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Preface

This volume contains the papers selected for presentation at the 17th European
Symposium on Research in Computer Security (ESORICS 2012), held during
September 10–12, 2012, in Pisa, Italy.

In response to the symposium’s “call for papers,” 248 papers were submitted
to the conference from 43 countries. These papers were evaluated on the basis of
their significance, novelty, technical quality, as well as on their practical impact
or their level of advancement of the field’s foundations.

The Program Committee’s work was carried out electronically, yielding inten-
sive discussions over a period of a few weeks. Of the papers submitted, 50 were
selected for presentation at the conference (resulting in an acceptance rate of
20.16%). We note that many top-quality submissions were not selected for pre-
sentation because of the high technical level of the overall submissions, and we are
certain that many of these submissions will, nevertheless, be published at other
competitive forums in the future. Besides the technical program composed of the
papers collated in these proceedings, the conference included three invited talks.

An event like ESORICS 2012 depends on the volunteering efforts of a host
of individuals and support of numerous institutes. There is a long list of peo-
ple who volunteered their time and energy to put together and organize the
conference, and who deserve special thanks. Thanks to all the members of the
Program Committee and the external reviewers for all their hard work in evalu-
ating the papers. We are also very grateful to all the people whose work ensured
a smooth organization process: the ESORICS Steering Committee, and its Chair
Pierangela Samarati in particular, for their support; Giovanni Livraga, for taking
care of publicity; Daniele Sgandurra, for maintaining the website; and the Local
Organizing Committee, for helping with organization and taking care of local
arrangements. We would also like to thank everyone who organized the work-
shops co-located with ESORICS. Special thanks are due to the keynote speakers,
Gilles Barthe, Christian Cachin, and Ahmad-Reza Sadeghi, who enhanced the
conference’s program by delivering illuminating talks in their respective research
areas. A number of institutes deserve thanks as well: the Institute of Informat-
ics and Telematics of National Research Council (CNR) for its support and for
hosting the event, and the Dipartimento di Informatica of the Università degli
Studi di Milano for its support.

Last but certainly not least, our thanks go to all the authors who submitted
papers and all the symposium’s attendees. We hope you find the proceedings of
ESORICS 2012 stimulating and a source of inspiration for your future research
and education programs.

September 2012 Sara Foresti
Moti Yung

Fabio Martinelli
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Abstract. Several works have recently shown that Android’s security
architecture cannot prevent many undesired behaviors that compromise
the integrity of applications and the privacy of their data. This paper
makes two main contributions to the body of research on Android se-
curity: first, it develops a formal framework for analyzing Android-style
security mechanisms; and, second, it describes the design and imple-
mentation of Sorbet, an enforcement system that enables developers
to use permissions to specify secrecy and integrity policies. Our formal
framework is composed of an abstract model with several specific instan-
tiations. The model enables us to formally define some desired security
properties, which we can prove hold on Sorbet but not on Android. We
implement Sorbet on top of Android 2.3.7, test it on a Nexus S phone,
and demonstrate its usefulness through a case study.

1 Introduction

Recent years have witnessed an explosion in the use of mobile computing thanks
to the proliferation of feature-rich smartphones, and associated app stores and
easy-to-install applications. Smartphones have powerful hardware, with many
useful sensors (e.g., GPS, camera, microphone, accelerometer) exposed via rich
APIs, and enough computing power to run complex applications. Applications
take advantage of these rich APIs to perform convenient and useful, but poten-
tially privacy-sensitive tasks such as accessing address-book or location infor-
mation; accessing online banking and medical accounts; and controlling home
security systems. App stores make it easy for users to install and run applica-
tions, while providing few guarantees about their provenance or behavior.

To protect sensitive resources from applications, and applications from each
other, Android and other mobile OSes implement security mechanisms such as
permission systems and strong isolation between applications. These mecha-
nisms, however, have in practice proved insufficient, with an increasing number
of malicious applications starting to target smartphones [15,23,16].

A number of works have investigated these weaknesses from various perspec-
tives, including demonstrating how applications can communicate through covert
channels [24,18], developing tools to detect information leaks [8,5,14], and im-
plementing more powerful protection mechanisms (e.g., [22,20,7,2]).

This paper adds to the body of research on Android security in two main
ways: first, by developing a formal framework for analyzing Android-style se-
curity mechanisms, including defining properties desired of those, and verifying
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whether these properties hold; and, second, by designing and implementing an
enforcement system that provides application developers with simple language
constructs to specify flexible secrecy and integrity policies, and provably exhibits
desirable security properties. To remain practically relevant, we constrain our en-
forcement system, which we call Sorbet, to be easily retrofittable into Android’s
current architecture. The design and implementation of Sorbet improves exist-
ing Android permission system in the following aspects: (1) we formally state the
properties that we wish our new mechanisms to achieve, and formally prove that
our system design supports them; (2) we enhance Android’s permission system
to support coarse-grained secrecy and integrity policies; and (3) we provide more
flexible support for fine-grained and scope-limited delegation of permissions.

Formal analysis. One of our main goals is to improve our understanding of
the security properties that we desire of Android-like permission systems, and
to verify that specific systems are capable of specifying and enforcing desired
properties. We pursue this goal by building a generalized, abstract model of the
Android permission system, and stating a set of desirable properties in terms
of the model. We then develop instantiations of this model both for the current
Android permission system and for Sorbet. Based on this formal account, we
study the properties of the current system; our investigation reveals both design
and implementation flaws, which guide the design of Sorbet. We also prove that
Sorbet’s design is sufficient to support the properties that we have defined.

Coarse-grained secrecy and integrity policies. Sorbet’s key innovation is coarse-
grained mechanisms that allow developers to protect their applications against
privilege escalation and undesired information flows (e.g., [6,8]). Android’s per-
mission system only prevents applications that do not have the correct permis-
sions from directly calling a protected component. This is inadequate to protect
against a malicious application that reaches a protected component indirectly,
via a chain of calls to innocent applications. To protect against such attacks,
we enrich Android’s permission system with the ability to specify information-
flow constraints and explicit declassification permissions, and implement a light-
weight calling-context tracking and checking mechanism. A key challenge here
is to support local specification of global properties.

Flexible and fine-grained delegation. Run-time delegation of URI permissions is
a key feature in Android, and allows applications to use third-party components
(e.g., a viewer activity) to manipulate content that those components normally
would not be permitted to access. On examination, we discovered that Android’s
implementation of permission delegation is plagued by a number of flaws and
questionable design decisions. Sorbet supports more flexible and principled per-
mission delegation and revocation, and allows developers to specify constraints
that limit the lifespan and redelegation scope of the delegated permissions. De-
veloping a mechanism that correctly enforces lifetime and scope constraints turns
out to be unexpectedly tricky, due to redelegation and the dynamic nature of
Android applications and components, including application installation and
uninstallation, and instantiation and termination of components.
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Contributions and Roadmap. This paper makes the following contributions:

– We develop a formal model that generalizes Android-style permissions (§2.2).
We show how Android’s current permission system can be represented as an
instantiation of our abstract model (§2.3).

– Building on this model, we define a set of security properties that one may
desire of Android-style permission systems (§3.1). We show that Android
currently obeys some of the desired security properties, but not others, and
expose several design inconsistencies and implementation flaws (§3.2).

– We describe Sorbet, a set of improvements to Android’s permission sys-
tem that supports developer-specified coarse-grained information-flow and
privilege-escalation policies. We formalize Sorbet as an instantiation of our
model and show that it better supports the desired security properties (§4).

– Finally, we implement Sorbet on top of Android 2.3.7, test it on a Nexus
S phone, and demonstrate several new scenarios that it enables (§5).

2 Preliminaries

We first review the Android architecture as it pertains to permissions (§2.1). We
then develop an abstract model of Android-style permission systems (§2.2), and
an instantiation of it that captures details of Android’s implementation (§2.3).

2.1 Android Overview

Android is a Linux-based open-source OS designed for smartphones. Android ap-
plications are written in Java and compiled to Dalvik bytecode. Each application
is executed in a separate Dalvik Virtual Machine (DVM) instance.

Android applications are composed of four types of components:

Activities define the user interface. Only one activity interacts with the user at
a time. Users typically interact with a sequence of activities to perform a task.

Services run in the background and have no user interface. Unlike activities,
services remain active regardless of which application is in the foreground.

Broadcast receivers listen for system-wide broadcasts, and inform other applica-
tion components upon the receipt of a broadcast.

Content providers store data and are the main way to share data between appli-
cations. Each provider exposes a public URI that uniquely identifies its data set.
Components and applications can access or update the data via SQL queries.

Activities, services, and broadcast receivers communicate via intents, asyn-
chronous messages that deliver data and, if needed, cause a new instance of
the recipient component to be created. The OS mediates both cross- and intra-
application communications via intents. The recipient of an intent can be spec-
ified explicitly by its package and class name, or implicitly via the action the
intent attempts to initiate. We will often write that a component calls another
component in lieu of explaining that the communication is via an intent.



4 E. Fragkaki et al.

Static Constructs
Components C ::= Ccode | Cdata

Code Components Ccode ::= (name,A, ϕckCallee, ϕckCaller ,Pdecl ,Preq ,Pgrnt)
Data Components Cdata ::= (name, ϕckCaller ,Pdecl)

Component Groups Ĉ ::= (name, ϕckCallee, ϕckCaller ,Pdecl ,Preq,Pgrnt, {C1, · · · ,Cn})

Run-time Constructs

Run-time Instances Ins ::= iC | iĈ
Comp Instances iC ::= (namer ,C ,Pgrnt)

Comp Group Instances iĈ ::= (namer ,Ĉ ,Pgrnt, {iC1, · · · , iCn})
Principals Prin ::= Ins | user
Targets Tgt ::= Ins | C | Ĉ
Events E ::= x = E1; E2 | call iC1 iC2 I | return iC1 iC2 I | resolve iC ϕ

| grant Prin Tgt P F | revoke Prin ({Tgt1, · · · ,Tgtn}) P

| checkguard iC Tgt ϕ | exit Ins | install Prin Ĉ | uninstall Prin Ĉ

Fig. 1. Syntax of permission model

Android uses (application) permissions to protect components and sensitive
APIs. Permissions are strings (e.g., android.permission.INTERNET) defined by the
system or declared by applications. A component or API protected by a permis-
sion can be accessed only by applications that hold this permission. Applications
acquire (application) permissions only at install time, with the user’s consent.

Additionally, content providers can use URI permissions to grant ad-hoc ac-
cess to specific pieces of data that they control (records, tables, or databases).
URI permissions can be dynamically granted and revoked.

2.2 Abstract Model

To be able to formally state the properties desired of a permissions architecture,
we develop an abstract, formal model of Android-style permissions systems. The
model comprises: (1) static elements, which are the code and data we want to
protect; (2) run-time elements, such as system events and component instances;
and (3) a transition system that captures the behavior of the protection mecha-
nisms. The model is more general than Android’s implementation as its purpose
is to encompass a wider design space of permission systems, including previously
suggested extensions (e.g., [22]). We only sketch the model here; see our technical
report [13] for details. Fig. 1 shows the model’s static and run-time elements.

Static Constructs. FollowingAndroid, applications in ourmodel are built from
components. We distinguish between code components (Ccode) and data compo-
nents (Cdata ). Code components—activities, services, and broadcast receivers—
may act both as callers and as callees; data components—content providers—are
passive and only receive calls. A code component is comprised of a name (name),
the actions A to which the component is willing to respond, permissions (Pdecl ,
Preq , and Pgrnt), and guards (ϕckCallee, ϕckCaller ).

In Android, calls to a component are guarded by a permission check. We gen-
eralize this check to an abstract guard modeled by a boolean function ϕckCaller .
For now, we specify only that ϕckCaller takes as arguments a component and
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the calling context and returns true or false. A second general guard, ϕckCallee,
specifies when outgoing calls should be allowed.

We distinguish between permissions that are declared (Pdecl), requested from
the user (Preq), and granted (Pgrnt). This allows us to model behaviors such as
dynamic delegation of permissions.

We model applications, Ĉ , as a set of components ({C1, · · · ,Cn}) with guards
and permissions that apply to all. This is consistent with Android, where per-
missions are typically declared, requested, and granted at the application level,
but individual components can protect themselves with additional permissions.

Run-Time Constructs. It is important to distinguish static components from
run-time instances, and run-time instances from each other. A static component
C may have multiple run-time instances iC , composed of a unique identifier
(e.g., pointer), namer , and the permissions Pgrnt granted to this instance. We

similarly model run-time component groups iĈ (e.g., a running application).
Principals Prin are entities that can grant and revoke permissions: run-time

components and component groups, and the user (i.e., human who installs ap-
plications). Targets Tgt are the objects of such operations, and can be either
run-time or static components or component groups.

Abstracting detail, we focus on system events that concern permissions, such
as component communication via intents (call iC1 iC2 I), and granting (grant)
and revoking permissions (revoke). We discuss these further in §2.3 and §4.1
when we focus on the Android and Sorbet instantiation of the abstract model.

Transition System. We capture the dynamics of the model as a transition
system. We model a system state Σ as a tuple composed of a set of entities
(run-time and static) and auxiliary data structures Aux . We write E to denote
a sequence of events to be processed by the system. We assume that each event
is associated with a unique event ID n. The evolution of the system is a series of
transitions (Σ; E o−→ Σ′; E ′), where o records whether the evaluation of event n
is successful (o = ok(n)) or fails (o = fail(n)). Evaluation of a call event will fail,
for example, if the appropriate guards don’t evaluate to true. A trace, denoted
by T , is a sequence of transitions: Σ0; E0

o1−→ Σ1; E1 · · ·
ok−→ Σk; Ek.

The specific rules in the transition system depend on the concrete implemen-
tations being modeled. Here we show the rule schema for a successful call event.
The call succeeds only if both guards evaluate to true.

call-t (Σ;E , n :: call iC1 iC2 I)
ok(n)−→ (Σ′; E) where Σ′ = updateCall(Σ,call iC1 iC2 I)

if iC2.ϕckCaller (Σ, iC1) = true and iC1.ϕckCallee(Σ, iC2) = true

A parallel rule, call-f, specifies that a call fails if either guard returns false.

2.3 Android Model

We instantiate our abstract model to describe the key behaviors of Android’s
permission system1. This has helped us to identify flaws in its implementation

1 When we refer to Android, we mean version 2.3.7, which was the newest version
available while we were carrying out our investigation. The behaviors we describe
generally hold in 4.0 as well.
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and peculiarities in its design. We omit a full description, but show example
instantiations of guards (ϕuri

P ) and transition rules for granting permissions.

Guards. The guard ϕuri
P checks whether a component has the URI permissions

specified in P . ϕuri
P can be used as ϕckCaller when P is the set of URI permissions

protecting a component.
We first define functions to look up the permissions associated with a run-time

component from the current state. Function grantedByUsrPerm(iC , Σ) returns
permissions granted at install time, and function URIPerm(iC , Σ) returns the
URI permissions dynamically granted to iC ; URIPerm in turn relies on a data
structure M to track the URI permissions granted to each application. Then,
we define ϕuri

P as follows.

ϕuri
P � f(iC , Σ) = P ⊆ grantedByUsrPerm(iC , Σ) ∪ URIPerm(iC , Σ)

Granting Permissions. URI permissions can be granted temporarily, via an
intent, or permanently, via grantUriPermission. We model the former as:

grant iC1 iC2 P Ftmp ; call iC1 iC2 I.

Here, iC1 grants permission P with flag Ftmp to iC2 before transferring control

to iC2. Granting permanently we model as grant iC1 Ĉ P Fprm . Flags Ftmp

and Fprm constrain the lifetime of the delegation of P and the scope of its
potential redelegation by iC2. Mirroring Android, the lifetime of permissions
granted with Ftmp is confined to the lifetime of the recipient (iC2) of the grant
operation. When granting with Fprm , the recipient will have the permission until
the system reboots or the permission is revoked. Neither flag restricts the scope
of redelegation. The following rule shows how grant currently works in Android.

(Σ; E , n :: grant iC1 iC2 P Ftmp)
ok(n)−→ (Σ′; E) if ϕuri

{P}(iC1, Σ) = true

where Σ′ = updateGrant (Σ, iC1, iC2, P,Ftmp)

Granting succeeds only if the granter has permission P . Afterwards, updateGrant
updates state, by recording in M that the enclosing application of iC2 now has
permission P with flag Ftmp , and that the instance iC2 has P in Pgrnt.

The rule for granting with Fprm (omitted here) differs only in its update

function: M records that now Ĉ has permission P with the flag Fprm . These
rules make explicit that Android does not distinguish between Ftmp and Fprm

when deciding whether a component can grant permissions. This causes problems
when components redelegate permissions, as we discuss in §3.2.

3 Security Properties

We define several properties that one might desire of an Android-style security
architecture (§3.1) and investigate whether they currently hold (§3.2).

3.1 Specifying Desired Security Properties

We formulate the properties desired of Android’s security architecture based
on the resources that need protection. These are typically interfaces that allow
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access to functionality that could cause harm or inconvenience (e.g., sending
expensive text messages) and to sensitive data that should not leave the posses-
sion of components that legitimately require it (e.g., financial information in a
banking application; location information). We abstractly define access-control
properties that specify when and how a protected interface can be called and
information-flow properties that specify when and what information can flow
to or from a component. We also investigate lower-level, functional-correctness
properties concerning granting and revoking permissions, since these directly
affect the access-control and information-flow properties.

Local Properties. The following two properties state that the immediate
restrictions specified by a component on its callers or callees are always obeyed.

Property 1. (Local callee protection) If a component A is called by another
component B, then A’s guard ϕckCallee evaluates to true.

Property 2. (Local caller protection) If a component A calls another compo-
nent B, then A’s guard ϕckCaller evaluates to true.

It is easy to show that Prop. 1 and 2 hold on any instantiation that includes
rules like call-t and call-f (see §2.2).

Delegation and Revocation Properties.

Property 3. (Delegation) A component A has a permission P if A owns P ,
or there is a delegation chain from a component B to A such that A satisfies
the scope and lifetime constraints imposed by every component on the chain, and
that every component on the chain also has P .

Intuitively, Prop. 3 ensures that the use of a redelegated permission is confined by
the lifetime and scope constraints specified by the original granter. For instance,
if an email component gives to a viewer component the URI permission P for
displaying an attachment, two sensible constraints are that P is confined to a
specific instance of the viewer, and that the viewer cannot redelegate P .

Property 4. (Revocation) If A revokes P from B, then there is a delegation
chain from A to B, or A owns P .

This is a basic correctness property for revocation. Allowing arbitrary compo-
nents to revoke permissions is likely to be disruptive; hence, only the owner or
granter should be allowed to revoke a permission.

Global Properties. The next two properties are simplified noninterference.
We customize the general notion that secret inputs cannot affect public outputs
and tainted inputs cannot affect endorsed outputs to fit the permission-based
Android model.

Property 5. (Privilege escalation) Given any component B protected by per-
mission P , and any component A that does not have that permission, if SAB is
a system that contains A and B (and other components), and SB is the same
system without A, then a call chain ending with B exists in SAB if and only if it
exists in SB. Additional call chains ending with B may exist in SAB if explicitly
allowed by policy.
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In other words, with respect to accessing B, a system with unprivileged compo-
nent A should behave the same as a system without A. The only exception is if
additional policy explicitly allows A to affect B. Without such exceptions, this
property would likely be too restrictive.

For example, let B be the interface, guarded by permission P , for rebooting
the phone. Suppose that component C has P (which allows it to call B), and
a public interface, such that any calls to that interface will cause C to call B.
Then, a component A that does not have P can indirectly cause B to be invoked
by calling C. C’s indiscriminate invocation of B is an example of the confused-
deputy problem. Since a trace culminating in that invocation of B cannot exist
in a system without A, Prop. 5 prohibits this behavior.

In the other direction, we may want to prevent sensitive information from
being leaked, which permission systems typically cannot specify directly. We
leverage permissions to state an undesired information flow as follows. Suppose
that permission P1 guards the source of some information and permission P2

guards the sink. Then, an undesired information flow can be specified as a call
chain from a component that uses P1 to a component that uses P2. A system
that has no undesired information flows should then obey the following property.

Property 6. (Information flow) Given an undesired information flow from a
component A guarded by P1 to a component B guarded by P2, a call chain that
ends with B exists in a system with A if and only if the same call chain exists
in a system without A. Additional call chains ending with B may exist in the
system with A only if explicitly allowed by policy.

Without a more expressive policy specification language, these properties can-
not be specified precisely.

3.2 Analyzing Android Permissions

We investigated the extent to which Android’s current permission system, as
represented by our model, supports the properties defined in §3.1.

Local Properties Hold. Android’s permission system implements the call-

t and call-f rules, and the guards specified by the components are checked at
run time; hence, Prop. 1 and 2 hold. However, Prop. 2 holds trivially, because
callers cannot state useful guards on callees.

Delegation and Revocation Properties Do Not Hold. Prop. 3 requires
that a permission does not outlive the lifespan specified by its granter. Android’s
implementation, however, does not distinguish between Ftmp and Fprm when
deciding whether a component can grant permissions. This violates Prop. 3 and
causes several bugs (see our companion technical report [13]), e.g., a component
that gained temporary permission can redelegate the permission permanently,
including to itself.

Android’s revokeURIPermission revokes a URI permission from all components
to which it was dynamically granted, and can be called by any component that
was granted the permission at install time. This violates Prop. 4, which requires
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that a component A can revoke only from entities to which it granted permission
(unless A owns the permission). Such violations can easily cause confusion, as
unrelated applications can revoke each other’s permissions.

Global Properties Do Not Hold. Previous work has pointed out that
Android suffers from privilege-escalation flaws (e.g., [6]); i.e., Prop. 5 does not
hold. Prop. 6 also does not hold, as Android does not have a mechanism for
preventing, or even specifying, undesired information flows. An application can
access any component for which it has the permission to do so, regardless of
whether it had previously accessed protected information. Previous work has
shown that this results in various specific undesired information flows [24,18,8].

Examining Android in light of these properties also revealed several design and
implementation bugs, which we reported to Google. These include the ability of
components that received a temporary permission to redelegate that permission
permanently, and improper bookkeeping of granted permissions during applica-
tion uninstallation and installation that can lead to privilege escalation. These
flaws are discussed in more detail in our companion technical report [13].

4 Sorbet: Android Permissions++

Motivated by the properties of §3.1, we develop Sorbet, an improved permis-
sion system that supports (1) developer-defined policies to mitigate undesired
information flows and privilege-escalation attacks; and (2) well-behaved permis-
sion delegation and revocation. Our goals were to enable developers and users
to specify richer policies on their applications without dramatically altering An-
droid, and to construct an enforcement system that is provably well behaved.

Some of the mechanisms we use have been discussed previously [10,22,14,7];
we integrate these and other ideas into a system that we can formally show
satisfies interesting security properties and enables new use cases.

4.1 New Features in Sorbet

Coarse-Grained Information-Flow Protection. Sorbet extends An-
droid’s permission labels to make them suitable for specifying coarse-grained
information-flow policies, and enforces such policies at component and applica-
tion boundaries. By reusing permission labels, this approach requires little new
syntax.

In Sorbet, a component A guarded by P1 (e.g., the contacts permission)
can specify (in the application manifest) information-flow policies of the form
disallow-flow(P1, P2). This indicates that any component B that made use of
P1 to access A cannot (including transitively) use permission P2. A compo-
nent can also request at install time the permission allow-declassify(P1, P2)
to declassify sensitive information, i.e., to escape the restriction imposed by
disallow-flow(P1, P2). We formalize this mechanism and the property it enforces
in §4.2 and §4.3.
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Our mechanism can be used by programmers to strengthen their own code
by separating trusted information that should remain internal to an applica-
tion from untrusted flows that may be communicated to the outside, thereby
decreasing the chance of the application being misused by malicious ones. The
mechanism can also be used to defend against malicious applications or devel-
opers, by specifying policies that should hold between applications.

Coarse-Grained Privilege-Escalation Protection. To mitigate the
confused-deputy problem, Sorbet tracks the permissions of all components on
the call stack. When a component A is called, and A is protected by permission
P , Sorbet checks if every component on the call stack has P . However, this
is too restrictive for practical use; e.g., an email app, which needs to use the
INTERNET permission to send email, could do so only when started by appli-
cations that have the INTERNET permission. To address this, Sorbet allows
components to request a privileged permission P̂ . When a component B has the
permission P̂ , it is permitted to call A even when other components on its call
stack do not have P . P̂ is similar to the enable privilege operation in Java stack
inspection. Other works have also tracked the call stack for similar purposes
(e.g., [7]); Sorbet’s novelty here is in allowing developers to specify policies,
and in enabling proofs that this and other design features allow the system to
exhibit desired properties.

Flag Recipient Redelegation scope Lifetime
Fcomp activity no redelegation activity exit
Ftask activity activities in the same task activity exit

FappTmp activity activities in the same app activity exit
FallTmp activity any component activity exit
Fapp app no redelegation app uninstall
Fall app unrestricted app uninstall

Fig. 2. Flags for constraining delegation. Columns show the recip-
ient scope, the scoping constraints of redelegation, and the lifetime
of the granted permission.

As with information
flow, Sorbet protects
against privilege escala-
tion at both component
level and application
level. To account for
Android’s inability to
completely mediate com-
munication (e.g., via
public static fields) be-
tween components within
an application, the policy enforced at the application level assumes that compo-
nent boundaries within an application are not respected.

Principled Redelegation and Revocation. Sorbet also addresses An-
droid’s problems with indiscriminate redelegation. The challenge here is to design
a (correct) mechanism to allow programmers to predictably control delegation
lifetime and redelegation scope. Building on Android’s notion of temporary and
persistent permissions, we enable the grant operation to precisely convey the
intended scope of the recipient (a component or an application), the scope of
redelegation (none, components in the same task, components in the same appli-
cation, and unrestricted), and the lifetime of the permission (until the recipient
activity exits, or is uninstalled). For simplicity, we converge on six combinations
of these constraints (summarized in Fig. 2), which the programmer can specify
via flags passed as arguments to grant. The enforcement mechanism enforces the
transitive properties that the constraints implicitly require.
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Sorbet allows a component A to revoke a permission P from component B
only if A granted P to B (or A owns P ). In other words, the act of delegating
creates a new link in a delegation chain, and revocation removes that link.

4.2 Implementation of Improvements in Abstract Model

We now briefly describe Sorbet as an instantiation of the abstract model. We
focus on mechanisms for enforcing information flow, and briefly discuss privilege
escalation. Delegation and revocation are discussed in our technical report [13].

Information-Flow Protection. To enforce information-flow policies specified
by disallow-flow(P1, P2) and allow-declassify(P1, P2), we augment the model with
an auxiliary data structure N , which keeps track of information-flow constraints.
More concretely, N maps a component instance iC to the set of information-
flow constraints that includes all such policies specified by components in the
call chain before and including iC .

We define forbidP(N , iC ) to return the set of permissions that are for-
bidden from being used by constraints in N (iC ). For instance, if N (iC ) =
{disallow-flow(P1, P2)}, then forbidP returns {P2}. Function guardP(Σ, iC ) re-
turns the set of permissions that guards the calls to component iC . A successful
call between components in the same group can now be defined as follows.

call-t (Σ; E , n :: call iC1 iC2 I)
ok(n)−→ (updateCall(Σ, call iC1 iC2 I);E)

if iC2.ϕckCaller (Σ, iC1) = true and iC1.ϕckCallee(Σ, iC2) = true
and guardP (Σ, iC2) ∩ forbidP(N , iC1) = ∅

The last line is the added check for information-flow policies. The call succeeds
only if the permission required to access the callee is not forbidden by the policy.

If the call succeeds, information will flow from the caller to the callee, and con-
straints need to be similarly propagated. In addition, the callee has its own con-
straints that need to be incorporated in N . For this, we define two new functions.
updFlow(N , iC ,Fl ) returns a new mapping N ′, where N ′(iC ) = N (iC ) ∪ Fl .
updDeclassify(N , iC , allow-declassify(P1, P2)) returns a new mapping N ′, which
removes disallow-flow(P1, P2) from N for iC . Hence, after a declassification per-
mission allow-declassify(P1, P2) is encountered, the constraint that forbade access
to components guarded by P2 is lifted. E.g., if the user explicitly allows access
to the Internet after private data is read, then this will be allowed.

We define function flowP(Σ, iC ) to return the set of information-flow con-
straints that guard the calls to iC , and getDeclassify(iC ) to return the set
of declassification permissions of iC . The function updateCall first computes
N ′ = updFlow(N , iC2, flowP(Σ, iC1)), then N ′′ = updFlow(N ′, iC2,N (iC1)),
and finally N ′′′ = updDeclassify(N ′′, iC2, getDeclassify(iC2)).

Android does not mediate all communications between components within
the same application (e.g., via shared static fields). Sorbet conservatively as-
sumes that components within an application have communicated, and treats
cross-application calls differently. We write NA(iC ) to be the union of sets
of information-flow constraints N (iC ′), for each iC ′ that is in the same ap-
plication as iC . We define forbidPA(N , iC ) = NA(iC ). We define function
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guardPA(Σ, iC ) to return the set of permissions that guards the calls to all
components in the same application as component iC . In the rule for cross-
application calls, NA takes the place of N , and guardPA takes the place of
guardP. This means that if any component in an application has accessed private
data protected by disallow-flow(P1, P2), then no component in that application
can use permission P2. The update function similarly accumulates all constraints
in the entire application, rather than just one component.

Returns are treated similarly to calls, with the caller and callee designations
switched. We omit the definitions here for space reasons.

Privilege-Escalation Protection. To prevent privilege escalation, we use
auxiliary tree-like data structures to keep track of the full call history. We define
a call forest TS as a list of call trees T , as follows:

Call Forest TS ::= [T1, · · · , Tn] Call Tree T ::= (TS, (iC ,P))

We use MT S to denote a mapping from run-time components to call forests.
Each call tree represents a call chain, and the root of the tree is the last com-
ponent on the call chain. The child of the root is a call forest, which is a list of
call chains, each representing a past call chain to the root component. If com-
ponent A (which has permissions PA) calls B (with permissions PB), and C
(with permissions PC) also calls B, and B has only one run-time instance, then
MT S(B) = [([ ], (A,PA)), ([ ], (C,PC ))]. In other words, each call tree in the call
forest MT S(B) records the full context of the call stack. If B now calls D, the
call tree ([([ ], (A,PA)), ([ ], (C,PC))], (B,PB)) will be stored in MT S(D).

A call from component A to component B is allowed only when for any
permission P that guards the access to B, either A has P̂ ; or A has P and
for every call chain recorded in MT S(A), either (1) all the components have
permission P ; or (2) there exists a component C that has permission P̂ , and all
the components in the call stack after C have P .

As with information flow, the rule for cross-application calls assumes that all
components within an application have communicated with each other.

4.3 Properties

We prove Sorbet obeys Prop. 1–6. Here we show only the more concrete re-
statements of Prop. 5 and 6 made possible by Sorbet’s new policy statements
(disallow-flow, allow-declassify, and P̂ ). For brevity, details and proof sketches are
relegated to our companion technical report [13].

We first define an indirect call chain.

Definition 1. (Indirect call chain) Given components A and B, there exists
an indirect call chain from A to B if there exist

1. components D1, · · · , Dk; and
2. call chains from A to D1, from D1 to D2, · · ·, and from Dk to B.

We say that a component A can influence another component B if there is
an indirect call chain from A to B. For example, A can affect the behavior of
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B (i.e., the intents that B sends) if either (1) A is part of a call chain to B,
or (2) A appears in a call chain to some component D, and this chain shares a
component with a different call chain to B. The shared component carries A’s
influence to B.

Property 5*. (Privilege escalation (2)) Given a component B protected by
permission P , and a component A that does not have P and belongs to a dif-
ferent application than B, if SAB is a system that contains A and B (and other
components), and SB is the same system without A, then a (possibly indirect)
call chain that ends in B exists in SAB if and only if it exists in SB. Additional
(possibly indirect) call chains may exist in SAB only if each such chain has a
common suffix with a (possibly indirect) call chain from A to B, and there exists
a component between A and B that has permission P̂ ; or there is a component
B′ between A and B, the path between B and B′ contains components of the
same application, and B′ is not protected by permission P but communicated to
B via unmonitored channels.

Property 6*. (Information flow (2)) Suppose a component A is guarded by
permission P1 and an information-flow policy disallow-flow(P1, P2), and a com-
ponent B is guarded by P2, and A and B belong to different applications. Then,
a (possibly indirect) call chain that ends with B, in a system with A, exists if
and only if the same call chain exists in a system without A. Additional (possibly
indirect) call chains may exist in the system with A only if each such chain has a
common suffix with a (possibly indirect) call chain from A to B, and there exists
a component between A and B that has permission allow-declassify(P1, P2).

5 Implementing and Evaluating Sorbet

We implemented Sorbet on top of Android 2.3.7. This section describes the
most salient implementation details, including the syntactic additions for ex-
pressing Sorbet’s policies, and a case study that illustrates Sorbet’s features.

Syntactic Additions. We extended Android’s manifest file syntax to support
information-flow and integrity policies. The component protected by P1 can
specify disallow-flow(P1, P2) by adding android:forbiddenPermissions=["P2"] to
the permissions by which this component is protected. allow-declassify(P1, P2)
is specified as <declassified-info source=["P1"] destination=["P2"]/>. A per-
mission is labeled as privileged P̂ by the addition of a “privileged” attribute to its
declaration: <uses-permission android:name="P " android:privileged="true"/>.

Implementation Overview. Sorbet’s keystone is a reference monitor built
on top of Android’s ActivityManager (Fig. 3). ActivityManager already medi-
ates inter-component communication, which includes preventing calls that are
illegal by Android’s policy; Sorbet modifies it so that mediation of relevant
calls is handled by Sorbet instead of by the legacy parts of ActivityManager.
Enforcing Sorbet’s policies also requires additional bookkeeping, including of
instance data (e.g., to recognize that a particular application has accessed a re-
source protected by a “forbidden” permission), and richer static policy specified
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in application manifests. Hence, a significant component of Sorbet’s implemen-
tation is the data structures that implement this bookkeeping. The bookkeeping
includes keeping track of individual files accessed by applications; for enforce-
ment purposes, these are treated as components.

Fig. 3. Sorbet architecture: additions to
Android are shaded; arrows indicate inter-
actions between system components

The most challenging part in im-
plementing Sorbet was to identify
not just which application invoked
a protected resource (which Android
typically already does) but which spe-
cific component instance was respon-
sible for the call; we accomplished
this by enhancing Android’s IPC data
structures to carry more information
about the caller. Another challenge
was to capture operations not me-
diated by ActivityManager, such as
opening a socket or a file. Android
enforces permission-based policies on
such operations by Linux-level checks
based on the (Linux) group ID of
the calling application; applications
are assigned group IDs at installation
time by the package manager. To me-
diate access to these operations, we
used TOMOYO Linux [21], a set of Linux kernel patches that replaces scat-
tered, ad-hoc access-control checks with centralized ones.2 We further extended
TOMOYO Linux so that access attempts for which policy was enforced at Linux
level (e.g., to open a socket or a file) trigger a call to Sorbet’s reference monitor.
This also allows Sorbet to mediate security-relevant behaviors implemented in
native code that may be included in Android applications.

Case Study. To test Sorbet and illustrate its usefulness, we used it to imple-
ment several policies; some that can be implemented (sometimes partially) by
previously proposed mechanisms (e.g., [2,7]), and some that require Sorbet’s
features. Our main case study involves four applications: a file manager for stor-
ing and manipulating private files (e.g., a diary or list of account numbers); a
text editor; an encryption application; and an email application. The high-level
policy we focus on is to prevent private files from being leaked on the Internet,
but to allow them to be manipulated by various applications at the user’s be-
hest (e.g., by using the private file manager to launch an editor). Private files are
kept in a content provider implemented by the file manager, and protected by
separate permissions that allow read and write access. Applications can access
private files only when dynamically delegated the appropriate permissions by the
file manager. We next describe several specific scenarios (summarized in Fig. 4)
that examine variants of this policy and show how they could be implemented.

2 TOMOYO Linux has similarly been used by other researchers [2].
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Scenario
Private File
Manager

Editor
Encryption
App

Email App PE IF

1 Private files cannot
be sent over the
network

a
protected by

R/W perms
– – – – –

b
protected by

R/W perms
use Internet use Internet use Internet � –

c
protected by

R/W perms
forbid Internet

use Internet use Internet use Internet – �

2 Private files sent
over network only
via email

a
protected by

R/W perms
use Internet use Internet use ̂Internet � –

b
protected by

R/W perms
forbid Internet

use Internet use Internet
use Internet
declassify
R/W→Internet

– �

3 Private files sent over
network only via
email and if encrypted

protected by
R/W perms

forbid Internet
use Internet

use Internet
declassify
R/W→Internet

use ̂Internet � �

Fig. 4. Three scenarios from our case study. Columns indicate the permissions assigned
to each application, and whether enforcement is via protection from privilege escalation
(PE), or information flow prevention (IF).

Scenario 1. We start from a base case in which private files must not be sent
over the network (Fig. 4, Scenario 1). In Android, the only way to prevent one
of these applications from leaking files to the network is to avoid granting any of
the applications the Internet permission (Scenario 1a). In Sorbet, this policy
can be enforced by either the mechanism that prevents privilege escalation or
the one that prevents undesired information flows. In the first case, all other
applications can be granted the Internet permission, but will no longer be able
to use it if the file manager, which does not have this permission, is on the call
stack (Scenario 1b). In the second case, the file manager declares the Internet
permission as forbidden, with the same effect (Scenario 1c).
Scenario 2. We now extend the desired policy to allow only the email client to
send a private file (an activity that the user explicitly initiates), while other ap-
plications can use the Internet for other purposes. This cannot be implemented
in stock Android, but can still be done with either of Sorbet’s protection mech-
anisms. For enforcement via the privilege-escalation mechanism, the email app
must declare and be granted the privileged version of the Internet permission.
To enforce the same policy via Sorbet’s information-flow mechanism, the file
manager would declare the Internet permission as forbidden (as in Scenario 1),
and the email would declare the permission to declassify from R/W to Internet.
Scenario 3. Finally, we extend the policy from Scenario 2 to allow emailing pri-
vate files only if they are encrypted. Enforcing this without limiting reasonable
uses of the email app requires both the information-flow and privilege-escalation
mechanisms. As in Scenario 2a, the email app is given the privileged Internet
permission, so that it can send email even if indirectly invoked by the file man-
ager, which does not have the Internet permission. In addition, the file manager
declares the Internet permission forbidden, and the encryption app is allowed to
declassify. Now, the only path to emailing private files is via the encryption app,
which is trusted to invoke the email app only with encrypted data.
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The last scenario shows that Sorbet allows easy specification of useful poli-
cies significantly beyond what Android offers. Our case study used minimally
modified off-the-shelf applications: Open Manager v2.1.8, Qute Text Editor v0.1,
Android Privacy Guard v1.0.9, Email v2.3.4. We modified manifest files, added
sending functionality to some, and added a content provider to Open Manager.
Sorbet’s overhead was sufficiently small to be unobservable by the user.3

6 Related Work

Researchers have analyzed the security of Android’s permission system [5,10],
developed analysis tools for Android applications [11], and proposed new pro-
tection mechanisms (e.g., [20,22]). Many works studied Android’s attack surface
(e.g., [19]), including covert channels [24], DoS [1] and web attacks [17], and
unauthorized application repackaging [27].

Several works have pointed out flaws in Android’s permission system. One
weakness is the lack of global properties: Android’s permission system does not
prevent privilege escalation or information leakage. Davi et al. [6] and Felt et
al. [12] have studied privilege-escalation attacks in detail. Bugiel et al. devel-
oped a system that monitors interactions between applications at run time and
mitigates a wide range of privilege-escalation attacks [2]. Our mechanism has
many similarities, but we focus on allowing developers to specify policies on a
per-application basis, and emphasize formal analysis of mechanisms. Dietz et al.
proposed a framework, Quire, for provenance tracking to mitigate the confused
deputy problem [7]. Our goals overlap, but Sorbet differs in several ways: We do
not track full provenance information, but instead focus on flexible, application-
level policy specification based on permissions; we rely on the Android runtime
for bookkeeping, rather than using digital signatures. We also support declas-
sification, and formally investigate Sorbet’s properties. Another approach to
mitigating application collusion is through domain isolation. Bugiel et al. as-
signed trust levels to applications, allowing them to communicate only if they
are at the same level [3]. They focus on defining policy for a set of applications
at the same trust level, whereas we let applications define policy individually.

Several works have investigated privacy leaks in Android [8,24,4,9]. We pro-
vide a formal framework that allows such flaws to be seen as violations of desired
security properties. Projects such as TaintDroid [8] and AppFence [14] aim to
automatically detect and prevent dangerous information leaks. Our work is in
several ways complementary. TaintDroid and AppFence operate at a much finer
granularity, tracking tainting at the level of variables, and enforce fixed policies.
In contrast, our enforcement is at the component level, and allows developers
to specify policies, including, e.g., declassification, which is key to enabling ap-
plications that have legitimate reason to send tainted data to operate. We also
formally prove that our design enforces desired high-level security properties.

3 We ran microbenchmarks, but, as common in this setting, the small changes—and
sometimes improvements—in latency were dwarfed by the variances between runs.
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Systems such as Saint [22] and Apex [20] also improve Android’s permission
system, e.g., by protecting callers with guards that consider context beyond just
permissions, while staying generally close to the original design. We focus on
deeper revisions to the permission model and enforcing transitive properties.

Formal analysis of Android-related security issues has received less attention.
Shin et al. [25] developed a formal model in order to verify functional correctness
properties of Android, which revealed a flaw in the naming scheme for permis-
sions and a possible attack [26]. In contrast, our work develops a more abstract
model suitable for reasoning about extensions to Android’s permission system.

7 Conclusion

This paper develops a framework for formally analyzing Android-style permis-
sion systems, and shows how to enhance Android’s permission system to support
rich policies while maintaining convenient, application-centric policy specifica-
tion. We have proved the design of our enforcement system satisfies a set of secu-
rity properties, showed its feasibility by implementing and running it on a Nexus
S phone, and demonstrated its usefulness through a case study. In doing so, we
discover that Android’s inability to provide strong isolation between components
constrains the expressiveness of our system and complicates its implementation.
Our system successfully provides both application- and component-level protec-
tions, but it would need to resort to application-level protection less often if
Android’s component-level abstractions were more robust.
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Abstract. The Google File System (GFS) is a highly distributed, fault-
tolerant file system designed for large files and high throughput batch
processing. We consider the first complete security analysis of GFS
systems. We formalize desirable security properties with respect to the
successful enforcement of access control mechanisms and data confiden-
tiality by considering a threat model that is much stronger then in previ-
ous works. We propose extensions to the GFS protocols that satisfy these
properties, and provide a comprehensive analysis of the extensions, both
analytically and experimentally. In a proof-of-concept implementation,
we demonstrate the practicality of the extensions by showing that they
incur only a 12% slowdown while offering higher-assurance guarantees.

1 Introduction

As more companies adopt the cloud computing framework, an increasing amount
of sensitive and mission-critical data will be placed in the cloud. Thus, it is
necessary to develop and deploy strong security controls in the underlying cloud
framework to protect this data. This necessity is underscored by the work several
researchers have done demonstrating various weaknesses in current commercial
cloud offerings (e.g., [23,24]).

The Google File System (GFS) is the file system developed in-house by Google
to support their storage needs [12]. GFS is a distributed file system utilizing a
single server for managing file metadata and (up to) legions of data servers
for storing file data. A file is split into blocks (typically tens or hundreds of
megabytes in size) which are spread out over the data servers. The servers are
assumed to be running on commodity hardware, and the system is meant to scale
to thousands of machines. So, machine failures are assumed to be a frequent, and
entirely normal, occurrence.

The paradigm ushered in by GFS has since seen deployment in cloud comput-
ing infrastructures—notably, HDFS in Hadoop [14]—as the underlying storage
mechanism for the large quantities of data. The architecture of GFS lends it-
self to supporting a MapReduce computing framework, and, indeed, they were
developed together. As such, GFS sees use in large data centers for perform-
ing computations on enormous data sets (e.g., tens and hundreds of terabytes
or more) with already great efficiency and several efforts to further improve its

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 19–36, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



20 J. Kelley, R. Tamassia, and N. Triandopoulos

performance (e.g., [5,8,15]). The usefulness of the MapReduce framework has
made the use of data warehouses highly desirable, but potentially costly—due
to the large setup and maintenance costs. Given this, companies are increas-
ingly outsourcing these MapReduce needs to the cloud (such as Amazon’s EC2
and Elastic MapReduce services). GFS has thus inspired several copy-cat cloud-
centric implementations, including the Hadoop File System, CloudStore, and
TPlatform [4,6,22], all of these falling under the banner of GFS-like file systems.

1.1 Security Issues and Challenges

In a GFS-like system, files are broken up into blocks which are replicated and
distributed across multiple data servers to achieve fault-tolerance. The system is
managed by a central metadata server that handles all metadata operations and
tracks the placement of blocks, seeking to balance the load across all servers and
maintain enough replicas of blocks. Figure 1 shows the basic architecture in GFS-
like systems. For example, to create a file, a user contacts the metadata server
who records the metadata and replies with a list of data servers; then, the user
contacts the data servers to upload the data. Also, the metadata server manages
access control information for each file, but here things become problematic.

Fig. 1. Basic architecture of a GFS-like system

The design of GFS assumes a benevolent environment: the users are assumed
to behave well and not interfere with each other. For example, in the Hadoop
File System (HDFS) (and others, see [6,22]), by default the data servers service
any request from any user. An assumption of total user benevolence has little
justification in the real-world. Thus, it is necessary to integrate security controls
into GFS-like file systems to make attacks by malicious users much more difficult.

As an example attack, when accessing a file, a user will contact the metadata
server M to learn the location of the file blocks and then contact the individual
servers to read the blocks. Since access control checks are performed only at M ,
they can be bypassed by contacting data servers directly. In a more sophisticated
attack, the attacker could register their own machine as a data server. GFS does
not authenticate any data server registrations, so any machine may complete the



Hardening GFS-like File Systems 21

registration protocol. Once registered, the attacker can simply wait to be given
users’ data blocks. Ideally, a GFS-like system should achieve a holistic security
posture guaranteeing that no attacker can compromise the secure functionality
of the system with respect to the integrity and confidentiality of its stored files,
nor compromise the system’s access control mechanisms.

A key step in adding robust security to these file systems is to extend respon-
sibility of access control checking to the data servers themselves. In addition to
stronger access control enforcement, all access control checks, and data struc-
tures holding the access control information, must be very efficient. GFS-like file
systems are performance oriented, with data intensive applications and hundreds
to thousands of parallel tasks. A related concern is that one must also endeavor
to avoid putting an undue burden on system administrators. Complex security
controls are much more likely to be ignored if they make administration much
more difficult and/or negatively impact the job-efficiency of normal users.

The initial paper describing GFS states that no security was built into the
system, other than rudimentary checks at the metadata server: no access control
checks at servers and no protection of data in flight [12]. Yahoo! has instrumented
the Hadoop File System (HDFS) with additional access controls to address some
of the security concerns of its users [29]. Their architecture uses Kerberos for
user authentication and message integrity, and uses a token-based access control
scheme (similar to Kerberos tickets). As with GFS, there are no protections for
network traffic and no method to prevent unauthorized servers from registering
as data servers. An outline of many more attacks against the Hadoop MapReduce
framework, of which HDFS is a part, is given in [1]. Some work was done in [7,28]
to harden Hadoop against a worst-case-scenario adversary, putting HDFS on
top of the least-authority file system Tahoe, but this resulted in rather severe
performance penalties. Moreover, the system does not protect against an attacker
bypassing the metadata server to read a block directly from a data server.

1.2 Our Contributions and Approach

In this work, we present the first formal definitions of security for a GFS-like file
system. The adversary considered in the work is also a great deal stronger than in
previous work and the first to be formally defined. The work by Yahoo! in [29] had
an adversarial model, but the adversary was given in terms of its abilities relative
to system privileges (e.g., could not be root) rather than any general abilities.
Our main result is in proving that our modified GFS architecture is secure, given
our formal definition of security, against our more powerful adversary.

From a practical perspective, the contributions of this work are several. Ya-
hoo!’s work on securing HDFS relied on integrating it with Kerberos to provide
message authentication and integrity, but not confidentiality. In this work mes-
sage integrity, authentication, and confidentiality are built into the GFS pro-
tocols themselves, without adding a central key distribution center. Another
contribution is the integration of stronger, pervasive access control enforcement.
It is worth noting that Yahoo!’s work also has pervasive access control enforce-
ment via tokens; however, forging the tokens becomes trivial if the adversary is
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permitted to have root access on their machine. There is no such restriction on
our adversary. Finally, we deployed a proof-of-concept implementation of these
protocols using the Hadoop File System as our starting point. We then per-
formed several experiments to show the practicality of our architecture, showing
an overall slowdown of 12%: a reasonable price for stronger, provable security.

In our approach, the metadata server has an asymmetric key pair, with the
public key distributed to all data servers. The system administrator also has
an asymmetric key-pair which is used to authenticate the start up of each data
server; the public half is known to the metadata server. Next, the data servers
are brought online. Each data server generates two random keys to be shared
with the metadata server for authenticating and encrypting subsequent mes-
sages. The keys are encrypted using the metadata server’s public key, grouped
with some registration information, and the bundle is signed by the adminis-
trator. Upon receiving the message, the metadata server verifies the signature,
then decrypts and saves the keys while recording the registration information
and then replies to the server with some start-up information. All future mes-
sages between these two servers are authenticated via a MAC using one of the
keys sent during registration. The server periodically sends a heartbeat to the
metadata server to attest to its liveness. Once the data servers have started and
registered, the cluster can begin to service clients. When a client first starts to
use the cluster, it must create a session with the metadata server. The client cre-
ates two random session keys and sends them to the metadata server encrypted
with public key of the server. The metadata server stores the keys and replies
with an acknowledgment of the registration. All further communication will be
authenticated by using a MAC with one of the keys associated with the client.

Access control for the files is maintained through tokens: a token (similar to
a Kerberos ticket) is issued by the metadata server to a client to read/write a
file block. Each token is specific to the server that is holding the block. When
returning the token and block location to the client, the metadata server also
sends a pair of random secret keys to be used in authenticating messages to/from
the data server and encrypting any file data transmitted. These keys are only
valid for the duration of the client’s request to the data server. The metadata
server also prepares and returns a ciphertext to be passed to the data server by
the client which contains the information needed for the data server to interact
with the client. When a client is finished with their session, they inform the
metadata server, who then deletes the session keys. If the client crashes, the
session information expires after a given interval of inactivity.

The rest of this paper is organized as follows. Section 2 presents our formal
security definitions. In Section 3, we describe our security-enhanced GFS pro-
tocols and their asymptotic efficiency. Section 4 provides the security analysis.
Section 5 reports on an experimental evaluation on our proof-of-concept imple-
mentation in Hadoop, comparing it to the insecure default Hadoop. Section 6
discusses related work and Section 7 presents concluding remarks.
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2 Definitions and Model

The GFS protocols have a fixed set of roles that can be assumed by principals:
(a) the metadata serverM , (b) a data server D, (c) a client C, (d) or the system
administrator SA. A principal not conforming to exactly one of these roles when
executing a protocol will produce an invalid execution of the protocol and all
messages sent in the protocol will be ignored by the other principal.

In the following security definitions, we consider a polynomially bounded ad-
versary: bounded in both time and space. The adversary is also subject to a few
more restrictions, detailed below. We will later prove that, subject to standard
cryptographic assumptions and the definitions in this section, the adversary has
only a negligible probability of successfully violating the security guarantees.

At a high level, GFS is a collection of protocols implementing a network-facing
file system API. We will define this API to be synonymous with the collection
of protocols and it will be this collection that we will secure.

Definition 1. The GFS API is the suite of protocols covering all client–server
and server–server communication in the GFS file system.

As a first step in setting up a GFS-like system, the system administrator SAmust
determine which machines are to constitute the cluster. The metadata serverM
is chosen as part of the configuration of the cluster by the administrator, so
we assume M to be given and fixed. The first property we wish the cluster to
have is that only those servers chosen by SA to be data servers can become
part of the cluster. That is, we want to guarantee that SA has full control over
which servers may be data servers. Moreover, we want to ensure that, with
overwhelming probability, a data server can only possess the data blocks that
have been assigned to it by M .

Definition 2. A data server D exporting the GFS API is authorized, if D has
successfully completed the registration protocol with M at the behest of the sys-
tem administrator SA. Moreover, we say that a data server D is authorized with
respect to a block b if D is authorized and M chooses D as a location for b.

In a similar vein to the above definition, we next define correct behavior for a
client. A client’s interactions with the cluster revolves around reading and writing
blocks. Naturally, we would like to restrict clients to only accessing blocks for
which they are “authorized” (defined below). We define accessing a block to be
either a read or a write operation on the block.

Definition 3. A client C of the GFS API is authorized to access a block b, if
that C is permitted, by the access control policy P associated with b, to access b.

The policy P could be any type of access control policy (e.g., capability-based,
mandatory access control, etc.). In GFS-like systems, the enforcement of an ac-
cess control policy is performed solely at the metadata server with data servers
blithely servicing any arriving request. This work provides a secure means to
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extend policy enforcement to the data servers via unforgeable (except with neg-
ligible probability) access tokens. Note, however, that the initial policy check is
still only performed at M .

As a final, basic term we define the notion of “completing a protocol.” A pro-
tocol is considered complete if each principal believes that the other is authorized
and if all messages are received and verify correctly. For example, if a client tries
to read a block from a server, the client has completed the protocol when they
receive the block from the server and the message containing the block passes all
security checks (“verifies”). The server has completed the protocol upon sending
the data block and having it verify at the client. If either party sends an incor-
rect/malformed message, and it is detected by the recipient, then they have not
completed the protocol.

We begin the security definitions by first defining what it means for the GFS
API to be secure with respect to server-to-server interactions. Following that
definition, we define security with respect to clients and passive adversaries. The
term “server” will be used as a shorthand for a data server and/or the metadata
server. Whenever a statement applies to only one of the two, the type of server
will be made explicit.

Definition 4. The GFS API is server-secure if, with overwhelming probability,
only authorized servers can complete the server-to-server protocols. Moreover,
the GFS API is client-secure, if with overwhelming probability, only authorized
servers and clients can complete the client–server protocols.

That is, the GFS API is server-secure if for any unauthorized server U , it cannot
successfully complete any of the server-to-server protocols, except with negligible
probability (similarly for client-security). Later, we will show that our modifica-
tions achieve these properties. Note that, here, “authorized” covers both mean-
ings of a server being authorized: authorized to be a data server, and with respect
to a block. These definitions encompass the behaviors of an active adversary, but
we must not neglect a passive adversary.

Definition 5. The GFS API, is passive-secure if, with overwhelming probabil-
ity, an adversary A, given a polynomially bounded number of messages from GFS
protocol instances, cannot learn the contents of any data block.

Later we will prove that our modifications to the GFS protocols achieve this
property. We can now define what it means for a GFS API to be “secure.”

Definition 6. The GFS API, G, is secure if, with overwhelming probability, it
holds that G is: (i) server-secure, (ii) client-secure, and (iii) passive-secure.

No current GFS implementation achieves any of these properties, except against
much more limited adversaries than the one considered here. For example, the
work done by Yahoo! is client-secure for adversaries that cannot read arbitrary
network traffic, but, since no file is encrypted, it is not passive-secure.

We assume that the adversary is polynomially bounded in both space and time
and is allowed start any protocol, at any time, with any party that recognizes
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that protocol. The adversary may try to impersonate another user or server, or
use his own identity. The adversary cannot subvert known “good” servers or
clients. As an additional power, we allow the adversary to observe any instance
of any protocol at will (i.e., read arbitrary data on the network). As an example,
a malicious user that has obtained root access on their machine fits our model; a
malicious user breaking into another user’s machine (or a data server) does not.
Denial of service attacks are beyond the scope of this work.

We consider only the GFS protocols, all other communication is considered
out-of-band. We also assume that there is some reliable, secure mechanism avail-
able to the metadata server (but not necessarily to data servers) for determining
a user’s identity (e.g., Kerberos). Finally, we will assume reliable message deliv-
ery, but the adversary is permitted to manipulate messages while in transit.

3 Proposed Architecture

In securing GFS-like file systems, we modify the constituent protocols to be prov-
ably secure against the adversary defined above. Messages between clients and
servers, and among servers, must be authenticated to protect integrity and, in
some instances, encrypted to maintain confidentiality of data. The data servers
will need to register with the metadata server and clients will need to start
sessions with the metadata server. The proposed architecture uses public-key
cryptography to bootstrap itself to a place where it can use symmetric cryp-
tography for greater efficiency. This section contains high-level descriptions of
the secured protocols along with an asymptotic analysis of each protocol. Exact
message parameters are omitted both for brevity and clarity. For notation, sym-
metric keys are denoted with a lower case k and the public and private halves
of an asymmetric key used by principal P are denoted PKP and SKP , respec-
tively. A message authentication code created with a key k will be denoted mk.
Variables that represent a name are capitalized. The metadata server will be
denoted by M . It is assumed that M can securely determine the identity of a
client, but data servers do not have this ability.

Client–Metadata Server. When a client C first interacts withM in a session,
C sends the server two keys k1 and k2 (along with a nonce) encrypted with the
public key of M and a MAC appended for integrity, created with k1. The key k1
is used to authenticate all subsequent messages while k2 is used to encrypt some
of the responses from M (e.g., an encryption key for sending file data). Upon
receiving the message,M decrypts the keys and verifies the MAC, thenM replies
with the nonce and a MAC of the nonce using k1. Efficiency-wise, this protocol
requires O(1) asymmetric encryption operations, each on input of size O(1), and
O(1) symmetric operations, each on an input of size O(l) and requiring O(l)
time, where l is the length of the message. All subsequent metadata requests
and replies simply contain the request/response, a nonce, and a MAC.

When the client wishes to read/write a file block, they must first contactM to
find the location(s) of the block. Along with the block’s location, say server D,
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M also sends back a ciphertext containing the access token and ephemeral keys
for encrypting and authenticating the messages between C and D. Each key and
token is valid for a single request. A copy of the ciphertext is encrypted with the
long-term encryption key shared between the M and D, to be passed along to
D by C. If there are multiple locations for the block, then there is a ciphertext
and token for each location, as the client could potentially access any or all of
them. If the replication factor is r and the file has n blocks, M must create rn
tokens and send a message of size O(rn). Note, according to [27], while files can
be quite large, at Yahoo! the average file has 1.5 blocks. With a replication factor
of 3 this gives an average of 4.5 tokens created when opening a file.

For a write request, the client contacts M each time it wants to add a block
to the file. M picks locations for the r replicas and determines the “pipeline” of
servers: where the client sends the data to the first server, who forwards it to the
next, etc., rather than have the client communicate with each server individually.
As noted above, when writing a block, the receiving data server will need to
receive from the client an access token and a ciphertext created by M . Thus,
M creates r tokens and r ciphertexts, one for each data server in the pipeline.
Each ciphertext contains the necessary information (and ciphertexts) for the
corresponding data server to continue the pipeline (detailed below). Note that
each subsequent encryption is performed on an incrementally longer message.
For simplicity, assume that the increment i is fixed. Then we have that i+ 2i+
· · ·+ri = O(ir2) bytes must be encrypted to produce a ciphertext of length O(r).
Overall the cost to M is O(ir2). Note, however, that the message generated by
M is typically just a few hundred bytes; so these operations are not a significant
cost. The overall message size for writing a block is O(r), as in the original GFS.

Client–Data Server. The interactions between clients and data servers consist
entirely of requesting and serving read/write operations. The response from the
metadata server to the client (when it starts a request) contains two ephemeral
keys ka and ke that will be used to authenticate and encrypt (respectively)
messages between C and D.

Read and write requests, though similar, require slightly different protocols.
For a read request, C receives a list of tuples L from M containing all of the
information needed by C to read any block of the file (e.g., access token, encryp-
tion key, etc.). Suppose C wishes to read the block b located at data server D.
C contacts D and sends the read request along with a nonce and the ciphertext
c from b’s tuple in L. C also creates and sends a ciphertext c′ containing the
nonce, the access token t for b, and the client’s identity C, encrypted with ke.
Once D receives the request, it decrypts c to obtain the keys and C’s identity.
D then decrypts c′ and checks the access token t. If t is valid, D sends back b
encrypted with the same ephemeral key ke. Both messages are authenticated via
a MAC computed with ka. Note that only O(1) encryption and MAC operations
are performed in both sending and receiving b, but the computational cost for
each is proportional to the length of the message.

