper
formalization of SR1

AFormal proof that the invariant
“safety1” holds for all events

G3.3

Solution
(Sn3.1)

Discharged PO
Event1/safety1/

INV

Formalization of the
safety requirement SR1

Strategy
(S3.3)

Definition of the
respective variables

G3.4

Name mapping
checked by
reviewer

Solution
(Sn3.3)

Definition of the proper
guards in respective events

G3.5

Argument over
each event

Strategy
(S3.4)

Formal proof that the invariant
“safety1” holds for the event Event1

G3.6 ...

Solution
(Sn3.2)

Discharged PO
Eventn/safety1/

INV

Formal proof that the invariant
“safety1” holds for the event Eventn

G3.7

Static Safety Requirements (invariants)
G3

Argument over all safety
requirements of this type

Strategy
(S3.1)Safety requirement SR1

G3.1
Safety requirement SRk
G3.2

Assumption
(A3.1)

Fig. 3. Safety Case for Static Safety Requirements of Invariant Type

To decompose the goal (G5), we introduce a theorem stating that an after
predicate holds for a particular event (S6). The proof obligation (Sn4) supports
this claim. Respectively, for (G7) we provide a deadlock freedom theorem (S7)
and the evidence (Sn6) as shown in Fig. 2.

To produce the evidence for the dynamic safety requirements about chrono-
logical succession (G8), we propose to adopt the flow approach introduced by
Iliasov [16]. However, due to the lack of space, we omit the detailed description
of the respective safety case.

Despite the fact that safety requirements might be adequately represented in a
formal specification, the goal ”(G1): System is safe” can still be unreachable. The
design (the formal specification) can contain inconsistency and improper represen-
tation of physical components in terms of variables, constants and sets. Therefore,
we need to show that our design is consistent and adequate as well. We consider
such Sub-goals as ”(G9): Guards check – exclusion of non-executable guards”,
”(G10): All axioms in the CONTEXT are consistent” and ”(G11): Conventions
taken in the specification can be traced to the code level”. To support the first sub-
goal, theorems on all guards of all events have to be introduced in the specification
(S4) and the derived proof obligations can serve as solutions (Sn7). The second

Linking Modelling in Event-B with Safety Cases 55

sub-goal requires argumentationoveraxioms consistencywhich leads to thedecom-
position of this goal into sub-goals (G12), (G13). This level sub-goals represent
different groups of independent axioms. To provide the evidence, we propose to in-
troduce and prove theorems for consistency of each group of axioms, e.g., (Sn8)
and (Sn9). The solution to the third sub-goal is the name mapping checked by a
reviewer (Sn2). The reader can consult Fig. 2 for recalling the precise meaning of
abbreviations.

3.3 Verification Support for Safety Case Arguments

In the previous subsection, we created the link between safety cases and the
Event-B framework. Now, we show the formalisation of this link, i.e., how the
proposed invariants and theorems can be postulated in Event-B and which proof
obligations support them.

First, let us consider the classes of safety requirements that simply require an
evidence and can be implemented in a refinement step, i.e., ”(G4): Static Safety
Requirements (guards strengthening in refinement)” and ”(G6): Dynamic Safety
Requirements (actions simulation in refinement)”.

In a refinement step an abstract variable, e.g., abs vark, can be replaced by
some new concrete variables conc var. For instance, the variable that represents
a failure of a system might be replaced by variables representing failures of
concrete system units (sensors, actuators, etc.). For such a data refinement, we
introduce a gluing invariant of the form: abs vark = V ALUE ⇔ P (conc var),
where P is a predicate on new concrete variables.

To illustrate the considered classes of requirements, we introduce the ab-
stract event Event Name that contains one local variable and its refinement
New Evt Name as shown in Fig. 4. The label @grdi stands for the i-th guard
of an event whilst @actj represents the j-th action of an event. Since we replace
the abstract local variable n by a concrete value TRUE in the refinement, we

Fig. 4. The example of abstract and concrete events with proof obligations

56 Y. Prokhorova and E. Troubitsyna

need to provide a witness for it (the WITH clause). The witness substitutes
the disappearing local variable with a new variable or a concrete value.

To support these safety requirements in the safety case, we provide the proofs
that are instances of (GRD) and (SIM), respectively for (Sn3) and (Sn5).

Next, we state the Static Safety Requirements (G3) as safety invariants of
the model, i.e., I(d, c, v). The respective proof obligations (INV) serve as the
evidence for the safety case and are automatically generated for all model events.

Now, we formalise the Dynamic Safety Requirements implemented as after
predicates ”(G5): Dynamic Safety Requirements (after predicates)”. The sim-
plification of the event definition by omitting local variables does not affect the
generality of the proposed approach since any event containing local variables
can always be rewritten in a simpler form. Hence, the definition of an event pre-
sented in Section 2.2 can be given as the relation: e(v, v′) = ge(v) ∧BAe(v, v

′).
Then, before(e) represents a set of all possible pre-states defined by the guard of
an event e while after(e) is a set of all possible post-states of the event e [16]:

before(e) = {v ∈ Σ | I(v) ∧ ge(v)}
after(e) = {v′ ∈ Σ | I(v′) ∧ (∃v ∈ Σ · I(v) ∧ ge(v) ∧BAe(v, v

′))}
where Σ corresponds to a model state space defined by all possible values of the
vector v (i.e., a set of system variables).

Thereafter, we assume that q(v′) is a certain desired post-state. We can verify
that this post-state is always established by proving the following theorem:

∀v′ · v′ ∈ after(e) ⇒ q(v′)

This theorem serves as the strategy (S6) in the respective branch of the safety
case while the discharged proof obligation of the type (THM) defined for a
machine provides the solution (Sn4).

Another class of the Dynamic Safety Requirements is the requirements about
general access guarantee (G7). We represent this class within an Event-B model
as the deadlock freedom theorem (S7). This theorem is postulated as the dis-
junction of guards of all model events g1(d, c, v) ∨ ... ∨ gm(d, c, v). The instance
of the (THM) proof obligation for a machine given in Section 2.3 provides the
evidence for the safety case (Sn6) and is shown below:

A(d, c), I(d, c, v) � g1(d, c, v) ∨ ... ∨ gm(d, c, v)

Please note that the application of this rule is not compulsory, since not all
systems need to be deadlock free. For example, if the system allows the manual
operation or shutdown when failure occurs, the model can be deadlocked.

To verify that our formal specification (the design) is satisfactory and there
are no non-executable guards (G9), we introduce theorems for checking guards
(S4). We base our reasoning on the notion of post- and pre-states as well. The
following theorem guarantees that there are no non-executable guards in the
model:

∀i ∃j · i �= j ∧ after(ej) ⇒ before(ei)

Linking Modelling in Event-B with Safety Cases 57

This theorem states that for each event ei there exists an event ej that enables it
(i.e., ej enables ei). The exceptions are the initialisation event, which is always
enabled at the beginning of the simulation independently of other events, and
events without guards, i.e., their guards are always true. The provided theorem
and the respective proof obligation ensure that each event of the model is enabled
at least once, i.e., the model does not include events with non-executable guards.

The inconsistency in the model axioms has an impact on the whole model
(G10). If axioms contradict to each other, the model is falsifiable, i.e., we cannot
guarantee its correctness any more. To avoid this, we define theorems for all
groups of independent axioms in the model CONTEXT (S5):

∃ d, c · A1(d, c) ∧ ... ∧ An(d, c)

The generated proof obligation, e.g., (Sn8), is an instantiation of the (THM)
proof obligation for a context given in Section 2.3.

At this point, we have classified safety requirements and have shown how each
class can be treated in the formal specification. Additionally, we have defined
the link between the Event-B framework and safety cases. In the next section
we illustrate our approach by a realistic system – the sluice gate control system.

4 Case Study – Sluice Gate Control System

The sluice gate control system shown in Fig. 5 is a typical representative of a
safety-critical control system. This system controls a sluice that connects areas
with dramatically different pressures [17]. The purpose of the system is to adjust
the pressure in the sluice area. The system consists of two doors – door1 and
door2 that can be operated independently of each other and a pressure chamber
pump that changes the pressure in the sluice area (i.e., the room). To guarantee
safety, a door can be opened only if the pressure in the locations it connects is
equalized. Moreover, at most one door can be opened at any moment and the
pressure chamber pump can only be switched on when both doors are closed. The
sluice gate control system is equipped with the sensors and actuators (motors)
as shown in Fig. 5.

insideoutside room

door2door1

Pressure sensors

Opened door sensors
Closed door
sensors

Door motors

Pressure chamber pump

Door position
sensors

insideoutside room

door2door1

Fig. 5. Sluice Gate System

For the sake of brevity, here we show only those parts of the specification that
are relevant to the approach we present. More details on the specification can
be found in [17].

Fig. 6 gives an example of a static safety requirement formalisation that repre-
sents guards strengthening in the refinement for ”SR1: The system failure occurs

58 Y. Prokhorova and E. Troubitsyna

Fig. 6. The event Prediction and the respective proof obligation

if and only if either the door1 component fails, or the door2 component fails, or
the pressure pump fails”.

The event Prediction taken as an example models the prediction of the ex-
pected values of sensors based on the current state of the system and physical
laws of components operation. Later, the obtained information permits the sys-
tem to detect faults of components by the comparison between expected values
and the received ones.

The dynamic safety requirement ”SR2: To handle a system failure, the sys-
tems should stop its operation” is formalised as an action simulation in the
refinement step. The event SafeStop depicted in Fig. 7 represents the refine-
ment of the abstract event ErrorHandling. The deterministic assignment to the
variable Stop substitutes the non-deterministic assignment to this variable with
value TRUE. Additionally, the refined event is supported with the respective
witness (@res res = TRUE). The generated proof obligation of the type (SIM)

Fig. 7. The event SafeStop and the respective proof obligation

Linking Modelling in Event-B with Safety Cases 59

shows that the assignment to the state variable Stop of the refined event is not
contradictory to its abstract version.

Such safety requirements as: ”SR3: Both doors cannot be opened simultane-
ously”, ”SR4: If the pressure inside the room is not equal neither to the pressure
of the outside area nor to the pressure of the inside area, the doors must remain
closed”, ”SR5: The pressure pump can be switched on only if both doors are
closed”, etc. can be formalised as invariants. Therefore, let us show only the safety
case for SR5 (Fig. 8). We introduce the invariant ”safety5” as a formalisation of
SR5: failure = FALSE ∧ pump �= PUMP OFF ⇒ (door1 position = 0 ∧
door2 position = 0).

Discharged
PO

Opened2
/safety5/INV

Discharged
PO

Close1
/safety5/INV

Discharged
PO Pressure_

Lowed
/safety5/INV

Formal proof that the invariant
“safety5” holds for all events

Goal

Discharged
PO

Pressure_High
/safety5/INV

Solution

Argument over each eventStrategy

Formal proof that the
invariant “safety5” holds for
the event Pressure_High

Formal proof that the
invariant “safety5” holds for
the event Pressure_Lowed

Formal proof that the
invariant “safety5” holds for

the event Close1

Formal proof that the
invariant “safety5” holds for

the event Opened2
... ...

Goal Goal Goal Goal

Solution Solution Solution

Fig. 8. Safety Case for the Safety Requirement SR5

To support the claim that ”safety5” holds for all events of the model, we state
an argument over each event and discard the proof obligations of the type (INV).
For brevity, here we show only the event Pressure High that models the increase
of the pressure inside the room and display the proof obligation ensuring that
”safety5” holds for this event (Fig. 9).

Fig. 9. The event Pressure High and the respective proof obligation

Let us consider the dynamic safety requirement formalised as an after predi-
cate: ”SR6: If the pressure value in the room is equalised to the pressure value of
the inside area, the pump should be switched off”. The desired post-state q for this
safety requirement is pump = PUMP OFF. The event Pressure Highed models
this case and has the set of all possible post-states after(Pressure Highed) as
shown in Fig. 10. Here we omit showing other model variables since the event
Pressure Highed does not modify them, i.e., they remain the same. The given

60 Y. Prokhorova and E. Troubitsyna

after(Pressure_Highed) =

q

Fig. 10. The event Pressure Highed

after(Pressure Highed) implies that q is true. The proof obligation of the type
(THM) provides the evidence for the respective branch of the safety case.

Due to manual handling of a system failure, the sluice gate control system has
a deadlock. There is an event that sets the variable Stop to TRUE (the event
SafeStop in Fig. 7), while none of the events assigns FALSE to it. To reset the
variable Stop, the system should be restarted. Therefore, we do not include the
deadlock freedom branch in the system safety case.

Finally, we support our modelling of the sluice gate control system with argu-
mentation over the whole design. To exclude non-executable guards, all events
are supported by the respective theorems. The generated proof obligations of the
type (THM) serve as the evidence. The consistency of axioms is also checked and
proved for the sluice gate system through discarding the corresponding theorems
in the model CONTEXT.

Since we have defined one-to-one mapping between a safety case and a formal
model, we can use this mapping to generate the safety case from the model.

5 Related Work and Conclusions

5.1 Related Work

The work presented by Basir et al. [2,12] is dedicated to formal program verifica-
tion using a safety case construction. It establishes a link between automatically
generated program code and a formal analysis, based on automated theorem
proving. The authors focus on natural deduction (ND) style proofs and explain
how to construct the safety cases by converting the ND proof tree into corre-
sponding safety case elements. Unlike [2,12], in our work we do not go so deeply
in the proof obligations semantics provided by Event-B and do not introduce
inference rules [7] as elements of the safety case. We rather guide the modelling
of safety-critical systems in Event-B and use the proofs as an evidence for a
safety case.

Habli and Kelly [1] consider two standards, DO-178B and the UK Defence
Standard 00-56, to analyse how formal analysis facilitates achieving the cer-
tification goals. They also present a generic safety case for presentation and
justification of formal analysis that shows feasibility of applying formal methods

Linking Modelling in Event-B with Safety Cases 61

within a specific development. In contrast, our approach not only focuses on the
use of formal methods in a safety case but also covers the design stage where the
decisions how requirements can be implemented in a formal model are made.

5.2 Conclusions

In this paper, we have proposed the approach to support a system safety case
with an evidence derived from a formal specification in Event-B. The safety case
construction has been divided into two main parts: argumentation over safety
requirements incorporation and argumentation over the whole model. To help
the developers in the structured argumentation over safety requirements, we
have provided the classification of safety requirements and have shown the link
between informal requirements description and their formalisation within Event-
B. We also defined mapping between the Event-B model and the elements of the
safety case.

Obviously, the larger and more complex a safety-critical system, the larger and
more complex its safety case. To increase effectiveness of safety case construction,
availability of tools is essential. Therefore, as a part of our future work we plan
to provide a tool support for automatic generation of safety cases as well as
validate the proposed approach on large-scale case studies.

Acknowledgments. The authors would like to thank Linas Laibinis for fruitful
discussions as well as Ilya Lopatkin, Alexei Iliasov and Alexander Romanovsky
for their valuable feedback on the case study.

References

1. Habli, I., Kelly, T.: A Generic Goal-Based Certification Argument for the Justifica-
tion of Formal Analysis. Electronic Notes in Theoretical Computer Science 238(4),
27–39 (2009)

2. Basir, N., Denney, E., Fischer, B.: Deriving Safety Cases from Machine-Generated
Proofs. In: Proceedings of the Workshop on Proof-Carrying Code and Software
Certification (PCC 2009), Los Angeles, California, USA (2009)

3. Méry, D., Singh, N.K.: Technical Report on Interpretation of the Electrocardiogram
(ECG) Signal using Formal Methods. Technical Report inria-00584177 (2011)

4. Jastram, M., Hallerstede, S., Ladenberger, L.: Mixing Formal and Informal Model
Elements for Tracing Requirements. ECEASST 46 (2011)

5. Yeganefard, S., Butler, M.: Structuring Functional Requirements of Control Sys-
tems to Facilitate Refinement-based Formalisation. ECEASST 46 (2011)

6. Event-B and the Rodin Platform (2012), http://www.event-b.org/
7. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge

University Press (2010)
8. Hawkins, R., Kelly, T.: A Structured Approach to Selecting and Justifying Soft-

ware Safety Evidence. In: Proceedings of the 5th IET International Conference on
System Safety, pp. 1–6 (2010)

9. UK Ministry of Defence. 00-56 Safety Management Requirements for Defence Sys-
tems (2007)

http://www.event-b.org/

62 Y. Prokhorova and E. Troubitsyna

10. Bishop, P., Bloomfield, R.: A Methodology for Safety Case Development. In: Safety-
Critical Systems Symposium. Springer, Birmingham (1998)

11. Kelly, T.P.: Arguing Safety – A Systematic Approach to Managing Safety Cases.
Doctoral Thesis (1998)

12. Basir, N.: Safety Cases for the Formal Verification of Automatically Generated
Code. University of Southampton, Dependable Systems and Software Engineering,
ECS. Doctoral Thesis (2010)

13. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. Cambridge University
Press (1996)

14. Metayer, C., Abrial, J.-R., Voisin, L.: Rigorous Open Development Environment
for Complex Systems (RODIN). Event-B (2005),
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

15. Bitsch, F.: Safety Patterns - The Key to Formal Specification of Safety Require-
ments. In: Voges, U. (ed.) SAFECOMP 2001. LNCS, vol. 2187, pp. 176–189.
Springer, Heidelberg (2001)

16. Iliasov, A.: Use Case Scenarios as Verification Conditions: Event-B/Flow Approach.
In: Troubitsyna, E.A. (ed.) SERENE 2011. LNCS, vol. 6968, pp. 9–23. Springer,
Heidelberg (2011)

17. Lopatkin, I., Prokhorova, Y., Troubitsyna, E., Iliasov, A., Romanovsky, A.: Pat-
terns for Representing FMEA in Formal Specification of Control Systems. TUCS
Technical Reports 1003, Turku Centre for Computer Science (2011)

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf

Safety Lifecycle Development Process Modeling

for Embedded Systems -
Example of Railway Domain

Brahim Hamid1, Jacob Geisel1, Adel Ziani1, and David Gonzalez2

1 IRIT, University of Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9, France
{brahim.hamid,jacob.geisel,adel.ziani}@irit.fr

2 Ikerlan, Mandragon, Spain
DGonzalez@ikerlan.es

Abstract. Nowadays, many practitioners express their worries about
current software engineering practices. New recommendations should
be considered to ground software engineering on solid theory and on
proven principles. We took such an approach towards software engineer-
ing process modeling for embedded system applications with security
and dependability requirements, focusing on the problem of integrating
safety during the process design to clarify assessment of this kind of
applications.

In this paper, we propose a safety-oriented process metamodel to sup-
port all the requirements of safety processes. The resulting modeling
framework serves primarily to capture the basic concepts of concerns
related to safety development of embedded systems based on the clear
separation between the development process, the system and their prop-
erties. Subsequently, the safety property model of the process is defined.
The feasibility of the approach is evaluated with a case study from the
railway domain.

Keywords: Safety Lifecycle, Development Process, Modeling, Process
Metamodel, Repository.

1 Introduction

An embedded system is a system that is composed of two main parts, software
and hardware, which evolves in a real world environment and fulfills a specific
[8,12] function. Such systems come with a large number of common character-
istics, including real-time and temperature constraints, dependability as well as
efficiency requirements. They can be found in many application sectors such
as automotive, aerospace and home control. Most of these systems are criti-
cal and require a high level of safety and integrity. Therefore, the generation
of embedded systems involves specific software building processes. These pro-
cesses are often error-prone, because they are not fully automated, even if some
level of automatic code generation or even model driven engineering support

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 63–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

64 B. Hamid et al.

is given. Furthermore, many critical embedded systems also have assurance re-
quirements, ranging from very strong levels involving certification (e.g. DO178
and IEC-61508 for safety relevant embedded systems development) to lighter
levels based on industry practices.

Over the last two decades, the need for formally defined safety lifecycle pro-
cesses has emerged. This is because the inevitable requirement for better
processes eventually pushed control systems to a level of complexity where so-
phisticated electronics and programmable systems have become the optimal so-
lution for control and safety protection [17]. With these emergent requirements,
many safety lifecycles have been proposed by different associations, like IEC
or ANSI/ISA. These safety lifecycles are adopted by different domains or com-
panies with some modifications to adapt different requirements (e.g. domain
specific requirements). However, as the fundamental differences between a tra-
ditional development process and a safety lifecycle are huge, such as different
kinds of safety checks and the safety relationships between these checks and
phases, modeling these different safety lifecycles with traditional used process
metamodel is not simple and direct.

A process metamodel supports the effort of creating flexible process models.
The purpose of process models is to document and communicate processes and
to enhance the reuse of processes. Thus, processes can be better taught and
executed. Results of using a process metamodel are an increased productivity of
process engineers and an improved quality of the models they produce. However,
the most used metamodels such as SPEM [13], UMA [2], OPF [14], focus on
modeling the process model with an activity-oriented viewpoint to accommodate
a large range of development processes. Such orientation leads to lacks on the
formalization of the required concepts of safety lifecycle, such as validation.

The goal of our work is to propose a model-based safety lifecycle develop-
ment process technique in order to ease their use in a building process of sys-
tem/software applications with safety support. The promoted vision reduces the
cost of building a process for each application’s properties and/or for each do-
main. The contribution of this paper is fourfold: (1) Modeling: we propose a
metamodel to capture safety lifecycle concepts in process modeling; (2) Experi-
mentation: some experiences are achieved to extend the V-Model to build safety
oriented process models; 3) Tooling: we propose an EMF editor to create this
modeling artifact with a repository interaction support to store them for reuse;
4) Validation: applied in practice to a resource constrained embedded system
(RCES) in the context of TERESA project [5].

The remainder of this paper is organized as follows. Section 2 defines the con-
text of the safety lifecycle followed by a motivating example. Section 3 outlines
the Repository-Centric Process Metamodel (RCPM). Section 4 presents how
the RCPM metamodel supports the safety lifecycle with its safety-related con-
cepts. In Section 5, the supporting tool is highlighted, while Section 6 validates
the RCPM metamodel by a railway process model example. Section 7 discusses
the state of the art of process metamodels from the safety related viewpoint.
Section 8 concludes and draws future work directions.

Safety Lifecycle Development Process Modeling for Embedded Systems 65

2 Development Context, Concepts and Definitions

2.1 Development Context

The work is conducted in the context of a project called SEMCO (System and
software Engineering for embedded systems applications with Multi-COncerns).
We build on a theory and novel methods based on a repository of modeling ar-
tifacts which (1) promote engineering separation of concerns, (2) support multi-
concerns, (3) use patterns and model libraries to embed solutions of engineering
concerns and (4) support multi-domain specific processes. This project is based
on Domain-Specific Modeling (DSM) [4] and is threefold: providing a repository
of modeling artifacts, tools to manage these artifacts and guidelines to build
complete systems.

The SEMCO DSL process is divided into diverse kinds of activities: DSL
(Domain-Specific Language) definition, transformation, coherence and relation-
ships rules, design with DSL and qualification. The first three activities are
achieved by the DSL designer and last two are used by final DSL user. There are
several DSM environments available. In our context, we use the Eclipse Model-
ing Framework (EMF), an open-source platform. Note, however, that our vision
is not limited to EMF.

In this paper, we follow the SEMCO DSL process to build the Repository Cen-
tric Process Modeling Framework: (1) we create the model’s ecore file and then
(2) we use the code generation techniques of EMF to create our modeling tools.
The next sections detail these two steps. Now, we will introduce some definitions
and concepts that might be useful for the understanding of our approach.

2.2 Safety Lifecycle: Definition and Concepts

Safety lifecycle can be defined as follows: an engineering process designed to
achieve a risk-based level of safety with performance criteria that allow versatile
technologies and optimal design solutions [3]. The risk-based levels are recog-
nized as System Integrity Levels (Sil). Sil measures the confidence which can
be attributed on the fact that the integrity of the system functions are conform
with the requirements.

Many safety lifecycles are proposed, such as IEC 61508 [10], IEC 61511 [11],
and ANSI/ISA S84.01 [16]. The differences between the safety lifecycle and a
normal development process are not only the integration of safety related phases
into the process, but also the special concepts used to verify whether the safety
lifecycle and the SIL requirements are correctly implemented and satisfied. Gen-
erally, there are four kinds of checks employed to verify the safety lifecycle [10]:

– Verification. Confirmation by examination and provision of objective evi-
dence that the intended functions have been correctly implemented and the
requirements have been satisfied.

– Validation. The activity of demonstrating that the safety-related system un-
der consideration, before or after installation, meets in all respects the safety
requirements specification.

66 B. Hamid et al.

– Functional safety audit. Systematic and independent examination to deter-
mine whether the procedures specific to the functional safety requirements
comply with the planned arrangements and are implemented effectively.

– Functional safety assessment. Investigation, based on evidence, to judge the
functional safety achieved by one or more E/E/PE safety-related systems.

Beyond these checks, the interaction and influences between the process phases
and activities should be considered.

2.3 Introduction to the Example

The domain specific requirements lead to different safety lifecycles [3], which are
modified from the general or standard lifecycle to adapt their specific require-
ments. For example, the IEC (International Electrotechnical Commission) 61508
is today globally recognized and considered as the basic standard to evaluate the
suppliers’ products. IEC 61508 [10] recommends a V-model safety lifecycle. How
to define this kind of safety lifecycle model, such as IEC 61508 V-model, is raised
as a problem. As we shall see, in this paper we illustrate our study by using the
example of an engineering process for building railway control systems. A sum-
mary of the actions that are performed in each phase of the process is shown in
Fig. 1. These actions are very similar to those performed in a process designed to
comply with IEC-61508 standard, but some particularities are introduced due to
the differences between this standard and the CENELEC set of standards (EN-
50126, EN-50128, etc.). Every phase receives some input documents; defines the
set of activities to perform and the set of output documents to generate. The
activities are assigned to roles, and may need specialized tools.

3 Repository-Centric Process Metamodel (RCPM)

Models are abstractions which are close to particular domain and are decou-
pled from implementation concepts. Model-Driven Engineering (MDE) is widely
used in embedded systems where assurance requirements are important. This
allows implementation independent validation of models, for instance, gener-
ally considered as an important assurance step. In the following, we highlight
the sub-metamodels architecture of the Repository-Centric Process Metamodel
(RCPM), while the next sections concentrate on presenting the safety-related
part of the RCPM metamodel.

The solution we propose promotes the use of a model-based repository of
modeling artifacts to foster reuse in domains where safety is one of the most
important concerns. For instance, the repository provides the following kinds of
artifacts [5]: (1) properties and constraints models, (2) security and dependability
models, (3) resource models [19] and (4) patterns [6]. Once the repository
is available, it must serve an underlying repository-centric engineering process
that must be domain specific. To this end, we will also define a repository-
centric engineering process metamodel called RCPM from which domain specific
engineering models can be defined (see Fig. 2).

Safety Lifecycle Development Process Modeling for Embedded Systems 67

Fig. 1. Railway Engineering Process Lifecycle

Fig. 2. Design principles of RCPM

68 B. Hamid et al.

The RCPM is a metamodel, which defines a new formalism for system de-
velopment processes based on a repository of modeling artifacts. The RCPM
metamodel contains different sub-metamodels, as shown in Fig. 2, which supply
different capabilities. RCPM is oriented to support:

– The development of embedded systems. The metamodel focuses on facilitating
modeling the development of embedded systems, including the concepts of
partitions which are popularly used in embedded system development.

– Reuse of existing solutions. The metamodel enables to model the integra-
tion process of existing modeling artifacts. For instance, the metamodel sup-
ports patterns, as well as properties and constraints models used in the
process model and a repository-centric design methodology. The metamodel
introduces concepts of pattern and repository into the traditional process
metamodel.

– A safety process lifecycle. As we can find in standards as IEC 61508 [10],
there are more and more requirements transforming a traditional process to
a safety process to meet specific safety requirements of systems or software.
This metamodel adds the concepts used in the safety lifecycle to support
this kind of process model, such as verification and validation.

In this paper, we concentrate on presenting the safety-related part of the RCPM
metamodel.

4 Safety Concern of RCPM Metamodel

In this section, we present the safety-oriented process metamodel to extend the
existing framework. Such a sub-metamodel captures all the required concepts
to support natively safety of system development with S&D (Security and De-
pendability) and resource properties and constraints requirements. As shown
in Fig. 3, we point constructs devoted to model Sil, checkpoints and different
flows and relationships between checks and phases. These concepts are the min-
imum support and basic elements for a safety-related lifecycle, which should be
modeled by a process metamodel.

In addition, safety property constructs are provided as model libraries to
type the process’ properties. Gray is used to label concepts imported from the
common metamodel of properties and constraints [19]. For instance, the safety
properties model allows the modeling of Sil attributes to determine the process’
demand rate, which is a measure of the stability of the process (see Fig. 3).

4.1 Checkpoint

Checkpoint is defined as an activity or phase which represents the safety checks
in different levels of the process. They are used to verify whether the safety re-
quirements are correctly implemented. To reflect the requirements presented in
Section 2.2, we specify four kinds of checkpoints: validation, verification, safety
audit and safety assessment. The structure of the Checkpoint and related classes

Safety Lifecycle Development Process Modeling for Embedded Systems 69

Fig. 3. The structure of RCPM from safety-related viewpoint

is depicted in the left part of Fig. 4. Furthermore, in order to facilitate the exten-
sion of the metamodel, the different kinds of Checkpoints are defined as Check-
pointKind. With this class, the Checkpoint can be easily extended by different
required types. The relationship in the right part of Fig. 4 shows the four kinds
of Checkpoints used predefined in the RCPM metamodel and widely employed
to verify the safety lifecycle.

Fig. 4. Structure and Types of Checkpoint

4.2 Safety Relationships

There are four kinds of safety relationships: internal verification, external verifi-
cation, validation and retrieve flow. We precise these different kinds of verifica-
tion relationships in the RCPM metamodel.

70 B. Hamid et al.

– Internal Verification Flow is a Flow element that represents the internal ver-
ification relationship of one WorkBreakdownElement to another WorkBreak-
downElement. Internal Verification Flow represents the internal verification
that are performed before starting a new development phase. These actions
are performed by a group independent to the design team and are restricted
to the left branch of the safety lifecycle (V-Model). These verification actions
are shared between the safety audit team (Safety Auditor) and the team in
charge of carrying out the internal reviews.

– External Verification Flow is a Flow element that represents the external ver-
ification relationship of one WorkBreakdownElement to another WorkBreak-
downElement. External Verification Flow represents the normal verification
performed at the right branch of Safety Life Cycle (V-Model). These ac-
tions are performed by the verification team and they start at the end of the
implementation phase.

– Validation Flow is a Flow that represents the validation relationship be-
tween two WorkBreakdownElements. In a safety lifecycle V-Model, validation
holds at the end of the implementation phase to confirm that the installed
and commissioned SIFs (Safety Instrumented Functions) meet the Safety
Requirements Specification (SRS). In our metamodel, although it is a safety
lifecycle concept, validation is kept general, meaning it can also concern dif-
ferent perspectives, for example dependability validation, security validation
etc.

– Retrieve Flow is a Flow that represents the retrieve relationship from Check-
points to Phases or Activities. The retrieve action will be proceeded when
the Checkpoints don’t pass the examination. The process will turn back to
the previous WorkBreakdownElement to reexamine and/or redo the work.

5 Naravas Process Model Editor

Using the proposed metamodel, ongoing experimental work with the Naravas
tool (IRIT Naravas Editor of Repository-Centric Process Model, part of the
SEMCO tool suite) tests the features of Naravas for formalizing process models.
The current release of Naravas supports most of the concepts of RCPM and
provides the following features:

– Documentation generation. Documentation facilitates the dynamic verifica-
tion of the process at early stages of design. For instance, a safety task may
become invalid during activity execution due to some design error. This abil-
ity allows us to generate documentation (HTML, XML) to execute the pro-
cess in a domain independent manner. Then the user can refine the guidelines
for domain-specific application. In fact, there are some parts of the process
which are automatically refined (mapped) to domain specific parts, but the
programmer of the application does not need to be aware of this process.

– Conformance validation. Naravas includes a mechanism to validate the con-
formity of the process model to the RCPM.

Safety Lifecycle Development Process Modeling for Embedded Systems 71

– Reuse. Naravas provides mechanisms to create a library for the reusable
objects, like WorkproductTypes, RoleTypes or Tasktypes.

– Repository interaction. Naravas supports the repository of the modeling ar-
tifacts API. For instance, using the Naravas features based on the RCPM
presented above, the process model developer may use a subset of the Repos-
itory API to store/retrieve process model artifacts and required libraries.

The current release of Naravas uses an Eclipse EMF based ecore editor to model
our Repository-Centric Process Metamodel (RCPM), creating ecore files contain-
ing the three packages needed for the process model, the SEMCO core package,
the process package and the process type package. Minor modifications have
been applied on the metamodel to support an EMF based editor and HTML
documentation generation with Acceleo.

