
Chapter 6
Business Information Sector

Sebastian Wieczorek, Vitaly Kozyura, Wei Wei, Andreas Roth,
and Alin Stefanescu

Abstract Enterprise software helps modern corporates to automate their businesses
in order to run efficiently and economically. We report a story of successful in-
troduction of formal methods to business software development. This deployment
came in three phases: modelling, formal verification and model-based testing. For
each phase, we describe a few representative deployment cases in detail, and discuss
the problems that we encountered and the decisions that we had to make. The work
discussed here was carried out to focus on issues of interest to SAP, the world’s
leading provider of enterprise software.

6.1 Introduction to the Business Sector

Business application software has nowadays become indispensable to businesses
because it provides the backbone and drives their activities through automation. For
many areas, including manufacturing, supply chains, sales and human resources,
data and services of various organisational units across the entire company need to
be consistently integrated. With complex configuration options and business pro-
cesses, it is no wonder that such software systems are very large and complex. Fur-
thermore, business software constantly evolves and adapts to fast-changing business
environments and requirements.

S. Wieczorek (B) · V. Kozyura · W. Wei · A. Roth
SAP AG, Darmstadt, Germany
e-mail: sebastian.wieczorek@sap.com

V. Kozyura
e-mail: v.kozyura@sap.com

W. Wei
e-mail: wei01.wei@sap.com

A. Roth
e-mail: andreas.roth@sap.com

A. Stefanescu
University of Pitesti, Pitesti, Romania
e-mail: alin.stefanescu@upit.ro

A. Romanovsky, M. Thomas (eds.), Industrial Deployment of System Engineering
Methods, DOI 10.1007/978-3-642-33170-1_6,
© Springer-Verlag Berlin Heidelberg 2013

63

mailto:sebastian.wieczorek@sap.com
mailto:v.kozyura@sap.com
mailto:wei01.wei@sap.com
mailto:andreas.roth@sap.com
mailto:alin.stefanescu@upit.ro
http://dx.doi.org/10.1007/978-3-642-33170-1_6


64 S. Wieczorek et al.

In response to these challenges, two important methodologies, namely Service-
Oriented Architecture (SOA) and Model-Based Development (MBD), have been
adopted for business software development in the last decade. The essence of SOA
is to break the monolithic structure of large software up into smaller business com-
ponents, which are then presented as services easily composed to meet increasingly
more complex business needs. The development of service-based systems is layered
as follows:

• Development of functional units that encapsulate a basic piece of computation.
• Bundling of functional units into components with the aim of providing

reusable composable services.
• Definition of business processes by composing services to realise end-to-end

business scenarios of enterprises.

MBD documents different aspects of software as models at every development
stage, which enables early prototyping and detection of potential errors to avoid a
drastically more expensive correction later. A software model retains only the de-
tails important to the corresponding design emphasis, and gets rid of any irrelevant
information.

Correct functioning of business software is very important because failures could
cause great financial losses. Formal methods have attracted growing attention for
their capabilities to offer unambiguous semantics and to prove correctness rigor-
ously. Thanks to the rich repository of models already available to us, it becomes
less difficult and makes more sense to apply formal methods to the development of
business software. It is less difficult because models are usually much smaller com-
pared to the final implementation code, so they can be better handled with formal
methods. It makes more sense because, on the one hand, models are used to guide
subsequent development, and therefore their correctness is critical. On the other
hand, models are perfect for deriving tests, since they capture the essence of how
software is supposed to behave. The focus of our deployment of formal methods is
on both formal verification and model-based testing.

One important objective during our deployment is to achieve a high degree of
automation. Ideally, the application of formal methods should be completely hidden
from designers and developers, because in our industry they should not be expected
to understand or master formal methods. The high expense of training required is
only part of the problem. Manual applications of formal methods, such as manual
proofs, are usually very time- and resource-consuming, while the results are often
not reusable due to frequent model changes. This would not only further increase the
cost of software development, but also interrupt or even delay the development pro-
cess to an extent that can no longer be tolerated. Therefore, we need to either make
reasonable trade-offs (e.g., by sacrificing expressibility of modelling languages in
favour of verifiability) or enhance the existing formal methods with improved au-
tomation. Finally, hiding formal modelling behind the surface of the existing MBD
abstractions not only allows for seamless integration with the current development
processes but also makes it easy to re-use the existing model contents.