To write a block, C first sends the request to M who replies with the name
of the server D (who will hold the block), an access token, two ephemeral keys
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(as above), and a ciphertext cD constructed for D. Here, cD contains the infor-
mation needed by D to verify the client’s identity and authorization, as well as
information about the next server in the pipeline so that D can forward the data.
M also sends a ciphertext c for C containing essentially the same information
as cD. Each message between M and C, again, is authenticated with a MAC.
C then contacts D to write the block. First, C generates a nonce and encrypts

it along with the block data d, using ke. C then constructs a message containing
the write request, the encrypted data, the nonce, the ciphertext cD, and a (newly
created) ciphertext c2 containing the access token t, all of which is authenticated
with mka . D decrypts cD to obtain the ephemeral keys and verifymka . Following
this, D decrypts c2 to obtain t and verifies it. D subsequently forwards the data
to the next server, D′, then decrypts and writes the data to disk. Note that the
data is not reencrypted with a new key as each server in the pipeline has a copy
of ke, given to it in the ciphertext created by M . Finally, D replies with final
status s of the write, authenticated with m′

ka
.

Related to efficiency, we see that the initial message sent by C to D is of
size O(r + l)—as in the original GFS—where r is the replication factor and l
is the length of the block. Part of the message sent is a ciphertext of size O(r),
which was constructed by M for D. The encryption requires O(l) time and the
MAC computation takes O(r + l) time. Each data server in the pipeline verifies
the MAC of the data and then forwards it to the next node in the pipeline
before decrypting it—avoiding a possible decryption-reencryption bottleneck.
Thus, each data server needs to perform a MAC calculation on a message of size
O(r + l) and a single decryption operation on a ciphertext of length l.

Data Server–Metadata Server. An essential part of maintaining data secu-
rity and integrity is preventing a malicious user from spoofing or manipulating
any communication between data servers and M . The first step in ensuring se-
curity is to prevent any spurious data servers (i.e., those started and controlled
by the attacker) from registering as data servers. To effect this, the system ad-
ministrator possesses an asymmetric key pair (PKA, SKA), with M possessing
the public half. M itself has its own asymmetric key pair (PKM , SKM ), which
will be utilized by the data servers.

When a data server D starts, it seeks to register with M . Part of the regis-
tration message is a pair of symmetric keys kDa and kDe to be shared with M .
The key kDa is used to create a MAC for each subsequent message between D
and M , as well as for creating the access tokens for blocks hosted by D. The
key kDe is used for encrypting messages from M to D. The keys themselves are
encrypted with PKM , along with a nonce, to produce the ciphertext, which is
added to the registration message. The administrator then signs the message and
D sends it toM . Upon receiving the message,M verifies the signature, decrypts
c, then saves the keys kDa and kDe . M then sends some start-up information to
D, authenticated with mkD

a
. Note that the efficiency of the registration proto-

col is near optimal, as there are O(1) symmetric and asymmetric cryptographic
operations. The asymmetric operations are all on O(1)-sized input, while the
symmetric operations require O(l) time, where l is the length of the message.
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After registration, D periodically sends heartbeat and “block report” mes-
sages (usually combined together) to M . The heartbeat attests to D’s liveness
while the block report is simply an update on any block state changes (e.g.,
added or deleted). When receiving either of these, M replies with a (possibly
empty) list of commands for D to execute. The heartbeat message is typically a
fixed size and so D requires O(1) time to compute the MAC. But, with the block
report, if the report is of length l′, then the MAC takes O(l′) time to compute
(but still only requires O(1) space).

Data Server–Data Server. Data servers must also interact with each other,
but only in limited circumstances: as part of a pipeline when writing a file block
and transferring blocks during load balancing. In both situations, the sender
appears to the receiver to be just another client writing a block. Thus the sending
data server must have enough information to emulate a client in the client–data
server protocol for writing blocks.

Suppose we have a pipeline of n servers, D1, . . . , Dn, where Di is the i-th
server in the pipeline. The Di will need to forward the data to Di+1. Dn simply
receives the data and does not forward it further. For each Di, the metadata
server M creates a ciphertext cDi containing the information necessary for Di

to continue the data pipeline. The cDi ’s are nested within each other, so that
cD1 contains cD2 , which contains cD3 , etc. Each server Di removes the i-th layer
of encryption and obtains, along with other information, the ciphertext cDi+1 .
The “other information” includes: a nonce, two ephemeral keys, an access token,
and the identity of Di+1. The keys and access token play the same role here
as they do in the client–data server protocol. Transferring blocks during load
balancing is essentially identical to the client–data server protocol for writing
a block. For more details, see the above section describing client–data server
interactions. Note that these inter-server interactions have the same efficiency
as the client–data server protocol for writing a block.

As part of increasing the security of GFS-like file systems, we have the data
server become a point of enforcement for the access controls. Suppose a client
wants to access a file consisting of blocks b1, · · · , bn. The metadata server M
first checks that C has access rights, then creates a token ti for each block bi.
Each ti is valid only at the corresponding data server that holds a copy of bi,
call it D. The token itself is a simply a MAC created from the token information
and the long-term key kDa (described above). When a request to operate on bi
arrives, D will check the token ti before servicing the request.

4 Security

To prove the security of the protocols, we will define a “game” for the adversary
to play. The game simply encapsulates a standard cryptographic reduction: we
will reduce the security of the protocols to the security of the cryptographic
primitives used (i.e., MACs and signatures). The setup for the reduction is a
bit unusual, but, as shown below, the formulation is equivalent to the standard
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reduction framework. We assume that the encryption schemes are semantically
secure and the MAC and signature schemes are existentially unforgeable under
chosen-plaintext attacks. All keys are assumed long enough to be computation-
ally infeasible to brute-force.

4.1 Security Game

We wish to accurately model the adversary, the system, and their interactions
with each other, while giving the adversary as much flexibility as possible. We
define a message-creation game where A has access to a simulator S that main-
tains a simulation of the cluster. A dictates all the events in S. Each event details
a protocol to be executed with principals and parameters chosen by A. A may
submit each message in a protocol as separate events with an arbitrary (but
polynomially bounded) number of events inbetween. We do not allow parallel
executions of the protocols, e.g. multiple instances of server registration initiated
by the same server. Cryptographic keys are chosen by A only when the adver-
sary’s role in the protocol generates the keys. Otherwise the keys are generated
and maintained by the simulator and are hidden from A.

After an event e is submitted to S and the internal state of S is updated, S
outputs a transcript of the (full or partial) protocol execution dictated by e. The
adversary wins the game if, after some polynomial number of steps, he produces
a message that is unique, well-formed, and correctly verifies at the intended
recipient (i.e., a principal in the simulator). We restrict the output message
such that it must be for a protocol of which A is not one of the principals—
otherwise A can win trivially. Note that each protocol consists of exactly two
messages: an initiation message and the response. If the output of the adversary
is a response message, then, for A to win, there must have been an event detailing
the initiation message for that protocol. This setup gives A much more power
over the cluster than would be possible in the real world. However, we will prove
that the protocols are secure against even this more powerful adversary.

4.2 Security Proofs

The following proofs will use the game described above to reduce the security of
the protocols to the security of a cryptographic primitive: whether it is a digital
signature or a message authentication code. The registration protocol is the only
protocol that involves an asymmetric signature for integrity and authentication;
all other protocols use MACs to provide the same protections. As such, the
security of the registration protocol’s initial message reduces to the security of
the digital signature, while the security of every other message reduces to the
the MAC. The next two parts give outlines of formal proofs demonstrating these
reductions.

Data Server Registration. Assume there exists a probabilistic polynomial-
time adversary A, taking as input the public key of the metadata server PKM ,
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and the public key of the system administrator PKSA, who can win the message-
creation game with non-negligible probability. Moreover, assume A’s output is
the initial message of the registration protocol. We will construct an algorithm
B that uses A as a subroutine to break the signature scheme. B takes as input
the public key PK of the signature oracle O and the security parameter 1k.

To use the adversary A, B will need to emulate the simulator. For each event
e output by A, B will run the protocol with the given parameters, update the
state s of the cluster, and return a transcript t to A. Whenever e dictates the
registration of a new data server,B forms the registration messagem in the usual
way and then queries O on m to get the signature σ. The signature σ is used in
place of the administrator’s signature. All other protocols are executed normally
with B exactly mimicking the simulator. Eventually, A outputs a message m.
If the message is anything other than the initial message of the registration
protocol, B fails. Otherwise, B extracts the signature σ̃ and the data d that
was signed and outputs the pair (d, σ̃). If A won the game, then m verifies at its
intended recipient: the metadata server. This implies that σ̃ was a valid signature
for d even though A had no access to the key, i.e. A produced a forgery.

Since B outputs, essentially, the output of A, B succeeds exactly when A
succeeds. Thus, if the transcripts given to A are distributed properly, B inherits
the success probability of A. Note that B runs exactly the protocols in GFS,
with the parameters and principals determined by A each time. Furthermore, the
signature oracle O outputs signatures using a key that is from the same scheme
as the key of the system administrator. Thus, since (almost) all protocols are run
exactly as in the simulator and the signatures are from a distribution identical to
the expected distribution, we have that the input to A is distributed exactly as
expected. This implies that if A has a non-negligible probability of winning the
game, then B has a non-negligible probability of producing a forgery. However,
this contradicts the security of the signature scheme. Thus, it must be that A
has only a negligible probability of winning the game when attacking the initial
message of the registration protocol.

General Proof of Security. We now prove the security of the remaining
protocols as a group. First, it is important to notice that each of the other
protocols have the same structure: principal P1 sends a message μ with a MAC
m, and then principal P2 replies with a message μ′ and a MACm′. We can exploit
this structure and use an adversaryA that can complete one of these protocols to
create an adversary B that can break the security of the MAC scheme. Note that
here we are assuming that the protocols, and the confidential values transferred
therein, are secure against a passively observing adversary—we will prove this
property later. In this reduction, B will have access to polynomially many oracles
for the MAC scheme, each independently instantiated (i.e., the key in each oracle
is chosen at random). B is successful if it can forge a message for any of the
instantiated oracles.

Note that having polynomially many oracles is equivalent in power to having
a single oracle. Briefly, given a single oracle O of polynomially-bounded power
(e.g., a signature oracle) and an adversary who succeeds against polynomially
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many oracles, we can “guess,” with non-negligible probability, which oracle will
be attacked by the adversary. Using this guess, we can then use O to satisfy
queries to the “to-be-attacked” oracle and simulate the remaining oracles. If the
adversary succeeds with non-negligible probability and we made a correct guess,
then we succeed with non-negligible probability.

Since we do not know how many oracles will be needed by B, we give B
access to a meta-oracle MO that will manage the oracle instances. MO has
three operations: start , stop, query. The command start takes no parameters,
instantiates a new MAC oracle with a randomly chosen key, and returns a unique
identifier for the oracle. The stop operation takes an oracle identifier as input
and “destroys” the indicated oracle instance, making further queries under that
identifier invalid. The query operation takes as input the identifier for an oracle
and the input to the oracle, and then returns the output from the selected oracle.

As before, B emulates the simulator as closely as possible when interacting
with A. Whenever an event e starts a new protocol instance, B determines
whether or not a new oracle must be instantiated or if previously instantiated
oracle must be used. For instance, if a client C is reading a block from a data
server D, then B must ask MO to start a new oracle, since a unique MAC key
is used in each block transfer. B would use a previously instantiated oracle for,
say, a data server sending a heartbeat to the metadata server. However, if A
is one of the principals in the protocol, then, since A knows the keys, B must
itself compute the MAC for the message, all other MACs are computed by the
oracles. Note that this does not affect B’s chance of success as A is forbidden
from attacking protocols in which it is a principal.

One difficulty in this reduction is what to do when the key for the MAC
is sent as part of the message or in a previously executed protocol (e.g., the
ephemeral keys for reading a block). Since the oracles are used for (almost) all
MAC generation, B does not have access to the keys and cannot include them
in any messages. The solution is to choose the keys in the message at random—
except for those instances where A is a principal. While substituting in a random
key does not perfectly mimic the simulator, we show next that the distribution
of messages is computationally indistinguishable from the ideal distribution.

Suppose that A can distinguish the distribution of messages produced by B
from the expected distribution, and that we have access to an encryption oracle
for the cipher used to encrypt the keys. Then there exists an A′ that, given a
sample from one distribution or the other, distinguishes the distributions with a
non-negligible advantage over 1

2 . Construct C that generates two random keys k0
and k1, and then constructs two messages m0 and m1 (both conforming to one
of the protocols). C then submits m0 and m1 to the oracle to get O(mb) = cb for
a random b ∈ {0, 1}. Once it has cb, C finishes constructing the protocol message
M and computes the MAC using k0. C submits M with the MAC to A′ and
outputs whatever A′ does. C is correct exactly when A′ is correct. Thus C has a
non-negligible chance to distinguish the encryptions ofm0 andm1, contradicting
the semantic security of the cipher. Thus, the view of A is computationally
indistinguishable from the expected view. Since B succeeds exactly when A
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succeeds, if A wins non-negligiblely often, then so does B, contradicting the
security of the MAC scheme. Thus, it must be that there does not exist an A
that can win the game with non-negligible probability. This, combined with the
previous result, implies that A cannot win the game for any of the protocols.

Proof of Security of the Access Token. The definition of security for the
access token is most naturally existential unforgeability under chosen-plaintext
attacks. That is, with overwhelming probability, any token created by the ad-
versary will not verify at any of the data servers. Note that since the token itself
is simply a MAC of a few specific parameters, the security of the token is ex-
actly the security of the MAC scheme. Thus, since we assumed that the MAC
is secure, we have that the access tokens are also secure.

Proof against the Passive Adversary. To prove passive security, we must
ensure that the adversary A cannot learn the contents of any data block. Since
A is not interacting with any other principals, the only way for A to learn
the contents a block is for A to capture the block intransit. File blocks only
travel between and among clients and data servers and, as stated above, the file
blocks are always encrypted before being transmitted. It is worth noting that in
several instances, the key used to encrypt a file block is also sent with the block.
However, the key is also encrypted with a semantically secure cipher. This layer
of encryption should stymie the adversary A, unless A can acquire the key(s) or
compute a non-negligible amount of information about the key(s).

The semantic security of the cipher implies that the passive adversary, with
overwhelming probability, can only learn a negligible amount of information
about any transmitted key (likewise for any key used to encrypt the transmitted
key). Similarly, since the cipher used to encrypt the block data is also semanti-
cally secure and—it was assumed—the key is too long to brute-force in a rea-
sonable amount of time, with overwhelming probability, the passive adversary
A can only learn a negligible amount of information about the contents of the
block. This is exactly the definition of being passive-secure, as desired.

Security Properties Proven. Overall, the above proofs give us the fact that
an adversary (as described in Section 2), with overwhelming probability, cannot
complete any of the protocols in the GFS API, giving us the server-secure and
client-secure properties. Additionally, we demonstrated that with overwhelming
probability the system is also secure against a passive adversary. Thus we have
that the extensions given in this work give a GFS API that is secure.

5 Experimental Results

To demonstrate the practicality of this secured architecture, a proof-of-concept
implementation was created by modifying the open-source Hadoop platform [14]
to implement the above secured protocols. The changes were made to version
0.20.104.2 of the Yahoo! branch of the code (which has since been merged into
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mainline Hadoop). This branch was chosen because it contains all of the Kerberos
integration work performed by Yahoo!. This allows a more direct comparison of
the efficiency of previous security work with the efficiency of this work.

Our implementation uses 2048 RSA for the asymmetric keys, and UMAC128 for
the message authentication codes [18]. The stream cipher Salsa20/12 from [2]
is used for all data encryption—chosen for both its speed and strong security.
The experiments were performed on a cluster of 40 Dell PowerEdge 1855s each
running a dual-core 2.8GHz Intel Xeon with 8 GB of memory and 300GB of disk
space—for a total of 12TB of disk space in the cluster. The operating system
used on each is 64-bit Debian Linux. The metadata server was run on a quad-
core Intel Core2 Q6600 at 2.4GHz with 4GB of memory. While the processor
has 64-bit instructions, the OS was 32-bit Debian Linux with PAE.

We used standard benchmarks of Hadoop: Gridmix2, NNThroughputBench-
mark, and TestDFSIO. Gridmix2 is a mix of various MapReduce jobs designed
to stress HDFS in a number of ways while emulating a real-world workload and
is regarded as the standard macro-benchmark for Hadoop clusters. NNThrough-
putBenchmark is used to test the throughput, and hence scalability, of the meta-
data server (called the NameNode in Hadoop). The TestDFSIO utility measures
the raw read and write speed of the cluster. We summarize the results in Table 1.

Table 1. Comparison of our work against default Hadoop. The first column is in
seconds, the second and third in MB/s and the remaining in operations per second.

Gridmix2 Avg Read IO Avg Write IO Open Create BlockReport

Default Hadoop 23997s 58.6 MB/s 20.2 MB/s 45871 324 8333

Sec-Hadoop 26819s 27.9 MB/s 10.8 MB/s 6711 331 7821

% Slowdown 11.8 52.4 46.5 85.4 -2.1 6.1

Overall Performance. The Gridmix2 column in Table 1 shows that, overall,
this work produces a 12% slow down of Hadoop. The work by Yahoo! in com-
parison achieves a 3% slowdown of the Gridmix2 benchmark, but none of the file
data is encrypted. The remaining columns give the average IO rates for reads
and writes when creating 40 files of 2048MB each with a replication factor of 3.
Average IO is defined as the average the individual IO rates for the created files.
We can see that the average IO rates for the secured Hadoop are a bit less than
half of the rates for the default Hadoop. While this is a significant drop in per-
formance, the effect of this is attenuated by the fact that cluster performance is
not solely IO-bound. For example, even though our work has half the read/write
performance, the overall impact was just a 12% slowdown for the cluster.

Scalability. GFS-like file systems are designed to rapidly scale upward, but
growth is often limited by the capacity of the metadata server. Shvachko in [27]
performs a detailed estimation of the practical limits of a Hadoop cluster assess-
ing memory and computational costs. Looking at the same metrics, the memory
overhead in our work is at most in the tens of kilobytes as only a few dozen
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bytes are stored per server and client. The real cost of our modifications is com-
putational: an increase in both the time spent processing messages from data
servers and handling metadata operations from clients. Table 1 shows that the
throughput of the metadata server decreases between 6.1% and 85.4%, depend-
ing on the action performed. While this reduces the scalability of the cluster,
the limit would only affect very large Hadoop deployments. In particular, our
rather modest metadata server is still able to handle several thousand operations
per second. Thus, a secured cluster could easily scale to hundreds of servers and
even to a few thousand. But, as the “Open” metric shows, a secured Hadoop
will have trouble scaling past a few thousand nodes.

6 Other Related Work

Yahoo! has released their own version of Hadoop, an open source implementa-
tion of the Map-Reduce framework, including a security-enhanced HDFS [29].
This version incorporates Kerberos authentication into all communication: all
servers and users are registered as principals in the Kerberos database and must
authenticate before sending any messages. Their work provides message integrity
and authentication, but not confidentiality. Recent work has been done on dis-
tributed file systems that operate as the underlying cloud storage. However,
security is rarely, if ever, mentioned. The efforts in [11] give a file system that
is similar to GFS but uses a collection of metadata servers instead of a single
central server and finer-grained resource control. User authentication is the only
security feature. The work in [17] provides a flexible and modular cloud storage
system where components can be swapped in/out to provide customized levels
of reliability, efficiency, and consistency semantics, but security is not discussed.

Previous work on security in GFS-like file systems is sparse. Airavat modifies
Hadoop to support mandatory access controls and store the security labels with
the blocks [25]. However, MAC policies are often unwieldy, difficult to set up, and
time-consuming to maintain. Also, the implementation results in a slow-down of
up to 25%. TPlatform [22] has the same access control limitations as the original
Hadoop. CloudStore, another implementation of GFS, does not have any access
controls [6]. Another effort by [16] builds fine-grained access controls on top of
the Hadoop file system (HDFS), but it assumes that HDFS is inherently secure.

SUNDR is a network file system that seeks to reduce the amount of trust
clients must give to the file servers—the converse of our goal: reducing the trust
given to clients—and implements fork-consistency [19]. GPFS is another dis-
tributed file system that provides efficient, fault-tolerant storage [26]. Access
control checks are performed at the storage servers and users are assumed to be
relatively benevolent. The Panache file system is designed to be fully parallel in
all read/write operations, utilizing GPFS to store file data and metadata and
uses parallel NFS on the client-side for reading/writing data [10]. SFS aims to
provide a secure file system over an untrusted network (e.g., the Internet) us-
ing “self-certifying paths” via public-key based client-server authentication [20].
Related work on the integrity verification of outsourced file systems includes au-
thenticated data structures (e.g., [13,21]) and proofs of data possession (e.g., [9]).
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7 Conclusion and Future Work

This work demonstrates the feasibility of greatly enhancing the security of GFS-
like file systems, while maintaining a reasonable overhead. However, a 12% slow-
down is not insignificant and could be improved through various avenues. One
avenue would be to add more flexibility in the architecture (e.g., choosing to
encrypt block data but not use a MAC) so that administrators can more finely
tune the trade-off in security and efficiency. Additional experimentation with
other cipher suites and MAC schemes could be helpful to reduce the overhead
from the security. Another avenue to explore would be utilizing the work of [3]
to provide transport-level encryption for all traffic, transparently to the Hadoop
cluster itself. One weakness of our secured system is the lack of confidentiality
protections for file metadata. While the data itself could not be pilfered, meta-
data such as file names can contain sensitive information. Protecting metadata
is a logical next step in increasing the assurance of GFS-like file systems.
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Abstract. We present DNADroid, a tool that detects Android appli-
cation copying, or “cloning”, by robustly computing the similarity be-
tween two applications. DNADroid achieves this by comparing program
dependency graphs between methods in candidate applications. Using
DNADroid, we found at least 141 applications that have been the vic-
tims of cloning, some as many as seven times. DNADroid has a very low
false positive rate — we manually confirmed that all the applications
detected are indeed clones by either visual or behavioral similarity. We
present several case studies that give insight into why applications are
cloned, including localization and redirecting ad revenue. We describe a
case of malware being added to an application and show how DNADroid
was able to detect two variants of the same malware. Lastly, we offer
examples of an open source cracking tool being used in the wild.

1 Introduction

In the past few years, mobile phones sales have grown explosively. As of Novem-
ber 2011, Android has dominant smart phone marketshare [9], with phone sales
recently reaching 850,000 activations per day [24]. The Android operating system
provides the core smartphone experience, but much of the user experience relies
on third-party applications. To this end, Android has numerous marketplaces
where users can download third-party applications that enable easy access to
social networking, games, and more. As with traditional desktop applications,
there is a need to protect users from malicious applications and developers from
plagiarists who wish to benefit from a legitimate developer’s hard work.

Developers can release applications on the official Android Market and/or on
any one of a number of third-party markets. They can charge directly for their
applications, but many choose to instead offer free applications that are ad-
supported or contain in-game billing for additional content. Some applications
have both a premium (paid) and free, ad-supported version.
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(a) Google Market

br.com.passeionaweb...

Ads: googleads

(b) EoeMarket
com.ttmobilegame...

Ads:: wooboo

Fig. 1. A pair of cloned applications. This paper detects cloning based on code sim-
ilarity only, as an application’s UI may be easily changed. Caption lists the market,
package name and ad library associated with each application.

It is important to maintain a healthy market environment to encourage de-
velopers to continue creating applications. One important aspect of a healthy
market is that developers are financially compensated for their work, an issue
we investigate in this paper. There are several ways developers may lose po-
tential revenue: a paid application may be “cracked” and released for free or
a free application may be copied, or “cloned”, and re-released with changes to
the ad libraries that cause ad revenue to go to the plagiarist. In the latter case,
the plagiarist may modify an existing library in an application, replacing the
developer’s client ID1 with her own, or she may insert a new ad library that
gives revenue to the plagiarist. Unfortunately, the openness of Android markets
and the ease of repackaging Android applications contribute to the ability of
plagiarists to clone applications and resubmit them to markets. Unlike Apple’s
App Store, where applications must pass a review process, applications on most
Android markets are distributed without review. The official Android Market,
however, recently added a service that scans new applications [35]. Although
Google claims Bouncer drastically reduced the amount of malware installed by
users, its effects on clones, which may not be malicious towards the user, is
unknown.

Android application cloning has been reported by developers and the academic
community [22, 23, 41]. An example we discovered, Fig. 1, shows the screenshots
of two applications that are similar both in their UI and code, but were up-
loaded to different markets by different developers. Our analysis found the two
to have significant code overlap, suggesting that at least one is a clone2. Since

1 A client ID is a developer-unique string or number used by advertisers to determine
who should be compensated when an ad is displayed or clicked.

2 Potentially they could both be clones of an application we have not analyzed.
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it is straightforward to detect directly copied code, we expect plagiarists to dis-
guise their code to evade detection. To combat these disguises, we need robust
techniques for detecting Android application cloning. We develop a technique
based on program dependence graphs (PDGs) because it is has been shown to
be effective in resisting many types of detection evasion techniques, such as state-
ment reordering, insertion, and deletion [34]. Additionally, since it is uncommon
for PDGs to be the same for independently developed code, our technique has
a very low false positive rate.

Our contributions in this paper are as follows: (1) We have designed and imple-
mented DNADroid, a tool for detecting cloned Android applications. DNADroid
detects code clones based on PDGs and therefore resists common program trans-
formations. (2) We ran DNADroid on applications downloaded from thirteen
Android markets. DNADroid detected at least 141 applications that have been
cloned. We show examples of applications being cloned multiple times by dif-
ferent developers, in one case up to seven times. (3) We demonstrate the very
low false positive rate of DNADroid — we have manually verified, through UI
or functionality comparisons, that all applications detected by DNADroid are
in fact clones. (4) We present five case studies that illustrate different goals of
mobile application plagiarists.

2 Background

Android Markets. As Android has increased in popularity, the number of
applications has rapidly increased [21]. Developers can publish in the official
Android market for a one-time $25 dollar fee, or use alternative markets such
as SlideMe [14] and GoApk [10] which often only require an email address to
publish applications. Unlike Apple’s App Store, Android markets tend not to vet
applications but rather rely on user feedback. This relaxed policy makes it easier
for people to clone, modify, and redistribute applications. Finding these clones is
important to protect developers’ intellectual property and revenue streams and
to alert users of potentially malicious clones.

Android Application Structure. Applications are distributed in Android
Packages (APKs). These packages contain everything that the application needs
to run- from resources like images and XML files specifying UI layouts to the
application code. APKs also include a manifest XML that specifies a number
of aspects about the application, including its name, version information, the
package (or namespace) of the code, the permissions it requires to execute, and
much more. Android applications are primarily developed in Java, though native
code may be used. The Java source code is compiled to Java byte code and then
converted into the Dalvik executable (DEX) format. Although similar to Java
byte code, DEX byte code is incompatible with the Java virtual machine and
instead runs on the Dalvik virtual machine. The conversion of Java byte code to
DEX byte code is largely reversible and there are several tools that handle this
conversion. We analyze only the DEX byte code and leave native code analysis
for future work.
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3 Threat Model

Our goal is to find cloned Android applications. We assume that the plagiarist
has access to the compiled APK file that has been uploaded to an Android
market. We also assume that the plagiarist will change some part of the file
in order to change its cryptographic hash, as detecting identical applications is
trivial.

Definition of “Clone”. Clones occur when two applications (1) have similar
code but (2) have different ownership. Therefore, clone detection differs from
code reuse detection because the latter is concerned with only the first criterion.
Because of the second criterion, DNADroid ignores (1) third-party libraries (for
advertising, additional functionality, etc.), since they are intended to be reused
and (2) multiple versions of the same application if they have the same ownership.
Every Android application is signed by the owner’s private key before being
uploaded to a market. We determine two applications to have the same owner if
they are signed by the same key.

We use the term owner rather than developer to describe the entity which
published the application because a plagiarist illegitimately claims ownership of
an application by publishing it under her own name without having developed
the core functionality. Additionally, it is the owner that receives the revenue
generated by the application, not the original developer.

Resistance to Evasion Techniques. A plagiarist will most likely modify the
cloned code to evade detection. We design DNADroid to resist all the following
evasion techniques: (1) High level modifications: Modify package, class, method
and variable names as well as add or delete classes and methods. Create, change,
or delete constants. (2) Method Restructurings : Move methods between classes,
split a large method into multiple smaller methods, or combine multiple methods
into a larger one. (3) Control Flow Alterations : Swap the if and else branches
after negating the truth value. Change for loops to infinite while loops with
a break statement or vice versa. Rewrite loops using goto statements. Switch
and if/else statements may be swapped and individual cases may be reordered,
created or removed. (4) Addition/Deletion: Insert code that does not affect the
value of computed results or delete existing code. (5) Reordering: Reorder any
code segments that are data and control independent.

Non Goals. We do not attempt to find cloning in native code in an application.
As only a small percentage (7%) of the 75,000 applications we analyzed include
native code, this is currently acceptable. Additionally, it is significantly more
difficult for a plagiarist to understand and modify native code than DEX byte
code. If a plagiarist does copy native code from an application, there is a good
probability that she will steal DEX byte code as well, which DNADroid would
find.

DNADroid does not attempt to determine which applications are the victims
and which are clones. Without external knowledge, this is difficult to do in
general based on the code alone. Simple solutions like comparing application
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release dates or file sizes do not work in all cases, for example when a plagiarist
steals beta releases [23] or when a plagiarist replaces an advertising library with
a different, smaller one.

4 Clone Detection Approaches and Related Work

We describe several approaches for statically detecting cloned code, explain-
ing their strengths and weaknesses, and conclude with the method used by
DNADroid. As Android applications are largely interactive, dynamically detect-
ing cloned code would face the same scalability limitations as TaintDroid [28],
where authors had to manually interact with each application. This eliminates
techniques such as [32, 37] for detecting similar Android applications. We also
list and categorize related work, motivating the need for DNADroid.

Feature Based. Feature based approaches analyze a program and extract a
set of features. Plagiarism between two programs is detected by comparing the
extracted features from the programs. The features chosen can vary significantly,
from number or size of classes, methods, loops, or variables to included libraries.
This approach is limited because it discards so much information about the
structure of the programs. Feature based systems are highly susceptible to having
a low detection rate or high false positive rate.

Structure Based. Structure based systems convert programs into a stream
of tokens and then compare the streams between two programs. By converting
programs into a stream of tokens and ignoring easily changed constructs such
as comments, whitespace, and variable names, structure based systems detect
plagiarism more robustly than feature based systems. Examples of this approach
include JPLAG [38], Winnowing [40] and MOSS [18]. Comparing DEX byte code
streams could be a quite quick and scalable method to find exactly or near exactly
copied code.

Unfortunately, the byte code streams contain no higher level semantic knowl-
edge about the code, making this approach vulnerable to code modifications.
For example, structure based approaches cannot determine if one or more in-
structions in the stream have been spuriously added and do not contribute to
the outcome of the program. Winnowing [40] attempts to find plagiarism with
modifications using k-grams, by finding common token substrings of length k.
If the differences between the programs are relatively infrequent or tend to be
greater than k tokens apart then the comparison will find many k -length token
streams in common. However, a wily plagiarist could simply insert a random
instruction every few instructions to utterly break the stream comparison.

Program Dependency Graph (PDG) Based.AProgramDependence Graph
(PDG) represents amethod in a program,where each node is a statement and each
edge shows a dependency between statements. There are two types of dependen-
cies: data and control. A data dependency edge between statements s1 and s2 ex-
ists if there is a variable in s2 whose value depends on s1. For example, if s1 is an
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assignment statement and s2 references the variable assigned in s1 then s2 is data
dependent on s1. A control dependency between two statements exists if the truth
value of the first statement controls whether the second statement executes.

The evasion techniques discussed in our threat model (Sect. 3) hardly change
a method’s PDG. If the copied parts of the program behave the same as their
original counterparts, they should have the same dependencies between the input
and output variables. Since these dependencies do not change even after signif-
icant disguises have been applied to the copied code, PDG-based plagiarism
detection is much more robust than structure based systems [34]. As we expect
plagiarists to actively try to hide their work to various extents, this robustness
is essential.

Android Clone Detection. There have been several recent papers which ap-
ply some of the above techniques to Android, here we briefly describe their
approaches. We note that all these approaches are structure based or structure
based approximations (using hashing).

Androguard [19] supports several standard similarity metrics including normal
compression distance (NCD) and the comparison of the SHA256 hash of meth-
ods and basic blocks. NCD utilizes compressibility as a measure of similarity as
two similar strings are more compressible than each on its own. DEXCD [27]
tokenizes the opcodes in a decompiled APK and then attempts to find simi-
lar streams of opcodes between applications. DroidMOSS [41] computes fuzzy
hashes of each method in the APK and combines them to form a hash for the
entire APK. It then compares the fuzzy hashes of APKs to detect similarity
based on the individual method hashes that both APKs share.

None of these tools use any semantic information to aid in detecting plagia-
rism. This makes them susceptible to evasion techniques discussed in Sect. 3. As
such, we created DNADroid to more robustly detect the plagiarism of Android
applications.

5 Methodology

DNADroid, as depicted in Fig. 2, proceeds in two stages. First, pairs of poten-
tially cloned applications are selected based on their attributes. Then, the code
of each pair of applications is examined to determine similarity.

5.1 Selecting Potentially Cloned Applications

The goal of an application plagiarist is to entice unwary users to choose her
cloned application instead of the original. Since users find most applications
through search, the plagiarist wishes to construct the name and description
of her cloned application to resemble those of the original application so that
both applications appear together in queries. Based on this observation, the first
step of DNADroid is to select similar applications based on their attributes. As
mentioned in Section 3, we do not consider pairs of applications signed by the
same key, as they share a developer.
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Fig. 2. Overview of DNADroid

Determining Application Similarity Based on Attributes. A plagiarist’s
goal is to have users install her clone so she will often use meta information that
is similar to the victim application to describe the clone. By using similar meta
information, a clone is more likely to appear in search queries with the victim. To
mimic the search engines on Android markets, we use Solr [20], an open source
enterprise-grade search platform from the Apache Lucene project, to index all
the attributes of the applications, including name, package, market, owner, and
description. In order to find clone candidates, we use Solr’s fuzzy search on the
meta information of one application to determine which applications are similar.
These similar applications are fed into the second stage of DNADroid.

Although we found Solr effective in finding similar applications, DNADroid
could use other tools for the same purpose, including using the markets’ search
and recommendation features directly.

5.2 Detecting Code Clones

The second stage of DNADroid determines the code similarity of a pair of
applications.

Constructing PDGs. We convert both applications’ code from the DEX for-
mat to a JAR using dex2jar [39]. 3 We then utilize WALA [25] to construct
PDGs for each method in every class of the applications. We create the PDGs
with only data dependency edges so that our detection is more robust against
statement reordering, insertion and deletion

Comparing PDGs. DNADroid detects similarity between two applications by
finding semantically similar code at the method level.

Excluding Common Libraries Many applications include third-party li-
braries, such as the ad library Admob or the Facebook API. As these libraries

3 There are other tools available to convert from DEX to JAR, however, we found
that dex2jar worked the best in practice. If a better tool became available, we could
easily replace dex2jar with it.
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are not written by the owners of the applications, they should not be included
in the clone detection. Libraries tend to have a common package name, like
com.admob.android or com.facebook.android. However, we cannot simply filter
classes based on package name alone, as a malicious owner could reuse a popular
package name for her code or could insert malicious functionality into the library
itself. We dumped both the package name and SHA-1 hash of known library files
for thousands of applications and recorded the most frequent SHA-1 hashes for
each library. This allows us to exclude common library code from analysis while
remaining resistant to tampering.

Lossless and Lossy Filters Once we have constructed the PDGs for each
method in A and B, we apply two fast filters to exclude method pairs that are
unlikely to be clones [34]. We first apply the lossless filter, which removes PDGs
from consideration that are smaller than a specified size (< 10 nodes). Small
matches between methods are more likely to occur by chance and these matches
are often from trivial, boilerplate code.

Next we apply the lossy filter, which discards method pairs that are unlikely to
match due to a difference in the distribution of types of nodes in the two PDGs.
For example, a PDG that contains many method invocation nodes is unlikely
to match one with none. First, we calculate a frequency vector for each of the
methods in the pair. This vector counts how many times a specific node type
occurs in the PDG. A method with five arithmetic operations would have a five
in the dimension of the vector corresponding to arithmetic operations. We then
compare these two vectors using hypothesis testing which calculates how likely
one distribution is an observation from the first. Specifically, the hypothesis test
we use is the G-test, which is a log likelihood ratio test. If the likelihood is below
some significance threshold, α, then we exclude the pair because the graphs have
a low probability of being similar. Even though this filter may exclude similar
PDGs in theory (hence the name lossy), we demonstrate experimentally that
these cases are rare in practice with an α value of 0.05 (Sect. 6.4).

Subgraph Isomorphism If a pair of PDGs survives the above filters, the final
test for similarity is subgraph isomorphism, which attempts to find a mapping
between nodes in PDGA and nodes in PDGB . Subgraph isomorphism is NP-
Complete; however, when used for comparing PDGs, empirical evidence shows
that it is often efficient because a PDG represents a single method, which de-
velopers tend to keep within a maintainable size. Additionally, PDGs are com-
prised of different statement types, which greatly reduces the possible mappings
between two PDGs, as only nodes of the same statement type will match. We use
the VF2 algorithm to compute subgraph isomorphisms, which is a backtracking
algorithm geared towards matching large graphs [26]. VF2 takes advantage of
the fact that PDGs contain a variety of node types, which restricts the total
number of possible pairs of nodes for testing.

Computing Similarity Scores We determine the similarity of a pair of ap-
plications based on their matched PDG pairs. For each method f (excluding the
methods in known libraries) in application A, let |f | be the number of nodes in
this method’s PDG. Find the best match of this PDG in B’s PDGs and denote
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Fig. 3. Distribution of similarity scores among application pairs. Each bar represents
the number of application pairs whose similarity scores are in the range on the x-axis

it as m(f). Our metric, similarity score, is the ratio between the sums of the |f |
values and the |m(f)| values:

simA(B) =

∑
f∈A

|m(f)|∑
f∈A

|f |
(1)

Equation 1 shows the portion of application A that is matched by code in ap-
plication B.

6 Evaluation

We collected 75,000 free applications from thirteen Android markets: the official
Android market [31] and a number of third party markets [1, 3, 2, 5–7, 10–
14]. From these applications, we randomly selected 9,400 pairs from the poten-
tial clones identified by the first stage of DNADroid based on their attributes
(Sect. 5.1). The second stage of DNADroid determined which of these pairs were
indeed clones based on code similarity (Sect. 5.2).

We used the Hadoop [4] MapReduce framework to parallelize DNADroid and
HDFS to share data across a small cluster of one server-class and three desktop
machines. The average throughput of DNADroid on this small cluster is 0.71
application pairs per minute.

6.1 Similarity between Applications

We define application clones as a pair of applications that have similar code
but different ownership. The comparison of each pair of applications A and B
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Fig. 4. Distribution of clone cluster sizes

produces two similarity scores, simA(B) and simB(A), as defined in Equation 1.
simA(B) is the percentage of code in A that is matched by code in B. A high
similarity score shows that a substantial portion of one application is present in
another, providing evidence of code cloning.

Figure 3 show the distributions of the similarity scores among all the pairs of
applications analyzed: Fig. 3a uses the larger similarity score in each application
pair while Fig. 3b uses the smaller score. Figure 3a shows that 103 application
pairs have similarity scores above 90%, 43 application pairs between 80% and
90%, and 45 application pairs between 70% and 80%.

In this paper, we define two applications to be clones when at least one of the
applications has a similarity score over 70% (max(simA(B), simB(A)) ≥ 70%).
We choose to use the max similarity score of the pair to avoid the following prob-
lem: a malicious developer may add a significant amount of code to the cloned
application, causing the original application code to match a small percent of
the cloned application. However, she cannot influence the content of the original
application, which has already been released. The original application will still
be highly matched by the cloned application, causing DNADroid to identify the
clone pair. Using a 70% similarity score threshold, DNADroid found at least 191
application pairs in which one or both of the applications are clones.

6.2 Clustering Cloned Applications

Are many Android applications cloned a small number of times or are a rela-
tively few cloned many times? We attempt to gain insight into this question by
clustering applications based on their computed similarities. Clusters are com-
puted using the following algorithm: for each pair of applications, A and B, if
either simA(B) or simB(A) is above the threshold, then A and B are in the same
cluster. After running this algorithm over all pairs of applications, we have a set
of clusters, each of which contains at least 2 applications.

Figure 4 shows the distribution of the sizes of clone clusters at two different
similarity score thresholds. The majority of the clone clusters have just two
applications; however, there are larger clusters with the largest having seven
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applications. Figure 4a illustrates that, at a 70% threshold, DNADroid found
at least 141 applications that are victims of cloning. As each clone cluster of
applications has at least one victim application, the number of clusters is a
lower bound on the number of victim applications.4

It is instructive to examine the clone clusters. Figure 5 shows two clusters.
Figure 5a shows a cluster of six applications. The bottom three applications
(21ad, aa87, and f59d) are signed by the same private key (i.e., written by
the same author) and have the same package name (com.bwx) but have differ-
ent version numbers. The top application (714a) has a different package name
(com.zhanghuisns) and is signed by a different private key. Finally, the middle
two applications are signed by the same private key and have the same package
name (com.mybooft). Based on the key signatures, we can split the graph into
three families - top, middle and bottom. Using the similarity scores and the ver-
sion information, it appears that the middle family most likely cloned from an
ancestor of the bottom family and that the top family may have cloned from the
middle or bottom family.

Figure 5b shows similar relationships between different families of applica-
tions, where a seed family appears to have been cloned multiple times by differ-
ent developers. These figures demonstrate that clustering is an effective tool in
analyzing relationships between cloned applications.

6.3 Visual and Behavioral Verification

To confirm that the application pairs identified by DNADroid are indeed similar,
we examined their GUI and user interactions. Figure 7 shows the screenshots
of some of the application pairs that were detected by DNADroid as clones. It
takes only a quick glance to determine that both screenshots in each application
pair are indeed very similar. For application pairs whose initial screen shots are
drastically different, we manually ran and interacted with them to verify that
they have similar functionality. Manual verification confirmed that every appli-
cation pair found by DNADroid were in fact clones, yielding an experimental
false positive rate of 0%.

6.4 Filter Performance

Filter Effectiveness. DNADroid uses several filters to improve its speed and
scalability by excluding method pairs that are unlikely to match. A naive ap-
proach would require O(n ∗ m) method comparisons, where n and m are the
number of methods in each application. To reduce the number of method pair
comparisons, DNADroid uses three filters (Sect. 5.2). The library class filter ex-
cludes on average 27.16% of each application’s classes. The lossless and lossy
filters on average exclude 33.88% and 2.62% of the methods in an application,

4 The victim application may or may not be a member of the clone cluster. The latter
case arises if we downloaded only the clones of the victim application but not the
victim itself.
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Fig. 5. Application Clone Clusters. Each node represents an application. The label
in each node contains the SHA-1 hash prefix, name, package, version name, and version
code of the application. Each solid edge from Application A to Application B means
that a large percentage (> 70%) of A is found in B, where the top number on the
edge is the similarity score of A in B, and the bottom number (in parentheses) is the
similarity score of B in A. A dotted line links two applications by the same author
(have the same public key signature).

respectively. Combined, these three filters reduce DNADroid’s search space by
90.04%.

Filter Accuracy. Of the three filters, only the lossy filter may exclude inter-
esting methods pairs that would have matched5. We wish to ensure that our
lossy filter rarely rejects similar method pairs, as this would cause DNADroid
to underreport the similarity of applications and potentially miss clone pairs.

To measure the accuracy of the lossy filter, we randomly selected 250 appli-
cation pairs already examined by DNADroid and reran them without the lossy
filter. Figure 6a is a CDF of the application similarity scores, both with and
without the lossy filter. The figure shows that the lossy filter has negligible

5 The class filter excludes known common libraries and the lossless filter excludes small
methods, neither of which constitute interesting code reuse.
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Fig. 6. Examining lossy filter effectiveness

impact on similarity scores. Therefore, the lossy filter does not cause DNADroid
to miss clone pairs it would otherwise have found.

Figure 6a explored the macro effects of the lossy filter, in Fig. 6b we examine
its effect on individual method pairs. Figure 6b shows the histogram of the
similarity scores of the method pairs excluded by the lossy filter on a log-y scale.
As expected, more than 99.86% of these similarity scores are zero (The similarity
score of A in B, simA(B), is zero if the PDG A is not subgraph isomorphic to the
PDG B). Only a few similarity scores exceed 40%, and no score exceeds 60%.

This experiment demonstrates that the lossy filter is highly accurate: it seldom
excludes method pairs that are likely clones and it negligibly affects the similarity
scores of application pairs.

7 Case Studies

“Benign” Cloning.DNADroid found 30 pairs that both have a 100% similarity
score using our matching algorithm. For the few that we manually reviewed,
we found that the applications were indeed identical, apart from having String
values in the application translated. Since these strings are constants, changing
them doesn’t change the PDGs. There seems to be no incentive for the plagiarist
apart from providing an application to an otherwise excluded audience. For the
latter reason, we believe these pairs to be cases of “benign” cloning, since there
appears to be no benefit to the plagiarist. However, without manual review, we
cannot confirm that they are all “benign.”

Changes to Advertising Libraries. A number of clone pairs involved ap-
plications that had changes to their advertising libraries. As stated in Sect. 5,
DNADroid can discern application from library code in APKs. Using this and
our coverage values, we can see when an application has most likely been cloned
for monetary gain.
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An example of such cloning is a download manager, XWind Downloader,
which we have found on three different markets: the official Android Market [31],
GoApk [10], and Freeware Lovers [8]. The versions available from the official Mar-
ket and Freeware Lovers have the same SHA-1 hash and were both published by
the same developer account name, which leads us to believe that the author has
officially published his application in both markets. The GoApk version, how-
ever, has a different SHA-1 hash and is signed with a different developer key. The
GoApk version has removed the Youmi [17] advertising library present in the
application from two other markets and has replaced it with the WooBoo [16] ad-
vertising library. DNADroid found 99.9% of the official Android Market version
within the GoApk version, an almost sure sign of cloning.

For the 141 applications that we believe to be the victims of cloning, we
compared the libraries that DNADroid detected in the victim with those in
the clone. We found that 91 (65%) of these pairs had different libraries, all
of which included changes to advertising libraries. This number suggests that
plagiarists are often fiscally motivated, attempting to siphon ad revenue from
popular applications.

Malware Added to an Application. “HippoSMS” is a malicious application
recently discovered by [33] that we downloaded and compared to our collection
of applications.

We found that it shares the same package name as a Chinese video player we
crawled from GoApk. Both applications require a surprising number of sensitive
permissions; the video player requires 11 permissions while the malware requires
10. According to Stowaway [29], a tool for detecting over privileged applications,
the seemingly benign video player requires 6 permissions that it doesn’t use,
whereas the malware only requires 1 extra. Given the number of permissions
the video player requires, we conjecture that its developer may have intended
to insert malware into the application at a later time, or that the video player
is a clone itself. When compared with DNADroid we discovered that 98.57% of
the video player code is in the malicious application, a near certain indicator of
cloning.

Two Variants of the Same Malware. This case study consists of two mali-
cious applications that are identified by VirusTotal [15] as being variants of the
“BaseBridge” malware family. Both applications have been stripped of meaning-
ful class and method names. However, this obfuscation did not fool DNADroid —
DNADroid found coverages of 35% and 28% between the two variants. Manual
review confirmed that the methods matched between the applications perform
the malware functionality. This demonstrates the potential of DNADroid to aid
markets in automatically detecting similar variants of the same malware, though
significant transformations could subvert DNADroid’s current implementation.

Use of Freeware Cracking Tool in the Wild. During our exploration of
public work in Android application cloning we encountered the cracking tool
AntiLVL [36]. AntiLVL attempts to automatically subvert several types of li-
cense protection mechanisms used in Android applications including the Android
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License Verification Library (LVL), Amazon Appstore DRM and Verizon DRM.
We found applications cracked by AntiLVL hosted on several markets.

AntiLVL has several primary mechanisms for subverting license protections.
After decompiling an application with baksmali [30], AntiLVL attempts to sub-
vert common license enforcement checks by rewriting them to always return
successfully. AntiLVL also inserts a new file, SmaliHook.class in the applications
it rewrites. This class contains methods to spoof the device ID, make fake li-
cense checks which always return true, and hide AntiLVL’s modifications from
the application itself by returning the original applications file size, MD5, and
signatures for the original application. We also found that the cracked applica-
tions occasionally show evidence of AntiLVL use in their CERT.SF, a signature
file included in applications that lists the digital signatures of every file in the
application.

We found 189 applications containing SmaliHook.class and 235 containing
references to AntiLVL in their signature files for a total of 310 unique applica-
tions. Given the nature of AntiLVL, it’s almost certain that these applications
are clones of paid applications. Interestingly, even though only 8% of our to-
tal applications were acquired from Chinese markets, 88% of the applications
including AntiLVL traces were from Chinese markets. Only four applications
containing AntiLVL were obtained from the official Android market, despite it
being the source of 65% of our applications. Two of the four applications were
different versions of the same application which Google has since removed. Of
the remaining two applications on the Android market, both are live and have
“50,000 to 100,000” installs as of March 2012.

8 Discussion

False Positive. Since it is a serious allegation to claim an application is a
clone, we design DNADroid to have a very low false positive rate. We manually
verified that all the application pairs that DNADroid identified as clones are
indeed similar, with either similar start-up screens or similar user interactions
(Sect. 6.3).

False Negative. DNADroid may overlook cloned applications due to a few rea-
sons. First, DNADroid uses Solr to select candidate cloned applications based
on their attributes, such as name and description (Sect. 5.1). This is based on
the observation that cloned applications often have similar attributes as the
original so that they appear together in market search results. Therefore, if
the plagiarist crafts the attributes of her application to avoid being identified
as having similar attributes to the original application (e.g., by using a differ-
ent language), it can avoid detection by DNADroid. However, by attempting
to evade initial similarity detection, a plagiarist may jeopardize the chances of
her clone being installed. This is not a fundamental limitation, as DNADroid
would still find a high code similarity between the two if compared. If a better
tool to identify similar applications becomes available, DNADroid could easily
leverage it.
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Another source of false negatives is program obfuscation. By using PDG-
based clone detection, DNADroid can resist common program transformations
(Sect. 3). However, there exist advanced program transformations that can evade
PDG-based clone detection. This is a fundamental limitation of DNADroid. Even
though these advanced transformations are feasible, they require much more ef-
fort by the plagiarist (ultimately, the plagiarist can reimplement the application,
which is not cloning in the strict sense).

Comparison to Other Approaches. We ran Androguard [19] against the
same 191 pairs that DNADroid identified as clones. Androguard performed well
in some cases, but crashed on 24 pairs and found very low coverage values for
10 pairs, causing it to miss 18% of the pairs DNADroid found. We intended to
compare DNADroid to DEXCD [27] and DroidMOSS [41] but DEXCD had
problems running on the pairs DNADroid identified and DroidMOSS is not
currently publicly available. We hope to compare results in the future.

Performance. There exist more efficient algorithms for detecting code clones,
however, these algorithms trade robustness for speed. Robust techniques, such
as those utilized by DNADroid are more expensive but result in fewer false
positives and false negatives. Fortunately, we can take advantage of inexpensive
meta information clustering and the inherent parallelism in clone detection to
make DNADroid practical.

9 Conclusion

The explosive growth of Android devices over the past few years has led to a
booming mobile application community. Unfortunately, with increased incentives
and low barriers to entry, plagiarists and clones have followed. To combat cloning,
markets need robust techniques to identify these clones, as application clones
harm the market ecosystem. We present DNADroid, a tool for finding clones on
a large scale. DNADroid selects likely clone candidates based on their attributes
and then robustly compares their code for significant overlap. We evaluated
DNADroid on applications crawled from thirteen Android markets. DNADroid
identified at least 141 applications that have been cloned and an additional 310
applications that were cracked with AntiLVL, an open source Android cracking
tool. We describe five case studies which provide insight into different motivations
for plagiarists. DNADroid has a very low false positive rate — we have confirmed
that all the applications detected by DNADroid are indeed clones via visual or
behavioral verification. Our findings indicate that DNADroid is an effective tool
to aid in the fight against mobile application cloning.
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Abstract. Tracking information flow in dynamic languages remains an
open challenge. It might seem natural to address the challenge by runtime
monitoring. However, there are well-known fundamental limits of dy-
namic flow-sensitive tracking of information flow, where paths not taken
in a given execution contribute to information leaks. This paper shows
how to overcome the permissiveness limit for dynamic analysis by a novel
use of testing. We start with a program supervised by an information-
flow monitor. The security of the execution is guaranteed by the mon-
itor. Testing boosts the permissiveness of the monitor by discovering
paths where the monitor raises security exceptions. Upon discovering a
security error, the program is modified by injecting an annotation that
prevents the same security exception on the next run of the program.
The elegance of the approach is that it is sound no matter how much
coverage is provided by the testing. Further, we show that when the
mechanism has discovered the necessary annotations, then we have an
accuracy guarantee: the results of monitoring a program are at least as
accurate as flow-sensitive static analysis. We illustrate our approach for
a simple imperative language with records and exceptions. Our experi-
ments with the QuickCheck tool indicate that random testing accurately
discovers annotations for a collection of scenarios with rich information
flows.

1 Introduction

In a dynamically loaded web mashup that involves sensitive information from
several parties, how do we prevent information leakage? A web mashup consol-
idates independent web services, potentially by mutually distrusting providers,
into an integrated web service. For example, a web mashup to display the loca-
tion of secret objects (say vehicles collecting cash from ATMs) might make use
of a map service (such as Google Maps) for enhanced visualization. The map
service code needs access to the secrets in order to display them. At the same
time, the map service needs access to its servers to load new map components
on demand. How do we ensure that the map service does not leak secrets back
to its servers?

The state of the art in web mashup security [24] leaves the question open.
A range of approaches from separation to full integration has been suggested,
tailored to web mashup scenarios such as online ads, where access-control policies
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are sufficient. However, the problem of tracking information in mashups after
access has been granted remains largely unsolved. Of particular challenge is
handling the dynamic nature of programming languages like JavaScript that
manipulate information in web mashups.

With the above scenario as our long-term motivation, the goal of this paper
is a practical mechanism for tracking information flow in dynamic languages.

It might seem natural to address dynamic languages with dynamic analysis.
Dynamic enforcement of secure information flow can be done similarly to dy-
namic type checking: values are decorated with labels representing the security
of each value, and for each operation the labels are checked at runtime. The data
labels may change over time, which means that the analysis is flow-sensitive.

Flow-sensitive enforcement is one where an assignment such as x := e prop-
agates the security level of the expression e to the variable x. On the other
hand, a flow-insensitive system assigns security levels that do not change. Such
a system disallows the assignment if the level of the expression is not at least as
restrictive as the level of the variable. Flow-sensitivity allows an information-flow
policy to be specified in terms of sources, where information enters the system,
and sinks, where information exits the system, rather than on syntactic vari-
ables inside the program. This frees the programmer from explicitly managing
security levels of local variables. Since variables can be reused for different pur-
poses, flow-sensitivity also has the potential of accepting more programs that
are secure.

However, there are well-known fundamental limits of dynamic flow-sensitive
tracking of information flow [9,29,5,22]. Flow-sensitivity introduces a channel for
leaking information though the labels themselves, which is possible to exploit
even though labels may not be observable in the language.

public = 1; temp = 0;

if (secret) temp = 1;

if (!temp) public = 0;

Fig. 1. Flow-sensitivity attack

Consider the program in Figure 1, assuming
secret to hold 0 or 1 initially. The program copies
secret into public. However, a purely dynamic
monitor faces challenges to detect this flow. In-
deed, when secret is 1, then public is never ac-
cessed after branching on secret . When secret is 0, then the assignment of 0 to
public takes place inside of a conditional that branches on a variable temp that
has not been touched since its initialization. In both cases, the problem is the
branches that are not executed, which are missed by purely dynamic analysis.
In general, it is not possible to have sound dynamic flow-sensitive information-
flow enforcement that is strictly more permissive than flow-sensitive static
analysis [22].

This implies that a purely dynamic information-flow monitor must be either
unsound (i.e., there are false negatives) or imprecise (i.e., there are false positives
that are accepted by static analysis). In this design space, the no-sensitive-
upgrade [32,2] discipline shows how to achieve soundness. This discipline states
that the original label of a variable under assignment must be taken into account,
and if it is not at least as restrictive as the level of the control-flow context,
upgrading its level is disallowed. With this discipline, the program above is



Boosting the Permissiveness of Dynamic Information-Flow 57

stopped if it reaches the assignment to temp because it attempts an upgrade in
the secret control-flow context.

Hence, no-sensitive-upgrade provides soundness at the price of permissiveness.
Of particular concern is that for programs like one in Figure 1, the permissiveness
of monitoring is worse than that of static analysis. Indeed, flow-sensitive static
analysis [12] is able to detect the flow in the program above, and ensure that
both temp and public become secret after the conditional. On the other hand,
secure programs with flow-sensitive manipulation of dynamic data structures
are out of reach for static analysis, implying that many interesting programs
are rejected due to the crude approximation by static analysis. This means that
neither static nor dynamic analysis as is provide a satisfactory solution to the
problem of false positives.

This paper shows how to achieve the best of the two worlds without resorting
to full-scale static analysis. We overcome the permissiveness limit for dynamic
analysis by a novel use of testing. We show that testing boosts the permissive-
ness of dynamic information-flow enforcement by discovering places in code for
automatic injection of upgrade annotations. Upon discovering a security error,
the program is modified by injecting an annotation that prevents the same secu-
rity exception on the next run of the program. Further, we show that when the
mechanism has discovered the necessary annotations, then we have an accuracy
guarantee: the results of monitoring a program are at least as accurate as flow-
sensitive static analysis. The process leads to a program that is never blocked by
the monitor because sensitives upgrades have been “tested away”. Importantly,
eradicating sensitive upgrades is not at the price of unnecessarily pushing up
security levels for data: we show that the levels are never pushed above what is
demanded by the static approach. This allows us significant reduction of false
positives while in total absence of false negatives.

The elegance of the approach is that it is sound no matter how much cover-
age is provided by the testing. In contrast to fuzzing or vulnerability and pen-
etration testing, it is not the original program that is tested but its monitored
counterpart. This guarantees security, thanks to the soundness of the monitor.
As discussed above, we gain permissiveness in the sense that the monitor stops
less programs and accuracy in the sense that the results of monitoring a program
are at least as accurate as flow-sensitive static analysis.

We illustrate our approach for a simple imperative language with references
and exceptions. Our experiments with the random testing tool QuickCheck [7]
indicate that random testing accurately discovers annotations for a collection
of scenarios with rich information flows. We are able to further enhance the
permissiveness by delayed upgrades, which records the reference to be upgraded
but does not perform the actual upgrade until just before entering sensitive
context.

We envision that our method can be applied most productively during the
software development and testing phase, when our approach can help discovering
upgrade annotations before the code is shipped.
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2 Background

The dynamic features of languages like JavaScript offer on their own a compelling
argument for dynamic information-flow enforcement. In addition, independent
of language features, functionality provided by the execution environment may
pose challenges for static analyses. Consider, for instance, the API provided by
the DOM [11] in combination with Google maps. When creating a new Google
map we need to pass the part of the page where the map should be drawn.
Typically, this is done by assigning an id to the element and fetching it with
getElementById as illustrated below.

<script type="text/javascript" label="google">

new google.maps.Map(document.getElementById("map_canvas"));

...

<div id="map_canvas" label="google"></div>

<form>

From an information-flow perspective we want to enforce that the Google code
is only allowed send back the parts of the page labeled ’google’. This entails that
the analysis must treat getElementById differently depending on which element is
fetched (something which cannot be statically decided in general — in particular
since the page may be dynamically changing). For a dynamic analysis this poses
no problem, since the elements are tagged with their labels.

Speaking more generally, dynamic analysis has the ability to handle data
with dynamic structure, e.g., heaps, with high precision. Consider the following
example, where l1 and l2 are aliases.

l1 = new {}; l1.f = 1; l2 = l1; l2.f = h;

A flow-sensitive static analysis must take the alias into account and update the
type of both l1, and l2. In general aliasing is not decidable, and the program
would be rejected by static analyses like Jif [19]. Dynamic analyses do not have
this problem, since the label of f is stored with the value of f .

However, as shown in the introduction, dynamic enforcement of secure in-
formation flow has fundamental limits for flow-sensitivity under secret control.
Secret control or secret context refers to the commands inside conditionals and
loops with guards that contain secrets. Promising steps in the direction of over-
coming these limits are privatization operations [3] or upgrade [10] commands
that enable the upgrade of labels before entering secret contexts. This work
makes use of upgrade commands for the security levels of values (upg), the
structure of heap objects (upgs) and exceptions (upge), all explained below.