6 Case Study: Example of Engineering Process
for Railway Domain

In this section, we illustrate the use of the modeling framework to represent the
railway process introduced in Section 2.3, focusing in the safety concern. Fig. 5
depicts an example using the instantiation mechanisms of UML according to the
process metamodel. The colored text indicates the following:

– The green arrows represent internal validation flows.
– The magenta arrows represent retrieve flows.
– The red arrows represent verification flows.
– The blue arrows represent external validation flows.
– The magenta boxes represent the safety audit checkpoints.

The Naravas editor is then used, as shown in Fig. 6, to model this process. From
this illustration, we can easily demonstrate that it is more direct and precisely
using the RCPM metamodel to define the different safety lifecycle models.

7 State of the Art

State-of-the-art of process metamodels have been analyzed from this perspective,
trying to answer the following questions: (1) Do existing process metamodels
support safety lifecycles?; (2) If so, can these metamodels can capture all required
safety concepts mentioned above explicitly? Process metamodels can be modeled
from different views: activity-oriented, product-oriented and decision-oriented
views [15,9]. Most process metamodels adopt the activity-oriented views, such
as SPEM, UMA and OPF.

SPEM (Software & Systems Process Engineering Metamodel) [13] is a de
facto, high-level standard for processes used in object-oriented software develop-
ment. The scope of SPEM is purposely limited to the minimal elements necessary
to define any software and systems development process, without adding spe-
cific features for particular development domains or disciplines. The goal is to

72 B. Hamid et al.

Fig. 5. RCPM Metamodel Instantiated by the Railway Lifecyle

Fig. 6. Naravas in Action- Example of Railway Lifecyle

Safety Lifecycle Development Process Modeling for Embedded Systems 73

accommodate a large range of development methods and processes of different
styles, cultural backgrounds, levels of formalism, lifecycle models, and communi-
ties. Thus, with SPEM, it is not easily to model all the specific concepts required
by safety lifecycle.

The Unified Method Architecture (UMA)1 [2] , which is mostly used in in-
dustry to support the most important standards. The metamodel of UMA is
based on SPEM, thus it has the same weakness as SPEM. The OPEN Process
Framework (OPF) is defined by OPEN [14]. Generally, it is a componentized
OO development methodology underpinned by a full metamodel. The drawback
of OPF is just like the above twos. We examine in the following Tables (1 and
2) the representative process metamodels to see whether safety related concepts
are supported.

Table 1. Comparison of existing process metamodels in checkpoint

Metamodel Validation Verification Safety audit Safety assessment

SPEM + + + +
UMA ++ ++ ++ ++
OPF ++ ++ +++ +++

Table 2. Comparison of existing process metamodels in associations

Metamodel Control Flow Retrieve Flow Validation
Flow

Verification Flow

SPEM ++++ ++ ++ ++
UMA ++++ ++ ++ ++
OPF ++++ ++ ++ ++

In addition to the above mentioned process metamodels, exist other activity-
based metamodels like OOSPICE [7], SMSDM [18]. Other types of process
metamodel such as decision based etc, do not orient to safety critical system
development. As far as we know, the studied process metamodels unfortunately
do not support safety related development processes explicitly or facilitate the
modeling of safety lifecycles. Many safety critical systems use safety instrument
systems (SIS) to manage the safety lifecycle, however, these SIS do not have
process metamodels. Works like [1] propose to model different standards and try
to give recommendations during the application development. In conclusion, this
analysis results in requirements for the process metamodel presented in this pa-
per with following characteristics: (1) Design with the viewpoint: safety-related;
(2) Support safety-related development process with its necessary required con-
cepts: Sil, checkpoints and safety control relationships; (3) Facilitate modeling
the domain specific safety lifecycle using this metamodel.

1 UMA has been developed in a collaborative effort by the architects of the IBM
Rational Unified Process (RUP).

74 B. Hamid et al.

8 Conclusion

The proposed vision is to use modeling techniques to obtain a high level of ab-
stractions in order to avoid the cost of building a process for each application
property and/or for each domain. This metamodel is oriented to support differ-
ent concerns, namely safety lifecycle, pattern, repository, embedded system and
non- and extra-functional properties. This paper concentrates on the aspect of
safety lifecycle with regard to the structural point of view. RCPM fulfills all the
required characteristics mentioned. It permits (1) to design process models from
the safety-related viewpoint, (2) to support safety-related development process
with Sil (Safety Integrity Level), checkpoints and safety control relationships,
(3) to facilitate modeling the domain specific safety lifecycle. The approach pre-
sented in this paper has been evaluated on a case study to build industry control
systems: An adaptation of the safety lifecycle V-model standard from the rail-
way domain. By this illustration, the feasibility and effectiveness of the RCPM
metamodel can be validated. Furthermore, a prototype supporting the approach
has been presented.

The presented process models are used by the industrial partners of the Euro-
pean FP7 TERESA project and are constantly tested, analyzed, evaluated and
improved. First feedback on experiences from the project partners are promising
(e.g. integrating domain standards and knowledge to the safety lifecycle V-Model
standard, formalizing domain knowledge on validation and verification).

As future work, the metamodel will be extended to refine the specifications
of safety lifecycle in order to support (i) design pattern solutions, (ii) additional
non- and extra-functional requirements as system resilience and (iii) other system
engineering case studies. With regard to tooling, a work on the development of
a user-friendly editor based on Eclipse GMF is being carried out in order to
support a set of diagrams (i.e. Process Diagram and Activity Diagram) targeting
two levels of a process model: Domain Independent and Domain Specific levels.

Acknowledgments. This work is initiated in the context of SEMCO project.
It is supported by the European FP7 TERESA project and by the French FUI
7 SIRSEC project.

References

1. Cheung, L.Y.C., Chung, P.W.H., Dawson, R.J.: Managing process compliance, pp.
48–62. IGI Publishing, Hershey (2003),
http://portal.acm.org/citation.cfm?id=954321.954326

2. EPF: http://www.eclipse.org/epf
3. Exida: Iec 61508 overview report (version 2.0). Tech. rep. (January 2006)
4. Gray, J., Tolvanen, J.P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.: Domain-

Specific Modeling. Chapman & Hall/CRC (2007)
5. Hamid, B., Desnos, N., Grepet, C., Jouvray, C.: Model-based security and de-

pendability patterns in RCES: the TERESA approach. In: 1st International Work-
shop on Security and Dependability for Resource Constrained Embedded Systems,
SD4RCES (2010)

http://portal.acm.org/citation.cfm?id=954321.954326
http://www.eclipse.org/epf

Safety Lifecycle Development Process Modeling for Embedded Systems 75

6. Hamid, B., Gürgens, S., Jouvray, C., Desnos, N.: Enforcing S&D Pattern Design in
RCES with Modeling and Formal Approaches. In: Whittle, J., Clark, T., Kühne, T.
(eds.) MODELS 2011. LNCS, vol. 6981, pp. 319–333. Springer, Heidelberg (2011)

7. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process metamod-
els and the creation of a new generic standard. Information & Software Technol-
ogy 47(1), 49–65 (2005)

8. Henzinger, T.: Two challenges in embedded systems design: Predictability and ro-
bustness. Philosophical Transactions of the Royal Society A 366, 3727–3736 (2008)

9. Hug, C., Front, A., Rieu, D., Henderson-Sellers, B.: A method to build information
systems engineering process metamodels. J. Syst. Softw. 82, 1730–1742 (2009)

10. IEC 61508, I.S.: Functional safety of electrical/ electronic/programmable electronic
safetyrelated systems (2000)

11. IEC 61511, I.S.: Functional safety - safety instrumented systems for the process
industry sector (2003)

12. Kopetz, H.: The complexity challenge in embedded system design. In: ISORC,
pp. 3–12 (2008)

13. OMG: Software & Systems Process Engineering Meta-Model Specification (2008)
14. (OPF), O.P.F. http://www.opfro.org/
15. Rolland, C.: A Comprehensive View of Process Engineering. In: Pernici, B.,

Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp. 1–24. Springer, Heidelberg
(1998)

16. S84.01, A.S.: Application of safety instrumented systems for the process industry
(1996)

17. Smith, D.J., Simpson, K.G.L.: Functional Safety: A straightforward guide to apply-
ing IEC 61508 and related standards, 2nd edn. Elsevier, Butterworth Heinemann
(2004)

18. Standards Australia: Standard Metamodel for Software Development Methodolo-
gies (2004)

19. Ziani, A., Hamid, B., Trujillo, S.: Towards a unified meta-model for resources-
constrained embedded systems. In: 37th EUROMICRO Conference on Software
Engineering and Advanced Applications, pp. 485–492. IEEE (2011)

http://www.opfro.org/

Language Enrichment for Resilient MDE

Yasir Imtiaz Khan and Matteo Risoldi

University of Luxembourg, Laboratory of Advanced Software Systems
6, rue Richard Coudenhove-Khalergi – L-1359 Luxembourg

{yasir.khan,matteo.risoldi}@uni.lu

Abstract. In Model-Driven Engineering, as in many engineering ap-
proaches, it is desireable to be able to assess the quality of a system or
model as it evolves. A resilient engineering practice systematically as-
sesses whether evolutions improve on the capabilities of a system. We
argue that to achieve a systematic resilient model-driven engineering
practice, resilience concepts should be first-class citizens in models. This
article discusses how DREF, a formal framework defining resilience con-
cepts, can be integrated with other modeling languages in order to pursue
a resilient development process.

Keywords: resilience, language, metamodel, composition, enrichment.

1 Introduction

Many current development methodologies for software systems support iterative
refinements and/or incremental developments. This is well suited to respond to
needs such as changing requirements, optimization of development resources and
early detection of problems. This has typically been true for techniques known as
“agile”, but trends are developing in order to bring these qualities to approaches
that have traditionally a reputation of being less flexible, like Model-Driven
Engineering (MDE) [14,2]. Iterations and incremental development have thus
acquired the status of current practices in MDE. In most cases it is desirable for
the developers to be able to assess the quality of the system as it evolves. In par-
ticular, it is interesting to know whether each new version of the system satisfies
the requirements better than the previous one. We will call a system evolution
process that improves quality with each new version a resilient evolution pro-
cess. A resilient evolution process is especially desirable for dependable systems,
where keeping or improving the satisfaction of properties is highly critical.

Achieving a resilient evolution process requires having quality metrics of the
system, and assessing their variation during evolution. While this could in prin-
ciple be done informally, we argue that a systematic practice of resilience calls
for a well-defined set of concepts such as required and achieved satisfiability,
failures or tolerance levels. Moreover, we argue that development and quality
assurance would benefit from resilience concerns being “natively” included in
languages and tools.

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 76–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Language Enrichment for Resilient MDE 77

DREF [7] is a formal framework that precisely defines the fundamental con-
cepts underlying dependability and resilience of ICT systems. It is oriented to
describe how the satisfaction of properties of a system changes over a system
evolution axis. The evolution axis can represent different types of evolutions,
e.g., different versions of a system, different products in a product line, or even
different states in the runtime evolution of a system. DREF proposes measures
of satisfiability at various granularity levels, including concepts like different ob-
servers, property and/or observer weights, and tolerance thresholds. It defines
the concept of resilient evolution process as an evolution process of a system
that improves its capabilities, increasing overall satisfiability and reducing fail-
ures. DREF is rather generic and leaves the definition of details like the exact
nature of the system under study, of its properties or of the methods used to
assess satisfiability to the user. Therefore it can be applied to a wide range of
systems and evolution processes.

The formal definition of DREF has been given [7]. A prototype metamodel
for a DREF Domain-Specific Language (DSL) has been defined [7,16] in order
to tailor DREF to the Model-driven engineering methodology. In this article,
we discuss how the DREF metamodel can be used with other existing modeling
languages in order to enrich them with resilience concerns. We will discuss a few
approaches to associate a model with a DREF specification, and discuss their
advantages and disadvantages. We will also show a simple case study where a
model expressed in Algebraic Petri Nets (APNs) undergoes a number of evolu-
tions, with DREF being used to assess the resilience of the evolution process.
The goal of this article is not to introduce new language composition techniques.
It is rather to give practical advice on the advantages and disadvantages of some
existing composition techniques in systematic DSL enrichment, required for pur-
suing a resilient model-driven development practice.

2 Background and Previous Work

Resilience is a concept that is strictly related to evolution. According to [13],
resilience is defined as “[t]he persistence of service delivery [...] when facing
changes”. These changes can be environmental or intrinsic. Some of these changes
are part of the planned behavior, while others are not and may be regarded as
faults.

Generally speaking, the term resilient is frequently intended as the system
being good at remaining – or returning – in an acceptable range of operation
despite disruptive changes during its evolution at runtime. This view of resilience
is somewhat akin to fault tolerance.

However, systems and models are also subject to evolution during their de-
velopment phase, where an initial version goes through a series of evolutions
generally aimed at improving its capabilities – among other things, the satisfac-
tion of its requirements and properties. But it is often not trivial to understand
whether or not an evolution has actually brought an improvement in requirement
satisfaction. Behaviors may be so complex that a modification may potentially

78 Y. Imtiaz Khan and M. Risoldi

have a positive impact on some properties and a negative impact on others,
and the net result may be difficult to quantify objectively. In this respect, we
argue that it is desirable to speak about the resilience of the evolution process
itself that takes place during the development phase. This “view” of resilience
is tantamount to measuring whether the evolution process aims in the direction
of a general improvement, defined in terms of how well the system is satisfying
required properties.

One might imagine going about assessing the resilience of an evolution process
by ad-hoc techniques where some metrics are identified and repeatedly used to
calculate property satisfaction during evolution. We argue however that for the
model-driven engineering community, requirement satisfaction and resilience are
attributes that should be first-class citizens in a model, and thus they should
appear as part of a specification: i) in an explicit way and ii) with a precise
definition. The formal definition of DREF [7] tackles point ii); in the context
of model-driven engineering, we propose to tackle point i) by composing mod-
eling languages with DREF, creating models that explicitly include resilience
concepts.

2.1 The DREF Metamodel

DREF (Dependability and Resilience Engineering Framework) [7] is a formal
framework that precisely defines the fundamental concepts underlying depend-
ability and resilience of ICT systems. It allows to quantify variations in the level
of property satisfaction over an evolution axis. DREF is based on the following
core concepts.

– An entity is anything of interest that is considered. An entity could be, for
example, a program, a database, a person, a hardware device, or a develop-
ment process.

– A property is a basic concept used to characterize an entity. It can be, for
example, an informal requirement or a logic formula.

– An evolution axis is a set of values that are used to index a set of entities
and/or a set of properties. Each index corresponds to a “version”, or a stage
in the evolution of entities and properties.

– An entity will generally have to satisfy some property. This fact is expressed
with a satisfiability function, defined as follows. Let Ent be a set of entities
and Prop a set of properties. The satisfiability of properties by entities is
a function sat : Prop × Ent → R ∪ {⊥}. The sat function can be defined
arbitrarily depending on the application. For example, if a property can only
be “satisfied or unsatisfied” (like, e.g., in model checking), the codomain of
sat might be {0, 1}; whereas if the satisfiability is a more nuanced concept
(like, e.g., in a performance measurement), it could assume any value in R,
or a subset thereof. Semantically, sat quantifies how much an entity satisfies
(or not) a property. The satisfiability function sat is a partial function, and
can be defined only for a subset of Prop × Ent, meaning that for some
entity/property pairs a satisfaction value could be not expected (in other

Language Enrichment for Resilient MDE 79

words, some properties might be applicable only to some entities and not
others). Moreover, the ⊥ value accounts for the cases where the satisfiability
value is not computable.

Using the above concepts in the engineering process, it is possible to get an
assessment not only of the extent to which an entity satisfies its properties, but
also of how this satisfiability changes during subsequent evolutions of the entity.

The DREF framework also defines a number of other concepts which are
useful for dependability and resilience. We will not give a complete definition
for them all as this is not the goal of this paper, they are fully defined in [7].
They include nominal satisfiability (a satisfiability level that has to be reached
for an entity to be considered dependable), tolerance thresholds (a satisfiability
level below nominal satisfiability but still within operational limits) and failures
(the difference between the measured satisfiability of an entity and its nominal
satisfiability).

In order to use the DREF framework in an MDE context, a metamodel has
been given for DREF concepts. This metamodel defines the abstract syntax of
a DREF DSL, and can be used to create a DREF specification referring to a
model expressed in some other language. This raises the question of how a DREF
specification integrates with a model in a different language. In particular, the
entities and properties of the DREF framework should be somehow expressed
in the other language, so that the concepts of entity and property should bridge
the two languages.

A fragment of the class diagram for the DREF metamodel is shown in Figure 1.
This fragment focuses on the DrefEntity and DrefProperty metaclasses that are
– if we may borrow the aspect-oriented terminology – the “join points” between
DREF and other languages. A complete description of the metamodel and its
associated constraints is given in [16].

Remark that DrefEntity contains an abstractModelEntitymetaclass. The latter
represents the actual entity in the model expressed in the other language. We
will see that there are three ways in which we can link this metaclass to the
other language. A similar structure is present for the DrefProperty metaclass,
that contains the abstract ModelProperty metaclass.

DrefSatModel

name : EString
DrefEntity

name : EString
DrefProperty

description : EString
ModelEntity

description : EString
ModelProperty

EntityInformalDescription

URI : Estring
EntityURI

PropertyInformalDescription

URI : Estring
PropertyURI

1..*

1..*

ownedDrefEntities

ownedDrefProperties

1

1..*

ownedModelEntity

ownedModelProperties

Fig. 1. A fragment of the DREF metamodel

80 Y. Imtiaz Khan and M. Risoldi

3 Related Work

Enriching languages with new concerns has been done in a number of ways. In
Aspect-Oriented Programming [12] (AOP), languages are extended with cross-
cutting concerns given in a separate modular specification. AOP can be seen as
a generic composition mechanism where a concern can be added to a model. It
needs compilers and platforms that support aspect execution, and is appropriate
for general purpose languages where the necessary constructs to weave aspects
in a model can be added to the language once and used for different concerns.
A popular example of AOP language is AspectJ [1].

Another approach to extending languages is by embedding a (generally small)
sublanguage in a host language. The sublanguage will typically treat a specific
concern, and may therefore be considered a Domain-Specific Language (DSL).
Approaches exist that embed DSLs in host languages using, among others, key-
word extension [3], role bindings [4] and term representation composition [8].
Embedded DSLs may be used in conjunction with AOP for the generation of
code [4].

In the field of DSLs, language composition is mostly sought for modularity
and reuse. DSLs bring usability by defining small, dedicated sets of concepts,
but tend to have a moderate to high cost of development and deployment. This
effort can be minimized by reusing predefined DSLs for the definition of more
complex ones. This is particularly useful when families of languages need to
be developed. Techniques to specify the composition include ad-hoc techniques
based on metamodel [15,5] and domain [6,10] composition, or more systematic
techniques for DSL reuse in families of languages [19,18].

This paper is based on DSL-oriented approaches, in particular on metamodel-
based techniques, as they best suit our current applications and goals. It must
be noted that DSL embedding or AOP composition could be pursued, provided
that the DREF DSL is specified with an appropriate syntax and semantics.

4 Composing DREF with other Languages

We will discuss three ways in which DREF and another language can be used to-
gether. The first is using DREF stand-alone on the side of the modeling language.
The second is composing DREF with a modeling language through metamodel
parameterization. The third (which can actually be done in two different ways)
is composing with metamodel interfacing. Note that the second and third tech-
niques imply that a metamodel is available for both languages, and that they
are homogeneous.

Also remark that DREF does not have an executable semantics; it is a con-
ceptual framework designed to describe sets of organized data, with no concept
of execution. Furthermore, the semantics of its concepts is intentionally very
abstract, to allow the user to define it appropriately in the context of language
composition. Thus we will limit ourselves to consider the composition of DREF
with other languages on a syntactical plan (i.e., by integrating metamodels) as
the semantic aspects are difficult to foresee in a general way.

Language Enrichment for Resilient MDE 81

4.1 Approach 1: Using DREF Stand-Alone

This strategy keeps the DREF specification and the model separate. The model
is created using its own modeling language, and the properties are written in
an appropriate property specification language. Then, the DREF specification
is created on the side. The link between DREF and the model is done using the
metaclasses in the DREF metamodel that inherit the ModelEntity and Model-
Property metaclasses (Figure 1). For the entity, there are two possibilities. Either
the entity has been saved in a file, and thus an instance of EntityURI is created
in the DREF specification pointing to said file (via the URI attribute); or if no
such file exists (for example, if the entity is an hardware device), an instance
of EntityInformalDescription is created that simply describes textually (via the
inherited description attribute) what the entity is. Likewise for properties, either
a property file is pointed to by a PropertyURI instance, or an informal description
is given by a PropertyInformalDescription instance. Subsequent evolutions of the
entity and properties will be linked to further instances of said metaclasses.

This strategy requires no language engineering effort; the DREF metamodel
can be used as-is, and the modeling language must not undergo any modifica-
tions. Another advantage is that editors for the modeling language will require
no re-engineering to read the models, as these continue to be expressed in their
supported modeling language. However, there is no proper integration here. The
resilience specification is separate from the model, and its consistency with the
model has to be ensured manually. Also, if the goal is to enrich a language to
natively support resilient engineering, this approach does not achieve it.

4.2 Approach 2: Metamodel Parameterization

Real integration between DREF and another modeling language can instead be
achieved through metamodel composition. The general idea is that, instead of
creating instances of ModelEntity and ModelProperty in the DREF specification,
it should be possible to create instances of the appropriate metaclasses coming
from the modeling language.

One way to achieve this composition is through metamodel parameterization.
This strategy takes two metamodels as inputs for a metamodel transformation,
producing a third metamodel which is the composition of the two. This typically
involves building and executing the transformation with a suitable language
transformation framework such as ATL.

An example of this type of composition has been defined formally in [15]. In
it, a part of a metamodel is marked as a formal parameter, and it is replaced
by an effective parameter which redefines the elements in the formal parameter.
More precisely, simplifying a bit the definitions in [15]: let MM be the universe
of metamodels; mm ∈ MM a metamodel; we can define a formal parameter
fp ∈ MM in mm (fp ⊆ mm) acting as a template for possible replacements. In
our case, fp is made of ModelEntity and ModelProperty.

82 Y. Imtiaz Khan and M. Risoldi

Let us now consider a metamodel ep ∈ MM , called effective parameter that
redefines at least the elements in fp. The parameterization is then defined as:

mm′ = mm[fp
ϕ←− ep]

where ϕ : fp → ep is a total mapping function between fp and ep, and mm′ is
the metamodel resulting from the parameterization. In our case, ep is made of
the metaclasses from the modeling language that model entities and properties,
and mm′ will be the composed metamodel of DREF plus the modeling language.

This approach offers a fine granularity of control over the detailed definition
of the mapping function ϕ, and has the advantage of treating several possible
cases of composition (e.g. solving possible ambiguities with respect to attribute
composition, containment relationships, constraint violation etc.). However, it
requires a high level of language engineering effort in order to define the com-
position. Also, the approach would likely break compatibility of the resulting
metamodel with the editors for the modeling language. It is worth following
this type of approach when some degree of generality is desired with respect
of possible types of composition. In the case of DREF, however, the simplicity
of composition rather suggests adopting the metamodel interfacing composition
strategy, described in the following paragraphs.

4.3 Approach 3: Metamodel Interfacing

In the case of DREF, there is a very simple type of composition, where one
metaclass must replace an abstract metaclass that only participates in a con-
tainment relationship as the containee. Under this assumption, we don’t need
to treat all possible composition problems and we can choose a strategy that is
restricted to this very particular type of composition. Metamodel interfacing [5]
proposes to interface two metamodels by creating a third metamodel called in-
terfacing metamodel that contains references to elements in both metamodels,
and establishes the desired relationships.

There are two ways we can interface the DREF metamodel with another
metamodel: through reference, or through inheritance.

In Metamodel Interfacing through Reference, metaclasses in the interfac-
ing metamodel inherit from one metamodel and reference the other. A generic
example is represented in Figure 2 and defined as follows. Let:

– mmdref be the DREF metamodel we showed in Figure 1;
– mment ∈ MM the metamodel of the modeling language which contains the

definition of the entities;
– mmprop ∈ MM the metamodel of the property language which contains the

definition of the properties.

Let Entity ⊆ mment be the metaclass modeling entities, and Property ⊆ mmprop

the metaclass modeling properties. The interfacing metamodel mmint ∈ MM
contains:

Language Enrichment for Resilient MDE 83

EntityInt PropertyInt

description : EString
ModelEntity

description : EString
ModelProperty

Entity Property

mmdref

mmint

mmpropmment
1 1

entity property

Fig. 2. Example of interfacing metamodel through reference

– a metaclass EntityInt that inherits from ModelEntity in mmdref and has a
reference to Entity in mment;

– a metaclass PropertyInt that inherits from ModelProperty in mmdref and has
a reference to Property in mmprop;

When modeling, it will be possible to create instances of EntityInt (resp. Prop-
ertyInt) as part of the DREF model and to reference existing instances of Entity
(resp. Property).

With this technique, the focus of the model stays on DREF. It is recommended
to use it when the models for entities and properties already exist. It has the
advantage of not modifying the metamodel for entities and properties, thus not
breaking compatibility with existing tools and not requiring a big language engi-
neering effort (only mmint has to be created). Moreover, the references between
the two models are actually stored in the DREF model.

In Metamodel Interfacing through Inheritance, instead, the metaclasses
in the interfacing metamodel inherit from both metamodels, using multiple in-
heritance. A generic example is represented in Figure 3 and defined as follows.

Given the same definitions as in the previous paragraph for mmdref , mment,
mmprop, Entity and Property; the interfacing metamodel mmint ∈ MM
contains:

– a metaclass EntityInt that inherits both from ModelEntity in mmdref and
from Entity in mment;

– a metaclass PropertyInt that inherits both from ModelProperty in mmdref

and from Property in mmprop;

When modeling, it will be possible to create instances of EntityInt (resp. Prop-
ertyInt) that are at the same time part of the DREF model and of the entity
(resp. property) model, enabling the specification of resilience and entities (resp.
properties) directly in the same model.

84 Y. Imtiaz Khan and M. Risoldi

EntityInt PropertyInt

description : EString
ModelEntity

description : EString
ModelProperty

Entity Property

mmdref

mmint

mmpropmment

Fig. 3. Example of interfacing metamodel through inheritance

With this technique the same integrated model will contain the entity/prop-
erty model and the DREF specification. Moreover, a single model will be able
to contain all evolutions of entities and properties, indexed by the evolution axis
of the DREF specification. This approach achieves full integration, and is better
used when designing a language from scratch or if the goal is to enrich a DSL
with native support for resilient engineering concepts. However, the inconve-
nient is that the resulting models will likely not be compatible with tools made
to interpret stand-alone entity or property models. Also, care has to be taken
if there are syntactic or semantic conflicts between the metaclasses (e.g. if the
ModelEntity and the Entity metaclasses have conflicting attributes).

5 Composition Example: DREF + APN

We will now show an example of how we used the metamodel interfacing tech-
nique to compose DREF with algebraic Petri nets (APNs), using the APN meta-
model from the AlPiNA model checker [9].

Composition through Reference: Figure 4(a) shows the interfacing meta-
model composing DREF with APNs through reference, creating a new meta-
model that we will call DREFAPNr (r for reference). This metamodel references
elements in three other metamodels:

– The DREF metamodel (drefv2 in Figure 4)
– The APN metamodel (apnmm in Figure 4)
– The AlPiNA property language metamodel [9] (propertymm in Figure 4)

The APNModelEntity metaclass inherits from ModelEntity in the DREF meta-
model, and references the APN metaclass in the APN metamodel (representing
an algebraic Petri net).

The APNProperty metaclass inherits from ModelProperty in DREF and ref-
erences the PropertiesDeclaration metaclass in the AlPiNA property language
metamodel (representing a property declaration).

Language Enrichment for Resilient MDE 85

(a) (b)

Fig. 4. Interfacing metamodel between DREF and APNs: (a) through reference, and
(b) through inheritance

Composition through Inheritance: Figure 4(b) shows the interfacing meta-
model that interfaces DREF with APNs through inheritance, creating a new
composed metamodel that we will call DREFAPNi (i for inheritance). This
metamodel references elements from the same three metamodels as the interfac-
ing through reference approach.

The APNModelEntity metaclass inherits from ModelEntity in the DREF meta-
model and from the APN metaclass in the APN metamodel (representing an
APN). Instances of APNModelEntity will be at the same time a part of the
DREF model and the root of an APN specification.

The APNProperty metaclass inherits from ModelProperty in DREF and from
the PropertiesDeclarationmetaclass in the AlPiNA property language metamodel
(representing a property declaration). Instances of APNProperty will be at the
same time a part of the DREF model and the root of a property declaration.

6 Case Study: Resilient Evolution of a Car Crash System

We experimented using the discussed integration approaches for the resilient evo-
lution of a car crash emergency management system modeled using APNs [11].
In this system, reports on a car crash are received and validated, and a super-
observer (i.e. an emergency response team) is assigned to manage each crash.

Three versions of the car crash system have been modeled, with different levels
of satisfaction of provided properties. In this example, rather than developing a
language from scratch, we took an existing language (with existing tool support),
which are APNs, and enriched it with DREF. Therefore, we tried the stand-alone
(Section 4.1) and metamodel interfacing (Section 4.3) approaches. We used the
Eclipse Modeling Framework (EMF) [17] for metamodel creation and editor
generation. This example does not use all of DREF concepts and features, and
is intentionally very simple so as to clearly focus on the language composition
rather than on a complex resilience specification.

86 Y. Imtiaz Khan and M. Risoldi

0

1

ccv1 ccv2 ccv3

sat(validCr)

+

+ +
+

sat(validSob)

× ×

× ×

Fig. 5. Measured satisfiability for the car crash system

6.1 Entities and Properties

The set of entities Ent is comprised of the three versions of the car crash system
(three APNs) named as follows:

Ent = {ccv1, ccv2, ccv3}

The set of properties Prop ⊂ PROPERTY is comprised of two properties:

Prop = {validCr, validSob}

that are informally specified as follows (see [11] for terminology):

– validCr: A crisis can only be assigned to a superobserver if its report has
been validated

– validSob: A crisis can only be assigned to a superobserver that is capable to
handle it

and that have a formal specification in the AlPiNA property language.
The system evolves over an evolution axis where guards are added with each

version to improve property satisfaction. The first version, ccv1, has no guards;
ccv2 has a guard ensuring the satisfaction of validCr; ccv3 has guards for both
properties. There are thus three index points on the evolution axis, corresponding
respectively to ccv1, ccv2 and ccv3.

The properties being boolean expressions, their satisfiability is a boolean func-
tion sat : Ent × Prop → {0, 1} that was evaluated using the AlPiNA model
checker. Figure 5 shows the satisfiability values calculated by AlPiNA for the
three versions.

6.2 DREF Model without Composition (Stand-Alone)

Using EMF to create a stand-alone DREF specification for the car crash system
is straightforward. As we said, no intervention on the language metamodels is
needed. The APN models can be created using the AlPiNA built-in editor. For
the DREF specification, EMF can generate an editor from the DREF meta-
model. Using this editor, we could create a DREF specification that references
the entities and properties of the APNmodels, indexes them on an evolution axis,

Language Enrichment for Resilient MDE 87

Fig. 6. Car Crash DREF satisfiability model in Eclipse, using only the DREF meta-
model (no composition)

and associates them to their satisfiability values. Figure 6 shows a screenshot
of the DREF editor. It is possible to see the entities definition (at the bottom),
their indexing (in the middle) and some of the satisfiability values (at the top).
Clicking on the Entity URI instances reveals the URI of the corresponding file.

The result of this approach is a set of APN files containing the models and
the properties, and a DREF file containing the resilience specification. The asso-
ciation between the two is not immediately apparent, relying on the Entity URI
attributes. The compatibility of the APN models with AlPiNA is full (they are
original AlPiNA models).

Fig. 7. Car Crash DREF satisfiability model in Eclipse, using the DREFAPNr

metamodel

88 Y. Imtiaz Khan and M. Risoldi

6.3 DREF Model Composed with APNs through Reference

Figure 7 shows the same DREF model, but made using the DREFAPNr

metamodel.
It is almost identical to the previous one, except for the fact that, instead

of simply having a reference to a file, we have a reference to the actual APN
model. At the bottom of the figure, the three APNs (previously created using
the AlPiNA editor) are loaded in the model as an external resource.

The result of this approach is rather interesting, as the APNs continue to exist
as separate files (thus keeping compatibility with the AlPiNA editor), but at the
same time it is possible to load them together with the DREF specification in
an integrated model. This editor is able to edit APN models, however it is still
necessary to create them with AlPiNA first.