6 Business Information Sector 65

6.2 Modelling

The early and wide adoption of MBD at SAP resulted in a vast collection of models
that cover almost every aspect of software design, from high-level descriptions of
business processes to low-level behavioural model for business objects. Some mod-
els are described using public standard modelling languages or their variants, and
others using completely proprietary languages. We identified two main challenges
that we needed to address at the modelling phase.

First, even though compared to implementation code models are small, their size
and complexity could still be overwhelming for a formal analysis tool. To overcome
this, we decided to compromise by leaving out certain modelling features that are
deemed either inessential or too expensive to be analysed using formal methods. We
also tried to break up monolithic model structures into smaller components/layers in
order to reduce difficulties in verification, as seen in the cases of message choreogra-
phies (using layered design) and business processes (using model decomposition).

Second, most industrial modelling languages lack formal semantics. For exam-
ple, Business Process Model and Notation (BPMN) has many elements with very
vague and ambiguous interpretations in its official documentation. Even in case of
models whose semantics is more or less clear, we should avoid applying formal anal-
ysis techniques directly to models represented in a variety of individual modelling
languages. A much better, scalable practice would be to translate these languages
into an intermediate language, and use the formal analysis methods on it.

Therefore, we decided to translate all models into a common formal language
in which any future formal analysis would be performed. This has the additional
advantage of making it possible to formally capture and verify the relations between
different models. This is particularly desirable because in this way we are able to
guarantee and maintain consistency across different design aspects. In the context
of the DEPLOY project, we decided to use Event-B as the common formal language
because of its powerful tool support by the Rodin platform.

6.2.1 Message Choreography Modelling

At the beginning of our work, we identified a missing layer in the modelling stack.
While there are higher-level models for business processes and lower-level mod-
els for business objects, there are no models to describe message protocols for
communication between business objects. There was static communication infor-
mation, such as service interfaces and message formats, scattered throughout vari-
ous documents and sources. However, there was virtually no documentation about
the dynamic aspect of communication, i.e., message sequences that would occur
at runtime. Therefore, we decided to come up with message choreography models
(MCMs) that would provide all this information in a unified and consistent way.
We started with a careful investigation of the state of the art in choreography mod-
elling and matched it with the initial requirements gathered from developers. We



66 S. Wieczorek et al.

Fig. 6.1 A global
choreography model

tried using several existing choreography languages, such as WS-CDL and BPMN-
Choreography, to build simple models, and found that they were not suitable for
our purposes. Finally, we adapted a proprietary language used internally to describe
how business components call each other’s services, and replaced business opera-
tion calls with message interactions between components. The result is the MCM
language [9, 15], as shown in Figs. 6.1 and 6.2.

An MCM consists of a global choreography model that shows all possible se-
quences of messages exchanged at runtime, and a pair of local partner models that
describe how each communication partner sends or receives messages with addi-
tional local constraints. In addition, for local partner models, we need to specify
a property of the communication channel between partners: whether it is Exactly-
Once (no message duplication, no message loss, but no message order guaranteed),
Exactly-Once-In-Order (message order guaranteed), or something else. The global
choreography model has no information about communication channels, and it is
constructed from the viewpoint of an external observer. The decision in favour of
the two-layer MCM structure was made to reduce verification complexity. Because
the global choreography model is closer to user requirements, we can gain more
confidence in their consistency through simulation and testing. Then we only need
to verify that the local partner models are consistent with the global choreography
models (more on this later) in order to assure that the MCM is consistent with user
requirements.

The resulting concept soon gained developers’ support, helped by the familiarity
of its graphical representation. We built a prototype MCM editor based on SAP’s in-
ternal platform, NetWeaver Development Studio, which includes a graphical mod-
elling framework. We also used the editor as the basis for implementing various



6 Business Information Sector 67

Fig. 6.2 Local partner models

formal verification and model-based testing techniques as plug-ins. Throughout the
course of development, we continuously collected feedback from integration and
testing architects in the field, thus involving potential users at each development
stage. For instance, we extended the basic notion of state to allow for concurrency,
which was an advanced feature needed in certain types of scenarios.