Values. Consider the following example, where the public variable l is assigned
to under secret control. This causes the monitor to block on a sensitive upgrade.

if (h) l = 1;

By inserting an upgrade that upgrades the label of l before the execution of the
conditional we make sure that execution is not stopped.

l = upg(l,secret); if (h) l = 1;
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Structure. If structured data, like records, is changed under secret control the
structure of the data may encode secrets. In general, the security labels associ-
ated with the different parts of structured data might not be enough to model the
security level of the structure. The reason for this is that not only the presence of
certain data may encode secrets but also the absence, and it’s not necessarily the
case that the security level of the absence of data can be read from the security
level of the presence of other data. In such cases, if the absence is visible to the
program, the security model of the structured data must be extended to model
absence.

Using records as an example, consider for instance the following program,
where the field f is added to o depending on the secret h.

o = new {}; if (h) o.f = 1;

Following the general explanation above, after execution, the presence or absence
of f encodes the value of h. In the case h is true the field f will be present, and
the fact that its presence is secret is recorded in the security label of the value of
f . However, in the case h is false the field f will not be present and its absence
encodes information about h. Since the absence of fields is visible via record
projection, as is explained in Section 3, records are equipped with a structure
label. The structure label of records can be understood as an upper bound of the
context in which the record may have been modified, or in the terms of absent
fields as the upper bound on the security level of the non-existence of the absent
fields.

Returning to the example above, o has public structure, which causes the
execution of the secret conditional of the example to be stopped — adding a
field would require upgrade of the structure label under secret control. In order
to allow for the addition, the structure of the record can be upgraded before the
secret context.

o = new {}; upgs(o,secret); if (h) o.f = 1;

Exceptions. Exceptions pose a significant challenge for secure information flow
due to the non-local transfer of control. In the example below the value of h is
copied into l.

try { if (h) throw; l = 0; } catch { l = 1; }

The standard static solution to this is to type commands following a potential
exception in a secret context as under secret control [20,18]. Since the majority
of commands in languages like JavaScript can cause exceptions and due to the
possibility of non-local transfer of control this can cause a significant amount of
code to be typed under secret control. Following [10] we adopt a more permissive
discipline and introduce a special exception label that tracks the level at which
exceptions are allowed to be thrown. Initially, the exception label is public, which
allows the body of the try above to execute in public context (in the case h = 1
the monitor will stop with a security violation). To allow for exceptions in secret
contexts the language provides an upgrade, which can be inserted before the
secret context as follows.
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try { l = upg(l, secret); upge(secret);

if (h) throw; l = 0; }

catch { l = 1; }

This upgrade causes the subsequent commands of the try, and of the handler to
be considered to be a secret context. After the try, the exception label is once
again lowered.

Manual upgrade annotations open the possibility of improving the permis-
siveness of the monitored program. However, they come at a price of placing
the heavy annotation burden on the programmer. It forces the programmer to
be aware of the monitor the programs will run under. As this is undesirable,
and sometimes impossible (e.g., with legacy code), our goal is to fully relieve
the programmer from the annotation burden. With the background set, we pro-
ceed to describe a method that applies testing for automatically discovering and
injecting upgrade instructions to boost the permissiveness of the monitor.

3 Monitor and Rewriting

This section introduces the language — a simple JavaScript-inspired language
with records and exceptions, its monitor semantics, which is essentially a distilled
version of the monitor of [10], and establishes the soundness of the monitor.

3.1 Syntax and Semantics

Figure 2 shows the syntax of expressions and commands, as well as supporting
structures. Values v consist of strings, numbers, a special value undefined, to-
gether with the pointers. Records are maps from values to values, and the heap
μ is a partial map from pointers to records. A reference is a pair of a pointer
and a value, referring to a particular field in a record.

Values stored in records, as well as the components of a reference, are deco-
rated with a security label σ; the structure label of records is written after the
semicolon inside the curly braces.

As is common [8,31] we assume that the labels form a predefined lattice, and
do not consider the case where labels are not know a priori or where the structure
of the lattice can be modified dynamically. Without loss of generality, we will
use a simple two-level lattice described by public � secret, where � denotes the
lattice order. Let 	 and 
 denote least upper bound, and greatest lower bound,
and let ⊥ and � denote public and secret labels.

Expressions consist of literals for the primitive values, variables, projections of
records, and pure binary operators. Lefthand sides make up a subset of expres-
sions that can be assigned to, and will evaluate to references. Righthand sides of
assignments can be expressions or record allocations, optionally annotated with
an explicit upgrade of the value or structure label.

The commands are standard, apart from the upge command, which upgrades
the current exception label. Variables represent string-keyed fields in a distin-
guished record μ(0). This record, referred to as the global record, is in line with
how variables are handled in JavaScript and simplifies the semantics.
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Expressions e ::= n | ’s’ | x | e[e] | undefined | e ∗ e
Pointers p ∈ N0

Values v, w ::= n | ’s’ | undefined | p
References ρ ::= (pσ , vσ)
Lefthand sides l ::= x | l[e]
Righthand sides r ::= e | new {} | upg(r, σ) | upgs(r, σ)
Records o ::= {v �→ vσ , . . . , v �→ vσ;σ}
Heap μ : Pointers ↪→ Records
Commands c ::= skip | l := r | c ; c | upge(σ)

| if e then c else c | while e do c | try c catch c | throw

Fig. 2. Notation and syntax

Evaluation and dereferencing is detailed in Figure 3. We write [[·]]μ for the
evaluation of expressions and lefthand sides in a heap μ. This evaluation returns
either a labeled value or a reference and is free of side-effects. Dereferencing
a reference further resolves it to a value by looking it up in the heap. The
dereferenced value has a label that takes into account also the security labels of
the expressions used to build the reference itself. This ensures that values that
are reached via secret pointers have a secret label. Dereferencing is written (·)∗μ,
and for convenience we define it for values as identity and write [[e]]∗μ instead of
([[e]]μ)

∗
μ.

Dereferencing a non-existing field succeeds with the undefined value. This
means that the existence of fields can be probed by record projection.

Note that evaluation and dereferencing are not total functions. In particular,
the expression e1[e2] is not valid if [[e1]]

∗ is not a pointer value. In our formaliza-
tion such cases cause the evaluation to get stuck, while in practice they might
result in throwing reference exceptions.

Let E denote environments, consisting of pairs of a heap and an exception
label. We define the semantics of the language and the monitor as a big step
relation →. An initial configuration 〈 c | pc, E 〉 consists of a command c, a se-
curity label pc, and an environment E. The label pc represents the level of the
current control context, and is updated by conditional branches and iteration.

The relation → relates an initial configuration to an execution result, if one
exists. A terminating execution of a command c in an environment E may result
in one of the following: (i) In the case of successful termination, the term Ok E′,
where E′ is the resulting environment. (ii) In the case of an uncaught exception,
the term Throw E′, where E′ is then environment in which the exception was
thrown. (iii) A security stop Stop(t, σ), where t is either a reference to a field
(p, w), the term struct(p) representing the structure label of a record, or exception
representing the runtime exception level.

A stop indicates that the program has reached a point, where the correspond-
ing entity requires at least the security level σ for the monitor to be sound. For
instance, attempting to write to a public field under secret control results in a
Stop((p, w),�), where (p, w) identifies the field, and� signifies that the field must
be at least � for the write to be accepted. Similarly, attempting to add a field to
a record with public structure under secret control results in Stop(struct(p),�),
where p identifies the record that must be have secret structure for the addition to
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[[n]]μ = n⊥ [[s]]μ = s⊥ [[undefined]]μ = undefined
⊥ [[x]]μ = (0⊥, ’x’

⊥)

[[e1 ∗ e2]] = (v1 ∗ v2)
σ1�σ2 where v

σ1
1 = [[e1]]

∗ and v
σ2
2 = [[e2]]

∗

[[e1[e2]]]μ = (pσ1 , vσ2 ) where pσ1 = [[e1]]
∗
μ, and vσ2 = [[e2]]

∗
μ

(v
σ
)
∗
μ = v

σ
(p

σp , w
σw )

∗
μ =

{
vσp�σw�σv if μ(p) = {. . . , w �→ vσv , . . . ;σs}
undefinedσp�σw�σs otherwise and μ(p) = {. . . ;σs}

Fig. 3. Evaluation and dereferencing

be accepted. Finally, attempting to throw an exception under secret control with
a public exception level results is Stop(exception,�), indicating that the exception
level must be � for the exception to be accepted. From such a stop and its corre-
sponding execution tree, we determine a location in the source program where
an explicit upgrade command needs to be inserted to avoid that particular stop.
This process is described in Section 4.

Unlike expressions, the evaluation of righthand sides can have side-effects,
and we use the same relation notation → as for commands for the evaluation of
righthand sides. Evaluation of a configuration 〈 r | pc, E 〉 can result in a labeled
value and an updated environment Ok(vσ, E′), or a security stop Stop(t, σ),
which carries the same meaning as above. Evaluation of a righthand side can
never throw an exception.

For space reasons, the full set of inference rules defining the semantics can
be found in the full version of this paper [4]. To give the reader an insight into
the monitor, we exemplify with the rule for successful execution of the internal
#put operator, which handles record updates.

put

[[l]]μ = (pσp , wσw ) μ(p) = {. . . , w �→ vσ0
0 , . . . ;σs}

(pc 	 ε 	 σp) 
 σw � σs pc 	 ε 	 σp 	 σw � σ0
o′ = μ(p)[w �→ vσv�pc�ε�σp�σw ;σs 	 σw]

〈#put(l, vσv ) | pc, μ, ε 〉 → Ok(μ[p �→ o′], ε)

#put(l, v) is an internal command that performs the writing part of assignments,
writing a value v to a field represented by the lefthand side l. The evaluation
is split into three cases: one succeeding and two stopping. To allow the update
we require that σ0, the previous label of the value, is above the control context,
as well as above the combined labels of the reference from l. In addition, since
writing with a secret key can affect the structure, the key’s security label σw
must be added to the structure label of the record. For this reason we demand
that if σw is secret then either pc 	 ε 	 σp is public, or the structure label of
the record σs is secret. These conditions ensure that the label of the value is
independent of secrets. When they are satisfied, the record is updated with the
new labeled value, its label raised to include the control context and the reference
labels. The cases where the conditions are not satisfied correspond to the two
stopping cases: one demanding the upgrade of the value of the field, and one
demanding the upgrade of the structure label.
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3.2 Soundness

As is common [31], we use termination-insensitive noninterference (TINI) as our
semantic security condition. TINI offers the possibility of liberal enforcement
well suited for dynamic monitors, while only allowing low-bandwidth leaks. Like
other typical semantic security conditions TINI is undecidable.

Noninterference can be stated as the preservation of a family of low-equivalence
relations under execution. For languages with heaps, the family is indexed over a
bijection on low-reachable pointers ensuring that the low-reachable parts of low-
equivalent heaps are isomorphic. Low-equivalence guarantees that low-reachable
public values are equal — for the secret parts no demands are made. In addition
it guarantees that the labeling is independent of secrets. For space reasons, the
low-equivalence relation ∼ can be found in the full version of this paper [4].

TINI states that successful execution in low-equivalent environments results
in low-equivalent environments. Let C denote any non-Stop configuration.

Theorem 1 (TINI). For any program c, β, and two heaps μ1 and μ2 such that
μ1 ∼β μ2, we have that if 〈 c | ⊥, μi,⊥〉 → Ci for i = 1, 2 then there is a β′ such
that C1 ∼β′ C2.

This means that the resulting (low-reachable) public parts of the heap are in-
dependent of secrets; whatever choice of secret values in the initial heaps, the
produced results are equal in their public values. The proof of this and further
theorems are contained in the full version of the paper [4].

4 Rewriting

To improve the permissiveness of the dynamic monitor, executions resulting
in stops (found by, e.g., testing) are used to patch the program with explicit
upgrades to prevent the stop from occurring again.

A heap is called initial if it contains no records other than the global record,
itself containing only primitive (non-pointer) values. Let μ0 range over initial
heaps. Given a derivation tree of an execution 〈 c | ⊥, μ0,⊥〉 → Stop(t, σ), the
different cases for t dictate how the program needs to be rewritten in order to
prevent that particular stop.

case t = (p, w): This stop indicates that the program attempted to assign
to the field w of the record at heap location (with pointer) p, which would
have resulted in upgrading its existing security level in secret context, or over a
secret reference. In order to make this run succeed, the field must be explicitly
upgraded.

In the case that p = 0, i.e., the upgrade refers to a variable in the program.
The execution tree is used to see where the program entered the secret context
in order to insert an upgrade command just before that point. In this case w is
a string value with the name of the variable, which is converted to an identifier
x and the command x := upg(x, σ) is inserted before the secret context.

if (h) l = 1; � l = upg(l,secret); if (h) l = 1;
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If p �= 0 however, the reference is to a field in a record other than the global
record, and may be built from a lefthand side containing arbitrary expressions.
Building an upgrade command that refers to the same field at a different place
in the program requires complex tracking of heap mutations. Instead of inserting
an upgrade command before an enclosing conditional, the execution tree is used
to find an assignment to the field in a public context and over public pointers.
Such an assignment exists, because the record is not in the initial heap, and the
stop indicates that the field of the record must already exist with a public label.
This implies that the field was added in a public context over a public pointer.
The assignment is converted to an upgrade, by wrapping its righthand side with
upg and the label σ. This ensures that the field is labeled as secret from that
point in the program.

o = new {}; o.f = 0; if (h) o.f = 1; �

o = new {}; o.f = upg(0, secret); if (h) o.f = 1;

case t = struct(p): This stop indicates that an upgrade of a record’s structure
label was needed in secret context, or over a secret pointer. Similar to the second
case above, the structure of the record must be upgraded in a public context
over a public pointer. The execution tree is used to find the last assignment
satisfying these properties where p was the value of the assignment’s righthand
side, and wrap that righthand side with upgs and the appropriate label. Such
an assignment must always exist, as the only record existing in the initial heap
is the global record which always has secret structure. Hence p must point to an
allocated record, and it must have been allocated in a public context—otherwise
the structure of the record would already be public.

o = new {}; if (h) o[h] = 1; � o = upgs(new {}); if (h) o[h] = 1;

case t = exception: This stop is generated when the program attempts to throw
an exception in a context where the exception label ε is not above the pc. To make
this execution succeed, the exception label must be upgraded whether the secret
branch is entered or not. The execution tree is used to determine the syntactic
if or while command in which we enter secret control, and the program is
patched by inserting an upge(σ) before this command.

if (h) throw; � upge(secret); if (h) throw;

In what follows, we will refer to one step of the above process as a rewriting
relation on programs. If 〈 c | ⊥, μ,⊥〉 → Stop(t, σ), then we say c �μ c

′ where
the program c′ is obtained by applying the above rules on the proof of the
stopped execution. If 〈 c | ⊥, μ,⊥〉 → C let c�μ c.
The process above describes how to rewrite the program to make one failing run
succeed. Of course, there may be other failing runs so this process is iterated.
Let S be a set of initial heaps and let �S be a relation on programs such that
c�S c

′ iff there exists a heap μ ∈ S such that c�μ c
′ and c �= c′.

Theorem 2 (Termination). For any set S of initial heaps, any sequence

c0 �S c1 �S c2 �S · · ·
terminates, i.e., there is an n such that cn �μ cn for all μ ∈ S.
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The theorem is straightforward, considering that the number of possible upgrade
commands, as well as the number of locations they may be inserted are bounded
given the rewriting procedure above in a finite lattice of security levels.

For a given set S of initial heaps rewriting will produce a program that the
monitor will not stop when run in any of the heaps in S. A program is non-
stopping if the monitor does not stop execution for any initial environment.
Under the assumption that all values, including strings, have finite domains
(which is the case in all practical settings, due to hardware limitations) rewriting
can be used to find non-stopping programs.

Theorem 3. Let T be the set of all initial heaps. The result of rewriting based
on T is non-stopping, i.e., for c�∗

T c′, it holds that c′ is non-stopping.

5 Accuracy

Consider the security labeling of the execution environment under execution.
We say that a labeling is more accurate than another if is at least as permissive,
and it is not more secret. In this section we establish that upgrade injection does
not result in a security labeling that is less accurate than that of a standard
flow-sensitive static type system; the contrary, however, is possible.

To show accuracy we adapt a standard flow-sensitive information-flow type
system [18,19] to the language in Figure 2 and establish its soundness. For space
reasons the development of the type system and its soundness can be found in
the full version of this paper [4].

The type language consists of two different types: primitive types, and record
types. Primitive types are security labels or security labeled record type names.
The use of names to make recursive record types inductive is common practice,
and their meaning in terms of record types is given by a map ρ from record type
names C to record types. Finally, record types are maps from values to primitive
types. Let Γ,Δ ::= (C, ε) denote environment types and exception environment
types respectively, where C is the type of the global record, and ε is the exception
level.

The type judgments for commands are of the form pc, Γ1 �Δ c ⇒ Γ2. The
judgment is read: the command c is well-typed in security context pc, environ-
ment type Γ1 and exception environment type Δ yielding environment type Γ2.
The intuition is that if c is run in environments that correspond to Γ1 the re-
sult will correspond to either Γ2 or Δ depending on whether the execution was
successful or resulted in an exception.

With this we can formulate the accuracy result: rewriting executions of well-
typed programs results in well-typed programs w.r.t. the same entry and exit
environment types.

Theorem 4 (Accuracy). For any program c1 and initial heap μ such that
⊥, C,⊥ �Δ c1 ⇒ Γ and δ � μ : C,⊥ we have that if c1 �μ c2 then ⊥, C,⊥ �Δ

c2 ⇒ Γ .
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The result implies that the rewriting process produces programs that will be at
least as accurate as a standard static type system. In many cases the upgrade
injection together with dynamic monitoring will be more accurate. This is due
to the possibility of flow-sensitive heap entities, the presence of dead code, or
the possibility of value dependent labels as an example in the next section will
show.

6 Implementation

We have implemented the monitor from Section 3 in Haskell. The implemen-
tation uses QuickCheck [7] to generate random initial heaps and perform the
iterative process of finding stopping executions and automatically injecting up-
grade commands into the input program.

When the monitor encounters the situation that an upgrade is needed but
the control-flow context, the exception label or the reference used does not allow
it, it stops the execution and conveys this information back to the test runner.
The test runner uses this, together with an execution trace collected during the
run, to determine a syntactic location in the original program where an upgrade
command is inserted.

QuickCheck uses generators to perform random testing of Haskell code, by
generating test cases and checking if user-supplied properties hold for it. Our
implementation allows for descriptions of generators of initial heaps, where both
existence, value and labeling of initial variables can be randomized. The monitor
is then tested against the property that running a given program does not result
in a security stop. When QuickCheck finds a stopping case, the test harness
rewrites the program and restarts the testing process.

Our experiments have shown that performing this iterative process yields a
rewritten program where enough upgrades have been inserted so that no initial
heap results in a stopped execution. Below we present some of the more illus-
trative experiments which run using an initial heap description that labels h as
secret boolean (i.e., a number with values 0 or 1) and l as public.

l = 1; t = 0;

t = upg(t,secret);

if (h) t = 1;

l = upg(l,secret);

if (!t) l = 0;

Fig. 4. Consistent labeling

Experiment 1: Consider the example of Sec-
tion 1; the implementation discovers the stopped
runs where t and l are upgraded in secret context,
and inserts the needed upgrades immediately be-
fore each conditional. The resulting program is
shown in Figure 4, where the two upgrades have
been inserted where secret context may be en-
tered.

Experiment 2: As described in previous sections, the existence of a field may
encode secret information. For this reason the monitor tracks the security level
of the structure of a record. Thus the program o = new {}; if (h) o[0] = 1; is
stopped by the monitor, and the rewriter turns this stop into the program shown
in Figure 5. Adding the upgs makes adding a field in secret context safe, since
any later projections of non-existing fields will be labeled as secrets.
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o = upgs(new {}, secret);

if (h) o[0] = 1;

Fig. 5. Secret structure

Experiment 3: When writing to a field, it is
not sufficient to consider only the control con-
text to determine if its value or the structure
of the containing record. The choice of field and
record, which is written to, may depend on se-
cret information in the lefthand side used to refer to it. This is reflected in the
security labels of the reference built from the lefthand side, and is taken into
account when updating the record. Consider the following program.

o = new {}; o[0] = 0; o[1] = 0; o[h] = 1;

First a new record is allocated and initialized to contain two zero-valued fields
with keys 0 and 1 resp. Thereafter, one of the fields is modified depending on the
secret value h. The assignment would label the modified field as secret, but this
would constitute an upgrade which itself depends on the value of h. Thus, the
implementation stops the assignment. Since h is a secret number with values 0 or
1 both fields (but not the structure) will be upgraded, resulting in the following
program.

o = new {}; o[0] = upg(0, secret); o[1] = upg(0, secret); o[h] = 1;

try {

l = upg(l, secret);

upge(secret);

if (h) throw;

l = 0;

} catch { l = 1; }

Fig. 6. Throw under secret
control

Experiment 4: The rewriter is also able to
inject upgrades of the exception label. Recall the
program from Section 2, which attempts to leak
h through the use of exceptions. The implemen-
tation detects this and inserts an upgrade of the
exception label before entering secret context.
This alone is not enough to make the program
run, since this upgrade now makes the assign-
ments to l be under secret control (recall that
the exception label is considered part of the control context). Thus, another it-
eration of rewriting is required to upgrade the variable l itself as well. The result
is shown in Figure 6.

Experiment 5: When a variable needs to be upgraded, the upgrade is in-
serted at the closest point in the program, where the context is strictly lower
than the target level. For lattices with more than two levels there is a risk that
this upgrade will trigger another stop, since the label of the value of the variable
may be lower than the label of the context at this point. This is intentional;
instead of moving the upgrade up, the stop is allowed to trigger another rewrite
in the next iteration. This results in a stepwise upgrade of the variable with the
possibility of a more accurate labeling.

Consider the left program of Figure 7, in which the variables pub, cls and sec

have corresponding security labels from a lattice with public � classifed � secret.
Here, the last assignment requires x to be upgraded to secret. If this is done
at the assignment x = 0, then the runs where cls is true will unnecessarily
force cls to be upgraded as well. However, x cannot be directly upgraded from
public to secret in the else branch, because that upgrade would be under classified
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x = 0;

if (cls) {

if (x) cls = x;

} else {

if (sec) x = sec;

}

x = 0;

x = upg(x, classified);

if (cls) {

if (x) cls = x;

} else {

x = upg(x, secret);

if (sec) x = sec;

}

Fig. 7. Cascading upgrades

control. This in turn creates an upgrade of x to classified before entering the outer
if-command. The resulting program is shown on the right in Figure 7.

It is worth noting that this example improves on the precision of a static
type system. As seen from an observer at the classified level, it is a safely visible
decision which branch is taken in the outer conditional, but that decision depends
on the value. Standard type-systems for information flow are not value-sensitive,
and infers that x needs to be secret because of the potential assignment in the
else-branch. In a dynamic setting however, there is no need to upgrade x further
than to classified if that branch is not taken.

Delayed upgrades. Upgrading a record field at the point of its last public assign-
ment may be premature. For example, consider the following program.

o = new {}; o[0] = 1; x = o[0]; if (h) o[0] = 42;

Labeling o[0] with secret right in the public assignment to it will unnecessarily
cause the variable x to have a secret value as well. It is therefore too early to
upgrade o[0] before entering the secret control context. Instead, the upgrade
should be inserted before the conditional. However, note that o[0] may be any
lefthand side, involving arbitrary expressions, and it may not even be the same
one in both assignments. To build a syntactic lefthand side that refers to the
same field as o[0] at a different program point is not possible in general.

o = new {};

o[0] = upg(1, secret, L1);

x = o[0]; // still public

L1: if (h) o[0] = 42;

Fig. 8. Delayed upgrade

Instead, the implementation uses a technique
that avoids premature upgrading via delayed up-
grades. We insert the upgrade command in the
last public assignment, including a program la-
bel which refers to the conditional command
where it should actually be upgraded. The se-
mantics of such a delayed upgrade command resolves the righthand side to a
reference and stores it along with the label L1 in a list of pending upgrades. An
actual upgrade of the reference is only performed just before, and if, a command
with that label is reached. If the labeled command appears in a conditional
block itself, the field in question is not even upgraded at all if that command is
never reached. We note that the stepwise upgrading seen in Figure 7 extends to
non-variables also when delayed upgrades are enabled.



Boosting the Permissiveness of Dynamic Information-Flow 69

7 Related Work

A large body of work targets language-based methods for information-flow secu-
rity [25]. We discuss dynamic methods for information-flow enforcement, which
are most closely related to the focus of this paper. For a general survey of dy-
namic information-flow techniques, we refer to Le Guernic’s thesis [15].

Fenton [9] discusses purely dynamic monitoring for information flow but does
not prove noninterference. Volpano [30] considers a purely dynamic monitor to
prevent explicit (but not implicit) flows. Languages like Perl and PHP support
taint mode to dynamically track explicit flows.

Shroff et al. [27] discuss a purely dynamic monitor that in addition to tracking
explicit flows, provides limited support to discovering implicit flows. The mon-
itor is based on recording dependencies discovered at runtime and propagating
them to subsequent runs of the code. While this method does not guarantee non-
interference, it fits a scenario of tracking common flows in a trusted application.

In a flow-insensitive setting, Sabelfeld and Russo [26] show that a monitor
similar to Fenton’s enforces termination-insensitive noninterference without los-
ing in precision to classical static information-flow checkers. This line of work
has progressed further to extend the monitor to a language with dynamic code
evaluation, communication, and declassification [1], as well as timeout instruc-
tions [21]. Further, Russo et al. [23] investigate the impact of dynamic tree
structures like the DOM on information flow. Their monitor prevents attacks
based on navigating and deleting DOM tree nodes. The monitor derives the se-
curity level of presence for each node from the context of its creation. It keeps
invariants such as the presence level of a parent may not exceed the presence
level of a child.

As discussed earlier, Austin and Flanagan [2,3] suggest a purely dynamic mon-
itor for information flow with a limited form of flow sensitivity. They discuss two
disciplines: no sensitive-upgrade, where the execution gets stuck on an attempt
to assign to a public variable in secret context, and permissive-upgrade, where
on an attempt to assign to a public variable in secret context, the public variable
is marked as one that cannot be branched on later in the execution. Austin and
Flanagan [3] discuss inserting privatization operations, which are akin to our up-
grade commands. The insertion takes place when a variable that was previously
upgraded in secret context is about to be branched upon.

Stefan et al. [28] present a library for dynamic information-flow control in
Haskell using a notion of floating labels, related to the concept of program
counter, to restrain the side effects of computations. Even though they do not
allow labels of references (c.f. variables) to change, their primitives allow for the
manipulation of labels that causes related problems. Their solution to this is to
demand the programmer to annotate the program, which is comparable to the
use of upgrades. Magazinius et al. [16] show how to inline a no-sensitive upgrade
monitor into programs in a language with dynamic code evaluation.

Russo and Sabelfeld [22] show that purely dynamic flow-sensitive monitors
do not subsume the permissiveness of flow-sensitive security type systems. They
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also provide a framework for hybrid monitors that allows expressing a range of
hybrid monitors as one by Le Guernic et al. [14].

Hedin and Sabelfeld [10] propose dynamic information-flow control for a core
of JavaScript that includes objects, higher-order functions, exceptions, and dy-
namic code evaluation. They discuss the usefulness of upgrade annotations but
do not provide methods to generate them. Our paper shows how to relieve
the programmer from the burden of upgrade annotations, making dynamic
information-flow control more practical.

Chugh et al. [6] present a hybrid approach to handling dynamic execution.
Their work is staged where a dynamic residual is statically computed in the first
stage, and checked at runtime in the second stage.

Masri et al. [17] develop a method for detecting and debugging information
flows for restricted Java bytecode (no exceptions, multithreading, or exit state-
ments). The method is a form of dynamic program slicing that allows detecting
explicit flows. They also show that static analysis and a preprocessing transfor-
mation can be used to include implicit flows into consideration.

Kang et al. [13] consider taint analysis for implicit flows in trusted code.
They enhance a purely dynamic analysis to propagate selected information about
control-flow dependencies, hitting a middle ground between ignoring implicit
flows and propagating taint along all control dependencies indiscriminately.

Compared to the previous work, a key novelty of this paper is the usage
of testing (rather than static analysis) to boost the permissiveness of dynamic
enforcement.

8 Conclusion

While dynamic information-flow enforcement might seem to be a natural fit for
tackling languages with dynamic data structures, there are fundamental limits
of permissiveness of purely dynamic techniques. This paper demonstrates how
to overcome these limits by testing. We show that testing boosts the permis-
siveness of dynamic information-flow enforcement by discovering places in code
for automatic injection of upgrade annotations. The inference of upgrade an-
notations ensures that the dynamic analysis is more permissive than the static
counterpart, without losing soundness. Our experiments with the QuickCheck
tool suggest that we achieve the permissiveness of hybrid monitors without static
analysis on a collection of scenarios with rich information flows.

Future work includes extending the formalization with functions (which we
have already implemented in our prototype). The upgrade injection mechanism
allows setting the upgrades before functions are called, which enables smooth in-
tegration with third-party libraries. Based on the prototype reported in Section 6
and our approach to tackling the core JavaScript features [10], we pursue the
implementation of information-flow monitor enhanced with upgrade instruction
injection for the full JavaScript language.
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vol. 1694, pp. 303–311. Springer, Heidelberg (1999)

31. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
J. Computer Security 4(3), 167–187 (1996)

32. Zdancewic, S.: Programming Languages for Information Security. Ph.D. thesis,
Cornell University (July 2002)

http://www.cs.cornell.edu/jif


Effective Symbolic Protocol Analysis

via Equational Irreducibility Conditions�

Serdar Erbatur1, Santiago Escobar2, Deepak Kapur3, Zhiqiang Liu4,
Christopher Lynch4, Catherine Meadows5, José Meseguer6,
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Abstract. We address a problem that arises in cryptographic protocol
analysis when the equational properties of the cryptosystem are taken
into account: in many situations it is necessary to guarantee that certain
terms generated during a state exploration are in normal form with re-
spect to the equational theory. We give a tool-independent methodology
for state exploration, based on unification and narrowing, that generates
states that obey these irreducibility constraints, called contextual sym-
bolic reachability analysis, prove its soundness and completeness, and
describe its implementation in the Maude-NPA protocol analysis tool.
Contextual symbolic reachability analysis also introduces a new type of
unification mechanism, which we call asymmetric unification, in which
any solution must leave the right side of the solution irreducible. We also
present experiments showing the effectiveness of our methodology.

1 Introduction

There has been an increasing amount of research in recent years in building
tools for cryptographic protocol analysis where the equational properties of the
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cryptosystems are taken into account. This allows one to retain the advantages of
a Dolev-Yao style [14] analyzer, such as ease of reasoning about concurrency and
ability to construct counterexamples, while allowing for greater expressiveness.

With the above in mind, a number of approaches have been explored in
the literature for analyzing protocols when equational theories are involved.
These include equational unification techniques for unification-based tools such
as Maude-NPA [17], equational constraint solving techniques for constraint based
tools, e.g. [12,11], and equational deducibility procedures for checking whether
one term is deducible from a given set of terms, e.g. [2,5,9,13].

In many cases, equational reasoning is integrated with syntactic reasoning.
There are a number of reasons for doing this, which we describe in more detail
in Section 1.1, but one reason is that optimizations that are done to eliminate
redundant or nonsensical states may need to be done via syntactic checking, as in
Maude-NPA. We illustrate the issues that can arise with the following protocol,
which we will use as a running example. It uses an exclusive-or operator ⊕,
which is associative and commutative (AC) and self-canceling with identity 0,
and a function pk, where pk(A,X) stands for encryption of message X with A′s
(standing for Alice’s) public key; below, B stands for Bob.

Example 1. Upon receiving the final message, Alice verifies that she received
X ⊕NA for some X received in the first message pk(A,X). The protocol is seen
differently by Bob and Alice, as shown in the second and third columns.

Alice and Bob
1. B → A : pk(A,NB)
2. A→ B : pk(B,NA)
3. B → A : NA ⊕NB

Bob
1. B → A : pk(A,NB)
2. A→ B : pk(B,Z)
3. B → A : Z ⊕NB

Alice
1. B → A : pk(A,X)
2. A→ B : pk(B,NA)
3. B → A : NA ⊕X

We find an instance of the protocol from Alice’s perspective by applying the
substitution X �→ NA⊕Y to achieve the left-hand column of Example 2. Maude-
NPA could identify this instance as infeasible and discard it, since Alice cannot
receive a message NA ⊕ Y before she generates the nonce NA.

Example 2. But further instantiating Y (perhaps as a result of further unifica-
tions elsewhere) to NA ⊕NB causes problems.

Alice after X �→ NA ⊕ Y
1. B → A : pk(A,NA ⊕ Y )
2. A→ B : pk(B,NA)
3. B → A : NA ⊕NA ⊕ Y

Alice after Y �→ NA ⊕NB.
1. B → A : pk(A,NA⊕NA⊕NB) = pk(A,NB)
2. A→ B : pk(B,NA)
3. B → A : NA ⊕NA ⊕NA ⊕NB = NA ⊕NB

This makes NA⊕Y reduce to NB and NA⊕NA⊕Y reduce to NA⊕NB, giving
the right-hand side of Example 2: the intended legal execution of the protocol!
Thus, Maude-NPA’s syntactic check inadvertently could have ruled out a legal
execution.

We avoid this problem as follows. We first decompose the ⊕ theory into
(R,E), where E is the AC theory and R is a set of rewrite rules for the prop-
erties {X ⊕ 0 = X,X ⊕ X = 0}. We then divide the possible instantiations of
{pk(A,X), NA ⊕ X} into two cases, each of which are constrained to remain
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irreducible under substitution. One is {pk(A,X), NA ⊕ X}, and the other is
{pk(A, Y ⊕ NA), Y } obtained by the substitution X �→ Y ⊕ NA. Every other
reduced instantiation of NA⊕X is an instance of either one or the other modulo
AC. The case obtained by X �→ Y ⊕NA can now be safely deleted, because due
to the irreducibility constraint that Y cannot contain NA and 0, the NA will
never vanish from NA ⊕ Y under any substitution.

This strategy works for several reasons. One is that Maude-NPA syntactic
checks require that irreducibility constraints only be put on received messages.
Another, and more important, is that the exclusive-or theory has the finite vari-
ant property [10] modulo AC. Thus, for every term s there is a finite set s′1, . . . , s

′
k

of reduced instances of s such that any other reduced instance of s is equal mod-
ulo AC to a substitution instance of one of the s′i. These two features mean that
it is possible to integrate syntactic checks that are invariant under AC together
with unification-based reachability modulo a richer theory, allowing us to im-
prove efficiency without sacrificing soundness and completeness. Indeed, this is
vital for Maude-NPA and other tools, because almost all of the checks used for
optimization require the received messages to be in normal form.

Another capability that is needed for our strategy to work opens up a new area
of research, namely, developing a sound and complete, tool-independent symbolic
state exploration algorithm that preserves irreducibility constraints. In Maude-
NPA state exploration is implemented via equational unification of sent messages
with received messages, which means that the equational unification algorithm
used should preserve the irreducibility of the received messages. Indeed, it was
experimentation with a unification algorithm that did not have this property,
the algorithm of [24], that produced the example we described above. Variant
narrowing unification (the algorithm currently used by Maude-NPA) has the
properties that we need, but our search of the literature has produced no other
examples. This has led us to define a class of unification algorithms known as
asymmetric unification algorithms modulo a theory (R,E), which produce a
most general set of unifiers which leave the right hand side irreducible. We are
working on techniques for converting standard equational unification algorithms
into asymmetric algorithms, and have produced an asymmetric version of the
exclusive-or algorithm in [24].

We are not the only ones to use an approach that integrates syntactic and
equational reasoning: this has also been done by other researchers for other
reasons, as we describe in Section 1.1. However, most work in this area has
concentrated on specific applications of this approach, and not on how to imple-
ment the approach itself. This paper is devoted to providing a general procedure
for doing this, called contextual symbolic reachability analysis modulo a the-
ory (R,E), where R is a set of rewrite rules. This employs a technique called
contextual unification in which some subterms of the two terms being unified
are constrained to be irreducible. In Maude-NPA these are input terms, which,
since they are unified with output terms, create the opportunity for exploiting
asymmetric unification. However, this is not the only way contextual symbolic
reachability analysis could be implemented. For example, we could follow the
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approach of OFMC [4] which requires that both input and output terms are ir-
reducible. Thus, our tool-independent framework should have many applications
beyond Maude-NPA, allowing for experimentation with different techniques.

The rest of the paper is organized as follows. In Section 2 we give some prelim-
inary definitions used in rewriting and unification. In Section 3 we give a general
procedure for symbolic reachability via narrowing. In Section 4 we introduce
contextual symbolic reachability analysis, prove its soundness and completeness,
and illustrate its use in Maude-NPA. In Section 5, we show experiments illus-
trating the benefits, in Maude-NPA, of using contextual symbolic reachability
and asymmetric unification to integrate reachability analysis modulo exclusive-
or with optimizations based on syntactic checks. In Section 6 we discuss some
future directions.

1.1 Related Work

Although our specific approach has not, to the best of our knowledge, been ex-
ploited in cryptographic protocol analysis tools outside of Maude-NPA, there
are a number of similar cases. For example, ProVerif [6] (detail in [8, Sec. 5])
and OFMC [4] (detail in [29, Sec. 10]) both compute the variants of intruder
and/or protocol rules, modulo the free theory for ProVerif, and modulo the
free theory or AC for OFMC. This has the effect of computing the variants of
both sides of the unification problem. More recently, variants have been applied
to expanding the capacity of ProVerif to deal with AC theories. Thus, in [23],
Küsters and Truderung implement a special case of the exclusive-or theory in the
ProVerif tool by expressing it as a rewrite theory with the finite variant property
with respect to the free theory (E = ∅) and computing variants that are uni-
fied syntactically. This requires some restrictions on the syntax of the protocol,
however. Similar approaches have been applied by Küsters and Truderung for
modular exponentiation [22], and Arapinis et al. [3] for commuting encryption
and AC theories.

The main differences between this work and what we propose here are twofold.
First of all, unlike [8,23,22,3] we do not restrict ourselves to the case in which
E is the free theory (E = ∅), but allow it to be AC, or, potentially, any other
theory for which finitary unification algorithms exist. Secondly, unlike ProVerif,
OFMC, and [23,22,3] we do not necessarily require that irreducible variants be
computed for both sides of a unification problem, but we allow for example the
possibility that variants are computed for only one side, allowing for potentially
more efficient special-purpose asymmetric unification algorithms.

2 Preliminaries

We follow the classical notation and terminology from [32] for term rewriting, and
from [27] for rewriting logic and order-sorted notions. We assume an order-sorted
signature Σ = (S,≤, Σ) with poset of sorts (S,≤). We also assume an S-sorted
family X = {Xs}s∈S of disjoint variable sets with each Xs countably infinite.
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TΣ(X )s is the set of terms of sort s, and TΣ,s is the set of ground terms of sort s.
We write TΣ(X ) and TΣ for the corresponding order-sorted term algebras. For
a term t, Var(t) denotes the set of variables in t.

A substitution σ ∈ Subst(Σ,X ) is a sorted mapping from a finite subset of X
to TΣ(X ). Substitutions are written as σ = {X1 �→ t1, . . . , Xn �→ tn} where the
domain of σ is Dom(σ) = {X1, . . . , Xn} and the set of variables introduced by
terms t1, . . . , tn is written Ran(σ). The identity substitution is id. Substitutions
are homomorphically extended to TΣ(X ). The application of a substitution σ to
a term t is denoted by tσ or σ(t).

A Σ-equation is an unoriented pair t = t′, where t, t′ ∈ TΣ(X )s for some sort
s ∈ S. An equational theory (Σ,E) is a pair with Σ an order-sorted signature
and E a set of Σ-equations.

An E-unifier for a Σ-equation t = t′ is a substitution σ such that tσ =E t
′σ.

For Var(t) ∪ Var(t′) ⊆ W , a set of substitutions CSUW
E (t = t′) is said to be

a complete set of unifiers for the equality t = t′ modulo E away from W iff:
(i) each σ ∈ CSUW

E (t = t′) is an E-unifier of t = t′; (ii) for any E-unifier ρ
of t = t′ there is a σ ∈ CSUW

E (t = t′) such that σ|W �E ρ|W (i.e., there is a
substitution η such that (ση)|W =E ρ|W ); and (iii) for all σ ∈ CSUW

E (t = t′),
Dom(σ) ⊆ (Var(t) ∪ Var(t′)) and Ran(σ) ∩W = ∅.

A rewrite rule is an oriented pair l → r, where l �∈ X and l, r ∈ TΣ(X )s
for some sort s ∈ S. An (unconditional) order-sorted rewrite theory is a triple
(Σ,E,R) with Σ an order-sorted signature, E a set of Σ-equations, and R a set
of rewrite rules. The rewriting relation on TΣ(X ), written t →R t′ or t →p,R t′

holds between t and t′ iff there exist p ∈ PosΣ(t), l→ r ∈ R and a substitution σ,
such that t|p = lσ, and t′ = t[rσ]p. The relation→R/E on TΣ(X ) is =E ;→R; =E .

The transitive (resp. transitive and reflexive) closure of →R/E is denoted →+
R/E

(resp. →∗
R/E). A term t is called →R/E-irreducible (or just R/E-irreducible) if

there is no term t′ such that t →R/E t′. For →R/E confluent and terminating,
the irreducible version of a term t is denoted by t↓R/E .

A relation →R,E on TΣ(X ) is defined as: t →p,R,E t′ (or just t →R,E t′) iff
there is a non-variable position p ∈ PosΣ(t), a rule l→ r in R, and a substitution
σ such that t|p =E lσ and t′ = t[rσ]p.→R/E-reducibility is undecidable in general
since E-congruence classes can be arbitrarily large. Therefore, R/E-rewriting is
usually implemented [21] by R,E-rewriting under some conditions on R and E
such as confluence, termination, and coherence (see [21]). We call (Σ,E,R) a
decomposition of an order-sorted equational theory (Σ,G) if G = R � E and R
and E satisfy the conditions for →R,E to implement →R/E .

Given a decomposition (Σ,E,R) of an equational theory, (t′, θ) is an R,E-
variant [19] (or just a variant) of term t if tθ↓R,E =E t′ and θ↓R,E =E θ. A
complete set of R,E-variants [19] (up to renaming) of a term t is a subset, de-
noted by [[t]]R,E , of the set of all R,E-variants of t such that, for eachR,E-variant
(t′, σ) of t, there is an R,E-variant (t′′, θ) ∈ [[t]]R,E such that (t′′, θ) �R,E (t′, σ),
i.e., there is a substitution ρ such that t′ =E t′′ρ and σ|Var(t) =E (θρ)|Var (t). A
decomposition (Σ,E,R) has the finite variant property [19] (also called a finite
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variant decomposition) iff for each Σ-term t, a complete set [[t]]R,E of its most
general variants is finite.

3 Symbolic Reachability Analysis by Narrowing

In this section we recall basic facts about narrowing modulo equations of [28]
using topmost rewriting as a tool-independent semantic framework for sym-
bolic reachability analysis of protocols under algebraic properties. We first define
reachability goals.

Definition 1 (Reachability goal). Given an order-sorted rewrite theory

(Σ,G, T ), a reachability goal is defined as a pair t
?→∗
T/G t

′, where t, t′ ∈ TΣ(X )s.

It is abbreviated as t
?→∗ t′ when the theory is clear from the context; t is the

source of the goal and t′ is the target. A substitution σ is a T/G-solution
of the reachability goal (or just a solution for short) iff there is a sequence
σ(t) →T/G σ(u1) →T/G · · · →T/G σ(uk−1) →T/G σ(t

′).

A set Γ of substitutions is said to be a complete set of solutions of t
?→∗
T/G t

′ iff

(i) every substitution σ ∈ Γ is a solution of t
?→∗
T/G t

′, and (ii) for any solution

ρ of t
?→∗
T/G t

′, there is a substitution σ ∈ Γ more general than ρ modulo G, i.e.,

σ|Var(t)∪Var(t′) �G ρ|Var(t)∪Var(t′).

If in a goal t
?→∗
T/G t

′, terms t and t′ are ground, then goal solving becomes a

standard rewriting reachability problem. However, since we allow terms t, t′ with
variables, we need a mechanism more general than standard rewriting to find
solutions of reachability goals. Narrowing generalizes rewriting by performing
unification at non-variable positions instead of the usual matching. Specifically,
narrowing instantiates the variables in a term by a G-unifier that enables a
rewrite modulo G with a given rule and a term position.

Definition 2 (Narrowing modulo G). Given an order-sorted rewrite theory

(Σ,G, T ), the narrowing relation on TΣ(X ) modulo G is defined as t
σ�T,G t

′ (or
σ� if T,G is understood) iff there is p ∈ PosΣ(t), a rule l → r in T such that
Var(t) ∩ (Var(l) ∪Var(r)) = ∅, and σ ∈ CSU V

G(t|p = l) for a set V of variables
containing Var(t), Var(l), and Var(r), such that t′ = σ(t[r]p).

The reflexive and transitive closure of narrowing is defined as t
σ�∗
T,G t

′ iff
either t = t′ and σ = id, or there are terms u1, . . . , un, n ≥ 1, and substitutions

σ1, . . . , σn+1 s.t. t
σ1�T,G u1

σ2�T,G u2 · · ·un
σn+1� T,G t

′ and σ = σ1 · · ·σn+1.

Soundness and completeness of narrowing for solving reachability goals is proved
in [21,28] for order-sorted topmost rewrite theories, i.e., rewrite theories were all
the rewrite steps happened at the top of terms.
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3.1 Search in Maude-NPA

In this section we give a high-level summary of the general narrowing-based ap-
proach implemented in Maude-NPA. For further information, please see [15,17].
Note that our treatment of symbolic reachability analysis modulo equations by
narrowing is completely general and tool-independent. We only use Maude-NPA
for illustration purposes to give examples, and also because it supports the ir-
reducibility conditions discussed in this paper. Multiset rewrite rules, used as a
model for protocol analysis [30,7], is another example of topmost rewrite theories
where reachability properties are checked.

Given a protocol P , states are modeled as elements of an initial algebra
TΣP/EP , where ΣP is the signature defining the sorts and function symbols
(for the cryptographic functions and for all the state constructor symbols) and
EP is a set of equations specifying the algebraic properties of the cryptographic
functions and the state constructors. Therefore, a state is an EP -equivalence
class [t] ∈ TΣP/EP with t a ground ΣP -term. However, we explore symbolic state
patterns [t(x1, . . . , xn)] ∈ TΣP/EP (X) on the free (ΣP , EP )-algebra over a set of
sorted variables X .

In Maude-NPA [15,17], a state pattern in a protocol execution is a term t of
sort State, t ∈ TΣP/EP (X)State, which is a term of the form {S1& · · ·&Sn&{IK}}
where & is an associative-commutative union operator with identity symbol ∅.
Each element in the set is either a strand Si or the intruder knowledge {IK} at
that state.

The intruder knowledge {IK} also belongs to the state and is represented as
a set of facts. There are two kinds of intruder facts: positive knowledge facts
(the intruder knows m, i.e., m∈I), and negative knowledge facts (the intruder
does not yet know m but will know it in a future state, i.e., m/∈I), where m is a
message expression.

A strand [20] represents the sequence of messages sent and received by a
principal executing the protocol and is represented as a sequence of messages
[msg−1 ,msg

+
2 ,msg

−
3 , . . . ,msg

−
k−1,msg

+
k ] such that msgi is a term of sort Msg,

msg− (also written −msg) represents an input message, and msg+ (also writ-
ten +msg) represents an output message. Strands are used to represent both
the actions of honest principals (with a strand specified for each protocol role)
and the actions of an intruder (with a strand specified for each intruder ac-
tion). In Maude-NPA, strands evolve over time; the symbol | is used to divide
past and future. Also, we keep track of all the variables of sort Fresh gener-
ated by a concrete strand. That is, all the variables r1, . . . , rj of sort Fresh

generated by a strand are made explicit right before the strand, as follows:
:: r1, . . . , rj :: [ m1

±, . . . , mi
± | mi+1

±, . . . , mk
± ] where msg±1 , . . . ,msg

±
i are

the past messages, andmsg±i+1, . . . ,msg
±
k are the future messages (msg±i+1 is the

immediate future message). The nils are present so that the bar may be placed
at the beginning or end of the strand if necessary, but we often remove them,
except when there is nothing else between the vertical bar and the beginning
or end of a strand. A strand :: r1, . . . , rj :: [msg

±
1 , . . . ,msg

±
k ] is a shorthand for

:: r1, . . . , rj :: [nil | msg±1 , . . . ,msg±k , nil].



80 S. Erbatur et al.

Example 3. For the protocol of Example 1, the strand specification of the pro-
tocol is as follows:

(Bob) :: r1 :: [ +(pk(A, n(B, r1))), −(pk(B, Y )), +(Y ⊕ n(B, r1)) ]
(Alice) :: r2 :: [ −(pk(A,X)), +(pk(B, n(A, r2))), −(n(A, r2)⊕X) ]

Intruder strands are also included for each function. For example, application of
exclusive-or by the intruder is described by the strand [(X)−, (Y )−, (X ⊕ Y )+].

The protocol analysis methodology of Maude-NPA is then based on the idea of
backward reachability analysis, where we begin with one or more state patterns
corresponding to attack states, and want to prove or disprove that they are
unreachable from the set of initial protocol states. In order to perform such a
reachability analysis we must describe how states change as a consequence of
principals performing protocol steps and of the intruder actions. This can be
done by describing such state changes by means of a set TP of rewrite rules, so
that the rewrite theory (ΣP , GP , TP) characterizes the behavior of protocol P
modulo the equations GP .

The following rewrite rules describe the general state transitions, where each
state transition implies moving the vertical bar of one strand:

{SS & [L | M−, L′] & {M∈I, IK}} → {SS & [L,M− | L′] & {IK}} (1)

{SS & [L | M+, L′] & {IK}} → {SS & [L,M+ | L′] & {IK}} (2)

{SS & [L | M+, L′] & {M /∈I, IK}} → {SS & [L,M+ | L′] & {M∈I, IK}} (3)

where variables L,L′ denote lists of input and output messages of the form m+

or m− within a strand, IK denotes a set of intruder facts (m∈I,m/∈I), and SS
denotes a set of strands. In a forward execution of the protocol strands, Rule (1)
synchronizes an input message with a message already learned by the intruder,
Rule (2) accepts output messages but the intruder’s knowledge is not increased,
and Rule (3) accepts output messages and the intruder’s knowledge is positively
increased. For an unbounded number of sessions, we have extra rewrite rules
(one for each positive message in a protocol or intruder strand) that dynamically
introduce additional strands into a state.

The way to analyze backwards reachability is then relatively easy, namely, to
run the protocol “in reverse.” This can be achieved by using the set of rules T−1

P ,
where v −→ u is in T−1

P iff u −→ v is in TP .

Example 4. The protocol of Example 1 can be modeled as a rewrite theory
(Σ,G, T ) where T is the reversed version of the generic rewrite rules (1)–(3)
plus the rewrite rules for introducing new strands. The final pattern used as an
input to the backwards symbolic reachability analysis could, for example, be as
follows:

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))),−(X ⊕ n(A, r2)) | nil] &
:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B,Y )),+(Y ⊕ n(B, r1)) | nil] &SS & {IK}}

This pattern does not require the intruder to have learnt anything, so it is very
general and could lead to a regular execution and to an attack. Indeed, this proto-
col has the following attack reachable from that final pattern, where the intruder
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starts a protocol session withB but usesB’s nonce to start a protocol session with
A, so finally the intruder is able to learn both B’s nonce and A’s nonce:

1. B → I : pk(i, NB)
2. I → A : pk(a,NB)

3. A→ B : pk(B,NA)
4. B → A, I : NA ⊕NB

4 Contextual Symbolic Reachability Analysis

As we have explained in the Introduction, the symbolic reachability approach
presented in the previous section does not really work in practice, since the par-
ticular way that a representative is chosen for each equivalence class may be cru-
cial for the correct behavior, and in many cases the termination of a tool crucially
depends on state space reduction techniques based on checking such representa-
tives, as we illustrated for the case of nonces that cannot have been generated
yet at a given point. Therefore, we now present a general, tool-independent
framework for symbolic reachability analysis which refines narrowing modulo
equations by imposing irreducibility conditions on representatives of equivalence
classes. First, we give a way of imposing these irreducibility conditions on a
rewrite theory, expressed by the notion of contextual rewrite theory.1

Definition 3 (Contextual Rewrite Theory). A contextual rewrite theory
is a tuple (Σ,E,R, T, φ) where (Σ,E ∪ R, T ) is an order-sorted topmost rewrite
theory, (Σ,E,R) is a decomposition of the equational theory (Σ,E ∪ R), and φ,
called the irreducibility requirements, is a function mapping each f ∈ Σ to a set of
its arguments, i.e., φ(f) ⊆ {1, . . . , ar(f)}, where ar(f) is the number of arguments
of f . The set of maximal irreducible positions of a term t is denoted by φ(t).

A term t is called φ,R,E-irreducible (or just φ-irreducible) if for each p ∈
φ(t), t|p↓R,E =E t|p, and strongly φ-irreducible if for any R,E-normalized sub-
stitution σ, tσ is φ-irreducible.

Example 5. For the protocol of Examples 1 and 3, the contextual rewrite theory
(Σ,E,R, T, φ) is formed of T containing the reversed version of the generic
rewrite rules (1)–(3) plus the rewrite rules for introducing new strands, and the
equational theory (Σ,E∪R) for exclusive-or is decomposed into (Σ,E,R) where
E is the associativity and commutativity axioms for ⊕ and R is as follows:2

X ⊕ 0 → X X ⊕X → 0 X ⊕X ⊕ Y → Y

1 Our use of “contextual” should be distinguished from : (i) “contextual rewriting,”
e.g., [34], and (ii) “context-sensitive rewriting,” e.g., [26]. Our use is unrelated to
contextual rewriting, which is a form of conditional rewriting with constraints, but
is closely related to context-sensitive rewriting, where the rewritable argument po-
sitions of a function symbol f are specified by a function μ(f) ⊆ {1, . . . , ar(f)}
similar to our irreducibility requirements function φ(f) ⊆ {1, . . . , ar(f)}. However,
φ-irreducibility is a strictly stronger requirement than μ-irreducibility when φ = μ.

2 Note that the two first equations are not AC-coherent, but adding the last equation
is sufficient to recover that property (see [33]).
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The irreducibility requirements φ are imposed on two operators: −( ) for input
messages in a strand, and ∈I for each positive fact in the intruder knowledge.
That is, φ(−( )) = {1}, φ( ∈I) = {1}, and φ(f) = ∅ otherwise.

We extend the notion of a reachability goal to the contextual case.

Definition 4 (Contextual Reachability goal). Given a contextual rewrite

theory (Σ,E,R, T, φ), we define a contextual reachability goal as t
?→∗
T,R,E,φ t

′,

where t, t′ ∈ TΣ(X )s. We write t
?→∗
φ t

′ when the theory is clear. A substitution σ

is a solution of the contextual reachability goal t
?→∗
T,R,E,φ t

′ iff there is a sequence
σ(t) →T,(E∪R) σ(u1) →T,(E∪R) · · · →T,(E∪R) σ(uk−1) →T,(E∪R) σ(t

′) such that
σ(t), σ(u1), . . . , σ(uk−1), σ(t

′) are all φ,R,E-irreducible.

As for reachability goals, a contextual version of narrowing provides a mechanism
to find solutions to contextual reachability goals. However, we have to first define
a new equational unification mechanism, called contextual unification, as the
basis for contextual narrowing, where the E ∪ R-unification is extended to the
contextual case, which has some asymmetry due to the irreducibility restrictions
only on the right hand side.

Definition 5 (Contextual Unification). Given a contextual rewrite theory
(Σ,E,R, T, φ), a substitution σ is a contextual R,E-unifier of a set P of contex-
tual equations of the form P = {t1 =↓φ t

′
1, . . . , tn =↓φ t

′
n} iff for every contextual

equation ti =↓φ t
′
i in P , the substitution σ is an (R ∪ E)-unifier of the equation

ti = t′i and, furthermore, σ(t′i) is φ,R,E-irreducible.
A set of substitutions Ω is a complete set of contextual R,E-unifiers of P ,

denoted by CSUR,E,φ(P ), iff: (i) every member of Ω is a contextual R,E-unifier
of P , and (ii) for every contextual R,E-unifier θ of P there exists σ ∈ Ω such
that σ �E θ.

Example 6. Consider the protocol of Example 1. The contextual unification
problem found by Maude-NPA is t=↓φ t

′ where t is {SS & [L,M+ | L′] &
{M∈I, IK}} i.e., the right-hand side of Rule (3), and t′ is the following state,
found by Maude-NPA after one backwards narrowing step from the state pattern
of Example 4:

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))) | − (X ⊕ n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B,Y )),+(Y ⊕ n(B, r1)) | nil] &
SS & {(X ⊕ n(A, r2))∈I, IK}}

The two key terms are Y ⊕n(B, r1) andX⊕n(A, r2). Note that termX⊕n(A, r2)
appears in two positions in t′, under symbols −( ) and ∈I, both required to be
irreducible by φ. The singleton most general contextual unifier is σ1 = {Y �→ X⊕
n(B, r1)⊕n(A, r2)}, whereas the substitution σ2 = {X �→ Y⊕n(B, r1)⊕n(A, r2)}
is not a valid contextual unifier: term X⊕n(A, r2) is under the irreducibility con-
dition of symbol −( ) and the substitution σ2 would make it reducible, whereas
term Y ⊕ n(B, r1) is under symbol +( ), which does not have any irreducibility
condition and the substitution σ1 makes it reducible.
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Contextual unification can be reduced to the simpler notion of asymmetric uni-
fication.

Definition 6 (Asymmetric Unification). Given a decomposition (Σ,E,R)
of an equational theory (Σ,E ∪ R), a substitution σ is an asymmetric R,E-
unifier of a set P of asymmetric equations {t1 =↓ t′1, . . . , tn =↓ t′n} iff for every
asymmetric equation ti=↓ t′i in P , σ is an (E ∪R)-unifier of the equation ti = t′i
and (t′i↓R,E)σ is in R,E-normal form.

A set of substitutions Ω is a complete set of asymmetric R,E-unifiers of P
iff: (i) every member of Ω is an asymmetric R,E-unifier of P , and (ii) for every
asymmetric R,E-unifier θ of P there exists a σ ∈ Ω such that σ �E θ (over
V ar(P )).

A special-purpose asymmetric unification algorithm for exclusive-or has been
developed for this paper and is used in the experiments reported in Section 5. A
detailed discussion of this algorithm will be presented elsewhere. The reduction
of contextual unification to the simpler asymmetric unification is provided by
the following lemma.

Lemma 1. Given a contextual rewrite theory (Σ,E,R, T, φ) and a set of con-
textual equations P = {t1 =↓φ t

′
1, . . . , tn =↓φ t

′
n}, σ is a contextual R,E-unifier of

P iff there is a substitution θ such that θ is an asymmetric R,E-unifier of Γ (P )
and σ =E θ|Var(P ), where

Γ (P ) ={ti=↓X, t′i=↓X | ti=↓φ t
′
i ∈ P,X fresh variable}∪

{t′i|p.j =↓ t′i|p.j | ti =↓φ t
′
i ∈ P, f ∈ Σ, p ∈ Posf (t

′
i), j ∈ φ(f)}

Using a contextual unification algorithm, we can modify the standard notion
of narrowing so that it uses contextual unification to solve symbolic contextual
reachability goals. Note that the following definition differs from Definition 2 only
in using contextual unification CSUR,E,φ(l=↓φ t|p) instead of regular unification
CSUR∪E(l = t|p) and and carrying a set of irreducible terms Π passed to the
contextual unification algorithm, where Π is the set of irreducible terms that
have been computed earlier in the narrowing sequence.

Definition 7 (Contextual Narrowing modulo R,E). Given a contextual
rewrite theory (Σ,E,R, T, φ), the contextual narrowing relation modulo R,E
on pairs 〈t,Π〉 for t a term and Π a set of irreducible terms is defined as

〈t,Π〉 σ�T,R,E,φ〈t′, σ(Π)〉 (or
σ�φ if T,R,E are understood) iff there is p ∈

PosΣ(t), a rule l → r in T such that Var(t) ∩ (Var(l) ∪ Var(r)) = ∅, a substi-
tution σ ∈ CSU V

R,E,φ(P ) for P = {l=↓φ t|p} ∪ {u=↓φ u | u ∈ Π} and a set V of
variables containing Var(t), Var(l), and Var(r), and t′ = σ(t[r]p).