6.4 DREF Model Composed with APNs through Inheritance

Figure 8 shows a fragment of the editor obtained from the DREFAPNi meta-
model. In this case, this editor is able to create both the DREF specification
and the APN (APN editing is shown in the popup menu). We thus have a fully
integrated language and editor; the result of this approach is a single model con-
taining the APNs and the DREF specification. However, the resulting models
are not compatible with AlPiNA out of the box. In principle this compatibility
could be achieved through model transformations, however the added effort of
writing the transformations would be considerable.

Fig. 8. Car Crash DREF satisfiability model in Eclipse, using the DREFAPNi

metamodel

7 Conclusion

We have discussed a few techniques to enrich languages with resilience concepts
by integrating them with DREF. Three approaches have been discussed and
two of them have been experimented. We can draw the following conclusions
and recommendations concerning the amount of effort, compatibility with pre-
existing tools, and the circumstances when the approach is appropriated.

Language Enrichment for Resilient MDE 89

The stand-alone approach (Section 4.1) does not require any metamodel
editing effort, and can simply reference existing models using files or informal
descriptions. It does not introduce compatibility issues, but requires effort in
keeping specifications consistent. It is useful for occasional, non-systematic as-
sessments of resilience.

The metamodel interfacing through reference approach (first part of Sec-
tion 4.3) brings limited integration of DREF with other languages, by allowing
a DREF model to reference actual models expressed in other languages, while
maintaining separate models. This has the advantage of building a comprehen-
sive model, keeping track of the association between the DREF specification
and the entities and properties. At the same time it leaves untouched the en-
tity/property metamodels, thus preserving compatibility with existing tools. It
requires some effort in editing an interface metamodel. It is the best compromise
when wanting to introduce resilience in a modeling chain without breaking the
compatibility with existing toolkits.

The metamodel interfacing through inheritance approach (second part of
Section 4.3) is an actual full integration of DREF with another language, where
the constructs of the different metamodels coexist in the same space. This allows
actual enrichment of a DSL with resilience constructs, at the cost of creating a
metamodel which may be incompatible with previously existing tools. It is better
suited when wanting to design a language with resilience support from scratch,
or when a major language revision is foreseen anyway.

Finally, we think that the metamodel parameterization approach (Section 4.2)
requires too much effort to be useful in this type of language composition, and
is better suited to cases in which the other approaches fall short (i.e., when the
nature of the composition presents a risk of conflicts and calls for a finer control
over the composition semantics).

The metamodels discussed in this document are available for download at
http://wiki.lassy.uni.lu/@api/deki/files/499/=drefv2metamodels.zip

Acknowledgement. This work has been supported by the National Research
Fund, Luxembourg, project MOVERE C09/IS/02.

References

1. AspectJ team. The AspectJ project, http://www.eclipse.org/aspectj/ (visited
on May 9, 2012)

2. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation.
IEEE Software 20(5), 36–41 (2003)

3. Cuadrado, J., Molina, J.: A model-based approach to families of embedded domain-
specific languages. IEEE Transactions on Software Engineering 35(6), 825–840
(2009)

4. Dinkelaker, T., Wende, C., Lochmann, H.: Implementing and Composing MDSD-
Typical DSLs. Technical Report TUD-CS-2009-0156, Technische Universität
Darmstadt (October 2009)

http://wiki.lassy.uni.lu/@api/deki/files/499/=drefv2metamodels.zip
http://www.eclipse.org/aspectj/

90 Y. Imtiaz Khan and M. Risoldi

5. Emerson, M., Sztipanovits, J.: Techniques for Metamodel Composition. In: OOP-
SLA 6th Workshop on Domain Specific Modeling, pp. 123–139 (2006)

6. Estublier, J., Vega, G., Ionita, A.: Composing Domain-Specific Languages for
Wide-Scope Software Engineering Applications. In: Briand, L.C., Williams, C.
(eds.) MoDELS 2005. LNCS, vol. 3713, pp. 69–83. Springer, Heidelberg (2005)

7. Guelfi, N.: A formal framework for dependability and resilience from a soft-
ware engineering perspective. Central European Journal of Computer Science 1,
294–328 (2011), doi:10.2478/s13537-011-0025-x

8. Hofer, C., Ostermann, K.: Modular domain-specific language components in scala.
In: Proceedings of the Ninth International Conference on Generative Programming
and Component Engineering, GPCE 2010, pp. 83–92. ACM, New York (2010)

9. Hostettler, S., Marechal, A., Linard, A., Risoldi, M., Buchs, D.: High-Level Petri
Net Model Checking with AlPiNA. Fundamenta Informaticae 113(3-4), 229–264
(2011)

10. Ionita, A.D., Estublier, J., Leveque, T., Nguyen, T.: Bi-dimensional composition
with domain specific languages. e-Informatica Software Engineering Journal 3(1)
(2009)

11. Khan, Y.: A formal approach for engineering resilient car crash management sys-
tem. Technical Report TR-LASSY-12-05, University of Luxembourg (2012)

12. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

13. Laprie, J.-C.: From dependability to resilience. In: Proceedings of the 38th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN),
page Fast Abstracts, Anchorage, USA (2008)

14. Ludewig, J.: Models in software engineering – an introduction. Software and Sys-
tems Modeling 2, 5–14 (2003), doi:10.1007/s10270-003-0020-3

15. Pedro, L.: A Systematic Language Engineering Approach for Prototyping Domain
Specific Languages. PhD thesis, Université de Genève, Thesis # 4068 (2009)

16. Risoldi, M.: A metamodel for a DREF DSL. Technical Report TR-LASSY-12-03,
University of Luxembourg (2012),
http://wiki.lassy.uni.lu/Special:LassyBibDownload?id=3169

17. The Eclipse Foundation. The Eclipse Modeling Framework Project (2012),
http://www.eclipse.org/modeling/emf/ (visited on May 16, 2012)

18. Voelter, M.: A family of languages for architecture description. In: 8th OOPSLA
Workshop on Domain-Specific Modeling, DSM 2008 (2008)

19. White, J., Hill, J.H., Gray, J., Tambe, S., Gokhale, A.S., Schmidt, D.C.: Improv-
ing domain-specific language reuse with software product line techniques. IEEE
Softw. 26(4), 47–53 (2009)

http://wiki.lassy.uni.lu/Special:LassyBibDownload?id=3169
http://www.eclipse.org/modeling/emf/

Assume-Guarantee Testing of Evolving

Software Product Line Architectures

Maurice H. ter Beek1, Henry Muccini2, and Patrizio Pelliccione2

1 ISTI–CNR, Pisa, Italy
maurice.terbeek@isti.cnr.it

2 Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Università dell’Aquila, Italy

{henry.muccini,patrizio.pelliccione}@univaq.it

Abstract. Despite some work on testing software product lines, main-
taining the quality of products when a software product line evolves is
still an open problem. In this paper, we propose a novel assume-guarantee
testing approach as a solution to the following research question: how
can we verify the correct functioning of products of an software product
line when core components evolve? The underlying idea is to retest only
some of the products that conform to the software product line architec-
ture and to infer, using assume-guarantee reasoning, the correctness of
the other products. Assume-guarantee reasoning moreover permits the
retesting of only those components that are affected by the changes.

Keywords: Assume-guarantee testing, Evolving software product lines,
Software testing, Compositional verification.

1 Introduction

Software product line engineering makes use of different components to describe
and realize families of systems, such as requirements, architectural and design
models, and implementation components [1, 2]. The architecture of a software
product line is typically referred to as a software product line architecture and it
is meant to define the common reference architecture for the products that are
related to a specific family. Variability is achieved by identifying variation points
as places in the product line architecture where specific decisions are reduced
to a choice among several features , but the feature to be chosen for a particular
product variant is left open (due to optional, mandatory or alternative features).

For enterprises from safety-critical domains, such as avionics, the application
of software product line engineering technology is often problematic because
of the high costs of certification efforts. In such domains, every product has
to pass a costly certification stage, even if it belongs to an established family
of products for which certification efforts have already been performed. It is
therefore important to reduce the effort needed to retest modified products. By
predicting the impact of evolution of an software product line, we might be
able to avoid re-certification of certified products that have evolved. This cannot

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 91–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

92 M.H. ter Beek, H. Muccini, and P. Pelliccione

solve the issue of repeated certification in a product line altogether, since testing
one product of a family in general does not provide any guarantee for another
product of the family. A possible solution, however, is to investigate how testing
and variability can be combined to selectively test only components actually
affected by the evolution.

In [3], we proposed a first step towards a solution to this problem by reusing,
adapting and combining state-of-the-art techniques. We found assume-guarantee
reasoning well suited for evolving systems. The environment of a component is
seen as a set of properties, called assumptions, that should be satisfied for it to
function. If these assumptions are satisfied by the environment, then components
in this environment will typically satisfy other properties, called guarantees. By
appropriately combining the assume and guarantee properties, it is possible to
prove the correctness of an entire system before actually constructing it.

The idea we presented was thus to annotate components of a product line ar-
chitecture with pairs of assume-guarantee properties, considering a component’s
environment as the composition of the remaining components. In this way, we
enabled compositional verification based on assume-guarantee reasoning to deal
with evolution in product line architectures. The underlying idea is to decom-
pose a system specification into (asssume-guarantee) properties that describe the
behavior of a system’s subset, to model check these properties locally, and to
deduce from the local checks that the complete system satisfies the overall spec-
ification. The main advantage is that one never has to compose all subsystems,
thus avoiding the state explosion problem. On the downside, assume-guarantee
verification by means of model checking cannot scale to the size of industrial
systems (as remarked in [4]).

For this reason, we envision the use of software testing for verifying evolving
product line architectures. While many approaches to validate software product
lines and their products in a cost effective way by exploiting similarities among
products and using proper variability management have been proposed [5–15],
we know of only a few approaches that investigate how to retest the resilience
of products when a software product line evolves [16, 17].

After analyzing state-of-the-art techniques for verifying and validating soft-
ware product lines, in this paper we present a preliminary approach to retest
the resilience of products of a software product line by properly extending and
adapting assume-guarantee reasoning to evolving software product lines. The
main goal is to permit selective (re)testing of assume-guarantee properties on
only those components and products of the software product line that are actu-
ally affected by the evolution.

Section 2 recalls the problem that drives our research effort. Section 3 presents
background information on assume-guarantee reasoning and assume-guarantee
testing. Section 4 presents our proposed solution for assume-guarantee testing
of evolving software product lines. Section 5 briefly reports on related work on
regression testing of software product lines, while Section 6 concludes the paper
outlining some future work on our wish list.

Assume-Guarantee Testing of Evolving SPL Architectures 93

2 Problem Setup

We recall the research problem that we set up in [3]: how to guarantee the
correct evolution of a software product line upon changes in components of its
underlying product line architecture. We illustrate the problem in Fig. 1, based
on the following example that is originally due to Paul Clements et al. at the
Software Engineering Institute:

“I run the same software in different kinds of helicopters. When the soft-
ware in a helicopter powers up, it checks a hardware register to see what
kind of helicopter it is and starts behaving appropriately for that kind of
helicopter. When I make a change to the software, I would like to flight
test it only on one helicopter, and prove or (more likely, assert with high
confidence) that it will run correctly on the other helicopters. I know I
can’t achieve this for all changes, but I would like to do it where possible.”

In a software product line context, this example can be re-phrased as: assuming
various products (helicopters) have been derived from a software product line,
which have moreover been formally certified, what can be concluded for new
products obtained from the software product line by modifying one or more core
components?

We assume that all products of the product line must be guaranteed to con-
form to a specific standard. Furthermore, we assume that there is a policy accord-
ing to which any change to a core component requires all products containing
that core component to be rebuilt. The question is whether it is necessary to
re-validate all the products of the software product line or whether a subset
can suffice. For instance, in the aforementioned example, when we change the
software of the helicopter line, such as installing a new kind of radio across the
fleet, we would like to flight test it only on one helicopter and assert with high
confidence that it will run correctly on the other helicopters. In this paper we
concentrate on modifications that are the result of changing, adding or removing
components, but not their connections.

3 Assume-Guarantee Reasoning and Testing

Compositional verification is thus based on decomposing the system specification
into a set of properties each of which describing the behavior of a system’s
subset. In general, checking local properties over subsystems does not imply
the correctness of the entire system. This is due to the existence of mutual
dependencies among components. More precisely, each single component cannot
be considered in isolation but must be considered as behaving and interacting
with its environment (i.e., the rest of the system).

Assume-guarantee reasoning is one of the most promising approaches pro-
posed for compositional reasoning. It was originally introduced in the Ph.D. the-
sis of Cliff Jones [18] and in the context of temporal logic by Amir Pnueli [19].
Assume-guarantee reasoning considers both components and the environment

94 M.H. ter Beek, H. Muccini, and P. Pelliccione

Fig. 1. The helicopter certification problem

they interact with. The environment is described a set of properties that should
be satisfied for it to correctly interact with the components. These properties
are the assumptions that the component makes on the environment. If they
are satisfied by the environment, then the component behaving in this environ-
ment usually satisfies other properties, the guarantees. As said before, a system
can sometimes be proved correct without actually constructing it through the
appropriate combination of assume and guarantee properties.

We use Pnueli’s notation to state that if the environment of component M
satisfies logic formula ϕ (i.e., ϕ is the assumption that M makes about the
components it interacts with), then in that environment M satisfies ψ (i.e., M
guarantees ψ):

〈ϕ〉 M 〈ψ〉
Pnueli’s classical reasoning chain then becomes:

〈 〉 M 〈ϕ〉 〈ϕ〉 M ′ 〈ψ〉
〈 〉 M ·M ′ 〈ψ〉

in which ‘·’ is a suitable composition operator. This reasoning chain should be
interpreted as follows: if M , with no assumption on its environment, satisfies
ϕ, and M ′, over an environment that satisfies ϕ, satisfies ψ, then without any
assumption on its environment M ·M ′ satisfies ψ. In this paper, we consider M
and M ′ to model component behaviors and ϕ and ψ to be formulae expressed
in Linear Temporal Logic.

Assume-Guarantee Testing of Evolving SPL Architectures 95

As witnessed by [20], the main difficulties of applying assume-guarantee rea-
soning are (i) generating the assumptions and (ii) decomposing a system into
subsystems with the purpose of efficiently verifying general system properties.
Therefore, in [21] three main dimensions to be considered when dealing with
assume-guarantee reasoning were identified:

1. The composition operator should be carefully selected and has to be associa-
tive. It defines a system and properties decomposition and this is fundamental
in order to correctly work with the reasoning chain;

2. The assumptions generation technique is fundamental for assuring effective
assume-guarantee reasoning;

3. The language used to specify the system and that used to specify the assume-
guarantee properties are crucial. Semantic relationships between these two
languages (if they differ) are fundamental to make the assumption generation
process fully automatic.

The authors of [22] introduce a framework for performing assume-guarantee
reasoning in an incremental and fully automatic fashion. More specifically, the
approach automatically generates via a learning algorithm assumptions that the
environment needs to satisfy for the property to hold. These assumptions are
initially approximate, but become gradually more precise by means of coun-
terexamples obtained by model checking the component and its environment.
In [23], the authors observe that in reality a component is only required to
satisfy properties in specific environments. Inspired by these motivations, they
generate assumptions that characterize exactly those environments in which the
component satisfies its required property.

Assume-guarantee testing has been proposed as a technique to complement
assume-guarantee model checking, to be used for the verification of components’
implementations [4]. While formal verification with assume-guarantee testing in-
creases scalability when compared to traditional formal verification techniques
such as model checking, it may still be unfeasible when applied to the imple-
mentation of large-scale industrial systems. For this reason, Giannakopoulou et
al. proposed in [4] an approach that, after applying assume-guarantee formal ver-
ification at the design level, uses assume-guarantee information to test whether
the components’ implementations continue to satisfy the assumptions. In affir-
mative cases, this will show that there is no incompatibility between the design
models and their implementations. The main advantages of assume-guarantee
testing rely on the possibility of detecting violations with a higher probability
than in the case of traditional testing, avoiding state explosion problems that
typically arise when combining components, and with the same coverage as that
of traditional systems — but with fewer tests.

More formally, consider a system S in a possibly empty context E. Let S be
composed of n components C1, C2, . . . , Cn

1. The idea is to produce for each Ci,
with 1 < i < n, both Gi and Ai, representing respectively the local requirements
that Ci has to guarantee and the assumptions that characterize the context

1 Here the term component is used as a synonym of part.

96 M.H. ter Beek, H. Muccini, and P. Pelliccione

in that point. In other words, each component Ci will guarantee property Gi

whenever its context satisfies assumption Ai.
Next consider two components C1 and C2 (but the reasoning can straightfor-

wardly be extended to a multitude of components) and two implementations I1
and I2 of these components, respectively. After having validated with assume-
guarantee model checking that C1 · C2 satisfies a property ψ, we subsequently
want to test whether I1 · I2 still satisfies ψ. The idea for doing so is to check this
separately, via unit testing, for the two component implementations 〈ϕ〉 I1 〈ψ〉
and 〈 〉 I2 〈ϕ〉. Assume-guarantee testing is then run according to the following
three steps:

1. The assumption ϕ is used to restrict the execution of the component I1 when
producing test traces. This means that sets of test traces T1 and T2 are pro-
duced from I1 composed with an implementation of ϕ, and from I2 composed
with an implementation of the universal environment, respectively;

2. The resulting traces are individually checked against the appropriate assume-
guarantee premise. Thus, each trace in T1 is checked against ψ, and each trace
in T2 is checked against ϕ, individually, without requiring the construction
of all the interleavings of the two components’ implementations;

3. If either of these above checks fails, then there is an incompatibility between
the components’ models and their implementations that needs to be fixed.
Otherwise, I1 · I2 |= ψ.

Assume-guarantee testing is still testing, i.e. it lacks exhaustive coverage. How-
ever, as said before, assume-guarantee testing has the potential of checking more
system behaviors with the same amount of coverage as traditional testing.

4 Assume-Guarantee Testing of Evolving Software
Product Line Architectures

While we have seen that a lot of research efforts have been devoted to software
product line testing [17, 24–26, 13], limited research has been conducted on how
to test evolving software product lines (some research that has been carried out
is discussed in Section 5). The solution we propose below combines the principles
of traditional regression testing, in the context of evolving software product line
architectures, with the use of assume-guarantee reasoning. As the architecture
of the software product line plays a central role in our approach, the latter can
thus be considered architecture-centric.

Figure 2 contextualizes our work: all components used in the original prod-
uct line architecture of the software product line of interest (i.e., A, B, C, D
and E) are enriched with assume and guarantee properties. These assumptions
can automatically be calculated by extending the approach presented in [23] to
software product line architectures.

The configuration of the product line architecture (i.e., the way components
are instantiated, selected, and connected) provides context to the assumptions

Assume-Guarantee Testing of Evolving SPL Architectures 97

Fig. 2. The original software product line architecture (PLA) and the evolved one,
including the product architectures (PAs) of their derived products

and guarantees: given a component C with its assume-guarantee pair, its en-
vironment becomes the subarchitecture connected with C. What is challenging
in assume-guarantee reasoning in the context of product line architectures is
that the reasoning is performed on the product line architecture, including all
variation points, rather than on each single concrete product — or better, on
the architecture of each single product. This means that the assumptions will
have to be calculated in a smart way, taking into account the commonalities and
variability among the components.

Once a component evolves, this modification is expected to have an impact on
a number of product architectures, namely each one that contains the modified
component. For instance, consider that component B evolves into B′ (cf. Fig. 2).
Then the assume-guarantee pairs of both B and B′ will have to be checked.

In such a context, our solution envisions a combination of regression testing
and assume-guarantee testing in the context of evolving product line architec-
tures. Conceptually, this requires us to better understand two issues.

First, we need to understand how to extend the assume-guarantee testing ap-
proach proposed in [4] to evolving (product line) architectures. In [4], in fact, the
assume-guarantee pair associated to each component in the architecture is used
to generate component-specific testing traces. These traces, when adequately
evaluated against the appropriate assume-guarantee premise, can demonstrate
whether the composition of components can produce failures. Assuming that a
product (line) architecture has been tested, the challenge becomes how to apply
assume-guarantee reasoning for regression testing of the modified product (line)
architecture (cf. (1) and (2) in Fig. 2).

Second, we need to understand how to use the relationships between a product
line architecture and its derived product architectures (cf. (3) in Fig. 2) in order

98 M.H. ter Beek, H. Muccini, and P. Pelliccione

to be able to apply regression testing to the evolved product architectures (cf. (4)
in Fig. 2).

Summarizing, we envision what we call a double regression testing approach,
in which an evolved product (e.g., PA3′ in Fig. 2) can be tested not only based on
how it regressed from an original product (i.e., PA3 in Fig. 2) but also based on
its relationship with the architecture of its product family (i.e., PLA′ in Fig. 2).

The remainder of this section is organized as follows. In Section 4.1, we present
the assume-guarantee testing approach from [4] adapted and extended to work
with product line architectures, while Section 4.2 describes the strategy followed
to select the product architectures that — once retested — can minimize the
retesting of other product architectures.

4.1 Applying Assume-Guarantee Testing to Evolving Product Line
Architectures

In this section, we describe how to adapt the assume-guarantee testing approach
presented in [4] (and recalled in Section 3) to evolving product line architectures.
We initially explain how to adapt the assume-guarantee testing approach to
evolving architectures, and subsequently how this approach can be extended to
evolving product line architectures.

Assume-Guarantee Testing Applied to Evolving Systems

Consider a system S that is decomposed into n components C1, C2, . . . , Cn. As-
sume that for each Ci, with 1 < i < n, a pair of assumptions Ai and guarantees
Gi is available. As said before, the assumptions can automatically be calculated
by a suitable assumption generation function defined over the considered lan-
guage (e.g., the L∗ learning algorithm defined in [23]).

Now set Ci as the component that is affected by a change and that is substi-
tuted by Cx. According to the approach presented in [21], the changes’ correct-
ness can be checked locally over the changed component(s). In case component
Cx can substitute Ci without consequences (i.e., the assume-guarantee pairs Ax,
Gx and Ai, Gi match), then the properties guaranteed by Ci are also guaranteed
by Cx and no retesting is needed. This case provides an extraordinary advan-
tage with respect to traditional (non compositional) verification approaches,
where local changes have to be checked against the entire system. On the other
hand, when component Cx cannot substitute Ci without consequences (i.e., the
assume-guarantee pairs Ax, Gx and Ai, Gi do not match), then the assume-
guarantee reasoning chain my help understand the effect of a change.

In fact, since the components composing the system S are organized as a chain
of assumptions and guarantees (through which the composition of the system
is realized), assume-guarantee reasoning enables an immediate understanding
of how local changes affect the entire system, without applying traditional im-
pact analysis approaches. Again, this facilitates (and potentially automates) the
regression testing analysis of evolving systems.

Assume-Guarantee Testing of Evolving SPL Architectures 99

Assume-Guarantee Testing Applied to Evolving Product Line
Architectures

In order to extend the assume-guarantee regression testing approach outlined
in Section 4.1 to product line architectures, it becomes particularly important
to consider the commonalities and variability in product line architectures and,
more specifically, normal, optional and variant components. Below we present
in detail the way in which the approach of Section 4.1 has to be reconsidered in
the case of such components.

Normal or Optional Component. When a component C has to be substituted
with a component C′, there are two possible cases:

1. The pair of assumptions and guarantees of C′ matches the assumptions and
guarantees of C and thus no re-verification is needed.

2. The pair of assumptions and guarantees of C′ does not match that of C. This
may impact only a part or, in the worst case, the entire chain. To measure
the impact, we check whether an environment exists for C′ such that the
guarantee of C can be satisfied. If it does, then the chain allows to check
if the component that should match this assumption with its guarantee is
analyzed. This reasoning is iterated until each incongruence in the assume-
guarantee chain has been resolved. If, on the other hand, no such environment
exists for C′, then we have to also analyze the right side of the chain.

Variant Component. Let D be an abstract variant component with n variants
D1, D2, . . . , Dn. When a variant Di evolves in D′

i, a reasoning similar to the
one made for normal and optional components must be performed. In addition,
however, we have to consider that Di was a variant of D and therefore also D′

i

should be a variant ofD. This means that the pair of assumptions and guarantees
of D should hold also for D′

i. If this is indeed the case, then the chain in which
D is involved does not require changes. Otherwise, even the assumptions and
guarantees of D have to be updated and the changes must be propagated by
suitably recalculating all involved assume and guarantee properties in the chain.

Adding or removing a component in a product line architecture requires a
reasoning similar to the one we just outlined for substitution. We can have
an optimal integration or removal, meaning that no assumptions and guarantees
must be recalculated (such as the removal of an optional component). In general,
however, assumptions and guarantees must be recalculated (and in the worst
case, the entire chain must be recalculated).

The next step is to apply the assume-guarantee testing approach. When ap-
plying assume-guarantee testing in the context of evolving product line architec-
tures, the assume-guarantee testing process presented in [4] has to be applied as
follows: we initially apply assume-guarantee reasoning at the level of the product
line architecture in order to analyze the conformance of product architectures to
assume-guarantee properties. Successively, we apply assume-guarantee testing to
check the conformance of the implementation of the product architecture with
respect to the its specification (exactly as proposed in [4]).

100 M.H. ter Beek, H. Muccini, and P. Pelliccione

When the product line architecture evolves, we first need to identify the prod-
uct architectures that should be retested. As we will explain in Section 4.2, it
is important to appropriately select the product architectures to be retested
since the selection strategy can impact the number of tests to be performed on
other product architectures. Once the product architectures to be retested have
been selected, we have to apply the assume-guarantee strategy described above
to reassure the conformance of each such product architecture to the modified
product line architecture (or to evolve the product architecture in accordance to
the changes). Subsequently, we again apply assume-guarantee testing to check
the conformance of the implementation of the product architecture with respect
to its specification (exactly as proposed in [4]). Finally, we need to reselect a
subset of test traces for those components that need to be retested. Existing
test traces for the component implementation have to be modified only when
the assume-guarantee properties of its component specification C have changed.
New test traces have to be added for all the new components added to the
product architecture.

As far as automation is concerned, in this paper we consider both the archi-
tectural models and the implementations to be represented (at different levels of
abstraction) by labeled transition systems. As a result, the Labelled Transition
System Analyser2 as described in [23] becomes an ideal candidate tool to be
extended in order to cope with test traces generation. Such a setting is inherited
from [4] and can be applied when detailed models are constructed through the
refinement of more abstract models.

4.2 Testing Strategy: Selection of Products to Retest

The main strategic decision we need to make in order to apply the proposed
double regression testing approach is the choice of the products that need to
be retested and the test sets. The apparently most useful information we have
at hand is the so-called feature model of the software product line, the original
product (line) architecture and the previous tests. By making intelligent use of
the commonalities and variability inherent to the software product line, we can
select both the products that need retesting and a set of test cases from the
existing ones. Ideally, this allows us to avoid having to retest all products and
to rerun all test cases.

A feature model has become the de facto standard variability model in software
product line engineering. It provides a compact representation of all products
of a product family in terms of their features, and additional constraints among
them. Graphically, features are represented as the nodes of a tree, with the family
as its root and relations between these features representing constraints. The
first three relations below form the tree, while the latter two model additional
constraints:

2 http://www.doc.ic.ac.uk/ltsa/

http://www.doc.ic.ac.uk/ltsa/

Assume-Guarantee Testing of Evolving SPL Architectures 101

Optional features may (but need not) be present only if their parent is present;
Mandatory features are (have to be) present if and only if their parent is

present;
Alternative features are such that only one is present if their parent is present;
Requires is a unidirectional relation indicating that the presence of one feature

requires that of the other;
Excludes is a bidirectional relation indicating the presence of two features to

be mutually exclusive.

From a feature model we can thus extract all necessary information on the rela-
tionships between features, such as which features exclude each other and which
are optional. By analyzing the features that are involved in the component that
has evolved, we can obtain useful information on the impact on other features.
From the product line architecture we know which product architecture contains
the component that has evolved. Combining this information, we can thus select
the product architecture that needs to be retested and appropriately adjust the
test sets. In a similar way, in [27] it is shown that the addition/modification of
so-called conservative and regulative features in a software product line requires
only a subset of the new products to be model checked.

To make this more concrete, consider once more Fig. 2. Component B has
evolved in component B′ and this component is part of three product archi-
tectures, among which PA3. Now we inspect the feature model regarding the
features that are present in B and B′, and in particular regarding their differ-
ence. If, for instance, B′ contains a feature f that B did not, then we need to
inspect the feature model for the features that are related with f . If the feature
model states that the inclusion of f in a product excludes the presence of a fea-
ture g, for instance, then we need to inspect the product architectures of which
B′ is part to see whether or not the other components contain g. Moreover, we
need to add the exclusion of g to the assumptions that B′ makes on the envi-
ronment (in addition to the assumptions inherited from B). Similar reasonings
can easily be imagined in case B′ contains less features than B or exactly the
same features as B. Likewise, a related reasoning applies to the cases in which
the feature model states that f requires a feature g and/or other relationships.

5 Related Work

Software product line testing consists of using product line artifacts (e.g., re-
quirements, architectures, code with variability) or artifacts of products derived
from a software product line, to select test suites enabling the validation of a
software product line and of its derivable products. During software product
line testing at least two main (and opposite) dimensions need to be considered:
testing the core components present at the domain engineering level (i.e., testing
the software product line artifacts) and testing the products derivable from the
product line during application engineering (i.e., testing the product that is part
of a software product line).

102 M.H. ter Beek, H. Muccini, and P. Pelliccione

Testing product lines during domain engineering means testing the software
product line based on all the artifacts common to the product line (e.g., software
product line testing based on domain-level requirements, design, and realized
components). The opposite dimension means testing the single products that
can be obtained during application engineering. At this stage, the main goal is
to test the variety of products obtained by assembling core and domain-specific
components, possibly written in different programming languages, distributed
across the network and executed in various platforms. Other techniques use a
mix of product and product line information in order to derive a testing campaign
(as discussed in the systematic study in [17]).

Several software product line testing approaches have been proposed so far
in the literature, many of which use software product line requirements (with
explicit variability modeling) for selecting requirements-based test suites, while
most of the approaches use models (of the requirements or of the architecture)
defined formally or semi-formally for the derivation of test cases. A problem
common to all approaches is the number of test cases to consider, which obviously
increases exponentially with the number of features of the software product line
(cf. [13] for an overview and comparison of several scalable testing techniques
that aim at reducing the number of products to be tested, among which so-called
combinatorial interaction testing).

Since the focus of this paper is on evolving software product lines, the work
most closely related to our research is that on software product line regression
testing, which aims to minimize the effort to retest a software product line when
components change. The most advanced regression testing approach for software
product line architectures can be found in [16], in which three different software
product line evolution scenarios and a regression testing approach for software
product lines are described. By considering a regression testing strategy RT
that takes as input two versions of the same component, three scenarios can be
defined, as follows:

1. Given a reference architecture RA, once a core component in RA is changed,
a strategy RT(RA,RA′) is needed for retesting the reference architecture;

2. Given a reference architecture RA and a product P derived from it, a strategy
RT(RA,P) can be used to test P under the assumption that RA has already
been tested, taking advantage of the similarities between the RA and P;

3. Given two products P1 and P2, both derived from the same reference ar-
chitecture RA, a strategy RT(P1,P2) can be applied to test P2 under the
assumption that P1 has already been tested, taking advantage of the simi-
larities among products derived from the same RA.

By taking the two versions (the original and its modified one) as the main input
of the RT regression testing approach, a 4-step approach (from regression test-
ing planning to test reporting) is proposed. Architectural specifications, feature
models, the product map, and the feature dependency diagram can be used to
identify portions that need retesting.

The preliminary work of Engström in [28] presents observations coming from
two systematic reviews of the relevant literature; one deals with regression test

Assume-Guarantee Testing of Evolving SPL Architectures 103

selection and the other one with software product line testing. As future work,
Engström plans to investigate (among others) how to perform regression testing
in software product lines.

6 Conclusions and Future Work

The most important concepts characterizing software product line engineering
as a discipline for the development of a diversity of software products or systems
based on the underlying architecture of the product platform, are a product line’s
commonalities and variability (often defined in terms of features whose relations
are expressed in a feature model). Commonalities define what different software
products or systems have in common and guides the production of domain-
specific core components. Variability defines the ability to change or customize
a software product or system (i.e., to distinguish one product from another in
the software product line).

In this paper, we define a testing approach to exploit the commonalities and
variability of the products of a software product line when the software product
line (architecture) is subject to evolution. The idea is to retest only selected
products while inferring the “correct” functioning of other products conforming
to the software product line. Our approach, heavily based on that of [4], makes
use of assume-guarantee reasoning, which is used both to verify the (underlying
architectural) design of the product or system and to drive the testing phase.

While we are obviously aware that this work is quite preliminary, we believe
it can trigger interesting discussions, and for this purpose we are submitting it
to this workshop. As a consequence, there is a long list of future work we would
like to accomplish in the near future.

