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Abstract. We show that it is possible to achieve perfect forward secrecy
in two-message key exchange (KE) protocols that satisfy even stronger se-
curity properties than provided by the extended Canetti-Krawczyk (eCK)
security model. In particular, we consider perfect forward secrecy in the
presence of adversaries that can reveal the long-term secret keys of the
actor of a session and reveal ephemeral secret keys.

We propose two new game-based security models for KE protocols.
First, we formalize a slightly stronger variant of the eCK security model
that we call eCK". Second, we integrate perfect forward secrecy into
eCK"™, which gives rise to the even stronger eCK-PFS model. We propose
a security-strengthening transformation (i.e., a compiler) between our
new models. Given a two-message Diffie-Hellman type protocol secure in
eCK"Y, our transformation yields a two-message protocol that is secure
in eCK-PFS. As an example, we show how our transformation can be
applied to the NAXOS protocol.

Keywords: Key Exchange, Security Models, Protocol Transformations,
Perfect Forward Secrecy, Ephemeral-key reveal, Actor compromise.

1 Introduction

The majority of recently developed key exchange protocols have been proven
secure with respect to game-based security models for key exchange protocols [I}
2,[7,[I3L[15]. The first such security model was introduced by Bellare and Rog-
away [2]. In this model, the adversary is modeled as a probabilistic polynomial-
time Turing machine that interacts with the protocol participants through
queries. The queries specify the capabilities of the adversary. For instance, he
can send messages to parties and reveal certain session-keys. The definition of
security in the Bellare-Rogaway model requires that (a) two parties who com-
plete matching sessions (i.e., the intended communication partners) compute
the same session-key and that (b) the adversary does not learn the session-
key with more than negligible probability. Building on this work, Canetti and
Krawczyk [7] developed a more complex security model that gives the adversary
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additional powers such as access to a session-state query that reveals the internal
state of a session. LaMacchia et al. [I5] adapted the Canetti-Krawczyk model to
capture resilience to key compromise impersonation (KCIT) attacks and resilience
to the leakage of various combinations of long-term and ephemeral secret keys in
a single security model. This model is known as the extended Canetti-Krawczyk
(eCK) security model.

One important property of KE protocols that is not guaranteed by the eCK
security model is perfect forward secrecy (PFS). This property holds if an adver-
sary cannot learn the session-keys of past sessions, even if he learns the long-term
secret keys of all the parties [I8]. The designers of the eCK model argued that
this property cannot be achieved by two-message KE protocols, based on [13]. In
particular, in [I3] p. 15], Krawczyk sketched a generic PFS attack, for which he
claimed that it breaks the security of any implicitly authenticated two-message
KE protocol. In the attack, the adversary actively interferes with the communi-
cation between the parties by injecting self-constructed messages. This enables
him to compute the used session-key if he later learns the long-term secret keys of
the parties. To prove a slightly weaker notion of forward secrecy for the HMQV
protocol, Krawczyk introduced the notion of weak perfect forward secrecy (weak-
PFS) [13]. When the long-term keys are compromised, weak perfect forward
secrecy guarantees secrecy of previously established session-keys, but only for
sessions in which the adversary did not actively interfere. Krawczyk’s comments
seem to have led to the incorrect belief that the best that can be achieved for
two-message KE protocols is weak perfect forward secrecy [5LO,13,[15]. As a
result, even though the eCK security model [I5] guarantees only weak perfect
forward secrecy, it is currently described in the literature as the strongest possi-
ble security model for two-message KE protocols [8T5,[17].

Contributions. Our first contribution is to push forward the theoretical limits of
key exchange security notions. This contribution has two parts. First, we gener-
alize the eCK security model [I5] based on the observation that a restriction on
the adversary in the eCK model, whose purpose it is to prevent Krawczyk’s PFS
attack, is stronger than needed. To weaken this restriction (while still preventing
the attack) we introduce the concept of origin-session, which relaxes the notion
of matching session. The resulting model, which we call eCK", specifies a slightly
stronger variant of weak perfect forward secrecy than the eCK model. We then
integrate perfect forward secrecy into the eCK"™ model, which gives rise to the
eCK-PFS model. The eCK-PFS model is strictly stronger than eCK", and also
provides more guarantees than independently considering eCK/eCKY security
and PFS. In particular, security in eCK-PFS implies perfect forward secrecy in
the presence of a fully active attacker who can even learn the actor’s long-term se-
cret key before the start of the attacked session, or who can learn session-specific
ephemeral secret keys (i. e. random coins generated on a per-session basis).

Our second contribution is a generic security-strengthening transformation
(a so-called compiler) that contributes towards the modular design approach
of KE protocols. Given a two-message Diffie-Hellman (DH) type KE protocol
that is secure in eCK", our transformation yields a two-message protocol that is
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secure in the eCK-PFS model. We show that NAXOS [15], the first key exchange
protocol proven secure in the eCK model, is also secure in eCK" and use our
transformation to construct a protocol that is secure in eCK-PFS. Thus, we
demonstrate that it is possible for two-message KE protocols to achieve PFS,
even under actor compromise (i.e. disclosure of the long-term secret keys of the
actor of a session) and leakage of ephemeral secret keys.