The essential equivalence between contextual reachability analysis and stan-
dard narrowing-based reachability analysis is proved as follows: given a standard

goal t
?→∗
T,R∪E t

′, any solution to it can be computed by contextual narrowing
�T,R,E,φ under some extra conditions involving variants. Let us motivate the
issues involved by an example.
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Example 7. Let us consider the state pattern shown in Example 4 with an extra
requirement that the intruder learns n(A, r2):

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))),−(X ⊕ n(A, r2)) | nil] &
:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B,Y )),+(Y ⊕ n(B, r1)) | nil] &
SS & {n(A, r2)∈I, IK}}

This attack pattern should be possible in Maude-NPA by just applying the
substitution X �→ 0, where 0 is the identity symbol of ⊕. However, the term
X ⊕ n(A, r2) becomes reducible under such substitution and the attack would
not be reachable because of our irreducibility condition on X⊕n(A, r2). To solve
this problem, the key idea is that the pattern X⊕n(A, r2) should be replaced by
its variants before each contextual narrowing step, i.e., by the possible instance
patterns of it which are irreducible, namely: (i) the pattern X ⊕ n(A, r2) itself,
(ii) the pattern Y , which is the normal form after applying substitution X �→ Y ⊕
n(A, r2), (iii) the pattern 0, which is the normal form after applying substitution
X �→ n(A, r2), and (iv) the pattern n(A, r2), which is the normal form after
applying substitution X �→ 0. Only after replacement of the original term by
these variants, can we impose the irreducibility conditions for reducing the search
space. That is, for contextual reachability analysis, we need to first compute what
we call the φ,R,E-variants of a term.

Definition 8 (φ,R,E-variants). Given a contextual rewrite theory
(Σ,E,R, T, φ), the set of R,E,φ-variants of a pair 〈t,Π〉 for t a term and Π a

set of irreducible terms is defined as [[〈t,Π〉]]φR,E = {(σ(t)[v1, . . . , vn]p1,...,pn , σ) |
(g(v1, . . . , vn), σ) ∈ [[g(t|p1 , . . . , t|pn)]]R,E ∧ ∀u ∈ Π : σ(u) is φ,R,E-irreducible}
where φ(t) = {p1, . . . , pn} and g is an auxiliary function symbol not appear-
ing in R and E. For readability, we write 〈t,Π〉 �θ

R,E 〈w,Π〉 to denote that

(w, θ) ∈ [[〈t,Π〉]]φR,E and Π = θ(Π) ∪ {w}.

Example 8. Let us consider the state t′ shown in Example 6:

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))) | − (X ⊕ n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B,Y )),+(Y ⊕ n(B, r1)) | nil] &
SS & {(X ⊕ n(A, r2))∈I, IK}}

We generate the four variants associated to X ⊕ n(A, r2) in subterms rooted by
−( ) and ∈I, since these are the symbols with irreducibility constraints: (i) the
original one but with the assumption that X will never contain either n(A, r2) or
0, (ii) the pattern n(A, r2) where X⊕n(A, r2) has been collapsed into the nonce,
(iii) the pattern Z where X ⊕ n(A, r2) has been collapsed into a new variable
Z by assuming X �→ Z ⊕ n(A, r2), and (iv) the term 0 where X ⊕ n(A, r2) has
been collapsed into 0 by assuming X �→ n(A, r2):

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))) | − (X ⊕ n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B,Y )),+(Y ⊕ n(B, r1)) | nil] &
SS & {(X ⊕ n(A, r2))∈I, IK}}
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{ :: r2 :: [nil,−(pk(A, 0)),+(pk(B,n(A, r2))) | − (n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B,Y )),+(Y ⊕ n(B, r1)) | nil] &
SS & {n(A, r2)∈I, IK}}

{ :: r2 :: [nil,−(pk(A,Z ⊕ n(A, r2))),+(pk(B,n(A, r2))) | − (Z), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B,Y )),+(Y ⊕ n(B, r1)) | nil] &
SS & {Z∈I, IK}}

{ :: r2 :: [nil,−(pk(A,n(A, r2))),+(pk(B,n(A, r2))) | − (0), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))),−(pk(B,Y )),+(Y ⊕ n(B, r1)) | nil] &
SS & {0∈I, IK}}

The reader can check that only the variants of the terms in the intruder knowl-
edge (which are indeed coming from messages of the form −(M)) are generated.

The key idea to achieve the desired semantic equivalence between contextual
narrowing and ordinary narrowing is to precede each contextual narrowing step
by a φ-variant computation step.

Theorem 1 (Contextual Soundness and Completeness). Given a contex-

tual rewrite theory (Σ,E,R, T, φ), a reachability goal t
?→∗ t′, and a solution σ of

it, there are a set of terms u1, . . . , un, w1, . . . , wn+1, t
′′ and a set of substitutions

θ1, . . . , θn+1, θ
′
1, . . . , θ

′
n+1 such that

〈t,Π0〉 �θ1
R,E 〈w1, Π1〉

θ′
1�T,R,E,φ 〈u1, Π1〉

�θ2
R,E 〈w2, Π2〉

θ′
2�T,R,E,φ 〈u2, Π2〉

...

�θn
R,E 〈wn, Πn〉

θ′
n�T,R,E,φ 〈un, Πn〉

�θn+1

R,E 〈wn+1, Πn+1〉
θ′
n+1� T,R,E,φ 〈t′′, Πn+1〉

and also: (i) Π0 = ∅, Π1 = {w1}, Π1 = θ′1(Π1), Π2 = θ2(Π1) ∪ {w2}, Π2 =
θ′2(Π2), . . ., Πn+1 = Πn∪{wn+1}, Πn+1 = θ′n+1(Πn+1), (ii) for each i ∈ {1, . . . ,
n+ 1}, the term wiθ

′
iθi+1θ

′
i+1 · · · θn+1θ

′
n+1 is φ,R,E-irreducible, (iii) there is a

substitution τ such that σ =E θ1θ
′
1θ2θ

′
2 · · · θn+1θ

′
n+1τ , and (iv) t′ =E t

′′τ .
Conversely, any substitution σ for which there is a sequence as above satisfying

conditions (i)-(iv) is a solution of t
?→∗ t′.

Example 9. Continuing Example 8, we have four state patterns after variant
generation. Contextual narrowing follows from the first variant state pattern as
described in Example 10 below. The second variant state pattern will lead to
an initial state where the intruder provides message pk(A, 0) and the vertical
bar of Bob’s strand is never touched. And the third and the fourth variant state
patterns will be discarded by Maude-NPA, since they do not satisfy the syntactic
check explained in the Introduction discarding states sending a nonce before it is
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generated. The state space reduction achieved in Maude-NPA is huge by using
the irreducibility conditions on symbols −( ) and ∈I and other state space
reduction techniques based on such conditions (we further discuss experiments
on this topic in Section 5).

Condition (ii) in Theorem 1 for terms wi to be (φ-)irreducible after substitution
application ensures that variants are not computed more than once for each
irreducible subterm in term t or irreducible subterms introduced by right-hand
sides of rules. This is very important to further reduce the search space.

Example 10. Let us consider the state t′ shown in Example 6. After several
variant generation and contextual narrowing steps using the reversed form of
rewrite rules (1)–(3), the following state is found

{ :: r2 :: [nil,−(pk(A,X)),+(pk(B,n(A, r2))) | − (X ⊕ n(A, r2)), nil] &

:: r1 :: [nil,+(pk(A,n(B, r1))) | −(pk(B,X ⊕ n(A, r2)⊕ n(B, r1))),
+(X ⊕ n(A, r2)⊕ n(B, r1)⊕ n(B, r1), nil] &

SS & { pk(B,X ⊕ n(A, r2)⊕ n(B, r1))∈I, (X ⊕ n(A, r2))/∈I, IK }}

We can check that there is no contextual unifier that allows terms pk(B, n(A, r2))
and pk(B,X⊕n(A, r2)⊕n(B, r1)) to be unifiable according to the reversed form
of rewrite rule (3), since the second term is under a symbol with irreducibility
restrictions and the substitution X �→ n(B, r1) would make it reducible.

However, another protocol session can be used, since the term pk(B,X ⊕
n(A, r2) ⊕ n(B, r1)) can be unified with term pk(B, n(A′, r′2)) coming from an-
other session, using the contextual unifier X �→ n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1).
The resulting state is as follows

{ :: r′2 :: [nil,−(pk(A′, X ′)) | + (pk(B,n(A′, r′2))),−(X ′ ⊕ n(A′, r′2)), nil] &

:: r2 :: [nil, −(pk(A,n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1))),
+(pk(B,n(A, r2))) |
−(n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2)), nil] &

:: r1 :: [nil, +(pk(A,n(B, r1))) |
−(pk(B,n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2)⊕ n(B, r1))),
+(n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2)⊕ n(B, r1)⊕ n(B, r1), nil] &

SS & { pk(B,n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2)⊕ n(B, r1))/∈I,
(n(A′, r′2)⊕ n(A, r2)⊕ n(B, r1)⊕ n(A, r2))/∈I, IK }}

However, although the two contextual narrowing steps have computed contex-
tual unifiers, the combination of both unifiers does not satisfy the irreducibility
conditions of the original term −(X ⊕ n(A, r2)), since now it is reducible, i.e.,
the term −(n(A′, r′2) ⊕ n(A, r2) ⊕ n(B, r1) ⊕ n(A, r2)) is reducible. Therefore,
this narrowing sequence is discarded, since it does not fulfill the conditions for
solutions of contextual reachability goals given in Theorem 1, further reducing
search.
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Table 1. Experiments with standard reachability analysis using regular XOR unifica-
tion algorithm vs contextual reachability analysis using asymmetric XOR unification
algorithm. A pair n/t means: n = number of states, and t = time in seconds.

states/seconds 1 step 2 steps 3 steps 4 steps 5 steps

RP - Standard 2/0.08 5/0.16 13/0.86 49/3.09 267/17.41
RP - Contextual 1/0.03 45/1.08 114/2.26 1175/37.25 13906/4144.30

WEPP - Standard 5/0.09 9/0.42 26/1.27 106/5.80 503/ 34.76
WEPP - Contextual 4/0.05 9/0.12 26/0.64 257/144.65 2454/612.08

TMN - Standard 5/0.11 15/ 0.55 99/3.82 469/ 25.68 timeout
TMN - Contextual 4/0.06 24/0.53 174/3.63 1079/170.29 9737/1372.55

5 Experiments

We have performed several experiments to compare the contextual symbolic
reachability approach presented in this paper with other approaches. We have
used three protocols using exclusive-or: (i) the running protocol (RP) of Exam-
ple 1, (ii) the Wired Equivalent Privacy Protocol (WEPP) of [1], and (iii) the
TMN protocol of [31,25]. For all three protocols, we are able to find the associ-
ated attacks in Table 2 below. We have run the experiments in this Section in
an Intel Xeon machine with 4 cores and 24GB of memory, using Maude 2.7.

In Table 1, we compare the standard reachability analysis of Section 3, which
uses the XOR unification algorithm developed in [24], and the contextual reach-
ability analysis of Section 4, which uses the asymmetric XOR unification algo-
rithm developed for this paper. A detailed discussion of this asymmetric XOR
unification algorithm will be presented elsewhere. We show the number of states
generated from one level to the next one of the backwards reachability tree with
the indicated number of steps as the maximum depth. We also include the exe-
cution time from one level to the next one. We write “timeout” when the tool
did not finish within a time interval of two hours.

As shown in Table 1, contextual reachability analysis is not better than the
standard reachability analysis because of variant generation, which creates many
more states than may be necessary for rule application. However, although typ-
ically many more states are created, the use of variants and irreducibility con-
straints is crucial (as explained in the Introduction) for further optimizations of
the search space, as shown in Table 2, which shows that contextual reachabil-
ity analysis enables several Maude-NPA optimizations, including grammars (see
[16,18] for details) and drastically reduces the search space.

Table 2 shows that, although, due to the extra computations needed for the
optimization, the execution time without optimization is sometimes better than
with optimizations, this only happens up to Step 3. The important point is that
from Step 2 on, the total number of states is drastically reduced when optimiza-
tions are added (the only exception at Step 1 is RP, due to some differences
on how variants are generated). In fact, the crucial point is not just the great
reduction in the number of states, but the finiteness of the analysis for all the
examples with optimization, whereas no such finiteness is even theoretically pos-
sible without optimizations. This is particularly important when an attack does
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Table 2. Experiments for contextual reachability analysis using asymmetric XOR
unification algorithm with and without optimizations

states/seconds 1 step 2 steps 3 steps 4 steps 5 steps Finite Analysis?

RP - w/o Opt. 1/0.03 45/1.08 114/2.26 1175/37.25 13906/4144.30 No, timeout with 6 steps
RP - with Opt. 4/0.59 7/0.59 7/1.92 7/1.89 7/3.02 Yes, at step 10

WEPP - w/o Opt. 4/0.05 9/0.12 26/0.64 257/144.65 2454/612.08 No, timeout with 7 steps
WEPP - with Opt. 2/0.36 2/0.20 1/0.80 2/1.42 1/0.03 Yes at step 5

TMN - w/o Opt. 4/0.06 24/0.53 174/3.63 1079/170.29 9737/1372.55 No, timeout with 7 steps
TMN - with Opt. 3/0.42 6/9.85 9/1.78 9/4.43 8/3.20 Yes, at step 21

not exist, since then finiteness of the analysis proves that the protocol is secure
against such an attack. Therefore, the above performance results validate exper-
imentally the main thesis of this paper, namely that: (i) support of irreducibility
conditions in symbolic reachability is essential for effective protocol analysis,
since crucial optimizations depend on such conditions; and (ii) contextual reach-
ability analysis supports irreducibility conditions in a sound and complete way
and makes such optimizations possible.

The integration of this framework into Maude-NPA is still under testing and
optimization, and further work is needed to increase performance. Indeed, the
current experiments have been performed with a version of the contextual nar-
rowing simpler than the conditions of Theorem 1 (irreducibility constraints on Π
are not enforced), but is still valid for the benchmarked protocols, i.e., in these
protocols, each strand contains only one expression using the xor operator, and
thus Π remains irreducible by default.

6 Conclusions and Future Directions

We are only at the beginning of exploring contextual symbolic reachability anal-
ysis as a general approach, and there are many paths that can be followed. One
is exploring the different types of irreducibility constraints and their effect on ef-
ficiency. It would appear that an approach that requires fewer constraints would
be more efficient than one that applies more; e.g. that modifying a tool such
as OFMC that requires constraints on both sent and received messages to use
constraints only on input messages, as does Maude-NPA, would lead to reduced
state space size and greater efficiency, but this needs to be verified.

Using one-sided constraints also potentially allows us to gain greater efficiency
through special-purpose asymmetric unification algorithms. We are now inves-
tigating this with respect to asymmetric exclusive-or unification, and plan to
develop and investigate other such algorithms in the future. Asymmetric unifi-
cation is a subject about which currently very little is known; as it is explored
further, we expect to find out a lot more about it and how it can be optimized.

Finally, we believe that cryptographic protocol analysis is not the only poten-
tial application for symbolic contextual reachability analysis. Indeed, it should
be applicable to any state exploration problem in which symbolic states obey
equational theories. Future work in this area should involve an investigation of
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these other problems and the ways in which contextual symbolic reachability
analysis could be applied to them.
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22. Küsters, R., Truderung, T.: Using ProVerif to analyze protocols with Diffie-
Hellman exponentiation. In: CSF, pp. 157–171. IEEE Computer Society (2009)
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29. Mödersheim, S.: Models and methods for the automated analysis of security pro-
tocols. PhD thesis, ETH Zurich (2007)
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Abstract. We propose a new, widely applicable model for analyzing
knowledge-based (epistemic) and strategic properties of cryptographic
protocols. We prove that the corresponding model checking problem with
respect to an expressive epistemic strategic logic is decidable. As corol-
laries, we obtain decidability of complex security properties including
coercion-resistance of voting protocols, accountability of protocols using
a trusted third party, and abuse-freeness of contract signing protocols.

Introduction

In design and verification of cryptographic protocols, symbolic techniques [1]
have proven very successful. A breakthrough result in this area is that secrecy
properties of protocols can be decided in coNP, even if the adversary is allowed
to send arbitrarily complex terms [2]. Recently, game-based properties of cryp-
tographic protocols have been studied [3]. Such properties are relevant e.g., for
contract signing [4–6] and non-repudiation [7] protocols, and can naturally be
expressed in Alternating-Time Temporal Logic (ATL, [8]), a logic explicitly de-
signed to reason about strategies. Decidability results for such properties have
been obtained in [9, 10]. However, existing symbolic approaches for strategic
analysis have the following limitations:

(i) The models and logics that have been applied cannot express epistemic
properties, i.e., properties concerned with knowledge of principals as, e.g.,
abuse-freeness of contract-signing protocols [11] or anonymous broadcast [12].
Similarly, they only consider complete-information strategies : Honest prin-
cipals and the adversary base their decisions on complete knowledge about
the current state, including private messages between other principals and
cryptographically hidden secrets. Thus, capabilities of all parties are over-
approximated, potentially leading to both “false positives” and “false neg-
atives” in the security analysis.

(ii) They do not handle probabilistic protocols that allow random decisions.
These are essential for some security goals [13] and can be used to model
random routing in anonymity protocols.

We propose an approach overcoming these shortcomings by a thorough treatment
of knowledge and probabilism. To express security properties, we use QAPI [14],
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a very expressive extension of ATL∗. In addition to epistemic and probabilistic
aspects, QAPI allows explicit reasoning and quantification of strategies similarly
to strategy logic [15]. This allows to express dependencies between strategies of
different coalitions, as for example knowledge that one coalition has about the
behavior of others. Our contributions are as follows:

1. We define a symbolic model for protocol analysis treating explicit knowledge,
incomplete information, and probabilistic protocols.

2. We show that the question whether a protocol satisfies a security property
(specified by a QAPI-formula) is decidable for active and passive adversaries.

Our decidability result holds for finitely many parallel sessions, it is well-known
that even very simple security properties are undecidable for the unbounded
session case [16]. Our proof implies that relevant strategies can always be finitely
represented, hence can be implemented in software.

As a toy example, we consider a coin-flipping protocol: Bob randomly chooses
a bit b1 ∈ {0, 1} and a random string N , and sends hash(〈b1, N〉) to Alice. Alice
randomly chooses b2 ∈ {0, 1} and sends b2 to Bob. He then sends N and b1
to Alice, who verifies that these match the hash. The security property is that
neither Alice nor Bob can dictate the outcome of the protocol, which is the bit
b1⊕ b2. This is only true since Alice’s b2 may not depend on the secret value b1,
hence security of the protocol can only be shown with an epistemic approach.
In addition to this toy example, we give the following applications:

1. We show how accountability and verifiability of protocols that involve a
trusted third party and coercion-resistance of voting protocols can be ex-
pressed in our model, implying decidability of these properties.

2. We prove that abuse-freeness of contract-signing protocols can be formalized
in our model, and obtain decidability as a corollary. This resolves an open
question from [11].

3. We show how coercion-resistance of voting protocols can be expressed in our
model. In addition to the epistemic and strategic properties, this property
has a probabilistic aspect. Again, we obtain decidability as a corollary.

RelatedWork. In the above-mentioned [9], a decision algorithm for (non-epistemic,
complete-information, non-probabilistic) strategic properties of protocols is given.
In [10] a decidability result for a strategic property (balance) of contract-signing
protocols was established. This result follows from our decidability result. In the
very influential paper [17], a logic for authentication protocols was introduced,
which models knowledge gained during the run of an authentication protocol.
Among the many follow-ups are [18–20].

[13] defines a symbolic model for probabilistic protocols, however no decid-
ability result is proven. We significantly generalize that model: First, we treat
security goals that involve epistemic aspects. Second, we treat arbitrary term sig-
natures with equational theories instead of only nonces and signatures as in [13].
Further, we allow arbitrarily complex terms.
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Organization. In Sections 1 and 2, we define the protocol model. In Section 3,
we recall the semantics of the logic QAPI. Section 4 contains our main result:
The question whether a given protocol satisfies a given security property (i.e.,
a formula) is decidable. Section 5 contains the applications. Due to the page
limit, the proof of our main result as well as a more detailed discussion of the
applications are omitted and can be found in the full version of the paper [21].

1 Syntax: Specifying a Protocol

1.1 Two Examples

.

.

. .

. .

. .

. . . .

finB00 finB01 finB10 finB11

ε

hash(〈0, N〉) 1
2

1
2 hash(〈1, N〉)

ε ε

ε ε

0

1

0

1

〈0, N〉 〈0, N〉 〈1, N〉 〈1, N〉

.

.

. .

. .

. . . .

finA00 finA10 finA01 finA11

r1 = ε

ε

true

0 1
2

1
2 1

r3 = ε r3 = ε

bobbit0
bobbit1

bobbit0
bobbit1

ε ε ε ε

Fig. 1. Coin-Flipping Protocol: Specification

The Coin-Flipping Protocol.
In the coin-flipping proto-
col (cp. Introduction), Bob
chooses his bit first and thus
cannot dictate the outcome
of the protocol (as Alice
verifies consistency with the
hash value). We therefore
consider the more interest-
ing case of dishonest Alice:
Only the hash function pre-
vents her from dictating the
result unilaterally. Hence we
first consider the case that
Alice is the adversary, and
assume that only Bob follows
the protocol, his specification
is presented in the left-hand
side of Figure 1. Dashed
lines represent messages re-
ceived by Bob, solid ones are
messages sent by him. The
message 〈α,N〉 is a pair con-
taining the bit α and the ran-
dom string N . The probabilities 1

2 express that Bob chooses the bits 0 and 1
with probability 1

2 each. Omitted probabilities are 1. Different messages from
Alice (0 or 1) lead to different follow-up states for Bob. We omit error states for
syntactically incorrect incoming messages, etc. Since our model is concurrent,
we add a dummy sequence for the step when Alice is active.

In our formalism, the security property of the coin-flip protocol is expressed as

∀3S¬ 〈〈A : S〉〉>0.5 ♦
(
finB00 ∨ finB11

)
. The formula expresses that for every strategy

S (that cannot break the hash function, this is specified by the index 3), if the
adversary Alice follows S, she only has a probability of 1

2 to reach a state in
which both random bits are the same and hence the result bit is 0; the 1-case is
symmetric.
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As a further example, we also show how Alice’s role can be specified in our
model. For simplicity, the graphical representation in the right-hand side of Fig-
ure 1 uses the terms ri for the message Alice received in the i-th protocol step
(our general notation will be introduced below). The final receive step made by
Alice is the most important one: Here she receives the pair 〈b1, N〉 from Bob.
Alice now checks that Bob did not cheat (i.e., that this pair is indeed consistent
with the hash value received earlier in the protocol run), and computes the result
of the coinflip. For this, she uses the following test: For α ∈ {0, 1}, the “test”
bobbitα is the conjunction (r2 = hash(r4))

∧
(Π1(r4) = α), this test is true iff

the pair sent by Bob in step 4 matches the hash value sent earlier and the bit
contained in Bob’s commitment is α. Here the operator Π1 denotes extraction
of the first element of a pair. Depending on this test and on her own previously
chosen bit, Alice then moves into one the states finA00, fin

A
01, fin

A
10, fin

A
11, where

the bit combinations αβ denote the 4 possible choices of bits by Alice and Bob
(the first bit is Bob’s random choice, the second one Alice’s).

The test true used in the first receive step when the hash value of Bob’s pair
〈b1, N〉 is received always returns true: At this point of the protocol run, no tests
are performed, the value is merely stored for later reference.

1 2 3 4

•

ε ε
ε sigB(text)

abort wait abort wait ok

abort ε 1
2 abort

1
2 ε accept

Fig. 2. Protocol State Example

Wait State in a Contract
Signing Protocol. Consider
the protocol excerpt in Fig-
ure 2. There are two pos-
sible incoming messages:
The empty term ε and a
cryptographic signature of
some text. If ε is received,
there are three possible re-
actions: 1. send an abort-
message, and move to an
“aborted” state, 2. move
into a waiting state, 3. ran-

domly choose between the first two alternatives. If the signature is received, an
ok -state is reached and an accept message sent. The random choice in the exam-
ple is clearly contrived, however there are protocols where randomized decisions
are essential, e.g., the contract signing protocol introduced in [13], the coin-
flipping protocol discussed above, and random routing.

1.2 Formalizing Protocol States

Our formal protocol definition is the natural one. The most important aspect is
how principals react to incoming messages. These reactions depend on observable
properties of the message. Such properties are modeled as tests. Let IDs be
a set of identities in a PKI. Let N be the disjoint union of the infinite sets
NA and Ni for each i ∈ IDs (nonces generated by the adversary and honest
participants). Let X = {x1, x2, . . . } be an infinite set of variables. Let Σt be
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a term signature containing function symbols with assigned arities representing
cryptographic primitives. The set of terms TΣt is defined as usual inductively on
N , X , and symbols from Σt. We assume that for each i ∈ IDs, there are terms i,
pki and ski, denoting the name, public and private key of i, and that Σt contains
operations 〈., .〉 to construct tuples and Πi to access their components. For C ⊆
IDs, the set TC is the set of terms constructable from Σt and X ∪

⋃
i∈C Ni∪NA

where no ski for i /∈ C appears. We call these terms C-terms. These can be
constructed with access to the secret keys and nonces of members of C. We write
TA instead of TC if C is clear from the context, to highlight that these terms
can be constructed by the adversary when the identities in C are corrupted.

We write t[t′1/x1, . . . , t
′
n/xn] for the term obtained from t by simultaneously

replacing every occurrence of the variable xi with the term t′i.

decskxi

(
encpkxi

(xt)
xr

)
= xt

verify
(
sigskxi

(xt)
xr , xt, pkxi

)
= ok

for i ∈ {1, 2} , Πi〈t1, t2〉 = ti

Fig. 3. Example equational theory

We assume a convergent equa-
tional theory E. See Figure 3 for
an example theory with public-key
encryption, signatures, and pair-
ing; in the equations xi refers to
an identity, xt is a term, and xr
represents randomization nonces.
The (uniquely determined) normal
form of a term t, denoted with [[t]],

is obtained by exhaustive application of equations from E. In the example, if
t = decskA

(
encpkA(abort)

r), then [[t]] = abort.
Formally, an equation over Σt is a pair of Σt-terms (l, r), written as l = r

(our equations are “oriented,” where intuitively, we write the “more complicated”
term on the left-hand side). An equational theory E over Σt is a set of equations

over Σt. For example, the equation decskxi

(
encpkxi

(xt)
xr

)
= xt in the theory

from Figure 3 models that when encrypting a term xt with the public key of an
identity xi with randomness xr, and decrypting the term with the private key of
the same identity, then the result is xt again. This equation is a “simplification
rule,” transforming a complex term (the ciphertext) into a simpler term (the
plaintext). E induces a rewrite relation �E on terms, where t1 �E t2 if t2 can
be obtained from t1 by applying a rule in E in the natural way.

With �∗
E, we denote closure of �E under transitivity, reflexivity, and appli-

cation of function symbols (i.e., rules can be applied in subterms); ≡E is the
closure of �∗

E under symmetry and transitivity. Terms t1 and t2 are called E-
equivalent, if t1 ≡E t2. The relation �E is confluent, if for all t, t1, t2 with
t �∗

E t1 and t �∗
E t2, there is some t′ with t1 �∗

E t
′ and t2 �∗

E t
′. The relation

�E is terminating if there is no infinite sequence of terms t1, t2, . . . such that
for all i we have ti �= ti+1 and ti �E ti+1. The theory E is convergent if �E is
both confluent and terminating.

E is a convergent subterm theory [22] if for each (l, r) ∈ E, r is a subterm of
l or a constant, and E is convergent. Convergent subterm theories cover many
interesting applications including the behavior of usual cryptographic primitives.
Many decision problems for such theories are decidable [22].
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A term t ∈ TΣt is in normal form or a message if t�∗
E t

′ implies t = t′. If �E

is convergent, then for each term t there is a unique term t′ in normal form such
that t�∗

E t
′, we denote this term with [[t]]. If �E is convergent, then terms are

equivalent if and only if they have the same normal form.

Definition 1. [11] For a set C of identifies, an atomic C-test is a pair (M,M ′)
of C-terms where exactly one variable x appears in M and M ′. A message m
satisfies (M,M ′), if M [m/x] ≡E M ′[m/x]. A C-test is a Boolean combina-
tion of atomic C-tests, with the obvious semantics. Messages m and m′ are
C-indistinguishable if there is no C-test that exactly one of them satisfies.

The definition extends to sequences of messages. Indistinguishibility is also known
as static equivalence [23]. We now define protocol states. These specify how an
incoming message is handled in a protocol: Depending on properties of the mes-
sage (modeled with tests), there are different possible choices how a principal
can react. In randomized protocols, these choices are probability distributions
over actions, where an action consists of a reply message and a state change.
In the definition below, the parsing sequence corresponds to the dashed lines in
the example above; the send sequence formalizes the solid lines. A state hence
consists of the dashed lines originating at the same point plus their solid succes-
sors. The dashed lines are labeled with tests (the example also uses ε as the test
satisfied by the empty message only), the solid lines are labeled with terms sent
as replies and the probabilities with which they are chosen. In Section 2 below,
we will explain the semantics of the protocol execution.

Definition 2. A protocol state w is a special symbol Finished or consists of

– a parsing sequence t1, . . . , tk, where each ti is a test,
– a send sequence (s11 , α1,1), . . . , (s1,l, α1,l), (s2,1, α2,1), . . . , (sk,l, αk,l), where

each si,j is a term, and αi,j ≥ 0 is a rational number with
∑l

j=1 αi,j = 1 for
all i ∈ {1, . . . , k}.

If w is not Finished, then a number i ∈ {1, . . . , k} is a choice in w, and l is the
randomization degree of w. We also call such states regular protocol states.

A protocol role is a program for a principal (see Figure 1). It combines states
into a tree, with different possible actions in each state. We assume sufficiently
many copies of Finished, so that a protocol role may have different final states.
We model a single protocol session, a finite number of concurrent sessions can
be implemented by expressing the resulting interleaving protocol in our model.

Definition 3. A protocol role R consists of a finite directed tree (V,E), where
V is a set of protocol states and E is a set of labeled edges such that:

– If w ∈ V has k choices and randomization degree l, then w has k ·l successors
with edges labeled with (i, j) for i ∈ {1, . . . , k} and j ∈ {1, . . . , l}.

– If w ∈ V is a copy of Finished, then w does not have any successor.
– There is an identity i ∈ IDs such that every subterm appearing in R is an
i-term, i is also called the identity of R.

Requiring an identify for each role ensures it uses a single private key only. A
k-roles protocol is a tuple Pr = (R1, . . . ,Rk), where each Ri is a protocol role.
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2 Semantics: Executing a Protocol

We first informally describe the execution of protocols. Again, k is the number
of honest protocol participants. Principals send and receive messages consisting
of (k+1)-ary tuples. An incoming message contains in component i the message
from principal i ∈ {1, . . . , k} or the adversary if i = k + 1. Analogously, the
message sent in each round is a tuple with (k + 1) entries, where the i-th entry
is intended to be sent to principal i, or to the adversary if i = k + 1.

An honest principal h ∈ {1, . . . , k} operates as follows: In each state, h an-
alyzes the incoming message tuple, and checks for each test from the parsing
sequence whether the message satisfies it. The test takes the history of the pro-
tocol run into account, i.e., is applied to the sequence of messages received so far
by h. If test tc is satisfied, a number d ∈ {1, . . . , l} is chosen randomly using the
distribution specified by αc,1, . . . , αc,l, and the term sc,d is the reply sent by h.
Using a variable referring to the sequence of previously received messages, the
reply may depend on previously received messages. The local successor state is
determined by the outgoing edge (c, d) of the current one. If the incoming mes-
sage satisfies more than one of the tests, the principal makes a strategic choice by
choosing the one to apply. This occurs in the above contract-signing example if
the incoming message is the empty term. To avoid cumbersome case distinctions,
we require that for every message, there must be a test that it satisfies.

The adversary may send arbitrary terms that he can construct using the secret
keys from corrupted identities.

2.1 Formal Protocol Model as a Concurrent Game Structure

The formal model combines a set of global states of a protocol run (contain-
ing the protocol state of every participant) with the possible actions (“moves”)
and consequences thereof for every party. A usual way to specify strategic situ-
ations as this one are concurrent game structures (CGS). We use the definition
from [24], which models probabilistic games and incomplete information:

Definition 4. A concurrent game structure is a tuple C = (Σ,Q,P, π,Δ, δ, eq):
– Σ and P are non-empty, finite sets of players and propositional variables,
Q is a non-empty set of states,

– π : P → 2Q is a propositional assignment (p is true in all states from π(p)),
– Δ is a move function assigning to each state q and player a a nonempty set
Δ(q, a) of moves available at state q to player a. For A ⊆ Σ and q ∈ Q, an
(A, q)-move is a function c mapping each a ∈ A to a move c(a) ∈ Δ(q, a).

– δ is a probabilistic transition function which for each state q and (Σ, q)-move
c specifies a discrete probability distribution δ(q, c) on Q (the distribution of
the follow-up state of q if all players perform their move as specified by c),

– eq is an information function eq : {1, . . . , n}×Σ → P(Q×Q), where n is a
natural number, and for each i ∈ {1, . . . , n} and a ∈ Σ, eq(i, a) is an equiv-
alence relation on Q. Each i ∈ {1, . . . , n} is called a degree of information.
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A subset A ⊆ Σ is a coalition of C. We write q1 ∼eqi(A) q2 for (q1, q2) ∈
∩a∈Aeq(i, a). If q1 ∼eqi(a)

q2, then player a cannot distinguish states q1 and
q2 (if i denotes the degree of information available to him). Multiple degrees of
information allow to dynamically specify the information available to principals,
e.g., whether they are regarded as being able to break cryptography, etc.

We define the protocol execution as CGS, which formalizes the mechanisms
described earlier. In the state description below, C is the set of corrupted
identities, each honest principal h ∈ {1, . . . , k} is in protocol state wh. For
each principal i ∈ {1, . . . , k,A}, the sequence Mi contains the messages re-
ceived so far. The sequence movesA records the moves performed by the ad-
versary. The numbers ch and dh are the strategic and random choices made by
h. The propositional variables allow to reason about the local state of honest
principals.

Definition 5. Let Pr = (R1, . . . ,Rk) be a protocol. The CGS induced by Pr
is CPr = (Σ,Q,P, π,Δ, δ, eq), where
– Σ = {1, . . . , k,A},
– Q consists of tuples of the form q = (C,w1,M1, . . . , wk,Mk,MA,movesA),

where C ⊆ IDs, for each i ∈ {1, . . . , k}, wi is a protocol state of Ri, Mi and
MA are sequences of messages, and movesA is a sequence of terms.

– for each protocol state w occurring in Pr and each h ∈ {1, . . . , k} there is a
propositional variable sthw which is true in a state q as above iff wh = w,

– for a state q as above where for all h ∈ {1, . . . , k}, wh has kh choices,
randomization degree lh, parsing sequence th1 , . . . , thkh

and send sequence

(sh1,1, α
h
1,1), . . . ,(shkh,lh

, αh
kh,lh

), the available moves are as follows: For A,
every term mA ∈ TA is a move, for an honest principal h ∈ {1, . . . , k},
the number ch ∈ {1, . . . , kh} is a move if and only if Mh satisfies the test
thch . The transition function δ is defined as follows: For the move deter-
mined by the adversary move mA and the principal moves c1, . . . , ck and
numbers d1, . . . , dk, where 1 ≤ dh ≤ lh, there is a successor state q′ =
(C,w′

1,M′
1, . . . , w

′
k,M′

k,M′
A,movesA ◦mA), where

• w′
h is the successor of wh in Rh connected with the edge labeled (ch, dh),

• to define M′
j, we denote with Mi for i ∈ {1, . . . , k,A} the message sent

by i, which is [[sici,di
[Mi/x]]] if i ≤ k, or [[mA[MA/x]]] if i = A,

• for all i ∈ {1, . . . , k,A}, the new sequence M′
i is obtained by adding to

Mi a (k+ 1)-ary tuple containing in its j-th component the i-th compo-
nent of Mj (i.e., the term that j sends to i),

• the probability of this successor state is
∏k

h=1 α
h
ch,dh

.

If a principal is in a copy of Finished, he only has dummy moves.
– We define three information degrees: For a player a ∈ Σ,

1. eq(1, a) is the equality relation—this models complete information mod-
ulo ≡E (since the states only contain normal forms of terms),



Deciding Epistemic and Strategic Properties of Cryptographic Protocols 99

2. in eq(2, a), two states are equivalent if and only if principal a is in the
same local state1, and the component Ma is the same in both states (this
models local information with ability to break cryptography2)

3. eq(3, a) is the equivalence relation where states are equivalent if and only
if the principal is in the same local state1, and components Ma are a-
indistinguishable (C-indistinguishable if a = A).

The message received by a principal in each step is a tuple containing messages
from every protocol principal, allowing simultaneous processing of messages.
Messages are immediately delivered to the intended recipients using secure chan-
nels. Realistically, use of such channels can be restricted by using buffer principals
which the adversary may instruct to delay/drop messages.3 These are modeled as
ordinary protocol roles relaying messages, allowing flexible “implementations” of
channels and various levels of “adversary activeness:” If a protocol does not use
buffers at all, but principals only communicate via the adversary, the adversary
is active without restriction. If all communication uses secure channels (with
copies sent to the adversary), the adversary is passive. Intermediate degrees can
express secure channels to trusted third parties, etc.

For each C ⊆ IDs, there is an initial state qCinit = (C, r1, ε, r2, ε, . . . , rk, ε, ε, ε),
where ri is the root ofRi. In this state, no message has been sent, every principal
is in its initial state, and the adversary knows the keys of all identities in C. This
models static corruption, where a set of identities (fixed before the protocol run)
as adversarial. See Section 5.3 for an example of dynamic corruption. We remove
all states from CPr that cannot be reached from one of the initial states.

We note that there are two ways in which probabilism is relevant in our
model: First, protocol specifications may use random decisions as in the coin-
flipping protocol. Second, some security properties contain success probabilities.
In the coin-flipping protocol, the adversary has a success probability of 1

2 but
not higher, we will sketch a less trivial application in Section 5.4.

3 Probabilistic, Epistemic ATL with Strategy
Quantification

To express security goals, we use the ATL∗-variant QAPI [14, 24]. QAPI is not
security-specific, but a logic for reasoning about strategic and epistemic prop-
erties of general multi-agent systems. QAPI is very expressive and generalizes
several related logics. We only discuss the subset of QAPI relevant for this paper,
however our results hold for the complete logic. [14] contains detailed discussions
and comparisons as well as references to many related logics.

1 The local state of A consists of the set C and the sequence movesA.
2 This only allows the knowledge and decisions of principals to depend on “hidden”
information, but does not allow e.g., the adversary to send a hidden plaintext as
part of a message on his own. The latter can be expressed in our model with letting
the adversary corrupt the corresponding identities.

3 In order to avoid infinite protocol runs, we forbid rounds in which the adversary
delays every available channel in the obvious way.
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3.1 Formulas

QAPI extends ATL∗ with epistemic features, probabilities, and explicit strate-
gies. Formulas may contain variables S1, . . . , Sn referring to strategies, these will
be bound by quantifiers. This allows explicit reasoning about strategies.

Definition 6. The set of QAPI-formulas for a CGS C is defined as follows:

– A propositional variable of C is a state formula, conjunctions and negations
of state (path) formulas for C are state (path) formulas for C,

– every state formula is a path formula,
– if A1, . . . , An are coalitions, � is one of ≤, <,≥, >, ψ is a path formula, and

S1, . . . , Sn are variables for strategies, then 〈〈A1 : S1, . . . , An : Sn〉〉�α
ψ is

a state formula,
– if A is a coalition, i is a degree of information, and ψ is a state formula,

then KA
i ψ is a state formula,

– If ϕ1 and ϕ2 are path formulas, then so are Xϕ1, Pϕ1, X
−1ϕ1, and ϕ1Uϕ2.

Intuitively, 〈〈A1 : S1, . . . , An : Sn〉〉�α ψ expresses that if the coalitions A1, . . . ,
An play the strategies referred to by S1, . . . , Sn, then for every possible behavior
of the remaining players, the probability that the resulting sequence of states
satisfies the formula ψ is � α. The formula KA

i ψ expresses “coalition A knows
that ψ is true (with information degree i).” We use standard abbreviations like
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ϕ→ ψ = ¬ϕ ∨ ψ, ♦ϕ = trueUϕ, and �ϕ = ¬♦¬ϕ.

3.2 Strategies and Semantics

An a-strategy for a player a is a function s assigning a move from Δ(q, a) to
each state q. It is i-uniform, if q1 ∼eqi(a)

q2 implies s(q1) = s(q2): In states
that a player cannot tell apart with information degree i, he performs the same
move. For a coalition A, an A-strategy is a family (sa)a∈A, where each sa is an
a-strategy, it is i-uniform if every sa is. We only consider memoryless strategies,
since each state contains complete information about the preceding protocol run.
Formulas are evaluated on states or on paths, where a path is a sequence λ of
states in a CGS C. With λ[i] we denote the i-th state in λ.

Definition 7. Let C = (Σ,Q,P, π,Δ, δ, eq) be a CGS, let ϕ be a state formula,
let ψ1 and ψ2 be path formulas, let S1, . . . , Sn be strategies instantiating the

variables S1, . . . , Sn, let λ be a path, let t ∈ N, let q ∈ Q be a state, let
−→
S be an

abbreviation for (S1, . . . , Sn). Then

– C,−→S , q |= p iff q ∈ π(p) for p ∈ P,
– negation and conjunction are treated as usual,

– (λ, t),
−→
S |= ϕ iff C,−→S , λ[t] |= ϕ,

– (λ, t),
−→
S |= Xψ1 iff (λ, t+ 1),

−→
S |= ψ1,

– (λ, t),
−→
S |= Pψ1 iff (λ, t′),

−→
S |= ψ1, for some t′ ≤ t,

– (λ, t),
−→
S |= X−1ψ1 iff t ≥ 1 and (λ, t− 1),

−→
S |= ψ1,
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– (λ, t),
−→
S |= ψ1Uψ2 iff there is some i ≥ t such that (λ, i),

−→
S |= ψ2 and

(λ, j),
−→
S |= ψ1 for all t ≤ j < i,

– C,−→S , q |= KA
i ϕ1 iff C,−→S , q′ |= ϕ1 for all q′ ∈ Q with q′ ∼eqi(A) q,

– C,−→S , q |= 〈〈Ai1 : Si1 , . . . , Aik : Sik〉〉
�α
ψ iff when coalition Aij plays4 the

Aij -strategy Sij for all j, then the resulting path satisfies ψ with probability
� α, for every possible behavior of the players in Σ \ (Ai1 ∪ · · · ∪ Aik).

This definition treats formulas where strategies instantiating the variables Si are
given. A quantified strategy formula is a state formula prefixed by a quantifier
block where each strategy variable Si is quantified with ∃i or ∀i for an information
degree i. This expresses “there is (for all) i-uniform strategies,” with the obvious
semantics: ∃i1S1∀i2S2 . . . ∃inSnϕ is true in state q if there is a i1-uniform strategy
S1 such that for all i2-uniform strategies S2, . . . , there is an in-uniform strategy
Sn such that this choice of strategies satisfies ϕ according to the definition above.

3.3 Modeling of Knowledge

The knowledge operator used in QAPI (see above) has the usual semantics from
epistemic logics. For security settings, this is often unsuitable: If a party “knows”
a fact to be true with probability significantly larger than 1

2 , is often enough for a
protocol to be insecure. This, however, is not captured in the standard definition.
Also, a party’s knowledge may sometimes take other principals’ strategies into
account, which also cannot be expressed with the standard epistemic knowledge
operator. However, QAPI’s quantified strategies can be used to address these
issues. As an example, “(with information degree i) there is a strategy sA such
that B knows whether ϕ holds with probability at least 4

5 , if B knows that A
follows sA,” can be expressed as follows: We modify the protocol for B to allow
an “announcement” proclaiming that B believes ϕ to be true.5 Let belϕ be a
formula true in all states in which B has made this announcement (see also [25]).
Then the above can be expressed as

∃iSA∃iSB 〈〈A : SA, B : SB〉〉≥
4
5 (ϕ ⇐⇒ ♦belϕ) .

Here it is crucial that the strategy chosen for SB may depend on the one chosen
for SA. Our discussion of coercion-resistance (Section 5.4) contains an example of
a security analysis where such considerations are relevant. The above discussion
shows that explicit uniform strategies are strong enough to express the knowl-
edge operator, although at the cost of modifying the game structure (in our
case, the protocol). Hence the basic knowledge operator can be seen as “syntac-
tic sugar,” which we however keep in the language as it can increase readability.
We are grateful to anonymous reviewers pointing out these issues.

4 If a appears in more than one Aij , he follows strategy Sij with j = min
{
j | a ∈ Aij

}
.

5 This can be done by e.g., introducing a dedicated party who receives messages saying
“I believe ϕ is true/false,” or with several other natural mechanisms
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4 Main Result

Security of protocols in our model is decidable for convergent subterm theories:

Theorem 1. Assume that E is a convergent subterm theory. There is an algo-
rithm which, given a protocol Pr, a set C of corrupted identities, and a quantified
strategy formula ϕ, decides whether CPr, q

C
init |= ϕ.

The challenge in the proof is that active adversaries can send arbitrarily complex
messages, leading to an infinite structure CPr. We show that it suffices to con-
sider “bounded strategies:” Protocols only parse terms up to a bounded depth;
rewriting rules resulting from convergent subterm theories also have “bounded”
effects. It follows that one can restrict the adversary to send terms of bounded
depth. This [2]-style argument only directly covers reachability properties; more
involved arguments apply to strategic and epistemic properties.

5 Applications

We now show several examples of applications of our result. In addition to our
running coin-flipping example, we also treat abuse-freeness of contract signing
protocols. We briefly mention that standard anonymous broadcast protocols as
the dining cryptographers can be expressed in our model in the straight-forward
way. We also treat two applications that use our framework in a less obvious way,
namely 1. accountability and verifiability, and 2. coercion-resistance of voting
protocols. An in-depth discussion of these properties is out of the scope of this
paper, we treat these properties in as much detail as required to highlight the
features of our approach. In particular, our treatment uses direct reasoning about
strategies, epistemic and probabilistic aspects in an essential way.

5.1 The Coin-Flipping Protocol

The coin-flipping protocol satisfies its previously-mentioned security property:

Proposition 1. The state q
{Alice}
init of the CGS induced by the coin-flipping pro-

tocol satisfies the formula ∀3S¬ 〈〈A : S〉〉>0.5 ♦
(
finB00 ∨ finB11

)
.

The formula is satisfied because the messages hash(〈0, N〉) and hash(〈1, N〉) are
indistinguishable for Alice, since she does not know N . Therefore, a 3-uniform
strategy has to choose the same action for both of Bob’s possible messages.

5.2 Abuse-Freeness of Contract Signing Protocols

If Alice and Bob want to exchange a contract, abuse-freeness requires that there
is no situation where Bob can prove to an outsider Charly that the current
state is unbalanced, i.e., Bob can unilaterally decide whether the contracts are
successfully exchanged or not. A straight-forward definition of abuse-freeness is
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“there is no point in the execution of the protocol where Bob has a strategy to
ensure that Charly knows that the protocol is in an unbalanced state.” This can
be expressed in our model in the obvious way. In the full version of this paper [21],
we show how the more complex definition of abuse-freeness given in [11] can be
expressed in our framework. As a consequence, we obtain decidability of abuse-
freeness. This resolves an open question from [11].

5.3 Accountability and Verifiability

Accountability and verifiability are properties relevant for protocols involving
trusted third parties, e.g., voting [26], auctions [27], contract signing [5], identity-
based encryption etc. In [28], a formal definition of accountability is given that
is independent of the specific application.

Accountability requires that if a protocol run “fails” (i.e., does not achieve
some goal), then a party J (the “judge”) can determine which one of the partic-
ipants in the protocol “misbehaved,” i.e., did not follow the protocol.

Up to now, we modeled principals either as honest, or as part of the adversary.
Accountability is concerned with principals who have a “wanted” behavior (the
protocol), but can start “misbehaving” during the protocol run (i.e., abandon
the protocol and behaving adversary-like from that point on).

To express this we use our model in a different way: We modify every honest
principal of the protocol except J to run an “adversary program” at any time.
This is a new sub-branch of the protocol, and forwards received messages to the
adversary, lets the adversary dictate messages to be sent to the other principals,
and provides an oracle for operations involving the private key of the “misbe-
having” identity, e.g., decrypts ciphertexts and signs messages as instructed by
the adversary (the exact set of services provided depends on the involved cryp-
tographic primitives).6 Since the variables in CPr indicate the current state of
honest principals, for each i we have a formula ϕadv

i that is true iff i runs the
adversary program. Forwarding and oracle access causes delay in the protocol
execution, to account for this we introduce “wait cycles” into the protocol. The
adversary program essentially models dynamic corruption.

In [28], individual accountability is defined as follows: At the end of every
protocol run in which a goal ϕ is not satisfied, J announces the identity of
some party that did not follow the protocol (using a distinguished state for each
output). Let blamei be a formula that is true if J announced that i “misbehaved.”
Let ϕ be a goal. Then a protocol provides individual accountability for ϕ if the
following formula is satisfied (∀1S∅ 〈〈∅ : S∅〉〉 quantifies over all reachable states):

∀1S∅ 〈〈∅ : S∅〉〉�
(
(¬ϕ→ ♦(

∨
i∈I

blamei)) ∧�(
∧
i∈I

blamei → ϕadv
i )

)
.

6 Usually, the adversary only accesses the oracle a finite number of times: Decryptions
and signatures are only necessary for encryptions done by, or signature verifications
performed by, honest principals; these only perform a finite number of operations.
Hence the “oracle” can be implemented in a finite protocol role.
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This expresses that if ϕ is not satisfied, then at the end of the run J will cor-
rectly announce one identity from I that did not follow the protocol, and all
announcements of J are indeed “correct.”

The above does not use epistemic or strategic properties: We merely expressed
that J works “correctly.” Epistemic features come into play when the situation
is less clear than above, i.e., when there is no existing judge procedure that we
can use. We can ask whether a party J has enough information7 to serve as a
judge, and derive an implementation. The following expresses that if ϕ is false,
then J will know, for some party i, that i did not follow the protocol:

∀1S∅ 〈〈∅ : S∅〉〉�(¬ϕ→ ♦(
∨
i∈I

(KJ
3ϕ

adv
i )).

If the formula is true, J has enough knowledge to serve as judge (the index 3 states
that J’s knowledge is limited by cryptography). We obtain an “implementation”
of J in a straight-forward way: We allow J (in addition to other instructions that
J follows in the original protocol) to perform “blame” announcements as earlier.
We now ask whether there is a strategy for J to “blame correctly:”

∃3SJ 〈〈J : SJ〉〉 (�(¬ϕ→ ♦(
∨
i∈I

blamei)) ∧
∧
i∈I

(blamei → ϕadv
i )),

in the positive case the strategy for J then encodes a verification program. Fi-
nally, verifiability can be seen as a weaker form of accountability. In [28], it is
defined as follows: A goal ϕ of a protocol Pr is verifiable by J if J knows whether
ϕ holds when the protocol run is over. This can be easily expressed in our model:
Let end be a propositional variable that is true at the end of the protocol run.
Then the formula

∀1S∅ 〈〈∅ : S∅〉〉�(end → (KJ
3ϕ ∨ KJ

3¬ϕ))

expresses that J knows whether ϕ holds at the end of every possible protocol
run. Theorem 1 now implies decidability of accountability and verifiability.

5.4 Coercion-Resistance of Voting Protocols

Coercion-resistance requires that no voter Alice can prove to a party Charly
that she voted as instructed by him, precluding selling of votes. In [29], coercion-
resistance is defined8 as follows: For every “coercer strategy” of Charly, there is
a “counter-strategy” for Alice such that Alice’s vote is counted as she wants to
vote, but Charly believes that he controlled her voting process.

7 Clearly, the protocol must specify which information J has, i.e., which messages J
receives—if J has complete information, accountability trivial.

8 Their definition is given in a cryptographic model, we present an analogous formu-
lation in our symbolic model. Other definitions [30] are expressed in epistemic terms
close to our model. However the game-based definition from [29] covers probabilistic
aspects that we want to model.
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Clearly, we cannot require Charly to always fail to “catch” Alice—if Charly’s
chosen candidate receives zero votes, then Charly knows that Alice did not obey
him. We thus allow Charly to correctly guess that Alice voted differently than
promised with some probability, possibly larger than 1

2 . See [29] for a discussion
of suitable values for the involved probabilities. We model Charly’s belief as the
probability to successfully “guess” whether Alice followed his instructions. This
mirrors the approach of [25] to consider probabilistic knowledge as strategies for
a betting game, see also Section 3.3.

We express coercion-resistance in our model. We note that our model requires
that the number of communication rounds between Alice and Charly is bounded
by a constant, since this has to be encoded into Alice’s protocol description.
A generalized model with no bounds on the protocol length can be defined,
however, such a model will be undecidable (cp. [10]). We stress that neither the
complexity nor the structure of the messages are restricted in our model.

In coercion-resistance, two principals may deviate from the protocol: Charly
uses a coercer strategy to influence Alice, and Alice runs a counter-strategy to
vote as she intends9. Our model allows arbitrary behavior only for the adversary,
hence we model both the coercer and the counter strategy as adversary-strategies.
We introduce a test principal T whose goal it is to determine whether Alice
follows Charly’s instructions (the adversary plays the “coercer strategy”) or uses
the “counter-strategy.” Since both of these strategies are played by the adversary,
we need a way to distinguish them. To this end, the strategies have to “announce
themselves:” We let Alice expect, in the first message from the adversary, a bit
signaling the performed strategy, she changes local state accordingly. She runs a
copy of the adversary program (see Section 5.3) from then on. We use formulas
ϕA−coerc and ϕA−counter to express that the running strategy signaled coercion
or counter, respectively. A T-strategy is successful if T announces “coercion”
iff the running strategy signaled coercion, and “counter” iff the strategy signals
“counter.” Since T’s epistemic capabilities should match Charly’s, T has access
to the same messages that Charly would see in a protocol run.

To express that the counter-strategy lets Alice vote as she wants, we introduce
a principal V (vote) choosing Alice’s (sincere) vote, which he sends to Alice. V’s
strategies then correspond to Alice’s possible votes. Coercion-resistance for a
probability δ is now (semi-formally) expressed as follows10:

for all A-strategies scoerc signaling coerce
there is an A-strategy scounter signaling counter s.t.

scounter lets Alice vote as chosen by V
AND no T-strategy is successful with probability ≥ δ.

9 Clearly, in many protocols there will be a fixed counter-strategy that Alice can use
which we could directly “implement” into our modeling of Alice; this would simplify
the modeling of coercion-resistance significantly.

10 For readability, we omit the universal quantification over V’s strategy.
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This expresses that for every coercer strategy, there is a counter-strategy letting
Alice vote as she wants, and the test principal (with information as available to
Charly) cannot identify the performed strategy with probability ≥ δ.

To express this in QAPI, let ϕV express that Alice voted as instructed by V
(this formula depends on the voting system), let ϕA-coerc and ϕA-counter express
that coercion (counter) is signaled. Let ϕT-suc indicate that T guesses correctly.

ϕT<δ = ¬
(
(〈〈T : ST,A : Scounter〉〉≥δ ϕT-suc) ∧ (〈〈T : ST,A : Scoerce〉〉≥δ ϕT-suc)

)
expresses that T’s success probability is less that δ for one of the strategies.

ϕsig-coerce = (〈〈A : Scoerc〉〉≥1 ♦ϕA-coerc)

expresses that Scoerc signals coercing correctly, analogously let ϕsig-counter express
that Scounter signals counter. Finally,

ϕvote = 〈〈A : Scounter〉〉≥1 ♦ϕV

expresses that the strategy Scounter lets Alice vote as she wants to. We now express
coercion-resistance as follows:

∀3Scoercer∃3Scounter∀3SV∀3STϕsig-coerce → (ϕsig-counter ∧ ϕvote ∧ ϕT<δ).

We stress that the coercer- and counter-strategies are played by the adversary
A and not by Alice. Several key features of our approach are used in the above
modeling: It is clearly necessary to consider only uniform strategies. We also
made extensive use of quantification: Letting the strategy of T depend on the
A-strategies is crucial for the approach, as is the ability to directly reason about
specific strategies in formulas. Finally, reasoning about success probabilities of
strategies was required to express the probabilistic notion of coercion-resistance.

Variations of coercion-resistance can be expressed similarly: One can exchange
the order of quantification of the counter-strategy and the strategy of T to only
demand that for every fixed test strategy there is a counter-measure, one can re-
quire only that Alice’s counter-strategy is successful with some given probability,
etc. The above implies decidability of coercion-resistance.

6 Conclusion and Future Research

We introduced a decidable model that treats epistemic and strategic properties
of probabilistic cryptographic protocols. We demonstrated that the expressive-
ness of the logic QAPI allows to express complex epistemic and probabilistic
security properties. Advanced features as quantification, explicit strategies, and
probabilistic reasoning were central in our modeling of the treated security prop-
erties. Open questions are a complexity analysis of the model checking problem,
and extending decidability to a larger class of equational theories.
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Abstract. A workflow authorization model is defined in the framework
of Relationship-Based Access Control (ReBAC), in which the protection
state is a social network. Armed with this model, we study a new decision
problem called workflow feasibility. The goal is to ensure that the space
of protection states contains at least one member in which the workflow
specification can be executed to completion. We identify a sufficient con-
dition under which feasibility can be decided by a refutation procedure
that is both sound and complete. A formal specification language, based
on a monotonic fragment of the Propositional Dynamic Logic (PDL),
is proposed for specifying protection state spaces. The adoption of this
language renders workflow feasibility NP-complete in the general case
but polynomial-time decidable for an important family of workflows.
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1 Introduction

In a workflow authorization system [1, 2, 3, 4, 5, 6], permissions are encapsulated
in tasks, such that users acquire permissions by executing a task in a workflow.
This design achieves permission abstraction [7] in the context of business pro-
cesses in enterprise-level systems. Access control policies are usually specified in
the form of constraints over who can execute which tasks in the workflow. An
instantiation of the workflow (i.e., an assignment of tasks to users) must honour
the constraints in order to be considered valid.

Research on workflow authorization models focus on the issue of availability :
i.e., are the permissions encapsulated in a workflow available when needed?
Early studies explored the problem of workflow satisfiability [3, 5]: i.e., can
a workflow be instantiated such that all constraints are satisfied in the current
protection state? In a recent study pursued by Wang and Li [8, 6], a higher
degree of availability is analyzed. Specifically, they [8, 6] studied the problem of
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workflow resiliency1. Suppose an emergency makes some users unavailable,
can the workflow still be completed? A (statically) k-resilient workflow remains
satisfiable even after any k users are removed from the current state.

In this work, we study the problem of workflow feasibility where we ask
whether the permissions can be made available in any “reasonable” protection
state or not. Although the permissions may not be available in the current pro-
tection state (i.e., the workflow is not currently satisfiable), there should be at
least one protection state in a known state space where the workflow is satisfi-
able. This notion can been seen as the dual of resiliency, as explained in Sect. 2.

We envision that the policy developer has a priori knowledge of what the
protection state space looks like. When she is to author a new workflow (or
revise an existing one), she wants to evaluate the workflow, to determine whether
the specification may be overly restrictive with respect to her understanding of
what protection states are known to be in the state space. If the workflow is not
satisfiable in any of the known protection states (i.e., infeasible), then constraints
in the workflow specification must be relaxed.

While previously proposed workflow authorization models are built on top of
a Role-Based Access Control framework [11, 3, 12, 13, 4], recent authors did
recognize that many constraints in a workflow specification are binary relations
over executors of tasks [5, 6]. To facilitate the modelling of interpersonal rela-
tionships, we ground our workflow authorization model in the recently proposed
framework of Relationship-Based Access Control (ReBAC) [14, 15, 16].
In ReBAC, authorization decisions are based on the interpersonal relationships
among users, and the protection state is a social network of users. As we will
be studying satisfiability in the midst of evolving interpersonal relationships, we
find ReBAC to be a natural theoretical basis.

Our specific contributions are the following:

1. We formulate a ReBAC workflow authorization model (Sect. 3). With this
model, we offer a novel characterization of the workflow satisfiability problem
based on graph homomorphism [17] (Sect. 4). This new perspective forms
the basis for the rest of our results.