First, we plan to apply the presented approach to the Arcade Game Maker
Pedagogical Product Line whose specification and code are available online3.

Second, we want to experiment with the presented approach also on other
industrial case studies, like the one presented in Section 2.

Some further real-world industrial case studies can be found through the Ar-
chitecture Support for Testing initiative4 which this research is part of.

Finally, we ideally would like to automate our approach. As said before,
labeled transition systems are currently used for describing the components’
behavior as well as the assume and guarantee properties of a given software
product or system, while in the approach of [4] the aforementioned Labelled
Transition System Analyser is used for automatically generating assumptions.
Our approach, however, would require an extension in order to be able to deal
with product line architectures, for which we intend to move from labeled transi-
tion systems to so-called modal transition systems, which were recognized in [11]
as a useful formal model for describing in a compact way the possible operational
behavior of all products of a product line. As a result, we foresee the need for
an appropriate extension of the Modal Transition System Analyser [29] (a tool

3 http://www.sei.cmu.edu/productlines/ppl/
4 http://www.henrymuccini.com/index.php?pageId=AST

http://www.sei.cmu.edu/productlines/ppl/
http://www.henrymuccini.com/index.php?pageId=AST

104 M.H. ter Beek, H. Muccini, and P. Pelliccione

built on top of the Labelled Transition System Analyser in order to deal with
limited variability) for automatically generating assumptions for product line
architectures, and for coping with test traces generation.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles, and Techniques. Springer (2005)

3. ter Beek, M.H., Muccini, H., Pelliccione, P.: Guaranteeing Correct Evolution of
Software Product Lines: Setting up the Problem. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 100–105. Springer, Heidelberg (2011)

4. Giannakopoulou, D., Pasareanu, C., Blundell, C.: Assume-guarantee testing for
software components. IET Softw. 2(6), 547–562 (2008)

5. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S.: Formal Description of Vari-
ability in Product Families. In: SPLC 2011 Conference Proceedings, pp. 130–139.
IEEE Press (2011)

6. Asirelli, P., ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: Design and Val-
idation of Variability in Product Lines. In: PLEASE 2011 Workshop Proceedings,
pp. 25–30. ACM Press (2011)

7. ter Beek, M.H., Mazzanti, F., Sulova, A.: VMC: A Tool for Product Variability
Analysis. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp.
450–454. Springer, Heidelberg (2012)

8. Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.Y.: Model Checking
Software Product Lines with SNIP. To appear in Int. J. Softw. Tools Technol.
Transfer (2012)

9. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A.: Symbolic model checking of
software product lines. In: ICSE 2011 Conference Proceedings, pp. 321–330. ACM
Press (2011)

10. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: efficient verification of temporal properties in software product
lines. In: ICSE 2010 Conference Proceedings, pp. 335–344. ACM Press (2010)

11. Fischbein, D., Uchitel, S., Braberman, V.A.: A foundation for behavioural con-
formance in software product line architectures. In: ROSATEA 2006 Workshop
Proceedings, pp. 39–48. ACM Press (2006)

12. Lauenroth, K., Pohl, K., Toehning, S.: Model Checking of Domain Artifacts in
Product Line Engineering. In: ASE 2009 Conference Proceedings, pp. 269–280.
IEEE Press (2009)

13. Perrouin, G., Oster, S., Sen, S., Klein, J., Baudry, B., le Traon, Y.: Pairwise Testing
for Software Product Lines: Comparison of Two Approaches. To appear in Software
Qual. J. (2012)

14. Schaefer, I., Gurov, D., Soleimanifard, S.: Compositional Algorithmic Verification
of Software Product Lines. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M.
(eds.) FMCO 2010. LNCS, vol. 6957, pp. 184–203. Springer, Heidelberg (2011)

15. Thüm, T., Schaefer, I., Kuhlemann, M., Apel, S.: Proof Composition for Deductive
Verification of Software Product Lines. In: ICSTW 2011 Conference Proceedings,
pp. 270–277. IEEE Press (2011)

Assume-Guarantee Testing of Evolving SPL Architectures 105

16. da Mota Silveira Neto, P.A.: A Regression Testing Approach for Software Product
Lines Architectures: Selecting an efficient and effective set of test cases. LAP (2010)

17. da Mota Silveira Neto, P.A., do Carmo Machado, I., McGregor, J.D., de Almeida,
E.S., de Lemos Meira, S.R.: A systematic mapping study of software product lines
testing. Inf. Softw. Technol. 53(5), 407–423 (2011)

18. Jones, C.B.: Development Methods for Computer Programs including a Notion of
Interference. PhD thesis, Oxford University (1981)

19. Pnueli, A.: In Transition from Global to Modular Temporal Reasoning about Pro-
grams. In: Logics and Models of Concurrent Systems, pp. 123–144. Springer (1985)

20. Cobleigh, J.M., Avrunin, G.S., Clarke, L.A.: Breaking up is hard to do: An
evaluation of automated assume-guarantee reasoning. ACM Trans. Softw. Eng.
Methodol. 17(2), 1–52 (2008)

21. Inverardi, P., Pelliccione, P., Tivoli, M.: Towards an assume-guarantee theory for
adaptable systems. In: SEAMS 2009 Workshop Proceedings, pp. 106–115 (2009)

22. Cobleigh, J.M., Giannakopoulou, D., Păsăreanu, C.S.: Learning Assumptions for
Compositional Verification. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 331–346. Springer, Heidelberg (2003)

23. Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component Verification with
Automatically Generated Assumptions. Autom. Softw. Eng. 12(3), 297–320 (2005)

24. Engström, E., Runeson, P.: Software product line testing: A systematic mapping
study. Inf. Softw. Technol. 53(1), 2–13 (2011)

25. Kim, C.H.P., Batory, D.S., Khurshid, S.: Reducing combinatorics in testing product
lines. In: AOSD 2011 Conference Proceedings, pp. 57–68. ACM Press (2011)

26. Kim, C.H.P., Bodden, E., Batory, D., Khurshid, S.: Reducing Configurations to
Monitor in a Software Product Line. In: Barringer, H., Falcone, Y., Finkbeiner,
B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV
2010. LNCS, vol. 6418, pp. 285–299. Springer, Heidelberg (2010)

27. Cordy, M., Classen, A., Schobbens, P.Y., Heymans, P., Legay, A.: Managing evo-
lution in software product lines: a model-checking perspective. In: VaMoS 2012
Workshop Proceedings, pp. 183–191. ACM Press (2012)

28. Engström, E.: Regression Test Selection and Product Line System Testing. In:
ICST 2010 Conference Proceedings, pp. 512–515. IEEE Press (2010)

29. D’Ippolito, N., Fischbein, D., Chechik, M., Uchitel, S.: MTSA: The modal tran-
sition system analyser. In: ASE 2008 Conference Proceedings, pp. 475–476. IEEE
Press (2008)

FAS: Introducing a Service

for Avoiding Faults in Composite Services

Koray Gülcü1, Hasan Sözer2, and Barış Aktemur2

1 Vestel Electronics, Manisa, Turkey
koray.gulcu@vestel.com.tr

2 Özyeğin University, İstanbul, Turkey
{hasan.sozer,baris.aktemur}@ozyegin.edu.tr

Abstract. In service-oriented architectures, composite services depend
on a set of partner services to perform the required tasks. These partner
services may become unavailable due to system and/or network faults,
leading to an increased error rate for the composite service. In this pa-
per, we propose an approach to prevent the occurrence of errors that
result from the unavailability of partner services. We introduce an ex-
ternal Web service, FAS (Fault Avoidance Service), to which composite
services can register at will. After registration, FAS periodically checks
the partner links, detects unavailable partner services, and updates the
composite service with available alternatives. Thus, in case of a partner
service error, the composite service will have been updated before invok-
ing the partner service. We provide mathematical analysis regarding the
error rate and the ratio of false positives with respect to the monitoring
frequency of FAS for different partner service availabilities. We also pro-
vide empirical results regarding these metrics based on several tests we
performed using the Amazon Elastic Compute Cloud.

1 Introduction

In service-oriented architectures [14], composite services depend on a set of part-
ner services to perform the required tasks. Some of the partner services can cease
to be available due to system and/or network faults, which have been shown in
recent experimental studies [28] to be very common. These faults result in an
error and possibly a failure of the composite service that relies on the avail-
ability of its partner services. Preferably, the composite service should discover
and utilize alternative services to tolerate such external faults. As such, there
have been several service fault tolerance approaches proposed in the literature
[25,27,17]. However, fault tolerance increases the response time due to the addi-
tional time it takes to detect errors and recover from them1. The consequential

1 If the composite service employs the Active fault tolerance strategy (i.e., connects
to all of the partner services in parallel and proceeds immediately after receiving a
response from a partner), occurrence of a fault in a partner service would not affect
the composite service. However, this is not possible in many cases due to constraints
imposed by unavailable resources or the problem domain.

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 106–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

FAS: Introducing a Service for Avoiding Faults in Composite Services 107

delay can be very significant especially for composite services that utilize many
other services [4]. Therefore, external faults should be avoided (if possible) to
improve the dependability and performance of service-oriented systems. One way
to avoid partner service faults is to execute the service selection process per each
request [3,7] or per each flow of requests [2]. However, a partner service might
be accessed multiple times during the processing of a request and it can cease to
be available at any time. Moreover, executing the service selection process per
each request/flow also introduces an overhead, just like the overhead of error
detection and recovery.

Research efforts so far have mainly focused on providing service brokers [6,7],
middleware [26,13,27] and framework support [10,12,5,17] to compose depend-
able services. In this paper, we propose fault avoidance as a service, whose uti-
lization does not require a particular composite service model. We introduce
an external Web service, FAS(Fault Avoidance Service), to which a compos-
ite service registers the set of its partner services. FAS periodically checks the
availability of the registered partner services and locates the alternatives when
they are unavailable. Here, our goal is not to provide health monitoring or fault
tolerance, for which many approaches have already been proposed [28,27,17]. In-
stead, FAS aims at proactively updating composite services and as such, avoiding
faults. Faults are avoided by updating the links for unavailable partner services
with available alternatives before they are invoked by the composite service. This
reduces the error-rate.

We studied the impact of the monitoring frequency of FAS on the effective-
ness of our approach. In particular, we defined analytical metrics regarding the
error rate and the false positive rate for different monitoring frequencies and
partner service availabilities. We performed several tests using a prototype im-
plementation deployed on the Amazon Elastic Compute Cloud (EC2) [1]. Our
measurements confirmed the accuracy of our analytical metrics, which can be
used for determining an optimal monitoring frequency depending on varying
partner service availabilities.

Contributions of this paper are twofold. First, we propose the implementation
of forecasting, detection and the handling of external faults as external services.
In this way, a set of services can provide dependability support for other services,
i.e., Dependability as a Service (DaaS). To our knowledge, so far this concept has
only been realized in the context of software/service testing (Testing as a Service
- TaaS). Second, we provide analytical metrics regarding the impact of monitor-
ing frequency on the error rate and the false positive rate. We also validate these
metrics with empirical results for various partner service availabilities. We have
not encountered such an analysis in the literature although service monitoring
has been employed in many studies.

Organization: Section 2 presents the problem statement. Section 3 introduces
our solution approach. In Section 4, we introduce analytical metrics and related
mathematical analysis. In Section 5, we present our experimental setup, results
and evaluation. In Section 6, related previous studies are summarized. Finally,
in Section 7 we discuss some future work issues and provide the conclusions.

108 K. Gülcü, H. Sözer, and B. Aktemur

2 Background and the Problem Statement

A typical process in service-oriented systems involves a service requester and a
service provider, which communicate with each other through service requests
[14]. Usually a service provider registers its services at a service broker that
maintains a registry of “available” services [14]; a service requester can look up
and discover these services through the service broker. For instance, a UDDI [23]
service registry is a specialized type of service broker [14]. The service requester
can select any service provider among the ones that are discovered from a registry
service. In some cases, a service provider can request services of several other
service providers to perform a task. Such services are called composite services.
Usually, they are defined by service aggregators as a composition of a number of
partner services. Composition languages (e.g., WS-BPEL [16]) introduce special
structures called partner links, through which partner services can be accessed.

After registering itself to the service registry, or after being discovered by
the composite service, or even after being successfully invoked several times, a
partner service can become unavailable due to system and/or network faults.
In fact, recent experimental studies [28] show that the majority of service invo-
cation failures are caused by these types of faults (connection timeout, service
unavailablity, etc.). As a result, the invocation attempt leads to an error. In turn,
the composite service can i) report a failure to its service requester, or ii) dis-
cover and utilize alternative services to recover from the error. Figure 1 presents
a scenario for the second case. In this scenario, the previously designated partner
service fails and becomes unavailable. Hereby, MTTF and MTTR correspond
to the mean time to failure and the mean time to recover for this service, re-
spectively. After the failure and before the recovery of the partner service, the
composite service makes an invocation without success. The composite service
waits for a timeout duration (ttimeout) to decide whether the partner service
is available or not. Once it is deemed to be unavailable, the composite service
discovers an alternative service from the service registry. The duration of this dis-
covery is tlookup. In case there is already a designated alternative service (might
be hardcoded in the source code or the WS-BPEL description, or it might be
stored in an external cache), tlookup will be negligibly small. In any case, a new
invocation has to be made to the designated/discovered alternative service. The
total time that is necessary to recover from the error is toverhead.

Failure of a partner service is an external fault from the perspective of the
composite service that tries to utilize the failed service. A composite service can
be exposed to many such external faults and for each of these faults, toverhead
will be added to its overall response time as a cost of fault tolerance. The con-
sequential delay can be significant especially for composite services that utilize
many other services [4] to perform their tasks. In the following, we introduce an
approach, where these external faults are avoided to improve the dependability
and performance of composite services.

FAS: Introducing a Service for Avoiding Faults in Composite Services 109

composite
service

partner
service

alternative
service

service
registry

tlookup
ttimeout

toverhead

MTTF

MTTR

Fig. 1. An error recovery scenario

3 The Solution Approach

In our approach, we introduce a Web service for avoiding faults. We name this
service as Fault Avoidance Service (FAS). A composite service first determines
the list of partner services that are going to be utilized, and registers this list
of services to FAS. FAS periodically checks the availability of these services. In
case a partner service becomes unavailable, FAS locates alternatives and updates
the associated partner link of the composite service accordingly. When needed,
the composite service uses the updated partner links during invocation. This
prevents composite service from trying to reach unavailable partner services, as
such reduces the error rate and the overall response time of the process. To be
able to incorporate partner link updates, a registered composite service exposes
a callback method to receive updates from FAS.

Figure 2 depicts our overall approach. FAS stores a partner service list that
is provided by the composite service as the list of services to be monitored. This
list is used by the error detection module to check if the invocation of these
services can cause an error due to system/network faults that make the services
unavailable. The detected errors are reported to the fault handling module. This
module is responsible for preventing the detected errors at the composite service
by updating its partner links associated with the unavailable partner services.
As such, the composite service becomes oblivious to the faults rooted at its part-
ner services. The fault handling module may make use of a service cache and
occasionally the service registry to locate alternative and available services. If
a faulty service becomes available again, FAS updates the composite service’s
partner link back to its original setting. FAS checks the availability of the reg-
istered partner links periodically. In the following section, we analyze the effect
of FAS checking frequency on the error rate and the false positive rate.

4 Mathematical Analysis

In an ideal situation, FAS will immediately detect whenever the partner service
becomes unavailable or available. This way, the composite service can be notified

110 K. Gülcü, H. Sözer, and B. Aktemur

composite
service

partner
services

service
registry

[2] lookup [1] registration

[5] invocation

fault
handling

error
detection

partner
service

list

service
cache

FAS

[3] registration

[4]
availability
 check

 [4.2]
update

[4.1] lookup

KEY: FAS boundary data flow among
the FAS components

one-time actions

latent actionsrepetitive actions

Fig. 2. The overall approach

right away so that no request from the composite service will fail (i.e., no errors)
and no request will be unnecessarily forwarded to the secondary service (i.e.,
no false positives). However, in real life, there will be cases where the composite
service sends its request to the partner service before FAS notices that the service
is down, or the cases where the composite service still uses the secondary service
because FAS did not notice yet that the partner service is back in life. The
error rate and the number of false positives depend on the frequency of requests
sent from the composite service, the frequency of FAS checks, and the chance
of a FAS check occurring right after a partner service status change. Increasing
the frequency of FAS checks would obviously decrease the error rate and false
positives, however, an increased frequency means more load and resource usage.
Being aware of this trade-off is vital for system administrators in adjusting the
checking period for FAS. In this section we provide the mathematical analysis of
the expected values of the error rate and the false positive rate.

Figure 3 shows the important events in a system using FAS. In this scenario,
we assume that the composite service (CS) periodically sends requests at some
frequency C, FAS checks availability of the partner service at a frequency F , and
the partner service becomes unavailable for a certain period of its lifetime TU .
For simplicity, we assume that the requests, checks and partner service up/down
events are instantaneous. The duration between the moment the partner service
becomes unavailable and the time FAS detects this, is the period of errors, be-
cause any request sent from the CS during this period will fail. Similarly, the
duration between the moment the partner service becomes available again and
the time FAS detects this, is the period of false positives, because any request sent
from the CS during this period will unnecessarily be forwarded to the secondary
service. For example, the third CS request in Figure 3 fails because FAS has not
notified the CS for the unavailability of the partner service yet. After the third
FAS check, FAS notifies the CS, the fourth CS request is succesfully forwarded

FAS: Introducing a Service for Avoiding Faults in Composite Services 111

Fig. 3. A scenario showing the important events in a system that uses FAS. This
scenario also illustrates the case where 1/F ≤ TU .

to the secondary service and the potential error is avoided. However, the fifth
request will still be forwarded even though the partner service is back to life,
resulting in a false positive. This is because the fourth FAS check occurs after
the fifth CS request.

The question we look into at this moment is the expected rate of errors that
are not avoided and the false positive rate. The smaller these values are, the
more useful FAS is. To calculate these values, we first list the metrics and units
we use.

– A (%): Availability of the partner service.
– F (1/s): Frequency of FAS checks.
– C (1/s): Frequency of CS requests.
– T (s): Total lifetime of the system.
– TU : Period of unavailability of the partner service, i.e., TU = (1−A)T .
– TE (s): Period of errors.
– TF (s): Period of false positives.
– ER: Error rate, calculated as the ratio of the number of errors to the total

number of requests.
– FP : False positive rate, calculated as the ratio of the number of false positives

to the total number of requests.

Based on these terms, the expected error rate is calculated using the following
formulae:

E[ER]=
Expected number of errors

Total number of requests
=

Expected length of TE

Duration between two CS checks
Total lifetime

Duration between two CS checks

= E[TE]/T

Similarly,
E[FP] = E[TF]/T

E[TE] and E[TF] are calculated according to a case analysis as follows.

– Case 1 : 1/F ≤ TU . In this case there is at least one FAS check that occurs
during the period of unavailability; Figure 3 is a depiction of this case. In

112 K. Gülcü, H. Sözer, and B. Aktemur

up

down
Partner service

FAS checks

CS requests

1 2 3 4 5

1 2

up

down
Partner service

FAS checks

CS requests

1 2 3 4 5

1 2

Fig. 4. Two scenarios for when the duration between two FAS checks is larger than
the period of unavailability (i.e., 1/F > TU). In this case, a FAS check may or may not
occur during unavailability.

this scenario, the minimum value of TE can be 0 (if a FAS check occurs
immediately after the partner service goes down), the maximum value can
be 1/F (if a FAS check occurs immediately before the partner service goes
down). Assuming that the starting time of FAS is uniformly distributed,

E[TE] = (1/F)/2 =
1

2F

Similarly, the minimum value of TF can be 0, the maximum value can be
1/F . Assuming uniform distribution,

E[TF] = (1/F)/2 =
1

2F

– Case 2 : 1/F > TU . In this case, a FAS check may or may not occur during
the period of unavailability. Illustration of both cases is given in Figure 4.
• Case 2.1 : A FAS check occurs. In this case, the value of TE is between 0
and TU ; the value of TF is between 1/F −TU and 1/F . Hence, assuming
uniform distribution,

E[TE] = (TU − 0)/2 = TU/2

E[TF] = (1/F − (1/F − TU))/2 = TU/2

• Case 2.2 : A FAS check does not occur. In this scenario, FAS misses the
unavailability of the partner service; CS is never notified by FAS. Hence,
there are no false positives and all the requests that occur during TU

result in error:
E[TE] = TU E[TF] = 0

Again assuming uniform distribution, Case 2.1 may occur with probability
P2.1 = TU/(1/F) = F TU ; Case 2.2 may occur with probability P2.2 =
1− F TU . Thus, the expected values in Case 2 are calculated as below:

E[TE] = P2.1 × TU/2 + P2.2 × TU

= F T 2
U/2 + TU − F T 2

U

= TU − F T 2
U/2

E[TF] = P2.1 × TU/2 + P2.2 × 0
= F T 2

U/2

FAS: Introducing a Service for Avoiding Faults in Composite Services 113

Fig. 5. Change of expected and maximum values of error and false positive rates with
respect to FAS frequency

Putting the cases together, we have

E[ER] =

{
1/(2FT), if 1/F ≤ TU

(TU − F T 2
U/2)/T, otherwise

E[FP] =

{
1/(2FT), if 1/F ≤ TU

F T 2
U/(2T), otherwise

Note that the expected error and false positive rates are inversely proportional
to T . This means, the advantage of using FAS will be higher in longer-running
systems.

Following a similar case analysis, below are the upperbounds to ER and FP .
The plots of the expected and maximum values are given in Figure 5 for when
T = 200 s and TU = 20 s (i.e., A = 90%).

Max[ER] =

{
1/(FT), if 1/F ≤ TU

TU/T, otherwise

Max[FP] =

{
1/(FT), if 1/F ≤ TU

F T 2
U/T, otherwise

5 Evaluation

We performed several tests to evaluate our approach and analysis. In the fol-
lowing subsections, we discuss the realization of our approach, the experimental
setup and the results.

114 K. Gülcü, H. Sözer, and B. Aktemur

5.1 Realization of the Approach

We developed FAS in Java as a Web service that provides an interface to compos-
ite services for registration at start-up. During registration, composite services
convey two types of information: i) a callback method to be used by FAS to
perform partner link updates, and ii) a list of partner services and methods
to be monitored. FAS uses high-level (service-level) transactions to monitor the
partner services. This is to guarantee that the target Web service is functional
and reachable. Other, low-level mechanisms (e.g., ping requests) can be used for
confirming the availability of a system, however, this does not necessarily imply
the functional availability of services. For sending updates, FAS uses nonblock-
ing Web service invocation. Hence, in principle, FAS should be able to handle
multiple clients simultaneously without significant delay.

The utilization of FAS does not require the use of a platform/middleware
or any composite service model. However, composite services should have i)
a FAS registration process as part of their initialization, and ii) an interface
implemented for receiving partner link updates. In accordance with these two
requirements, we developed a composite service in Java. We did not use WS-
BPEL because it does not directly support stateful (i.e., persistent and global)
data. Therefore, partner link updates in a FAS instance cannot be reflected to the
other, subsequently created instances. In principle, our approach is agnostic to
the composite service implementation and the employed composition language.
It is also possible to utilize WS-BPEL, for instance, using the extension proposed
by Wu et al. [24].

We also implemented a partner service and replicated it. If FAS updates the
partner link before the (unavailable) first replica is invoked, composite service
sends the request directly to the second replica. If not, the composite service
tries to invoke the first replica. In case of an error, the second replica is invoked
and the received response is returned to the client.

5.2 Experimental Setup

We used Axis v2.0 [20] and Tomcat v7.0 [22] to develop and deploy Web services
in our experiments. We globally distributed these services using the Amazon
EC2 [1]. We utilized micro instances [1] and used identical machines, each of
which has one CPU core with one EC2 Compute Unit [1], 613 MB memory and
8 GB of storage. All instances were running 32-bit Linux operating system. We
deployed a composite service and two replicas of our partner service. Partner
service replicas were deployed in Ireland and Tokyo, while composite service was
in North California and FAS was in Sao Paulo, Brazil. Tests were conducted and
controlled with a PC located in Istanbul, Turkey. The PC had Intel(R) Core 2
Duo P8600 at 2.40 Ghz with 4G RAM. As the client to the composite service,
JMeter v2.4 [21] was used for executing different test scenarios and collecting
measurements automatically.

Throughout our tests, we varied availability (A) only for the first replica of
the partner service. The second replica is configured to be 100% available for

FAS: Introducing a Service for Avoiding Faults in Composite Services 115

all tests. Hence, it is assumed that an available replica always exists in the
environment.

We varied A between 60% and 95%, whereas F was varied between 0.02 (1/s)
and 0.5 (1/s). We performed tests for combinations of these parameters. For
each combination, the tests were repeated 20 times; ER and FP were calculated
by taking the average of measurements made over these repetitions. During a
test, the client sends 100 requests to the composite service at a frequency of
0.25 (1/s). Hence, for each parameter combination, 2000 requests were sent in
total for calculating the ER and FP . The results are presented in the following
subsection.

5.3 Results and Discussion

In this subsection, we present and discuss the results of our tests for different
parameter settings. In Figure 6, E[ER] and Max[ER] are plotted together with
the measured error rate (Measured[ER]) with respect to F . Results are shown
when A is 60%, 70%, 80%, 85%, 90%, 92%, 94% and 95%. Figure 7 shows E[FP],
Max[FP], and the measured false positive rate (Measured[FP]) for the same
range and settings of F and A.

It can be seen from the figures that E[ER] andMax[ER] values are consistent
with respect to the measured error rates. Likewise, the measured false positive
rates confirm the accuracy of our mathematical analysis regarding E[FP] and
Max[FP]. We could also observe the difference in the change of ER and FP
depending on if 1/F ≤ TU as shown in Figure 5. See for instance the change
of Measured[FP] in Figure 7(h) when F is just less than 0.05. As an inter-
esting observation, we noticed that in many cases Measured[ER] converges to
Max[ER] as F increases. We could not observe the same trend consistently for
Measured[FP].

The rate of change of ER and FP with respect to F provides us a trade-off
curve, which can be utilized for selecting an (pareto-)optimal F for FAS. For
our experimental setup and parameter settings for instance, F = 0.1 could be
a reasonable trade-off point. In general, we can calculate F depending on the
value of A and how much we decide to compromise between ER and the load on
FAS. The partial derivative of the E[ER] function with respect to F defines the
rate of change of E[ER] with respect to F . If we want to balance the objectives
of minimizing ER and minimizing the load on FAS for instance, we can find the
value of F for which this rate of change (i.e., slope) is -1, e.g., for 1/F ≤ TU ,
E[ER] = 1/2FT ⇒ ∂(1/2FT)/∂F = −1/2TF 2 = −1 ⇒ F =

√
1/2T .

5.4 Threats to Validity

In our approach, we assume the availability of at least one replica of the partner
service. Accordingly, we deployed a partner service replica with 100% availability
in our experimental setup. There might be cases where i) there is no alterna-
tive partner service, ii) the alternative service is also unavailable, or iii) the

116 K. Gülcü, H. Sözer, and B. Aktemur

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(a) A = 60%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(b) A = 70%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(c) A = 80%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(d) A = 85%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(e) A = 90%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(f) A = 92%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(g) A = 94%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[ER]
Max[ER]

E[ER]

(h) A = 95%

Fig. 6. E[ER], Max[ER], and the measured error rate (Measured[ER]) with respect
to F , when A is 60%, 70%, 80%, 85%, 90%, 92%, 94% and 95%

FAS: Introducing a Service for Avoiding Faults in Composite Services 117

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(a) A = 60%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(b) A = 70%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(c) A = 80%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(d) A = 85%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(e) A = 90%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(f) A = 92%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(g) A = 94%

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10
 11
 12
 13

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

P
er

ce
nt

ag
e

(%
)

FAS Frequency (1/s)

Measured[FP]
Max[FP]

E[FP]

(h) A = 95%

Fig. 7. E[FP], Max[FP], and the measured false positive rate (Measured[FP]) with
respect to F , when A is 60%, 70%, 80%, 85%, 90%, 92%, 94% and 95%

118 K. Gülcü, H. Sözer, and B. Aktemur

alternative service cannot be directly substituted due to stateful properties [13].
We ignored these cases in this work.

The availability of partner services are being monitored from the perspective
of FAS, which might possibly mismatch the experience of the composite service.
Complementary mediators [9] can be incorporated to monitor the dependability
characteristics of partner services from composite services’ perspectives.

6 Related Work

So far, research efforts for improving the dependability of service-oriented sys-
tems have mainly focused on service fault tolerance [17,12,10]. We focus on fault
avoidance instead. An analysis of the literature also reveals that dependability
improvement has been mainly facilitated by means of frameworks [15,12], archi-
tectural methods [8,4], reliable service connectors [18], proxies [11] and service
dispatchers [19]. We propose implementing a standalone service to which other
services can register for improving their dependability.

There exist service brokers and architectural frameworks [6] that are responsi-
ble for the creation/composition as well as the adaptation of a composite service.
As an advantage of this approach, structural changes (i.e., architecture selection)
can also be applied to the composite service [6]. However, such approaches are
inherently coupled with the adapted composite service based on a composite ser-
vice model. FAS does not change the structure and the behavior of the composite
service and it does not assume any composite service model.

In this work, we assumed the existence of alternative services that can be
directly substituted with unavailable services. However, dynamic service substi-
tution can be problematic in case of stateful services. As a complementary work,
SIROCO middleware [13] was introduced to tackle this problem by enabling
semantic-based service substitution.

Zheng and Lyu [27] introduce a middleware for composite services to keep
track of the QoS information regarding the utilized services. This information
is updated at each use of a service and sent occasionally to a common server.
The collected QoS information is used for dynamically selecting the most appro-
priate fault tolerance strategy in case of an error. Empirical results show that
their dynamic selection approach performs better than sticking to a statically
determined strategy. The differences with their approach to ours are: i) They
use a middleware; we propose implementing a standalone service to which other
services can register. ii) Our service actively monitors the replicas. Their mon-
itor is passive; it only stores data. iii) We update the user’s list of preferred
replicas, whereas they update the user’s preferred fault tolerance strategy.

7 Conclusions and Future Work

We introduced an approach for avoiding faults during the invocation of partner
services and as such, preventing errors in composite services. We developed FAS,
an external fault avoidance service that periodically checks the availability of

FAS: Introducing a Service for Avoiding Faults in Composite Services 119

a set of partner services that are registered by a composite service. If one of
the partner services ceases to be available, FAS locates alternative services and
sends an update to the corresponding composite service, before the faulty partner
service is invoked.

We defined analytical metrics for the error rate and the ratio of false positives
for different monitoring frequencies of FAS and partner service availabilities. We
performed several tests using a prototype implementation deployed on the Ama-
zon EC2. Our measurements confirmed the accuracy of our analytical metrics,
which can be used for configuring FAS based on varying partner service avail-
abilities. Our analysis also revealed that FAS is expected to be more effective in
reducing the error rate for long-running systems.

In the future, we are planning to enhance FAS so that it can adapt the service
checking period at runtime, based on the monitored failure/usage frequencies
and response times. We will evaluate the effectiveness of adaptive FAS in the
context of an industrial case study for improving the dependability of Smart
TVs that utilize many external services.

Acknowledgments. This work is supported by the joint grant of Vestel
Electronics and the Turkish Ministry of Science, Industry and Technology
(00995.STZ.2011-2). The authors also thank Dr. Ali Özer Ercan for his help
in the derivation of analytical metrics.