For evaluation purposes, we set up four pilots using real-life integration scenar-
ios from the SAP platform, as described in [16]. The creation of each pilot model
was conducted in two guided sessions that lasted about one hour each. In addition
to that, we had another two hours’ session of refinement and consolidation of the
results. After the second session, semi-structured interviews were conducted with
the pilot users. The general response was very positive. The participants perceived
the possibility of formally describing the design as most beneficial, as it significantly
improved communication between distributed development teams of interactive ser-
vices. Furthermore, full integration of the existing modelling content (e.g., interface
and component specifications) into the MCM was appreciated. The graphical mod-
elling approach using a state-based representation was generally perceived as intu-
itive. The above case study showed that by using the MCM it is possible to model
randomly chosen service communications that are part of a real SOA-based product
using the MCM. The results suggest that the MCM is expressive enough to capture
the relevant service communication.

As mentioned before, MCMs are first translated into Event-B for further formal
analysis and test generation. The details of the translation can be found in [13].
Thanks to the state-based nature of MCMs, they are translated into Event-B in a
quite straightforward fashion by using state variables and expressing transitions as
state variable assignments in event actions. A global choreography model and its
local partner models are translated into two separate Event-B machines. For any



68 S. Wieczorek et al.

Fig. 6.3 A BPMN model of an online retailer

interaction between two partners in the machine representing the global choreog-
raphy model, either the sending event or the receiving event of the respective mes-
sage in the machine representing the local partner models is defined as the refining
event of the interaction. These two possible refinement definitions are called send-
view and receive-view. Message channels are modelled either as sets if they are EO
channels (i.e. guaranteeing that the receiver gets each message Exactly Once), or as
queues if they are EOIO channels (i.e. guaranteeing that the receiver gets each mes-
sage Exactly Once In Order) The resulting Event-B model preserves the structure of
the original MCM, so any verification results or generated test cases can be easily
mapped back to their MCM representations.

6.2.2 Business Processes

Currently, business applications are usually built by integrating a broad range of
highly configurable software components and services, which can be rapidly tai-
lored to satisfy different and constantly changing business needs. Business process
models are used to describe such integration scenarios and their workflows, facili-
tating an intuitive common understanding of the business logic between customers
and developers. In addition to their use as documentation, business process models
can also be simulated, analysed and verified to reveal design errors at an early stage
of software development. BPMN has become the de facto standard business process
modelling language, which is widely adopted in industry. A typical BPMN diagram
is shown in Fig. 6.3: two collaboration partners (BUYER and RETAILER) and the
flow of activities, events and messages.

BPMN is specified using natural and graphic languages, and comes without a
rigorous semantics definition. Therefore, there are a lot of ambiguities in it that had



6 Business Information Sector 69

to be clarified as we designed the translation into Event-B [1]. Of course, these clari-
fications were made to meet SAP’s specific needs. The translation works for most of
the commonly used BPMN features, including comprehensive modelling of control
flows, data modelling, compensation, message-based communication, error and ex-
ception handling, sub-processes, looping and multi-instance activities. The BPMN
features not covered in the translation are most notably choreography and conver-
sations as well as some types of flow objects, including call activities, transactions,
conditional events and complex gateways. Some of these are rarely used in practice
and would add significant complexity to the model. Others, such as transactions, are
very vaguely described in the official BPMN specification and difficult to interpret.

Our translation was guided by three principles. First, the Event-B translation
should be structurally faithful to the original BPMN model so that anyone with
good knowledge of the original model can easily understand the translation. Also,
any analysis result that we may obtain from the Event-B translation should be easy
to map back to the original model. Second, the translation should be designed to im-
prove provability, i.e., it should result in the automatic discharge of as many proof
obligations as possible. Finally, we are interested in verifying properties for systems
that allow multiple instances of the same processes.

We have tried two approaches to breaking down the complexity of the Event-B
models that BPMN diagrams are translated into. In the first approach [1], we exclu-
sively used the refinement relationship between machines to gradually add more and
more information from a BPMN diagram. We start with a simple Event-B machine
that contains only the control flow information of any collaboration partner, for in-
stance, the BUYER. Then, we add a second machine that refines the first machine,
and contains not only the control flow but also the data flow information of the
BUYER. Subsequently, we gradually add the control flow and data flow information
of the other partner in the machines. In the end, we use a final refining machine to
add communication details. This approach has the following advantage: if we only
want to verify a property related to the control flow of BUYER, then we can verify
it in the first machine, which is much easier than verifying it in one that contains
a lot of irrelevant information. However, since new information is always added to
a refining machine without losing any old information, we still get an “all-in-one”
machine, which becomes difficult to apply formal methods to.