2. We propose a new decision problem, workflow feasibility, for assessing the
availability of permissions encapsulated in a workflow against a known space
of protection states (Sect. 5).

3. We propose to decide workflow feasibility using a refutation procedure, and
we identify the exact conditions under which refutation is both sound and
complete (Sect. 6).

4. We propose to specify a ReBAC protection state space using a fragment
of Propositional Dynamic Logic [18]. When state spaces are specified
in this way, workflow feasibility is NP-complete in the general case, but
polynomial-time decidable for an important class of workflow specifications
in which constraints are conjunctive (Sect. 7).

1 Resiliency was also studied in a context not related to workflow authorization sys-
tems [9, 10].
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2 Related Works

Workflow Authorization Models. Workflow authorization has received a lot of
attention from the security research community. Early works on workflow au-
thorization focus on synchronizing authorization decisions with the progression
of workflow [2, 1]. These works do not concentrate on workflow constraints
[12, 19, 20, 21, 22]. Role Based Access Control (RBAC) is widely used to model
such constraints [11, 3, 12, 13, 4]. Our work instead focuses on relationship-based
constraints.

Consistency. Bertino et al. developed a sophisticated constraint specification
language [11, 3], in which constraints are clauses in logic programming. A desired
characteristic of a set of constraints is that there should be at least one way to
complete the workflow without breaching any of them. Bertino et al. called this
consistency . They proposed a planning algorithm for assigning users and roles
to tasks in such a way that the workflow constraints are satisfied (i.e., deciding
consistency). The complexity of this algorithm is exponential. Tan et al. defined
consistency in a stricter sense by requiring one complete plan for each authorized
user and role [4]. Their algorithm for deciding consistency is again exponential.

Satisfiability. Although the concept was implicit in the work of Bertino et al.
[11, 3], Crampton first coined the term workflow satisfiability , and gave a
precise, solution-independent definition for it [5]. Specifically, satisfiability refers
to the existence of an instantiation of a workflow specification such that all the
constraints are satisfied. Satisfiability is defined with respect to a fixed protection
state (e.g., for an RBAC system, the protection state consists of a role hierarchy
and a user-role assignment). Wang and Li showed that workflow satisfiability is
NP-complete [8, 6], and NP-completeness remains even by considering only the
simplest types of constraints (i.e., user-step authorization and user-inequality
constraints). They further proved that the problem is fixed-parameter tractable,
meaning that there is a decision procedure for satisfiability which is exponential
only to the number of tasks (but not the size of the protection state). Assuming
the number of tasks is bounded by a small value, the problem is tractable.
Workflow satisfiability is the building block of the feasibility problem. We offer a
novel characterization of satisfiability in terms of graph homomorphism, which
is instrumental in establishing our results.

Resiliency. Wang and Li pointed out availability to be the essence behind the
pursuit of workflow satisfiability, and took it into a higher degree [8, 6]. While
workflow satisfiability examines availability in the current protection state, they
extended the notion to examine availability in any bleak future state when some
users might be absent. They call the new problem workflow resiliency . In
other words, resiliency deals with availability in a state space that includes all
possible protection states reachable from the current one by removing users.

This paper is related to their work in three ways. First, we follow the lead of
Wang and Li in considering availability in the midst of a changing protection
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state. Second, the problem of workflow feasibility can be seen as the dual of the
resiliency problem. While resiliency is concerned with availability in every state
of a state space induced by adversarial transitions, feasibility is concerned with
availability in at least one state of a state space induced by normal transitions.
Third, we consider not only the change of personnel, but also the evolution of
their interpersonal relationships.

Relationship Based Access Control. We base our workflow authorization model
on Relationship-Based Access Control (ReBAC) [14, 15, 16], which uses inter-
personal relationships among users as the basis of authorization decisions. These
relationships induce a social network that is explicitly tracked by a ReBAC sys-
tem. A ReBAC access control policy specifies how a resource requester shall be
topologically related to the resource owner in the social network in order for ac-
cess to be granted. Sect. 3 shows that our ReBAC workflow authorization model
can capture all constraint types previously discussed in [4, 5, 8, 6].

3 A ReBAC Workflow Authorization Model

Notation. We write dom(f) and ran(f) respectively for the domain and the range
of a function f . We write f : A ⇀ B whenever dom(f) ⊆ A and ran(f) ⊆ B. If
X ⊆ dom(f) then we write f(X) for {f(x) | x ∈ X}. We write 2X for the power
set of X (i.e., the set of all subsets of X).

Protection System. A ReBAC protection system (or simply a system) is
parameterized by two sets, U and L. The set U is a countably infinite set of
user identifiers of the system. At run time, only a finite subset of U is active
(see below). We write u and v for typical members of U . The set L is a finite set
of relation identifiers. Each member of L identifies a type of interpersonal
relationship tracked by the system: e.g., “parent”, “doctor”, etc. It is assumed
that these relations are binary. Note that a relation and its inverse may be named
differently: e.g.,“patient” and “doctor”. We write l for a typical member of L. In
the following, we fix the sets U and L.

Protection State. The state of a ReBAC protection system is characterized
by a social network , which is essentially an edge-labelled directed graph. The
vertices of a social network represent the active users of the system. The directed
edges are labelled with relation identifiers from L. There is a directed edge from
u to v with label l whenever the two participate in the binary relation named
by l. We make these notions formal in the following.

A relational structure (or simply a graph for brevity) is a pair 〈V, {Rl}l∈L〉,
where V ⊆ U is a non-empty, finite set of vertices, and {Rl}l∈L is a family of
binary relations, indexed by the set L. Each binary relation Rl ⊆ V ×V specifies
the vertex pairs that are related in a type-l relationship. Given a relational
structure G, V (G) is the vertex set of G, and Rl(G) is the binary relation with
index l. Given a finite or countably infinite set X , G(X) denotes the set of all
relational structures for which the vertex set is a nonempty, finite subset of X .



Satisfiability and Feasibility in a Relationship-Based Workflow 113

Workflow Specification. Fixing a ReBAC system with a set of relation identifiers
L, a workflow specification W is a 3-tuple 〈T ,≤, C〉, where:
– T is a finite set of task identifiers. A typical member of T is denoted by
t. When a workflow is instantiated, a user u ∈ U will be assigned to execute
each task t ∈ T . User u is said to be the executor of task t.

– ≤ is a partial order over T . It is required that the partial order has both
a least element and a greatest element. Intuitively, if t1 ≤ t2 then t2 must
not be executed before t1. If t1 and t2 are incomparable, then their relative
ordering is not restricted.

– C, the constraint expression , is a positive boolean combination of prim-
itive constraints. A primitive constraint has the form l(ti, tj), where l ∈ L
and ti, tj ∈ T . The constraint requires that the executor of ti must be related
to the executor of tj in a type-l relationship.

An example of a constraint expression is the following:
(
l1(t1, t2)

∨l2(t1, t2)
)
∧l3(t1, t2). Intuitively, the constraint expression is satisfied iff l3(t1, t2)

as well as one of l1(t1, t2) or l2(t1, t2) are satisfied. Formally, each primitive con-
straint is interpreted as a proposition symbol in the propositional formula C. A
truth assignment to the propositional symbols can be represented as a family of
binary relations {Cl}l∈L (where each Cl ⊆ T ×T ), such that l(ti, tj) receives an
assignment of true iff (ti, tj) ∈ Cl. Note that, as C does not contain negation,
there is always at least one truth assignment that satisfies C.

A constraint expression is conjunctive if it does not contain disjunctions.

Workflow Instances. Given a workflow specification W = 〈T ,≤, C〉, a function
π : T ⇀ U is called a workflow instance (or simply a plan). Intuitively, π is an
assignment of executors to tasks. If dom(π) = T (i.e., there is an user assignment
for every task), then π is said to be complete. Otherwise, π is partial . If
dom(π) = ∅ then π is empty . Given a protection state G = 〈V, {Rl}l∈L〉, a
workflow instance π is valid for W in G (or simply valid) if the partial
ordering and the constraint expression of W are both satisfied. Formally, π is
valid if the following three conditions are all satisfied: (i) ran(π) ⊆ V ; (ii) if
t1 ≤ t2 and t2 ∈ dom(π) then t1 ∈ dom(π) (such that no preceding task is left
out); (iii) there exists a satisfying truth assignment {Cl}l∈L for the constraint
expression C, such that for every (t1, t2) ∈ dom(π)×dom(π), if (t1, t2) ∈ Cl then
(π(t1), π(t2)) ∈ Rl.

Example 1. A hypothetical Assignment Evaluation Workflow needs to be run
against a social network (Fig. 1) of an academic institution. Bob is teaching a
class in which both Alice and Elham are enrolled, and for which both Charlene
and Daniel are Teaching Assistants (TAs). In the social network, two vertices
are related by a Not-Equal relationship iff they are distinct. Such edges are not
displayed in Fig. 1 to preserve cleanliness.

Consider the workflow specification W with tasks and constraints depicted in
Fig. 2. The tasks are ordered as in the following:

Submission <Marking < Reviewing < Grading
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Alice

Charlene

Bob

Daniel

Instructor

Teaching-AssistantTeaching-Assistant

Elham

Instructor

Fig. 1. Social Network without �= edges

Submission Grading

MarkingReviewing

Instructor

Teaching-AssistantTeaching -Assistant

Not-Equal

Fig. 2. Tasks and Constraints

The constraint expression is the conjunction of the following four primitive con-
straints:

1. The submitted assignment is graded by the instructor of the submitter:

Instructor(Submission,Grading)

2. The assignment is marked by a TA assisting the instructor:

Teaching-Assistant(Grading,Marking)

3. Reviewing is performed by a TA of the instructor:

Teaching-Assistant(Grading,Reviewing)

4. The TA who reviews the marking is different from the TA who performs the
marking:

Not-Equal(Reviewing,Marking)

The four edges in Fig. 2 denote these four primitive constraints. The following
workflow instance is complete and valid for W in G:

[ Submission �→ Alice,Grading �→ Bob,Marking �→ Charlene,Reviewing �→ Daniel ]

Expressiveness. We compare our workflow authorization model with those of
Crampton et al. [4, 5] and Wang and Li [8, 6]. The goal is to point out that, the
present formulation of ReBAC workflow authorization is sufficient for expressing
all constraints that appeared in the literature.

The first kind of constraints we discuss about is role-step authorization
constraints (what Wang and Li later called user-step authorization con-
straints). The idea is to associate with a task a unary predicate specifying the
set of users who can carry out that task. This can be captured readily in our
model, as every unary user predicate P can be represented by a binary relation
RP , such that P (u) holds whenever (u, u) ∈ RP .

A second kind of constraints in [4, 5] (called entailment constraints) has
the form (D, t1, t2, ρ), where D ⊆ V (G), (t1, t2) ∈ T × T , and ρ is a binary
relation. Such a constraint is simply a binary relation between the executors of
t1 and t2 which can be encoded by a dedicated binary relation in ReBAC.
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A third kind of constraints in [4] is cardinality constraints, which come in
two variants: local and global. A local cardinality constraint can be encoded
as a number of entailment constraints [23]. A global cardinality constraint de-
mands that at least k distinct executors must be involved in the execution of
some n tasks. Such a constraint can be expressed as a disjunction of

(
n
k

)
con-

junctive constraints. Each of the conjunctive constraints demands that k of the
n tasks are assigned distinct executors.

Wang and Li [8, 6] have simple binary constraints ρ(t1, t2), which is iden-
tical to our primitive constraints. Their universal constraints ρ(∀X, t) can be
expressed as a conjunction of primitive constraints (one for each task in X). The
existential constraints ρ(∃X, t) can be encoded as a disjunction of primitive
constraints (one for each task in X).

4 Workflow Satisfiability as Graph Homomorphism

Workflow satisfiability is the building block of workflow feasibility. In this sec-
tion, we point out a novel connection between workflow satisfiability and graph
homomorphism that will be used extensively in the sequel.

A workflow specification W is satisfiable in a protection state G if there is
a complete workflow instance π that is valid for W in G.

Given a workflow specification W = 〈T ,≤, C〉, a relational structure 〈T ,
{Cl}l∈L〉 is a task network whenever {Cl}l∈L is a satisfying truth assignment
for the constraint expression C. A task network is minimal if no proper sub-
graph corresponds to a satisfying truth assignment for C. Let TN (W) be the
set of all minimal task networks for W . Note that if C is conjunctive, then
TN (W) contains exactly one minimal task network. Fig. 2 shows the minimal
task network for the workflow in Example 1.

A homomorphism from a relational structure G = 〈V, {Rl}l∈L〉 to another
relational structure G′ = 〈V ′, {R′

l}l∈L〉 is a function h : V → V ′ such that
(u, v) ∈ Rl implies (h(u), h(v)) ∈ R′

l. If such a function h exists, then G is
homomorphic to G′, and we write G → G′. If, in addition, the function h
is a bijection, and h−1 is a homomorphism from G′ to G, then h is called an
isomorphism , and G is isomorphic to G′. In this case we write G ∼= G′. We
also write h(G) for the homomorphic image of G, which is defined as the
relational structure 〈h(V ), {R′′

l}l∈L〉 such that R′′
l = {(h(u), h(v)) | (u, v) ∈

Rl}. Note that h(G) is a subgraph of G′. Specifically, the homomorphic image
h(G) consists of only those vertices and edges in G′ to which vertices and edges
of G are mapped. Obviously, G→ h(G) via h. The following proposition relates
workflow satisfiability and homomorphism.

Proposition 1. A workflow specification W is satisfiable in protection state G
iff there exists a task network in TN (W) that is homomorphic to G.

The proposition is simply a corollary of (a) the definition of valid complete
workflow instances as well as (b) the observation that a workflow is satisfiable
iff it is satisfiable via a minimal task network (i.e., a member of TN (W)).
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Deciding if one graph (or relational structure in general) is homomorphic to
another is known to be NP-complete [17]. Thus workflow satisfiability for ReBAC
is NP-hard even if the constraint expression is conjunctive. Moreover, the general
problem is NP-complete since a nondeterministic Turing Machine can decide a
problem instance in two steps: (i) guess a satisfying truth assignment for the
constraint expression and a homomorphic mapping from the corresponding task
network to the social network; (ii) verify the guesses (which takes polynomial
time). This lower bound is not a new result [6]. The purpose here is to establish
the connection between workflow satisfiability and graph homomorphism.

5 Workflow Feasibility

Workflow satisfiability assesses availability against the current protection state.
We examine an alternative way of evaluation in this section by determining
availability in the presence of state changes. We ask, is the workflow specification
reasonably formulated, such that it can be instantiated in some protection state
(among all possible states in the state space)? If yes, we say that the workflow
specification is feasible. As relationships change over time, a workflow that is
unsatisfiable in one protection state can become satisfiable after a period of time.
So the lack of availability in the current state does not necessarily mean that the
permissions encapsulated in the workflow can not be made available ever. That
is why we need to assess feasibility.

Not every possible social network is in the state space. Generally there are
some topological restrictions governing the articulation of relationships in the so-
cial networks of a given business domain. These restrictions render some states
(i.e., social networks) illegitimate. Social networks containing such an inconsis-
tency do not belong to the state space. So, the definition of feasibility considers
satisfiability with respect to a well-defined family of legitimate social networks.
As we shall see, such a family is specified in terms of what we call a graph
predicate.

Example 2. The following are examples of topological restrictions.

1. Antitransitivity . Consider a relational structure describing the relation-
ships among manufacturers, distributors and retailers. Suppose that there is
a single relation supply, which relates a supplier to a consumer. A manufac-
turer shall not compete with its distributors. So we demand supply to be an
antitransitive relation. That is, there shall not be x, y and z for which x
supplies goods to y, y supplies goods to z, but x also supplies goods directly
to z.

2. Acyclicity . Suppose the supervise relation relates a supervisor to a person
under her supervision. We expect this relation to be acyclic. That is, the
social network induced by this relation shall not contain a directed cycle.

3. Bipartiteness. Say the vertices of a social network are firms. To prevent
conflicts of interests, the firms that any firm deals with shall not deal with
one another. To ensure this, the deals-with relation shall form a bipartite
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graph (assuming deals-with is symmetric). A bipartite graph is a graph in
which vertices can be divided into two disjoint partitions, such that no two
vertices in the same partition are adjacent.

5.1 Graph Predicates

A graph predicate is a boolean function P with type G(N) → {0, 1}, where N is
the set of natural numbers. That is, given a relational structure G with vertices
labelled by natural numbers, the predicate P (G) returns a boolean value. In the
following, we consider only graph predicates that are topology based [24]: i.e.
G ∼= G′ implies P (G) = P (G′). A topology-based graph predicate ignores vertex
labelling. As vertex labelling is not important, we overload our notation such
that graph predicates can be applied to either social networks or task networks.
The negation of a graph predicate P , denoted by ¬P , is the graph predicate
defined such that (¬P )(G) = 1 iff P (G) = 0.

5.2 Families of Social Networks

The family of relational structures induced by a graph predicate P is defined as
follows: GP (X) = {G ∈ G(X) | P (G) = 1}. Intuitively, GP (X) is the set of all
relational structures from G(X) that satisfy the graph predicate P . When the
state space is defined in this way, the graph predicate is called a characteristic
predicate of the state space. Similarly, a family of relational structures can also
be induced by a violation predicate (which is the negation of the character-
istic predicate) as G−

P (X) = {G ∈ G(X) | P (G) = 0}. Intuitively, a relational
structure is excluded from the family iff it satisfies the violation predicate. We
will make extensive use of violation predicates in the next section.

5.3 Workflow Feasibility Defined

A workflow specification W is said to be feasible for the family of social net-
works induced by a characteristic predicate P , iff there is a social network
G ∈ GP (U) such that W is satisfiable in G. We require P to be decidable in
the following definition of workflow feasibility as a decision problem.

WORKFLOW FEASIBILITY
Instance: Workflow specification W and decidable graph predicate P .
Question: Is W feasible for graph family GP (U)?

A problem instance can also be specified with a decidable violation predicate.
The reason is that the negation of a decidable graph predicate is also decidable.

Formulated in its full generality, workflow feasibility is recursively enumer-
able2. By placing further constraints on the choice of characteristic predicates,
workflow feasibility can be rendered decidable, a topic to which we now turn.

2 Feasible workflows can be enumerated as follows. Enumerate all pairs (W, G), where
W is a workflow specification and G ∈ G(U). For each pair, check that (i) P (G) and
(ii) W is satisfiable in G. Output W if both checks succeed.
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6 Feasibility via Refutation

While we have argued that feasibility is an important criterion of availability,
the feasibility of a given workflow is not known to be decidable in the general
case. In this section, we propose a refutation procedure to decide feasibil-
ity. We motivate our approach as follows. Under some special conditions to be
stated below, if a task network satisfies a violation predicate P , then every social
network that it is homomorphic to will also satisfy P . Therefore, if every task
network in TN (W) satisfies the violation predicate, then we can safely conclude
that the workflow is infeasible. The refutation procedure is summarized below:

To determine if W is feasible for G−
P (U), evaluate P (G) for every task

network G ∈ TN (W). If the test is positive in every case, then declare
W “infeasible”; otherwise declare W “maybe feasible”.

The procedure always terminates because there is only a finite number of truth
assignments and P is decidable. It is a refutation procedure because it employs
a violation predicate to detect if W is unsatisfiable for any member of G−

P (U).
The examples below show that the refutation procedure is not always sound.

Example 3. Here are two violation conditions that can cause refutation to make
unsound judgement.

1. Connectedness . Consider the (irreflexive, symmetric) colleague relation in
an organizational setting where it is an integrity requirement that the graph
induced by the colleague relation must be connected. It would be an unsound
decision by the refutation procedure to declare a task network infeasible when
two tasks are found to be disconnected, as the two tasks could be assigned
to users that are connected in the social network by other ways.

2. Quasi-reflexivity . Suppose clerk is a unary predicate over users, marking
off those users who are in the role of an administrative assistant. Suppose
further that we would like to impose clerk as a role-step authorization con-
straint. Sect. 3 suggests that we can do so by encoding clerk as a binary
relation. Such a relation must be quasi-reflexive (i.e., xRy implies x = y).
It would be an unsound decision by the refutation procedure to declare a
task network infeasible when two distinct tasks are found to be related by
the clerk relation, as the two tasks could be assigned to the same user.

Therefore, some special conditions must be met in order for refutation to be
sound. Sect. 6.1 specifies these conditions. Sect. 6.2 then considers the issue of
completeness : when the refutation procedure fails to declare that a workflow
specification W is infeasible, can we then conclude that W is feasible?

6.1 Soundness

A graph predicate P is invariant over homomorphism if, for every relational
structures G and H , P (G) and G→ H jointly imply P (H). Now we can express
the condition under which refutation is sound.
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Theorem 1 (Soundness). The refutation procedure is sound if the violation
predicate P is invariant over homomorphism.

The process of establishing that a violation predicate is invariant over homo-
morphism can be tedious. We therefore streamline this process by decomposing
invariance over homomorphism into two easily checkable conditions: (a) mono-
tonicity and (b) invariance over vertex contraction . We define these two
conditions in the sequel, and give examples of how they can be used for demon-
strating that a violation predicate is invariant over homomorphism.

Monotonicity. A graph predicate P is monotonic if, when P is evaluated to true
for a relational structure G, adding vertices and edges to G will not cause P to
be evaluated to false. Formally, a graph predicate P is monotonic iff, for every
relational structure G and H , G ⊆ H implies P (G) ⇒ P (H). In Example 3.1,
the violation predicate is not monotonic, causing refutation to become unsound.

Invariance over Vertex Contraction. Intuitively, vertex contraction is an
operation that merges two vertex in a relational structure. Formally, given a re-
lational structure G ∈ G(X) and two vertices u, v ∈ V , we denote by VC (G, u, v)
the graph G′ = 〈V ′, {R′

l}l∈L〉, where: V ′ = V (G) \ { v } and R′
l = {(hu,v(x),

hu,v(y)) | (x, y) ∈ Rl(G)}. Here, the function hu,v : V → V ′ is defined as fol-
lows: hu,v(x) = u if x = v, otherwise hu,v(x) = x. In summary, VC (G, u, v) is
obtained from G by “folding” v into u. All the edges previously joining v now
join u instead.

A graph predicate P is invariant over vertex contraction iff P (G) ⇒
P (VC (G, u, v)). Example 3.2 shows a violation predicate that is not invariant
over vertex contraction, thereby causing refutation to become unsound.

Invariance over Homomorphism. To show that a graph predicate P is
invariant over homomorphism, one could instead demonstrate that P is both
monotonic and invariant over vertex contraction.

Theorem 2. A graph predicate P is invariant over homomorphism iff it is both
monotonic and invariant over vertex contraction.

Proving invariance over homomorphism is usually tedious. Monotonicity, how-
ever, is usually quite trivial to establish. Similarly, invariance over vertex con-
traction is also quite manageable, as one only focuses on the effect of “merging”
a pair of vertices.

Example 4. Consider the violating predicates for the restrictions in Example 2.

1. Antitransitivity . The violation predicate detects if there exist vertices x,
y and z (not necessarily distinct), for which supply holds between x and y,
y and z, as well as x and z.

2. Acyclicity . The violation predicate returns true whenever the graph con-
tains a directed cycle.
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3. Bipartiteness. The violation predicate returns true whenever the graph
contains an odd-length cycle [25, Theorem 1.2].

These violation predicates are monotonic and invariant over vertex contraction.
In each case, violation corresponds to the presence of a specific graph structure,
and thus monotonicity follows immediately. The violation of antitransitivity is
invariant over vertex contraction: since the vertices x, y and z are not necessarily
distinct, merging two of them preserves violation. A similar argument applies to
the violation of acyclicity (resp. bipartiteness): contracting two vertices in a cycle
(resp. odd cycle) produces a shorter cycle (resp. a shorter cycle of odd length).

6.2 Completeness

When the refutation procedure declares a workflow to be “infeasible”, soundness
guarantees that the declaration must be correct. Another possible declaration is
“maybe feasible”. If the declaration of “maybe feasible” always implies that the
workflow is feasible, then we say that the refutation procedure is complete. In
a technical sense, the refutation procedure is complete.

Theorem 3 (Completeness). The refutation procedure is complete if the vi-
olation predicate P is invariant over homomorphism.

In practice, a violation predicate that precisely characterizes the state space may
be highly complex, and thus it needs not be invariant over homomorphism. A
pragmatic policy developer will be wise to use another predicate P ′ to approxi-
mate P , in such a way that (a) P ′(G) ⇒ P (G) for every G ∈ G(U), and (b) P ′

is invariant over homomorphism. In this case, the refutation procedure will be
sound but not complete, as ¬P ′(W) does not guarantee ¬P (W).

7 Using PDL for Violation Specification

This section examines the specification of violation predicates using a formal
specification language. We have two design objectives for this language. The first
objective concerns the appropriateness of the specified predicates. In order for
the refutation procedure to be sound, violation predicates shall be invariant over
homomorphism. We therefore demand the specification language to express only
graph predicates that are invariant over homomorphism. The second objective
concerns the efficiency of evaluating the specified predicates. We demand that the
specification language captures only polynomial-time checkable graph predicates.

To meet both objectives, we adopt a monotonic fragment of the Propositional
Dynamic Logic (PDL) [18] for specifying violation predicates. As we shall see,
our PDL-based specification language is invariant over homomorphism, and has
a polynomial-time model checking algorithm [26].

We have also introduced minor adaptations to the PDL for our purposes.
Specifically, we observe in Example 4 that many violation predicates detect the
presence of cyclic substructures. Our adaptation of PDL can be used for speci-
fying the existence of such substructures.
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7.1 Syntax and Semantics of PDL

We provide here a brief introduction to the syntax and semantics of the PDL
fragment on which our specification language is based.

Suppose there is a finite or countably infinite set Prop of propositional sym-
bols. The monotonic PDL fragment involves two types of constructs: formulas
and relations. The syntax of formulas (φ, ψ) and relations (α, β) are defined
inductively in the following:

α, β ::= l | −α | α ∪ β | α;β | α∗

φ, ψ ::= � | p | φ ∨ ψ | φ ∧ ψ | 〈α〉φ

where l ∈ L is a relation identifier, and p ∈ Prop is a propositional symbol.
Informally, relations are regular expressions with the relation identifiers as the
alphabet. Specifically, our regular expression language offers the following rela-
tion combinators: converse (−), alternation (∪), concatenation (;) and Kleene
star (∗). Lastly, formulas are modal logic formulas with relations as modalities.
Note that we only consider monotonic constructs in the language. Note also
that we do not include the “φ?” relation in PDL (originally for constructing
conditional relations). As we shall see, this last design decision has a significant
impact on the complexity of model checking.

The formulas and relations are interpreted over a relational structure G =
〈V, {Rl}l∈L〉 and a labelling function L : Prop → 2V . The labelling function
specifies for each propositional symbol the set of vertices for which the propo-
sitional symbol is true. Two interpretation functions μG and ρG,L respectively
provide the interpretations of relations and formulas (for the specific G and L).
Specifically, μG(α) ⊆ V × V is a binary relation over the vertex set of G. Simi-
larly, ρG,L(φ) ⊆ V identifies the set of vertices in G for which the formula φ is
satisfied. When the choice of G and L is clear, we simply write μ(α) and ρ(φ)
for brevity. The semantics of the language is defined as follows.

μ(l) = Rl ρ(�) = V

μ(−α) = μ(α)
−1

ρ(p) = L(p)

μ(α ∪ β) = μ(α) ∪ μ(β) ρ(φ ∨ ψ) = ρ(φ) ∪ ρ(ψ)
μ(α;β) = μ(α) ◦ μ(β) ρ(φ ∧ ψ) = ρ(φ) ∩ ρ(ψ)
μ(α∗) = μ(α)

∗
ρ(〈α〉φ) = {u ∈ V | ∃v ∈ ρ(φ) . (u, v) ∈ μ(α)}

In words, l is interpreted simply as the binary relation Rl in G. The converse
−α is interpreted as the inverse of the relation represented by α. Alternation
α ∪ β is interpreted as the union of the relations represented by α and β. The
concatenation α;β is the relational composition of the relations represented by
α and β. The Kleene star α∗ is interpreted as the reflexive transitive closure of
the relation represented by α. The constant formula � is satisfied by all vertices
in G. The propositional symbol p is satisfied by the vertices in L(p). Disjunction
and conjunction are interpreted as set union and intersection. The formula 〈α〉φ
is satisfied by those vertices with an α-neighbor that in turn satisfies φ.
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We write G,L, u |= φ whenever u ∈ ρG,L(φ). When this is the case, the graph
pattern specified by φ is satisfied in G at vertex u with labelling function L.

7.2 Specifying Violation Predicates with PDL

Without using propositional symbols (i.e., Prop = ∅), the above language al-
lows us to write formulas that represent path patterns (with � as the pattern
for the empty path). Recall we observe from Example 4 that many practical
violation predicates detect cyclic structures in the social network. We therefore
customize the monotonic PDL fragment above for representing cyclic structures.
Specifically, we adopt exactly one propositional symbol org, called the anchor .
That is, we set Prop = {org}. The anchor proposition org names the vertex from
which the search for cyclic pattern begins3. In this way, we can write formulas
that detect if the initial vertex is revisited, and thus a cycle is found. Formally,
let [org �→ u] denote the labelling function L : {org} → U for which L(org) = u.
Then the following checks if the cyclic structure specified by φ exists in G by
initiating the search from the vertex u.

G, [org �→ u], u |= φ

We write �φ� to denote the graph predicate that takes a graph G as argument
and returns true iff:

there exists u ∈ V (G) such that G, [org �→ u], u |= φ.

That is, �φ� searches for a vertex u ∈ V (G) at which φ is satisfied. The space of
protection states induced by φ is therefore G−

�φ�(U).

Example 5. The formulas below specify the violation predicates in Example 4.

1. Antitransitivity. Note the use of converse (−) in this example.

〈supply; supply;−supply〉org
2. Acyclicity. Note the use of Kleene star (∗) in this example.

〈supervise; supervise∗〉org
3. Bipartiteness. Let l be a shorthand for deals-with. Note the use of alterna-

tion (∪) in this example.

〈(l ∪ −l); ((l ∪ −l); (l ∪ −l))∗〉org
The following is a corollary of a well-known result [28, Chapter 2].

Theorem 4. For every formula φ in the above monotonic fragment of PDL,
�φ� is invariant over homomorphism.

Invariance is due to our choice of a monotonic fragment of PDL. Therefore,
specifying violation predicates with our PDL fragment preserves the soundness
of refutation.
3 A propositional symbol that names a specific vertex is called a nominal in hybrid
logic [27, 16].
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7.3 Model Checking

We show that evaluating a graph predicate �φ� takes polynomial time. This
involves testing the |= relation at every vertex of the graph argument. To this
end, we describe an adaptation of Lange’s PDL model checking algorithm [26].

Suppose G = 〈V, {Rl}l∈L〉. Let n = |V |. We represent a binary relation over
V as a boolean square matrix (i.e., an n × n matrix with boolean entries).
Specifically, μ(α) returns such a matrix. We also represent a subset of V by a
boolean column vector of size n. Specifically, ρ(φ) returns such a column vector.

With this data representation, μ can be evaluated inductively using matrix
operations. As the base case, μ(l) is simply the boolean matrix representation
of Rl. Now, μ(−α) involves transposing a matrix, and μ(α∪β) involves bitwise-
or. Both operations take O(n2) time. Next, μ(α;β) involves (boolean) matrix
multiplication, while μ(α∗) involves reflexive transitive closure. Both operations
are O(n3). In summary, O(n3) time is needed for each relation subexpression.

In a similar fashion, ρ can be evaluated inductively. The picture, however, is
sightly more complex. The evaluation of ρG,[org�→u] must be performed for every
u ∈ V . The first base case ρG,[org�→u](�) is a column vector with all entries set
to 1. The second base case ρG,[org�→u](org) is a column vector with a 1 in u’s row,
and 0 everywhere else. The evaluation of ρG,[org�→u](φ∨ψ) and ρG,[org�→u](φ∧ψ)
involve bitwise-or and bitwise-and respectively, both are O(n) operations. The
evaluation of ρG,[org�→u](〈α〉φ) involves the multiplication of the n × n matrix
μG(α) with the column vector ρG,[org �→u](φ), which is an O(n2) operation. In
summary, evaluating ρG,[org �→u](φ) for a single u ∈ V is an O(n2) operation.
Therefore, evaluating ρG,[org �→u](φ) for every u ∈ V takes O(n3) time.

Since the processing of each subexpression or subformula takes O(n3) time,
and there are all together |φ| subexpressions and subformulas, the evaluation of
�φ� takes O(|φ| × n3) time. Although a third-degree polynomial is involved, the
complexity is actually quite reasonable, as the refutation procedure evaluates
the violation predicate against task networks rather than social networks. While
the latter typically have an intimidating size, the former have a much more
manageable size. This same assumption regarding the small number of tasks in
a typical workflow has been used by other authors also [6].

Our design choice of not including the “φ?” construct from PDL pays dividend
in the time complexity of model checking. Had we included that construct, the
interpretation function μG would be parameterized not only by G, but also
the labelling function (as in μG,L). As a result, we would have to perform an
O(n3) operation for every relation subexpression and for every labelling function
[org �→ u], where u ∈ V . The final tally for the time complexity of model checking
would then be O(|φ| × n4) instead of our current O(|φ| × n3).

7.4 Complexity of Refutation

When the constraint expression is conjunctive, the minimal task network can be
readily constructed from the constraint expression, and thus refutation can be
conducted in polynomial time by applying the above model checking algorithm
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over the minimal constraint network. But with this restriction of expressive-
ness, certain constraints such as global cardinality constraints [4] and existential
constraints [8, 6] can not be expressed.

The following theorem asserts that refutation using PDL formulas is compu-
tationally hard for general constraint expressions.

Theorem 5. Given a workflow W and a PDL formula φ, deciding if �φ�(G) is
true for every task network G ∈ TN (W) is coNP-complete.

This result implies that workflow feasibility, of which refutation is a co-problem,
is NP-complete when the violation predicate is specified in PDL. Intuitively,
feasibility is hard in the general setting because it involves a search for a non-
violating task network among all task networks. In contrast, there is only one
minimal task network when the constraint expression is conjunctive, and it takes
only polynomial time to check if this minimal task network satisfies a graph
predicate that is specified in PDL.

8 Conclusion and Future Work

We introduced a workflow authorization model in the framework of ReBAC.
The model offers a fresh characterization of the workflow satisfiability prob-
lem in terms of graph homomorphism. Armed with this new understanding, we
studied a new decision problem called workflow feasibility, which is the dual of
workflow resiliency. A refutation procedure was proposed for deciding feasibility.
The refutation procedure was shown to be sound and complete if the space of
protection states can be characterized by a violation predicate that is invariant
over graph homomorphism. To facilitate verification, we proposed two verifi-
cation conditions that jointly imply invariance over homomorphism. We also
proposed the adoption of a monotonic fragment of PDL as a language for spec-
ifying the violation predicate. We showed that with this specification language
the time complexity of refutation is polynomial for conjunctive constraints, and
coNP-complete for general constraint expressions.

We highlight some possible extensions of this work. The monotonic fragment
of PDL used in this paper employs the anchor nominal org for detecting revisited
vertices. A possible extension of this feature involves the hybridization of the
monotonic fragment of PDL [27, 16]. This extension will allow us to capture
complex graph patterns while maintaining invariance over homomorphism. It is
unknown how this extension will impact the time complexity of model checking.

We pointed out that feasibility can be seen as the dual of resiliency. This
perspective generates a new form of resiliency problem, in which deformative
transitions do not remove users (as in [8, 6]), but instead remove relationships
(i.e., the social network is evolving). This problem has not been studied in ex-
isting literature. As user removal can be simulated via relationship removal (i.e.,
presence of users can be captured by a unary predicate present, which in turn
can be encoded using a binary relation), such a problem is a generalization of
Wang and Li’s notion of resiliency in [8, 6].
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Abstract. ASLan is the input language of the verification tools of the
AVANTSSAR platform, and an extension of the AVISPA Intermediate
Format IF. One of ASLan’s core features over IF is to integrate a tran-
sition system with Horn clauses that are evaluated at every state. This
allows for modeling many common situations in security such as the
interaction between the workflow of a system with its access control
policies.

While even the transition relation is undecidable for ASLan in gen-
eral, we show the security problem is decidable for a large and useful
fragment that we call TASLan, as long as we bound the number of steps
of honest participants. The restriction of TASLan is that all messages
and predicates must be in a certain sense unambiguous in their interpre-
tation, excluding “type-confusions” similar to some tagging results for
security protocols.

1 Introduction

It is well-understood how to automatically verify small security protocols that
consist of the exchange of a few messages. Less well understood is the automated
verification of complex distributed systems that we see today in practice, where
the logic of a component comprises more than a few message exchanges. An
example is a web server that maintains a database (e.g. of keys, of electronic
orders, or of electronic applications). This database may be accessed or modified
by different transactions the server can perform. These transactions themselves
may be embedded into a larger workflow of a company that runs the server, e.g.,
how employees of the company process requests posted by customers via the
server. Finally, there may be access control policies specifying who is allowed to
perform which actions or has access to certain information.

Modeling such complex systems requires an expressive specification language.
We consider in this paper the AVANTSSAR [2] Specification Language ASLan [4]
that was designed in exactly this spirit—to model complex systems like the ones
just sketched. At the core, an ASLan specification describes an infinite-state
transition system where every state is a set of (ground, first-order) predicates
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that express, for instance, the local state of honest agents (or uncorrupted com-
ponents), what messages are known to the intruder, the state of databases shared
by agents, or facts related to the security goals such as which messages are sup-
posed to be secret. The transition relation is expressed by set rewriting rules
(similar to multi-set rewriting [9], only the repetition of predicates does not
make a difference). Additionally, ASLan allows for negative conditions in rules.

A powerful feature of ASLan on top of this transition system is the specifi-
cation of Horn clauses over state predicates. These Horn clauses are evaluated
locally in every state and give rise to a set of implicit consequences. These con-
sequences are used in matching the next transition rule. For instance, we may
express a Horn theory that models access control rules such as “If file F belongs
to group G and A is a member of G then A has access to F .” or “If A is a deputy
of B, then A has all access rights that B has.” Membership in a group, or be-
ing a deputy are predicates that may change upon state transitions. The Horn
clauses thus allow us to formulate immediate consequences of a state, and after
each transition, they are automatically updated. Vice-versa, the Horn clauses
may themselves be used as conditions in a transition rule, e.g. A may perform a
certain action only in a state from which the necessary access rights can be de-
rived by the Horn clauses. More generally, the Horn theories allow for modeling
all kinds of internal computations, expressed as such immediate consequences.

Even though we have chosen here the particular language ASLan, we believe
that the concepts that we deal with are of general relevance for the modeling
of complex systems, in particular the immediate evaluation of consequences in
every state of a state transition system. (As an example, recall that the common
Dolev-Yao model of an intruder is represented as the least closure of the messages
that the intruder has seen under a set of deduction rules.)

The expressivity of ASLan however comes at a price for automated verifica-
tion: since first-order Horn clauses allow for logic programming, the transition
relation is in general undecidable. In fact it is common that specification lan-
guages give rise to undecidable problems, and the challenge is to find fragments
for which feasible decision procedures are possible.

Contributions. We first review the syntax and semantics of ASLan and make
some conceptual simplifications. We exclude at this point some features of ASLan
that are in our opinion less essential, but difficult to handle; we briefly discuss
how to (partially) support them in section 5.

Next, we define the fragment TASLan forbidding certain kinds of ambiguities
in the formats of messages and predicates. TASLan requires, that all messages are
annotated with an intended type such that all messages, and their non-variable
subterms, that occur in the specification have no unifier unless they have the
same intended type. We also extend this restrictions to other predicates. We then
show that a TASLan specification has an attack iff it has a well-typed attack,
so restriction to a typed model is no restriction for TASLan.1

1 For space reasons, we give here only proof sketches; the full proofs can be found in
the extended version [14].
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This result is in the spirit of several tagging results [11,7,1], and generalizes
them: we do not require a particular way to avoid ambiguities (such as tagging)
and do not limit ourselves to particular analysis technique (such as ProVerif);
and, most importantly, our result works for full TASLan, including non-atomic
keys, negative conditions (such as those needed for authentication), and the
additional Horn theories.

This result allows for a number of simplifications of the model, in particular
bounding the size of terms without restriction. We develop a decision procedure
for bounded-length TASLan: given a bound l, can we reach an attack state
in l steps or less? This procedure is generalizing the popular constraint-based
approach that we refer to as the lazy intruder [13,15,6]. In fact, this procedure
is part of our argument for the typing result on TASLan. For the theoretical
closure, we show that the problem whether an attack is reachable in at most l
steps for a TASLan specification is NEXPTIME complete.

Organization. In section 2 we review the ASLan syntax and semantics. In sec-
tion 3 we introduce a symbolic transition system that is the basis for the later
decision procedure. In section 4 we introduce the fragment TASLan and give the
decision procedure for bounded length traces. From this procedure we also derive
our typing result and conclude with the result on the complexity. In section 5
we briefly discuss aspects of ASLan that we have excluded. We conclude with a
discussion of related work in section 6.

2 ASLan

Syntax. Table 1 shows the syntax of ASLan (where we have left out some
features that are in our opinion less crucial, and support for which we discuss
in section 5). We use the following conventions: we introduce syntactic categories
by C ::=, where the symbol C represents our notation of elements of that cat-
egory. Each following line represents one alternative for that category. Further,
we write v for a vector v1, . . . , vn (where the lengths n of the vectors may be

0, and different vectors may have different lengths). Similarly, we write φ̂ for a
conjunction of the form φ1 ∧ . . . ∧ φn.

Example 1. To illustrate the concepts of ASLan, we give a toy example in Ta-
ble 2. Note that in this example we use a notational convention of ASLan that we
do not enforce in the treatment of this paper: constant, function and predicate
symbols are identifiers that start with a lower-case letter, while variable symbols
are all identifiers that start with an upper-case letter. In this example we specify
as Horn clauses the access control example from the introduction, together with
an initial state and two transition rules. The first transition rule is applicable
if A is a member of group G1 and A is not the deputy of anybody. Upon the
transition, we generate a fresh value of type gid—in the rule referred to by the
variable G2. Then A will be a member of G2 (actually the only member so far).
Also the left-hand side predicate mem(A,G1) will no longer hold. The second
rule is an example how attack states can be defined. Here, we derive an attack
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Table 1. Syntax of ASLan

D ::= Declarations
c : β Constant Symbol
X : τ Variable Symbol
f : τ Function Symbol
p : pred τ Predicate Symbol

τ ::= Types
β Basic type
f(τ ) Composed type
untyped Untyped

s, t ::= Terms
c Constant
X Variable
f(t) Composed Terms

P ::= Predicates
p(t)

F ::= Facts
P Predicate
t1 = t2 Equality
∃X : F Existential quantification

L ::= Literals
F Fact
¬F Negated Fact

S ::= States

P̂ Conjunction of predicates
R ::= Transition Rules

L̂ =[X ]⇒ S
H ::= Horn Clauses

∀X : S → P
P ::= ASLan Specification

(D, S,R,H)

whenever in a state an agent A has access to files F1 and F2 (note F1 = F2
is allowed) that belong to groups G1 and G2, respectively, where G1 �= G2 is
required; thus when A has a the same time access to files of different groups,
the specification has an attack. Note that the specification is infinite state as the
first transition rule can be applied any number of times. 
	

Type Declarations. The declarations section of an ASLan specification is
by default only an annotation of intentions of the modeler; we do not assume
that an intruder always sends well-typed messages, and our semantics will thus
be ignoring the type declarations by default. The declarations give a means
to statically type-check a specification (i.e., checking in the behavior of honest
agents the typing is consistent) and later are relevant for our typing result.

A particularity of our type system is that for functions we do not allow the
specification of a return type—the resulting type is always a composed type as
follows. If f is declared as a function symbol of type τ1, . . . , τn and t1 : τ1, . . . , tn :
τn are terms of the appropriate types, then f(t1, . . . , tn) : f(τ1, . . . , τn). Thus the
type of a term reflects its composition, and only atomic terms can be of an basic
type. The only way to escape this tight typing system is using the “type” untyped.
Let Γ be a mapping from all declared symbols to a type. We require that every
symbol that occurs in the specification has a unique type-definition. We define
a general type judgment relation t : τ (read: t is of type τ) as follows:

s : τ Γ (s) = τ
t1 : τ1 . . . tn : τn

f(t1, . . . , tn) : f(τ1, . . . , τn)
Γ (f) = (τ1, . . . , τn)

s : τ
s : untyped

t1 : τ1 . . . tn : τn
p(t1, . . . , tn) : p(τ1, . . . , τn)

Γ (p) = (τ1, . . . , τn)



Deciding Security for a Fragment of ASLan 131

Table 2. Toy example of an ASLan specification

Declarations:
mem : pred (agent, gid) own : pred (gid, fid)
deputy : pred (agent, agent) xs : pred (agent, fid)
attack : pred () A,B, a, b : agent
G,G1, G2, g1, g2 : gid F, F1, F2, f1, f2 : fid

Initial State:
mem(a, g1) ∧mem(b, g2) ∧ own(g1, f1) ∧ own(g2, f2)

Transition Rules:
mem(A,G1) ∧ ¬∃B : deputy(A,B) =[G2]⇒ mem(A,G2)
xs(A,F1) ∧ xs(A,F2) ∧ own(A,G1) ∧ own(A,G2) ∧G1 �= G2 ⇒ attack()

Horn clauses:
mem(A,G) ∧ own(G, F ) → xs(A,F )
deputy(A,B) ∧ xs(B,F ) → xs(A,F )

We require that all terms and predicates in the specification have a type ac-
cording to this specifications, and for equation t1 = t2, t1 and t2 have a type in
common.

2.1 Further Context Sensitive Properties

We give further conditions about ASLan specifications that are not definable
by a context-free grammar. Let fv(t) denote the free variables of t (for terms,
predicates, facts, states). Let Pos(L̂) denote the positive facts in a conjunction
L̂ of literals.

– For a rule L̂ =[X]⇒ S we require that fv (L̂) � X ⊇ fv(S). Moreover,
fv (Pos(L̂)) = fv (L̂).

– For a Horn clause H = ∀X : S → P , we require fv(H) = ∅ and fv(P ) ⊆
fv (S).

– The initial state is ground. Together with the previous two conditions, all
reachable states are ground (except in the symbolic approach we define later).

– There are two distinguished predicate symbols ik (for intruder knowledge)
and attack with Γ (ik) = (untyped) and Γ (attack) = (). Both symbols are
persistent : they never get deleted on transitions.

– We call a non-persistent predicate explicit if it occurs on the right-hand
side of a transition rule and implicit if it occurs on the right-hand side of
a Horn clause. All predicate symbols except ik and attack must be either
explicit or implicit. Denote with PosE (L̂) the positive explicit predicates of
a rule and with PosI (L̂) both the positive implicit and the positive persistent
predicates.

– Horn clauses in which ik occurs can only have one of the following two forms:
• Generate: ∀X1, . . . , Xn : ik(X1) ∧ . . . ∧ ik(Xn) → ik(f(X1, . . . , Xn))
• Analyze: ∀X : ik(t) ∧ ik(t1) ∧ . . . ∧ ik(tn) → ik(s) where s and the ti are
proper subterms of t.
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– Implicit and persistent predicates (see Section 2.1) cannot occur negatively
in the specification.

2.2 Semantics

Model Relation. An interpretation I maps from all variables to ground terms.
φ,ψ range over all logical constructions above. We define a relation I, S |= φ
that says whether a pair of an interpretation I and a state S is a model of the
formula φ:

I, S |= P iff I(P ) ∈ I(S)
I, S |= t1 = t2 iff I(t1) = I(t2)
I, S |= φ ∧ ψ iff I, S |= φ and I, S |= ψ
I, S |= ¬φ iff I, S �|= φ
I, S |= ∃X.φ iff exists ground t : I[X �→ t], S |= φ

We also say φ is satisfiable iff it has a model. Other constructs are defined as
syntactic sugar as standard, e.g. ∀X : φ as ¬∃X : ¬φ. For a statement I, S |= φ
we may omit I if φ is closed (i.e. fv(φ) = ∅), and we may omit S if φ does not
contain predicates.

As standard, define φ |= ψ if all models of φ are also models of ψ; and φ |=|ψ
if both φ |= ψ and ψ |= φ.

Least Herbrand Models. For the semantics of transition rules, we need to define
the least closure of a state under the Horn clauses. Let Ĥ be the conjunction
of the Horn clauses of a given ASLan specification. This induces the following
closure operation on states: for any ground state S, HC (S) is the least set
S′ ⊇ S such that: P ∈ S′ if Ĥ ∧ S′ |= P. Note that here and in the following,
we treat a conjunction S = P1 ∧ . . .∧Pn of predicates also as a set of predicates
S = {P1, . . . , Pn}.

With our definition of the |= relation and the least Horn closure we have chosen
one interpretation of first-order terms that are often referred to as free models
or least Herbrand models, which are the semantical basis for logic programming
languages like Prolog. In particular, all terms are interpreted in the Herbrand
universe (which is here the free algebra) and, in a given state S, all predicate
symbols are interpreted by the least relations that are consistent with the Horn
clauses and S. This relation is uniquely defined for Horn clauses.

Transition Relation. Define S ⇒ S′ if there is a rule L̂ =[X]⇒ SR and in-
terpretation I such that I,HC (S) |= L̂ and I(X) are fresh constants and
S′ = S \ I(PosE (L̂)) ∪ I(SR).

Several notes are in order. The implicit consequencesHC (S)\S of a state S are
never “explicified”, i.e. they are not carried over to S′. Recall that PosE (·) does
not include the persistent predicates, so all persistent predicates of S are still
contained in S′. Further, this definition does not care about type specifications.
As a consequence of the ASLan conditions, all reachable states {S | S0 ⇒∗ S}
(for initial state S0 of the specification) are ground.
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Example 2. In the specification of Table 2, the Horn closure of the initial state
contains xs(a, f1 ) ∧ xs(b, f2 ). If we take the first transition rule form the initial
state for A = a, this removes the predicate mem(a, f1 ) and thus the Horn closure
of that state no longer contains xs(a, f1 ). So in each state, the Horn closure is
computed anew; all consequences that are no longer derivable simply vanish. 
	

A state is called an attack state if S |= attack. A specification is called secure if
it has no reachable attack state.

Security in ASLan (and even just the transition relation S ⇒ S′) is un-
decidable, since the Horn clauses (using untyped arguments) capture logical
programming. It is still semi-decidable, because we do not allow negated im-
plicit predicates in transition rules.

Definition 1 (Typed Model). We say I is a well-typed interpretation if
I(X) : Γ (X) for all variables X. We define a typed model of an ASLan spec-
ification as a variant of the above semantics where all notions are restricted to
well-typed interpretations.

In other words, our default semantics ignores all type information (because an
intruder in reality is always able to send ill-typed terms) but we can choose
to restrict the interpretation to well-typed terms. We show below that for all
TASLan specifications it holds that, if an attack exists, then also an attack in
the typed model exists. Thus in TASLan, the restriction to a typed model is
sound.

3 A Symbolic Representation

We now introduce a symbolic representation of the infinite transition system that
will pave the way for an effective decision procedure for the TASLan fragment
when bounding the length of traces.

Symbolic States. A symbolic state is generalization of a normal state, which may
contain variables and constraints. We define its syntax as follows:

φ ::= Symbolic state
P Predicate
S � P Deduction constraint
¬∃X : s1 = t1 ∧ . . . ∧ sn = tn Negated substitution
X = t Substitution
φ ∧ ψ Conjunction

We conservatively extend the model relation w.r.t. the Horn theory Ĥ of the
specification (note this case does not depend on a state S):

I, S |= S0 � P iff I(S0) ∧ Ĥ |= I(P )

Thus, the constraint S0 � P is true in all those interpretation in which the
predicate P can be derived from the predicates in S0 by the Horn theory Ĥ .
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This is a generalization of the lazy intruder technique [13,15,6] where these
constraints are limited to messages in the intruder knowledge.

Thus, by the relation I, S |= φ, symbolic states have a semantics as represent-
ing a set of ground states (and related interpretations). Usually, this set will be
infinite, but is may also be finite or even empty. We say that a symbolic state
is satisfiable if it has a model. For ASLan this satisfiability is not decidable in
general (because the Horn clauses allow for logic programming).

Symbolic Transition Relation. To define a transition relation, let us first make
two simplifications to transition rules. Without changing the semantics of a rule,
we can remove all existential quantifiers in positive facts of a transition rule, if
we just ensure by renaming that it does not occur freely in the rule. Moreover
we can get rid of positive equations of the form s = t as follows: compute the
most general unifier σ of s and t and apply σ to the entire rule as expected.

We also use the following notations. For a rule R let α(R) denote a renaming
of all variable symbols in R with fresh variable symbols (that do not occur
previously). This is necessary in the symbolic model to keep variables of different
rule applications apart. Moreover for a substitution σ = [X1 �→ t1, . . . , Xn �→ tn]
where the Xi are disjoint from the variables in ti, let [σ] be the logical formula
X1 = t1 ∧ . . . ∧Xn = tn describing σ.

We define the symbolic transition relation (with a long arrow as compared to
the ground transition relation) as follows: φ =⇒ ψ iff there is a transition rule
R with α(R) = L̂ =[X]⇒ S, and a substitution σ such that all the following
conditions hold:

– σ is a most general substitution such that σ(PosE (L)) ⊆ σ(PosE (φ)). (Note
that in contrast to term unification, for subset unification we get finitely
many most general unifiers that are pairwise incomparable.)

– Extend σ such that the variables of X (that are freshly created in the tran-
sition) are replaced by fresh constants.

– For every implicit predicate P ∈ PosI (L) let χP = Pos(σ(φ)) � σ(P ); denote
with χ̂ their conjunction.

– Let Φ be the least conjunction of negated substitutions such that
• for every negative fact ¬∃X : P of σ(L̂) and every positive fact P ′ of
σ(φ), if τ is the most general unifier of P and P ′, then (¬∃X .[τ ]) ∈ Φ.

• every negative equation of σ(φ) is also contained in Φ.
– ψ = σ(φ) \ σ(PosE (L)) ∧ σ(S) ∧ Φ ∧ χ̂ ∧ [σ].

Example 3. Extending our toy example from Table 2, we model that our system
can process signed commands from an administrator (who would be modeled
using similar rules). In this simplistic example we omit replay and eavesdropping
protections:

admin(A,K ) ∧ ik(sign(K , [add ,A,B ,G]4 )) ∧ A �= B ∧ ¬mem(A,G)

⇒ mem(B ,G) (1)
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Suppose here admin(A,K) expresses that A is an administrator who can issue
commands with private signature keyK. The command in this example is to add
an agent B to group G and has the format [add,A,B,G]4 where [·]4 represents a
4-tuple and add is a tag/command name. We discuss this way of modeling plain-
text structures in Section 4.1. The rule excludes both that A can add her/himself
to a group and that A can add somebody to a group he/she belongs to.

Consider now that the intruder is one of the system administrators; then he
can form any kind of commands himself and send them to the service—this
choice of commands is infinite. Rules with ik(·) on the left-hand side often give
rise to an infinite ground state space, and even with typing restrictions to a very
large space. In contrast, the symbolic transition system has only one successor
state per rule application. Consider for instance the state:

φ =admin(i, ki) ∧mem(a, g1) ∧mem(i, adm)∧
ik(ki) ∧ ik(a) ∧ ik(b) ∧ ik(i) ∧ ik(g1) ∧ ik(g2) ∧ ik(adm)

We can apply the symbolic transition relation for rule (1) under the unifier
σ = [A �→ i,K �→ ki] to match the positive explicit fact admin(A,K) (in general
the rule variables have to be renamed in order to avoid collisions with variables
in the given state, but here we started with a ground state). From the ik(·) fact of
the rule, we obtain the constraint φ � ik(sign(ki, [add, a,B,G]4)). Note that the
rule variables B and G remain uninstantiated. From the negative conditions of
the rule we obtain the constraints a �= B∧G �= adm. The symbolic successor state
consists of σ(φ) together with the noted constraints and the (uninstantiated)
right-hand side fact mem(B,G). This single symbolic state comprises all the
infinitely many choices of the intruder (any messages for B and G that satisfy
the constraints). This includes choices where B is not an agent name and G
is not a group name, but as we later show, such ill-typed solutions are never
interesting for the intruder when the specification satisfies the type-unambiguity
rules of TASLan. 
	

The following lemma shows that the symbolic transition system is a correct
representation of the ground transition system:

Lemma 1. Let [[φ]] = {S | ∃I : I, S |= φ}. Then for all symbolic states φ:

{S′ | ∃ψ : φ =⇒ ψ ∧ S′ ∈ [[ψ]]} = {S′ | ∃S : S ∈ [[φ]] ∧ S ⇒ S′} .

As a consequence, a satisfiable symbolic state that contains the predicate attack
is reachable using =⇒ from initial state S0 in l steps iff a ground attack state is
reachable using ⇒ from S0 in l steps.

The proof in [14] shows that every construction in the symbolic transition rela-
tion has a counter-part in the ground definition.

We now distinguish several kinds of constraints in a symbolic state and we
tackle each of them in isolation and before we look at their interaction:

– Intruder deduction constraints S � P where P and all predicates in S are of
the form ik(t) for some term t.
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– Other deduction constraints S � P where no predicate is of the form ik(t).
– Negated substitutions ¬∃X : s1 = t1 ∧ . . . ∧ sn = tn.

– Substitutions X = t. Our constructions will ensure that the variable X does
not occur elsewhere, and this kind of (always satisfiable constraint) is just to
remember partial solutions, i.e. all models of the containing symbolic state
must satisfy I(X) = I(t).

The satisfiability of negative equalities is straightforward to check: for L = ¬∃X :
s1 = t1∧ . . .∧ sn = tn check the unification problem τ((s1, t1), . . . , (sn, tn)) for a
substitution τ that replaces all free variables L (i.e. those that are not quantified
in X) with fresh constants (of the appropriate type). There is a unifier iff L is
unsatisfiable.

We show below that satisfiability of intruder deduction constraints is also
decidable, slightly extending known results. However, satisfiability of other con-
straints is not decidable for ASLan in general, since we can use Horn clauses for
logic programming.

4 Type Ambiguity-Free Specifications

We now introduce a fragment of ASLan, called TASLan: basically the format
of messages (and predicates) must be different whenever their intended type is
different. We show that security is decidable for TASLan if the length of traces
is bounded; more precisely, this problem is NEXPTIME complete. Note that
the restriction in TASLan is not a typed model directly, but rather a general-
ization of the tagging principle; however we do not prescribe a particular way of
disambiguating messages. We show—as a side result of our decision procedure
for bounded-length TASLan—that a typed model is sound (even without any
bounds on the length of traces).

We proceed as follows. We first introduce the fragment TASLan, and then
show that for symbolic states in TASLan, we can decide the satisfiability of
all constraints. This gives an effective procedure for bounded-length traces. Fi-
nally we give the typing result (that the typed model is “relatively sound” for
TASLan), and show how this can be used for different kinds of automatic veri-
fication methods other than our symbolic method.

Definition 2. TASLan is the fragment of ASLan specifications with the follow-
ing additional requirements/modifications:

– Every predicate except ik has a type in which untyped does not occur.

– For every predicate ik(t) in the transition rules, t is non-atomic and has a
type in which untyped does not occur.

– Let SMP be the non-atomic subterms of all terms t that occur in a predicate
ik(t) in the transition rules, α-renamed so that two distinct elements of SMP
have no variables in common. Whenever there is a unifier for two t1, t2 ∈
SMP, then t1 and t2 must have the same type.
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We also assume that the intruder can always generate fresh elements of any
type in any state, so that for instance the constraint ik(X) ∧ ik(Y ) ∧X �= Y is
always satisfiable. While it is natural to “grant” this to the intruder, it is tricky
to formulate this, because we actually need transition rules to freshly generate
new intruder constants. We silently assume such rules, and note that our lazy
treatment of constraints below gives this property for free: a constraint like the
above is simply considered as a solved form (without making actual transitions
for creating two concrete values for X and Y ).

4.1 How Restrictive Is TASLan?

As indicated in the add command in Example 3 (which of course falls into
the TASLan fragment), we model concatenation by the family [·]n of n-tuple
operators (for n > 1). This model abstracts from several implementation details,
such as field lengths or special tags that mark the beginning and end of fields—
we simply assume that the implementation has a unique way to decompose
every acceptable message into its components. This is a reasonable requirement
to the implementation that excludes many low-level attacks. Tags like add in
the example then are an easy way to disambiguate messages. (Alternatively, one
can instead introduce new functions, e.g. add(A,B,G) in example, and give the
intruder rules for composing/decomposing them.)