References

1. Amazon.com: Elastic Compute Cloud (EC2) (2012), http://aws.amazon.com/ec2
2. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web services

based processes. Journal of Systems and Software 83(8), 1512–1523 (2010)
3. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE

Transactions on Software Engineering 33, 369–384 (2007)
4. Baresi, L., Ghezzi, C.: Towards self-healing service compositions. In: Proceedings

of the 1st Conference on the Principles of Software Engineering, pp. 27–46 (2004)
5. Canfora, G., Penta, M.D., Esposito, R., Villani, M.: A framework for QoS-aware

binding and re-binding of composite web services. Journal of Systems and Soft-
ware 81(10), 1754–1769 (2008)

6. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Towards
Self-adaptation for Dependable Service-Oriented Systems. In: de Lemos, R., Fabre,
J.-C., Gacek, C., Gadducci, F., ter Beek, M. (eds.) Architecting Dependable Sys-
tems VI. LNCS, vol. 5835, pp. 24–48. Springer, Heidelberg (2009)

7. Cardellini, V., Valerio, V.D., Grassi, V., Iannucci, S., Presti, F.L.: A new approach
to QoS driven service selection in service oriented architectures. In: Proceedings of
the 6th IEEE International Symposium on Service Oriented System Engineering,
pp. 102–113 (2011)

8. Chen, I., Ni, G., Kuo, C., Lin, C.Y.: A BPEL-Based fault-handling architecture
for telecom operation support systems. Journal of Advanced Computational Intel-
ligence and Intelligent Informatics 14(5), 523–530 (2010)

9. Chen, Y., Romanovsky, A.: WS-Mediator for improving the dependability of web
services integration. Journal of IT Professionals 10(3), 29–35 (2008)

http://aws.amazon.com/ec2

120 K. Gülcü, H. Sözer, and B. Aktemur

10. Dobson, G.: Using WS-BPEL to implement software fault tolerance for Web ser-
vices. In: Proceedings of the 32nd EUROMICRO Conference on Software Engi-
neering and Advanced Applications, pp. 126–133 (2006)

11. Ezenwoye, O., Sadjadi, S.: A proxy-based approach to enhancing the autonomic
behavior in composite services. Journal of Networks 3(5), 42–53 (2008)

12. Fang, C.L., Liang, D., Lin, F., Lin, C.C.: Fault tolerant Web services. Journal of
System Architure 53(1), 21–38 (2007)

13. Fredj, M., Georgantas, N., Issarny, V., Zarras, A.: Dynamic service substitution in
service-oriented architectures. In: Proceedings of the IEEE Congress on Services,
pp. 101–104 (2008)

14. Georgakopoulos, D., Papazoglu, M. (eds.): Service-Oriented Computing. MIT Press
(2009)

15. Gorbenko, A., Iraj, E.K., Kharchenko, V.S., Mikhaylichenko, A.: Exception anal-
ysis in service-oriented architecture. In: Information Systems Technology and its
Applications, pp. 228–233 (2007)

16. Jordan, D., Evdemon, J.: Web services business process execution language ver-
sion 2.0 (2009), http://docs.oasis-open.org/wsbpel/2.0/serviceref, OASIS
Standard

17. Liu, A., Li, Q., Huang, L., Xiao, M.: FACTS: A framework for fault-tolerant com-
position of transactional web services. IEEE Transactions on Services Comput-
ing 3(1), 46–59 (2010)

18. Salatge, N., Fabre, N., Fault, J.C.: Fault tolerance connectors for unreliable Web
services. In: Proceedings of the 37th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, pp. 51–60 (2007)

19. Santos, G., Lung, L., Montez, C.: FTWeb: A fault tolerant infrastructure for Web
services. In: Proceedings of the 9th IEEE International Conference on Enterprise
Computing, pp. 95–105 (2005)

20. The Apache Software Foundation: Axis (2012), http://axis.apache.org/
21. The Apache Software Foundation: JMeter (2012), http://jmeter.apache.org/
22. The Apache Software Foundation: Tomcat (2012), http://tomcat.apache.org/
23. Tsalgatidou, A., Pilioura, T.: An overview of standards and related technology in

Web services. Distributed Parallel Databases 12(2), 135–162 (2002)
24. Wu, G., Wei, J., Huang, T.: Flexible pattern monitoring for WS-BPEL through

stateful aspect extension. In: Proceedings of the IEEE International Conference on
Web Services, pp. 577–584 (2008)

25. Zarras, A., Fredj, M., Georgantas, N., Issarny, V.: Engineering Reconfigurable Dis-
tributed Software Systems: Issues Arising for Pervasive Computing. In: Butler,
M., Jones, C.B., Romanovsky, A., Troubitsyna, E. (eds.) Fault-Tolerant Systems.
LNCS, vol. 4157, pp. 364–386. Springer, Heidelberg (2006)

26. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QoS-
aware middleware for web services composition. IEEE Transactions on Software
Engineering 30(5), 311–327 (2004)

27. Zheng, Z., Lyu, M.: An adaptive QoS aware fault tolerance strategy for web ser-
vices. Journal of Empirical Software Engineering 15(4), 323–345 (2010)

28. Zheng, Z., Zhang, Y., Lyu, M.: Distributed QoS evaluation for real-world web
services. In: Proceedings of the IEEE International Conference on Web Services,
pp. 83–90 (2010)

http://docs.oasis-open.org/wsbpel/2.0/serviceref
http://axis.apache.org/
http://jmeter.apache.org/
http://tomcat.apache.org/

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 121–133, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Dependability of Service-Oriented Computing:
Time-Probabilistic Failure Modelling

Anatoliy Gorbenko1, Alexander Romanovsky2
Vyacheslav Kharchenko1, and Olga Tarasyuk1

1 Department of Computer Systems and Networks (503),
National Aerospace University, Kharkiv, Ukraine

{A.Gorbenko,O.Tarasyuk}@csac.khai.edu,
V.Kharchenko@khai.edu,

2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
Alexander.Romanovsky@ncl.ac.uk

Abstract. In the paper we discuss a failure and servicing model of software ap-
plications that employ the service-oriented paradigm for defining cooperation
with clients. The model takes into account a time-probabilistic relationship be-
tween different servicing outcomes and failures modes. We put forward a set of
measures for estimating dependability of service provisioning from the client’s
viewpoint and present analytical models to be used for the assessment of the
mean servicing and waiting times depending on client’s timeout settings.

Keywords: Service oriented computing, dependability, failure modelling,
servicing time, optimal timeout settings.

1 Introduction

The Service-Oriented Architecture (SOA) supports rapid, low-cost and seamless
composition of globally distributed applications, and enables effective interoperability
in a loosely-coupled heterogeneous environment. Services are autonomous, platform-
independent computational entities that can be dynamically discovered and integrated
into a single service to be offered to the users or, in turn, used as a building block in
further composition. The essential principles of SOA and services provisioning form
the foundation for various modern and emerging IT technologies, such as service-
oriented and cloud computing, SaaS (software as a service), etc.

The service-oriented paradigm of cooperation between clients and providers is now
widely used in e-science, critical infrastructures and business-critical systems. Fail-
ures of such applications can affect people’s lives and businesses (see, for example,
the well-known incident at the London Stock Exchange on 8 Sept. 2008 or a spate of
recent service outages on the Amazon S3 and Google cloud platforms). Thus, ensur-
ing dependability of SOA-based systems is a must, as well as a challenge.

122 A. Gorbenko et al.

Although the SOA and web services technologies have seen significantly improved
in recent times, we believe that they have not yet revealed their full potential. In
particular, SOA is still in its infancy when it comes to ensuring dependability of large-
scale dynamically composed service-oriented systems involving multiple independent
web services. Dependability enhancing technologies will thus be essential in support-
ing mission and business critical application, for personal use or in enterprise, gov-
ernment or military.

There is significant on-going research devoted to dependability and performance in
service-oriented computing [1]. Recent related work (e.g. [2, 3, 4]) introduced several
approaches to incorporating fault tolerance techniques (including voting, backward
and forward error recovery mechanisms and replication techniques) into the web ser-
vice architectures. There has been work on fault analysis, dependability and perform-
ance evaluation and experimental measurements, e.g. [5, 6, 7]. However, coming
from dispersed areas of research, the work addresses individual issues but do not yet
advance them in unison or offer general solutions. Very often the researchers use
simple and, hence, not realistic failure models or do not take into account the interde-
pendency between dependability and performance of service-oriented solutions that is
in the very nature of such distributed interacting systems.

To be more effective fault-tolerant techniques incorporated into the service-
oriented architecture should distinguish between evident failures of different types,
like application exceptions, communication errors or timeouts and should be capable
to minimize the probability of non-evident application errors.

Experimental studies [10, 12] show that response time of web services very often can
exceed ones minimal value in more than 10 or even 20 times. Moreover, sometimes
clients await for the response from a web service for more than two hours instead of
reporting an exception or resending a request. Therefore, right timeout setting is a key
means improving performance of many distributed systems including web services.

Besides most of the fault tolerance and error recovery mechanisms at the applica-
tion level also depend on timeout settings [1-4]. However, the existing work mainly
focuses on optimizing timeouts used by communication protocols like TCP and HTTP
without examining how timeout settings at the application level affect both perfor-
mance and dependability of web services.

This is why the purpose of the paper is (i) to develop an advanced failure model for
the service-oriented architecture taking into account a time-probabilistic interconnec-
tion between different servicing outcomes and (ii) to investigate analytical models
assessing the average servicing and waiting times under certain timeout in case of
probabilistic uncertainty of web services performance characteristics.

The rest of the paper is organised as follows. In Section 2 we describe the proposed
failure and servicing model capturing the fundamental principles of the service-
oriented architecture from the client’s point of view. Section 3 proposes analytical
models aimed at estimation of average servicing and waiting time depending on time-
out settings in case of known response time probability density function. In Section 4
we present a numeric example of using the proposed analytical solution.

 Dependability of Service-Oriented Computing: Time-Probabilistic Failure Modelling 123

2 SOA Failure and Servicing Model

2.1 Servicing Outcomes and Web Services Failures

Web services as any other complex software may contain faults which may manifest
themselves in operation. On every request the web service may succeed, i.e. return a
correct response, or fail, i.e. return an incorrect response or not return any response at
all within waiting time. Such failure behaviour of the web services is characterised by
the probability of failure on demand (pfd). This probability can be statistically meas-
ured as a ratio between r failures observed in n demands [8]. It can vary between the
environments and the contexts (operational profiles) in which a web service is used.

The various factors, which affect the pfd may be unknown with certainty, thus the
value of pfd may be uncertain as well. This uncertainty can be captured by a probabil-
ity density series or probability distribution, built by aggregating usage experience of
different clients. The response returned to the client by a web service may be of sev-
eral types:

1. correct result;
2. evident error – an error that needs no special means to be detected. It concerns ex-

ception messages of different types reported to the client and notifying him about
denial of the requested service for some reason;

3. non-evident (hidden) error – an error that can be detected only by using a multiver-
sioning at the application level (e.g. diversity of web services used).

However, the distributed nature of the service-oriented architectural model does not
guarantee that the client receives a response from the web service within the finite
time. If this happens we face so-called timing failures when the response is received
too late or is not received at all (see Table 1). Thus, the known dependability defini-
tion [9] should be extended for service oriented systems as the “ability to deliver ser-
vice within the expected time that can justifiably be trusted”.

Table 1. Description of possible servicing outcomes

Result’s
correctness

Time
of receiving

Servicing
outcome

Symbolic
notation

Correct result

Until timeout

Correct servicing OK

Non-evident
(hidden) error

Hidden error HE

Exception message Evident error EX

Correct result

After timeout
No response during
timeout (silence)

TO
Non-evident
(hidden) error

Exception message

124 A. Gorbenko et al.

In the Figure 1 we adopt the failure model introduced by Avizienis, et al. in [9] to
the distributed nature of service-oriented systems. The model distinguishes between
the two main failure domains: (i) timing failures when the duration of the response
delivered to the client exceeds the specified waiting time – the application timeout
(i.e. the service is delivered too late), and (ii) content failures when the content (value)
of the response delivered to the client deviates from implementing the system function.

Probabilities pok, phe and pex are conditional probabilities. They are conditioned on
the arrival of some response within the timeout. Probabilities pex and phe refer to fail-
ure modes that in the Avizienis’s classification correspond to the detectability view-
point, where they are classified as: signaled and unsignaled failures, respectively.

Fig. 1. Service failure modes from the failure domain viewpoint

2.2 Simple and Complex Dependability Measures

Four servicing outcomes form the set of collectively exhaustive events characterized
by probabilities:

• pok – probability of correct servicing within the specified waiting time (i.e. timeout);
• phe – probability of non-evident incorrect servicing within the waiting time;
• pex – probability of evident incorrect servicing (i.e. exception message reporting)

within the specified waiting time;
• pto – probability of timeout.

These probabilities can be combined together to form complex dependability meas-
ures characterizing different dependability attributes of a web service or service-
oriented system from the client’s point of view (see Table 2).

 Dependability of Service-Oriented Computing: Time-Probabilistic Failure Modelling 125

We also introduce the following two measures to estimate the performance of a
web service:

• tav_srv – average servicing time (average time estimated for those invocations when
a response of any type (OK, HE or EX) was received by a client until the timeout);

• tav_wait – average waiting time (average time estimated for all invocations including
those when the timeouts were triggered). It is obvious that tav_srv ≤ tav_wait.

Table 2. Complex dependability measures for SOA and Web Services

Dependability
attribute

Measure

Accessibility
(readiness for the
response within
the waiting time)

1– (pex-con + pto),
where pex-con is the probability of getting an exception message
like “TCP connection times out” testifying to inability to es-
tablish a network connection with the remote host on the
specified TCP port (pex-con is a part of pex); the closer to 1 the
better

Availability
(readiness for the
servicing within
the waiting time)

to

ex

exheok

ex

p

p

ppp

p

−
−=

++
−

1
11 ,

i.e. the probability of getting a response until timeout exclud-
ing evident errors, i.e. {OK, HE}; the closer to 1 the better

Trustworthiness
(assurance of a
correct service
within the
waiting time)

to

he

exheok

he

p

p

ppp

p

−
−=

++
−

1
11 or

heok

he

pp

p

+
−1 ,

i.e. the probability that a web service returns a correct or evi-
dent incorrect response (i.e. a signalled failure), given that a
response was received before the timeout; the closer to 1 the
better

Usually, clients of a remote service have limited possibility to measure its dependabil-
ity attributes. Most of the time it is only possible to count how many times a response
from a web service is not received before the application timeout or how many times
exceptional messages of different type are returned instead of the awaited response.

However, as it was shown in [13], typically the exception message does not pro-
vide enough information to understand what exactly happened and to distinguish for
sure between numerous client, network or service failures. In table 2 we discuss sev-
eral dependability attributes that can be practically used by a client of a service-
oriented systems among those, provided in [9]:

• Accessibility – readiness of a service for the response of any type, i.e. {OK, HE, EX},
given that a response is received by a client before the timeout. To account the ac-
cessibility attribute client should take out the consideration a client-side exception
caused by inability to establish a connection with a web service.

126 A. Gorbenko et al.

• Availability – readiness for the servicing within the waiting time. In the contrast to
the classical definition of availability [9] we count here both correct and incorrect
servicing (i.e. unsignalled failures) as a client usually cannot distinguish between
them without applying application-specific failure detection techniques.

• Trustworthiness – assurance of a correct service within the waiting time. This at-
tribute can be measured by applying the voting procedure making use of the re-
dundancy of functionally-equivalent diverse web services provided by different
vendors. A more sensitive measure that can be used in addition to the one already
presented in Table 2 is the probability of getting an incorrect unsignaled response,
given that a response was received (the closer to 0 the better).

2.3 Failure Model Assumptions and Properties

Probabilities pok, phe, pex and pto are interconnected and their values depend on the time-
out settings used by a client. In our failure model we use the following assumption cap-
turing the time-probabilistic dependence between different servicing outcomes.

Assumption 1. The sum of probabilities of all servicing outcomes {OK, HE, EX, TO}
is equal to one as they form the set of collectively exhaustive events:
pok + phe + pex + pto = 1

Assumption 2. Servicing time is a random variable with the known probability distri-
bution function ft(t) and certain parameters. This function and values of its parameters
can be determined by hypothesis checking using experimental data in a way, de-
scribed in [10].

Assumption 3. Time during which a client waits for the response is limited by the
timeout parameter.

Assumption 3. Probabilities of the correct (OK), evident and non-evident incorrect
(EX and HE) servicing does not depend on the time when the response was received
by a client. This assumption can be used if we take out of consideration some specific
exceptions mainly caused by networking errors and failures. For example, usually
exceptions arisen 21 seconds after a web service has been invoked by a Windows
client are caused by inability of client software to establish a TCP connection with the
remote host. This time depends on client’s OS settings. For example, for Linux it is
set at about 180 seconds by default.

The interdependency between probabilities of different servicing outcomes under
the specified assumptions is shown in Fig. 2. Based on the analysis of Fig. 1 and tak-
ing into account the assumptions used we can formulate the set of properties of the
proposed web services failure model.

Property 1. Value of the probability of timeout depends on the application timeout
used by a client: pto = f(timeout). The bigger timeout value the bigger the probability
of getting a response (the less the probability of timeout):

∀ timeout1, timeout2: timeout1 > timeout2 dt(t)fdt(t)f
timeout

0
t

timeout

0
t >

21

.

 Dependability of Service-Oriented Computing: Time-Probabilistic Failure Modelling 127

()
∞

=
timeout

t
to tfp

∞

Fig. 2. Time-probabilistic interconnection between different servicing outcomes

Property 2. Changing of timeout value causes changing the probability of timeout
and, hence changing (redistribution) values of pok, phe, pex as long as the sum of all
probabilities must be equal to one. Hence, pok, phe, pex are functions of a timeout value.

Property 3. Probability of timeout is equal to the integral of ft(t) over the interval
[timeout…∞]:

 dt(t)fdt(t)fp
timeout

0
t

timeout
t

to −==
∞

1 . (1)

Property 4. The sum of probabilities of getting a correct, evident and non-evident erro-
neous result pok’, phe’, pex’ after a timeout is equal to the probability of a timeout pto:

otex'he'ok' pppp =++ .

Property 5. The sum of probabilities of getting a correct, evident and non-evident
erroneous result before (pok, phe, pex) and after (pok’, phe’, pex’) the specified timeout is
equal to 1:

1)()()(=+++++ ex'exhe'heok'ok pppppp .

We hold properties 4 and 5 under the hypothesis that each computation eventually
terminates. In practice, the client can face rare cases of a never-ending computation
due to some network or service failures. If we use the TCP ‘keep-alive’ option these
connections will be automatically terminate after two hours with the exceptional mes-
sage “Connection timed out” returned to the client.

Property 6. There is a constant ratio between the corresponding probabilities of get-
ting a correct, evident and non-evident erroneous result before (pok, phe, pex) and after
(pok’, phe’, pex’) the specified timeout:

128 A. Gorbenko et al.

ex'

ex

he'

he

ok'

ok

p

p

p

p

p

p == .

Property 7. Pairwise sums of the corresponding probabilities of getting a correct, evident
and non-evident erroneous result before (pok, phe, pex) and after (pok’, phe’, pex’) the specified
timeout are equal to the constant values independently of the timeout value:

∞=+ okokok ppp)'(, ∞=+ hehehe ppp)'(, ∞=+ exexex ppp)'(,

where ∞okp , ∞exp , ∞hep are the probabilities of getting a correct, evident and non-

evident erroneous result with the unlimited waiting time, i.e. when timeout →∞.

Property 8. There are analytic dependencies between probabilities of getting a correct,
evident and non-evident erroneous result before (pok, phe, pex) and after (pok’, phe’, pex’)
the specified timeout and a probability of this timeout triggered, i.e. pto:

∞⋅−= oktook ppp)1(, ∞⋅−= hetohe ppp)1(, ∞⋅−= extoex ppp)1(.

Taking into account the third property we can define:

 dt(t)fpp
timeout

0
t

okok ⋅= ∞ (2)

 dt(t)fpp
timeout

0
t

hehe ⋅= ∞ (3)

 dt(t)fpp
timeout

0
t

exex ⋅= ∞ (4)

3 Average Servicing and Waiting Time Assessment Models

The average servicing time can be estimated by using a well-known equation for the
mean value of the independent variable defined by its probability density function:

∞

⋅==
0

)(][dttftTEt t
av .

The expectation of a probability density function ft(t) truncated from the right by a
timeout can be defined as [11]:

)(

)(

)(

)(

][0

0

0_

timeouttF

dttft

dttf

dttft

TEt
t

timeout

t

timeout

t

timeout

t
srvtruncav_srv

≤

⋅

=

⋅

==

. (5)

 Dependability of Service-Oriented Computing: Time-Probabilistic Failure Modelling 129

However, equation (5) is correct only if we are interested in the average servicing
time tav_srv of those invocations in which a response of any type (OK, HE or EX) is
received by a client before the specified timeout.

The average waiting time tav_wait estimated for all invocations including those when
a timeout is triggered can be defined as a sum of the average servicing time tav_srv
under the specified timeout and a product of the timeout value and the probability of
timeout:

().)(1)(

)()(][

0

0

__

timeouttFtimeoutdttft

dttftimeoutdttftTEt

t

timeout

t

timeout
t

timeout

t
waittruncwaitav

≤−⋅+⋅=

=⋅+⋅==

∞

. (6)

This is due to the fact that the waiting time for those invocations for which a timeout
is triggered is equal to the timeout value. Hence, the weight of a tail of the probability
density function ft(t) truncated by the timeout is concentrated at the truncation border
(see Fig. 3).

Fig. 3. Concentration of the mass of a probability of a timeout at the truncation border

4 An Example of Average Servicing and Waiting Times
Estimation

This section presents an example of estimating the average servicing time tav_srv and
the average waiting time tav_wait in case of the exponential distribution of a web service
response time. By applying equations (4) and (5) we have:

 ()timeout-

timeouttimeout-

timeout

timeout
t

srvav

e

1-etimeout+e
-

e

et

timeoutt ⋅μ

⋅μ⋅μ

⋅μ−

⋅μ−

−⋅μ
⋅⋅μ=

−

⋅μ⋅

=

11
)(0_ , (7)

130 A. Gorbenko et al.

μ

=⋅+⋅μ⋅=
⋅μ

⋅μ−⋅μ−
1-e

-etimeoutettimeoutt
timeout-

timeout
timeout

twaitav

0

_)(. (8)

Corresponding curves of tav_wait and tav_srv, as well as pto depending on the timeout
value are shown on Fig. 4 and Fig. 5. The curves were plot using parameter μ which
is equal to 0.01 that corresponds to 100 ms of average response time in case of the
unlimited waiting time. Figures 4 and 5 show that, actually, there is no point in wait-
ing for a response from a web service for more than 600 ms as the probability of
timeouting by that time is less than 2,47⋅10-3. At the same time an average servicing
time in this case is equal to 98.5 ms. If the response time of a web service is subject to
one of the heavy-tailed distributions, which is more realistic in practice, the profit will
be more significant.

Fig. 4. Curves of the average servicing time tav_srv and average waiting time tav_wait depending
on timeout value in case of the exponential distribution of the random response time with the
parameter μ=0.01

Finally, we can solve the equation (1) relatively to timeout and then put the result into
(5) and (6). This will allow us to resolve a trade-off problem between the dependability
and performance of a particular Web service. In our example (in case of exponential dis-
tribution of the Web service response time) the timeout can be expressed by the formula:

 timeoutt-

timeout

to edtetimeoutp ⋅μ−⋅μ
∞

=⋅μ=)(=>
μ

=)(
)(

to
to p nl

-ptimeout . (9)

 Dependability of Service-Oriented Computing: Time-Probabilistic Failure Modelling 131

Putting it into (7) and (8) we can get equations estimating tav_wait and tav_srv depending
on specified probability of timeout pto. This dependency, shown in Fig. 6, can be used
to setup application timeout and to assess performance of a web-service (using tav_wait
and tav_srv measures) with regards to dependability requirements expressed in form of
maximal allowed value of pto.

Fig. 5. Curve of the probability of timeout pto depending on timeout value in case of the expo-
nential distribution of the random response time with the parameter μ=0.01

Fig. 6. Curves of the average servicing time tav_srv and average waiting time tav_wait depending
on the probability of timeouting pto in case of the exponential distribution of the random re-
sponse time with the parameter μ=0.01

132 A. Gorbenko et al.

5 Conclusions

Ensuring and assessing dependability of complex service-oriented systems are com-
plicated when these systems are dynamically built or when their components (i.e. web
services) are dynamically replaced by the new ones with the similar functionality but
unknown dependability characteristics.

The lack of sufficient evidence about the characteristics of the communication me-
dium, components and their possible dependencies makes it extremely difficult to
achieve and predict (composite) service dependability which can vary over a wide
range in a very random manner. This uncertainty of services running over the Internet
and clouds exhibits itself through the unpredictable response times and complex fail-
ure model, resulting from the distributed and loosely-coupled cooperation between the
service provider and consumers in the unpredictable Internet-environment.

In the paper we introduce a failure model for service-oriented applications, that can
be considered as a specialization for this domain of the general failure model pre-
sented by Avizienis, Laprie, Randell and Landwehr in their IEEE TDSC 2004 paper
[9]. Based on this failure model, we discuss the relationship between different failure
modes and timeout settings, and propose the set of simple and complex measures
estimating dependability of SOA solutions from the client’s point of view. We also
propose analytical models for average servicing and waiting times estimation depend-
ing on the application timeout settings used by the client software.

The proposed equations for estimation of a probability of different servicing out-
comes and average servicing and waiting times can help in choosing the right applica-
tion timeouts which are the fundamental part of all fault-tolerant mechanisms working
over the Internet used as the main error detection mechanism here. Making use these
equations software developers can solve a trade-off problems between maximizing
the probability of a correct servicing and minimizing the waiting or servicing time.

Acknowledgement. We are grateful to Aad van Moorsel for his feedback on the ear-
lier version of this work. The work is partially supported by the FP7 KhAI-ERA
project and by the TrAmS-2 EPSRC/UK platform grant.

References

1. Cardellini, V., Casalicchio, E., Regina, K., et al. (eds.): Performance and Dependability in
Service Computing: Concepts, Techniques and Research Directions. IGI Global (2012)

2. Lyu, M.: Service Reliability Engineering: Performance Evaluation, Fault Tolerance, and
Reliability Prediction. In: International Symposium on High Confidence Software (2011)

3. Sargeant, A.: Dependability of Dynamic Binding in Service-Oriented Computing. In: Int.
Conf. on Dependable Systems and Networks (2011)

4. Zheng, Z., Lyu, M.A.: QoS-Aware Fault Tolerant Middleware for Dependable Service
Composition. In: Int. Conf. On Dependable Systems and Networks, pp. 239–248 (2009)

5. Zheng, Z., Lyu, M.: A Runtime Dependability Evaluation Framework for Fault Tolerant
Web Services. In: Int. Conf. On Dependable Systems and Networks (2009)

 Dependability of Service-Oriented Computing: Time-Probabilistic Failure Modelling 133

6. Fahad, A., Saurabh, A., Saurabh, B.: Dangers and Joys of Stock Trading on the Web: Fail-
ure Characterization of a Three-Tier Web Service. In: 30th International Symposium on
Reliable Distributed Systems (2011)

7. Mendes, N., Duraes, J., Madeira, H.: Evaluating and comparing the impact of software
faults on web servers. In: 9th European Dependable Computing Conference (2010)

8. Smith, D., Simpson, K.: Safety Critical Systems Handbook: A Straightforward Guide to
Functional Safety, IEC 61508 and Related Standards, 3rd edn. Butterworth-Heinemann,
Oxford (2004)

9. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic Concepts and Taxonomy of
Dependable and Secure Computing. IEEE Transactions on Dependable and Secure Com-
puting 1(1), 11–33 (2004)

10. Gorbenko, A., Romanovsky, A., Mamutov, S., et al.: Real Distribution of Response Time
Instability in Service-Oriented Architecture. In: 29th IEEE International Symposium on
Reliable Distributed Systems, pp. 92–99 (2010)

11. Olive, D.J.: Applied Robust Statistics. Southern Illinois University Press, Illinois (2008)
12. Reinecke, P., van Moorsel, A., Wolter, K.: Experimental Analysis of the Correlation of

HTTP GET Invocations. In: Horváth, A., Telek, M. (eds.) EPEW 2006. LNCS, vol. 4054,
pp. 226–237. Springer, Heidelberg (2006)

13. Gorbenko, A., Kharchenko, V., Romanovsky, A., Mikhaylichenko, A.: Experimenting
with exception propagation mechanisms in service-oriented architecture. In: 4th Int. Work-
shop on Exception Handling, pp. 1–7 (2008)

Monitoring Service Choreographies
from Multiple Sources

Amira Ben Hamida2, Antonia Bertolino1, Antonello Calabrò1,
Guglielmo De Angelis1, Nelson Lago3, and Julien Lesbegueries2

1 CNR–ISTI, Italy
{antonia.bertolino,antonello.calabro,guglielmo.deangelis}@isti.cnr.it

2 Linagora R&D Toulouse, France
{amira.benhamida,julien.lesbegueries}@linagora.com

3 University of São Paulo, Brazil
lago@ime.usp.br

Abstract. Modern software applications are more and more conceived
as distributed service compositions deployed over Grid and Cloud tech-
nologies. Choreographies provide abstract specifications of such com-
positions, by modeling message-based multi-party interactions without
assuming any central coordination. To enable the management and dy-
namic adaptation of choreographies, it is essential to keep track of events
and exchanged messages and to monitor the status of the underlying
platform, and combine these different levels of information into com-
plex events meaningful at the application level. Towards this goal, we
propose a Multi-source Monitoring Framework that we are developing
within the EU Project CHOReOS, which can correlate the messages
passed at business-service level with observations relative to the infras-
tructure resources. We present the monitor architecture and illustrate it
on a use-case excerpted from the CHOReOS project.

Keywords: Monitoring, Choreographies, Complex Event Processing,
SOA, SLA, QoS.

1 Introduction

The Future Internet (FI) context envisions a global environment that expands
itself along two key dimensions, the Internet of Services and the Internet of
Things. Among the others, a key feature offered by these dimensions concerns the
availability of loosely-coupled methods for the management of remote resources
allowing the execution of distributed and composite service-based applications.

In this vision, black-box entities (i.e., either the services, or the things) are
discovered, chosen and bound at run-time. Specifically, this run-time binding
can take place based on the functional interface each entity exports, or on the
Quality of Service (QoS) levels they manifest. Both negotiations and run-time
bindings leave space to unexpected events or scenarios that were not considered
when designing either the single services or the whole composition.

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 134–149, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Monitoring Service Choreographies from Multiple Sources 135

Because of this inherent nondeterminism and dynamism, system adaptation is
the key feature to pursue: paraphrasing Darwin, the applications that are going
to survive in the fight for survival among the plethora of arising services, will be
the ones that are the most adaptable to change. At the basis of adaption is aware-
ness: systems must be enhanced with the capability to monitor the behaviour
resulting from the composition of services and things and trigger adaption as
failures occur.

We investigate such concern in the context of service choreography. Choreogra-
phies are conceived as abstract specifications, typically defined and managed by
third party organizations, aimed at modeling dynamic and flexible composition
of services into complex business workflows [1]. Specifically, a service choreogra-
phy is a description of the peer-to-peer externally observable interactions that
cooperating services should put in place. Such multi-party collaboration model
focuses on message exchange, and no central coordination can be assumed.

The EU Project CHOReOS1 addresses the challenges posed by the develop-
ment, management and assessment of choreography-centric distributed appli-
cations, advocating a highly dynamic and user-centric model-driven approach.
The project is developing an Integrated Development and Runtime Environ-
ment (IDRE), as well as an associated development process. Part of the IDRE
is a framework for testing and monitoring the developed and enacted choreogra-
phies. Here, comprehensive testing techniques such as [2,3,4], have to be neces-
sarily complemented with run-time monitoring approaches that are essential to
support adaptation as well as informed run-time management activities [5].

Monitoring consists in collecting data from a running application so that they
can be analyzed to either notify, or predict run-time anomalies. Several works in
the literature deal with run-time software monitoring [6,7,8,9,10]. Nevertheless,
the emphasis of the service-oriented paradigm natively drives the building of
software systems as multi-layered [11]. Consequently, monitoring is often dealing
with layer-specific events, and addressing layer-specific issues.

The main contribution of this paper is to propose a Multi-source Monitoring
Framework that we are investigating within the CHOReOS project, and that can
correlate the messages monitored at business-service level, with the observations
captured by the infrastructure monitoring the low level resources.

The rest of the paper is organized as follows: Section 2 presents the overall
architecture of our multi-source monitoring approach; then the next three sec-
tions detail the features of each specific source. Section 5 illustrates a case study
while in Section 6 we contrast our results against related work. Finally, Section 7
closes the paper drawing conclusions and future work.

2 Proposed Approach

Figure 1 depicts the high-level architecture of our Multi-source Monitoring
Framework. Specifically, the architecture relies on the Distributed Service Bus

1 http://www.choreos.eu

http://www.choreos.eu

136 A. Ben Hamida et al.

Fig. 1. Multi-source Monitoring

(DSB) component, a shared and distributed communication channel for the mon-
itored events. The DSB distinguishes between a set of channels dedicated to the
monitoring activities (i.e., Control Plane), and other channels where both coor-
dination and application messages can flow (i.e. Data Plane). The data passing
through the Control Plane can be correlated and analyzed by means of a Com-
plex Event Processor (CEP).

The Multi-source Monitoring Framework integrates three different solutions
by means of the DSB. Each solution provides monitoring facilities for a specific
kind of source, specifically:

Infrastructure Monitoring: The monitoring elements belonging to this kind
of source are focused on the knowledge of the status of the environment where
both services and things are running. In this sense, these sources provide support
for the monitoring of resources, both in terms of utilization and health status.
As detailed in Section 3, among others approaches on resource monitoring, we
will mainly implement such sources by means of Ganglia [12].