Related Work. The majority of related works claim that perfect forward secrecy
cannot be achieved in a two-message KE protocol [5LO[T3HI5]. There are two no-
table exceptions. First, the two-message modified-Okamoto-Tanaka (mOT) pro-
tocol by Gennaro et al. [I1] provides perfect forward secrecy in the identity-based
setting. Additionally, they sketch variants of the protocol for the PKI-based set-
ting. As noted by the authors [II], the mOT protocol and its variants are not
resilient against loss of ephemeral keys, and they are therefore insecure in eCK-
like models. Second, in [6], Boyd and Gonzalez suggest a transformation C based
on adding MACs on the message exchange of a key-exchange protocol that sat-
isfies weak perfect forward secrecy, to achieve perfect forward secrecy. However,
the MAC transformation does not ensure security in eCK-PFS, because it does
not guarantee perfect forward secrecy under actor compromise and leakage of
ephemeral secret keys. In Section M we show that, e.g., C(NAXOS) [6] is inse-
cure in eCK-PFS. The eCK variant for protocols with more than two messages,
defined in [14], guarantees perfect forward secrecy. However, this eCK variant
cannot be met by any of the protocols from the class we are considering here
because it uses the concept of matching session instead of origin-session.

Organization. In Section[2lwe recall some standard definitions used in this paper.
In Section [3] we motivate and define our security notions eCK* and eCK-PFS. In
Section]we provide a transformation that turns any two-message Diffie-Hellman
type KE protocol secure in eCK" into a two-message KE protocol secure in eCK-
PFS. We show how this transformation can be applied to the NAXOS protocol
in Section Bl Finally, we conclude in Section 6l

2 Preliminaries

Let G = (g) be a finite cyclic group of large prime order p with generator g.

Definition 1 (GAP-CDH Assumption [19]). The GAP-CDH assumption
in G states that, given g* and g*, for w,v chosen uniformly at random from
Zyp, it is computationally infeasible to compute gV with the help of a decisional
Diffie-Hellman (DDH) oracle (that, for any three elements g%, g%, g% € G, replies
whether or not w = uv mod p).

Definition 2 (Signature Scheme [12]). A signature scheme X' is a tuple of
three polynomial-time algorithms (Gen, Sign, Vrfy) satisfying the following:

1. The probabilistic key-generation algorithm Gen takes as input a security
parameter 1% and outputs a secret/public key pair (sk,pk).
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2. The (possibly probabilistic) signing algorithm Sign takes as input a secret key
sk and a message m € {0,1}". It outputs a signature o := Sign . (m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk,
a message m, and a signature o. It outputs a bit b, with b = 1 meaning valid
and b = 0 meaning invalid. We write b = Vrfy,,.(m, o).

Definition 3 (SUF-CMA [4]). A signature scheme X = (Gen, Sign, Vrfy) is
strongly existentially unforgeable under an adaptive chosen-message attack if for
all probabilistic polynomial-time adversaries A, there exists a negligible function
negl such that Adv5? (k) < negl(k), where Adv3 (k) denotes the probability of
successfully forging a valid signature o on a message m and (m, o) is not among
the pairs (m;,0;) (1 = 1,...,q) generated during the query phase to a signature
oracle O™ returning a signature for any message m; of the adversary’s choice.

3 Key Exchange Security Notions

We propose two new eCK-like security models for the analysis of key-exchange
protocols. The first model called eCK"™ captures a slightly stronger form of weak-
PFS than the eCK model. The second model called eCK-PFS integrates PFS
directly into eCK™.

3.1 Motivation for the New Models

eCK"Y: Strengthening Weak-PFS. As stated in the introduction, the eCK
model captures weak perfect forward secrecy but not perfect forward secrecy,
based on Krawczyk’s generic PFS attack [13]. We briefly recall the attack. Con-
sider a two-message protocol in which the agents exchange ephemeral public
Diffie-Hellman keys, i.e., g* and g¥, where = and y are chosen at random from
Z, (for some large prime p). The adversary, impersonating party /1, generates
a random value z (€ Z,) and sends ¢” to a responder session at party B. B
responds by sending ¢g¥ and computes the session key. The adversary chooses
B’s session as the test-session, i.e. the session under attack, and reveals A’s
long-term secret key after B’s session ends. Now the adversary can simply follow
all protocol steps that an honest party A would have performed using z and
A’s long-term secret key. In particular, the adversary can compute the same
session-key as the test-session, violating PFS.

Krawczyk’s attack works directly for all two-message KE protocols that ex-
change DH keys of the form g%, where z does not involve the sender’s long-term
secret key, such as HMQV [13]. Additionally, the attack also works on protocols
like NAXOS [I5], where z is a hash of the sender’s long-term secret key and a
random value. The adversary can just replace this value by an arbitrary value.

To still prove some form of forward secrecy for such protocols, Krawczyk
introduced the notion of weak-PFS. In weak-PFS, the adversary is not allowed to
actively interfere with the messages exchanged by the test-session. This prevents
the attack because the adversary is no longer allowed to insert his own DH
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exponential. Similarly, in the eCK model, this restriction on interfering with the
test-session is modeled by checking if a matching session exists [I5] p. 5]. If this
is the case, then the adversary must have been passive and he is allowed to reveal
the long-term secret keys of the actor and the intended communication partner
of a session. If there is no matching session, the adversary is not allowed to reveal
the long-term secret key of the intended communication partner.