Since our goal was separation of concerns, we experimented with another ap-
proach, taking advantage of the three model decomposition tools available in Event-
B/Rodin [4]. Thus, we used modularisation, one of the decomposition tools mimick-
ing the way that an object-oriented language uses interfaces/encapsulation/method-
calls. The idea is to completely separate the local information of each collaboration
partner. Each partner has an interface in which several publicly callable methods
are exposed. The partner’s details are, however, hidden in a series of refining ma-
chines invisible to other partners. In the end, we add a global machine to coordinate
the interaction between partners. Such decomposition offers a clean separation of
concerns. The detailed specification of each partner is replaceable and has no di-
rect impact on the rest of the model, provided that its interface remains unchanged.
Because of encapsulation, local behaviour can be completely verified within the



70 S. Wieczorek et al.

boundaries of the corresponding local partner, without information overload from
other parts of the model. Verification of global properties can use local properties
as intermediate lemmas. So, a proof procedure can be structured, and the degree of
proof reuse is considerably higher.

6.3 Formal Verification

There are two kinds of properties that we focus on. The first kind is consistencies
across different modelling layers, in particular, consistency between a global chore-
ography model and its local partner models [5, 9, 15], as well as consistency between
the MCM and the implementation models for business objects [7, 14]. The second
kind is a selected set of invariants that a model must preserve during runtime, for
example absence of deadlocks, absence of inconsumable messages in the MCM [6]
and data consistency in business processes [1–3].

We applied both theorem-proving and model-checking approaches to the verifi-
cation of the above properties. All domain-specific models were first translated into
Event-B, and automated provers and the ProB plug-in of the Rodin platform were
used to conduct verification. We could not achieve full automation of theorem prov-
ing even after several enhancements through various static analysis techniques and
proof strategy optimisations. In contrast, model checking did not require much hu-
man intervention. However, we often ran into the state explosion problem, because
checked models were usually too large for ProB to fully explore. In such cases, we
had to manually reduce the explored state space by, for example, setting bounds on
model variables. Nevertheless, we could still manage to obtain meaningful results by
combining theorem proving and model checking. For instance, we usually applied
model checking first with the hope of finding potential errors. We fixed the model
accordingly and repeated model checking until no more bugs could be found. After
that we started the more difficult and time-consuming proving procedure. Such a
strategy can save a lot of time and is quite efficient for finding model errors.

In the following, we elaborate on how we apply theorem proving and improve
automation with static analysis techniques.

6.3.1 MCM Verification

As depicted in Fig. 6.4, one major goal of our work was to enforce consistency
between requirements and implementation. By introducing the MCM, we were able
to divide this complex problem into manageable pieces:

• Consistency Between Requirements and Choreography Models. Require-
ments are not formalised in practice and hence applying formal methods at this
level is impossible. Therefore, enforcing consistency between choreography mod-
els and requirements is a manual task. We found that the use of model simulation



6 Business Information Sector 71

Fig. 6.4 Consistency
relations in Choreography
Modelling

based on ProB was usually sufficient to achieve high confidence that the chore-
ography model captured what was informally described in the requirements.

• Consistency Between Global and Local Viewpoints. There are two possible
solutions to enforcing consistency between global and local viewpoints: a gener-
ative approach, where the local views are generated from the global ones, and a
checking approach, where global and local models are created separately and then
verified for consistency with each other. In our work we implemented a mixed ap-
proach, which starts by generating local views from global ones but permits user
modifications. The necessary consistency checks of manipulated views are re-
alised by automatic transformation and verification, based on Event-B and Rodin.

• Consistency Between Choreography Models and Implementation. Service
components are usually described with the help of implementation models, by
specifying contained attributes (and their types) and state transition diagrams,
and describing the effects of actions (such as service calls) on the internal states
of components. We aimed to ensure consistency from choreography models to
the implementation.

Figure 6.5 shows how we integrated Rodin into the MCM prototype for verifi-
cation. The integration was made easier by the fact that both Rodin and our editor
are Eclipse-based. A developer draws an MCM model using the editor. Within the
editor, the translation of the MCM model into an Event-B model can be triggered.
The resulting Event-B project is automatically loaded, and the consistency between
the global choreography model and the local partner models is also formalised as
machine refinements (through gluing invariants). The automated provers of Rodin
then try to discharge all outstanding proof obligations (POs). A user can also inter-
act with the provers to manually discharge POs. The ProB model checker can also
be used to validate refinement relations.