Business Service Oriented Monitoring: This kind of source is responsible
for monitoring messages exchanged among services cooperating within either a
workflow or a choreography by means of the DSB. Specifically, distributed inter-
ceptors are deployed in the DSB in order to capture the messages that services
exchange. As reported in Section 3.1, the goal of this source is to analyze the
temporal sequence of messages passing through the bus and look for violations of
the choreography specification with respect to functional, QoS, or Service Level
Agreement (SLA) violations.

Event Monitoring: This kind of source belongs to a generic event-based mon-
itoring infrastructure able to bridge the notifications coming from the other two

Monitoring Service Choreographies from Multiple Sources 137

sources. As detailed in Section 4, such sources are based on Glimpse2, which can
include a coherent set of domain-specific languages, expressed as meta-models.
In this way, we can exploit the support for automation offered by model-driven
engineering techniques [13].

3 Infrastructure-Oriented Monitoring

Any large scale cloud-based system needs to support the monitoring of resources,
both in terms of utilization and health status. This is what allows the system to
perform corrective actions in order to maintain optimal resource usage (avoiding
both overloading and wasting resources) and to handle failures such as crashed
or overloaded nodes. A lot of sophisticated monitoring systems dedicated to
resource monitoring in large-scale computing environments such as grids already
exist (see Section 6); in our work, we leverage previous works by borrowing
heavily from Ganglia [12]. Ganglia is one of the most successful grid monitoring
systems, offering good performance, low overhead, and flexibility, which explains
why it is used in several high-performance computing clusters.

The resource monitor subsystem has two main components:

1. A set of data collectors that gather local information such as load aver-
age, I/O rates, and network utilization. These collectors run on every active
node of the cloud. Data for each node is both made available on demand
over TCP/IP and, at the same time, periodically pushed over UDP to be
replicated in nearby nodes.

2. A notification mechanism that detects potentially relevant events, such as
exceptional load average or too little available disk space, and generates a
corresponding notification that is forwarded to the event monitoring subsys-
tem so that this will trigger some corrective action. This might be replicating
an overloaded service, migrating services that communicate a lot to be closer
together etc.

For data collection, we simply reuse the gmond component of Ganglia, since it
offers rich functionality, low overhead, and depends on almost no configuration to
work. However, gmond depends on static pre-configuration to identify peers for
data replication, which is not adequate for a highly dynamic cloud environment.
In order to tackle this configuration problem, the notification daemon running on
each machine also continuously refines the list of replication peers and modifies
the configuration of gmond accordingly.

The notification mechanism simply polls gmond periodically and identifies
eventual relevant events according to some hard-coded rules, such as “load av-
erage above 3” or “free disk space less than 10%”. Such events are forwarded to
the higher-level event monitor system described in Section 4 for further analysis.
It should be noted that those constitute potentially relevant events; it is up to
the event monitor to make more refined decisions regarding what is and is not
2 See at http://labse.isti.cnr.it/tools/glimpse

http://labse.isti.cnr.it/tools/glimpse

138 A. Ben Hamida et al.

significant and what party to notify, according to the parameters defined by the
clients of the monitoring system. Therefore, these local rules do not need to be
reconfigured at run-time, which alleviates the need for communication from the
CEP (to deploy configuration rules on each node); instead, they just provide
“hints” about suspected problems. Accordingly, the provided information may
be either used or ignored according to the more dynamic monitoring rules that
are active in the CEP at each moment.

Beyond detecting problems, this monitoring subsystem may also be used to
detect under-used virtual nodes, which may in turn guide the deployment of
new services to reuse such nodes or trigger their removal altogether. Some of
this may be accomplished by rules that provide notifications if some resource
utilization is below some predefined rule. However, inspecting the recent history
of each node’s resource utilization is much more useful in this regard. We are
currently working on a layer dedicated to the collection and usage of such data
by making use of Ganglia’s gmetad, but that is not yet integrated with the rest
of the system in the current implementation.

3.1 Business Service Monitoring

The Business Service Monitoring (BSM) [14] is responsible for providing the
monitoring functionality that relates to business services and choreographies. It
ensures a multilevel service supervision, from the QoS of a service to the global
business workflow control, realizing an incremental supervision from a finer to a
coarse-grained level.

Basically, we take benefit from the Enterprise Service Bus (ESB) technology to
build the BSM architecture on a distributed topology of bus nodes. A BSM node
is considered as a bus node, onto which a particular “profile” is added in order
to fulfill the requirements of the monitoring of Service Oriented Architecture
(SOA). This profile provides an additional administration service, and deploys
monitoring components specific for QoS and SLA management as well as for
Choreographies.

Figure 2 depicts the overall architecture of the BSM. Specifically, it is com-
posed of a Service Level Monitoring, a Choreography Level Monitoring and
a Data Collector components. The BSM is exclusively based on the WS-
Notifications standard that brings loosely coupled and event-driven capabili-
ties. We assume that business services are exposed thanks to a middleware, for
our case, we rely on the Petals Distributed Service Bus (DSB). The BSM can
also be applied to other kinds of middleware, provided that they expose a WS-
Notification producer interface.

More precisely, we implement specific interceptors that are able to send re-
ports summarizing the message exchanges between services. We design and im-
plement a report model for formalizing the exchange information. These reports
are named Raw Reports, we detail them in Section 3.2.

Furthermore, we rely on the Data Collector that is in charge of the subscrip-
tion to the middleware. For instance, when a connection to this node is requested,

Monitoring Service Choreographies from Multiple Sources 139

Fig. 2. Business Service Monitoring Architecture

it acts as a WS-Notifications broker. Then, Components that are interested in
specific topics subscribe on its events.

In the following, the internal mechanisms of the BSM are detailed. Specifically,
Section 3.2 details the interception mechanisms enabling the monitoring when
deployed on the middleware. Then, Section 3.3 presents the Runtime Quality
Assessment. Finally, Section 3.4 describes the choreography monitoring.

3.2 Interception Mechanisms

Targeting ultra-large scaled environments, the monitoring mechanisms needs
to be as transparent and non intrusive as possible. Adopting lightweight and
decoupled architectures enhances the ability of the system to be maintained in
a flexible way. To that purpose, we adopt an interception mechanism that we
deploy in the middleware automatically for enabling services monitoring when
activated. Each time an endpoint to a service is created into the middleware, we
assign to it an interceptor that will listen to the calls from and to the service.

In each exchange a set of basic information can be extracted. In order to
formalize this information, we create a dedicated model that we call Raw Report.
Raw Reports contain useful data such as the identifiers for the consumer and the
provider, the monitored exchange id, the called operation, a date, the size of the
message, and informs if the response is a fault or not. It is important to notice
each Raw Report contains two reports, corresponding to the different places
the interception is made. Indeed, the interception mechanism allows to perform
interceptions at 4 different time stamps (see Figure 3), at the following steps:
(i) T1, before the request goes from the client to the provider, (ii) T2, after the
request reaches the provider, (iii) T3, before the response goes from the provider
to the client, and (iv) at T4, after the response reaches the consumer.

We exploit these Raw Reports in order to assess the services are behaving
as contracted in the SLA. In the following section, we detail the operated QoS
run-time assessment.

140 A. Ben Hamida et al.

Data collector

ESB

Business Service Monitoring

WS

Fig. 3. Raw Reports time stamps illustration

3.3 Runtime Quality Assessment

We rely on a standard based mechanism for ensuring the services run-time qual-
ity monitoring and assessment. The use of standards increases the compliance
with a wider range of services. We implement standards coming from the Web
Services domain, namely, the Web Services Distributed Management (WS-DM3)
and the Web Services Agreement4.

We adopt the following process. At the beginning, services contract service
level agreements that describe their performances (time, security, etc.). Once
deployed, services face the run-time conditions and their real performances may
be different from the ones stated in the SLA. More precisely and referring to
the BSM architecture in Figure 2, the WSDM Manager receives the Raw Re-
ports from the DataCollector and computes QoS metrics for each service. A
prior subscription-based mechanism (with CreationResource topic) triggers the
creation of a non-functional endpoint in the BSM, for each functional endpoint
deployed, then a notification is sent to the BSM when a connected DSB declares
a new endpoint. This non-functional endpoint stores current metrics, computed
thanks to the gathered Raw Reports. These metrics are updated each time the
monitored service is invoked.

The second component dedicated to the Service Level Monitoring is the SLA
Manager which is in charge to check if the SLA metrics are being violated. To
fulfill this, the SLA component receives the Raw Reports from the DataCollec-
tor and checks if a particular exchange is violating an agreement (Service Level
Agreement). When an agreement is loaded in the SLA Manager, we define a con-
sumer. Then, an SLA alert can potentially be sent as an upper level monitoring
notification. We apply the Common Alerting Protocol (CAP5) to formalize the
alert.

3 http://www.oasis-open.org/committees/wsdm
4 http://www.ogf.org/documents/GFD.107.pdf
5 http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

http://www.oasis-open.org/committees/wsdm
http://www.ogf.org/documents/GFD.107.pdf
http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

Monitoring Service Choreographies from Multiple Sources 141

In addition to the performances and QoS verification, the BSM is also able
to detect if a service deployed on a remote machine is answering or not thanks
to the interceptions that we realize at 2 times. Indeed, once the T1/T2 report
is received by the SLA Manager, a timer is started (provided the agreement
is about latency) and if the time waiting the T3/T4 report is higher than the
latency defined in the SLA, a first potential alert is sent. If the T3/T4 report
is finally received and the effective latency is really violating the SLA, then a
confirmation alert is sent. The alert can also be invalidated and the confirmation
alert is canceled. The latency computed is the difference between T3 and T2
dates values. This calculus represents the time taken by the service request and
response outside the DSB. The times taken between T1 and T2, and T3 and T4
are considered as negligible. However, if a problem occurring in the middleware
provokes the violation of the SLA, the service is not considered as the origin
of the violation. The collected events are sent to the CEP that identifies the
nature of the violation and forwards an alert to a governing decision entity
(e.g. a Choreography Governing Board) that would trigger when needed the
reconfiguration of the choreography by the replacement of the failed services.
Meanwhile, detailing the applied decision mechanism is beyond of the scope of
this paper.

3.4 Choreography Level Monitoring

In addition to the Runtime Quality Assessment, the BSM dedicates a compo-
nent for the monitoring of the choreographies, the Choreography Level Moni-
toring Manager. It is responsible for the communication level and gathers the
messages exchanged within services collaborations and interactions. The main
functionality of this component is to ensure that the choreographies are behaving
according to the specification policies.

The Choreography Level Monitoring Manager takes as input the choreography
specification written in BPMN 2.0 and put interceptors on the services involved
in the choreography and exposed thanks to the middleware. The services are
event producers that trigger Raw Report as described in Section 3.2.

We realize a correspondence between the choreography model and the mon-
itoring activities generated from the model. A specific structure called MEMB
(for Message Exchange Monitoring Behavior) is implemented for this sake. Each
MEMB subscribes to Raw Reports, related to the choreography coordination
logic. Then, it waits for the expected notifications and checks the several times-
tamps validity. In case of timeout or not acceptable timestamps, alerts are sent
to the CEP 4.

4 Event-Oriented Monitoring

In [13], the authors proposed a distributed event-based monitoring infrastructure
called Glimpse, developed with the goal of decoupling the event specification
from the analysis mechanism. We reuse Glimpse as a component of the Multi-
source Monitoring framework.

142 A. Ben Hamida et al.

Glimpse (see Figure 4) collects a representative set of raw observation data,
and then needs to interpret such raw information in order to recognize composite
events that may be relevant at higher abstraction levels. The proper combina-
tion and correlation of such raw events make it possible either to timely detect
unexpected behaviors of the systems, or to predict failures for enhancing system
resilience.

Fig. 4. Glimpse: high-level architecture

Probes are in charge to collect and/or send raw data deriving from the ex-
ecution of a process within a choreography. Any instance of a Glimpse probe
can implement a component in execution at a given observation layer of the
software, for example at the infrastructure level (i.e. interacting with Ganglia
– see Section 3), or at business level (i.e. interacting with the BSM – see Sec-
tion 3.1). These two kind of probes can provide data that Glimpse can use to
infer complex pattern of events. A detailed description about the communication
interfaces defined by a Glimpse probe can be found in [15].

Glimpse implements the data transmission layer by means a publish-subscribe
bus, that constitutes the communication backbone conveying all information
(events, requests, notifications) flowing among all components. With respect
to our Multi-source Monitoring architecture depicted in Figure 1, this bus is
implemented by the DSB, as anticipated in Section 2.

The core of the event-oriented monitoring system offered by Glimpse is the
CEP. Specifically, the CEP is a rule engine which analyzes the raw events, gener-
ated from the probes belonging to all sources (i.e. infrastructure, business service
message), and infers complex events matching a set of rules that can be dynam-
ically loaded. In this sense the resilience of the monitored system is enhanced
by dynamically adapting to the evolving criticalities of the system. As detailed
in [13], the current implementation of the CEP is based on the Drools Fusion
rule language6.

6 See http://www.jboss.org/drools/drools-fusion.html

http://www.jboss.org/drools/drools-fusion.html

Monitoring Service Choreographies from Multiple Sources 143

Finally, the Manager component is the orchestrator of the Glimpse archi-
tecture. It manages all communications between the various instances of the
Glimpse components. Specifically, the Manager fetches requests received from
consumer, analyzes them and instructs the CEP. It then creates a dedicated
channel on which it will provide the results produced by the CEP.

5 Case Study

We present one of the use-cases developed within the CHOReOS project. Specif-
ically, it is based on the “Passenger-friendly Airport” [16] scenario, modeling the
interactions that take place among different actors (i.e. both services and things)
in an airport by means of a set of choreographies. In particular, this case study
refers to the monitoring of non-functional properties during the interactions be-
tween a Weather Forecast Service (i.e. WF) and a smart-device referred to as
Mobile Internet Device (i.e. MID).

In the following we describe how an SLA violation can be due to two possible
issues that our Multi-source Monitoring framework contributes to analyze and
discover. Specifically, we assume that monitoring the interactions between the
WF and the MID as described in Section 3.1, an SLA violation is revealed. Such
violation could be due to either the current status of the infrastructure hosting
WF, or the implementation of the service WF.

In the former case, the monitoring system reveals that the SLA is going to be
violated due either an overload, or a crash of the machine hosting the service.
Thus, the rule can suggest a migration of the service on another (more powerful,
more reliable) machine in the infrastructure. While in the latter, the monitoring
system reveals that the SLA is going to be violated even though the machine is
available and is not overloaded. Here, the CEP can notify the redeployment of
an updated version of the service WF.

Configuration of the Infrastructure Monitoring: On each created node, we
set up the DSB server, deploy the Ganglia gmond daemon and the notification
mechanism, and inject the address for the Glimpse CEP onto its configuration
file. Finally, we deploy the actual services we are interested in. The notification
mechanism periodically sends an “alive” message to the Glimpse CEP; this allows
Glimpse to detect node failures. Other than that, we set it to notify the CEP
whenever the load average of any node goes above 37. While the typical load
average on a production system may vary a lot depending on the application,
such a value is a common indicator that the machine is overloaded either because
of too much I/O or too much CPU utilization. More sophisticated information
might be used, but we leave these out of scope for this example.

Configuration of the BSM Mechanism: First, the BSM receives raw reports
giving information about each service exchange, in particular involving the WF

7 On Unix-like systems, the load average is the average number of processes in the
queue waiting for processor time in the last minute.

144 A. Ben Hamida et al.

service. This is done thanks to a prior subscription to the ESB middleware on
Raw Report topic. In addition, a SLA between the WF and the MID services
is loaded. This action launches a routine that uses raw reports notifications to
check for possible violations. When a violation occurs, the BSM sends a SLA
alert to the CEP.

Presentation of the Rules for the CEP: The CEP must be instructed with
a set of rules matching the event set that satisfies the monitoring request.

1 <ComplexEventRuleActionList ... >
2 <Insert RuleType="drools">
3 <RuleName>Machine Overloaded</RuleName>
4 <RuleBody>
5 ...
6 rule "Check for overloads"
7 ...
8 when
9 $aEvent : GlimpseBaseEventImpl(this.serviceID == "WF", this.serviceInstanceID == "

WF1234", this.getConsumed == false, this.isException == false);
10 $bEvent : GlimpseBaseEventImpl(this.machineID == "hubble.eclipse.ime.usp.br", this

.data == "Machine overload", this.isException == false, this.getConsumed == false,
this after $aEvent);

11 then
12 $aEvent.setConsumed(true);
13 update($aEvent);
14 retract($aEvent);
15 ResponseDispatcher.NotifyMeValue(... ...);
16 end
17 </RuleBody>
18 </Insert>
19 </ComplexEventRuleActionList>

Listing 1. Check for machine overload rule

1 <ComplexEventRuleActionList ... >
2 <Insert RuleType="drools">
3 <RuleName>Machine Overloaded No Ganglia Notification</RuleName>
4 <RuleBody>
5 ...
6 rule "Machine Overloaded No Ganglia Notification"
7 ...
8 when
9 $aEvent : GlimpseBaseEventImpl(this.serviceID == "WF", this.serviceInstanceID ==

"WF1234", this.getConsumed == false, this.isException == false)
10 not (GlimpseBaseEventImpl(this.machineID == "hubble.eclipse.ime.usp.br"

, this.isException == false, this.getConsumed == false, this after
[0s, 30s] $aEvent))

11 then
12 $aEvent.setConsumed(true);
13 update($aEvent);
14 retract($aEvent);
15 ResponseDispatcher.NotifyMeValue(... ...);
16 end
17 </RuleBody>
18 </Insert>
19 </ComplexEventRuleActionList>

Listing 2. SLA Violation and machine is not answering

Monitoring Service Choreographies from Multiple Sources 145

1 <ComplexEventRuleActionList ... >
2 <Insert RuleType="drools">
3 <RuleName>SLAViolation</RuleName>
4 <RuleBody>
5 ...
6 rule "SLAViolation"
7 ...
8 when
9 $aEvent : GlimpseBaseEventImpl(this.serviceID == "WF", this.serviceInstanceID == "

WF1234", this.getConsumed == false, this.isException == false);
10 $bEvent : GlimpseBaseEventImpl(this.machineID == "hubble.eclipse.ime.usp.br", this

after $aEvent, this.data == "ALIVE");
11 $cEvent : GlimpseBaseEventImpl(this.machineID == "hubble.eclipse.ime.usp.br", this

after $bEvent, this.data == "ALIVE");
12 then
13 $aEvent.setConsumed(true);
14 update($aEvent);
15 retract($aEvent);
16 $bEvent.setConsumed(true);
17 update($bEvent);
18 retract($bEvent);
19 $cEvent.setConsumed(true);
20 update($cEvent);
21 retract($cEvent);
22 ResponseDispatcher.NotifyMeValue(... ...);
23 end
24 </RuleBody>
25 </Insert>
26 </ComplexEventRuleActionList>

Listing 3. SLA Violation due to uncorrect service behaviour rule

According to this case study, three rules have been implemented in order
to cover the possible behaviors of the services involved. Such implementations
correlate the events notified from the BSM related to a violation of an SLA, with
the status/overload events coming from Ganglia.

Listing 1 reports a first rule that reveals if any of the machines used in the
infrastructure is overloaded. Specifically, in this case the rule matches if two
events are triggered to the CEP : the notification of an SLA violation form the
BSM about service WF (see at line 9); the notification that the specific machine
hosting the service is overloaded (see at line 10). In this case, the body of the rule
specifies to consume the event about the SLA notification (see lines 12-14) , and it
notifies possibly to an entity (e.g. a Choreography Governing Board) responsible
for the correct operativeness of the choreography (see line 15). Similarly, the rule
reported at Listing 2, matches if any SLA violation has been notified by the BSM
at the service-level, and if one of the machine at the infrastructure level failed to
send the “alive-notification” to the CEP. This rule highlights the case that either
a machine crash occurred, or anyhow that it is not reachable anymore. Finally,
the last rule (see Listing 3) correlates a notification from the BSM that the service
WF is violating the SLA (see line 9), with the monitoring of the infrastructure
revealing that the machine hosting the service is not overloaded. Specifically, in
this case study a machine is not overloaded when the CEP receives at least two
“alive” messages after the notification of the SLA violatoin (see lines 10-11). As
introduced above, in this case the rule infers that the violation might be due
to the incorrect (non-functional) behavior of WF. Note that, in these examples

146 A. Ben Hamida et al.

we used a hard-coded hostname here, but more sophisticated means of defining
this or querying a remote list of machines might be feasible. For example, within
the scope of the CHOReOS project we will rely on the specific API that the
CHOReOS IDRE will provide.

6 Related Work

As we are arguing in this work, also [11] discusses how monitoring in SOA cannot
separately address layer-specific issues. In fact, problems that from one layer af-
fect the others cannot be captured and understood. Nevertheless, the work in [11]
focused on the monitoring and adaptation of service orchestrations (i.e. BPEL
processes) that are deployed onto a dynamic infrastructure. Thus, the solution
does not directly refer to distributed choreographies where service aggregation
is coordinated in a decentralised way. In this sense, our approach cannot rely
on any entity that is specifically responsible of enacting the choreography, or of
restructuring and adapting any running instance.

Also in [17], a multi-layered service-oriented monitoring framework that fo-
cuses on both the platform and the infrastructure layers is presented. The pri-
mary goal of that approach is to collect and aggregate monitored information
with regard to specific performance constraints. Two are the main differences
with our framework. First, our architecture is based on a distributed service bus
implementing publish/subscribe communication mechanisms, while the core of
the monitoring framework in [17] is implemented as a centralized orchestrator
(i.e. a Globus Service) monitoring all the applications on the connected virtual
environments. Thus, our architecture appears more scalable, since the publish/-
subscribe paradigm natively allows to adapt the number of component instances
by replicating them over the bus. Note that also the DSB can be implemented by
federating several distributed instances of a bus. As a second difference between
the two solutions is that our Multi-source Monitoring framework explicitly sup-
ports a correlation technique that makes use of complex event processing, while
the approach in [17] mainly focuses in collecting, and storing the monitored
indexes in suitable repositories.

In [18] the authors proposed a monitoring approach that enables autonomous
service provisioning in federated clouds. Among the others, the framework was
mainly conceived to support either the deployment, or the decommission of the
requested services as virtual machines on a specific IaaS. Thus the main difference
with our approach is that such solution conceives the sources of the monitoring
mainly as layers of the same kind. In our approach we combine events that
happen onto different abstraction layers.

Another family of works related to this paper concerns those monitoring
solutions that are tailored to capture events at a specific abstraction layer (i.e.
the infrastructure level). Accordingly, basic monitoring of hardware system
resources is an essential component of virtually any production environment.

Monitoring Service Choreographies from Multiple Sources 147

There are many reasonably similar monitoring systems available today that focus
on hardware resources8.

Furthermore, a lot of sophisticated monitoring systems that deal with large-
scale computing environments such as grids also exist [12,19,20,21]. Some of
them have been designed with a specific environment in mind [22,23,24] and,
therefore, are either tied to characteristics of these environments or serve some
specific purpose within them. Most, however, try to be generic. Accordingly, a
proposal for the general characteristics expected of a monitoring system has been
prepared [25].

7 Conclusions and Future Work

The FI world challenges the SOA by raising scalability, distribution and hetero-
geneity issues. In this vision, either the services, or the things are discovered,
chosen and bound at run-time. In this context, usually cooperations are regu-
lated by means of choreographies, modeling dynamic and flexible composition of
services/things. Nevertheless, as choreographies are abstract specifications, they
may include interaction schemas that can evolve after the design phase, so that
unexpected events or scenarios may actually take place at run-time.

In this work we presented a Multi-source Monitoring Framework, through
which the non-functional properties of choreographies can be kept under obser-
vation. Specifically, it supports the observation at run-time of anomalies that
are due to phenomena originated from sources operating at different abstraction
layers.

Both the overall architecture of the framework, and the application case study
are developed within the context of the CHOReOS project. So, as future work
we will keep working of the refinement of the implementation we already have,
and we are planning to extensively validate our framework by applying it on
final version of one the use-cases of ultra-large scale service choreographies that
will be released by the CHOReOS project.

Acknowledgements. This paper is supported by the EU FP7 Projects:
CHOReOS (IP 257178), NESSoS (NoE 256980), and CONNECT (FET IP
231167).

References

1. Barker, A., Walton, C.D., Robertson, D.: Choreographing web services. IEEE T.
Services Computing 2(2), 152–166 (2009)

2. Besson, F.M., Leal, P.M., Kon, F., Goldman, A., Milojicic, D.: Towards automated
testing of web service choreographies. In: Proc. of AST, pp. 109–110. ACM, Waikiki
(2011)

8 Popular examples are Nagios (www.nagios.org), Big Brother and Xymon
(www.bb4.org, xymon.sourceforge.net), cacti (www.cacti.net), and zabbix
(www.zabbix.com).

www.nagios.org
www.bb4.org
xymon.sourceforge.net
www.cacti.net
www.zabbix.com

148 A. Ben Hamida et al.

3. Bertolino, A., De Angelis, G., Kellomäki, S., Polini, A.: Enhancing service federa-
tion trustworthiness through online testing. IEEE Computer 45(1), 66–72 (2012)

4. De Angelis, F., De Angelis, G., Polini, A.: A counter-example testing approach for
orchestrated services. In: Proc. of ICST, pp. 373–382. IEEE CS, Paris (2010)

5. Bertolino, A., De Angelis, G., Polini, A.: Validation and verification policies for gov-
ernance of service choreographies. In: Proc. of WEBIST. SciTePress (April 2012)

6. Bianculli, D., Ghezzi, C.: Monitoring conversational web services. In: Di Nitto, E.,
et al. (eds.) IW-SOSWE, pp. 15–21. ACM (2007)

7. Campos, J.: Survey paper: Development in the application of ict in condition mon-
itoring and maintenance. Comput. Ind. 60(1) (2009)

8. Hofmann, R., Klar, R., Mohr, B., Quick, A., Siegle, M.: Distributed perfor-
mance monitoring: Methods, tools, and applications. IEEE Trans. Parallel Distrib.
Syst. 5(6), 585–598 (1994)

9. Maia, J.L., Zorzo, S.D.: Socket-Masking and SNMP: A Hybrid Approach for QoS
Monitoring in Mobile Computing Environments. In: Proc. of JCC, p. 106. IEEE
CS, Washington, DC (2002)

10. Wang, C., Xu, L., Peng, W.: Conceptual design of remote monitoring and fault
diagnosis systems. Inf. Syst. 32(7), 996–1004 (2007)

11. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered Monitoring
and Adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

12. Sacerdoti, F.D., Katz, M.J., Massie, M.L., Culler, D.E.: Wide area cluster moni-
toring with ganglia. In: Proc. of CLUSTER (2003)

13. Bertolino, A., Calabrò, A., Lonetti, F., Di Marco, A., Sabetta, A.: Towards a
Model-Driven Infrastructure for Runtime Monitoring. In: Troubitsyna, E.A. (ed.)
SERENE 2011. LNCS, vol. 6968, pp. 130–144. Springer, Heidelberg (2011)

14. Lesbegueries, J., Ben Hamida, A., Salatgè, N., Zribi, S., Lorrè, J.: Experience re-
port: Multilevel event-based monitoring framework for the petals enterprise service
bus. In: Proc. of DEBS. ACM (to appear, 2012)

15. Bertolino, A., De Angelis, G., Polini, A. (eds.): V&V tools and infrastructure –
strategies, architecture and implementation. Number Del. D4.2.1. The CHOReOS
Consortium (2012)

16. Chatel, P., Leger, A., Lockerbie, J. (eds.): ”Passenger-friendly airport” scenarios
specification and requirements analysis. Number Del. D6.1. The CHOReOS Con-
sortium (2011)

17. Katsaros, G., Kousiouris, G., Gogouvitis, S.V., Kyriazis, D., Menychtas, A.,
Varvarigou, T.: A self-adaptive hierarchical monitoring mechanism for clouds.
JSS 85(5), 1029–1041 (2012)

18. Kertész, A., Kecskemeti, G., Marosi, C.A., Oriol, M., Franch, X., Marco, J.: Inte-
grated monitoring approach for seamless service provisioning in federated clouds.
In: Stotzka, R., Schiffers, M., Cotronis, Y. (eds.) PDP, pp. 567–574. IEEE (2012)

19. Newman, H.B., Legrand, I.C., Galvez, P., Voicu, R., Cirstoiu, C.: Monalisa: A
distributed monitoring service architecture. In: Talk from the Computing in High
Energy and Nuclear Physics (2003)

20. Truong, H.-L., Fahringer, T.: SCALEA-G: A Unified Monitoring and Performance
Analysis System for the Grid. In: Dikaiakos, M.D. (ed.) AxGrids 2004. LNCS,
vol. 3165, pp. 202–211. Springer, Heidelberg (2004)

21. Andreozzi, S., De Bortoli, N., Fantinel, S., Ghiselli, A., Rubini, G.L., Tortone, G.,
Vistoli, M.C.: GridICE: a monitoring service for grid systems. Future Generation
Computer Systems 21(4) (April 2005)

Monitoring Service Choreographies from Multiple Sources 149

22. Boulon, J., Konwinski, A., Qi, R., Rabkin, A., Yang, E., Yang, M.: Chukwa, a
large-scale monitoring system. In: Proc. of CCA (2008)

23. Park, K.S., Pai, V.S.: CoMon: a mostly-scalable monitoring system for PlanetLab.
OSR 40(1), 65–74 (2006)

24. Wolski, R., Spring, N.T., Hayes, J.: The network weather service: a distributed
resource performance forecasting service for metacomputing. Future Generation
Computer Systems 15(5-6) (October 1999)

25. Tierney, B., Aydt, R., Gunter, D., Smith, W., Swany, M., Taylor, V., Wolski, R.:
A grid monitoring architecture. Memo GFD-I.7. Global Grid Forum (2002)

Supporting Field Investigators with PVS:

A Case Study in the Healthcare Domain

Paolo Masci1,�, Dominic Furniss2,
Paul Curzon1, Michael D. Harrison1, and Ann Blandford2

1 School of Electronic Engineering and Computer Science
Queen Mary University of London

{paolo.masci,paul.curzon,michael.harrison}@eecs.qmul.ac.uk
2 UCL Interaction Centre
University College London

{d.furniss,a.blandford}@ucl.ac.uk

Abstract. This paper reports the lessons learnt about the benefits of
using a formal verification tool like PVS to support field studies. The
presentation is based on a field study in the healthcare domain which
was designed to investigate the resilience of human behaviour in an on-
cology ward of a hospital. The automated reasoning tool PVS was used
systematically to compare actual practice observed during the field study
with normative behaviour described for example by user manuals for the
devices involved. The approach helped (i) identify latent situations that
could lead to hazard, and (ii) suggest situations likely to warrant further
investigation as part of the field study. The main contribution of this pa-
per is a set of detailed examples that illustrate how we used PVS during
the field study, and how the tool led to insights.

Keywords: Experience report, Field study, Socio-technical system,
Automated reasoning, PVS.

1 Introduction

One approach to understanding complex socio-technical systems prior to intro-
ducing new technology is to undertake field studies. Field studies involve going
to the real workplace to investigate how work is actually done, e.g., by observ-
ing workers and asking them questions. Little research addresses tool support
that would help investigators during these field studies. To date, software tools
developed and used by field researchers mainly focus on storing and encoding
information — see for instance [14]. This paper explores how an already exist-
ing tool typically used to verify hardware and software can be used to reason
about the field study data that is collected in a way that is accessible to field
researchers. The aim is to automate routine checks, for example how consistent
the information is, as well as to identify systematically those situations that
are likely to warrant further investigation. The concern is to identify situations

� Corresponding author.

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 150–164, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Supporting Field Investigators with PVS 151

where gaps in the way artefacts and information resources support user actions
may create sufficient preconditions for unsafe user actions potentially leading to
harm. Previous work [2,6,7] has explored the benefits of using verification tools
when re-analysing data from already completed field studies. In particular, we
were able to gather additional insights about the socio-technical system, and
we argued there that such an analysis could help when performed during the
field study. However we had no direct evidence to support the claim. This paper
builds on that research, in the context of a live field investigation. We report on
our experience and the lessons learnt.

Contribution. We illustrate in detail how we used the PVS verification system
to support investigations as part of a field study. The focus relates to specific
situations faced during a field study carried out in the oncology ward of a hos-
pital. Relatively simple use of the PVS verification system (i) helped identify
latent situations that could lead to hazard, and (ii) suggested situations that
warranted further investigation as part of the field study.

The rest of the paper is structured as follows. Section 2 makes clear how field
studies and formal methods complement each other, and the benefits that can be
obtained from their combined use. Section 3 describes artefacts and technologies
involved in a particular procedures relating to glucose monitoring that were con-
sidered during the field study. Section 4 briefly introduces the PVS verification
system and describes the modelling approach and the developed PVS models.
Section 5 illustrates how a relatively simple use of PVS can provide useful in-
sights for the field study. Specific real situations we faced during the field study
in the oncology ward of a hospital will be the focus. They illustrate the obtained
results and the lessons learnt. Section 6 contrasts and compares the approach
with related work in the area and draws conclusions.