We observe that Krawczyk’s attack only depends on the adversary injecting
or modifying the message received by the test-session; he does not need to ac-
tively interfere with the message sent by the test-session. However, eCK models
passivity of the adversary in the test-session by checking whether a matching ses-
sion for the test-session exists, which also prevents the adversary from modifying
(or deleting) the message sent by the test-session. In this sense, the restriction
on the adversary in eCK is sufficient but not necessary for the prevention of
Krawczyk’s attack. We therefore relax the notion of matching sessions and in-
troduce the concept of origin-session. This allows us to capture the adversary’s
capability of revealing the long-term secret key of the intended communication
partner (i.e. the peer) of the test-session s in case an origin-session s’ for s exists
even though no session matching to s exists. Thus, in contrast to the eCK model,
the adversary may reveal the long-term key of the peer of the test-session s in
case an origin-session s’ for session s exists and

— actively interfere with the message sent by the test-session (e. g. by modifying
it or injecting his own message), or

— replay a message from another session to the test-session (as in [0]), or

— leave session s’ incomplete (in case session s’ is in the initiator role).

We call our strengthened variant of the eCK model the eCK" model.

eCK-PFS: Integrating PFS into eCK". We extend the eCK" model by
integrating perfect forward secrecy which yields the strictly stronger eCK-PFS
model. Perfect forward secrecy is reflected in eCK-PFS by allowing the adversary
to reveal the long-term secret keys of all the protocol participants after the end
of the test-session. These keys can be revealed irrespective of the existence of an
origin-session (or a matching session). This attack scenario is neither captured
in eCK" (nor in eCK or [6]) if the origin-session (matching session) does not
exist for the test-session.

3.2 Defining eCKY and eCK-PFS

Terminology. Let P = {151,152,...,]51\;} be a finite set of N parties’ identi-

ties. Each party can execute multiple instances of a KE protocol, called ses-
sions, concurrently. We denote session i at party P as the tuple (P,z) e P x
N. We associate to each session s € P x N a quintuple of variables Ty =
(Sactors Speers Sroles Ssents Srecv) € P? x {Z,R} x ({0,1}" U {—=})%. The variables
Sactor, Speer denote the identities of the actor and intended peer of session s, Srole
denotes the role that the session is executing (either initiator or responder), and
Ssent, Sreco denote the concatenation of timely ordered messages as sent/received
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by Sactor during session s, where ” —” denotes a special symbol not in {0, 1}* that
represents the empty sequence. The values of the variables speer and s, are set
upon activation of session s and the values of the variables sgen; and Sq,ec, are
defined by the protocol execution steps. A session can only be activated once.
The notion of matching sessions specifies when two sessions are supposed to
be intended communication partners. Here we formalize the matching sessions
definition from the eCK model [I5] which is based on matching conversations.

Definition 4 (matching sessions). Two completed sessions s and s' are said
to be matching if

— o o o ! /
Sactor = speeT A Speer = Sactor N Ssent = Srecu A Srecy = Ssent A Srole 7£ Srole*

To relate a message received (and accepted) by some session to the session it
originates from (if the latter exists), we introduce the concept of origin-session.
If an origin-session s’ for some session s exists, then the messages received by
session s have not been modified or injected (as in Krawczyk’s PFS attack [13])
by the adversary.

Definition 5 (origin-session). We say that a (possibly incomplete) session s’
is an origin-session for a completed session s when s, = Srecv-

Note that, if two completed sessions s, s’ are matching, then s and s’ are origin-
sessions for each other. However, if session s is an origin-session for some session
s', then it might not necessarily be a matching session for s’ (e.g. in case the
roles of the sessions are identical). Thus, a session being a matching session for
some session is a stronger requirement than a session being an origin-session for
some session.

Adversarial capabilities. Similar to the eCK model [15], we model the adver-
sary as a probabilistic polynomial-time (PPT) Turing machine that controls all
communications between parties through the following queries:

1. send(s,v). This query models the adversary sending message v to session
s. The adversary is given the response generated by the session according
to the protocol. The variables sgen: and spe., are updated accordingly (by
concatenation). Abusing notation, we allow the adversary to activate an
initiator session with peer Q, via a send(s, Q) query and a responder session
by sending a message m to session s on behalf of Q, via a send(s, Q. m) query.
In these cases, speer is set to Q and S, is set to Z and R, respectively. The
adversary is given the session’s response according to the protocol and the
variables Sgent, Srecy are initialized accordingly.

2. corrupt(P). This query reveals the long-term keys of party P.

3. ephemeral-key(s). This query reveals the ephemeral secret keys (i.e., the
random coins) of session s.

4. session-key(s). This query returns the session key for a completed session s
(i.e. a session that has accepted/computed a session-key).
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5. test-session(s). To respond to this query, a random bit b is chosen. If b = 0,
then the session-key established in session s is returned. Otherwise, a random
key is returned according to the probability distribution of keys generated
by the protocol. This query can only be issued to a completed session.

Notions of Freshness. An adversary that can perform the above queries can
simply reveal the session key of all sessions, breaking any protocol. The intuition
underlying Bellare-Rogaway style KE models is to put minimal restrictions on
the adversary with respect to performing these queries, such that there still exist
protocols that are secure in the presence of such an adversary. The restrictions on
the queries made by the adversary are formalized by the notion of fresh sessions.