Basically, we thus see every kind of plaintext message like a paper form that
has a well-defined set of fields. Many ASLan specifications are already written
in this style—independent of our work. With this “form approach”, almost all
specifications meet the requirements of TASLan. This is because we exclude with
a single tag any confusions between different forms that carry similar information
but with different meaning.

Many ASLan specifications, and even more protocols, do not use this regime
and thus do not immediately fall into the TASLan fragment. To use the most
cited example, the encrypted content of the first two messages of NSPK—the
pairs NA,A and NA,NB—already violate our requirements because NA and
NB are random numbers while A is an agent name. (In fact, this ambiguity
gives rise to a type-flaw attack [12].) Our approach would be to identify the
ambiguities and resolve them; the messages may then be [nspk1 ,NA,A]3 and
[nspk2 ,NA,NB ]3 for instance, and this variant falls into the TASLan fragment.

We propose that in this way every protocol can be transformed into a reason-
able TASLan model, but in doing so one may exclude some potential low-level
type-flaw or parsing attacks. However the transformation process gives clear
indications where problems could arise and what we require from the imple-
mentation. Thus one could say that TASLan requires, and exploits, what good
engineering practice demands in the first place.

4.2 Symbolic Horn Closure

Let Ĥ be the conjunction of Horn clauses without intruder deduction (which we
handle separately). We want to consider the Horn closure under Ĥ for symbolic
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states. In general, this closure is infinite in ASLan (due to instantiation of vari-
ables), but we will show it is finite in TASLan. For that, we define the following
evaluation relation over symbolic states:

Definition 3. Let Ĥ be the conjunction of Horn clauses without intruder de-
duction. φ ↪→ ψ1 ∨ ψ2 if there is a Horn clause HR ∈ Ĥ such that

– α(HR) = ∀X̂ : S → P for a renaming α of variables in HR,
– S unifies with a subset of Pos(φ) under the most general unifier σ,
– ψ1 = σ(φ ∧ P ) and ψ2 = ¬[σ],
– σ(P ) /∈ φ (so the predicate is indeed newly derived)
– The negative equation constraints in ψ1 are satisfiable.

We extend ↪→ to a relation on disjunctions of symbolic states as expected. We
say φ1 ∨ . . . ∨ φn is a normal form (for Horn theory Ĥ) if it has no successor
modulo ↪→.

The ↪→ can be understood as follows: at every reduction step we check whether
a new predicate (that is not yet present in φ) is derivable in one step under a
substitution σ. Note that we are not forced to take the substitution σ, because
this only represents a subset of the ground states represented by φ in which the
new predicate σ(S) is derivable. All the other states are represented by ¬[σ] (and
in those, σ(S) is in general not derivable). Thus each ↪→ step makes a case split
into states that satisfy σ and those that do not. In order to have a notion of
normal form without enforcing any substitution σ, we have the condition that
requires that the negative equalities in φ1 are satisfiable: if we have entered a
case with ¬[σ], then we cannot actually apply σ to that symbolic state anymore.

Example 4. Consider the Horn clauses from Table 2 and the following symbolic
state (which can occur in a specification with more transition rules):

φ = mem(a, g1 ) ∧ own(g1 , f1 ) ∧mem(A2 ,G2 ) ∧ own(g2 , f2 ) ∧ deputy(a,A3 )

Note that here for instance G2 is a variable, and g2 a constant. One possible
derivation with ↪→ is as follows:

φ↪→ (φ ∧ xs(a, f1 )︸ ︷︷ ︸
φ1

) ∨ (φ ∧ false)

φ1↪→ (φ1 [G2 �→ g1 ] ∧ xs(A2 , f1 )︸ ︷︷ ︸
φ2

) ∨ (φ1 ∧G2 �= g1︸ ︷︷ ︸
φ3

)

φ3↪→ (φ3 [G2 �→ g2 ] ∧ xs(A2 , f2 )︸ ︷︷ ︸
φ4

) ∨ (φ3 ∧G2 �= g2︸ ︷︷ ︸
φ5

)

φ4↪→ (φ4 [A2 �→ A3 ] ∧ xs(a, f2 )) ∨ (φ4 ∧A2 �= A3 )︸ ︷︷ ︸
φ6
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We thus have φ ↪→∗ φ2 ∨ φ5 ∨ φ6 which is a normal form—for instance if we try
in φ2 to apply the second Horn clause (under A2 = a or under A2 = A3 ) we
get only the already present fact xs(a, f1 ). 
	

Lemma 2. ↪→ is convergent modulo |=| for TASLan, while for ASLan in general
it is not terminating (but confluent).

Proof sketch. (Full proof in [14]) Confluence is immediate because φ ↪→ ψ implies
φ |=|ψ. Termination for TASLan follows from the fact that unification between
predicates cannot introduced ill-typed substitutions, and thus the set of derivable
symbolic predicates (modulo renaming) is finite.

Combining the previous results (for the detailed proof see [14]), we get:

Lemma 3. Satisfiability of symbolic states φ of TASLan without considering
intruder deduction constraints is decidable.

The proof in fact gives us a procedure to obtain from φ an equivalent disjunction
ψ1 ∨ . . . ∨ ψn of symbolic states where all S � P constraints (except intruder
deduction) are eliminated and the remaining inequalities constraints are all
satisfiable.

4.3 Lazy Intruder Constraint Reduction

We now turn to checking the satisfiability of intruder constraints of the form
S � P where all predicates of S and P are of the form ik(t). An important
property for the lazy intruder deduction is that they are well-formed:

Definition 4. A conjunction of intruder deduction constraints is called well-
formed if we can order them as S1 � P1 ∧ . . . ∧ Sn � Pn such that

– Si+1 =⇒ Si for 0 ≤ i < n, i.e. the intruder knowledge grows monotonically.
– fv (Si) ⊆

⋃
0≤j<i fv(Pj), i.e. all variables in the constraints first occur from

a message the intruder generated.

We call an intruder constraint S � ik(t) simple if t is a variable. A simple
constraint is always satisfiable (because the intruder can generate fresh terms of
any type as discussed before).

In a symbolic state that is reachable from a ground initial state, we order the
constraints in the order they have been created. The intruder knowledge grows
monotonically because ik(·) is persistent. The condition on variable occurrence
however does not hold for reachable symbolic states in general: variables may
as well be “introduced” by other (non-intruder) constraints of the form S � P .
However, after performing the symbolic Horn closure, these constraints are all
gone, and the respective variables can be substituted by terms that can only
contain variables that occur elsewhere in the state—i.e. introduced by intruder
constraints.
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Theorem 1 (Adaption of [15]). Satisfiability of well-formed intruder deduc-
tion constraints is NP-complete. Moreover, there is a procedure that transforms
a well-formed φ into a finite disjunction of well-formed intruder deduction con-
straints ψ1 ∨ . . . ∨ ψn |=|φ (n ≥ 0) such that every ψi is simple.

Proof sketch. (Full proof in [14]) The proof follows the standard lazy intruder
idea, using a calculus of rules of the form “if φ is satisfiable then also ψ is”.
This set of rules is shown sound, complete, and terminating. The length of de-
ductions is polynomial, so a non-deterministic machine can decide satisfiability
in polynomial time. Vice-versa we can encode satisfiability of Boolean formulae
into intruder deduction constraints.

Together we now have:

Lemma 4. Satisfiability is decidable for reachable symbolic states of TASLan
specifications, and thus whether an attack state is reachable in l steps or less.

4.4 Organizing Search

With this, we have generalized the symbolic, constraint-based decision pro-
cedures for bounded-length verification—the lazy intruder—to support Horn
clauses. There are now several choices how to coordinate the different aspects
of constraint reduction. When solving the constraints of a symbolic state φ, we
usually get into a finite case split ψ1 ∨ . . .∨ψn of symbolic states where each ψi

has only constraints in a solved form. If n = 0 we know that φ is unsatisfiable
and can be discarded from the search. When constructing the successor states of
φ we can either continue with φ or compute the successor states of each of the
ψi. It is in general unclear which is preferable: continuing on φ requires that we
repeat a lot of constraint reduction work in the successor states, while continuing
on ψi can mean a large case split into similar cases. Our current prototype is
based on the ψi expansion, but we see room for optimization in finding a middle
ground between the two extremes: sometimes being more lazy and leaving some
choices open once we have established that there exists at least one solution.

4.5 Typed Model for TASLan

It is crucial that all results so far do not require the restriction to a typed
model (Definition 1), but merely exploit the fact that TASLan requires distinct
formats for messages of distinct types (Definition 2). We now use these results,
in particular Theorem 1, to show that the restriction to a typed model comes
without loss of attacks for TASLan specifications:

Lemma 5. If there is an attack against a TASLan specification, then there is
an attack in the typed model, i.e. where every variable of transition and Horn
rules is instantiated with a term of the desired type.

Proof sketch. (Full proof in [14]) We inspect all parts of the satisfiability check
for symbolic states that introduce substitutions of variables, and show that they
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cannot induce ill-typed substitutions. In particular for intruder deduction con-
straints, we have only a substitution when unifying a term s is the intruder
knowledge with a term t he needs to generate. This unification is only applied
when neither s nor t are variables; by the condition of TASLan, non-variable
subterms s and t of message can only have a unifier if they have the same type.

Theorem 2 (Completely typed model is no restriction). Every TASLan
specification S can effectively be transformed into a specification S ′ such that

– In S ′ also the variables in intruder rules are typed.

– S has an attack iff S ′ has an attack (and the same holds when bounding
traces to length l or less).

– |S ′| is polynomial in the size of S.

Proof. Instantiate all intruder rules with types that can ever occur when honest
agents are sending and receiving. 
	

There is another way to see this: since every variable now has a completely deter-
mined type, we can turn this into a problem without function symbols: consider
a predicate p(t) for t : f(τ), then we could replace this with a predicate pf (t

′) for
t′ : τ . This is because even if t is a variable, the typed model dictates it can only
be instantiated with a term of the form f(t′) for t′ : τ , i.e. we can equivalently
replace t with f(x) where x : τ is a new variable. Applying this to the whole
specification, we obtain a specification without function symbols. However note
that we hereby replace ik(·) with a family of predicates that represent intruder
knowledge of certain functions—and they must be treated accordingly as per-
sistent predicates that are allowed on the right-hand side of both Horn clauses
and transition rules. This reflects that with the typed model we essentially turn
the logic programming problem of the Horn clauses into a Datalog problem [5].

We now prove NEXPTIME completeness of TASLan insecurity when we are
given a bounded length of traces (“bounded number of sessions” in the security
protocol parlance):

Theorem 3. The following problem is NEXPTIME-complete: Given a bound
l ∈ N, and a TASLan specification S, is an attack state reachable in l state
transitions or less? Here the problem size N is the length in bits of the description
of S and l together (thus l ≤ 2N).

Proof sketch. (Full proof in [14]) We can bound the size of the universe U of
predicates that can be constructed (using the fresh constants generated in the
l transitions) by |U | = 2poly(N) for poly(N) some polynomial of N . (The state
space being bounded by 2|U|.) The Horn closure is in O(|U |) and we can thus
have a machine non-deterministically generate each trace of length up to l in time
O(l · |U |) and accepting if that trace contains attack. This shows containment in
NEXPTIME. Vice-versa we can give a polynomial encoding of an NEXPTIME-
complete Tiling problem into TASLan for bounded steps.
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5 Towards a Full ASLan

We have so far neglected some features of the original ASLan that seem less
central to us. Here we briefly discuss how to (partially) support these features
as well.

“Wildcard” Horn Clauses For Horn clauses ∀X : S → P we had previously re-
quired fv (P ) ⊆ fv (S) (and fv(S) ⊆ X) so the right-hand side cannot introduce
new variables. Thus prevents clauses like ∀X :→ p(X,X). Dropping this restric-
tion causes a slight problem for the symbolic approach, because this may lead to
non-termination of Horn closure (since this introduces new variables). Further
this can destroy the well-formedness condition for the symbolic intruder deduc-
tion (because the new variables are not depending on a choice of the intruder).
This limitation can be overcome with a special predicate isBeta(·) for new vari-
ables of type β. An example is found in the proof of NEXPTIME-hardness
in Theorem 3.

Subtypes. The original ASLan allows the declaration of subtypes, e.g. honest as
a subtype of agent. Such an example could be modeled in TASLan by having
only the basic type agent, and a special predicate honest (of type agent) that
holds true for all those agents that are honest. A similar encoding is possible for
two composed types τ1 and τ2 that differ only in an basic subtype.

Mappings. For many problems it is helpful to have some function symbols to
express mappings such as sk(A,B) to denote the shared key between agents A
and B, but of course the resulting key is then of type sk(agent , agent) and thus
with terms of a basic type symkey to represent symmetric keys. More generally,
the problem is to model a function f of type tau → τ0 where τ0 �= f(tau).
A way to achieve this is the use of a new predicate to represent the function,
e.g. in the example sk ′ : (agent , agent , symkey). We then need to take care of an
appropriate constant for the function result, e.g. the symmetric key here. Also
this encoding has its limitations: for instance a function like s : β → β cannot
be injective (as this would lead to an infinite type).

Algebraic Properties. One may consider algebraic properties to support some
cryptographic primitives. This quickly rules out many methods, e.g. when the
equivalence class of a term gets infinite. We just hint that for some algebraic
properties the symbolic methods work [10].

FOLTL Goals. We have considered only state-based safety properties, while
ASLan allows for the specification of FOLTL goals, i.e. first-order logic extended
with the temporal operators of linear temporal logic. Again this logic gives rise
to undecidable problems in general. Borrowing from the arguments of Theo-
rem 3, we can however identify a decidable fragment that fits with the TASLan
approach. The idea is that typed TASLan for a bounded-length trace gives a
finite universe of predicates (because also the number of fresh constants that
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can be created is bounded). When checking safety properties, considering finite
traces is no restriction. When checking non-safety properties (e.g. for resilient
channels [3]) common methods also need to consider finite state spaces (so that
all infinite traces go in loops through the state space), in which case it is also
not a restriction to limit the number of fresh constants. When we have a finite
universe, then we can reduce problem into a propositional LTL problem.

We have left this out of our main presentation since many verification methods
based on abstract interpretation and symbolic constraints do not combine well
with FOLTL goals, for instance a goal like G(ik(s) → ik(t)) implies negative
intruder knowledge constraints that cannot be directly handled.

6 Conclusions

ASLan is a specification language that integrates Horn clauses with transition
systems, and this combination in the specification language gives a particular ex-
pressive power: we can formulate a transition system with immediate evaluations
for every state. The typical application is the interaction between the work-flow
of a distributed system and its access control policies, see the AVANTSSAR case
studies for a large class of security-relevant systems [2]. A completely different
application to combine immediate evaluations with transitions is in our recent
work to analyze security of virtualized infrastructures [8]. Here we model a net-
work representing a virtualized infrastructure that can change due to actions of
honest agents and intruder. The Horn clauses can be used to make evaluations on
the network in each state, e.g. between which nodes information flow is possible.

In this paper we have reviewed the syntax and semantics of ASLan, giving a
conceptually simpler account than previous definition [4]. We have extended the
concepts of symbolic transition systems to ASLan as a logically sound basis for
constraint-based model-checking.

We have defined the fragment TASLan by the requirement that messages and
predicates of different intended types must have sufficiently different formats
so they cannot be confused. To a large extend, such disambiguations are good
engineering practice anyway, and we can exploit this to obtain a class of specifi-
cations that is better to tackle with automated methods, while maintaining the
powerful concept of combining transition systems with immediate evaluations.

We have built a decision procedure for bounded-length TASLan (or a semi-
decision procedure for unbounded length) extending the constraint-based “lazy
intruder” approach [13,15,6] to support the combination with Horn deduction
constraints.

We show that, when an attack exists, the lazy intruder will find a well-typed
attack, and thus we have a generalization of several typing-results [11,7,1]: for
TASLan specification, we can safely restrict the verification to a typed model.
This enables methods that cannot deal with an infinite universe of intruder-
generated messages or only under great difficulty. Seen another way, the typed
model simplifies the undecidable logic-programming problem induced by the
Horn clauses to a decidable Datalog problem.
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On the conceptual side, we show that the problem whether a TASLan specifica-
tion has an attack for a bounded number of transitions is NEXPTIME complete.

Despite the high complexity class, first experiments with extending the tool
OFMC [6] demonstrate that the method is feasible for many practically relevant
problems: a first prototype successfully analyzes 70 of the 142 ASLan specifica-
tions of the AVANTSSAR library [2] in under 8 minutes.
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1 Introduction

Mobile Ad Hoc Networks (MANETs) connect mobile devices without an un-
derlying fixed infrastructure. The topology of the network keeps changing over
time as nodes move or leave, and new nodes join the network. These intrinsic
features make MANETs an attractive and cost effective solution for providing
connectivity in areas where a fixed infrastructure is not available or deploying
one is not a technically or financially viable alternative [4]. Current applications
of ad hoc networks cover a variety of areas, ranging from tactical networks for
military communications to smart sensor networks for environmental monitor-
ing. For instance, in the scenario depicted in Fig. 1(a), troops deployed on a
battlefield are equipped with mobile devices forming a tactical MANET that
enables them to communicate with commanders at the headquarters.

On the downside, their wireless nature and the lack of a stable infrastructure
make MANETs vulnerable to a wide range of attacks, both active and passive,
that can be waged by malicious nodes physically located within the transmission
range of one or more legitimate nodes. In the scenario of Fig. 1(a), enemies
equipped with wireless devices may be hiding in the field (e.g., attackers A1 and
A2), or they may have simply planted wireless sensors at certain locations.

In the last couple of decades, considerable research effort has been devoted
to the problem of detecting various types of attacks against wireless networks.
However, despite an increasing interest in attacker localization, in both wireless
sensor networks and ad-hoc mobile networks, no general solution has been de-
vised yet. Instead, ad-hoc solutions based on the specific nature of certain attacks
have been widely investigated. In particular, many different jammer localization
approaches have been proposed in recent years [3,9,10].

In order to address this important problem, we propose a novel and more
general approach to attacker localization in MANETs, based on a probabilistic
model of the attacker’s location. Specifically, we can estimate the location of

(a)

Attackers 
(1,1) 

(1,N) (M,N) 

(M,1) 

Legitimate Node 

(b)

Fig. 1. Examples of (a) tactical MANETs, and (b) nodes in a discrete space
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malicious nodes based on the location of all attacks detected in the network,
or, more generally, the location of legitimate nodes that have detected malicious
activity in their neighborhood. For the purpose of our analysis, we assume that
alerts are given. Additionally, our model assumes that malicious nodes are in
the neighborhood of nodes generating an alert. This assumption is justified by
extensive work in the area of activity detection for MANETs. For instance,
Watchdog [11] is an intrusion detection system running on each node of the
network. By listening to its neighbors, each node can detect routing misbehavior.
In [12], Patwardhan et al. present a similar technique. The main difference is that
in Watchdog a node monitors the traffic it sends to its neighbors, whereas in [12]
a node monitors the traffic between neighbors which are in range of each other.

The proposed framework does not rely on attack-specific assumptions, such
as those typically used in the literature on jammer localization, namely, static
wireless nodes and single attacker scenario [3]. For ease of presentation, we as-
sume that attackers are static, but extending our framework to take mobility of
malicious nodes into account is quite straightforward, and it is part of our furure
plans. Additionally, we assume that a number of countermeasures are available to
capture or isolate malicious nodes. Such countermeasures might include sending
a patrol to physically capture malicious nodes, or running a specialized algorithm
to identify and isolate malicious nodes in the regions selected by our framework.
We are interested in optimally deploying available countermeasures. Specifically,
we are interested in addressing the following classes of problems:

(i) Estimating the minimum number of countermeasures that need to be de-
ployed to capture all attackers.

(ii) Finding the deployment that maximizes either the expected number of at-
tackers in the target regions or the expected number of alerts explained by
the solution, subject to a constraint on the number of countermeasures.

We show that these problems are NP-hard, and propose two polynomial time
heuristic algorithms to find approximate solutions. Experiments show that our
approach works well in practice, and both algorithms can capture over 80% of
the attackers within 10-12 deployment cycles, in most scenarios.

The remainder of the paper is organized as follows. Section 2 discusses re-
lated work. Section 3 introduces the proposed framework, and provides a formal
statement of the problems addressed in our work. Heuristic algorithms are pre-
sented in Section 4, and experimental results are reported in Section 5. Finally,
Section 6 gives concluding remarks, and indicates future research directions.

2 Related Work

In recent years, there has been increasing interest in the localization of attackers
in both wireless sensor networks and ad-hoc mobile networks. The vast majority
of current approaches focus on specific types of attacks, most notably jamming
attacks [3,9,10]. Cheng et al. [3] offer a comprehensive study of the jammer lo-
calization problem, and propose a simple yet effective algorithm called Double
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Circle Localization (DCL). They assume all nodes in the network (i) are de-
ployed randomly; (ii) are static; (iii) have the same capability (e.g. transmission
power); (iv) know their own location; and (v) can recognize whether they are
jammed. They consider a single-jammer scenario, and apply the free-space prop-
agation model, according to which jamming signals attenuate with distance. The
proposed algorithm calculates the minimum bounding circle and the maximum
inscribed circle of the convex hull of the set of jammed nodes, and combines
their centers to estimate the location of the jammer. They show that their algo-
rithm outperforms three existing geometry-based algorithms, namely, Centroid
Localization (CL), Weighted Centroid Localization (WCL), Virtual Force Iter-
ative Localization (VFIL) [10]. The CL algorithm estimates the position of the
jammer by simply averaging the coordinates of all jammed nodes. The WCL
algorithm [2] weights the contribution of each jammed node when computing
the centroid. One way of assigning weights is based on the distance between
the jammer and the affected node, which can be estimated by measuring the
strength of the incoming radio signal. VFIL tries to improve CL by adjusting its
estimation based on the distribution of jammed nodes.

Other approaches focus on identifying nodes or subnetworks that are affected
by attacks, but they provide a very coarse grained estimate of the attacker’s
position. Kim and Song [8] present a simple approach for fast detection of attacks
using CCA (Clear Channel Assessment) values – a measure of the availability
of a communication medium. If a node tries to send a message and finds the
channel busy, its CCA value is increased and the node will retry to retransmit
later. If the CCA value of a node exceeds a given threshold, this mechanism
judges that the node is attacked, or otherwise affected by nearby attacks.

Han et al. [6] address the problem of attackers intentionally hiding or falsifying
their position in order to decrease the accuracy of the localization process, which
is traditionally executed by multiple observers (usually Access Points) which can
simultaneously observe the intruder’s transmissions and use time delays, angle
of arrival, or signal strength information to localize the intruder. They propose
a proactive technique, named Access Point Coordinated Localization (APCL),
that forces the attacker to reveal undistorted signal features unintentionally, in
order to subsequently use traditional localization techniques.

Our approach significantly differs from existing literature, in that it seeks
a more general solution to the problem of attacker localization in MANETs.
Research in this area has mostly focused on specific types of attacks, requiring
several simplifying assumptions. We drop most such assumptions, and show that
our framework can deal with different types of attacks, including jamming.

3 Probabilistic Framework

In this section, we present our probabilistic framework for attacker localization
in MANETs. We first provide some technical preliminaries in Section 3.1, and
then present the framework in detail (Section 3.2). We conclude in Section 3.3
by providing a formal statement of the problems addressed in this paper.
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Legitimate Node Security Alert 
(1,1) 

(1,N) (M,N) 

(M,1) 

(a)

0 0 0 0 0 0 0 0 
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0 0 0 0 0 0 0 0 
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Legitimate Node Security Alert 
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Fig. 2. Examples of (a) security alerts, and (b) computation of Pr(attacker(p))

3.1 Technical Preliminaries

Without loss of generality we assume a discrete notion of space, as formalized
by Definition 1, and assume that, at any time, both legitimate and malicious
nodes are at one of a finite number of discrete locations.

Definition 1 (Space). Given two integersM,N ∈ N, a space S = {1, . . . ,M}×
{1, . . . , N} is a finite subset of points of N2.

For ease of modeling, the above definition assumes that a space is a rectangular
region within N2. Fig. 1(b) shows a discrete space for M = 8 and N = 6. In this
example, legitimate nodes are located at points (2, 2), (2, 5), (3, 4), (4, 3), (5, 3),
(6, 5), and (7, 4), and an attacker is located at point (4, 4).

Associated with the space is a distance function dist : S×S → R that satisfies
the normal distance axioms:

– Positive definiteness: ∀p1, p2 dist(p1, p2) ≥ 0 and dist(p1, p2) = 0 ⇔ p1 = p2
– Symmetry: ∀p1, p2 dist(p1, p2) = dist(p2, p1)
– Triangle inequality: ∀p1, p2, p3 dist(p1, p2) + dist(p2, p3) ≥ dist(p1, p3)

Given the above notion of space, a MANET M at time t can be represented,
for the purpose of our analysis, as a subset of S including all the points where a
mobile node is deployed at time t. A set A of alerts can be represented as a set
of pairs a = (p, t), where t is the time at which an alert a was generated and p
is the location at time t of the node triggering the alert.

3.2 Framework

Given an alert, we first need to define the probability that an attacker located
within range of the alert’s location is responsible for causing the alert. We use
the binary predicate causes : S × A → {true, false} to specify if there is an
attacker at point p ∈ S causing an alert a ∈ A. We assume that the transmission
range r ∈ R is fixed and equal for all legitimate nodes and attackers.
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Definition 2 (Attacker’s Probability Distribution). Let a ∈ A be an alert.
The attacker’s probability distribution for a, denoted θa, is a probability distri-
bution over S defined as follows:

θa(p) = Pr(causes(p, a)) (1)

s.t.

θa(p)

{
≥ 0, if dist(p, a) <= r
= 0, if dist(p, a) > r

(2)

where dist : S × S → R is the distance associated with the space S.

Note that, for all a ∈ A,
∑

p∈S θa(p) = 1, i.e., the attacker who caused a must
be in S. Intuitively, if a node in the MANET has been attacked, this node must
be within an attacker’s transmission range r. Given an alert a ∈ A, we use Sa to
denote the set of points Sa = {p ∈ S | θa(p) ≥ 0}. In other words, the attacker
who caused a must in Sa. We do not assume a specific distribution θa(p). Any
distribution can be used in our framework, as long as the properties described
by Equation 2 are satisfied. The choice of a specific distribution depends on a
number of factors, including the radio propagation model, and the information
available to nodes triggering an alert. In the simplest case, we can assume that
the attacker’s probability is uniformly distributed in a circular region of radius
r centered at the alert’s location. If more information is available, we can add
constraints to possible attacker locations. For instance, when signals propagate
according to the free space model and receivers can measure the received signal
power the attacker’s probability is uniformly distributed in an annulus of radius
d ± ε, where d is the estimated distance of the attacker and ε is a tolerance
parameter. The free space propagation model assumes the ideal propagation
condition that there is only one clear line-of-sight path between the transmitter
and receiver. In [5], H. T. Friis presented the following equation to calculate the
received signal power in free space at distance d from the transmitter.

Pr(d) =
Pt ·Gt ·Gr · λ2
(4 · π)2 · d2 · L (3)

Where Pt is the transmitted signal power, Gt and Gr are the antenna gains of
transmitter and receiver respectively, L is the system loss, and λ is the wave-
length. The free space model basically represents the communication range as a
circle around the transmitter.

We now introduce the notion of an explanation. Intuitively, an explanation
is a set of points such that the presence of an attacker at each of these points
would explain all the alerts that were generated.

Definition 3 (Explanation). Let S be a space, and let A be a set of alerts
triggered by nodes of a MANET M deployed over S. An explanation E for A is a
subset of S s.t. for all a ∈ A, E∩Sa �= ∅. We use E to denote the set of all possible
explanations. An explanation is said to be minimal iff �E

′ ∈ E s.t. |E′| < |E|.
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In Definition 2, we introduced the probability θa(p) that an attacker in p is
responsible for a single alert a. Given a set of alerts, we are interested in finding
the probability that any given point p ∈ S hosts an attacker. We use the unary
predicate attacker : S → {true, false} to specify if there is an attacker at a point
p ∈ S. If we assume that, given any two points p1, p2 ∈ S and any two alerts
a1, a2 ∈ A, causes(p1, a1) and causes(p2, a2) are independent, then the following
result can be proved. We refer to this assumption as causality independence.

Proposition 1. Given a space S, and a set of alerts A, the following property
holds under causality independence:

(∀p ∈ S)
(
Pr(attacker(p)) = 1−

∏
a∈A

(1− θa(p))
)

(4)

Example 1. Consider the scenario of Fig. 2(a), and assume that r = 1.1 and θa
is uniformly distributed over Sa = {p ∈ S | dist(p, a) ≤ r}. By computing the
value of Pr(attacker(p)) according to Equation 4, we obtain the result shown in
Fig. 2(b). The light-shaded region comprises all points p ∈ S s.t. Pr(attacker(p))
is greater than 0. In other words, the attacker(s) must be in that region. The
dark-shaded region only contains points with Pr(attacker(p)) > 0.3.

Definition 4 (Expected Number of Attackers). Given a set of points D ⊆
S, the number of attackers in D is a random variable ND

a which can assume
value |E ∩D| for any E ∈ E. The expected number of attackers in D is

Ex
[
ND

a

]
=

∑
E∈E

Pr(E) · |E ∩D| (5)

where Pr(E) is the probability of explanation E.

Intuitively, the expected number of attackers is the weighted average, over all
possible explanations, of the number of attackers in an explanation, where the
weight of an explanation is its probability. The expected numbers of attackers
in S is Ex

[
NS

a

]
=

∑
E∈E Pr(E) · |E|. In the example of Fig. 2(b), E

[
NS

a

]
=1.92,

meaning that, although most explanations include two attackers, single-attacker
explanations also exist (e.g., E1={3, 3}). The following result shows that, under
causality independence, calculating Ex

[
ND

a

]
is computable in polynomial time.

Proposition 2. Let D ⊆ S be a set of points in S and let ND
a denote the

number of attackers in D. The following property holds.

Ex
[
ND

a

]
=

∑
E∈E

Pr(E) · |E ∩D| =
∑
p∈D

Pr(attacker(p)) (6)

3.3 Problem Statement

Given an ad-hoc network deployed over a space S, and a set of alerts A, we
are interested in optimally deploying a limited number of resources in order
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to capture the attackers responsible for the alerts. We assume that a deployed
resource can capture all malicious nodes within a capture range defined as a
circle of radius l – with l $ r – centered at the location of the resource. We
use the term deployment to refer to a set of points in S where resources are
deployed. We can define the following three optimization problems.

Problem 1 (Minimize deployment size). Given a space S, a set of alerts A over
S, and a probability threshold τ ∈ [0, 1], find a deployment D ⊆ S of minimum
size that sufficiently explains all the alerts in A.

minimizeD∈2S |D|
subject to

(∀a ∈ A)
∑

p∈D θa(p) ≥ τ
(7)

In this optimization problem, the constraints require that D be an explanation
(see Definition 3), and each alert be explained with probability equal to or greater
than a threshold τ . We wish to minimize the number of resources deployed.

Problem 2 (Maximize expected number of attackers). Given a space S, a set of
alerts A over S, a positive integer k ∈ N+, and a probability threshold τ ∈ [0, 1],
find a deployment D ⊆ S of size k or less that sufficiently explains all the alerts
in A, and maximizes the expected number of attackers in D under causality
independence.

maximizeD∈2S
∑

p∈D Pr(attacker(p))

subject to
|D| ≤ k
(∀a ∈ A)

∑
p∈D θa(p) ≥ τ

(8)

In this problem, the first constraint limits the number of resources that can be
deployed, whereas the second set of constraints, similarly to Problem 1, require
that D be an explanation (see Definition 3), and each alert be explained with
probability equal to or greater than a threshold τ . The objective function is
the expected number of attackers in D, which, based on Proposition 2, can be
computed as the sum over p ∈ D of Pr(attacker(p)).

Problem 3 (Maximize expected number of explained alerts). Given a space S, a
set of alerts A over S, a positive integer k ∈ N+, and a probability threshold
τ ∈ [0, 1], find a deployment D ⊆ S of size k or less that sufficiently explains
all the alerts in A, and maximizes the expected number of alerts that would be
explained by attackers located at each point in D.

maximizeD∈2S
∑

a∈A
∑

p∈D θa(p)

subject to
|D| ≤ k
(∀a ∈ A)

∑
p∈D θa(p) ≥ τ

(9)

In this problem, the constraints are the same as in the previous problem, but
the objective is to maximize the expected number of alerts that the presence
of an attacker in each point of D would explain. Note that, unlike Problem 2,
Problem 3 does not use any independence assumptions.
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Algorithm 1. MIN-K(S,A, τ, l)
Input: set of points S, set of alerts A, threshold τ , and capture radius l
Output: deployment D ⊆ S
1: D ← ∅
2: A∗ ← ∅ // Alerts covered
3: while A∗ �= A ∧ S �= ∅ do
4: S

′ ← {pi ∈ S \D | |A∗
i \ A∗| is maximum} // A∗

i : set of alerts covered by pi

5: S
′′ ← {pj ∈ S

′ | Pr(attacker(pj)) is maximum}
6: p ← randomly selected point from S

′′

7: D ← D ∪ {p}
8: S ← S \ {pk ∈ S | dist(pk, p) ≤ l}
9: A∗ ← A∗ ∪ {ak ∈ A |

∑
q∈D Pr(causes(q, ak)) ≥ τ}

10: end while
11: return D

4 Algorithms

In this section, we first show that all the three problems defined in the previous
section are NP-Hard, and then presents two polynomial heuristic algorithms that
offer good approximation guarantees. The first of these two algorithm solves
Problem 1, whereas the second algorithm solves both Problem 2 and Problem 3.

Theorem 1. Problems 1, 2, and 3 are NP-Hard.

Proof. Problem 1 can be shown to be NP-Hard by reduction from the set cover
problem, which is known to be NP-Hard. Specifically, the universe in the set
cover problem can be treated as the set of alerts A to be covered (explained)
and the several subsets of the universe can be treated as the candidate locations
explaining subsets of A. As Problem 1 is NP-Hard, the corresponding decision
problem, where there is some cardinality constraint of k on the solution, is also
NP-Hard (and easily shown to be NP-Complete). Therefore, finding any solution
that meets the constraints of Problems 2 and 3 is NP-Hard as well.

4.1 Algorithm MIN-K

Algorithm MIN-K (Algorithm 1) approximates Problem 1, and it is inspired by
the heuristic algorithm for solving the set covering problem [7]. Given a set of
elements, called the universe, and n sets whose union comprises the universe,
the set cover problem is to identify the smallest number of sets whose union still
contains all elements in the universe. In our case, given a set of alerts, we are
interested in identifying the smallest number of locations that can explain all
the alerts, where each location explains one or more alerts.

The algorithm takes as input a set S ⊆ S of candidate points, a set of alerts
A, a threshold τ , and a capture radius l, and returns a deployment D ⊆ S.
Lines 4-9 are iterated until either all the alerts are covered (A∗ = A) or there
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Algorithm 2. MULT-UPD(S,A, k, τ, l)
Input: set of points S, set of alerts A, integer k, threshold τ , and capture radius l
Output: deployment D ⊆ S
1: D ← ∅
2: λ ← ek−τ · (1 + |A|)
3: A∗ ← ∅ // Alerts covered
4: for all ai ∈ A do
5: wi ← 1

(k−τ)

6: end for
7: while |D| < k ∧ A∗ �= A ∧ S �= ∅ do

8: S
′ ← {pi ∈ S \D |

∑
ai∈A(wi−wi·θai

(pj))

f(D∪{pj})−f(D)
is minimum}

9: p ← randomly selected point from S
′

10: D ← D ∪ {p}
11: S ← S \ {pk ∈ S | dist(pk, p) ≤ l}
12: A∗ ← A∗ ∪ {ak ∈ A | Pr(causes(p, ak)) ≥ τ}
13: for all ai ∈ A do
14: wi ← wi · λ(1−θai

(pj))/(k−τ)

15: end for
16: end while
17: return D

are no more candidate points to examine (S = ∅). The algorithm first considers
the set S

′ ⊆ S such that the number of additional alerts covered by each point
pi ∈ S

′
– w.r.t. the set A∗ of alerts covered so far – is maximum (Line 4). Then, a

point p is randomly selected from the set S
′′
of points pj in S

′
having maximum

value of Pr(attacker(pj)) (Lines 5-6). Finally, p is added to the solution and all
points with a radius l from p are excluded from further consideration (Lines 7-8).
All the alerts ak that are sufficiently explained by D are added to A∗ (Line 9).

Proposition 3. MIN-K runs in O(r2 · |A|2) time.

Proof. The outer loop of the algorithm takes no more than |A| steps. The bound
on the inner loop is O(r2 · |A|) iterations, as the number of points to consider at
each step is proportional to a node’s transmission area, that is π · r2.

4.2 Algorithm MULT-UPD

Algorithm MULT-UPD (Algorithm 2) is a multiplicative-updates algorithm that
can be used to approximate solutions to Problems 2 and 3. It is based on the
multiplicative-updates algorithm of [1], which is designed to find approximate
solutions to the maximization of a submodular function with respect to packing
constraints. We show in Proposition 5 that this algorithm runs in polynomial
time, though we do not guarantee it provides optimal solutions (Theorem 1
suggests that an efficient polynomial algorithm that provides optimal solutions
is unlikely). We apply the algorithm of [1] by embedding Problem 2 or 3 into a
packing problem. As this algorithm is used for both problems, we will use the
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notation f : 2S → R to denote a generic objective function. The definition of f
depends on which problem is being solved. For Problem 2, it is:

f(D) =
∑
p∈D

Pr(attacker(p)) (10)

For Problem 3, it is defined as follows:

f(D) =
∑
a∈A

∑
p∈D

θa(p) (11)

As stated earlier, the algorithm of [1] is designed to find a solution to maximize a
submodular function. As f above is additive under either problem, submodularity
follows trivially.1 What remains to be shown is that our problems can be re-
written as packing problems. We prove this in the following proposition.

Proposition 4. The constraints of Problems 2 and 3 can be re-written as:

|D| = k
(∀a ∈ A)

∑
p∈D(1− θa(p)) ≤ k − τ (12)

Proof. For any a ∈ A, we can re-write the original constraint as k−
∑

p∈D θa(p) ≤
k − τ . We also note that the size of D must be k (except in a degenerate case).
Therefore, we can re-write the constraint again as

∑
p∈D(1− θa(p)) ≤ k − τ .

With this embedding in mind, the algorithm functions by associating a weight
with each alert (corresponding to the constraint that the alert must be explained
with probability τ). The algorithm then proceeds in a generally greedy fashion –
but every time an element is added to D, the weights for all constraints that are
not met increase. When the algorithm makes a greedy selection, these weights
are considered in addition to the increase experienced by the objective function.
Though the algorithm of [1] provides an approximation ratio, this ratio does
not apply to our embedding as the original algorithm allows solutions of less
than size k (this is because Proposition 4 does not necessarily hold for approxi-
mate solutions). As a consequence, some of the alerts are not explained within
probability τ . These alerts can be thought of as “difficult to explain” given the
resource constraint (k). However, this is acceptable for our application as we
look to provide iterative deployments of the resources (see algorithm ITER-DEP
in the next section) so unexplained alerts will likely be covered in a subsequent
deployment. We show that this algorithm runs in polynomial time.

Proposition 5. MULT-UPD runs in O(k · r2 · |A|2) time.

Proof. The outer loop of the algorithm takes no more than k steps. The bound
on the inner loop is O(r2 · |A|) iterations, as the number of points to consider for
each alert is proportional to the a node’s transmission area, that is π · r2, and
the calculation at Line 8 requires O(|A|) time.

1 As does some other requirements such as monotonicity and that f(∅) = 0.
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Algorithm 3. ITER-DEP(S,A,M, τ, l)
Input: space S , set of alerts A, max number of deployment cycles M , threshold τ ,

and capture radius l
1: A′ ← A // Alerts to explain
2: count ← 0 // Iteration counter
3: for all p ∈ S do
4: compute Pr(attacker(p))
5: end for
6: S ← {p ∈ S | Pr(attacker(p)) > 0} =

⋃
a∈A Sa

7: while S �= ∅ ∧ count < M ∧ A′ �= ∅ do
8: D ← computeDeployment(S,A′

, k, τ, l)
9: for all p ∈ D s.t. p is a hit do
10: for all q ∈ S s.t. dist(p, q) < l and q is an attacker do

11: for all a ∈ A′
s.t. Pr(causes(q, a)) ≥ τ do

12: S ← S \ {s ∈ S | Pr(causes(s, a)) ≥ 0}
13: end for
14: A′ ← A′ \ {a ∈ A′ | Pr(causes(q, a)) ≥ τ}
15: end for
16: end for
17: for all p ∈ S do
18: compute Pr(attacker(p))
19: end for
20: end while

4.3 Algorithm ITER-DEP

Algorithms MIN-K and MULT-UPD both compute a single deployment of coun-
termeasures. As the number of countermeasures deployable at each step may be
limited (Problems 2 and 3), and some of the deployed countermeasures may re-
sult in false positives, it may not be possible in practice to capture all malicious
nodes in a single deployment.

Algorithm ITER-DEP (Algorithm 3) takes as input a space S, a set of alerts
A, the maximum number of deployment cycles M , a threshold τ , and a capture
radius l, and iteratively redeploys countermeasures taking into account feedback
from countermeasures deployed in the previous cycle. The algorithm first com-
putes the initial values of Pr(attacker(p)) under causality independence (Lines 3-
5), and, based on those, a set S of candidate locations (Line 6). It then iterates
until there are no more locations to consider, or all the alerts have been ex-
plained, or the maximum number of iterations has been reached (Lines 7-20).
During each iteration, a deployment is computed using any of the algorithms
presented earlier (Line 8). For each true positive, the set of alerts is updated by
removing those that are sufficiently explained by the captured attacker, and the
set of candidate points is updated accordingly (Lines 9-16). Lastly, the values
of Pr(attacker(p)) are updated.

Proposition 6. ITER-DEP runs in O(M · r2 · |A|2) time when MIN-K is used,
and O(M · k · r2 · |A|2) time when MULT-UPD is used.
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Proof. The outer loop of the algorithm (Lines 7-20) takes no more thanM steps.
The complexity of Lines 8-19 is dominated by the complexity of Line 8, that is
the complexity of the deployment algorithm – O(r2 · |A|2) and O(k · r2 · |A|2) for
MIN-K and MULT-UPD respectively. In fact, the bound on the loop at Lines 9-16
is O(r2 · |A|2), as Line 13 is executed |A| · π · r2 · |A| times, in the worst case.

5 Experiments

This section reports on the experiments we conducted to validate our framework.
Additional experiments, showing how our approach can be used to localize jam-
mers, are reported in Appendix A. We used NS-2 to simulate different network
scenarios, with nodes moving according to a Random Way Point model2, and
attackers randomly choosing one or more of their neighbors as their targets.

We implemented a prototype of the proposed framework as a Java application
that takes as input log files generated by NS-2 and containing detailed informa-
tion about all the alerts. We studied algorithms MIN-K and MULT-UPD in terms
of (i) number of deployment cycles needed to capture all the attackers, and (ii)
time to compute a deployment as the number of alerts increases.

5.1 Experimental Setup

In our experiments, we considered a 20km× 20km field, using a 10-meter gran-
ularity, and deployed 4,000 network nodes and about 600 attackers, both uni-
formly distributed in this area. Overall, attackers triggered more than 1,000
alerts. For the purpose of these experiments, we assumed that deployable coun-
termeasures are physical resources, such as patrols, that can capture attackers
within a 30-meter radius l. After a resource has been deployed, points within
a radius l are assumed to be free of malicious nodes. With this assumption, all
resources can be reused in the next deployment cycle.

As discussed in Section 3.2, several models can be use to compute the at-
tacker’s probability distribution of Definition 2. In our experiments, we assume
all nodes are compatible with the free space radio propagation model and have
a transmission range of 250 meters. Assuming that we can link an alert to a
specific communication attempt from the attacker node, and that attackers are
not able to falsify their beam direction and radio parameters to distort signal
features, we can use the received signal power to estimate the distance d between
the attacker and the victim, based on the selected radio propagation model. In
this case, the probability distribution θa for an alert a can be assumed to be
uniform in a annulus of radius d ± ε centered at the alert’s location (we set
ε = 0.1 · r, where r is the transmission range). Fig. 3 shows the result of com-
puting Pr(attacker(p)) for a simple scenario, based on assumptions discussed
above. Different colors denote different levels of probability values, with darkest
areas being more likely to contain attackers. Points in high probability areas
may explain multiple alerts.

2 However, any mobility and radio propagation model can be used in our framework.
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Fig. 3. Values of Pr(attacker(p)) for a simple scenario

In order to compare the two algorithms, we first run MIN-K and found the
minimum number of resources needed to cover all the alerts in a single deploy-
ment cycle, and then used this number as the value of k in MULT-UPD. To cover
all the alerts in the scenario described above, we need about 500 resources.

5.2 Experimental Results

We analyzed the convergence of the proposed approach with respect to recall3,
which we measured as the fraction of attackers captured in each deployment
cycle. Specifically, we use a notion of cumulative recall, as for each deployment
cycle we count the total number of attackers captured since start.

Fig. 4 shows the cumulative recall function for the algorithms proposed:
MIN-K, and the two versions of MULT-UPD maximizing expected number of
attackers (MULT-UPD v1 in figure) and expected number of explained alerts
(MULT-UPD v2) respectively. As shown, all the algorithms can capture 80% of
the attackers in a very few deployment cycles, even in unfavorable scenarios,
such as low network density. Indeed, convergence is influenced by network con-
figuration and density: if an attacker triggers more alerts, it will be localized in
a higher probability area and will be captured faster.

We also studied how the time for computing a single deployment varies when
the number of alerts increases. As shown in Fig. 5, MIN-K performs significantly
better than the two versions of MULT-UPD: it takes about 200 seconds to pro-
cess around 1,000 alerts, while both versions of MULT-UPD take more then 700
seconds (about 12 minutes). However, both algorithms run in time quadratic in
the number of alerts, as shown by the trend lines in Fig. 5. This confirms the
theoretical results presented earlier in Section 4.

3 Recall is a widely adopted measure in the information retrieval and pattern recog-
nition fields, indicating the fraction of relevant instances retrieved by an algorithm.



A Probabilistic Framework for Localization of Attackers in MANETs 159

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

Cu
m

ul
at

iv
e 

re
ca

ll 

Deployment cycles 

MIN-K MULT-UPD v1 MULT-UPD v2

Fig. 4. Cumulative recall over subsequent deployment cycles
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6 Conclusions

In this paper, we have presented a probabilistic framework for the localization of
attackers in Mobile Ad Hoc Networks (MANETs). Prior to our work, no general
solution was devised to address this important problem, and most proposed ap-
proaches focused on specific types of attacks, most notably jammer attacks. The
proposed framework can estimate the physical location of attackers, based on the
location of nodes that have detected malicious activity in their neighborhood.

We assume that certain countermeasures can be deployed to capture or isolate
malicious nodes, and they can provide feedback about the actual presence of an
attacker in the target regions. We presented different variants of the localiza-
tion problem, and we showed that all of them are NP-hard. We then proposed
two polynomial heuristic algorithms that can compute approximate solutions.
The feedback provided by deployed countermeasures is taken into account to
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iteratively re-deploy countermeasures until all attackers are captured. Experi-
ments showed that our approach works well in practice, and both algorithms
can capture over 80% of the attackers within a few deployment cycles.

Our future plans include removing the assumption that attackers are static,
and extending our framework to be able to track moving attackers.
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A Localizing Jammers

In this appendix, we study the performance of our framework with respect to
jamming attacks. Although many countermeasures have been proposed against
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jamming attacks, mostly based on frequency manipulation, it would be desirable
to capture and deactivate jammers upon detection, as their activity heavily
affects power consumption.

In the following, we first compare MIN-K and MULT-UPD w.r.t. localization
error for a complex scenario involving multiple jammers, and show that MIN-K
guarantees lower error. We then compare MIN-K with the Double Circle Local-
ization (DCL) algorithm [3], and show that MIN-K offers better performance and
lower sensitiveness to network density.

We considered a 20km×20km field and randomly placed 185 jammers, which
jammed 445 nodes; we run MIN-K and MULT-UPD 100 times and recorded,
for each jammer, the minimum distance from a deployed resource in the first
deployment cycle. The cumulative distribution function of the error is shown
in Fig. 6. As expected, the localization error of MIN-K is much smaller than
MULT-UPD. In fact, the mechanism used byMIN-K to choose deployment points,
unlike MULT-UPD, is aimed at covering all the alerts: this means that each
resource will be deployed within distance r from an alert. As the attacker is also
be within distance r from the alert, the maximum possible error is twice the
transmission range. When running MULT-UPD, an alert might not be covered
in the first deployment cycle, so the responsible jammer could be very far from
any deployed resource.

We now compareMIN-K with the Double Circle Localization (DCL) algorithm
[3]. The authors of DCL considered a square field of 100m2 with uniformly dis-
tributed nodes having a transmission range of 10 meters; they placed the jammer
at the center of the field and evaluated the accuracy of jammer localization for
two different network densities, 1 and 3 nodes per m2 respectively, showing that
the algorithm is able to achieve a very small error. In fact, 100% of the re-
sults were computed with an error smaller than 10 meters for the lowest density
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Fig. 6. CDF of the localization error for MIN-K and MULT-UPD
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Fig. 7. CDF of the localization error for MIN-K for several node densities

and smaller than 5 meters for the highest density. It should be noted that this
algorithm – similarly to other algorithms based on geometric considerations –
achieves good accuracy only when network density is sufficiently high. Moreover,
DCL, in its current form, can be applied only to one-jammer scenarios. Not only
our framework is able to deal with multiple jammers, but it is also less sensitive
to network density, as we show next.

We first considered the same network scenario used in [3], and run both MIN-K
and MULT-UPD. Due to the high node density of this scenario and the resulting
values of Pr(attacker(p)), our framework – using a 1-meter resolution – was al-
ways able to find the correct position of the jammer in the first deployment cycle.
To evaluate our framework’s performance for jamming attacks in more general
scenarios, we considered a 100m × 100m field, with the jammer placed at the
center of the field, and deployed networks having different densities. Specifically,
we deployed 1, 2, 5, 10, and 100 nodes respectively, with a 71 meter transmission
range (the whole field is jammed), and evaluated the accuracy for MIN-K over
1,000 independent runs. Fig. 7 shows the cumulative distribution function of the
error. When considering a single node in the jammed area, the maximum error is
high. As network density slightly increases, performance dramatically increases:
it takes only a few nodes in the jammed area to bound the error within 10% of
the transmission range. At this point, further increasing node density has a very
small impact on localization error.
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Abstract. The singular communication model in wireless sensor net-
works (WSNs) originate pronounced traffic patterns that allow a local
observer to deduce the location of the base station, which must be kept
secret for both strategical and security reasons. In this work we present
a new receiver-location privacy solution called HISP (Homogenous In-
jection for Sink Privacy). Our scheme is based on the idea of hiding the
flow of real traffic by carefully injecting fake traffic to homogenize the
transmissions from a node to its neighbors. This process is guided by
a lightweight probabilistic approach ensuring that the adversary cannot
decide with sufficient precision in which direction to move while main-
taining a moderate amount of fake traffic. Our system is both validated
analytically and experimentally through simulations.

1 Introduction

Wireless Sensor Networks (WSNs) [1] can be seen as an extension of ordinary
computers that allow them to sense and react over the environment surround-
ing them. These networks are composed of battery-powered devices, the sensor
nodes, which are capable of measuring the physical phenomena in their vicinity
and wirelessly transmit these data to a central node called base station or sink.
The base station gathers the packets from different sources and processes them
in order to gain insight about the area being monitored.

This technology has raised a tremendous interest in the academia and is finally
drawing the attention of companies because of their potential integration into
many diverse application scenarios. The criticality of many of these applications
together with the hardware limitations of sensor nodes require the development
of tailored security mechanisms to guarantee the proper operation of the network
in the presence of adversaries [2]. Most of the countermeasures found in the
literature have been built on top of cryptographic primitives in order to protect
the information traversing the network. However, even when secure encryption
algorithms are used to protect message content, traffic analysis reveals sensitive
contextual information about the network and the application scenario [3].
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Fig. 1. Communication pattern in a typical WSN

A noteworthy problem related to contextual privacy is the protection of the
location of relevant network nodes. In particular, the location of source nodes
is important because it provides the attacker with information about the area
where special events occur. Consider, for example, a WSN deployed to control
the transportation of hazardous materials into and out of a nuclear or chemical
plant. If an attacker obtains the location of source nodes he might be able to
approximate the location and movements of the trucks carrying these materi-
als. Moreover, this information might allow the adversary to deduce sensitive
information about the distribution of the plant or even the presence of problems
in the industrial processes. On the other hand, protecting the location of the
base station is tremendously important because if it gets compromised or even
destroyed, the whole system is rendered useless. Besides the physical protection
of the network, the location of the base station is strategically critical because
this key device is most likely housed in a relevant facility within the plant.

The aforementioned privacy problems are extensible to any application sce-
nario because they are caused by the particular way of operation of WSNs. In
a typical configuration, packets containing event data are generated at various
locations from where they are forwarded in the shortest possible path towards
the sink. Fig. 1 represents a WSN consisting of 50 × 50 nodes where 15 nodes
are reporting event data using a shortest-path routing protocol. Although this
is the most suitable configuration for preserving the limited energy budget of
sensor nodes, it produces pronounced traffic patterns that reveal the location of
both the source nodes and the base station.

Most of the research so far has focused on the source-location privacy problem
while the protection of receiver-location privacy has received much less attention.
The main reason is that hiding the base station is a especially difficult task be-
cause all the traffic is addressed to this single node with the consequent increase
of traffic in its vicinity. These features are exploited by adversaries who may
monitor the direction of packet flows or the amount of traffic being transmitted
to uncover the location of the sink. To counter these strategies several works
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have focussed on the use of random routing protocols [4,5] and the injection of
fake traffic [6,7,8]. Many of these solutions fail to provide a sufficient protection
level or they impose prohibitive energy costs and message delivery delays.

The main contribution of this work is the HISP (Homogenous Injection for
Sink Privacy) protocol. HISP is based on the idea of locally homogenizing the
amount and direction of the packets forwarded from the sensor nodes to their
neighbors. Besides, this protection mechanism ensures that event data reach the
base station without incurring in significant delays or excessive energy costs.
To achieve this, HISP sends real packets using a random walk algorithm and
introduces controlled amounts of fake traffic in such a way that the distribution
of real packets remains probabilistically hidden.

The rest of this paper is organized as follows. Sec. 2 describes the network and
threat model. A detailed description of the HISP protocol is presented in Sec. 3.
Subsequently, in Sec. 4, we evaluate and analyze the main features and potential
limitations of our approach. Moreover, Sec. 5 presents a discussion about the
privacy protection level provided by the proposed solution. Sec. 6 compares this
work with previous solutions in the area of location privacy in WSNs. Finally,
Sec. 7 concludes the paper.

2 Problem Statement

This section presents the main features of WSNs as well as the adversarial model
under consideration. Moreover, it introduces the main assumptions applicable to
the rest of this work.

2.1 Network Model

We consider WSNs used for monitoring purposes. Usually, this type of networks
follow an event-driven model, which means that the decision of transmitting data
to the base station is made by individual sensor nodes upon the occurrence of
special events. Consequently, this implies a many-to-one communication model
where all the information flows from source nodes to a single base station.

Also, we assume that the deployed WSN is comprised of numerous sensor
nodes which are deployed in a vast area. This prevents the adversary from con-
trolling the communications in a large portion of the network as well as having
all sensors within easy reach. Moreover, sensor nodes could be hidden or placed
out of the visual field of the adversary. Sometimes this is not a strong assump-
tion, for instance if we consider application scenarios such as under-water or
under-ground sensor networks.

We focus on highly-connected sensor networks composed of n sensor nodes,
where every node is aware of its adjacent neighboring nodes and the direction
towards the sink. We require sensor nodes to have relatively high connectivity,
that is, every node has several neighbors with which they share keys in order
to be able to transmit to or receive packets from various locations. Note that,
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in sparse WSNs, an adversary can identify the route followed by messages more
easily because the number of potential senders or receivers is rather limited.

Finally, we assume that sensor nodes make use of secure encryption algo-
rithms that prevent an adversary from obtaining any identifiable information
from packet payloads. In other words, the encryption mechanism under con-
sideration must be robust to cryptanalysis attacks and also provide indistin-
guishability between real and fake transmissions. The key management scheme
is beyond the scope of this paper. A survey can be found in [9].

2.2 Adversarial Model

The adversarial model considered is external, passive and mobile. An external
adversary does not control sensor nodes and thus has no access to the key mate-
rial. A passive attacker does not interfere with the communications or the normal
operation of the network. In general, passive adversaries limit their actions to
performing traffic analysis attacks. These attacks depend on the hearing range of
the adversary, which is typically equivalent to that of an ordinary sensor node1.
Moreover, a mobile adversary is capable of moving in the field based on his
observations according to a particular strategy.

First, we define adversaries based on their eavesdropping capabilities. In par-
ticular, we take into consideration both the hearing range and the ability to
retrieve packet header information. With respect to the hearing range, we might
find adversaries capable of observing the transmissions of a single and adversary
capable of monitoring all the communications in the network. On the other side,
we distinguish between adversaries who, by observing a message, are capable to
recognize the addressee of the next hop and those unable to retrieve this infor-
mation. This information is contained in the header of the packets but it might
be protected by means of some pseudonyms mechanism[11]. Next, we provide a
formal definition of the adversarial model:

Definition 1 (ADV). Let X = {x1, x2, · · · , xm} be the set of sensor nodes
comprising the network and let xi be an ordinary sensor node in the proximity
of the adversary. We define the following adversaries:

– ADVn chooses first a node xi, and then observes the transmissions of node
xi and all its neighbors within distance n. On the next round he may choose
a different node xi′ . The choice of the next xi′ depends on the movement
strategy, see for instance time-correlation and rate monitoring, below.

– ADVa
n is similar to the previous one: he observes the transmissions of node

xi and all its neighbors within distance n, but this observation includes also
the addressees of all those transmissions.

Fig. 2 provides a visual representation of the different adversarial models at
distances no larger than 1. The central node, xi, broadcasts a message that is

1 The hearing range of current sensor nodes operating outdoors is around 100 meters
for low power configurations [10]. However, these values might be altered by many
factors such as the signal frequency or the presence of obstacles.
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0 (c) ADV1 (d) ADVa

1

Fig. 2. Adversarial Model Examples

received by all its immediate neighbors. Transmissions are depicted by means
of lines and arrows. An arrow represents that the packet is addressed to that
particular node while dashed lines represent that these nodes are passive ob-
servers. When the arrow is dashed we mean that the node identifier cannot be
retrieved by the attacker while the ordinary arrow represents that the identi-
fier is accessible. Finally, the dotted circles represent the hearing range of the
adversary.

We can define other types of attackers that are not able to see all the neighbors
within a certain distance but a partial set of them. These type of attackers and
their analysis will be left for future work. The attacker model considered in this
work has a limited hearing range, similar to those depicted in Fig. 2. This is the
typical hearing range considered in the literature, which focusses on adversaries
with eavesdropping capabilities equivalent to an ordinary sensor node. Based on
his observations and the peculiarities of the communication model, the adversary
decides in which direction to move in order to reach the sink. Also, we are
consistent with the two potential strategies proposed in the literature.

The adversary might perform two types of attacks to decide on the next move.
In the time-correlation attack, the adversary observes the transmission times of a
node and its neighbors. Based on the assumption that a node forwards a received
packet shortly after receiving it, the adversary is able to deduce the direction
to the sink and move accordingly. In the rate-monitoring attack, the adversary
moves in the direction of the nodes transmitting a higher number of packets. This
attack is based on the fact that nodes in the vicinity of the base station must
transmit their own data as well as forward the traffic from remote sources. This
strategy is less efficient because it requires the adversary to capture a sufficient
number of packets before moving. Additionally, this attack is not effective when
there are very few data sources or the adversary is not close to the sink.

3 Homogenous Injection for Sink Privacy

This section provides a detailed description of the HISP protocol. We present an
overview of its main features as well as some fundamental properties that must
be hold to ensure a robust privacy-preserving transmission protocol and the
arrival of packets to the sink. Also, the neighbor discovery process is described
since it is crucial for the subsequent data transmission stage.
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3.1 System Overview

The HISP protocol is basically a biased random routing reinforced with the injec-
tion of controlled amounts of fake traffic. Upon the reception of a real message,
the sensor node decides the next hop in the route based on some probability,
which is dependent on the connectivity of the node. Fake packets are incorpo-
rated to prevent the adversary from being able to determine the direction to
the sink when observing the number of packets being forwarded in his vicinity.
In this way, messages are evenly distributed among all the neighbors of a node
without introducing significant delays in the delivery of packets.