We noted that in realistic scenarios MCM choreographies were not overly com-
plex. Even the complicated real examples do not exceed 10–15 protocol states and



72 S. Wieczorek et al.

Fig. 6.5 Tool architecture for MCM and verification analysis based on Event-B

about 20 message events. We believe that this is a consequence of a good system
architecture design that splits a complex system into manageable parts to be treated
separately. However, even at this size of choreographies, subtle communication sit-
uations such as message racing and the large state space due to the datatypes of
the exchanged messages occurring in a loosely coupled environment fully justify
the use of automatic verification and validation techniques based on the MCM and
Event-B.

Our experience showed that the automated provers were not able to automatically
discharge a large set of proof obligations generated for gluing invariants. To improve
automation, we enhanced our tool to automatically discover several kinds of invari-
ants that describe certain dependencies between global states (those in the global
choreography models) and local states (those in the local partner models) as well as
dependencies between communication channel contents and MCM states [5]. The
automated provers were then able to use these invariants as intermediate lemmas
to discharge POs. Several experiments with realistic models show that about 300
to 600 POs were generated to verify consistency after invariant generation, and it
was possible to automatically discharge up to 70 % of them. It was possible to dis-
charge about 80 % of the remaining POs simply by manually switching to a specific
prover (an interesting phenomenon related to how Rodin implements time-outs for



6 Business Information Sector 73

provers). It was possible to prove the rest of the POs manually without too much
effort.

6.3.2 Several Remarks on Proof Automation

As illustrated in many cases, automatic discovery and generation of invariants is an
important technique for reducing the difficulty of proving a property and increasing
the number of automated proofs, a. However, which invariants should be generated
depends not only on the types of models being verified, but also largely on specific
characteristics of the individual models. For instance, for a business process model,
it is important to have invariants specifying control flow dependencies and message
flow dependencies [1]. For a business process involving data persistence, it is always
helpful to discover additional dependencies between data flow and control flow. It is
therefore hard to devise an automated algorithm to discover invariants for arbitrary
models.

Another improvement to proof automation was achieved by making use of the
Relevance Filter plug-in for the Rodin platform [8]. Using heuristics, the plug-in
tries to pick most relevant and useful proof hypotheses from what is usually a very
large pool of these. The use of this tool allowed a promising increase in the number
of automatically discharged POs.

Inside SAP, we also developed a technique to better present the feedback from
automated provers to designers, in case proofs fail to be derived [10]. The basic idea
is to visualise the set of those states in the model that are associated with a certain
proof step. The visualisation can be helpful in indicating and revealing potential er-
rors in the design. We further enhanced this technique to allow a user to interact
with the visualised state. For instance, the current state may ask the user to choose
between two nondeterministic branches. By selecting one, the user is actually help-
ing make a proof decision about which part of a disjunction should be focused on in
the following proof.

We also discovered that the translation from a modelling language to Event-B
can affect the level of proof automation. In proving consistency between the MCM
and an implementation model [7], at the beginning we used logic formulas with
quantifiers to define semantics for the implementation model. This proved to be in-
effective since automated provers have always had great difficulties with quantifiers.
Therefore, we decided to replace quantifiers with set operations, which automated
provers can deal with better, using powerful simplification tools. After that we saw
a large increase in the number of automated proofs.

No matter how much effort we have put into increasing the degree of proof au-
tomation, in almost every case there are some POs that require manual proofs. Even
though the percentage of undischarged POs is quite low, their actual number is not
small, and they are usually difficult to prove. This requires great knowledge and
skills in theorem proving, which is not something we can expect from average de-
velopers and designers. Formal method experts could be hired to solve the manual



74 S. Wieczorek et al.

proof problem. However, it would still be a challenge to blend formal verification
seamlessly and frictionlessly into software development in such a way that it sup-
ports other development activities without restricting or slowing down the whole
process.

6.4 Model-Based Testing

It is hard to achieve full confidence in the correctness of software. Therefore, we
focus on finding bugs with the help of software models in the last phase of deploy-
ment. Software models are very useful in guiding test designs, because they capture
the essence of how software is supposed to behave. For instance, MCMs were used
to automatically derive conceptual test cases, which can be easily mapped to actual
test cases that run on the system under test [9]. According to the pilot users, the
automatically generated test suites covered all tests that had been previously created
manually. Another advantage of model-based testing is its complete automation.
Test designers only need to create an initial test model, which is most of the time
very intuitive, because we designed test models to be similar to the domain-specific
ones that test designers are familiar with. Model-Based Testing (MBT) proved to
be non-intrusive and very productive, replacing what is usually very tedious manual
tasks of designing and creating test cases.