Definition 6 (Fresh session in eCK"™). A completed session s in security
experiment W is said to be fresh in eCKY if all of the following conditions hold:

. W does not include the query session-key(s),

for all sessions s* such that s* matches s, W does not include session-key(s*),
W does not include both corrupt(sactor) and ephemeral-key(s),

for all sessions s’ such that s’ is an origin-session for session s, W does not
include both corrupt(speer) and ephemeral-key(s’), and

5. if there exists no origin-session for session s, then W does not include a

corrupt(Speer) query.

oo~

Definition 7 (Fresh session in eCK-PFS). A completed session s in exper-
iment W is said to be fresh in eCK-PFS if all of the following conditions hold:

. W does not include the query session-key(s),

for all sessions s* such that s* matches s, W does not include session-key(s*),
W does not include both corrupt(sactor) and ephemeral-key(s),

for all sessions s’ such that s’ is an origin-session for session s, W does not
include both corrupt(speer) and ephemeral-key(s’), and

5. if there exists mo origin-session for session s, then W does not include a
corrupt(speer) query before the completion of session s.

oo~

Security Experiment W in model M. Security of a key-exchange protocol I is
defined via a security experiment W (or attack game) played by an adversary
E, modeled as a PPT algorithm, against a challenger. Before the experiment
starts, each party P runs a key-generation algorithm that takes as input a secu-
rity parameter 1% and outputs valid static secret/public key pair(s). The public
key(s) of each party are distributed in an authenticated way to all other parties.
The adversary E is given access to all public data. The setting of the security
experiment W can be described in four successive stages, as follows:

1. The adversary E can perform send, corrupt, ephemeral-key, and session-key
queries.

2. At some point in the experiment, F issues a test-session query to a completed
session that is fresh in model M by the time the query is issued. The chal-
lenger chooses a random bit b and provides E with either the real session-key
of the test-session (for b = 0) or a random key from the key space (for b = 1).
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3. The adversary may continue with send, corrupt, ephemeral-key and session-key
queries, without rendering the test-session un-fresh in model M.
4. Finally, E outputs a bit b’ as his guess for b.

The adversary E wins the security experiment W if he correctly guesses the bit
b chosen by the challenger during the test-session query (i.e. if b = b’ where ¥’
denotes E’s guess). Success of E in the experiment is expressed in terms of E’s
advantage in distinguishing whether he received the real or a random session-key
in response to the test-session query. The advantage of adversary F in the above
security experiment against a key exchange protocol II for security parameter k
is defined as Advl (k) = [2P(b=1¥") — 1].

Definition 8. A key exchange protocol II is said to be secure in model M €
{eCK",eCK-PFS} if, for all PPT adversaries E, it holds that

— if two parties successfully complete matching sessions, then they compute the
same session key, and

— FE has no more than a negligible advantage in winning security erperiment
W in model M, that is, there exists a negligible function negl in the security
parameter k such that Advi (k) < negl(k).

Comparison between eCK" and eCK-PFS. The eCK-PFS model is strictly
stronger than eCK" because it captures more attack scenarios. The eCK-PFS
model allows the adversary to corrupt all parties after the test-session is com-
pleted (regardless of whether an origin-session exists for the test-session), cap-
turing perfect forward secrecy. In contrast, in case there is no origin-session for
the test-session, the adversary is not allowed to reveal the long-term secret key
of the peer of the test-session in the eCK" model. As an example, NAXOS is
provably secure in eCK", as we show in Section Bl but insecure in eCK-PFS due
to the PFS attack described in Subsection 311

4 A Transformation from eCKY to eCK-PFS

We define a class of two-message Diffie-Hellman type key exchange protocols
(similar to the class of KE protocols in [6]). Then, we present a security-
strengthening transformation (compiler) that can be applied to any such pro-
tocol. Finally we show that this transformation turns any KE protocol secure in
eCK"Y into a KE protocol secure in eCK-PFS.

Let k be a security parameter and let G be a finite cyclic group of prime order
p with generator g, where p = O(2F). Let {2 be static publicly known data such
as parties’ identities, their long-term public keys or publicly known functions and
parameters. Let S be a set of constants from which random values are chosen
(e.g. S=1Zyor S =10, 1}"). We denote by z €x S that z is chosen uniformly at
random from the set S. In the generic two-message DH type protocol, illustrated
in Figure [ party A’s long-term secret key is a €r Z, and A’s long-term public
key is A = g®. The session-specific ephemeral secret key of the session at party
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A: (a, A) X B: (b, B)
Y
i, X = gfz(TA,an) g, Y = ng(TB,b,Q)
K4 = Fr(fz(rg.a.2),a,Y, Q) Kg = FR(fr(rg. b. 2).b. X, 2)

Fig. 1. A generic two-message DH type protocol

A is denoted by r4 €r S and the corresponding ephemeral public key is denoted
by X. Similarly, party B’s long-term secret/public key pair is (b, B) and the
ephemeral secret/public key pair of the session at B is denoted by (rg,Y). The
public functions fz, fr : {0,1}" — Z, depend on the ephemeral secret key and
may depend on the long-term secret key or on public information. The public
functions Fr, Fr : {0,1}" — {0,1}" depend on the Diffie-Hellman exponent the
long-term secret key, the received Diffie-Hellman exponential and other public
information. We assume that the public keys of all parties are known to all other
participants in the protocol.