We devised a computationally inexpensive approach to determine the recip-
ients of fake and real messages. Whenever a node has to transmit event data
it picks a pair of neighbors. This pair is obtained from the combination of two
elements without repetitions from all neighbors in its routing table. The rout-
ing table of the sensor is sorted incrementally (see Fig. 3), such that neighbors
closer to the base station are placed first, then neighbors at the same distance,
and finally neighbors in the opposite direction. This arrangement give rise to
combinations of neighbors where nodes closer to the sink are more likely to ap-
pear in the first position of the pair while the second position contains equally
distant or further neighbors. Thus, the random selection of these pairs leads to
an homogeneous distribution of messages among all the neighbors of the node.
HISP takes advantage of these features to send real packets to the first element
and fake packets to the second.

3.2 Neighbor Discovery Process

Shortly after the deployment of the network, a network discovery protocol is
launched to allow every sensor node to be aware of a routing path to the base
station. This information is usually obtained by means of a discovery message
broadcast by the base station. This message contains a hop count that is initially
set to zero and is incremented at every hop by its recipients. On reception, every
node stores the minimum distance value received from all of its neighbors. In this
way, every node generates a routing table that contains its neighbors at distance
n − 1, n, and n + 1, where n is the number of hops from the node to the base
station. The result of this process is depicted in Fig. 3. The numbers represent
the minimum distance of the node to the base station, the arrows indicate the
direction towards the sink and the dashed lines indicate links to neighbor at the
same distance. In the following, we will refer to nodes closer, equal, and further
or neighn−1, neighn, and neighn+1 to mention these groups of neighbors.

The neighbor discovery process is essential to the rest of protocol. The reason
is that the number and distribution of neighbors affects to both the privacy-
protection level and the delivery of event messages to the base station as we will
show in the following sections.
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3.3 Data Transmission Properties

This section presents several key properties which are intended to limit the
information gain of a local adversary during the transmission of data. Moreover,
the fulfillment of these properties ensures the timely delivery of event data.

The protocol we are aiming at uses both real and fake messages. The source
node, as well as any node that receives a real message, sends a real and a fake
message, which should be indistinguishable to the intruder but not to the ad-
dressees. Property 2 aims to balance the amount of traffic being delivered by a
node among its neighbors. By doing this, a local adversary cannot make a deci-
sion on which direction to follow based on the number of packets forwarded to
neighboring nodes. While the paths of fake messages have relatively short length
(this is a parameter of the solution), the path of real messages is intended to
converge to the sink. This is established by Property 1: real messages must be
transmitted to nodes closer to the base station with a high probability. These
two properties together ensure that both real packets reach the base station and
also that the flow of real messages is hidden by fake messages since they are in-
distinguishable. An additional technical property ensures that the transmission
of every pair of messages is sent to two different nodes.

Property 1 (Convergence). Let x be an arbitrary sensor node and BS be the
base station. Also, let neigh(n) be the set of immediate neighbors of a particular
node n. Then we say that a path is convergent if x chooses the next node x′ ∈
neigh(x) such that:

E(dist(x′, BS)) < E(dist(x,BS))

where E is the mathematical expectation and dist is the distance between two
particular nodes.

Property 2 (Homogeneity). Let x be an arbitrary sensor node and neigh(n)
be the set of immediate neighbors of a particular node n. We say that the trans-
missions of a node x hold the homogeneity property if:
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∀y, z ∈ neigh(x) Frecm(x, y) % Frecm(x, z)

where Frecm(x, y) represents the number of messages (real and fake) transmitted
by node x to node y.

Property 3 (Exclusion). Let m and m′ be a pair of messages and t be a
particular transmission time. Let send(m,x, y, t) denote that x sends to y the
message m at time t. The exclusion property states that:

∀m,m′, x, y, t send(m,x, y, t) ∧m �= m′ ⇒ ¬send(m′, x, y, t)

3.4 Transmission Protocol

We devised a message transmission protocol that is consistent with the prop-
erties defined in Sec. 3.3. This protocol introduces insignificant computational
and memory overhead because it is based on straightforward operations. More
precisely, it requires a simple sorting operation and a pseudo-random number
generator [12].

Since we send two messages, the combinations of two elements without rep-
etitions from all neighbors in the routing table is an elegant and lightweight
mechanism for the selection of neighbors that is consistent with the provisions of
Property 3. Moreover, if the routing table is incrementally ordered in terms of the
distance of its neighbors to the base station (i.e., [neighn−1, neighn, neighn+1])
we achieve that most of the resulting combinations have a closer or equally
distant neighbor in the first position of the tuple. Therefore, Property 1 is sat-
isfied because the real packet is transmitted always to the first neighbor. Also
Property 2 holds provided that we randomly select any pair from all possible
combinations.

In Algorithm 1 we describe the behavior of a node upon the reception of a
packet. The algorithm uses as input the received packet, a data structure which
contains the combinations of two neighbors once sorted, and a network parameter
that controls the durability of fake packets in the network. Initially, the algorithm
decides the random pair of neighbors to whom packets will be addressed (line 1).
Subsequently, if the received packet is real then it is be forwarded to neigh1 while
neigh2 receives a fake packet whose time-to-live is set to MAX TTL (line 3).
This parameter is dependent on the hearing range of the adversary and provides
a trade-off between energy consumption and privacy. Also, note that the packets
are sent in random order to prevent the adversary from trivially learning which
is the real message. The described behavior is identical in case that the node,
rather than being an intermediary, is a source node which signals the occurrence
of an event in the field.

On the contrary, if the received packet is fake, the node first obtains the
time-to-live (TTL) of the packet and decrements its value by one (line 5). This
prevents fake messages from flooding the network. In case the new TTL is greater
than zero, the node sends two fake messages with the current TTL value (line 7).
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Algorithm 1. Transmission strategy

Input: packet ← receive()
Input: combs ← combinations(sort(neighs), 2)
Input: MAX TTL
1: {neigh1, neigh2} ← select random(combs)
2: if isreal(packet) then
3: send random(neigh1, packet, neigh2, fake(MAX TTL))
4: else
5: TTL ← get time to live(packet)− 1
6: if TTL > 0 then
7: send random(neigh1, fake(TTL), neigh2, fake(TTL))
8: end if
9: end if

Since we consider adversaries with a hearing range similar to an ordinary sensor
nodes (i.e., the family ADV1), fake messages might be forwarded only once but
still exceed the reach of the adversary.

4 Protocol Analysis

This section presents a detailed analysis on the potential limitations that might
hinder the successful deployment of the HISP scheme in WSNs. First, we explore
the impact of the network topology and the expected number of hops for real
messages to reach the base station. Finally, we analyze the overhead introduced
by our solution in terms of fake packet transmissions.

4.1 Bounding the Number of Neighbors

The distribution of real and fake messages is clearly impacted by the number
of the neighbors in each of the groups of the routing table. In other words,
Property 1 could be unsatisfied in case the number of neighbors in neighn−1 is
significantly lower than the number of neighbors in neighn+1.

This problem is dependent on the topology of the network and the hearing
range of the nodes. To have a clearer picture of how much this poses a real
limitation to our protocol, we provide a numerical analysis on the number of
neighn+1 that any sensor node can withstand without sacrificing any of the
properties defined in Sec. 3.3.

Definition 2. A real message converges to the base station if for any node in
the route it traverses Pc > Pf , where Pc is the probability of transmitting the
message to a node closer to the base station, and Pf is the probability of sending
the message to a further node.

In order to yield this property, several conditions must be met. In particular, let S
be the total number of neighbors of an arbitrary node such that S = C+E+F ,
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where C, E, and F are the number of neighbors in neighn−1, neighn, and
neighn+1, respectively. The theorem below gives a sufficient condition on C, F
and S to ensure the desired property.

Theorem 1 Real messages reach the base station if F <
√
2C(S − C) for any

sensor sensor in the route.

Proof. We want to show that if F <
√
2C(S − C) then Pc > Pf , such that Pc

and Pf are the probabilities of sending a correct message to a node in neighn−1

and neighn+1, respectively.
The number of combinations of two neighbors where at least the first element

belongs to neighn+1 is: (
F

2

)
=
F (F − 1)

2

while the number of combinations of two neighbors where the first element of
the duple is a node in neighn−1 is:(

C

2

)
+ C(E + F )

Consequently, the probability of selecting a closer neighbor is higher than the
probability of selecting a further neighbor iff the number of combinations with
a closer neighbor in the first position of the duple is larger than those with the
first element being a further neighbor. Formally:

Pc > Pf ⇔ C(C − 1) + 2C(E + F ) > F (F − 1)

In order to simplify the analysis we make some generalizations which are less
restrictive but still provide a sufficient condition for the proof.

2C(E + F ) > F 2 ⇒ C(C − 1) + 2C(E + F ) > F (F − 1)

Provided that C + E + F = S, the previous equation can be expressed as:

F <
√

2C(S − C) (1)

Therefore, we might say that if equation 1 is satisfied, then the following
implication holds:

F <
√
2C(S − C) ⇒ Pc > Pf

Intuitively, the imposed restriction can be satisfied in networks deployed by hand
following a particular topology (e.g., grid or mesh). Still, we deem necessary to
validate the feasibility of our restriction in randomly deployed networks by means
of experimental simulations. In particular, Fig. 4 depicts the average results over
50 repetitions of our network discovery protocol for various network sizes. We
considered the following network parameters: (i) a square field area of side 1,



Probabilistic Fake Packet Injection for Receiver-Location Privacy 173

100 150 200 250 300 350
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

network size

pr
ob

ab
ili

ty
 is

ol
at

ed
 n

od
es

(a) Probability of isolated nodes

100 150 200 250 300 350
0

1

2

3

4

5

equal(E)

further(F )

closer(C)

√
2C(S − C)

6

7

 

 

network size

av
er

ag
e 

nu
m

be
r 

of
 n

ei
gh

bo
rs

(b) Neighbors restriction

Fig. 4. Node connectivity in randomly deployed networks

(ii) the transmission radius of the nodes is set to 0.1, and (iii) networks ranging
in size from 100 to 700 nodes randomly located. In Fig. 4a we show that the
probability of isolated nodes drops significantly when the network size is over
200 nodes. Moreover, Fig. 4b presents the average number of neighbors closer,
equal and further for any node in the network. In this figure we also show that
the restriction imposed by Equation (1) on the maximum number of further
neighbors is satisfied at all times.

Note that the results shown in Fig. 4b are average values and there might be
some particular nodes not satisfying the restriction. However, this would only
pose some additional delay unless there are network regions with a high concen-
tration of nodes unable to fulfill the imposed condition. This issue might cause
network packets to continuously move back and forth impeding their progress
towards the base station. This is not the case when the node density is sufficient.

In general, we can state that when the number of nodes in a randomly de-
ployed network is over 350 per square kilometer there is a high probability of full
connectivity considering a transmission range of 100 meters. Also, in this case,
the restriction on the number of neighbors is always satisfied.

4.2 Message Delivery Time

The probabilistic nature of our protocol introduces some uncertainty on the
delivery of messages to the sink. This issue has some implications both on the
reaction time of the network and the energy consumption of the nodes. Therefore,
we provide some insights on the expected number of hops to reach the base
station for a packet originated n hops away.

Let xn be the expected number of hops for a packet originated at distance n.
The proposed transmission protocol can be modeled by the following recurrence
equation:

xn = 1 + pxn−1 + qxn + rxn+1 (2)
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Fig. 5. Protocol performace for various network configurations

This equation represents a biased random walk where, after sending the packet
and increasing the number of hops by one, the packet will be forwarded to a
neighbor. At each hop, we have a probability p of delivering the packet to a
node closer to the base station, a probability q of staying at the same distance,
and a probability r of moving in the opposite direction. Therefore, the average
speed towards the base station is p− r.

In general, the above result is true for constant values of p and r but this is
not always the case in sensor networks. The reason is that not all sensor nodes
present the same distribution of neighbors. This is dependent on the hearing
range of the nodes, the network topology and their location in the network. In
Fig. 5 we present the performance of our protocol for WSNs deployed in a grid
with equal transmission power for all nodes. We consider various configurations
by increasing the transmission power, which in turn changes the connectivity of
the network. On average, every node has 4, 8, 12 or 20 neighbors. Also, for every
configuration we place the source at various distances from the base station: 5,
10, 15 and 20 hops. Several source nodes are selected for each distance and every
single source node generates 500 data packets to be received by the base station.

The results show that the expected number of hops increases with the distance
to the sink as well as with the connectivity of the nodes. As the number of
neighbors available to a node increases, the more difficult it is for the adversary
to make a decision on which of the recipients is actually closer to the base station.
However, a significant increase in the number of neighbors has also implications
on the delivery time because as the transmission range grows, more nodes will
be in the equal list of the node. This issue is shown in Fig. 5b, where we provide
a box-plot representation of the number of neighbors closer (C), equal (E), and
further (F) for the simulated network configurations. For example, C4 indicates
closer neighbors in the 4neigh network configuration.

Additionally, note from Fig. 5a that, for all the configurations, the average
speed of the packets decreases when they are close to the sink. Consider, for
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example, the 4neigh configuration. When the distance to the sink is 5, the ex-
pected delivery time is 11, while a packet at distance 20 will be delivered after
42 hops. This means that the time difference from distance 20 to 5 is 31 and
thus, the average speed is 15/31 = 0.484. However, in the proximities of the base
station (from distance 5 to 0) the speed drops to 5/11 = 0.454. The reason is
that the distribution of neighbors for nodes around the base station is different
from distant nodes. More precisely, the nodes in close vicinity of the base sta-
tion have very few nodes in the closer list but the number of nodes at the same
distance or further away is high. The imbalance between the lists of neighbors
grows with the transmission range of the nodes, being more significant for the
20neigh configuration. In this case, the speed drops from 0.358 to 0.179 in the
vicinity of the sink.

4.3 Fake Traffic Overhead

The injection of fake traffic is a fundamental feature of the HISP protocol since
it covers the flow of real messages. However, the amount of fake traffic must be
kept as low as possible in order to extend the lifetime of the nodes. To control the
propagation of fake messages, HISP defines a system parameter, MAX TTL,
which depends on the hearing range of the adversary.

Instead of transmitting fake messages at regular intervals, which would pro-
vide the best privacy protection but would deplete sensors’ batteries rapidly, the
devised protocol injects fake traffic triggered by the presence of real messages.
The scope of fake messages is conditioned by the eavesdropping capabilities of
the adversary. Thus, if the adversary under consideration belongs to the ADV0

family, the value of the system parameter can be set to zero, while if the ad-
versary is a global observer, this value is to be as large as the diameter of the
network. In the latter case, the energy cost would be similar to transmitting
at regular intervals with the difference that fake messages will remain in the
network only in the presence of events.

In Fig. 6 we illustrate the fake traffic overhead imposed by HISP for differ-
ent values of the MAX TTL parameter in the various network configurations
considered. More precisely, we show the ratio of fake over real messages that is
introduced to balance the transmissions in a band around the real path. When
MAX TTL is set to zero the ratio is 1 because every real packet is transmitted
in conjunction with a fake packet, which is no longer propagated. As the time-
to-live grows, the ratio increase is on the order of O(2n+1) where n is the hearing
range of the adversary. In any case, given the adversarial model considered in
this work the overhead imposed by this approach is moderate.

The overhead imposed by fake messages might be reduced by half if we in-
troduce a slight modification. Instead of sending two packets upon the reception
of traffic, we might send a single packet with two identifiers. In this way, and
assuming that the identifiers are hidden to potential observers, the two recip-
ients receive the packet and continue with the forwarding process. The first
identifier indicates the real recipient and the second indicates the fake recipient.
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Fig. 6. Overhead of fake messages

This improvement is possible due to the broadcast nature of wireless transmis-
sions, which allows all the neighbors from a node to overhear its messages.

Finally, as shown in Fig. 6, the ratio is not affected by different network
topologies. This is not surprising since the number of transmissions performed
by the protocol is independent of the connectivity of the sensor nodes.

5 Discussion

The devised receiver-location privacy mechanism is aimed to protect from local
adversaries capable of performing various traffic analysis attacks. The strategy
of the adversary is to repeatedly move closer to the base station by observing
the transmissions along the communication path. Starting at any point of the
network he eventually finds a data sender. From this location, the adversary
attempts to determine the direction to the base station by observing the com-
munications of the data sender and its neighbors.

Firstly, the adversary might perform a time-correlation attack and move in the
direction of the neighbor forwarding the first message transmitted by the data
sender. Given the features of our solution several cases may occur depending
on whether the packet is real or fake. If the packet is real, the adversary is
highly likely to reduce by one his distance to the base station. However, this
is not necessarily the case because real traffic might be also forwarded in other
directions. Moreover, the probability of following a real packet is lower than the
probability of following a fake packet. The reason is that, as real messages move,
they generate pairs of messages, one real and one fake, while fake messages trigger
the transmission of pairs of fake messages. Also, note that the adversary can only
be certain of whether he made the right choice when he follows a fake packet
that is no longer propagated. In fact, this issue provides the adversary with no
information about the direction to the base station because fake messages are
forwarded in any direction.
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Alternatively, the adversary might choose to perform a sufficient number of
observations before making a decision on the next move. In that case, the ad-
versary will move towards the neighbor with the higher transmission rate. To
reduce the success of this strategy, the HISP protocol makes nodes to evenly
distribute messages among their neighbors, thus locally homogenizing the num-
ber of packets being observed by a potential adversary. Again, the adversary
cannot determine which packets are real and which are fake unless he observes a
node that after receiving a packet does not forward it. This implies that he is at
the edge of the band of fake messages surrounding the path of real data. Being
able to precisely determine the limits of the band of fake messages could pro-
vide the adversary with information on how to reach the base station. However,
the number and behavior of events being reported by the sensor nodes may be
extremely dynamic, which hinders the process of bounding the aforementioned
band. Moreover, real packets are sent following a random walk which causes the
band to be rather arbitrary. Consequently, even if the adversary was capable
of delimiting the edges of the band at some point, this information does not
necessarily lead him to the base station.

Defining a sound strategy is rather difficult even when the adversary is fully
aware of the protection mechanism in place. The highly dynamic nature of events
in the field results in irregular communication flows which greatly complicates
the definition of the most effective strategy to reduce the distance to the target.

6 Related Work

This section compares the HISP scheme with previous solutions developed to
protect both source- and receiver-location privacy in WSNs.

6.1 Source-Location Privacy

The source-location privacy problem was introduced in [13]. This work proposes
the Phantom Routing protocol to counter adversaries tracing back packets to
the source node. This protocol sends every message on a random or directed
walk to a phantom source, which finally forwards the packet to the sink using
a flooding-based or a single-path routing. In this way, every packet appears to
be originated from a different source. This protocol presents several drawbacks
specially in the walking phase, which tends to stay close to the original source.
New solutions [14] concentrated on guiding this walking phase, while in other
solutions [15] the phantom sources are placed in a ring where the messages are
mixed with fake traffic.

To hide the presence of events to adversaries with a global hearing range, [16]
makes all sensors to transmit messages at a fixed rate regardless of the existence
of real events. This provides perfect privacy but the cost is unacceptable for
battery-powered devices. Several authors concentrated on reducing the energy
implications of this approach. In [17] a filtering scheme is proposed to reduce
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the amount of fake traffic at various network locations. Also, some statistical ap-
proaches [18,19] were devised to modify the real and fake transmission frequency
without arousing suspicion on the attacker.

In general, the presented solutions are based the randomization of the routes
and the injection of fake traffic, which misleads the adversary or hides the
presence of real packets.

6.2 Receiver-Location Privacy

Receiver-location privacy was originally investigated in [4,6] where various load
balancing techniques were designed. They proposed a multi-parent routing tech-
nique that randomly selects the next hop in the path from all available nodes
closer to the sink instead of sending packets always to the same node. To fur-
ther complicate traffic analysis, this technique is complemented with random
walks in any direction and the injection of fake packets with a given probability
distribution.

Other approaches [6,8] concentrated on the creation of hot-spots, which are
areas with high volumes of fake traffic that aim to attract adversaries performing
rate-monitoring attacks. The authors in [7] propose to make all nodes transmit
the same number of packets so that the traffic rate is homogenized regardless
of the proximity to the base station. This strategy provides the best protection
but it also imposes the highest energy requirements. Besides, in [20] the base
station mimics the behavior of ordinary nodes (i.e. forward some of the packets
it receives) to enhance its privacy. Additionally, the authors propose to move the
base station to a safer location based on its own measured privacy level.

The work closest to ours is [5] because it makes use of a path diversification
and fake packet injection. In this work, the authors propose to forward packets
to nodes closer to the base station with some probability 1 − pf > 0.5 and to
nodes further with probability pf < 0.5. These probabilities ensure that packets
eventually reach the sink but, after a sufficient number of observations, the
adversary is able to deduce the direction to the sink. To reduce this problem,
fake packets are injected in the opposite direction based on a certain probability
pfake only after the reception of a real packet. In general, the adversary cannot
distinguish real from fake traffic, however, if he observes that a node that receives
a packet does not forward it, he can be certain that this is fake packet whose
time-to-live has expired. Since fake packets are only sent to further nodes, the
must move in the opposite direction to find the sink.

We propose a packet transmission protocol also based on random route genera-
tion and fake packet transmissions that is capable of circumventing the problems
presented by the previous works.

7 Conclusions

This work presents a new receiver-location privacy scheme for WSNs called HISP.
The proposed solution is based on the injection of fake traffic to hide the flow
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of real traffic which is sent to the base station using a random walk. The goal
is to probabilistically homogenize the overall number of packets that a node
distributes among its neighbors. More precisely, the devised protocol preserves
three critical properties (i.e., convergence, homogeneity, and exclusion), which
ensure the delivery of event data to the base station as well as the robustness of
receiver-location privacy against local adversaries.

The feasibility of the HISP protocol has been validated both analytically and
experimentally. In particular, we have analyzed the impact of the connectivity of
the network on the convergence of the packets to the base station and the privacy
protection level. Also, we have investigated on the expected convergence time
of packets in order to gain insights on the potential applicability of our solution
to time-critical applications. Finally, we have explored the overhead imposed
in terms of fake traffic injection for adversaries with different eavesdropping
capabilities.

As future work we consider investigating new ways of reducing the fake traffic
overhead required to protect against adversaries with a large hearing range. Also,
we will explore the robustness of our scheme against more skilled adversaries.
To that end, we first need to define a set of strategies based on the knowledge
of the adversary about the network and the privacy protection protocol in use.
The adversary may change his strategy depending on the context of the network.
Countering such powerful adversaries may also require the development of new
and more sophisticated protection mechanisms not considered so far.
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Abstract. This paper introduces a privacy-aware geographic routing
protocol for Human Movement Networks (HumaNets). HumaNets are
fully decentralized opportunistic and delay-tolerate networks composed
of smartphone devices. Such networks allow participants to exchange
messages phone-to-phone and have applications where traditional infras-
tructure is unavailable (e.g., during a disaster) and in totalitarian states
where cellular network monitoring and censorship are employed. Our
protocol leverages self-determined location profiles of smartphone opera-
tors’ movements as a predictor of future locations, enabling efficient geo-
graphic routing over metropolitan-wide areas. Since these profiles contain
sensitive information about participants’ prior movements, our routing
protocol is designed to minimize the exposure of sensitive information
during a message exchange. We demonstrate via simulation over both
synthetic and real-world trace data that our protocol is highly scalable,
leaks little information, and balances privacy and efficiency: messages
are 30% more likely to be delivered than similar random walk protocols,
and the median latency is only 23-28% greater than epidemic protocols
while requiring an order of magnitude fewer messages.

1 Introduction

The ubiquity of smartphones enable new communication models beyond those
provided by cellular carriers. While standard cellular communication uses a cen-
tralized infrastructure that is maintained by the service provider, smartphones
have communication interfaces such as ad-hoc WiFi and Bluetooth that allow
direct communication between devices. Since smartphone owners often carry
their devices, leave them constantly on, and encounter other individuals (and
their smartphones) in their daily routines, smartphones enable fully decentral-
ized store-and-forward networks that completely avoid the cellular infrastructure.

Human Movement Networks (HumaNets) [1] fit this model and are designed
to allow participants to exchange messages phone-to-phone without using any
centralized infrastructure. HumaNets’ “out-of-band” message passing is applicable
when cellular networks are unavailable or if the networks are untrusted (i.e.,
operated by a totalitarian state that censors, shuts down, or otherwise leverages
its communication systems to restrict its citizenry).
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Rather than rely on network addresses, HumaNets route messages using geocast
– an addressing scheme that directs messages towards a particular geographic
region. Such a messaging system could be used, for example, to notify a group of
people in a targeted area of an upcoming event, or to warn them of some impend-
ing crisis. To cope with mobility, HumaNet routing protocols route messages based
on message carriers’ predicted future locations. This is accomplished by leverag-
ing self-determined location profiles that approximate the smartphone owners’
routine movements. The patterns of human mobility – for example, the daily
commute to and from work – serve as predictors of future locations. HumaNets

take advantage of this observation by greedily forwarding messages to smart-
phones whose owners’ location profiles indicate that they are good candidates
for delivery.

Privacy issues must be central when designing a HumaNet routing protocol
since location profiles contain sensitive information about participants’ prior
movements. The disclosure of such information is particularly dangerous when
HumaNets are used for covert communication in totalitarian regimes. Existing de-
centralized routing approaches that do not consider privacy [2,3], rely on trusted
third parties [4], or assume a priori trust relationships [5] are also unsuitable for
HumaNets.

This paper proposes a novel routing protocol for HumaNets that protects par-
ticipants’ location profiles from an adversary who wishes to learn previous move-
ments and/or determine “important” locations of network users (e.g., home,
work, or the location of underground activist meetings). Our technique, which
we call Probabilistic Profile-Based Routing (PPBR), balances performance and
privacy by efficiently routing messages in a manner that minimizes the exposure
of users’ location profiles. We demonstrate through trace-driven simulations us-
ing both real-world and synthetic human movement data that our PPBR pro-
tocol is highly scalable, efficiently routes messages, and preserves the privacy
of profile information. In summary, the contributions of this paper are: (1) The
introduction and design of a fully decentralized, privacy-preserving, geographic-
based HumaNet message routing protocol for smartphones; (2) An analysis of
the privacy and security properties offered by our routing protocol; and, (3) A
trace-driven simulation study (using both real-world and synthetic data) that
evaluates our method’s scalability and efficiency.

2 Network Assumptions and Goals

To achieve reasonable performance, HumaNets leverage humans’ tendency to fol-
low routines: The locations that people frequented in the past are predictors of
their future locations [1]. However, a device’s location history may be extremely
sensitive, and moreover, combining multiple nodes’ location histories may allow
an adversary to discover social networks and enumerate participants’ movements.
Hence, the high-level goal of our PPBR protocol and the central challenge of this
paper is to enable efficient geographic-based messaging that limits the exposure
of important location information at message exchanges.
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Importantly, however, our HumaNet routing protocol does not conceal the
identities of the network’s participants. An adversary who intercepts a PPBR
message can reasonably conclude that the sender is participating in a HumaNet.
Participating in a HumaNet inherently carries risk if used as an anti-censorship
technology: This is unfortunately true of any system that may be deemed “sub-
versive”. However, when other means of communication are impossible (either
due to global monitoring or blocked connectivity), HumaNets provide a means to
exchange information in a manner that is efficient, scalable, difficult to surveil,
and privacy-aware.

Requirements. HumaNets routing protocols are designed for location-aware
mobile devices. We assume that network participants can learn their locations
(e.g., via GPS1) without relying on the cellular service provider’s network, and
that devices contain sufficient storage to record their movement histories. We
note that current generation smartphones meet HumaNets’ modest storage and
processing requirements.

We additionally assume that participants have knowledge of the routing area.
Since HumaNets enable geocast routing, a message that is targeted at specific
receivers requires the sender to have some knowledge about the receivers’ likely
future locations (e.g., their home or work); this requirement is similar to that
imposed by traditional networking where users need knowledge of a service’s
hostname or IP address. We also assume that participants know some coarse-
grain information about general movement statistics over the routing area. In
particular, nodes should be capable of estimating the “popularity” of city areas
– e.g., that the upper west side of Manhattan is more densely traveled than Far
Rockaway, Queens. This information can be obtained from census data, other
public source of information, or personal experience. Such information can be
shipped with the HumaNets software and is assumed to be known to an adversary.

Threat Model. We envision both passive and active adversaries. A passive
adversary may have any number of confederates and is able to observe message
exchanges at a fixed number of locations throughout the HumaNet routing area.
An active adversary may additionally participate in HumaNets by generating fake
messages, accepting messages, and/or dropping or misrouting messages.

We do not provide protection against a mobile targeting adversary. An adver-
sary that can physically follow a node can trivially learn about its whereabouts
and discover its routine movements. Such a “stalker” adversary is also very costly
to deploy. In this paper, we focus on less targeted attackers and assume an ad-
versary who monitors, intercepts, or participates in local exchanges that occur
in its presence. The adversary is aware of the participants and their locations
at the time of an exchange, and thus we do not claim that our system provides
traditional location-privacy [6] for ad hoc networks, although such extensions
may be relevant here.

1 GPS is a unidirectional protocol and requires only the reception of signals from
U.S.-operated satellites.
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The adversary’s goals are as follows:

– Disruption: Inject failures into the network such that messages can no
longer be reliably delivered.

– De-anonymization: Determine the originating sender of intercepted mes-
sages.

– Profiling: Infer movement patterns of a targeted individual or learn his/her
“important” locations (e.g., home, work, underground meeting place).

Performance and Security Goals. The goal of our routing protocol is to
provide the following properties in the presence of active and passive adversaries:

– Reliability: Messages should reach their intended destinations with high
probability.

– Efficiency: Messages should reach their intended destinations with rea-
sonable latency and overhead.

– Scalability: HumaNets should be able to scale to a large number of partic-
ipants with many concurrent messages.

– Point-to-Point: Messages should be exchanged only point-to-point and
avoid any centralized routing structures.

– Privacy-Preservation: The protocol should not leak the sender’s iden-
tity, nor should it reveal information about participants’ previous locations.
We do not distinguish between locations that should or should not remain
private (e.g., secret meeting place vs. place of work). The treatment of all
prior locations as private simplifies our protocol design, and more impor-
tantly, improves usability by preventing configuration errors that may lead
to accidental exposure of private locations.

At first blush, it may seem that näıve flooding and random walk strategies
are sufficient to achieve the above goals. Although these strategies achieve the
Point-to-Point andPrivacy-Preservation properties, they are lacking with
respect to Scalability, Efficiency, and/orReliability. In particular, flood-
ing achieves optimal latency and delivery rates because all paths are explored,
but scales poorly since all transfers that do not occur along the optimal path con-
stitute a wasted effort (and, consequently, wasteful power consumption). More-
over, since several senders may use HumaNets to disseminate their messages,
flooding requires that nodes store (and worse, communicate) a large fraction of
all messages. At the other extreme, random walk protocols in which messages
are transferred (as opposed to copied) upon node contacts scales well but incurs
poor Reliability and Efficiency.

It may also seem that traditional cryptographic solutions would be applicable
here. However, the decentralized and highly dynamic nature of HumaNets make
their deployment difficult. In particular, many cryptographic solutions require
centralized services or trusted third parties. Such approaches are problematic in
our setting since a strong (e.g., nation-state) adversary could either compromise
or prevent access to centralized services. Routing techniques that rely on complex
key distribution schemes or expensive cryptographic operations (for example,
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SMC [7]) are incompatible with HumaNets’ distributed architecture and use of
power-constrained devices. A significant advantage of PPBR is that it provides
Privacy-Preservation using simple probabilistic techniques, and avoids the
key management and computation issues present in protocols that provide more
traditional cryptographic protections [4,5,8].

Finally, we note that a non-goal of our system is authentication of message
senders and message content. PPBR is a content-agnostic service that routes
packets, whether they be sent by dissidents trying to organize a rally or a total-
itarian state that wishes to provide misinformation. However, as with standard
networking protocols, PPBR may be combined with other techniques – for ex-
ample, the use of pseudoidentities and digital signatures – to provide stronger
authenticity guarantees.

3 Privacy-Preserving Routing

At a high level, the Probabilistic Profile-Based Routing (PPBR) protocol requires
participants (nodes) to estimate whether they are good candidates for delivering
a message. Upon receiving a message from a carrier— i.e., a node that announces
a message — the receiving node makes a local determination as to whether it is
well positioned to deliver the message to the addressed destination. The node ei-
ther accepts or discards the message, and in either case, does not notify the current
carrier as to its choice. If the message is accepted, the receiving node becomes a
carrier and begins to announce the message. However, unlike flooding techniques
in which messages are continuously duplicated, leading to an exponential number
of message copies, each message carrier in PPBR announces the message to only
k contacts, of which only one out of the k receiving nodes should accept it. The
main task is thus for a receiver to locally determine whether it is best suited to
deliver the message out of the k − 1 other nodes that received the message.

3.1 HumaNet Preliminaries

Addressing. HumaNets provide a basic addressing primitive, geocast, in which
messages are addressed to a geographic location (e.g., a city square). Messages
are routed to nodes who are likely to travel towards the destination address
and are then locally flooded within the confines of the specified destination. We
do not consider temporal features in addressing or routing – i.e., addressing a
message to a location for a specific time – but the protocol described herein can
be easily expanded to meet temporal specifications2. Additionally, HumaNets do
not provide message confidentiality; however, message payloads can be protected
using standard encryption techniques.

2 One method for delivering messages at a targeted time of day is for nodes to main-
tain multiple location profiles, each representing movement information collected at
different times of day. The message exchange algorithm is as described later; how-
ever, each node now uses the location profile most relevant to the addressed time
and location.
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HumaNets interpret the routing area as a grid, the dimensions of which are
assumed to be known a priori to all nodes (for example, based on latitude and
longitude). Messages are addressed to a particular grid square. In the remainder
of the paper, when describing a message address or destination, we refer to the
index of the corresponding grid square.

Finally, HumaNets are fully decentralized, delay tolerate networks, and as such,
deliver messages according to a “best-effort” policy. Importantly, PPBR does not
utilize message delivery acknowledgments; the omission of ACKs and NACKs
increases privacy since it prevents an observer from trivially discovering whether
or not a message was accepted by the receiver.

Message Exchanges. Messages are exchanged between smartphone devices
when they come into wireless contact with one another. We consider a contact
to occur when two nodes are within wireless transmission range, e.g., the range
of Bluetooth or a point-to-point 802.11 transmission in ad hoc mode. At set
time intervals, nodes awaken and begin the routing protocol. If a contact is
made, messages can be exchanged. Otherwise, if there are no other participants
nearby, the node returns to normal activity.

HumaNets require coarse time synchronization (i.e., within a few seconds) to
ensure message exchanges occur at the appropriate times. Such synchronicity
could be achieved using NTP servers, but this would require nodes to send mes-
sages over centralized networks. Fortunately, smartphone devices are already
highly synchronized as a requirement of participating in the centralized cellu-
lar network [9,10] (a network which HumaNets do not use to send messages). If
cellular services are disabled or are untrusted to provide correct time informa-
tion, nodes could alternatively obtain the timing information from GPS satellite
timestamps.

3.2 Routing Overview and Constructions

PPBR consists of two phases: a passing phase and a holding phase (see Figure 1).
In the passing phase, a carrier of a message attempts to pass the message to the
first k nodes that it encounters. A node that receives a message will locally
estimate whether it has the highest similarity to the message address (a grid
square) out of the k− 1 other nodes who also received (or will receive) the mes-
sage. If the node perceives itself to be the best candidate for delivery, it accepts
the message, becomes a carrier, and prepares to transition to the passing phase.
Otherwise, the message is dropped. A node transitions from the passing phase
to the holding phase once it has announced the message to k other neighbors.

The challenge of PPBR is enabling each node to accurately predict whether
it is the best of k candidates to accept a message without conferring with other
nodes. The intuition behind our approach is that a node can compute a similarity
score to a message’s destination using its location profile – a compact representa-
tion of its movement history. To populate its location profile, a node periodically
records its GPS location and determines the fraction of time spent within each
grid square. Using its location profile along with background knowledge of the
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movement patterns of an “average” node, the node can estimate how well it is
positioned to deliver the message relative to the k − 1 other participants who
will receive the message.

An important characteristic of PPBR’s passing phase is that message recep-
tion is not acknowledged. An eavesdropper therefore cannot determine whether
a message was accepted or declined by a nearby node. This makes it difficult for
an adversary to conduct Profiling attacks against a receiver, since it has no
information to form a judgment as to whether the receiver’s profile is well-suited
for delivering the message. (We explore the effectiveness of Profiling attacks
against a carrier who announces a message in Section 5.) To further aggravate
Profiling attacks, if a node accepts a message and becomes a carrier, it does
not announce the message until it has moved a distance d away from its current
location, preventing the eavesdropper from observing the transition.

d

d

Fig. 1. Overview of PPBR routing. (1)
The initial message carrier (node a) en-
ters the passing phase (grey shading).
(2) The carrier encounters three nodes.
(3) Node b considers itself the best of
k candidates and accepts the message,
becoming a carrier and initiating its
passing phase. After advertising k mes-
sages, node a enters the holding phase
(black shading).

After a carrier has performed k message
announcements, it transitions to the hold-
ing phase. In the holding phase, the car-
rier maintains the message for some time
period, during which the node, hopefully,
enters the message’s addressed grid square
and starts the local flood (restricted to
the destination grid square). If the node
does not reach the addressed grid square
within a local timeout, the carrier drops
the message. A message also has an asso-
ciated global timeout after which all carri-
ers drop the message.

Location Profiles. Nodes compute lo-
cation profiles based on their movement
histories.3 Although long term collection
could be useful in constructing a profile, HumaNets rely on shorter historical
windows to minimize the effects from non-repeated movements, e.g., vacations.

Each node periodically polls its location (e.g., via GPS) to update its location
profile. The profile is a matrix indexed by geographic grid square such that
the value at position 〈x, y〉 is the normalized number of location readings in
which the node was located at position 〈x, y〉 in the grid. That is, the value at
position 〈x, y〉 in the location profile corresponds to the frequency that the node
visited location 〈x, y〉 in the physical world over some time window. Following
our heuristic, we assume that the matrix value at 〈x, y〉 (which is defined based
on past behavior) approximates the node’s future likelihood of visiting location
〈x, y〉 in the physical topology.

More formally, consider a current window of location entries
W = (〈xi, yi〉, 〈xj , yj〉 . . .) that are already mapped to grid square references.

3 News reports suggest that popular smartphones may already collect such informa-
tion [11].
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The profile p, indexed by grid squares, contains the values:

p[〈x, y〉] =
{ |W〈x,y〉|

|W | if 〈x, y〉 ∈ W
0 otherwise

, (1)

where W〈x,y〉 is the sub-list containing location entries occurring within the grid
square 〈x, y〉, p[·] is the index function returning the associated value, and | · |
indicates the length of the list.

General Node Profile. An advantage of PPBR is that it does not require
nodes to share their location profiles. However, the technique assumes some
globally shared information which we call the general node profile. The general
node profile is a model of the “average” node’s movement, and has the same
structure and features as the standard location profile. Rather than represent-
ing the frequented locations of a single node, the general profile expresses the
patterns of the general population. We assume that the general node profile is
included with HumaNet software.

As we demonstrate in Section 4, the general node profile does not have to be
a perfect model and can be based on a rough estimate of population densities.
In practice, we posit that a sufficient general node profile could be constructed
using public data such as population densities from census data, transportation
studies, or common knowledge.

Marginal Similarity. A node determines if it is the best of k−1 other message
recipients by comparing its similarity with the message’s destination to the “av-
erage” node’s similarity calculated using the general node profile. If the node’s
similarity is a factor greater, the message is accepted.

More precisely, a node must first be able to calculate the similarity of a loca-
tion profile to a message address (grid square). We consider not only the value in
the profile at the addressed grid-point, but also the values at nearby grid-points,
discounted by their square distance. Formally, we define the similarity of a node
n to a message m addressed to am to be:

sim(p, am) = p[am] +
∑
ap∈p

ap �=am

p[ap]

dist(ap, am)2
, (2)

where p is a location profile and dist(ap, am) denotes the Euclidean distance
between grid-points ap and am. This computation captures the desired property
that a node that more frequently visits the message’s targeted destination (and
nearby areas) will have higher similarity than a node that visits the destination
region less often4.

A similarity score computed with the general node profile, rather than an
individual node’s profile, represents an estimate of the “average” node’s simi-
larity to the message address. We define the relationship between a node n’s

4 We have additionally experimented with other decay functions, and found that they
produce similar (but slightly degraded) performance.
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similarity and that of the general node’s similarity as the marginal similarity

σ. It is calculated as σ = sim(pn,am)
sim(pg ,am) , where pn is the profile of node n and pg

is the general node profile. The marginal similarity speaks to how well a node
is suited to become a carrier of a message addressed to am as compared to a
node on average: higher values indicate the node would make a good message
carrier, while lower values indicate a poor carrier. The next challenge is selecting
a threshold value for σ at which point only one of the k nodes that received the
message will accept it and become a carrier.

Threshold Selection. We define τ as the threshold marginal similarity score at
which a node accepts a message and becomes a carrier. Intuitively, τ should be
the marginal similarity such that 1/k marginal similarity calculations are greater
than τ . The threshold is calculated locally (and privately) by each node. First,
a node computes σ for every grid square in pg:

σ̄ =

〈
sim(pn, a)

sim(pg, a)

∣∣∣∣ ∀ a ∈ pg
〉

(3)

The computations are arranged in a sorted list σ̄, where σ̄i < σ̄j if i < j. σ̄
represents marginal similarity calculations for all likely message addresses, and
we wish the node to accept a message for 1/k of those addresses. To do this,
a node chooses τ such that 1/k values in σ̄ are greater than τ ; more precisely,
τ = σ̄i and i = &|σ̄| ∗ (k − 1)/k', where | · | denotes the length function. τ must
be updated whenever the node’s location profile changes. To conserve battery,
such a computation could occur nightly while the device is charging.

It should be noted that the threshold computation assumes a uniform distri-
bution of message addresses. Although this assumption does not likely hold in
practice, our experimental results indicate that our approach is sufficiently accu-
rate to cause approximately 1/k messages to be accepted by potential carriers.
In particular, using our tested datasets (see Section 4) in which messages are
addressed non-uniformly, between 8.5%-9.5% of messages are accepted.

4 Performance Evaluation

To evaluate the performance of PPBR, we constructed a discrete event-driven
HumaNets simulator. Our simulator takes as input a trace of human (cellphone)
movement and overlays the PPBR routing algorithm. In all simulations, we
choose k to be 10 and conduct 300 independent runs. Message senders are se-
lected randomly across participants, and message addresses (grid squares) are
randomly chosen by selecting a (different) node and addressing the message to
its most frequented grid square as defined by its location profile. Our simula-
tion was concerned with measuring the effectiveness of PPBR over metropolitan
areas, and as such, we did not simulate local flooding. We considered a mes-
sage successfully delivered if it reaches the destination address. The grid overlay
consists of 200 m × 200 m grid squares, roughly the size of a city block, and
we chose d — the requisite travel distance of a node before transitioning to the
passing phase — to be the size of a grid square (200 m).
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Table 1. Characteristics of the movement data sets

Nodes Length Area Contact Rate Waypoints

SLAW [12] 1000 7 days 100 km2 12.62 per hour 150

Cabspotting [13] 536 20 days 326 km2 1.17 per hour n/a

Datasets. Due to privacy constraints, the number of realistic datasets that are
suited for evaluation is unfortunately small. We require that the data contain not
only a large number of nodes, but also that the movement of the nodes should
express regular routines over an extended collection time (i.e., many days). To
demonstrate the feasibility of PPBR, we utilize a suitable real-world data trace
as well as a synthetic trace of human movement (summarized in Table 1):

– Cabspotting: The Cabspotting Dataset [13] contains GPS coordinates
and timestamps of 536 taxicabs in the San Francisco area. The dataset spans
20 days: from May 20, 2008 until June 7, 2008. It should be noted that al-
though the movements of taxis are not representative of the general popula-
tion (taxis are arguably more mobile than the average person), simulations
using this dataset can be interpreted as representing a network composed of
the taxi drivers’ smartphones.

– SLAW: We require a synthetic model that (i) accurately represents human
flight patterns, (ii) contact rates, (iii) waypoints (popular places), and (iv)
routines. The closest model to meeting our needs is Self-similar Least
Action Walk (SLAW) [12]. Based in part on Levy walks [14], SLAW intro-
duces a protocol called Least Action Trip Planning (LATP) that produces
human-like trips between fractal waypoints, that are themselves determined
by finding hotspots in actual GPS traces.

Node Contacts. For two nodes to make contact, they must be in the same
location at the same time. However, the periodicity of location entries in the
Cabspotting dataset is not consistent across nodes (or for the same node). We
consider two nodes to have made contact if they are within 10 meters in a
10 second window. In SLAW, a location entry is generated every 60 seconds
consistently across all nodes; we consider a contact to occur if two nodes are
within 10 meters at the same minute mark.

Timeouts. We use a 12 hour local timeout with both traces. For the shorter,
more dense SLAW movement trace, a three day global timeout is used. The
longer, more sparse Cabspotting trace uses a seven day global timeout. Finally,
simulations begin after an initial delay so that node profiles can be well seeded;
delays of three and seven days are used for SLAW and Cabspotting, respectively.

Location Profiles. Each node constructs its location profile using a three day
window of location histories. Location profiles are updated daily, and the current
day’s profile represents the location history of the three previous days.
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Table 2. Median and Average Latencies (first and third quartiles in braces) and
Delivery Rate

Cabspotting [13] SLAW [12]
Med/Avg Latency (hrs) Rate Med/Avg Latency (hrs) Rate

PPBR 3.6/6.8 [1.2,4.6] 62.6% 4.2/4.8 [2.6,6.2] 61.8%
Walk-10% 4.4/6.0 [1.6,8.1] 43.4% 5.1/5.5 [2.9,5.2] 48.0%
Flood-10% 2.8/4.1 [1.6,4.4] 99.4% 3.4/3.3 [2.2,4.2] 100.0%

To generate the general node profile, we select a 10% sample of nodes from
each dataset and use three days worth of movement data. The 10% sample is
excluded from all simulation experiments. A visualization of the resulting general
node profile are shown in Figures 4 and 5 in the Appendix.

4.1 Simulation Results

To measure the efficiency of PPBR, we compare our strategy against two proba-
bilistic protocols that do not use location information: probabilistic random walk
and probabilistic flooding. The probabilistic random walk routing scheme also
has passing and holding phases; however, unlike PPBR, the random walk does
not use location profiles. Instead, a node accepts a carrier’s advertised message
with a fixed probability of 1/k (i.e., 10%). We also compare PPBR to a 10%
probabilistic flood in which nodes duplicate the message to a contacted node
with probability 0.1. The flood provides insight into a worst case for network
load – i.e., exponential growth in the number of duplicate messages. The global
and local timeouts for both random protocols are identical to those used by
PPBR.

Threshold Estimation. As described in Section 3.2, each node computes its
threshold marginal similarity score (τ) based on the general node profile and
its knowledge of the routing area. To determine if our local, per-node thresh-
old calculations were generating good thresholds, we looked at the variance of
thresholds calculated at each node for one day in the simulation. The average
value for τ was 1.557 and 1.353 for SLAW and Cabspotting, respectively. We
found that there is very low variance among the nodes’ thresholds: 0.011 for
SLAW and 0.085 for Cabspotting. Further, we observed that thresholds were
effectively limiting message acceptance to 1/k; with k = 10 the probability of
message retention was 9.5% and 8.5% for SLAW and Cabspotting, respectively.

Performance Metrics. We evaluate our routing performance using the follow-
ing metrics: delivery rate is the percentage of messages that reach the destination
address (a grid square); latency is the amount of time it takes for a message to be
delivered; and network load is the number of messages in the network at a given
time. Ideally, the routing protocol should deliver messages with a high delivery
rate, low latency, and low network load.
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Fig. 2. The number of message copies (“duplicates”) of each message for (left) Cab-
spotting and (right) SLAW, and inset, the average

Delivery Rate and Latency. Table 2 lists the delivery rates and latencies for
PPBR, random walk, and probabilistic flooding5. Unsurprisingly, flooding offers
both the best latency and delivery rates. (As we show later, it also incurs a very
high network load, making it impractical for networks of battery-constrained
smartphone devices.) PPBR routing outperforms random walk for both median
latency and delivery rate. Although the average latency for PPBR using the
Cabspotting dataset is 0.8 hours slower, the median latency is nearly an hour
faster and within 28% of probabilistic flooding. The skew in the average latency
is caused in part by the higher delivery rate, and that some messages were
delivered after random walk was no longer delivering messages.

Network Load. The load on the network is measured as the average number
of message duplicates in the system across all simulations runs. PPBR does not
guarantee that only a single copy of a given message is present in the system.
Carriers announce a message to k other nodes; ideally, only one node should
accept it. If the message is accepted, the carrier retains the message until either
it is delivered or a local timeout occurs. Hence, each message could potentially
have multiple (or zero) duplicates.

Figure 2 plots the number of messages that persist in the system over time,
normalized to the number of senders in the system (which, in our simulation
experiments is always 300). The average number of message copies, computed
over the entire simulation, is shown in the Figure’s key. Note that the num-
ber of message duplicates may be less than one if either some messages are not
accepted by any of the k encountered nodes, or if all message copies are deliv-
ered to their destinations. As expected, flooding incurs significant network load,
resulting in approximately two orders of magnitude more message copies than
PPBR. Although the number of duplicates is slightly larger for PPBR than our
näıve random walk protocol, the load is easily manageable.

5 The delivery rates reported in Table 2 result from single attempted transmissions.
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5 Security Properties

Profiling. All message exchanges in PPBR occur in the open, and an adver-
sary can observe any exchange in its presence. However, PPBR offers strong
privacy protections against Profiling attacks for both the node announcing
a message as well as the node who receives, and possibly accepts, the message
announcement.

Message Exchange Carrier Protections: An adversary can determine that a car-
rier node who advertises a message has a high marginal similarity to the mes-
sage’s address; otherwise, the node would not be advertising the message. The
adversary knows that the marginal similarity for the carrier is lower bounded
by the threshold τ , and that nodes choose τ such that they should expect to
accept messages addressed to 1/k of the grid squares. Hence, the acceptance of a
message does not necessarily indicate that the message’s address is particularly
important to the node that accepted it. Depending upon the value of k, a node
may be expected to accept messages targeted at hundreds of grid squares across
the routing area.

Larger values of k decrease privacy since nodes accept messages for fewer
locations, and, thus, an adversary could deduce that these locations are more
likely relevant to the victim node. Conversely, smaller values of k increase pri-
vacy since nodes accept messages to more locations, further obscuring which are
important. Smaller values of k also incur higher power consumption and network
load as more nodes will likely accept (and transfer) the message. In our simula-
tion studies, we found that k = 10 achieves reasonable privacy while restraining
the number of message transfers.

To study this tradeoff further, we compared the set of addresses (grid squares)
that would result in a node a accepting a message to the node’s most frequented
locations as defined in the location profile. Although nodes accepted messages
addressed to 1/k, many of those locations correspond to grid square that are
uninteresting to an adversary who wishes to learn the most frequented grid
squares. This relationship is depicted in Figure 3 (left). The curves represent
the averages across all nodes in the Cabspotting and SLAW datasets. The x-axis
denotes the number of points an adversary is interested in (i.e., the x grid squares
most frequented by the node). The y-axis plots the fraction of the locations
that are accepted by the node which are of interest to the adversary. Generally,
the more specific the adversary’s interest, the more difficult it is for him to
distinguish the pertinent message addresses that are announced by a node, and
consequently, the more difficult it is to discover the node’s most frequented
locations.

The adversary’s ability to discern profile information is further diminished
due to our algorithm’s willingness to discard announcements that are targeted
at highly frequented areas. Recall that the marginal similarity is the ratio of the
node’s similarity score to the general node profile’s similarity score. Hence, if a
message is addressed to a grid square that is often frequented by the node but
also highly frequented according to the general node profile, then the ratio will
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Fig. 3. Fraction of Safe Interest Points (left) and Fraction of Interesting Observations
(right)

not exceed the τ threshold, and the node will never accept a message addressed
there. Consequently, such interesting locations are unobservable and safe from
adversarial analysis. Figure 3 (right) visualizes this relationship. Again, the x-
axis considers the number of grid squares an adversary would find interesting
for a victim node. The y-axis represents the fraction of those interesting grid
squares a node would never accept a message for, averaged across all nodes.

Message Exchange Receiver Protections: During the passing phase, receivers do
not acknowledge acceptance (or rejection) of a message, and hence an adversary
cannot directly determine its similarity to the message’s destination address. An
adversary who is able to follow the node for a distance of at least d can deter-
mine whether the message has been accepted by observing whether or not it is
re-advertised by the node. Such a stalking attack inherently leaks the victim’s
location information regardless of the particular routing protocol being used.
Regardless, if the node is followed, or if a separate colluding eavesdropper dis-
covers that the node later advertised the message, then the adversary can only
conclude that the node accepted the message. In such cases, the effectiveness of
a Profiling attack against the receiver is identical to the effectiveness against
a carrier advertising a message (see above).

De-Anonymization. The standard addressing primitive of HumaNets is geo-
cast, and thus all participants at the addressed location at the time of delivery
should receive the message. Receiver anonymity is trivially exposed in HumaNets

because an adversary located in the address location learns the identities of
the message recipients simply by observing them. However, PPBR provides in-
transit anonymity for message originators (or senders). An intercepted message,
past the initial hop, cannot be traced to the original sender without completely
retracing the message’s path. If an adversary is witness to the initial hop of a
message, the originating sender may be exposed. We note, however, that this is
similar to the level of protection provided by many Internet-based anonymity
systems (e.g., Crowds [15]) in which an adversary on the first hop may infer
with some probability that it has identified the sender (since the sender may
have originated upstream). It is also worth noting that message replay attacks
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in which an attacker re-injects a message in hopes of discovering its path are
also infeasible. It is highly unlikely a message will take the same path due to
variability in human movement.

Disruption. PPBR also provides protection against Disruption attacks in
which an adversary attempts to intercept messages in the network. If the at-
tacker is able to infiltrate the network and receive a large portion of the k hand-
offs for each message, then the probability that the message will be transferred
to an honest node is reduced. However, such an attack may also be prohibitively
expensive for an adversary since message exchanges occur whenever two partic-
ipants have a chance encounter. Additionally, such an attack may be mitigated
by adjusting the number of passing attempts (i.e., k) to compensate.

6 Related Work

The ability to leverage geographic information to efficiently route packets has
been well explored in the literature [2,16]. In many instances, these techniques
require participants to announce their locations. For example, Last Encounter
Routing (LER) [2] and ProPHET [16] expose location information; LER assumes
that the network is sufficiently connected to allow stable and longstanding paths.
Although these techniques may efficiently route messages, they are not well-
suited for settings in which the disclosure of location histories and/or social
relationships may be cause for government-imposed punishment.

There are a number of approaches that attempt to preserve location privacy.
Here, the goal is often to prevent an adversary from either identifying the source
of an intercepted communication or tracking a node over time. Several protocols
(cf. [17,18]) achieve location privacy by relying on ephemeral pseudoidentities.
Such approaches provide unlinkability by impeding an adversary’s ability to as-
sociate different broadcasts with the same node. Although these techniques can
be used in conjunction with our PPBR protocol, we assume an adversary who
is physically present at various (but not all) locations in the network and can
identify individuals and associate broadcasts with their senders (e.g., through
physical identification). Similarly, anti-localization techniques [19] that are de-
signed to prevent an adversary from determining a sender’s location [20] are
ineffective since our adversary can physically observe nodes.

A number of location privacy protocols (cf. [4,21]) are loosely based off of
AODV [22], a popular routing protocol for decentralized mobile networks (e.g.,
MANETs). However, such techniques assume a highly connected and mostly
static network in which messages can be quickly forwarded between nodes. These
protocols assume that nodes are mostly stationary, communication can occur
with low latency, and anonymous paths can be reused for multiple exchanges,
and as such, are therefore not well-suited for networks of mobile smartphones.

There are a number of existing delay tolerant network (DTN) protocols that
are similar to HumaNets, but either have limited functionality or lack HumaNets’
privacy protections. For instance, Zebranet [23] uses local information to ef-
ficiently exchange information between sensor nodes in order to track wildlife.
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However, the network can route messages only towards fixed basestations.
GeoDTN+Nav [24] is a vehicular ad-hoc network routing scheme that, like
HumaNets, relies on location profiles to deliver messages in a DTN. However,
GeoDTN+Nav requires that at least some nodes follow fixed paths (e.g., bus
routes) or provide their destinations before travel (e.g., via a car navigation
system). And in previous work, we applied polygon-intersection algorithm [1] to
HumaNets; however, this protocol does not consider privacy.

The work that perhaps most closely resembles ours is Shifka et al.’s proto-
col [8]. Here, the authors use the heuristic that nodes that share more contexts
are more likely to encounter one another. Like our approach, participants con-
struct profiles that describe frequented locations, but Shifka et al. relies on search
able encryption schemes (namely, PEKS) to limit the adversary’s ability to enu-
merate the contents of a profile. Additionally, their approach assumes a trusted
third party that assigns attribute values (e.g., a frequented location) to nodes.

7 Conclusion

This paper presents probabilistic profile based routing (PPBR), a novel privacy
preserving geographic messaging protocol for HumaNets. Designed for networks
of smartphone devices, our PPBR routing protocol avoids the use of the cellular
network — or any other centralized infrastructure — and is well-suited for en-
vironments in which traditional communication is subject to monitoring and/or
censorship. PPBR leverages self-determined location profiles to assist routing
while minimizing the disclosure of location information to outside observers as
well as adversaries who infiltrate the network. In particular, we demonstrate
using simulations over real-world and synthetic movement data that PPBR is
resistant to disruption, de-anonymization, and location-leakage attacks, while
achieving reasonable delivery rates and latency.
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Appendix: General Node Profile Heatmaps

Fig. 4. Heatmap of the Gen-
eral Node Profiles for the
SLAW dataset. Darker shades
indicate regions with higher
node densities.

Fig. 5. Heatmap of the Gen-
eral Node Profiles for the
Cabspotting dataset. Darker
shades indicate regions with
higher node densities.
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Abstract. The security guarantees provided by SSL/TLS depend on the
correct authentication of servers through certificates signed by a trusted
authority. However, as recent incidents have demonstrated, trust in these
authorities is not well placed. Increasingly, certificate authorities (by co-
ercion or compromise) have been creating forged certificates for a range
of adversaries, allowing seemingly secure communications to be inter-
cepted via man-in-the-middle (MITM) attacks. A variety of solutions
have been proposed, but their complexity and deployment costs have
hindered their adoption. In this paper, we propose Direct Validation of
Certificates (DVCert), a novel protocol that, instead of relying on third-
parties for certificate validation, allows domains to directly and securely
vouch for their certificates using previously established user authentica-
tion credentials. By relying on a robust cryptographic construction, this
relatively simple means of enhancing server identity validation is not only
efficient and comparatively easy to deploy, but it also solves other limi-
tations of third-party solutions. Our extensive experimental analysis in
both desktop and mobile platforms shows that DVCert transactions re-
quire little computation time on the server (e.g., less than 1 ms) and are
unlikely to degrade server performance or user experience. In short, we
provide a robust and practical mechanism to enhance server authentica-
tion and protect web applications from MITM attacks against SSL/TLS.

1 Introduction

The Secure Sockets Layer (SSL) protocol and its successor, Transport Layer
Security (TLS), have become the de facto means of providing strong crypto-
graphic protection for network traffic. Their near universal integration with web
browsers arguably makes them the most visible pieces of security infrastruc-
ture for average users. While vulnerabilities are occasionally found in specific
implementations, SSL/TLS are widely viewed as robust means of providing
confidentiality, integrity and server authentication. However, these guarantees
are built on tenuous assumptions about the ability to authenticate the server-
side of a transaction by using digital certificates signed by a trusted third-party
certification authority (CA).
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The security community has long been critical of the Public Key Infrastruc-
ture for X.509 (PKIX) and its CA-based trust model [13,19]. Much of the concern
has focused on the role of the CAs and their ability and motivation to not only
correctly verify and attest the coupling between an identity and a public key,
but also to protect their own resources. Browsers and operating systems deter-
mine what CAs users should trust by default (i.e., trust anchors). However, this
model has resulted in hundreds of CAs, all equally trusted and from more than
50 different countries [11]. Due to this excessive trust, CAs can forge certifi-
cates for any domain that will be accepted as valid by most browsers. Thus,
adversaries can obtain forged certificates by coercing or compromising any CA
and use them to execute man-in-the-middle (MITM) attacks against SSL/TLS
connections. Last year, the number of reported attacks against CAs increased
considerably [18, 22, 23, 34]. In some cases, adversaries were able to forge cer-
tificates for important web domains (e.g., google.com, yahoo.com and live.com).
Even worse, it has been estimated that a forged certificate was used to intercept
close to 300,000 Gmail sessions in Iran [26]. Furthermore, there is evidence that
governments and private organizations are using forged certificates as part of
their surveillance and censorship efforts [27,35,36]. The frequency of these inci-
dents is likely to increase in the future, as more and more web applications rely
on SSL/TLS to protect all their communications.