In this section, we illustrate how we apply model-based scenario testing to the
existing business processes.

6.4.1 Scenario Testing of Business Process

As scenario testing is usually conducted on the user interface, we started working on
MBT for graphical user interface (GUI) testing [11, 12, 14], which was a less studied
research subject. Figure 6.6 depicts the envisioned testing approach that defined our
deployment plan. Scenario testing is carried out when the whole system (or at least
a major part of it) is developed and test-ready. The following describes the particular
steps of this approach.

1. Based on SAP’s expertise in industry’s best practice, consultants, key customers
and development architects derive business process models for a new product
or feature or customer implementation so as to meet the market’s or customers’
requirements.

2. The created content, which effectively describes the usage scenarios of the new
functionality, is used to generate test model skeletons. This step should be made
automatic by using model transformation techniques.

3. The test models are then enhanced by test engineers in such a way that they
reflect previously defined test goals and pin down the specifics of the concrete
software architecture.



6 Business Information Sector 75

Fig. 6.6 Envisioned testing
process

4. Abstract test suites are automatically derived from the test models, using MBT
techniques.

5. The abstract test suites are optimised following best industrial practices (e.g., by
minimising test case lengths while preserving test coverage). After further con-
cretisations, the optimised suite is automatically executed on the user interface
of the system under test.

In order to realise the envisioned deployment, we integrated various components
into a testing framework productively used at SAP. Figure 6.7 presents the main
blocks of this framework, including our components. The Test Environment offers
UI-based keyword-driven testing capabilities through a Scenario Editor, which al-
lows us to assemble captured test scripts and to visualise the generated executable
scenarios (obtained from test cases). The scripts can be recorded through the Script
Recorder component, which is connected to the System Under Test (SUT) for this
purpose. Besides capturing user interactions on the SUT, the Script Recorder of-
fers replay functionality, which is utilised for the stepwise execution of scenarios.
Together with the SUT and the Back-end Repository, it assembles the original setup.

We extended the test environment by creating and integrating the Test Model
Editor, which allows process-based test models to be created and edited. It further
enables the triggering of the test generation and the visualisation of the resulting test
suite.

In order to mitigate the risk of dependency on one single test generation tech-
nology, our goal was to integrate multiple tools and vendors, which we achieved by
providing transformations from process-based test models (TMs) to abstract state
transition machines (STMs); these can be further transformed into vendor-specific
input formats in a straightforward manner. Since there is no standardised intermedi-
ate format, we created a proprietary STM. However, we published its concepts [12]



76 S. Wieczorek et al.

Fig. 6.7 Architecture of the MBT environment

and are active in contributing them to various emerging standardisation initiatives. A
proxy has been set up for routing test generation requests in order to obtain a single
communication partner, which allows us to add and update generator components
without additional configuration of the test environment.

General-purpose MBT tools rely on various strategies to reduce the large ini-
tial test suites they produce during test generation. Therefore we decided to offer
a unified test suite optimisation independent of the chosen test generator. This fur-
ther allows us to consider custom requirements for the enterprise software domain.
The different optimisation procedures are wrapped in another set of web services
and can be used in the following way. After a test is successfully generated, the re-
sulting traces are transformed into an intermediate test suite format and sent to the
proxy component, which forwards them to an appropriate Suite Optimizer.

Test reduction is implemented on the intermediate format for test suites. There-
fore, a further transformation of the results in the Suite Optimizer is not necessary.
The proxy takes the reduced test suite and routes it back to the Test Model Editor,
where it will be used to create a concrete test suite, containing executable scenarios.

Besides enabling the seamless integration of the Test Model Editor, detaching the
test environment from the test generation services has the following advantages:

• Reuse: By using a generic input and output format, we are able to hide the com-
plexity of specific model transformations in the input format of concrete test gen-
erators, thus making MBT accessible as a service to other potential test environ-
ments.

• Performance: Decoupling expensive computational functionality like test gener-
ation and test suite reduction promises better system performance and does not
block front-end users. Replication of the Web services and introduction of load
balancing to the proxy further increases scalability.



6 Business Information Sector 77

• Maintenance: The service-based decoupling in combination with a proxy also
allows us to maintain and upgrade test generation components in a non-intrusive
way.