Protocol description. The generic two-message DH type protocol, depicted in
Figure[Il proceeds as follows:

1. Upon activation of session s = (4,7) € P x N with peer B, A (the initiator)
performs the steps:
— Choose an ephemeral secret key r; €r S and compute X = gfT(raa.2)
— Send X (and possibly other public data, e. g. identities of peer and actor
of the session) to B.
— Initialize T to (A,E,I,m, —), where m denotes the message sent by
session s.
2. Upon activation of session s’ = (B,j) € P x N with message X (and possibly
other data) on behalf of A, party B (the responder) performs the steps:
— Check that X € G.
— Choose an ephemeral secret key r5 €g S and compute Y = g/®
— Compute K5 = Fr(fr(rg,b,$2),b, X, (2).
— Send Y (and possibly other public data) to A.
— Set Ty to (B, AR, m, n'), where m’ denotes the message sent by session
s’ and n’ the message received by session s’, and complete the session by
accepting Kz as the session-key.

(r3,b,92)

3. Upon receiving message Y (with possibly other data) in session s , party A
performs the steps:
— Check that Y € G.
— Compute K ; = Fz(fz(r;,a,12),a,Y,$2).
— Update T to (fl, B,Z,m, n) and complete the session by accepting K 4
as the session-key.
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The above description also applies to protocols with additional checks, which we
omit for clarity. We assume that whenever a check in a session fails, all session-
specific data is erased from memory and the session is aborted, i. e., it terminates
without establishing a session-key.

Definition 9 (Protocol Class DH-2). We define DH-2 as the class of all
two-message key-exchange protocols that follow the description of a generic DH
type protocol and meet the following validity requirement:

— in the presence of an eavesdropping adversary, two parties A and B can
complete matching sessions (in the sense of Definition [J]), in which case
they hold the same session-key.

The validity requirement requires that if the messages of two parties A and B
are faithfully relayed to each other, then both parties end up with a shared
session-key (see also [IH3]). Note that, e.g., the KE protocols NAXOS [I5],
NAXOS+ [17], NETS [16] and CMQV [21] belong to the class DH-2.

Protocol transformation. We now show how to transform any protocol IT €
DH-2 into a two-message protocol SIG(IT), shown in Figure Bl by applying
the signature transformation SIG. Party A has two independent valid long-term
secret /public key pairs, one pair (a, A) from protocol IT and one pair (sk 4, pk ;)
for use in a digital signature scheme X' with security parameter k. Similarly, party
B’s long-term secret /public key pairs are (b, B) and (skp,pkp). The transformed
protocol SIG(IT) in Figure2lproceeds as protocol IT except that each party needs
to additionally sign a message using its secret signature key and check that the
received signature on a message is valid with respect to the long-term public key
of its peer. The fields between square brackets within the signature are optional.

Security analysis. We show in Theorem [I] below that the SIG transformation is
a security-strengthening transformation from the eCK" model to the stronger
model eCK-PFS provided that the digital signature scheme is strongly existen-
tially unforgeable under an adaptive chosen-message attack (SUF-CMA) as well
as deterministic. For certain randomized signature schemes, an efficient adver-
sary can compute the secret (signature) key given the corresponding public key,
a signature on any message using the secret key, and the random coins involved
in the signature generation learned through an ephemeral-key query (as noted
in [I5]).

A: (a, A), (sk 4, pk5) X0 4=Signs,  (X[,B]) B: (b, B), (skj, pkp)

Y05 =Signsk (Y[,X,A])

i, X = gfI(TAva’-Q) 75, Y = ng(TB,b,Q)

Ki =Fz(fz(rg,a,2),a,Y, ) Kpg =FRr(fr(rg, b, 2),b, X, Q)

Fig. 2. A transformed generic protocol SIG(IT)
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The following lemma is used in the proof of Theorem [I1

Lemma 1 (Difference Lemma [20]). Let A, B, F be events defined on some
probability space. Suppose that event AN\ F°¢ occurs if and only if event B N F€©
occurs. Then |P(A) — P(B)| < P(F).

Theorem 1. Let I € DH-2 be a protocol secure in the eCK" model. Under
the assumption that the signature scheme is deterministic and SUF-CMA, the
protocol SIG(IT) is a secure key-exchange protocol in the eCK-PFS model.

Proof. 1t is straightforward to verify the first condition of Definition [§ i.e., that
matching sessions of protocol SIG(IT) compute the same key (since matching
sessions of protocol IT compute the same key). We show next that the second
condition of Definition 8 holds, i. e., the adversary has no more than a negligible
advantage in distinguishing the session key from a random key. We present a
security proof structured as a sequence of games, a proof technique introduced
in [20]. Let S; denote the event that the adversary correctly guesses the bit
chosen by the challenger to answer the test-session query in Game ¢ and let
a; = |2P(S;) — 1| denote the advantage of the adversary in Game 4. Let N, g
be upper bounds on the number of parties and activated sessions, respectively.

Game 0. This game reflects the security experiment W in model eCK-PFS, as
defined in Subsection 3.2 played by a PPT adversary E against the protocol
SIG(IT).