2 Integrating Field Studies and Formal Methods

Formal methods and field studies are traditionally seen as alternative approaches
to analysing a system derived from completely different paradigms. On the one
hand, formal methods are typically used to verify whether given properties hold
for a model of the system under certain assumptions, and they are typically
concerned with normative behaviour described in manuals and protocols. On
the other hand, field studies focus on empirical approaches and aim to analyse
how a system works ‘in the wild’ when deployed in the real world.

An alternative and more constructive perspective is to see the two approaches
as complementary [15], and use them within a cyclical process where they feed
each other. This paper illustrates the lessons learnt from a successful story of
integration of field studies and formal methods to analyse the resilience of a
complex socio-technical system — a hospital ward where a new device has been
introduced with the aim of making the overall system more robust and efficient.

The field study proved invaluable in that it enabled: (i) identification of the
information resources required by participants in the work; (ii) understanding

152 P. Masci et al.

of the difference between work as intended and documented as procedures, and
work as practised; (iii) understanding of the gaps in the way that actions are
resourced; (iv) a broad exploration of safety goals that are not achievable because
circumstances conspire against them.

The formal reasoning tool has been used at the same time as field study to
inform it and be informed by it. It provided essential benefits in: (i) making
the categories precise; (ii) analysing the links between information resources and
actions systematically; (iii) exploring the consequences of prescribed procedures
systematically.

The rest of this paper develops these points and illustrates in detail our prag-
matic use of field study data and formal methods.

3 Glucose Monitoring Procedure in the Oncology Ward
of a Hospital

This section illustrates some relevant observations made in the field about the
actual use of the introduced technology in the oncology ward under investiga-
tion. The technology adopted is a handheld wireless device to help clinicians get
frequent blood glucose readings from patients. The field study was performed
during the first months of introduction of the device.

The ward has 24 beds for accommodating patients that need to stay overnight
in the hospital whilst they are treated. Whilst in hospital, patients who are
diabetic need their blood glucose levels managed. These levels can be affected
by the patient’s glucose intake, treatment and condition, so they need to be
monitored closely to make sure they are not too high or too low. Either could
lead to further health problems. The introduced device is used to monitor these
levels. Information recorded on the meter during a reading can be automatically
stored in the patient’s record.

The main features of the device and the procedure described in the manual to
perform the blood glucose test are the focus of attention in what follows. This
information is compared with the procedures followed by clinicians observed
during the field study. The description we give here is provided at a level of detail
that is adequate to illustrate the benefits of using the verification tool during a
field study. These descriptions are translated into a PVS model (Section 4) so
that PVS can be used to analyse the model (Section 5).

3.1 Blood Glucose Meter and Accessory Box

The blood glucose meter adopted is a palm-sized portable device [9] that allows
clinicians to measure blood glucose levels by means of small test strips that are
inserted in a slot at the top of the device. The device has a touch screen that
can be used by clinicians to view the patient’s previous blood glucose test results
as well as the patient’s record. A reproduction of the device layout is shown in
Figure 1. The device also has an integrated barcode scanner located close to
the port that receives test strips used for identification purposes. The device
supports a number of features, which we summarise.

Supporting Field Investigators with PVS 153

Fig. 1. Reproduction of the blood glucose meter

Clinician and Patient Identification. The device has a built-in barcode
scanner that allows a clinician to identify a patient as well as the clinician
taking the reading. This feature aims to guarantee that (i) only authorised
personnel can use the device, and (ii) blood glucose readings are automati-
cally associated with the right patient.

Wireless Connectivity. The device can be configured to communicate with a
central server through a wireless connection. This makes it possible to syn-
chronise in real-time with a central data management system that contains
information about patients.

Quality Control. Device functionalities and accuracy must be checked regu-
larly using special liquid compounds (“control and linearity solutions”) that
make sure that the glucose testing is accurate and reliable.

The glucose meter ensemble includes an accessory box for convenient transporta-
tion of meter and consumables. The accessory box contains: two test strip vials to
perform the test, single use lancets to puncture the patient’s finger, small boxes
for disposable white swabs, control and linearity solutions to perform quality
control tests. The glucose meter is battery-powered. A base unit is provided to
recharge the meter’s batteries when docked in the unit. The unit can be hard-
wired to a local area network to enable data transfer to and from a central data
management system.

3.2 Normative Procedure from the User Manual

The normative procedure described in the device user manual [10] and various
training material [13] is given as a sequence of steps. The procedure is the fol-
lowing (we adapted the original text here to match the level of detail needed for
our illustrative example).

1. Identify clinician. Power on the device and scan the clinician’s badge.
2. Identify patient. Enter the patient’s account number by either scanning

the patient’s bar coded wristband or manually.

154 P. Masci et al.

3. Verify test strip code. Verify the strip code information by pressing “scan”
and scanning the vial barcode.

4. Insert test strip in the meter. Insert a test strip with the test strip win-
dow facing up. Insert the end with the silver bars. Insert test strip before
dosing.

5. Obtain blood sample. When the flashing drop icon appears on the meter
display, obtain a blood sample

6. Wait for the results. An hourglass will appear on the display while waiting
for the result. When the results are ready, choose an appropriate comment
from a list of pre-loaded comments, as necessary.

7. Remove test strip from the meter. Remove the test strip from the me-
ter and discard it according to infection control policy.

8. Turn off meter and dispose gloves. Press the power off button to turn
the meter off. Remove gloves and dispose of them.

9. Document test results. Document the blood glucose result with date, time,
and clinician’s initials on flow sheet or chart as required.

3.3 Actual Procedure Observed at the Hospital Ward

The field investigator provided the following notes after spending some days on
the ward. He observed various clinicians during their visits to patients for the
blood glucose test, and talked to them to obtain explanations of what they did.
In the following we report some relevant observations (we adapted the original
text from the field notes to match the level of detail needed for our illustrative
example).

Prepare Trolley. The blood glucose test was performed on a series of patients.
Because of this, the clinician prepared a wheeled trolley to carry all the neces-
sary equipment. The wheeled trolley contained two platforms to separate clean
apparatus from waste. The top platform was used to hold the accessory box and
a box of disposable gloves. The bottom platform had a bin for sharps and special
refuse. A cardboard tray was also carried on the trolley for temporary location
of used items, e.g., used swabs or used test strips, before they were transferred
to the bin for sharps and special refuse.

Annotate Bed Numbers. The numbers of the beds that are to be visited are
reported on handover sheets. The clinician scribbled these bed numbers on the
cardboard tray so as to create a checklist that was easy to access and update.

Unlock Device. The glucose meter is undocked from the base unit, powered
on, and unlocked to initiate a new session. This is done to check whether the
device is functioning properly and whether the device requires a quality control
test. The badge number of a trained member of staff is needed to unlock the
device and initiate the session. Such a number can either be scanned or manually
entered.

Visit Patients. The visit starts after checking that the trolley and the accessory
box has sufficient consumables for the whole set of patients that must be visited.
At each bed, the clinician carried out the following sequence of activities:

Supporting Field Investigators with PVS 155

– Ask the patient consent to perform the test. Some patients may refuse to do
the test, or may be away from their bed for other reasons, e.g. treatment in
other areas of the hospital. In these cases, the clinician skips the patient and
goes to the next bed in the list.

– Scan the patient barcode. If the device is not able to correctly scan the
barcode (e.g., because the wristband is crumpled), the clinician enters the
number manually. Sometimes the device does not have information about
the patient; in these cases, the device allows the clinician to continue and
they proceed.

– Scan the strip container.
– Puncture finger.
– Insert test strip in the device (this activity is sometimes performed before

puncturing the finger).
– Put blood on the strip.
– Wait for the test results.
– Record the test results in the glucose chart. The chart includes a number

(the current test result), and a graph reporting the history of results (the
clinician updates the graph with the current result). If the result is too high
or too low, the clinician must report this to the nurse looking after that
patient.

Visit End. When all patients have been visited, the device is docked to the
base unit and the trolley emptied.

4 PVS Models

In this section, we illustrate the PVS models we developed out of the gath-
ered field study data. The field data were organised according to the DiCoT
method [3]. This method encodes relevant categories that are employed by the
various users within the system and their means of communication. Inevitably
the field data are open to alternative interpretations. The advantage of a less
formal approach like DiCoT is that it enables an appropriate representation of
a complex and rich system. However in order to assess the adequacy of the re-
sources in supporting the actions needed to achieve goals, the PVS models go a
stage further to make precise certain assumptions. These models can be seen as
hypotheses about the meaning of the information resources within the activities.
As hypotheses they are open to alternative interpretations that may have differ-
ent more or less consistent implications. A PVS model is therefore not intended
to be definitive and a number of alternatives could be developed in order to
explore different assumptions about the circumstances.

4.1 Modelling Approach

The modelling approach used has been outlined and illustrated in the context of
other field studies including incident analysis in [6,7,5,8]. It involves the follow-
ing steps: (1) modelling information resources reported in the field study data

156 P. Masci et al.

(e.g., glucose meter displays, information on staff badges, content of the acces-
sory box); (2) modelling how information resources propagate within the system
(e.g., how a staff ID is entered into the glucose meter); (3) formulating and ver-
ifying conjectures about how resources were used (e.g., were relevant resources
available at critical moments to relevant actors) and facts about the prescribed
use of information resources (e.g., according to procedures and regulations). The
first two steps of the procedure aim to help field investigators externalise facts
about what information resources are available to users and how such resources
are used. The third step aims to check whether information resources provide
constraints that are correct and tight enough to support safe user actions.

4.2 Modelling Language

PVS models are specified in a strongly typed higher-order logic, which allows
quantification over propositional functions to be formulated. The language in-
cludes the usual base types (e.g., bool, nat, integer and real), function type
constructors [A -> B] (predicates are functions with range type bool), and ab-
stract data types. Models are packaged in modular components called theories,
which can be parametric in types and constants. They can use definitions and
theorems of other theories by importing them. A language mechanism used ex-
tensively in the models considered here is predicate subtyping [12], which makes
it possible to express complex consistency constraints. When using expressions
with subtypes, PVS automatically generates proof obligations, called type cor-
rectness conditions (TCCs), that ensure the valid use of the type. We will rely
on this automatic generation of proof obligations to check various consistency
constraints for the use of information resources.

4.3 Developed Models

We model artefacts and information resources used by clinicians during the blood
glucose monitoring procedure. The models aim to enable a systematic analysis
of consistency of collected data and safety checks. The concern is to identify
situations where gaps in the way artefacts and information resources support user
actions may create sufficient preconditions for unsafe user actions potentially
leading to harm, such as wrong patient identification or unsafe disposal of refuse.

In the developed models, each information resource and artefact is specified
using a different PVS datatype. The level of detail used in the PVS models
was discussed with the investigator in relation to their findings as it must be
consistent with the level of detail understood by the investigator. The aim is
to create a model that embeds the facts observed by the investigator during
the field study in a precise way, but without the need to be too specific when
certain information is not available or not deemed relevant by the investigator.
In the developed models, the collection of information resources and artefacts
represents the state of the system. The use of information resources and artefacts
is modelled as transition functions over system states. This will be illustrated
by demonstrating some relevant features of the specification of the models. The

Supporting Field Investigators with PVS 157

complete PVS models relative to the field study data described in Sections 3.3
and 3.2 will be made available online [1].

Blood Glucose Meter. The device is modelled with a PVS record type. The
record has thirteen fields, and each field specifies either data stored in the device,
such as patient account numbers, or device screens, such as “results ready”. The
selection of the specific type for each field is adapted to the understanding of
the field investigator of the system and to the availability of information from
the field study data and user manuals. In some cases details are only partial
and PVS makes it possible to express partial information. An example of this
can be found in the definition of patient account numbers. The observations
and the user manuals reveal that they are integers, but additional details about
specific constraints on the range of these numbers was not available. As a result
of this the modelled patient account numbers are specified as bounded integer
numbers where the bound is an uninterpreted constant (max patient ID) rather
than a specific value. For other aspects, we had access to several details, but the
investigator deemed it sufficient that an abstract view was given as additional
information was not contributing to a better understanding of the situation. An
example of this is the screen shown by the device when the clinician needs to
unlock it – the specific content of the screen is not relevant to an understanding of
the work. This is captured in the specification. The information is abstracted into
a Boolean field, session unlocked, that keeps only a high-level view about that
particular device screen. Consistency constraints can be embedded as subtypes
at this stage, e.g., the device must be powered on before messages are shown on
the device display. The utility of embedding these constraints will be discussed
further in Section 5. An excerpt from the type definition developed for the blood
glucose meter follows — the relation of each field in the record type with the
actual device is made clear with a comment in the specification, which is the
text following the ‘%’ symbol.

max_patient_ID: posnat % uninterpreted constant

patient_ID : TYPE = below(max_patient_ID)

Blood_glucose_meter: TYPE =

[# powered_on : boolean, % ON/OFF Led

patient_IDs: [patient_ID -> boolean], % patient IDs in the device

quality_check_passed : boolean, % periodic quality test screen

session_unlocked: {b: boolean | powered_on}, % unlock screen

ready_to_analyse: {b: boolean | powered_on}, % test ready screen

results_ready : {b: boolean | powered_on}, % results ready screen

%... more device screens omitted

result_memory_full : boolean % meter memory (results)

comment_memory_full : boolean #] % meter memory (comments)

Accessory Box. The accessory box is modelled with a PVS record type. The
record has six fields. Two fields are bounded natural numbers modelling white
swabs and disposable lancets that are available in the box, and the other four
fields are data types representing information about the test strip vials and the

158 P. Masci et al.

control solutions in the accessory box. The initial data from the field study did
not provide information about the maximum swabs and lancets that can be
placed in the box. The level of accuracy with which clinicians checked whether
they were sufficient for visiting the beds was also not clear. Therefore we had to
make decisions about the level of granularity for the models. A sensible solution
was to use two symbolic constants (n white swabs and n lancets), which made
it possible to reason about the consequences of any possible situation during the
analysis phase. In these specific constants only one constraint about the possible
range values is embedded, that they are strictly greater than zero. It was known
from the field investigation that the clinician (at least) visually checks whether
the accessory box contains swabs and lancets before starting the visit. For the
test strip vials, we modelled the following information: the barcode on the vial,
specified as a new PVS abstract data type with two constructors, one constructor
for readable barcodes, and the another one for unreadable barcodes; the number
of strips in the vials, specified as a bounded natural number lower than a symbolic
constant n strips; the strip “lot”, an enumerated field that specifies whether
information about a set of strips is valid, invalid, expired, unknown, or not
available.

Accessory_box: TYPE =

[# white_swabs : upto(n_white_swabs),

lancets : upto(n_lancets),

test_strip_vial_1 : Test_strip_vial_box,

test_strip_vial_2 : Test_strip_vial_box,

high_control_solution: Control_solution,

low_control_solution : Control_solution #]

Trolley. The trolley is modelled as a PVS record type with four fields: cardboard,
which describes the content of the cardboard (whether it contains used gloves
/ swabs / other waste, and whether a checklist of beds has been annotated on
the board); glovebox, which abstracts the glovebox as a number representing
the gloves left in the box; accessory box, of type Accessory box defined above;
yellow bin, which models the content of the special refuse bin as an enumerated
field whose possible values are full, not full, empty, NA. The modelling choice
for the bin was driven by the requirement to model information resources observ-
able by the clinician. The bin is opaque, and therefore a simple visual inspection
from outside is not sufficient to determine its content.

Trolley: TYPE =

[# cardboard : Cardboard,

gloves_box : Disposable_gloves_box,

yellow_bin : Special_refuse_bin,

accessory_box: Accessory_box #]

Clinicians. Observable information resources are carried by clinicians during
bed visits: whether they carry handover sheets, modelled as a Boolean field

Supporting Field Investigators with PVS 159

(has handover sheets); the actual content of the handover sheets, modelled
with a field (handover sheets) given as a function that maps beds in the ward to
patient records; whether they have a pen or a marker for updating sheets and bed
checklist, modelled as a Boolean field (has pen or marker); whether their badge
makes it possible to unlock the blood glucose meter (has unlocking code).

Clinician: TYPE =

[# has_handover_sheets: boolean,

handover_sheets : [upto(n_beds) -> Patient_record],

has_pen_or_marker : boolean,

has_unlocking_code : boolean #]

Patients. Observable information resources carried by patients while stay-
ing in the ward include: the wristband code, modelled as a natural number
(wristband code) — we chose to use a natural number rather than the type
patient ID defined for the blood glucose monitor model because the facts col-
lected by the investigator did not provide any evidence that the wristband codes
were generated with a system compliant with such value constraints; whether the
wristband can be scanned is modelled with a Boolean field (wristband can be s

canned) — sometimes the barcode cannot be scanned because, for instance, the
wristband has been accidentally crumpled; the patient name (patient name), a
string storing the patient name — we are not including any assumption about
whether the names are unique, as the investigation did not provide such evi-
dence; the bed number (bed number), a bounded integer number identifying one
of the beds in the ward.

Patient: TYPE =

[# wristband_code: nat,

wristband_can_be_scanned: boolean,

patient_name : string,

bed_number : upto(n_beds) #]

Activities. The clinicians are involved in activities that are specified as transi-
tion functions over system states defined in terms of the data types described in
the previous section. The state of the system collects together, possibly multiple
instances, of the system elements: trolley, device, clinician, and patient. Since
the aim of modelling activity is to describe precisely the observed use of artefacts
and information resources to determine whether there are gaps or mismatches,
an activity is defined for each step described in Section 3.3. An illustration of
the formalisation of the activity is puncture finger, which specifies the use of
artefacts on the trolley during the first phases of the blood glucose monitoring
test. The aim of the illustration is to give the reader a taste of the modelling
style and of the decisions that need to be made during the modelling process.
The formalisation of the other activities will be made available online [1].

From the field study data, the following facts about the use of artefacts and
information resources when puncturing the patient’s finger to get a blood sample
and start the test can be discerned.

160 P. Masci et al.

– The clinician uses at least one lancet and one white swab for each test. A
precise estimate of the total number of lancets and swabs that will be used
in each test cannot be identified in advance, because the test might need to
be repeated, e.g., because the alcohol used to cleanse the puncture site may
lead to error codes or inaccurate reading, or because the collected blood sam-
ple was not sufficient or was excessive. This uncertainty is modelled using
two symbolic constants (used lancets and used swabs) in the arithmetic
expression for updating the number of lancets and white swabs in the acces-
sory box. PVS is able to generate proof obligations using these expressions
that enables exploration of what may happen for different ranges of values
for the symbolic constants. An illustration is provided in Section 5.

– The clinician may use a cardboard container that is either empty or contains
used items, e.g., because the test had to be repeated more than once, or
because the clinician is delaying the transfer of used items to the bin. This
uncertainty can be expressed using a random Boolean variable1.

– The clinician needs to use disposable gloves. The number of gloves needed
cannot be estimated in advance in a precise way because of the particular
work environment. For instance, clinicians may be temporarily interrupted
during the blood glucose monitoring test because they need to carry out
another task. As for the number of lancets and white swabs, we therefore
use an arithmetic expression with a symbolic constant used gloves.

puncture_finger(sys: State): State =

sys WITH [trolley := trolley(sys)

WITH [accessory_box := trolley(sys)‘accessory_box

WITH [lancets := trolley(sys)‘accessory_box‘lancets - used_lancets,

white_swabs := trolley(sys)‘accessory_box‘white_swabs

- used_swabs,

cardboard := trolley(sys)‘cardboard

WITH [used_gloves := choose(fullset[boolean]),

used_swabs := choose(fullset[boolean])],

gloves_box := trolley(sys)‘gloves_box - used_gloves]]]

5 Using PVS to Support the Field Investigation:
Analysis and Results

The modelling exercise was itself a first analysis step. The modelling approach
proved useful as a means of helping the field investigator organise a substantial
number of field notes, which were frequently incomplete and interleaved with
other observations of devices. The modelling process achieved clarification and
made the subsequent stages of the analysis faster and more effective.

1 In PVS, random values for any datatype can be obtained with the choose function,
which takes as argument the set from which the random element must be chosen.

Supporting Field Investigators with PVS 161

5.1 Issues Emerged while Developing the PVS Models

Several questions warranting further investigation as part of the field study were
raised while developing the models. Some relevant examples follow.

Quality Control. The aim of the quality control performed when scanning
the barcode on the test strip vials is to calibrate the device to a specific set
of strips and to check whether the strips are valid and approved. Modelling
this information from the user manual stimulated further investigation of subtle
inconsistencies in the mental models possessed by clinicians. For instance, some
clinicians believed that the test strip scanning was only for checking the validity
of the strips. This understanding is correct but partial, and opens the possibility
of calibrating the meter for a vial of test strips and, in the case the strip vial
is empty, using strips from another uncalibrated set — the accessory box has
two strip vials and the container is opaque, therefore clinicians are not able to
visually check whether the vial has strips in it when scanning the barcode.

Barcode Scanner. The barcode scanner embedded in the device is used to read
clinician’s badges and patient’s wristbands. Whereas the field investigator had
accepted the technology as standard, a systematic analysis of the user manuals
made clear that different subtle variants of the same technologies could have
been implemented in the device. Each technology could be more or less suited to
the context. This also helped to clarify the origin of various minor disturbances
observed during the study, e.g., when the device was not scanning correctly the
barcode on the wristband.

User Manual. Another advantage of the added analysis included an awareness
of what was and was not in the device manual. Data solely from the field can be
understated because it is assumed by participants and not particularly salient.
However, when contrasted with the official and concrete account in the manual
the importance of these differences is emphasised, e.g., the manual says that if
there is not enough blood placed on a test strip then this can hinder the reading
but staff also said that too much can also hinder the reading.

5.2 Issues Raised by PVS When Checking Model Consistency

Proof obligations automatically generated by PVS stimulated further construc-
tive discussion after the modelling step. In the following, we illustrate some of
these situations for the puncture finger activity specified above in Section 4.
For that activity, PVS automatically generated various proof obligations that
could not be discharged using the facts available from the field study. Two ex-
amples illustrate this.

Lancets. An undischargable proof obligation automatically generated by PVS
related to the arithmetic expression containing the symbolic constants. PVS
requires the expression that updates the number of lancets to result in a value

162 P. Masci et al.

that is non-negative. This translates into a request to the field study to check
whether the accessory box is guaranteed to contain enough lancets for the tests:

% Subtype TCC generated for

% trolley(sys)‘accessory_box‘lancets - used_lancets

% expected type upto(n_disposable_lancets)

puncture_finger_TCC1: OBLIGATION

FORALL (sys: State):

sys‘trolley‘accessory_box‘lancets - used_lancets >= 0

This obligation, although mathematically trivial, drew our attention to the
lancets and stimulated further investigation about how they are actually used by
clinicians. The investigation started as a clarification of whether they were single
use, but then allowed the investigator to get useful insight about the risks of not
putting them in the sharps bin straight away and also getting them mixed up
with the unused lancets (it is hard to distinguish used lancets from unused ones
by visual inspection). Some of these latent situations were actually observed in
subsequent visits to the ward, when the trolley was not used because only a few
patients needed to be checked.

Battery. A second undischargable proof obligation generated by PVS resulted
from the reasonable conjecture that the device is ready for the test. The con-
jecture claimed that a precondition that the device be unlocked be true. We
composed the modelled activities to specify a symbolic execution trace and ver-
ify the conjecture. Interestingly, PVS generates a proof obligation because of a
consistency constraint imposed in the model: in order to be unlocked, the device
must be also powered on:

% Subtype TCC generated for

% symbolic execution trace

% expected type {sys: State | device(sys)‘powered_on

% AND NOT device(sys)‘session_locked}

symbolic_execution_trace_TCC2: OBLIGATION

confirm_strip(enter_patient_ID(...prepare_trolley(initial_state)...)

‘device‘powered_on

AND

confirm_strip(enter_patient_ID(...prepare_trolley(initial_state)...)

‘device‘session_unlocked

This detail has drawn attention to the fact that the device is battery powered,
and that wear and tear inevitably reduces the autonomy of the device. This can
be a source of disturbances during visits to several beds, because the clinician
powers on the device at the beginning of the visit and keeps the device powered
on until the visit completes. In some cases, the device may therefore run out of
power and require replacement with another one. This raises a question about
latent situations where the trolley may be left unattended for short periods of
time in order to collect another device.

Supporting Field Investigators with PVS 163

6 Related Work and Conclusions

Little work has been done on approaches that integrate formal methods and
empirical studies, and hardly any concrete examples can be found of case studies
involving real world systems. This is partially linked to the complexity of using
formal methods, which require a steep learning curve, and to additional barriers
(some real, some imagined) created by the current generation of user interfaces
for automated reasoning tools, which are essentially text-based and practically
inaccessible to non-expert users.

Wright, Fields and Merriam [15] investigated the possibility of defining a con-
ceptual framework for integrating formal methods and empirical approaches for
studying interactive systems. They argue that extant artefacts and informal un-
derstanding of the system can provide insights about usability properties that
might be of interest. This informal understanding can then be refined through
formal methods by generating design questions and evaluating design alterna-
tives, which can in turn be evaluated empirically, e.g., through prototypes. They
demonstrate the approach with an example based on a web browser. Fields [4]
applied the same approach to the analysis of a remote control system. Rukšėnas
et at [11] combined empirical studies and mathematical models to formalise the
relationship between salience and cognitive load revealed by lab experiments.
The outcome of the lab experiments was used to refine the salience rules defined
in the mathematical model, and the outcome of the model-based analysis was
able to generate new experimental hypotheses for researchers in cognitive sci-
ence. These works share with ours the argument that informal approaches and
formal methods have complementary roles in the analysis of the system.

In our previous works, we have shown that the integrated analysis proposed
by Wright, Fields and Merriam can be extended to the wider socio-technical
system. We demonstrated the utility of the approach when re-analysing field
study data from already completed field investigations performed in different
contexts and for different aims, including: use of drug infusion pump in a day
care unit [2], analysis of an emergency dispatch system [6,7], and analysis of
incidents reports [5,8].

In this work, we have explored the possibility of using the PVS verification
tool to support an investigator while conducting a field study. For the developed
models, PVS is able to generate proof obligations and proof attempts in seconds.
We have provided some evidence of the utility of the approach. As gaps and
inconsistencies are uncovered within and between the various specifications, new
questions are generated, which can be used to refine the field study. Also, the
formal specification can be refined as new facts are discovered— the two methods
feed each other.

Acknowledgements. CHI+MED: Multidisciplinary Computer-Human Inter-
action research for the design and safe use of interactive medical devices project,
EPSRC Grant Number EP/G059063/1. Extreme Reasoning, Grant Number
EP/F02309X/1.

164 P. Masci et al.

References

1. PVS models of field study at oncology ward (June 2012), PVS models
http://tinyurl.com/PVS-bloodglucosestudy

2. Blandford, A., Cauchi, A., Curzon, P., Eslambolchilar, P., Furniss, D., Gimblett,
A., Huang, H., Lee, P., Li, Y., Masci, P., Oladimeji, P., Rajkomar, A., Rukšėnas,
R., Thimbleby, H.: Comparing actual practice and user manuals: A case study
based on programmable infusion pumps. In: Eics4Med, the 1st Intl. Workshop on
Engineering Interactive Computing Systems for Medicine and Health Care, pp.
59–64. ACM Digital Library (2011)

3. Blandford, A., Furniss, D.: DiCoT: A Methodology for Applying Distributed Cog-
nition to the Design of Teamworking Systems. Interactive Systems, 26–38 (2006)

4. Fields, R.: Analysis of Erroneous Actions in the Design of Critical Systems. PhD
thesis, University of York (2001)

5. Masci, P., Curzon, P.: Checking User-Centred Design Principles in Distributed
Cognition Models: A Case Study in the Healthcare Domain. In: Holzinger, A., Si-
monic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 95–108. Springer, Heidelberg
(2011)

6. Masci, P., Curzon, P., Blandford, A., Furniss, D.: Modelling distributed cognition
systems in PVS. ECEASST 45 (2011)

7. Masci, P., Curzon, P., Furniss, D., Blandford, A.: Using PVS to support the anal-
ysis of distributed cognition systems. Submitted for publication to Innovations in
Systems and Software Engineering (2012)

8. Masci, P., Huang, H., Curzon, P., Harrison, M.D.: Using PVS to Investigate In-
cidents through the Lens of Distributed Cognition. In: Goodloe, A.E., Person, S.
(eds.) NFM 2012. LNCS, vol. 7226, pp. 273–278. Springer, Heidelberg (2012)

9. Roche. Accu-Chek Inform II System, Professional glucose testing for the wireless
age (August 2010)

10. Roche. Accu-Chek Inform System. Operator’s manual (November 2010)
11. Rukšėnas, R., Back, J., Curzon, P., Blandford, A.: Verification-guided modelling of

salience and cognitive load. Formal Aspects of Computing 21(6), 541–569 (2009)
12. Shankar, N., Owre, S.: Principles and Pragmatics of Subtyping in PVS. In: Bert,

D., Choppy, C., Mosses, P.D. (eds.) WADT 1999. LNCS, vol. 1827, pp. 37–52.
Springer, Heidelberg (2000)

13. NHS Trust. Accu-Chek Inform II Blood Glucose Meter Standard Operating Pro-
cedure (August 2011)

14. Westbrook, J.I., Ampt, A.: Design, application and testing of the Work Observation
Method by Activity Timing (WOMBAT) to measure clinicians’ patterns of work
and communication. International Journal of Medical Informatics 78 (2009)

15. Wright, P.C., Fields, R., Merriam, N.A.: From formal models to empirical evalua-
tion and back again. In: Formal Methods in Human-Computer Interaction, ch. 13,
pp. 283–314. Springer, Berlin (1997)

http://tinyurl.com/PVS-bloodglucosestudy

Model-Based Evaluation

of the Availability of a CBTC System

Alessio Ferrari, Massimiliano L. Itria,
Silvano Chiaradonna, and Giorgio O. Spagnolo

ISTI-CNR, Via G. Moruzzi 1, Pisa, Italy
{Ferrari,Itria,Chiaradonna,Spagnolo}@isti.cnr.it

http://www.isti.cnr.it/

Abstract. A metro control system is a software/hardware platform that
provides automated mechanisms to enforce the safety of a metropoli-
tan transportation system. In this field, the current technical trend is
the Communications-based Train Control (CBTC) solution. CBTC plat-
forms are characterized by a continuous wireless interaction between
trains and ground controls. Several degrees of automation are provided,
from basic traffic monitoring to unattended train operation. Besides
safety issues, a CBTC system is also required to guarantee a high level
of availability. These platforms are normally composed of several sub-
systems and devices, and estimating the overall availability of the system
is not a trivial task. Stochastic Activity Networks (SAN) are a power-
ful formalism that allows modelling and evaluating complex distributed
systems. In this paper, a study is presented that shows how SAN models
can be employed to evaluate the availability attributes of a CBTC sys-
tem. The current results show that the SAN technology and the analysis
tool adopted, named Möbius, are mature for a profitable employment in
industrial practice.

Introduction

Communications-based Train Control (CBTC) is the last technological frontier
for signalling and train control in the metro market [8,4]. CBTC systems offer
flexible degrees of automation, from enforcing control over dangerous operations
acted by the driver, to the complete replacement of the driver role with an au-
tomatic pilot and an automatic on-board monitoring system. CBTC systems
are typically employed in traffic intensive environments, with strong timing and
service constraints. Therefore, such platforms are required to provide high avail-
ability [7] to ensure readiness of correct service. Another typical issue of the
development of CBTC products concerns the modularity of the system. Indeed,
when developing a CBTC product, a company has to take into account that ev-
ery metro installation is different from the other, and the customers might have
different requirements for the control system that they wish to purchase. There-
fore, companies that develop CBTC products are required to provide different
versions or configurations of their CBTC platform.

P. Avgeriou (Ed.): SERENE 2012, LNCS 7527, pp. 165–179, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.isti.cnr.it/

166 A. Ferrari et al.

Formal methods provide powerful abstraction and analysis tools to evaluate
availability attributes on systems with high modularity requirements. In metro
and rail transport systems, several formal approaches have been applied to per-
form availability estimation. Among others, Patra A.P. et al. [9] evaluates the
availability of a railway infrastructure through a Petri Net model. The estimated
availability is then used to compute the capacity of the infrastructure. Zhu et
al. [12] study the availability issue of WLAN-based train-ground communication
schemes in CBTC systems. In this case, the availability is analysed using a Con-
tinuous Time Markov Chain (CTMC) model. Xu et al. [11] study the CBTC
communication system considering multiple redundancy configurations. In this
work, availability properties are analyzed using a Stochastic Reward Net (SRN)
model.