6.4.2 Results

After prototyping, creation and integration of the components described in the pre-
vious section, we turned to one of SAP’s major product areas in order to negotiate
an evaluation strategy. It was agreed to set up a case study with seven develop-
ment teams, which were asked to apply MBT in their scenario testing activities for
a specific internal release. During these activities, the team members were asked
to collect requirements and report bugs. At the end of the case study, further in-
terview sessions were carried out with the participants, in order to get their overall
assessment of the tool as well as information about their productivity and perceived
learning effort. These results were consolidated and presented to the executive board
of the product area, which consequently decided to start an unrestricted roll-out to
internal development teams. As information about product and development activi-
ties needs to be handled with discretion (especially quality-related information), we
will report the findings of the case study in a more general way.

Case Study Participants The participants did not have a background in formal
methods but knew the basic concepts of business process modelling and were fa-
miliar with the concrete business process that they wanted to cover with different
scenario tests. They were trained and experienced in the use of the proprietary test-
ing environment, but did not have any knowledge of MBT. At the beginning of the
case study, they received a two-hour tutorial on additional modelling and testing
concepts necessary for understanding and operating our tool extension, as well as
additional documentation and guiding samples. Furthermore, all participants could
rely on remote expert support for any tooling, technology or process-related ques-
tions. On average, these support activities amounted to about one additional hour
per participant.

Requirements Analysis Over the course of the case study, the participants col-
lected 47 different requirements and ranked them based on their importance from 1
(an absolute showstopper) to 5 (nice to have). In the two-month period of evalua-
tion we were able to incorporate all requirements ranked 1 and 2, and most of those
ranked 3. The remaining requirements mainly concerned the automation of addi-
tional steps in the test generation process, which do not directly relate to test gener-
ation and had been manual in the original process, too (e.g., the linking of created
test cases with test plans), or even addressed issues in the original test environment.
Overall, only one requirement of the remaining concerned the enhancement of the
test generation functionality, while the others mainly dealt with usability issues.



78 S. Wieczorek et al.

Interview Sessions Each participant was interviewed after the case study. All
stated that the maturity of the tool improved dramatically during the evaluation
phase, and agreed with the conclusion that both the tool and the new testing pro-
cess were mature enough for wide use within the organisation. Furthermore, it was
confirmed that the learning effort was small and the approach quite intuitive. The
usability of the test model editor still left room for improvement, but was compara-
ble to other internally used tools. It was noted by many participants that the MBT
approach demanded greater care in the script recoding and test data definition activ-
ities. However, this was generally perceived as a positive side-effect.

Based on the requirements analysis and interview sessions, the executive board
gained enough confidence to decide on a phased roll-out of model-based scenario
testing to the whole product area. This roll-out will be accompanied by the hand-
over of responsibility from our research unit to an operations team for the main-
tenance and further improvement of the tooling that was created in the context of
DEPLOY.

6.5 Conclusion

Formal modelling and verification bring many quality assurance advantages to the
development of business software. Design documents are complemented with soft-
ware models that are accurate, executable, analysable, and can be used in deriving
test cases directly linked to requirements. Formal validation and verification are not
only used to prove correctness, but also to effectively find bugs, which is a nice
alternative to traditional testing.

However, given the assumption that formal methods are hidden behind the ex-
isting domain-specific modelling abstractions, their success relies on the degree of
automation. This is attested by the fact that model-based testing was more widely
accepted by developers than formal verification, because MBT is fully automated.
Users are not bothered by the technical details of test generation. They construct
a test model that looks like a business process, and with a push of the button, test
cases are generated and can be immediately run without any further effort. With for-
mal verification, we are still in the process of increasing the degree of automation,
to make tool usage and feedback more user-friendly, and to improve tool efficiency
when dealing with large software models. Nevertheless, our pilot deployment of
MCM verification is very promising and welcomed by software architects and de-
signers. We will continue to work toward a seamless experience of using formal
methods in business software development processes.