Game 1. [Transition based on a small failure event] Let Collsi(;r) be the small
failure event that a collision for protocol SIG(IT) occurs (e.g. in ephemeral secret
keys). As soon as event Collgig () occurs, the attack game stops.

Analysis of Game 1. Game 0 is identical to Game 1 up to the point in
the experiment where event Collgg(sr) occurs for the first time. The Difference
Lemma yields that |P(Sy) — P(S1)| < P(Collgic(ry). Hence,

ao = [2P(So) — 1] = 2|P(So) — P(S1) + P(S1) — 1/2|
< 2(|P(So) = P(S1)| + |[P(51) = 1/2])
< QP(COHSIG(U)) + .

Game 2. [Transition based on a large failure event (see [5[I0])] Before the
adversary E starts the attack game, the challenger chooses a random value m €
{1,2,...,¢s}. The m-th session activated by E, denoted by s*, is the session on
which the challenger wants the adversary to be tested. Let T be the event that
the test-session is not session s*. If event T" occurs, then the attack game halts
and the adversary outputs a random bit.
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Analysis of Game 2. Event T is non-negligible, the environment can efficiently
detect it and T is independent of the output in Game 1 (i.e. P(S1|T) = P(S1)).
If T does not occur, then the attacker F will output the same bit in Game 2 as
it did in Game 1 (so that P(S2|T°) = P(S1|T°) = P(S1)). If event T occurs in
Game 2, then the attack game halts and the adversary E outputs a random bit
(so that P(S2|T) = 1/2). We have,

P(82) = P(S:|T)P(T) + P(S,[T*)P(T%) = | P(T) + P(,)P(T")

1)+1
2 2

Hence we get, ag = |2P(S2) — 1| = P(T°)|2P(S1) — 1| = qls .

= P(T°)(P(51) —

*

Suppose w.l.o.g. that s7,, = Z and that protocol II does not include op-
tional public information in the sent messages. Let F' be a forgery event with
respect to the long-term public key pkp of party p, that is, adversary FE issues
a send(s*,V, o) query to session s* being incomplete such that

*

— o is a valid signature on message m = (V,[W, s%_,,.]) with respect to the
public key of ]5, where W is the Diffie-Hellman exponential contained in
message Syo,;, and

— (V, o) has never been output by party Pin response to a send query.

Game 3. [Transition based on a small failure event] This game is the same
as the previous one except that when a forgery event F with respect to the
long-term public key of some party Pep occurs, the experiment halts and E
outputs a random bit.

Analysis of Game 3. The analysis of Game 3 proceeds in several steps.
Consider first the following two cases.

1. If F issues a corrupt(P) query before the completion of session s*, then
this query would render session s* un-fresh. This would have caused Game
2 to abort since session s* would not be the test-session. Recall that the
test-session query can only be issued to a session that is fresh by the time
the query is issued. Hence this case can be excluded.

2. If E does not issue a corrupt(if’) query before the completion of session s*,
then he can only impersonate party P to session s* by forging a signature

on a message with respect to the long-term public key of P.
Claim. We have |P(S2) — P(Ss)| < P(F).

Proof. Tf event F does not occur, then Game 2 and 3 proceed identically (i.e.
Sy A F¢ < S3 A F€). The Difference Lemma yields that |P(S2) — P(Ss)| < P(F).

Claim. If the deterministic signature scheme is SUF-CMA, then P(F) is neg-
ligible. More precisely, P(F) < NAdv3i"(k), where Advy " (k) denotes the
probability of a successful forgery.
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Proof. Consider the following algorithm M using adversary E as a subroutine. M
is given a public signature key pk and access to the corresponding signature oracle
059 Tt selects at random one of the N parties and sets its public key to pk. We
denote this party by P and its signature key pair by (skp,pkp). Further, the algo-

rithm M chooses signature key pairs (sk;, pk;) for all parties P, € P with P, #* P
and stores the associated secret keys. It also chooses key pairs (¢i, C;) for all par-
ties P; € P as needed for protocol I and stores the associated secret keys.

ALGORITHM M:

1. Run E on input 1¥ and the public keys for all of the N parties.

2. If E issues a send(z, Q) query to activate session z with peer Q € P, then
answer it as follows.

— If zactor # P, then choose x €g Z,, to get X = g%, compute the signature
o on message m = (X|, QA}) on behalf of z4¢40r and return the message
(X,0) to E.

— If Zgetor = P, then choose z € Z, to get X = ¢g* and query the
signature oracle on message m = (X[, Q]) which returns the signature o
on message m. Store the pair (m, o) in a table L, initially empty, and
return the message (X, o) to E.

3. If F issues a send(z,@,m) query to activate session z, then answer it as
follows. First check whether message m is of the form (X, o) for some X € G
and o a valid signature on message (X[, zactor]) With respect to the public
key of Q. If the checks succeed, then:

— If zgctor # P, then choose Y €R Zp to get Y = g¥, compute the signature
o on message m = (Y[, X, Q]) on behalf of z,.40- and return the message
(Y,0) to E.

— If Zgetor = P, then choose Y €r Zy to get Y = ¢g* and query the signature
oracle on message m = (Y[, X,Q]) which returns the signature ¢ on
message m. Store the pair (m, o) in table L (initially empty) and return
the message (Y, 0) to E.