Within an effort of defining a general approach for obtaining customizable
CBTC solutions, we have considered model-based analysis to evaluate the avail-
ability attributes of a CBTC product. To this end, we have exploited the Stochas-
tic Activity Networks (SAN) formalism. The system architecture used for the
experiments presented in this paper is derived through a product line-based
method [3]. The method enforces the reusability of the components and the sys-
tem modularity typically required by the CBTC market. Given the flexibility
of the SAN modelling language, the analysis approach can be applied with lim-
ited effort also to different configurations of the system (i.e., different product
instances). Furthermore, the availability evaluated can be used to tune the selec-
tion of the components for the final version of a product configuration, by taking
into accout market requirements and cost-related concerns. The presented work
is part of an academic study applied to an industrial system that is currently
under development.

The paper is structured as follows. In Sect. 1, a description of the CBTC
working principles is presented. In Sect. 2, an overview of the adopted approach
is given. Sect. 3 describes the system architecture – both functional and physical
– employed in our case study. Sect. 4 focuses on the SAN modelling and analysis,
and presents the evaluation of the current results of the CBTC availability. In
Sect. 5, conclusions and final remarks are given.

1 Communications-Based Train Control Systems

CBTC systems [8,4] are novel signalling and control platforms tailored for metro.
These systems provide a continuous automatic train protection as well as im-
proved performance, system availability and operational flexibility of the train.
The conventional signaling/control systems that do not use a CBTC approach
are normally called fixed block systems. In such platforms the distance between
trains is computed based on fixed-length sections. The problem with these sys-
tems is the limited amount of trains that can move on a line at the same time.

CBTC overcomes this problem by introducing the moving block principle: the
minimum distance between successive trains is no longer calculated based on
fixed sections, but according to the rear of the preceding train. This distance

SAN Applied to CBTC Systems 167

is called Movement Authority (MA), and is the limit distance that cannot be
shortened by a running train. This approach ensures a reduction of the allowed
distance between two trains running in the same direction. Hence, a larger num-
ber of trains can move on the same line.

From the architectural point of view, CBTC systems are characterized by a
division in two parts: onboard equipment and wayside equipment. The first is
installed on the train and the latter is located at a station or along the line.
A continuous wayside-to-train and train-to-wayside data communication is pro-
vided using radio transmission [6]. The main element of the onboard equipment
is the Onboard Automatic Train Protection (ATP) system, and the main ele-
ment of wayside equipment is the Wayside ATP system. The former computes
the train speed and location, and sends this information to the latter. Therefore,
the wayside ATP is aware about the exact position and speed of any train along
the line. This information is used to compute the MAs that are sent to each
train. The Onboard ATP receives the MA and computes a dynamic braking
curve to ensure safe separation of trains. Furthermore, this system controls that
the speed limit is not exceeded.

CBTC systems also allow automatic train control functions by implementing
both the ATO (Automatic Train Operation) and the ATS (Automatic Train
Supervision) systems. The ATO enlables the absence of the driver on board the
train, ensuring the fully automatic management of the train in combination with
the ATP. The ATS offers functions related to the supervision and management of
the train traffic, such as train routing, adjustment of schedules and determination
of speed restrictions within certain areas. A CBTC system might include also an
interlocking (referred in the following as IXL). The IXL monitors the status of
the objects in the railway yard (e.g., switches, signals’ status) and, when routing
is required by the ATS, allows or denies the routing of trains in accordance to
the railway safety and operational regulations.

2 CBTC Availability Evaluation Method

Fig. 1 depicts the process followed to evaluate availability attributes for a CBTC
product by means of SAN modelling and analysis. The approach adopted starts
from a representation of the functional architecture of the CBTC product in
terms of functionalities (Functional Product Architecture). The Functional Prod-
uct Architecture is derived from a product line-based process described in our
previous work [3]. Such an architecture does not represent the system in terms
of the devices, but it comprises the CBTC functionalities that are implemented
by devices of the product.

Starting from the Functional Product Architecture we identify the devices
or sub-systems that are available for building the product. They can be either
platforms internally developed by the company, or Commercial Out of The Shelf
(COTS) products.

The first phase of the method, named Product Definition (described in Sect. 3),
allows defining a physical architecture in terms of components (Physical Prod-
uct Architecture). In this phase, the desired functionalities are apportioned to

168 A. Ferrari et al.

Product BuildingProduct Definition

Functionalities
to Components

Mapping

Functional
Product

Architecture

Physical
Product

Architecture

Failure
Modelling

Components
Failure Rate/TTR

AcquisitionComponents

SAN
Modelling SAN Model Möbius

Analysis

Product Availability

Fig. 1. Overview of the process adopted

a subset of the available components (Functionalities to Components Mapping).
Moreover, the failure rates and the time to repair (TTR) of the selected compo-
nents are also considered (Components Failure Rate/TTR Acquisition).

The second phase of themethod, namedProductBuilding (described in Sect. 4),
leads to the evaluation of the availability attributes of the product. First, Failure
Modelling is performed tomodel possible failure categories. The scenarios are used
to distinguish which failures affect the system availability. After this analysis, a
SAN model is built using the previously evaluated failure rate/TTR of the com-
ponents. The model is finally analysed through the Möbius tool, which produces
the Product Availability as output. This information is used to tune the selection
of the components for the final product, by taking into accout the required avail-
ability of the system, as well as cost-related concerns.

3 CBTC Product Definition

The CBTC product functional architecture is defined in terms of CBTC func-
tionalities. Such an architecture is the output of a process performed according
to a product-line based method. The choice of expressing the architecture in
terms of functionalities enables major abstraction, and eases compliance with
the CBTC standards [4,5]. More details are reported elsewhere [3].

We are here interested to develop a physical architecture from this functional
architecture. The physical architecture is focused on the components that imple-
ment the functionalities. The components are selected between the devices and
subsystems that are available on the market, or that the company has already
produced for previous systems.

3.1 Functional Architecture

A simplified version of the product functional architecture defined for our case
study is depicted in Fig. 2. Three main systems are involved: the Wayside ATP,
the Onboard ATP, and the ATS1. Arrows among functionalities inside a system

1 For the sake of simplicity, the ATO system is not considered in our case study.

SAN Applied to CBTC Systems 169

are usage arrows. If a usage arrow is directed from a functionality to another, this
implies that the former uses a service of the latter. Arrows among systems are
message arrows. If a message arrow is directed from a functionality to another,
this implies that the former sends a message – the label of the arrow – to the
latter.

Fig. 2. CBTC functional architecture

The functionalities that the three systems are required to implement are sum-
marized below.

Onboard ATP

– Driver Interaction. This functionality manages the interaction with the
driver by accessing the information provided by all the other modules;

– Train Location Determination. This functionality computes the position
of the train;

– Safe Train Separation. This functionality uses the location information of
the train to compute the braking curve and ensure safe separation of trains;

– Braking. This functionality enforces brakes when required by the system
(Safe Train Separation) or the operator (Driver Interaction);

– Onboard/Wayside Communication. This functionality provides bi-di-
rectional communication between the Onboard ATP and the Wayside ATP.
It is mainly used to receive the MA, and to send the Train Location
information.

Wayside ATP

– Movement Authority Determination. This functionality computes the
MA message to be sent to the train based on the position of the other trains
and on the railway status;

– Route Interlocking. This functionality controls points and signals accord-
ing to the route requested by the ATS (see the Train Routing functionality
of the ATS);

– Wayside/Onboard Communication. This functionality provides bi-di-
rectional communication between the Wayside ATP and the Onboard ATP.

– ATP/ATS Communication. This functionality provides bi-directional
communication between the Wayside ATP and the ATS. In particular, this
functionality allows receiving the route requested by the ATS.

170 A. Ferrari et al.

ATS

– Train Routing. This functionality allows requiring the route for the train in
accordance with the train service data, predefined routing rules and possible
restrictions to the movement of the train;

– ATS/ATP Communication. This functionality provides bi-directional
communication between the ATS and the Wayside ATP.

3.2 Physical Architecture

The functionalities defined in the functional architecture are mapped to actual
components. The definition of a complete physical architecture for a CBTC sys-
tem is out of the scope of this paper. Here, we describe the components that
impact on the availability of the CBTC system. The product physical architec-
ture derived for our case study is informally represented in Fig. 3.

Fig. 3. CBTC physical architecture

Table 1 summarizes the mapping between functionalities and components
that have been performed to define the physical architecture. Table 1a collects
the functionalities apportioned to the onboard equipment. Table 1b collects the
functionalities apportioned to the wayside equipment.

The Onboard ATP (OATP) is the core component of the onboard equip-
ment, which was already identified as a subsystem in the functional architecture
diagram. This component requires additional devices to properly implement its
functionalities:

– Odometer system (ODO): the component includes the sensors and the
board that are used for the determination of the train speed and location;

– Train Interface Unit (TIU): the component has the primary role of con-
trolling the braking and traction system;

SAN Applied to CBTC Systems 171

Table 1. Mapping between CBTC functionalities and components

(a) Onboard equipment

Functionality
Component

OATP ODO BTM PB TIU TWC HMI

Train Location Determination X X X X

Braking X X

Safe Train Separation X

Onboard/Wayside Communication X X

Driver Interaction X X

(b) Wayside equipment

Functionality
Component

LAN WCS WATP IXL LEU AB ATS

Wayside/Onboard Communication X X X

Movement Authority Determination X

Route Interlocking X X X X

ATP/ATS Communication X X

ATS/ATP Communication X X

Train Routing X

– Human Machine Interface (HMI): this is the control panel that allows
interaction with the driver;

– Balise Trasmission Module (BTM): the component processes the infor-
mation coming from an Antenna that reads the messages received from the
Active Balises (AB) and Passive Balises (PB) (see below for details);

– Train Wayside Communication (TWC): the component allows bi-dire-
ctional communication with the wireless wayside devices.

The OATP processes the information coming from all these devices and controls
their behaviour.

The Wayside ATP is the core component of the wayside equipment. As the
Onboard ATP, this component requires additional components to implement its
functionalities:

– Wireless Communication System (WCS): provides bi-directional wire-
less communication with the OATP;

– Interlocking System (IXL): provides route interlocking functionalities.
When the ATS requires a route, the route is forwarded by the Wayside ATP
to the IXL. The IXL verifies that the route is free of other trains and is
not conflicting with other routes. In such a case, the IXL locks and sets the
sitches belonging to the route, and properly sets the wayside signals.

– Active Balise (AB): the component that embeds the aspect of a signal.
When the train passes, the Antenna placed below the train can read the
information concerning the signal aspect from the AB.

172 A. Ferrari et al.

– Lineside Electronic Unit (LEU): controls the Active Balises (AB) to
embed the aspect of the signal (e.g., red, green, yellow). Information on the
signal aspect are received from the IXL.

– Passive Balise (PB): the component that embeds absolute position infor-
mation w.r.t. the beginning of the line. When the train passes, the Antenna
placed below the train can read the information concerning its current lo-
cation from the PB. Therefore, the position computed onboard through the
ODO can be adjusted according to the information received.

In our simplified architecture, the ATS system requires solely the Local Area
Network (LAN) component, to communicate with the WATP. Failures occur-
ring in any of the described devices may affect the system availability. Failures
occurring in any of the described devices may affect the system availability. For
example, if the TIU component fails, the system will brake automatically. Af-
terwards, the train will not be able to provide service, since the traction system
is impaired.

3.3 Components Parameters

The parameters considered for the evaluations are the failure rate of the devices
and the time to repair or substitute the failed device (TTR).

Table 2. Parameters values

Device
Onboard Wayside

BTM OATP TWC TIU IXL LAN WCS LEU WATP

Failure Rate 10−5 10−6 10−5 10−5 10−6 10−5 10−5 10−6 10−6

TTR 0.5 1

The failure rate is the frequency with which a component fails (expressed in
failures per hour). The TTR represents the time to repair or the time to substi-
tute the failed device (expressed in hours). We assume that the TTR includes
also the time due to the detection of the damage, and the time required to the
maintenance personnel to travel to the site of the failure.

The values of these parameters are normally available to the system archi-
tect. Indeed, they are either evaluated by the company – if the components are
internally developed – or provided with the COTS devices – in case commercial
components are employed.

In our analysis, we use the default values reported in Table 2. They are hy-
pothetical, but realistic ones, and are used just for showing the potentials of our
analysis method. However, to take into consideration to some extent variations
of the assumed settings, we performed a sensitivity analysis on the failure rates
and TTRs of the devices.

SAN Applied to CBTC Systems 173

4 CBTC Product Building

The physical architecture described is considered to define a failure model for
the CBTC system. Then, a SAN model is defined, and analysis is performed
through the Möbius tool to evaluate the availability of the system.

4.1 Measure of Interest

The Availability measure for railway systems is defined in [1] as follows:

A =
MTBF

MTBF +MDT
.

MTBF (Mean Time Between Failure) is the mean time between failures of the
system. MDT (Mean Down Time) is the average time that the system is non-
operational. MDT includes all downtime associated with repair, corrective and
preventive maintenance, self imposed downtime, and any logistics or adminis-
trative delays. In our analysis A represents the steady-state probability that the
system works properly.

4.2 Failure Model

The failure model defines the types of system failures, the types of device failures
and the relationships among devices failures and system failures.

The considered system failure categories are the ones described in the EN
50126 standard [1], concerning the Reliability Availability Maintainability and
Safety (RAMS) characteristics of railway systems. Such categories are as follows.

A Significant Failure is one that fulfills the following description: a failure
that prevents train movement or causes a delay to service greater than a specified
time and/or generates a cost greather than a specified level.

A Major Failure is a failure that is not Significant, but fulfills any of the
following descriptions: (1) a failure that must be rectified for the system to
achieve its specified performance; (2) a failure that does not cause a delay or
cost greater than the minimum threshold specified for a significant failure.

A Minor Failure is failure that: (1) does not prevent a system achieving its
specified performance; (2) does not meet criteria for significant or major failures.
Minor failures do not affect the system availability.

In [1] only permanent failures are considered, since transient failures do not
affect RAMS attributes.

Table 3 classifies the CBTC system failures according to the failure categories
above. Only failures belonging to the major or significant failure category affect
the availability of the CBTC system. Hence minor failures are not considered.

Each failure is considered to occur in a set of hardware devices (or in one
device only). When one of these combinations happens (i.e., devices fail at the
same time) a major or significant failure is generated in the system.

174 A. Ferrari et al.

Table 3. Classification of failures

Devices Combination (*: and, +:or)
Failure

Major Significant

(TWC*LEU)+(TWC*BTM)+
X

(LAN*WCS*LEU)+(LAN*WCS*BTM)

(OATP+IXL)*((LAN*WCS)+TWC) X

IXL X

TIU X

OATP X

WATP X

4.3 SAN Modelling

In order to evaluate the availability measure A, the CBTC system has been
modelled through the SAN formalism [10] and the Möbius tool.

The SAN formalism is a stochastic extension of Petri nets based on four
primitives: places, activities, input gates and output gates. Places and activities
represent the state and the actions of the modelled system, respectively. Input
gates control the enabling of activities and define the marking changes that will
occur when an activity completes. Output gates define the marking changes when
an activity completes. Cases (small circles on activities) are used to represent
uncertainty upon completion of an activity. The attributes of the SAN primitives
are defined by using sequences of C++ statements.

Möbius is a powerful multi-formalism/multi-solution tool, that supports the
hierarchical composition of different submodels [2] thanks to the Join and Rep
state-sharing compositional operators. Join is used to compose two or more sub-
models. Rep is used to construct a model consisting of a number of replicas of a
submodel.

Fig. 4 shows the composed model representing the CBTC system. Each node
represents either an atomic SAN model (Submodel), or a model obtained by
composing SAN models by means of the Join or Rep operators.

The Join OnBoard combines the atomic SAN models of the devices OATP,
TIU, ODO, BTM and TWC. It represents the onboard control system. The
Rep Trains models the presence of multiple trains along the line, through the
replication of the OnBoard model. The Join TrackSide combines the atomic
SAN models of the devices IXL, WCS, LAN, WATP and LEU. It represents
the wayside control system. The Join CBTC zone composes all the onboard
systems models with the wayside system model. It represents the overall CBTC
system model. The SystemStatus model is used to evaluate measures related
the CBTC system model. This approach allows performing analyses on different
configurations of CBTC systems in order to evaluate how changes in the system
can affect the measures of interest.

All devices in the CBTC system are modelled using an atomic model. Each
device fails independently from each other. The time to the failure of each device

SAN Applied to CBTC Systems 175

Fig. 4. Composed System

Fig. 5. Lineside Electronic Unit (LEU) SAN

is modelled by a exponentially distributed timed activity. Fig. 5 shows a SAN
model representing a LEU device. One token in the place labeled OK represents
the proper working status of the device. The time to its failure is modelled by the
timed activity labeled fail detected. When the fail detected activity completes,
the SAN goes in failure status, moving the token from the place OK to the place
failure. At this point, the token remains in the failure place until the device
is repaired (i.e., until the TTR timed activity completes). The TTR activity
represents the time to repair or substitute the failed device. When the activity
fail detected completes, a token is moved in the shared place LEU fail. The place
LEU fail is shared with the SAN SystemStatus, shown in Fig. 6. This model
represents the whole failure status of the CBTC system.

The SAN SystemStatus receives a token from the SAN LEU through the
LEU fail shared place. So the immediate activity f6 in Fig. 6 is enabled when
the shared place LEU fail contains a token. When f6 completes, a token is
added to the place LEU failure of the SAN SystemStatus. When the LEU device
is repaired, a token is put in the shared place LEU OK of the SystemStatus
model by the LEU model, so the immediate activity r6 completes, and a token
is moved out from the place LEU failure of the SystemStatus SAN. All the other
hardware devices involved in the CBTC system, both onboard and wayside, are
modelled in a similar way, considering different failure rates and different TTR.

In general, every time a device fails in the system, a token is put in one of
failure places of the SystemStatus SAN, generally calledDEVICE NAME failure.
Each of these places contains a number of tokens equal to the number of the

176 A. Ferrari et al.

failures produced by the devices of the same type. For example, if two BTM
devices fail and they remain in failure state in a shared interval of time, the place
BTM failure contains two tokens. When a BTM device is repaired, a token is
removed from that place. When a major or significant failure happens, the input
gates of SystemStatus SAN also put a token in the shared place fail in and so
a token is put in the place failure. Computing the probability that the place
OK in Fig. 6 contains a token, we evaluate the availability A of the system as
the probability of the system to work properly without any major or significant
failure.

Fig. 6. SystemStatus SAN

SAN Applied to CBTC Systems 177

4.4 Numerical Evaluation

For the scope of this paper, we evaluated the unavailability U of the system
defined as: U = 1 − A. For railway systems, unavailability must be at most
2·10−4. A steady state analysis has been performed using the simulator provided
by the Möbius tool. Each numerical result is obtained with a confidence interval
of 1% and a confidence level set to 0.95.

Fig. 7 and Fig. 8 show the impact on U of the failure rates of different devices,
and of different times TTR to repair a device. The straight line ≤ 2 · 10−4

represents the threshold of maximum unavailability allowed.
Fig. 7a plots the values of the unavailability U , as a function of the failure

rate of a single device, for different devices OATP, TIU, IXL and WATP. It is
interesting to note that, among the devices considered in the analysis, TIU is
the most critical device. In fact, the failure rate of TIU affects more than the
others the availability of the system.

10-5

10-4

10-3

10-2

10-1

10-7 10-6 10-5 10-4 10-3

U
na

va
ila

bi
lit

y
U

 (
pr

ob
ab

ili
ty

)

Failure rate (for hour)

OATP
TIU
IXL

WATP
U ≤ 2⋅10-4

(a)

10-4

10-3

10-2

10-1

0.5 1 2 4 8 16 32

U
na

va
ila

bi
lit

y
U

 (
pr

ob
ab

ili
ty

)

TTRonboard (hours)

k=16.00
k=8.00
k=4.00
k=2.00
k=1.00
k=0.50
k=0.25

U ≤ 2⋅10-4

(b)

Fig. 7. Expected unavailability U of the CBTS system as a function of the failure
rate of a single device, for different devices OATP, TIU, IXL and WATP (a), and as a
funtion of TTRonboard, for different values of k = 0.25, . . . , 16 (b)

Fig. 7b plots the values of the unavailability U as a function of the repair time
TTRonboard of the devices on board of the train. Different values of the repair
time TTRwayside of the wayside devices are considered, where TTRwayside =
k · TTRonboard. This figure shows that, for values of k ≤ 32, the impact of k on
the unavailability U is not significant, and for values of TTRonboard ≥ 0.5 hours,
the unavailability requirement, U ≤ 2 · 10−4, is not satisfied.

Fig. 8a and Fig. 8b plot the values of the unavailability U , as a function of
the failure rate of the single device TIU and WATP, respectively, for different
values of TTRonboard = 0.5, 1, . . . , 32. Fig. 8a highlights that, also for values of
TTRonboard greater than 0.5 hours (and TTRwayside > 1 hour) and only for
low values of failure rate of the device TIU, U is under the allowed threshold
and satifies the requirement U ≤ 2 · 10−4. On the contrary, Fig. 8b shows that,
when the failure rate of the TIU component is fixed to the default considered

178 A. Ferrari et al.

10-5

10-4

10-3

10-2

10-1

100

10-7 10-6 10-5 10-4 10-3

U
na

va
ila

bi
lit

y
U

 (
pr

ob
ab

ili
ty

)

Failure rate of TIU (for hour)

TTRonboard=32.00
TTRonboard=16.00

TTRonboard=8.00
TTRonboard=4.00
TTRonboard=2.00
TTRonboard=1.00

TTRonboard=0.50
U ≤ 2⋅10-4

(a)

10-4

10-3

10-2

10-1

10-7 10-6 10-5 10-4 10-3

U
na

va
ila

bi
lit

y
U

 (
pr

ob
ab

ili
ty

)

Failure rate of WATP (for hour)

TTRonboard=32.00
TTRonboard=16.00

TTRonboard=8.00
TTRonboard=4.00
TTRonboard=2.00

TTRonboard=1.00
TTRonboard=0.50

U ≤ 2⋅10-4

(b)

Fig. 8. Expected unavailability U of the CBTS system as a function of the failure
rate of the single device TIU (a) and WATP (b) for different values of TTRonboard =
0.5, 1, . . . , 32

value 10−5, lowering the failure rate of the WATP device and the TTR with
respect to the assumed default values does not bring significant improvements
to the availability measure. This confirms the results of the analyses shown in
the previous figures, in particular the criticality of the TIU device.

5 Conclusion

This paper outlines an approach based on Stochastic Activity Networks (SAN)
analysis for the evaluation of availability attributes of a Communications-based
Train Control (CBTC) system. The approach is applied on a reduced version
of a CBTC physical architecture, which is derived through a product-line based
approach. Furthermore, we have shown how different failure rates of different
components and different times to repair affect the availability measure.

Current results show that the SAN modelling formalism is a proper tool to
model failure modes of a system that satisfy the CBTC functional requirements.
Furthermore, availability attributes for the system can be computed in a matter
of minutes by means of the Möbius tool. Different configurations of the physical
architecture can be evaluated and compared with minimal re-factoring effort at
the model level.

Future works concern the implementation of the approach on different con-
figurations of a real system, with precise failure rates and well defined compo-
nents provided by our industrial partners. Integration of the approach with a
safety analysis strategy to identify safety-related properties of the system is also
foreseen.

SAN Applied to CBTC Systems 179

References

1. CENELEC. EN50126 Railway Applications - The Specification and Demonstration
of Reliability, Availability, Maintainability and Safety (RAMS) (1997)

2. Courtney, T., Gaonkar, S., Keefe, K., Rozier, E.W.D., Sanders, W.H.: Möbius 2.3:
An extensible tool for dependability, security, and performance evaluation of large
and complex system models. In: 39th Annual IEEE/IFIP Int. Conf. on Dependable
Systems and Networks (DSN 2009), pp. 353–358 (2009)

3. Ferrari, A., Spagnolo, G.O., Martelli, G., Menabeni, S.: Product Line Engineering
Applied to CBTC Systems Development. In: 5th International Symposium On
Leveraging Applications of Formal Methods, Verification and Validation, ISOLA
2012 (to appear, 2012)

4. Institute of Electrical and Electronics Engineers. IEEE Standard for Communi-
cations Based Train Control (CBTC) Performance and Functional Requirements.
IEEE Std 1474.1-2004 (Revision of IEEE Std 1474.1-1999) (2004)

5. International Electrotechnical Commission. IEC 62290-1: Railway applications: Ur-
ban guided transport management and command/control systems. Part 1: System
principles and fundamental concepts (2007)

6. Kuun, E.: Open Standards for CBTC and CBTC Radio Based Communications.
In: APTA Rail Rail Transit Conference Proceedings (2004)

7. Nyström, B.: The use of availability concepts in the railway system. International
Journal of Performability Engineering, 103–118 (2009)

8. Pascoe, R.D., Eichorn, T.N.: What is Communication-Based Train Control? IEEE
Vehicular Technology Magazine (2009)

9. Patra, A., Kumar, U., Kraik, P.: Availability target of the railway infrastructure: an
analysis. In: 2010 Proceedings - Annual Reliability and Maintainability Symposium
(RAMS), pp. 1–6 (2010)

10. Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: Formal Definitions and
Concepts. In: European Educational Forum: School on Formal Methods and Per-
formance Analysis, pp. 315–343 (2000)

11. Xu, T., Tang, T., Gao, C., Cai, B.: Dependability analysis of the data commu-
nication system in train control system. Science in China Series E: Technological
Sciences 52, 2605–2618 (2009)

12. Zhu, L., Yu, F., Ning, B.: Availability Improvement for WLAN-Based Train-
Ground Communication Systems in Communication-Based Train Control (CBTC).
In: 2010 IEEE 72nd Vehicular Technology Conference Fall (VTC 2010-Fall),
pp. 1–5 (2010)

Author Index

Aktemur, Barış 106

Ben Hamida, Amira 134
Bertolino, Antonia 134
Blandford, Ann 150

Calabrò, Antonello 134
Chiaradonna, Silvano 165
Curzon, Paul 150

De Angelis, Guglielmo 134
Deleris, Yannick 32

Fabre, Jean-Charles 32
Fayollas, Camille 32
Ferrari, Alessio 165
Furniss, Dominic 150

Geisel, Jacob 63
Gonzalez, David 63
Gorbenko, Anatoliy 121
Gülcü, Koray 106

Hamid, Brahim 63
Harrison, Michael D. 150

Imtiaz Khan, Yasir 76
Itria, Massimiliano L. 165

Kharchenko, Vyacheslav 121

Lago, Nelson 134
Laibinis, Linas 16
Lesbegueries, Julien 134
Lilis, Yannis 1

Masci, Paolo 150
Muccini, Henry 91

Navarre, David 32

Palanque, Philippe 32
Pelliccione, Patrizio 91
Pereverzeva, Inna 16
Prokhorova, Yuliya 47

Risoldi, Matteo 76
Romanovsky, Alexander 121

Savidis, Anthony 1
Sözer, Hasan 106
Spagnolo, Giorgio O. 165

Tarasyuk, Olga 121
ter Beek, Maurice H. 91
Troubitsyna, Elena 16, 47

Ziani, Adel 63

	Title
	Preface
	Organization
	Table of Contents
	Fault Tolerance and Exception Handling
	Implementing Reusable Exception Handling Patterns with Compile-Time Metaprogramming
	Introduction
	Exception Handling Patterns
	Deploying Exception Handling
	Exception Policies
	Process Modeling Patterns
	Pattern Combinations

	Related Work
	Conclusion
	References

	A Case Study in Formal Development of a Fault Tolerant Multi-robotic System
	Introduction
	Modelling and Refinement in Event-B
	Multi-robotic Systems
	A Case Study: Cleaning a Territory
	Formal Development Strategy

	Development of a Multi-robotic System in Event-B
	Abstract Model
	First Refinement: Zone Cleaning
	Second Refinement: Sector Cleaning
	Third Refinement: Introducing Agents
	Fourth Refinement: A Model of Broadcasting
	Fifth Refinement: Introducing Robot Failures
	Sixth Refinement: Introducing Base Station Failures

	Discussion
	References

	Fault-Tolerant Interactive Cockpits for Critical Applications: Overall Approach
	Introduction
	Problem Statement
	Interactive Cockpit Architecture
	Cockpit Architecture Overview: An Example
	Interactive Software Organisation

	Overall Approach
	Main Hypotheses and Functional Failures to Cover
	Using ICO Formal Modeling to Design Interactive Cockpits
	Introducing Dependability Mechanisms ino Interactive Cockpits

	Fault-Tolerant Architecture
	Architectural Issues
	Performance Issues: Discussion

	Conclusion and Perspectives
	References

	Safety Modeling
	Linking Modelling in Event-B with Safety Cases
	Introduction
	Background
	Safety Cases
	Modelling in Event-B
	Refinement and Verification in Event-B

	An Approach to Linking Modelling in Event-B with Safety Cases
	Requirements Classification
	Linking Safety Cases with the Event-B Framework
	Verification Support for Safety Case Arguments

	Case Study – Sluice Gate Control System
	Related Work and Conclusions
	Related Work
	Conclusions

	References

	Safety Lifecycle Development Process Modeling for Embedded Systems - Example of Railway Domain
	Introduction
	Development Context, Concepts and Definitions
	Development Context
	Safety Lifecycle: Definition and Concepts
	Introduction to the Example

	Repository-Centric Process Metamodel (RCPM)
	Safety Concern of RCPM Metamodel
	Checkpoint
	Safety Relationships

	Naravas Process Model Editor
	Case Study: Example of Engineering Process for Railway Domain
	State of the Art
	Conclusion
	References

	Supporting Evolution
	Language Enrichment for Resilient MDE
	Introduction
	Background and Previous Work
	The DREF Metamodel

	Related Work
	Composing DREF with other Languages
	Approach 1: Using DREF Stand-Alone
	Approach 2: Metamodel Parameterization
	Approach 3: Metamodel Interfacing

	Composition Example: DREF + APN
	Case Study: Resilient Evolution of a Car Crash System
	Entities and Properties
	DREF Model without Composition (Stand-Alone)
	DREF Model Composed with APNs through Reference
	DREF Model Composed with APNs through Inheritance

	Conclusion
	References

	Assume-Guarantee Testing of Evolving Software Product Line Architectures
	Introduction
	Problem Setup
	Assume-Guarantee Reasoning and Testing
	Assume-Guarantee Testing of Evolving Software Product Line Architectures
	Applying Assume-Guarantee Testing to Evolving Product Line Architectures
	Testing Strategy: Selection of Products to Retest

	Related Work
	Conclusions and Future Work
	References

	Resilience in Service-Oriented Computing
	FAS: Introducing a Service for Avoiding Faults in Composite Services
	Introduction
	Background and the Problem Statement
	The Solution Approach
	Mathematical Analysis
	Evaluation
	Realization of the Approach
	Experimental Setup
	Results and Discussion
	Threats to Validity

	Related Work
	Conclusions and Future Work
	References

	Dependability of Service-Oriented Computing: Time-Probabilistic Failure Modelling
	Introduction
	SOA Failure and Servicing Model
	Servicing Outcomes and Web Services Failures
	Simple and Complex Dependability Measures
	Failure Model Assumptions and Properties

	Average Servicing and Waiting Time Assessment Models
	An Example of Average Servicing and Waiting Times Estimation
	Conclusions
	References

	Monitoring Service Choreographies from Multiple Sources
	Introduction
	Proposed Approach
	Infrastructure-Oriented Monitoring
	Business Service Monitoring
	Interception Mechanisms
	Runtime Quality Assessment
	Choreography Level Monitoring

	Event-Oriented Monitoring
	Case Study
	Related Work
	Conclusions and Future Work
	References

	Applying Formal Methods in Case Studies
	Supporting Field Investigators with PVS: A Case Study in the Healthcare Domain
	Introduction
	Integrating Field Studies and Formal Methods
	Glucose Monitoring Procedure in the Oncology Ward of a Hospital
	Blood Glucose Meter and Accessory Box
	Normative Procedure from the User Manual
	Actual Procedure Observed at the Hospital Ward

	PVS Models
	Modelling Approach
	Modelling Language
	Developed Models

	Using PVS to Support the Field Investigation: Analysis and Results
	Issues Emerged while Developing the PVS Models
	Issues Raised by PVS When Checking Model Consistency

	Related Work and Conclusions
	References

	Model-Based Evaluation of the Availability of a CBTC System
	Communications-Based Train Control Systems
	CBTC Availability Evaluation Method
	CBTC Product Definition
	Functional Architecture
	Physical Architecture
	Components Parameters

	CBTC Product Building
	Measure of Interest
	Failure Model
	SAN Modelling
	Numerical Evaluation

	Conclusion
	References

	Author Index