References

1. Bryans, J., Wei, W.: Formal analysis of BPMN models using Event-B. In: Kowalewski, S.,
Roveri, M. (eds.) FMICS. Lecture Notes in Computer Science, vol. 6371, pp. 33–49. Springer,
Berlin (2010)



6 Business Information Sector 79

2. Bryans, J., Fitzgerald, J., Romanovsky, A., Roth, A.: Formal modelling and analysis of busi-
ness information applications with fault tolerant middleware. In: ICECCS, pp. 68–77. IEEE
Comput. Soc., Los Alamitos (2009)

3. Bryans, J., Fitzgerald, J., Romanovsky, A., Roth, A.: Patterns for modelling time and con-
sistency in business information systems. In: Calinescu, R., Paige, R.F., Kwiatkowska, M.Z.
(eds.) ICECCS, pp. 105–114. IEEE Comput. Soc., Los Alamitos (2010)

4. Hoang, T.-S., Iliasov, A., Silva, R., Wei, W.: A survey on Event-B decomposition. In: Au-
tomated Verification of Critical Systems AVOCS-2011. Electronic Communications of the
EASST, vol. 46 (2012)

5. Kozyura, V., Roth, A.: Generation of gluing invariants for checking local enforceability of
message choreographies. In: Jastram, M., Laibinis, L., Lösch, F., Mazzara, M. (eds.) Proceed-
ings of DEPLOY Technical Workshop 2009. Newcastle University, Technical Report (2009)

6. Kozyura, V., Roth, A., Wei, W.: Local enforceability and inconsumable messages in chore-
ography models. In: Proceedings of 4th South-East European Workshop on Formal Methods
(SEEFM). IEEE Comput. Soc., Los Alamitos (2009)

7. Kozyura, V., Roth, A., Wieczorek, S., Wei, W.: Checking consistency between message
choreographies and their implementation models. Electronic Communications of the EASST,
vol. 35 (2010)

8. Röder, J.: Relevance filters for Event-B. Master’s thesis, ETH, Zürich (2010)
9. Roth, A., Wieczorek, S., Kozyura, V., Wei, W., Wieczorek, S.: DEPLOY Deliverable D4.1:

Report on pilot deployment in business information sector. Technical report, FP7-DEPLOY
project EU (2010). http://www.deploy-project.eu/

10. Schur, M.: User interaction in formal verification of service choreography models. Master’s
thesis, Hochschule Karlsruhe Technik und Wirtschaft (2009)

11. Wieczorek, S., Stefanescu, A.: Improving testing of enterprise systems by model-based testing
on graphical user interfaces. In: Sterritt, R., Eames, B., Sprinkle, J. (eds.) ECBS, pp. 352–357.
IEEE Comput. Soc., Los Alamitos (2010)

12. Wieczorek, S., Kozyura, V., Schur, M., Roth, A.: Practical model-based testing of user scenar-
ios. In: ICIT12, pp. 306–311. IEEE Comput. Soc., Los Alamitos (2012)

13. Wieczorek, S., Kozyura, V., Roth, A., Leuschel, M., Bendisposto, J., Plagge, D., Schiefer-
decker, I.: Applying model checking to generate model-based integration tests from choreog-
raphy models. In: Núñez, M., Baker, P., Merayo, M.G. (eds.) TestCom/FATES. Lecture Notes
in Computer Science, vol. 5826, pp. 179–194. Springer, Berlin (2009)

14. Wieczorek, S., Kozyura, V., Wei, W., Roth, A.: DEPLOY Deliverable D4.2: Report on en-
hanced deployment in business information sector. Technical report, FP7-DEPLOY project
EU (2011). http://www.deploy-project.eu/

15. Wieczorek, S., Roth, A., Stefanescu, A., Kozyura, V., Charfi, A., Kraft, F.M., Schiefer-
decker, I.: Viewpoints for modeling choreographies in service-oriented architectures. In:
WICSA/ECSA, pp. 11–20. IEEE Comput. Soc., Los Alamitos (2009)

16. Wieczorek, S., Stefanescu, A., Roth, A.: Model-driven service integration testing—a case
study. In: QUATIC’10, pp. 292–297. IEEE Comput. Soc., Los Alamitos (2010)

http://www.deploy-project.eu/
http://www.deploy-project.eu/

	Chapter 6: Business Information Sector
	6.1 Introduction to the Business Sector
	6.2 Modelling
	6.2.1 Message Choreography Modelling
	6.2.2 Business Processes

	6.3 Formal Veriﬁcation
	6.3.1 MCM Veriﬁcation
	6.3.2 Several Remarks on Proof Automation

	6.4 Model-Based Testing
	6.4.1 Scenario Testing of Business Process
	6.4.2 Results
	Case Study Participants
	Requirements Analysis
	Interview Sessions


	6.5 Conclusion
	References