If one of the checks does not succeed, then abort session z.

4. If F issues a send(z,m) query to session z in role Z, then check whether
message m is of the form (Y, o) for some Y € G and o a valid signature on
message (Y[, X, Zactor]) With respect to the public key of zpeer (where W € G
is contained in message s%,,,). If the check fails, then abort session z.

5. If E makes a send(s*,V, o) query, where o is a valid signature with respect
to the public key pkp of party P on message m = (VI,W, 8% .;or]) (where

actor
W € G is contained in s%,,,), before the completion of the test-session s*
and (m, o) ¢ L, then stop E and output (m, o) as a forgery.

6. The queries session-key, ephemeral-key are answered in the appropriate way
since M has chosen the ephemeral secret keys for all the sessions and the
long-term secret keys for use in protocol I for all the parties.

7. The queries corrupt(fji)7 where P; € P and P, #* ]5, are answered in the
appropriate way since M knows the secret key pairs of the parties P, =+ P.

8. If E issues the query test-session(s*), then abort with failure.
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Under event F', algorithm M is successful as described in Step 5 and the abor-
tion as in Step 8 does not occur. The probability that E succeeds in forging
a signature with respect to the public key of P is bounded above by the prob-
ability that M outputs a forgery multiplied by the number of parties, that is,
P(F) < NAdvi#™ (k).

Claim. Let Adv%IG(H)’Game 3’O(k) :=|2P(S3]0) — 1|, where O denotes the event

that there is an origin-session for the test-session. It holds that Adv%IG(H)’Game 3

(k) = max(0, AdeIG(m’Game 3O(k:))

Proof. Note that |[2P(S3|F) — 1| = |25 — 1| = 0 (since, when event F occurs in
Game 3, F outputs a random bit) and that if event F' does not occur, then there
exists an origin-session for the test-session.

We next establish an upper bound for Adv?EIG(m’Game 3’O(k‘) in terms of the
security of protocol IT.

Claim. Assume that in Game 3 there exists a uniqu origin-session s for the
test-session s™ with sactor = Sy, If there is an efficient adversary £ in eCK-PFS
succeeding in Game 3 against protocol SIG(IT) with non-negligible advantage,
then we can construct an efficient adversary E’ in eCK" succeeding in Game 3
against protocol IT with non-negligible advantage using adversary E as a sub-

routine. Moreover, it holds that Adv?EIG(H)’Game O < AdvpSeme 39 k),

Proof. Fix an efficient adversary F in eCK-PFS succeeding in Game 3 against
protocol SIG(IT) with non-negligible advantage. Let us construct an adversary
E’ in eCK"Y succeeding in Game 3 against protocol IT with non-negligible ad-
vantage using adversary F as a subroutine.

ALGORITHM E’: E’ chooses secret /public signature key pairs for all the parties
and stores the associated secret signature keys. It is given all public knowledge,
such as public (non-signature) keys for all the parties.

1. Run E against SIG(IT) on input 1* and the public key pairs for all of the N
parties.

2. When F issues a corrupt(if’) query to some party P, E’ issues that query
to party P and returns the answer to that query together with the secret
signature key of P (that E’ has chosen) to E.

3. When FE issues an ephemeral-key or a session-key query to some session z, E’
issues that query to session z and returns the answer to F.

4. send queries are answered in the following way.

— If F issues a send(z, Q) query to activate session z with peer Q, then E’
issues the same query to session z. The response is a message W(e G).
Since E’ knows the secret signature key of z4ct0r, it can sign the message

! No collision in the ephemeral secret keys occurs for SIG(IT) (where IT € DH-2) since
otherwise Game 1 would have caused the game to abort.
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m = (W[, Q]) on its behalf and then return the message (W, o) to E,
where o denotes the signature on m with respect to the public key of
Zactor- ~

— If E issues a send(z, Q),m) query to activate session z, where message m
is of the form (W, o), then E’ first checks whether W € G and second
whether o is a valid signature on message (W|, zactor]) with respect to the
public key of Q. If the checks succeed, then E’ issues the query send(z, W)
to session z. The response is a message V' € G. Since E’ knows the secret
signature key of zgctor, it can sign the message m = (V[, W, Q]) on its
behalf and then return the message (V,0) to E, where o denotes the
signature on m with respect to the public key of z4ct0r-

— If E issues a send(z,m) query, where message m is of the form (V, o),
then E’ first checks whether V' € G and second whether o is a valid
signature on message (V[, W, zactor]) With respect to the public key of
Zpeer, Where W is the Diffie-Hellman exponential contained in zgepns. If
the checks succeed, then E’ issues the query send(z, V) to session z.

If one of the checks fails, then session z is aborted (i.e. E’ aborts session z).
5. In case F issues the test-session query to session s*, F’ issues the test-session
query to session s* and returns the answer to F.
6. At the end of E’s execution (after it has output its guess b'), output b’ as well.

Thus, it holds that Aduv}c 03 301y < AgylTGeame 3.0 ).
Finally,

AdU%IG(H)(k}) < QP(COHSIG(H)) + QqSNAd’U}i[Z:gn(k) + qSAd,UlSEIG(H),Game 370(/@)
S QP(COHSIG(H)) + QquAdvi;g”(k) + qudUg;Game 3’O(k2)

Since by assumption protocol I7 is secure in eCK", there is a negligible function
II,Game 3,0

g such that Advg,; (k) < g(k) which completes the proof. O
Remark 1. Let M"¥ and M-PFS be the security models obtained from eCKY™
and eCK-PFS (respectively) by removing the ephemeral-key query and related
restrictions in the freshness definitions. Then it can be shown in a similar way
as above that for any KE protocol IT € DH-2 secure in M, the transformed
protocol SIG(IT) is secure in M-PF'S using either a deterministic or a randomized
SUF-CMA signature scheme.

Remark 2. In contrast to the SIG transformation, the MAC transformation C
suggested in [6] applied to any protocol m € DH-2 does not yield a two-message
key-exchange protocol secure in eCK-PFS since the transformed protocol is vul-
nerable to an attack that combines revealing the long-term secret keys of the
actor of the test-session with revealing the long-term secret keys of the peer of
the test-session after its completion. More precisely, an attacker can impersonate
the peer of the test-session by first revealing the long-term secret keys of the ac-
tor (which allows him to create valid MACs on messages of his choice) and after
the completion of the test-session revealing the long-term secret keys of the peer.
For example, this attack shows that C(NAXOS) [@] is insecure in eCK-PFS.
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5 NAXOS Revisited

The NAXOS protocol [15], shown in Figure[3] provides an example of a protocol
belonging to the class DH-2, where H; : {0,1}" — Z,, and H» : {0,1}" — {0, 1"
denote two hash functions and r4, 75 €r {0, 1}k. In analogy to Figure[I] note that
Jz(r4,a,92) = Hi(ry,a), fr(rg,b,2) = Hi(rg,b), Fr(fz(ry,a,$2),a,Y,2) =
Hy(Y®, BHaaa) yHi(aa) A B), and Fr(fr(rg,b, 2),b, X, 2) = Ho(AM08:0)]
Xb, X080 A B).

A: (a, A) . B: (b,B)
e T
TA,X _ ng(rA,a) # TB7Y — ng(rB,b)

Hy(ry, Hy(ry, JO— Hy(ra,b Hy(ra,
1(’"A'“),y 1(r4 a),A,B) K = Hy(A 1(rg )),Xb,x 1(rg.0)

KA=H2(Y"‘,B B LA, B)

Fig. 3. NAXOS protocol [I5]

The following proposition states that the NAXOS protocol is secure in eCK™.

Proposition 1. Under the GAP-CDH assumption in the cyclic group G of
prime order p, NAXOS is secure in the eCKY model, when Hy and Hy are
modeled as independent random oracles.

In contrast to the proof of NAXOS in the eCK model [I5], the proof of Proposi-
tion [ distinguishes between the cases whether or not an origin-session (instead
of a matching session) exists for the test-session.

Proof (Sketch). Similar to [I5,21], we analyze the following three events:

1. DLAK
2. To NDL° AN K, and
3. (To)¢ A DL® A K, where

To denotes the event that there exists an origin-session for the test-session, DL
denotes the event where there exists a party C such that the adversary M, dur-
ing its execution, queries H; with (, ¢) before issuing a corrupt(C) query and K
denotes the event that M wins the security experiment against NAXOS by query-
ing Hy with (01, 09,03, A, B), where 01 = CDH(Y, A), 00 = CDH(B, X), 03 =
CDH(X,Y) given that the test-session is s* with T« = (fl, B,T,X, Y). O
Applying the SIG transformation on the NAXOS protocol yields the protocol

SIG(NAXOS), depicted in Figure @l Combining Proposition [[] with Theorem [I}
we obtain the following result.

Corollary 1. Under the GAP-CDH assumption in the cyclic group G of prime
order p, using a deterministic SUF-CMA signature scheme, the SIG(NAXOS)
protocol is secure in the eCK-PFS model, when Hyi, Hy are modeled as indepen-
dent random oracles.
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A: (aaA)a(SkﬁvpkA) X,GA:SignskA(X[,B]) B: (bv B)v(SkévpkB)
i, X = ng(TA,a) Y,UB:s¢gn5,€B(Y[,X,A]) g, Y = gH1(rB,b)
K4 = Hy(Y*, BHl(TA’“),yHl(TA‘“), A, B) Kg= H2(AH1(TB’b),Xb, le(TB’b),A, B)

Fig. 4. SIG(NAXOS) protocol

6 Conclusions

We provided two new eCK-like security notions, namely eCK* and eCK-PFS.
The eCK™ model slightly strengthens eCK by a more precise modeling of weak-
PFS. The stronger eCK-PFS notion guarantees PFS, even in the presence of
eCK-like adversaries. Proving security in eCK-PFS provides strictly more guar-
antees than separately proving eCK"-security and PFS. Existing two-message
KE protocols such as CMQV [21], NAXOS [15], or C(NAXOS) [6] fail to achieve
security in eCK-PFS. We specified a security-strengthening transformation that
transforms any two-message DH type KE protocol secure in eCK"Y into a two-
message protocol secure in eCK-PFS. As future work, we would like to specify
further transformations on KE protocols that are based on the newly developed
security models in this work. It remains an open question whether there exist
more efficient transformations that yield two-message KE protocols secure in
eCK-PFS.
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