Multiple solutions have been proposed to deal with the threat imposed by
forged certificates and MITM attacks. The most popular approach is the use of
additional third-parties to extend or replace the rigid CA trust model (e.g., net-
work notaries [30,38], public audit logs [12,25] and secure DNS (DNSSEC) [20]).
In this approach, users can select one or more third-parties to vouch for the au-
thenticity of a certificate, improving the chances of detecting a MITM attack.
However, depending only on third-parties for certificate validation has several
shortcomings such as: significant deployment and operational costs (e.g., addi-
tional infrastructure with high availability requirements), more complex trust
model for users, privacy concerns and more complex revocation procedures.
Therefore, the inherent complexity and costs associated with third-party solu-
tions have prevented their widespread deployment. As a result, most users still
rely on weak certificate validation checks to detect MITM attacks.

In this paper we propose Direct Validation of Certificates (DVCert), an ef-
ficient and easy to deploy protocol that provides stronger certificate validation
and effective detection of MITM attacks without using third-parties. Our mech-
anism comes from a simple observation – users have already established secrets
(e.g., passwords) with their most important web applications. DVCert allows
web applications to use these secrets to directly and securely attest for the au-
thenticity of their certificates without exposing those secrets to offline attacks.
After a single round-trip DVCert transaction, a browser receives the informa-
tion required to validate all the certificates that could be used during a session
with the web application, including certificates from other domains. As a result,
to execute a MITM attack, an adversary not only needs to compromise a CA but
also each targeted web domain. A DVCert transaction uses a modified Password
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Authenticated Key Exchange (PAKE) protocol known as PAK [8,28]. However,
we are not simply applying a known protocol; rather, we modified PAK to provide
only server authentication and integrity protection instead of mutual authentica-
tion and generation of encryption keys (i.e., traditional use of PAKE protocols).
These changes allow better performance and simplify deployment without af-
fecting PAK’s formal security proofs. Our experimental evaluation shows that
an optimized DVCert transaction requires little computation time on the server
(e.g., < 1 ms) and on the browser. More importantly, DVCert transactions are
executed at most once per session; thus, their impact on server performance or
user experience is negligible. DVCert’s design also provides multiple advantages
over third-party solutions: simpler trust model, lower deployment and opera-
tional costs (e.g., no additional infrastructure is required) and no privacy risks.
Finally, DVCert is a readily available mechanism designed to improve the current
CA trust model and be compatible with third-party solutions such as DNSSEC,
once these solutions are deployed in the future. In so doing, we make the following
contributions:

– Designing and implementing an efficient and easy to deploy mecha-
nism to detect MITM attacks against SSL/TLS without third-parties:
We develop a protocol that provides more robust certificate validation and de-
tects MITM attacks, even if the adversary uses forged certificates. By allowing
web applications to attest directly for their certificates, our mechanism avoids
many of the challenges hindering the deployment of third-party solutions. We
implemented a proof-of-concept extension for Firefox and Firefox for mobile
browsers and a PHP-based server component to demonstrate the deployability
of our solution.

– Conducting an extensive performance analysis in multiple platforms:
We characterize DVCert’s performance using our prototype implementation in
both desktop and mobile browsers. Our results show that an optimized DVCert
transaction requires 0.54 ms of computation time on the server and 12.03 and
97.70 ms on a laptop and on a smartphone respectively. Compared to a näıve
implementation, these results represent a 94.96%, 55.07% and 77.82% improve-
ment on the server, laptop and smartphone correspondingly. Furthermore, we
apply ProVerif [6] to formally verify DVCert’s resilience to offline attacks.

– Making our DVCert implementation available to the com-
munity: The DVCert extension for Firefox and Firefox for mobile
as well as the server PHP code are available for evaluation at:
http://www.cc.gatech.edu/~idacosta/dvcert/index.html.

The remainder of this paper is organized as follows: Section 2 offers impor-
tant background information on SSL/TLS and MITM attacks and presents our
motivation; Section 3 provides the design and formal description of DVCert;
Section 4 presents our security analysis of DVCert; Section 5 shows our exper-
imental analysis and results; Section 6 offers additional analysis and discussion
of our proposed protocol; Section 7 provides an overview of important related
work; and Section 8 presents our conclusions.

http://www.cc.gatech.edu/~idacosta/dvcert/index.html
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Fig. 1. Example of a MITM attack against SSL/TLS

2 Background and Motivation

2.1 The SSL/TLS Protocols and Web Applications

The SSL/TLS protocols [10, 17] are the main security mechanisms used to
protect the communications between browsers and web applications. By pro-
viding a transparent encryption layer, SSL/TLS guarantee the confidentiality
and integrity of the data traveling across the Internet. Moreover, SSL/TLS al-
low browsers to authenticate web application’s servers via X.509 digital certifi-
cates [2]. A digital certificate binds the server’s identity (i.e., domain name) to
the server’s public key and it is signed by a Certification Authority (CA) trusted
by both the server and the browser. Initially, due to performance considerations,
most web applications used SSL/TLS only to protect requests carrying private
data (e.g., passwords, credit card numbers). However, due to the increasing num-
ber of attacks against web sessions (e.g., session hijacking), many applications
have been forced to protect all their communications with SSL/TLS. For this
reason, is common that during a session, a browser establishes multiple SSL/TLS
connections not only with web application’s servers but also with servers from
third-party domains (e.g., CDNs and ads networks). Through a short survey
from the Alexa Top 20 US sites and popular online banking sites (15 in total),
we determined that an average of 12 certificates per domain were validated by
the browser, with a minimum of 4 and a maximum of 22. Moreover, most sites
included at least one certificate from a third-party domain.

2.2 MITM Attacks against SSL/TLS

The security guarantees offered by SSL/TLS rely on the correct authentication
of the server. All such guarantees are rendered ineffective if an adversary is able
to convince users to accept an illegitimately generated certificate, as shown in
Figure 1. First, the adversary positions herself in the network path between the
victim’s computer and the server. When the victim sends a request for estab-
lishing a new SSL/TLS connection with the server (message 1), the adversary
intercepts and responds to it (message 4) using a forged certificate (Cert’). If the
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victim accepts this certificate, then she completes the SSL/TLS setup with the
adversary (messages 5 and 8), who has, as a result, successfully masqueraded
as the server. Simultaneously, the adversary establishes a new SSL/TLS connec-
tion with the server (messages 2, 3, 6, and 7). At this point, the adversary has
two active SSL/TLS connections: one with the victim and one with the server.
However, from the victim’s and server’s perspectives, there is only one secure
connection in place. The adversary can now decrypt, re-encrypt and forward all
the messages exchanged between the victim and the server (messages 9 to 12).
As a result, the adversary can access private information (e.g., passwords) or
even modify it (e.g., code injection).

2.3 Problems with Third-Party Solutions

A considerable number of mechanisms have been proposed to improve server-
side authentication and protect against MITM attacks (see Section 7). The most
popular approach is the use of additional third-party entities that can also vouch
for the authenticity of server certificates. Third-party solutions provide a number
of benefits: protection of the first connection to a new domain, scalable attes-
tation of certificates for all public domains and minimal requirements for web
applications. Unfortunately, this approach also faces several critical challenges.
First, these mechanisms have significant deployment and operational costs. The
additional infrastructure needed can be expensive to deploy and operate due to
requirements such as high-availability, data consistency, performance and secu-
rity. Even web applications can be affected by the operational overheads required
by these mechanisms. Second, the resulting trust model is more complex. The
use of multiple trusted entities to choose from can make the trust model more
complex to evaluate and understand. Thus, average users are likely to rely on
default trust configurations. Moreover, trust is dynamic – a trusted entity today
may become an adversary tomorrow. Third, these mechanisms introduce new
privacy risks. Users’ browsing activity is disclosed to third-party entities. Pre-
venting this problem can add complexity to these solutions. Fourth, certificate
revocation procedures become more complex. The use of multiple entities make
revocation more difficult because of the additional overhead required to revoke
multiple proofs of authenticity (e.g., signatures). Finally, captive portals typically
interfere with these mechanisms. In places such as airports and hotels, captive
portals can block requests for certificate validation to external entities before
user registration. Thus, captive portals need to be modified to allow additional
certificate validation mechanisms.

3 Direct Validation of SSL/TLS Certificates

We present Direct Validation of SSL/TLS Certificates (DVCert), an efficient and
practical mechanism that improves certificate validation and provides stronger
protection against MITM attacks. Instead of relying on third-parties, DVCert
uses the existing shared secrets between the user and the web application to
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directly validate server certificates. DVCert overcomes the limitations of third-
party solutions while also reducing the risks associated with using low-entropy
keys in network protocols.

3.1 Scenario and Threat Model

Our scenario assumes a large, highly distributed web application. The application
uses SSL/TLS to protect all the communications with its users (i.e., always-
on HTTPS). To establish SSL/TLS connections, the application has multiple
certificates signed by a trusted CA. In addition, the application’s web pages
include content from third-party servers. These servers also communicate using
SSL/TLS and have their own valid certificates. We assume that SSL/TLS are
correctly configured in the application’s servers as well as in the third-party
servers. Furthermore, users share a password with the application and use HTML
forms for authentication. Instead of plaintext passwords, the application stores
password salted hashes using public salt values. Finally, we assume that users
follow a robust password policy that is enforced by the application.

We consider a polynomial-time (PPT) adversary that has access to all the
communication between the web application and its users. The adversary’s goal
is to eavesdrop and tamper with this communication by executing MITM attacks
against SSL/TLS. To perform such attacks, we assume that it is possible for the
adversary to obtain forged certificates for any domain that are signed by some
trusted CA. However, the adversary does not have access to users’ passwords,
password salted hashes or server’s private keys. Moreover, we do not consider
attacks against user computers or application servers to obtain such information
and attacks that exploit SSL/TLS implementation or configuration errors.

3.2 Desired Protocol Properties

We identified properties required to achieve an effective and practical defense
against MITM attacks and use them to design DVCert. (1) Effective detection
of MITM attacks: the proposed mechanism must provide robust server authenti-
cation and effective detection of MITM attacks against SSL/TLS, even if illegit-
imately obtained certificates are used. (2) Robustness against offline attacks: the
proposed mechanism should not leak information about the user’s authentication
credentials and must be resilient to offline attacks such as dictionary and crypt-
analytic attacks. (3) Deployability: the proposed mechanism should not require
additional hardware or software, only small changes to the browser and web
application. In addition, it should be simple to configure in both the browser
and the web application. (4) Performance: the proposed mechanism must be
efficient. It must not affect the overall performance and scalability of the web
application. Moreover, it should not introduce risks of DoS attacks. (5) Privacy:
the proposed mechanism should not disclose user information to third-parties
and adversaries. (6) Compatibility: the proposed mechanism must not interfere
with existing functionality in the browser and web application. Browsers not
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Fig. 2. High level overview of DVCert. (1) The browser uses a DVCert transaction
to obtain a fresh DCL (Domain Certificate List); (2) it uses the DCL to validate
certificates used in all the SSL/TLS connections with the application.

supporting the proposed mechanism should still be able to access the web ap-
plication. Moreover, the proposed mechanism must be compatible with other
certificate validation protocols. (7) Usability: the proposed mechanism should
require minimal user intervention and have minimal impact on user experience.
(8) Simple trust model: the proposed mechanism should have an easier to un-
derstand trust model in comparison to third-party solutions. Users must not be
required to make additional trust assessments.

3.3 Protocol Description

MITM attacks against SSL/TLS connections are possible because server certifi-
cates are validated using only a single third-party signature and mutual authen-
tication is weak. DVCert addresses these problems by allowing web applications
to use already available shared secrets to vouch directly for the authenticity of
certificates instead of relying only on third-parties. Figure 2 shows a high level
description of the DVCert protocol. First, the browser establishes a SSL/TLS
connection with the web application and then executes a DVCert transaction
based on the user’s password and a modified PAKE protocol (step 1). In this
transaction, the browser authenticates the web application and receives its lat-
est certificate information. The certificate information is shared using a Domain
Certificate List (DCL), a data structure maintained by the web application that
contains the fingerprints1 of all the certificates that could be used during a session
with the application. The DCL not only includes the fingerprints of the appli-
cation’s certificates but also of third-party’s certificates used in the application
(e.g., CDNs and ads networks). Second, the browser stores the DCL temporarily
and uses it to validate the certificates of each SSL/TLS connection with the
application (step 2), including the SSL/TLS channel established in step 1. If a
certificate is not found in the DCL, then the corresponding SSL/TLS connection
is flagged as untrusted (i.e., probable MITM attack). Once the DCL expires, a

1 A certificate fingerprint is the cryptographic hash of the binary representation (e.g.,
DER encoding) of the certificate.
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Shared information: g, p, d = domain, s = H(u|d). Hash functions H, H1, H2, H3, H4

Information held by Browser: u = username, pw = password
Information held by Server: P = H(pw|s), DCL = domain certificate list

Browser Server
a ∈ Zq
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Operations:
x|y: concatenation of strings x and y
Hi(x): i-th standard cryptographic hash of x
Hi(x): special agreed-on cryptographic hash of x [9, 21]

Fig. 3. Detailed description of a DVCert transaction. On each transaction, the server
is authenticated and the browser securely receives a new DCL.

new DVCert transaction is executed (step 1) to update it. Finally, to avoid ask-
ing for the user’s password on each transaction, the browser securely stores the
password salted hash (PSH) together with the DCL.

DVCert achieves our goals by building on a significantly modified version of
PAK [8, 9, 21, 28]. PAK (and the PAKE family of protocols) is based on the
Diffie-Hellman (DH) key exchange and allows the use of low entropy secrets
such as passwords to securely establish a session secret (i.e., authenticated Diffie-
Hellman). PAK was selected as a starting point for our work because of its formal
security proof and its ability to use shorter exponents [29] for better performance
when compared to other related PAKE-based protocols. The major difference
in our approach is that DVCert uses PAK only for server authentication in-
stead of mutual authentication and generation of encryption keys (standard use
of PAKE protocols), and include features to protect the integrity of the DCL
and distinguish between tampering of the DCL and password errors. In other
words, only the browser verifies the session secret established during the trans-
action. By not providing user authentication, DVCert requires fewer messages
and, more importantly, avoids changes to the browser login user interface – a
major challenge for the deployment of PAKE protocols in web applications [15].
Hence, DVCert is compatible with current user authentication mechanisms (e.g.,
HTML form-based authentication).

Figure 3 shows the details of a DVCert transaction (step 1 on Figure 2). First,
the browser establishes a SSL/TLS connection with the server. This connection is
used to protect protocol information (e.g., usernames) from eavesdroppers. Next,
the browser generates a random exponent a (browser’s DH secret), computes the
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DH value ga and uses it and the password salted hash P to compute m1. If the
password salted hash is not available for this domain (e.g., first DVCert trans-
action with this domain), then the browser prompts the user for her username
u and password pw, computes the password salted hash P and stores it in a se-
cure location for future transactions (i.e., the user is prompted only once for her
password). Once m1 has been calculated, the browser sends it and the username
u to the server using a special header field in a HTTP request (message 1) over
SSL/TLS. After receiving the DVCert request, the server verifies that m1 �= 0
to prevent a known attack, uses the username u to retrieve the password salted
hash P from the server’s database, generates the random exponent b (server’s
DH secret) and computes the DH value gb. The server now obtains the browser’s
DH value ga from m1, calculates the session secret gab and computes m2 and h2.
In addition, the server uses the latest version of the DCL to compute h1. Next,
the server sends m2, h1, h2 and the DCL to the browser in the HTTP response
(message 2). Then, the browser uses the received values to obtain the server’s
DH value gb and to calculate the session secret gab. Next, the browser uses the
session secret gab and other protocol state information to compute new h1 and
h2 values. The browser now compares the computed h1 with the one received
from the server. If the values match, then the DVCert transaction was success-
ful. Thus, the DCL file is trusted (i.e., has not been tampered with) and can
be used to validate certificates. In addition, the successful verification of h1 also
proves the server’s identity. If the h1 values do not match, then the browser pro-
ceeds to verify h2. If this verification succeeds, then the DCL has been modified
and there is a high probability that a MITM is in progress. Therefore, neither
the DCL nor any communication with the server can be trusted. The browser
displays a warning to the user and halts the communications with the server.
If the h2 values are different, then the transaction could have failed due to a
password error (e.g., user typed the wrong password) or a MITM attack. Thus,
the browser displays a warning and prompts the user for a new password for
a limited number of attempts. If the protocol still fails after several attempts,
then the browser halts all communications with the server. In other words, h2 is
used to differentiate between protocol failures due to a MITM attacks or due to
password errors.

After a successful DVCert transaction, the browser stores the DCL and the
password salted hashes in a secure location isolated from other browser com-
ponents. The browser stores one DCL per domain for a limited period of time
according to a domain policy (e.g., once per session). Thus, the total num-
ber of DVCert requests per user is significantly lower than the total number of
SSL/TLS connections. When a SSL/TLS connection is established with a server,
the browser checks that the certificate is in the corresponding DCL (step 2 in
Figure 2). If the certificate is not in the DCL, then a MITM attacks is likely
to be in progress. Thus, the browser displays a warning to the user and halts
the communications with the server. Once a DCL expires, the browser sends an
automatic request (i.e., no user intervention) for a new DVCert transaction to
update the DCL.
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Finally, DVCert assumes that PAK constants, the prime number p and the
generator g, are publicly known. For example, they can be hardcoded in DVCert’s
browser and server components. This measure is important to prevent an adver-
sary from sending bogus p and g values and tricking the user into an improper
DVCert exchange that could leak password information. Moreover, DVCert as-
sumes that the web application stores password salted hashes (P = H(pw|s))
and that salt values (s) are also publicly known. If the salt is not known in
advance, the browser can send an additional request to the server to obtain it.

4 Security Analysis

DVCert main’s goal is to detect MITM attacks against SSL/TLS. DVCert
achieves this by effectively binding the SSL/TLS layer to the application layer
(i.e., channel binding [4, 39]). As a result, a MITM adversary trying to avoid
detection by modifying the DCL is not only forced to compromise a CA to ob-
tain a forged certificate but also to compromise each of the targeted domains to
obtain users’ authentication credentials.

An adversary can try to capture DVCert messages and use offline attacks
to obtain user authentication credentials. However, the attacker needs to ex-
ecute a MITM attack first to access DVCert messages. Thus, such attempts
will be detected by DVCert. Furthermore, PAK’s formal proofs of security for
standard [8] and short exponents [29] (i.e., 384 bits) provide strong guarantees
that the adversary will not learn password information from DVCert messages.
DVCert modifications to PAK do not affect these proofs. For example, PAK and
DVCert transmit the same number of hash values (2) over the network. The
main difference is that DVCert uses one message less and uses the DCL as part
of the computation of h1.

We used ProVerif [6], an automatic cryptographic protocol verifier, to for-
mally characterize DVCert. Using ProVerif, we successfully demonstrated that
DVCert does not leak password information (i.e., resilience to offline attacks).
Due to space limitations, ProVerif configuration details and results are available
in DVCert’s web site.

DVCert information stored in the browser or the server cannot be used to
impersonate the user because DVCert does not provide user authentication.
Therefore, DVCert offers resilience to server compromise similar to augmented
PAKE protocols. The adversary can still use offline dictionary attacks against
the stolen credentials, but the use of strong passwords can mitigate this risk.

The DCL includes fingerprints of certificates from third-party domains be-
cause these certificates cannot be validated directly (users do not share secrets
with these domains). This is important because a MITM attack against a third-
party SSL/TLS connection could be used to compromise the session with the
web application (e.g., code injection attacks). The web application is responsible
for maintaining the latest certificate information from third-party domains in the
DCL. For example, the web application could rely on existing secure connections
with third-party domains to obtain their certificate information. Alternatively,
the application could rely on third-party validation mechanisms.
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A concern with PAKE protocols is the risk of denial of service attacks due
to the cost of public key operations. DVCert mitigates this risk by optimizing
such operations without reducing security. For example, DVCert can use shorter
exponents for better performance without affecting formal proofs of security.
PAK allows the use of exponents with a minimum size of 384 bits (1024 bits
DH group) [29] while maintaining a similar level of security. Another suggested
optimization is the use of static parameters in the server (i.e., b, gb and m2)
to reduce the number of operations (see Section 5). This technique affects the
protocol’s perfect forward secrecy property; however, DVCert does not require it
(i.e., the session secret is not used for encryption). Finally, the web application
could also monitor and limit the number of DVCert requests a user can make
per day according to a domain policy.

5 Experimental Analysis

We implemented DVCert browser and server components (see Figure 2) to eval-
uate their performance and deployability. The DVCert browser component was
implemented as an extension for Firefox 10.0.x and Firefox for mobile (Fennec)
4.03b. The extensions were written mainly in Javascript, but we also used C code
for modular exponentiation operations through Firefox’s js-ctypes API and the
GMP library2. Approximately 500 lines of code were required for both exten-
sions. The DVCert server component was implemented in PHP and required ap-
proximately 400 lines of code. More importantly, the DVCert server component
is completely independent of the web application code; only access to the user
database is required. PAK implementation details as well as test vectors were
obtained from the RFC 5683 [9] and the ITU-T Recommendation X.1035 [21].
The experiments used a laptop (Apple MacBook Pro with dual core 2.53 GHz
processor, 4GB of memory and Mac OS X 10.6) and a smartphone (Samsung
Galaxy S 4G with a 1 GHz Cortex-A8 processor, 512 MB of memory and An-
droid 2.2.1) as our clients. On the server side, we used a Ubuntu 10.10 server
with 2 quad-core 2.00 GHz processors, 16 GB of memory and Gigabit Ethernet.
The server was configured with Apache 2.2, PHP 5.3 and a 2048 bits RSA cer-
tificate. Finally, our prototype DVCert implementation is currently available for
evaluation at http://www.cc.gatech.edu/~idacosta/dvcert/index.html.

Certificate validation operations using the DCL are inexpensive. For example,
for each SSL/TLS connection, the browser executes one hash operation and one
search operation. Assuming an ordered DCL, binary search is used to determine
if a certificate is in the DCL with time O(log n), where the DCL’s size n is in
the order of tens of certificates. In addition, the size of the DCL is small (e.g.,
a SHA-1 certificate fingerprint requires only 160 bits). Hence, the impact on
network bandwitdh due to the DCL is negligible. Therefore, our experimental

2 Javascript-only DVCert add-ons for Firefox required an execution time at least one
order of magnitude higher than add-ons using C native code for modular expo-
nentiation, particularly in the smartphone. Ultimately, we envision DVCert to be
implemented directly in the browser and using native code for its operations.

http://www.cc.gatech.edu/~idacosta/dvcert/index.html
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evaluation focused on the costs associated with DVCert transactions where more
complex operations take place.

First, we measured the time required to generate a DVCert request (tg) and
the time required to verify the corresponding response (tv) in the browser for
different exponent sizes: 2048, 1024 and 384 bits. Morevoer, we used a DCL with
one certificate fingerprint in all the experiments. Table 1 shows the results for
100 DVCert transactions per configuration using a laptop and a smartphone,
including 95% confidence intervals. The results show that for 2048 bits expo-
nents, an often recommended size for standard key exchange protocols [7], the
browser required 26.78 ms and 440.58 ms of total computation time (tg + tv)
on the laptop and on the smartphone respectively. While these computation
times should not affect the user experience due to the low frequency of DVCert
transactions, we can see that using 384 bits exponents decreased these times to
12.03 ms on the laptop (55.07% improvement) and 97.70 ms on the smartphone
(77.82% improvement); thus, such delays are unlikely to be noticed by users.

Second, we measured the server response time using network traces for single
HTTPS requests (i.e., our baseline) and HTTPS requests with DVCert. Each
request retrieved a small HTML page (≈ 500 bytes. We chose this small size to
measured only the overhead added by SSL/TLS and DVCert). Moreover, our
measurements did not include SSL/TLS setup times. For HTTPS request with
DVCert, we evaluated different exponent sizes (2048, 1024 and 384 bits) and the
use of dynamic (tr) and static (trsp) server parameters. Based on these mea-
surements, we estimated how much time the server spent on DVCert operations
(td and tdsp) by subtracting the baseline time from the HTTPS+DVCert server
response times. The results for 100 DVCert transactions per configuration are
shown in Table 2, including 95% confidence intervals. The most robust con-
figuration, 2048 bits and dynamic parameters, required 10.71 ms of additional
server computation time, while the most efficient configuration, 384 bits and
static parameters, required around 0.54 ms (94.96% improvement). Thus, the
most efficient DVCert configuration requires less time than serving a HTTPS
request (1.17 ms) and it is smaller than the average network jitter in the US
(0.67 ms [5]). Also, Table 2 shows how static parameters can reduce DVCert
processing time on the server by at least 38%. Overall, these results show that
DVCert operations have similar processing requirements to other server opera-
tions (e.g., SSL/TLS setup, HTTPS requests processing) while still maintaining
robust security guarantees. Thus, DVCert should not degrade performance or
increase the risk of DoS attacks.

Finally, we evaluated the overall impact of DVCert on server throughput in
the hypothetical scenario where each SSL/TLS connection includes a DVCert
transaction (i.e., upper bound). For this purpose, we measured the rate of
HTTPS requests (using one SSL/TLS connection per request) and the rate of
HTTPS+DVCert requests that the server can handle. As before, we evaluated
DVCert with different exponent sizes (2048, 1024 and 384 bits) and one setup
with static parameters and 384 bits exponents. The test load was generated
with httperf, a HTTP traffic generator tool. Figure 4 shows the results of this
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Table 1. DVCert request generation time (tg) and response verification time (tv),
including 95% confidence intervals, on a laptop and on a smartphone for different
exponent sizes.

Exp. Size Laptop tg (ms) Laptop tv (ms) Phone tg (ms) Phone tv (ms)

2048 bits 10.36 (±0.09) 16.42 (±0.29) 171.92 (±1.79) 268.66 (±9.64)

1024 bits 3.95 (±0.07) 9.55 (±0.14) 48.68 (±2.11) 71.88 (±7.87)

384 bits 3.26 (±0.09) 8.77 (±0.14) 33.58 (±0.72) 64.12 (±7.44)

Table 2. Server response time (tr) for a HTTPS request and a HTTPS request with
DVCert using dynamic and static parameters (trsp) and different exponent sizes. By
subtracting the time of a single HTTPS request, we estimated the cost of DVCert op-
erations with dynamic (td) and static (tdsp) parameters and determined the percentage
of improvement (% Imp.) due to static parameters.

Request Type tr (ms) td (ms) trsp (ms) tdsp (ms) % Imp. (tdsp)

HTTPS only 1.17 (±0.01) – 1.17 (±0.01) – –

DVCert 2048 bits 11.88 (±0.01) 10.71 6.66 (±0.01) 5.49 48.74%

DVCert 1024 bits 3.02 (±0.01) 1.85 2.20 (±0.01) 1.03 44.32%

DVCert 384 bits 2.04 (±0.01) 0.87 1.71 (±0.01) 0.54 37.93%

experiment for 10 measurements per point (300 in total), including 95% confi-
dent intervals. This figure shows that, even if every SSL/TLS connection uses
a DVCert transaction, using 384 bits exponents allows a maximum throughput
close to the one obtained using single HTTPS requests. Moreover, 1024 bit expo-
nents could also allow a similar performance if static parameters are used (based
on the results shown in Table 2). Thus, using 1024 bits exponents or shorter
and static parameters reduces the risk of DoS attacks, eliminating the need for
additional DoS defenses (e.g., client puzzles).

6 Discussion

6.1 DVCert Benefits

In addition to meeting the design goals described in Section 3.2, DVCert solves
most of the problems hindering the deployment of third-party defenses against
MITM attacks (see Section 2.3). First, DVCert is easier to deploy and maintain.
In most scenarios, DVCert should not require additional infrastructure due to
its low processing costs. Only minor modifications are required to add DVCert
support to the web application and the browser (see Figure 2). For example,
DVCert only needs access to the application’s user database and certificate in-
formation (i.e., the DCL). Hence, DVCert can be deployed as an independent
service without modifying any existing functionality in the application. In the
browser, DVCert can also be implemented as an independent component that
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Fig. 4. Comparison of the web server throughput for single HTTPS request and
HTTPS requests with DVCert in the hypothetical case that DVCert transactions
are executed per SSL/TLS connection (i.e., upper bound). HTTPS+DVCert config-
urations used different exponent sizes and one configuration used static parameters
(HTTPS+DVCert-sp).

only requires the certificate information used on each SSL/TLS connection and
secure storage for the password salted hashes and DCL data. Moreover, by re-
lying on passwords, users do not need to deal with additional secrets or devices
and can benefit from DVCert on a wider range of platforms. Second, DVCert
has a simpler trust model. It relies on existing trust relationships between users
and web applications; hence, users do not need to assess and establish new trust
relationships with third-parties. Third, DVCert does not introduce new privacy
risks. User browsing activity is not revealed to third-parties when a certificate is
validated using DVCert. This property is particularly important for users with
high privacy and anonymity requirements (e.g., Tor users). Fourth, certificate re-
vocation is simpler. For instance, a certificate can be revoked by just removing it
from the DCL. Thus, there is no need for mechanisms such as CRLs and OCSP,
both criticised due to their ineffectiveness [24]. Fifth, DVCert is more resilient
to compromise than third-party approaches. Third-party solutions can vouch for
certificates belonging to a large number of domains. However, if compromised,
then all the protected domains could be affected by MITM attacks. In contrast,
DVCert is deployed independently per domain; thus, attacks against one domain
will not affect other domains. Finally, DVCert is compatible with captive portals
in certain scenarios. For instance, DVCert could verify the certificates of captive
portals that already share a secret with the user (e.g., Wi-Fi provider account) or
where the user receives a shared secret via a secondary channel (e.g., a receipt).

6.2 DVCert Limitations

DVCert allows web applications to vouch for their certificates using existing au-
thentication credentials. Thus, DVCert can only protect web applications where
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the user has an account and a shared secret. However, this is not a major limi-
tation because most of the web applications that are likely to be targeted by ad-
versaries (e.g., sites with private information) require authentication credentials.
A related case are web applications that rely on federated identity management
(e.g., OpenID) or Single sign-on (SSO) systems. Here, users share a password
with an identity provider instead of the web application. Still, DVCert can be
extended to validate certificates in such scenarios. For instance, the web applica-
tion can provide its DCL to the identity provider during the login process. Then,
the browser can execute a DVCert transaction to obtain not only the DCL of
the identity provider but also of the targeted application. We plan to explore
this idea in our future work. Another limitation is that DVCert cannot be used
to protect the first connection to a web application. DVCert is by design a trust-
on-first-use (TOFU) [38] mechanism such as the SSH protocol. Therefore, when
registering to a web application for the first time, users can only rely on CA
signatures and other third-party mechanisms to validate certificates. However,
for most scenarios, it is unlikely that adversaries will be monitoring users before
they have created an account with a web application. Moreover, applications
with high security requirements could also use secondary channels to protect the
user registration process.

7 Related Work

Multiple browser-based mechanisms have been proposed to detect forged certifi-
cates. For instance, browser extensions can keep track of the certificates used by
the browser and can detect certificate changes [1, 36]. While simple, the effec-
tiveness of this approach is affected by false positives and lack of user training.
A related technique, known as certificate pinning [16], uses a white-list of certifi-
cates for important domains that are hardcoded in the browser. This solution is
less prone to false positives; however, it is neither flexible nor scalable. A more
robust approach is the use of secondary channels such as cellular networks [33]
and Tor [3] to obtain additional copies of the server certificate. Unfortunately,
this approach is difficult to deploy and can introduce significant delays.

Most research in the area of MITM defenses focuses on using additional third-
parties to improve or replace the CA trust model. For example, mechanisms such
as Perspectives [38] and Convergence [30] allow users to choose multiple network
notaries that can complement or replace CAs signatures. The Mutually Endors-
ing CA Infrastructure (MECAI) [14] proposes a similar approach, but instead of
introducing new notaries, MECAI uses existing CAs as notaries. A different tech-
nique is presented by the Electronic Frontier Foundation (EFF) Sovereign Keys
(SK) project [12]. In SK, domain certificates include an additional integrity sig-
nature created with the domain’s sovereign key. To verify this signature, browsers
can obtain the corresponding sovereign key from a semi-centralized, append-only
public data structure. Google’s Certificate Transparency (CT) [25] proposal also
relies on a similar data structure, but instead of storing keys, it stores records of
each certificate emitted by a CA; thus, browsers can check this public audit log
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to validate they are using the correct certificate. The IETF DNS-based Authen-
tication of Named Entities (DANE) working group [20] is developing protocols
that use secure DNS (DNSSEC) extensions to bind certificates to domain names.
Finally, while third-party based solutions offer several benefits, their adoption
has been hindered by multiple problems such as deployment and operational
costs, lack of user training, false positives and others (see Section 2.3).

To a lesser degree, researchers have also explored the use of shared secrets
(e.g., passwords) to defend against MITM attacks. For example, the TLS-SRP
protocol [37] uses SRP [40] for mutual authentication and SSL/TLS key deriva-
tion based on the user’s password (i.e., certificates and CAs are not required).
However, TLS-SRP requires inter-layer communication between the application
and the SSL/TLS stack, breaking SSL/TLS transparency. A different technique
is to use shared secrets for channel binding [39], as proposed in the Session Aware
(TLS-SA) user authentication protocol [32]. To detect MITM attacks, TLS-SA
uses authentication codes based on user credentials and SSL/TLS session infor-
mation, effectively binding the application and SSL/TLS layers. TLS-SA, how-
ever, requires client certificates and hardware tokens to resist offline dictionary
attacks, affecting its adoption. Finally, the Mutual Authentication Protocol for
HTTP [31] also combines user authentication with SSL/TLS channel binding,
but it relies on the user’s password instead of client certificates. To provide mu-
tual authentication and prevent offline guessing attacks, this mechanism relies
on the direct implementation of a PAKE protocol. However, this mechanism
requires additional server state, only protects the login connection and requires
changes to the browser and web application login UI (a significant challenge for
deploying PAKE-based protocols [15]).

8 Conclusions

As recent incidents have demonstrated, adversaries are exploiting weaknesses in
the CA trust model to compromise communications protected by SSL/TLS via
MITM attacks. This trend is likely to accelerate as more and more web applica-
tions adopt SSL/TLS to protect all their communications. Currently proposed
solutions face multiple challenges due to their complexity and deployment and
operational costs; thus, they are unlikely to be widely available in the near
future. We present DVCert, a practical mechanism that relies on previously es-
tablished shared secrets to allow the web application to directly and securely
vouch for the authenticity of its certificates. By using a single round-trip trans-
action with the web application, based on a modified PAK protocol, the browser
learns the information required to locally verify all the certificates that could be
used during a session with the application. Our experimental analysis shows that
DVCert transactions require little execution time on the server and the browser;
therefore, they should not have a serious impact on server performance or user
experience. Finally, DVCert could be extended to protect not only the integrity
of SSL/TLS certificates but also other application’s resources such as Javascript
code and binary objects. We intend to explore this approach in our future work.
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Abstract. Although recent compromises and admissions have given new
credibility to claimed encounters of Man-in-the-middle (MitM) attacks
on SSL/TLS, very little proof exists in the public realm. In this pa-
per, we report on the development and deployment of Crossbear, a tool
to detect MitM attacks on SSL/TLS and localise their position in the
network with a fair degree of confidence. MitM attacks are detected us-
ing a notary approach. For the localisation, we use a large number of
traceroutes, conducted from so-called hunters from many positions on
the Internet. Crossbear collects this data, orchestrates the hunting from
a central point and provides the data for analysis. We outline the design
of Crossbear and analyse the degree of effectivity that Crossbear achieves
against attackers of different kinds and strengths. We also explain how
analysis can make use of out-of-band sources like lookups of Autonom-
ous Systems and geo-IP-mapping. Crossbear is already available, and
150 hunters have been deployed on the global PlanetLab testbed.

Keywords: Man-in-the-middle attack, detection, localisation, X.509,
SSL/TLS.

1 Introduction

The Secure Socket Layer/Transport Layer Security protocol suite (SSL/TLS) is
commonly used on the Internet, and especially the WWW, to provide confiden-
tiality, authentication and data integrity. A key feature is its use of the X.509
PKI to address the key distribution problem. In X.509, Certification Authorit-
ies (CAs) issue certificates to entities, with each certificate asserting a binding
of entity name (e.g., a WWW domain) and the corresponding public key. The
X.509 PKI forms a hierarchy where CAs at the root may issue certificates dir-
ectly to an entity or delegate this process to (one or more) subordinate CAs.
The result is a chain of certificates. Verifiers must trust the CAs at the root and,
transitively, the subordinate CAs along the chain to verify a end-host certificate.
Thus, Web browsers commonly ship with a list of root CAs deemed trustworthy
(the ‘root store’). A remarkable property of X.509 implementations in browsers
is that all CAs in the root store and thus also all subordinate CAs are equally
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capable of issuing certificates to any domain. This was always perceived to be
problematic as it reduces the strength of the whole PKI to the weakest CA. An
attacker with control over just one CA is able to stage MitM attacks against any
domain. This happened to the DigiNotar CA in 2011 when an attacker was able
to issue more than 500 forged certificates [1]. As the revocation infrastructure
was also deemed compromised, all major browsers reacted by blacklisting forged
certificates directly in the browser. The forged certificates were allegedly used in
a Man-in-the-middle attack (MitM) staged against citizens of Iran.

It is this latter kind of attack that this paper is concerned with. While we
may suspect from [1] that a MitM attack happened, and may speculate who
the victims were, it remains curiously unknown how many MitM attacks really
happen in the wild. Most reports seem to exist only in the form of blog posts or
forum entries, e.g., [2,3,4], with claims ranging from attackers in hotel networks
to state-level attacks against citizens of a country. In these cases, all attacks were
actually easily detectable because the MitM did not bother to forge certificates
but used invalid certificates and relied on users to ignore browser warnings.
Unfortunately, affected users seem unlikely to store the MitM’s certificate; nor
do they record how they have connected to the Internet or to which WWW
server (only [3] provides a copy of the fake certificate). Without proper evidence,
however, we as a security community cannot know how pressing the problem of
MitM attackers really is.

Our tool, Crossbear, has been developed as a response to this lack of hard
data. It aims to make a first step towards gathering data and providing proof of
the existence of MitM attacks. With the on-going deployment of Crossbear, we
invite the interested community in our quest to give answers to questions like
how many SSL/TLS MitM attackers exist on the Internet, which certificates
do they use, and where are they located in the network. We are fully aware
that, in particular, localisation is difficult to perform in the face of an adaptive
attacker attempting to counter our methods; however, we are certainly going to
raise the bars for evil-doers and hard evidence will likely help to increase public
awareness. We also emphasise that Crossbear is intended as a tool for the savvy
user or travelling hacktivist who wishes to contribute in the investigation of this
important attack on one of the backbone protocols of the Internet, and not as
a reinforcement or replacement for the current PKI (like, e.g., Perspectives and
Convergence, see Section 2).

Crossbear builds on the well-understood notary concept, but with a twist: it
employs a large number of so-called hunters distributed over the Internet that
compare certificates they receive in a SSL/TLS handshake and record the IP
route they have to that SSL/TLS server. This is reported to a central server
where certificates and routes are analysed and further hunting initiated, i.e.,
more hunters asked to connect to the potential victim server and to report cer-
tificates and IP routes. A comparison of the IP routes from hunters that are
affected by the MitM and by those who are not yields an approximation of
the MitM’s location in the network. The accuracy increases with the number of
hunters.
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Contributions and organisation. The remainder of this paper is organised as
follows. Section 2 presents related work and positions Crossbear as a tool to
combine detection, localisation, and reporting. Section 3 outlines the design of
the Crossbear ecosystem and highlights relevant design decisions. Section 4 ana-
lyses to which degree Crossbear can be an effective tool against different kinds
of attackers of varying strength. It also gives an estimate of the needed numbers
of hunters and shows how out-of-band information can help where pure trace-
routing will fail. We conclude with a summary and invitation to participate.

2 Background and Related Work

The weaknesses of the X.509 PKI for SSL/TLS have been described in several
research papers as well as at hacking symposia. Vratonjic et al. presented a study
of the Alexa Top 1 Million list [5]. Holz et al. presented an extensive study [6] that
covers 1.5 years and includes observation points from around the globe, as well
as data from traffic monitoring. Eckersley and Burns presented a survey based
on scans of the IPv4 space [7]. These efforts showed that certification practices
are not very stringent at best, and authentication errors common. As Sunshine
et al. [8] found that users are likely unable to decide whether a browser warning
indicates a threat or can be safely ignored, this constitutes a serious weakness.
Regardless of user abilities, Soghoian and Stamm warned that governments can
compel CAs to issue forged certificates for state-level MitM attacks [9]. In such
a case, browsers would not even show a warning.

The number of proposals to strengthen or replace the X.509 PKI suggests
how little confidence is placed in it. Two replacements, EFF’s Sovereign Keys
[10] and Google’s Certificate Transparency [11], are based on public logs, i.e.,
public append-only timelines with certificate information. Both are still in the
design phase. It is unclear if they will be successful. A different idea is to employ
a notary approach, which is also a key idea in Crossbear. This concept is based
on the observation that a MitM is unlikely to control all network paths between
a server and its clients. Thus, SSL/TLS clients can ask third-party observers
(the notaries) whether they observe the same certificate from a given server. As
long as the route to at least one notary remains outside of the attacker’s control,
this results in a mismatch between the certificates reported by the notaries and
the one observed by the client.

To our knowledge, Perspectives [12] was the first notary-based project. The
idea is to make initial contact to an unknown server robust against a MitM. The
project periodically scans WWW hosts to generate a database of public keys.
Browsers with the Perspectives add-on can compare keys from the database
with those they are observing. Since 2011, Convergence [13] provides a similar
service on the basis of observed certificates. The Convergence notaries do not
conduct pro-active scanning and connect to a WWW server only when a client
reports a yet unknown certificate. The browser-side add-on relies entirely on the
notaries and essentially disables the use of the normal X.509 PKI. Convergence
emphasises so-called ‘trust-agility’: users can choose to use different notaries
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when their current ones have been compromised. This, however, requires that
users understand the involved technologies and consequences.

All notary concepts share the problem of lack of privacy: notary operators
know which sites users access. Convergence employs a kind of onion-routing to
mediate this. Crossbear does not address privacy issues: as its purpose is to
collect and report data about real attacks, privacy could not be a design goal.

3 Crossbear Design and Ecosystem

Crossbear’s purpose is the collection of data that is likely to contain proof of a
MitM attack. One particular working hypothesis that we would like to see either
verified or falsified is that there are primarily two kinds of attackers. The first
kind consists of MitM attacks close to the victim client, e.g., on wireless access
points. The other kind are ‘state-level’ attackers, i.e., such attackers that can
control whole ISPs and plant the MitM software on network border routers with
the goal of monitoring all SSL/TLS traffic from within their country to one or
several external services (e.g., Web mailers or social networks).

3.1 Principle of Operation

Key idea. Crossbear deploys a large number of so-called hunters on the Internet,
distributed over as many Autonomous Systems and networks as possible. We
implemented two kinds of hunters. The first is an add-on for the Mozilla Firefox
Web browser; the other is a stand-alone application. The add-on is used for both
detection and localisation, the stand-alone applications only for localisation.

The Crossbear server holds a list of servers that are reportedly attacked by
a MitM. This list is pulled at regular intervals by the hunters, which will then
connect via SSL/TLS to the reportedly attacked servers. They extract the cer-
tificate chain the server sends and record the IP route to the server by doing a
traceroute. This information is then sent to back to the central server, where it
can be analysed.

Detection. Possibly attacked servers are reported automatically with the help of
the Firefox add-on. We elaborate on this in Section 3.2. Naturally, a user of the
browser add-on is warned if an ongoing MitM is detected.

Localisation. The position of the attacker can be approximated by cross-bearing,
i.e., comparing the routes that hunters recorded and determining the intersection
points for routes that have been found to be poisoned and those that have been
found to be clean. This is illustrated in Fig. 1, where the Crossbear server receives
different certificates and traceroutes from the victim Alice and from the hunters
Bob, Charlie, and Dave. This allows it to guess that the attacker is located in
the vicinity of Alice because the intersection between her traceroute and Bob’s
traceroute is already at router R4, and Bob reports a clean connection. We
discuss the effectivity of cross-bearing against attackers of various strengths and
positions in Section 4.
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Fig. 1. Components of the Crossbear system

Further vantage points. The Crossbear server uses Convergence [13] as a source
of independent observations from other vantage points on the Internet. It quer-
ies Convergence notaries and stores certificate information plus additional in-
dependent temporal information, e.g., for how long a given certificate has been
observed.

Out-of-band information sources. We also store additional information we obtain
from sources other than hunters.

– CAs used: We store which CAs a domain uses. Domains like, e.g., Google
have always remained customers of the same CAs for longer periods of time1.

– WHOIS information: We retrieve the AS number of all hosts in a traceroute.
For a reported MitM attack, we also take into account how many reports
from the ASes in the country in question have reached us, and whether the
reported forged certificates share properties. The latter is motivated by the
observation that an attacker is less likely to compel or compromise more
than one CA.

– Geo-IP-mapping: Hosts in a traceroute are also looked up in geo-IP data-
bases. Although imperfect, this allows to guess which countries SSL/TLS
traffic has traversed.

We elaborate on the use of this information in Section 4.

1 For Google, this has been confirmed to the authors in private e-mail.
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3.2 Details of the Detection Process

MitM attacks are detected with the add-on for the Web browser.

Protecting the Communication with the Server. All Crossbear clients
(add-ons and hunters) communicate with the Crossbear server via TLS. To pro-
tect this channel against MitM attacks, the server certificate is hard-coded into
clients. If a client finds that the received server certificate does not match the
hard-coded one, its current behaviour is to refuse to operate and offer the user
to send an automatic mail or fax to the Crossbear team that contains all details
about the incident (including the forged certificate). While not yet implemented,
the next major version of Crossbear may support the server signing its messages.
This would allow to bypass the attacker even over a poisoned connection. Note
that clients never sign messages: they do not have IDs and can thus not be
authenticated.

Certificate Verification. Fig. 2 shows how certificate verification works. If
user Alice (A) connects to a Web server V via SSL/TLS and the connection
is under attack by a MitM, she will receive a forged certificate. A thus always
sends a CertVerifyRequest to the Crossbear server S. The message includes
the observed certificate chain, V ’s domain name and A’s IP address. S stores
this together with a timestamp. It then connects to V itself and stores the cor-
responding data. S also queries Convergence notaries for known certificates for
V and stores the results with the observation period that Convergence reports.
This result is sent to A (CertVerifyResult message). There are three optional
messages. If the certificate comparison suggests a MitM, S includes a hunting
task for A, i.e., a request to conduct a traceroute to V . S also includes a reference
timestamp and a PublicIPNotification. We explain the latter in Section 3.3.

Score over Certificate Properties. The Crossbear server also computes a
score that is reported to client add-ons. The score is a weighted sum over a
number of properties. The motivation here is to reduce the number of false
positive warnings for human users of the add-on, i.e., occasions where S detects
a certificate mismatch, but V ’s certificate is actually valid. This can occur for
server farms with multiple different certificates deployed, or for sites that change
their certificates very frequently.

The primary criterion in the score is the comparison of the certificates that
client and S have encountered. However, S also takes the last continuous ob-
servation period (LCOP) into account, which expresses for how long only the
certificate in question has been observed. Further criteria are the number of pre-
vious observations and the certificates that Convergence reports (together with
their LCOP). Our weights are chosen thus that ‘critical’ combinations of prop-
erties yield a score of less than 100. When a score is below this (user-adjustable)
threshold, our add-on displays a warning. Where several factors (completely
or almost) counter-balance a certificate mismatch, the warning will either be
suppressed or a user is at least given the server’s score indicating the factors
that make the certificate likely valid (recall that Crossbear is intended for savvy
users). We list the most relevant factors in Table 1.
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Fig. 2. Protocol flow including the certificate verification request and hunting tasks

When the certificate score is above the threshold, the browser add-on caches
the observed (host, certificate) combinations. When the threshold is not reached
and a warning is displayed, the user is asked if the combination should be ex-
empted and cached. We have experimented with the default settings over the
course of several months and found that false positives occur only rarely. For
popular sites that use several certificates (like Facebook), they have become rare
(due to the server observations) and are not annoying due to the caching. They
can still happen in the small time window when a site that frequently changes
its certificates (like Google) does so and neither hunters nor Convergence have
yet observed this. The more popular a site is, the less frequently this happens.

3.3 Details of the Hunting Process

Hunting is the process of determining a suspected attacker’s network location,
i.e., his position in an AS, sub-network or (with the help of Geo-IP databases)
approximate geographic position.

Every hunter pulls the list of active hunting tasks from the Crossbear server
at regular intervals. A hunting task can also be sent to a client together with a
certificate judgement indicating a possible MitM attack. A ServerTimemessage
is used to give a reference time to use when results are reported back to the
Crossbear server. The hunter then starts to execute the tasks (see Fig. 3). The
hunting starts with conducting a full SSL/TLS handshake and extracting the
certificate chain. The next step is to record the route that IP packets take towards
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Table 1. Parameters used in computing a score for a reported certificate. Cc is the
certificate observed by the client, Cs the certificate observed by the Crossbear server
(S). V is the victim server.

Property and score Rationale

Certificate comparison:
80 if Cc = Cs S observes same certificate
0 if Cc �= Cs Potential MitM
−100 if S cannot get certificate from V S likely blocked

LCOP:
days·2

3
if LCOP ongoing Cc still observed

days
3

if LCOP ended in the past Cc observed in the past only

Observations: count
30

Number of observations

Convergence:
days·2

3
if certificates match Confirmation

days
3

matched in past, but not now Outdated confirmation
−20 if never observed Weak indication of MitM
0 if no reply from Convergence Inconclusive

the destination. This is done with a standard ICMP traceroute. Certificate chain
and route are sent to the Crossbear server.

We require hunters to send a PublicIPNotification request to the Crossbear
server before they can conduct a traceroute and submit results. The reply to a
PublicIPNotification contains the public IP address that the Crossbear server
observes plus a HMAC of it, keyed with a secret key that only the Crossbear
server knows and that is replaced every 30 minutes. Hunters must prepend their
thus determined public IP address to the traceroute and include the HMAC. This
serves several purposes. First, it is necessary to inform hunters with multiple
IP addresses (e.g., IPv4 and IPv6), or which are located behind a NAT, of
the IP address to conduct the traceroute from. Second, it acts as a protection
against completely deliberate forgery of traceroute results: it forces a hunter to
be reachable from the IP address it claims to have. While a powerful attacker is
still able to spoof IP addresses of the system it controls, or of attached systems,
this prevents him from submitting results allegedly from networks that are not
under his control. Finally, knowledge of the claimed source of the traceroute
enables us to draw on publicly available BGP dumps (e.g., Route Views [14]).
This can aid in testing the plausibility of a route during the analysis process.
We discuss this in Section 4.

3.4 Status of Deployment

Crossbear is available in version 1.5 [15]. Stand-alone hunters have been im-
plemented and are already deployed on the PlanetLab testbed in 150 different
locations on the globe. The Crossbear server is hosted at Technische Universität
München. At the time of writing, Crossbear has just finished its beta phase; our
database contains about 4,000 certificate observations conducted by our server
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Fig. 3. Crossbear’s protocol for the execution of Hunting Tasks

plus another 2,000 retrieved from Convergence notaries. Results have been re-
ported from more than 150 unique IP or /24-sub-networks. We have not found
indications of MitM attacks so far, however. Current work includes providing the
hunting functionality as a module for OONI, a distributed framework to monitor
network interferences on the Internet [16].

4 Analysis and Discussion of Effectivity

We analyse the degree to which Crossbear can be an effective tool. We also
discuss counter-attacks against Crossbear.

4.1 Attacker Model

The attacker is assumed to have the full control over a ‘system’ on the path
from the client to the victim server. A system can be either a router or an entire
Autonomous System (AS) through which traffic is forwarded. The attacker does
not control any other path in the network. In particular, he can only ‘imperson-
ate’ IP addresses (i.e., spoof them and intercept replies addressed to them) from
the system he controls or systems that are attached to it, and whose upstream
and downstream traffic is routed through it. An attacker controlling several sys-
tems can be modelled as separate attacks, with the addition that the attacker
can use impersonated IP addresses from the other attacking systems as well.

We structure our discussion along two dimensions. Firstly, we distinguish
attacker types by their selectivity against clients:



226 R. Holz et al.

Non-selective attacker: The non-selective attacker stages his MitM attack
against all clients attached to his system. There are two sub-types: attackers
that MitM only the connections to some SSL/TLS server(s) and attackers
that MitM every SSL/TLS connection.

Selective attacker: The selective attacker stages his MitM attack against a
sub-set of clients attached to the system he controls. The same two sub-
types as above exist.

Secondly, we distinguish by the position of the attacker in the network. We
give special focus to locations that give an attacker most impact: towards the
periphery of the Internet and close to the client; towards the periphery and close
to the victim server; and in a central location of the network topology (i.e., an
important router or well-connected transit AS).

This is motivated by the suspected kinds of attacks in the MitM reports like
[2,3,4], which Crossbear was designed to address primarily. These attackers are
depicted in Fig. 4a and 4b. The first kind is a non-selective attacker who operates
close to the client, e.g., a poisoned wireless access point. The second kind is
a much more powerful but also non-selective attacker who controls an entire
system to which several sub-systems are attached. An example is a state-level
attacker who stages a MitM attack against the population of his own country
by controlling traffic passing his border system(s).

Fig. 4c and 4d show attackers that Crossbear (and indeed any tracing system)
is less effective against. Fig. 4c is a selective attacker that is located close to the
client but acts only against a sub-set of the clients attached to the system he
controls. Fig. 4d is the most powerful and cunning attacker we consider: He is in
control of an important system in the Internet core (e.g., an important transit
AS) and stages his attack against just a sub-set of client systems at the periphery.
A possible example is state-condoned industrial espionage where a government
agency stages a MitM attack on traffic passing through their AS. Note that
MitM attacks become more difficult the more the attacker moves towards the
core of the network: the attacker needs to modify both directions of the traffic;
but phenomena such as hot-potato routing [17] and BGP peering policies like
valley-free routing [18] often cause IP packets to take different return paths.

We discuss now how effective Crossbear is for each scenario and which addi-
tional steps can be taken to aid detection and localisation.

4.2 Detection

In general, ongoing MitM attacks can be reliably detected by a Crossbear cli-
ent/hunter because the queried Crossbear server observes a different certificate
for the victim server. This is true for all attacker types in Fig. 4. Note that if the
attacker chooses to MitM the connection to the Crossbear server, this is detected
and the add-on will react to it (see Section 3.2).

The only attack that cannot be reliably detected by certificate comparison is
when the attacker is on all paths from the vantage points to the victim server.
This is a weakness all notary systems share. Such an attacker would either have
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(a) (b)

(c) (d)

Fig. 4. (a) Non-selective attacker in vicinity of client. (b) Non-selective state-level
attacker. (c) Selective attacker in vicinity of client. (d) Selective (super-) attacker in
core of network.

to hijack BGP routes (as proposed in [19]) or position himself on a point in the
network where all paths to the destination have already converged, i.e., close
to the victim server. If the victim server has been observed previously, however,
Crossbear can still profit from information available at the server. For example,
when important certificate properties like the issuing CA change, this will flag
a client report for manual verification. However, if the victim server has never
been observed before, the attack is not detectable by any notary system.

4.3 Localisation

The ability to accurately trace the attacker’s position in the network depends
entirely on the attacker acting selectively or non-selectively.

The Non-Selective Attacker. The non-selective attacker lends itself well to
localisation. In order for this to work, Crossbear needs a traceroute from the
victim client and from at least one hunter that is attached to an upstream
system (from the attacker’s point of view) and which reports a clean connection.
The accuracy increases the closer that upstream system is towards the attacker’s
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own position and if that view is corroborated by other hunters either downstream
(reporting poisoned connections) or upstream (reporting clean connections).

We present a rough estimate of how many hunters are required in order to
locate a non-selective MitM attacker. To this end, we derive a closed-form model
to estimate the average number of hunters needed to detect a MitM with a
certain probability. We fully acknowledge that we require a number of simplifying
assumptions to make the model suitable for analysis.

Our model only requires the distribution of path lengths between victim cli-
ent and victim server and the distribution of node degrees as input. We have
derived such topological data from publicly available router-level maps and from
measurements from our own university network.

Our analysis is based on an observation that holds for most Internet traffic:
Once two traffic flows with the same destination converge at a point in the
network, they will not separate again until they reach their target. This is a
characteristic of standard IP routing which is based on the destination but not
on the source address. Exceptions exist (e.g., ECMP, CoS differentiation) but
are rare; thus our model will hold for most cases. Given a path from victim client
to victim server via an attacker, traceroutes from hunters will join the path at
some point. Due to the genericity of our model, we can apply it at router level
(i.e., to find the router conducting the MitM attack) as well as at an AS level
(i.e., to find the AS conducting the attack).

In the following, we use the generic term node to denote a router or an AS.

Closed-form model for estimating the number of hunters. We assume that ini-
tially there is only one victim client C and one victim server V . Let the path
C � V consist of intermediate nodes Xj , where X2 is connected to X1 = V and
X� is connected to C. Traffic C � V is subject to a MitM attack at M =: Xm.
After C suspects that its traffic exchanged with V is being attacked, hunters
H1, . . . , Hn conduct SSL/TLS handshakes and traceroutes to V .

In order to accurately locate the attacker at Xm := M , we require that
traffic from some hunter H1 joins the path C � V exactly at Xm, and we
need another hunter H2 whose traffic joins the path on the last undisturbed hop
Xm−1. See Fig. 5 for a graphical explanation. Calculating the probability for
these placements yields the probability for attack localisation.

Our model makes the following assumptions: (1) The attacker intercepts the
traffic exchanged between C and V at a single node M . (2) The MitM attacker
M is not selective, i.e., all traffic for V passing through M is attacked. (3) For
simplicity, we assume that the traffic path V � C is symmetric, as well as any
section V � Xj of any path V � Xk � Hi. Note that real-word routing often
results in asymmetric paths. However, our model remains usable as long as the
path lengths do not differ significantly. (4) In all nodes along the path C � V ,
traffic is routed purely according to the destination address (an exception is M ,
who may choose to divert the attacked traffic). This means that any traffic sent
to V follows a tree with root V : once two traffic flows H1 � V,H2 � V have
converged at some intermediate node X , they will not separate until they reach
V . The same considerations apply for the opposite traffic originated by V : once
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Fig. 5. Notation for the model

its flows separate, they cannot converge again. However, note that due to hot
potato routing, assumption 4 may not hold on an AS level if the node under
consideration is a large-scale AS and the ingress points of H1’s and H2’s traffic
are very different, e.g., on different continents. (5) The probability for a node to
be selected as the location for a hunter Hi is the same across all nodes.

Probability that a hunter covers a node. We estimate the probability that traffic
from a randomly placed hunter H1 traverses a given intermediate node Xj .
For simplicity, we only analyse the traffic direction {C,Hi} � V . Call Xj−1

the successor of Xj. Assume we already know the probability Pr[Xj−1] that
H1’s traffic passes successor Xj−1. We now make the further assumption that
(6) the probability that traffic is forwarded to a specific neighbour of Xj (e.g.,
Xj−1) is evenly distributed among all neighbours of Xj . The only exception is
its successor Xj−2, which cannot be chosen: any path H1 � Xj−2 → Xj−1 →
Xj−2 implies a routing loop (Fig. 5, line labelled ‘impossible’). If Xj has dj
neighbours (i.e., has degree dj), then the probability that H1’s traffic comes
from Xj is 1/(dj − 1). Hence the overall probability that H1’s traffic passes

Xj is Pr[Xj ] =
∏j

k=1 1/(dk − 1). Note that this assumption is actually overly
conservative: In reality, certain neighbours can be ruled out due to hot potato
routing, valley-free routing, topological position etc.; e.g., in Fig. 5 a direct path
X2 � H4 is much more likely than the dotted path labelled ‘unlikely’. Hence
dj is effectively reduced and the probability that H1’s traffic crosses Xj is thus
higher than our estimate.

Probability for correct placement. To locate the attacker at Xm, we need (re-
quirement I ) one hunter H1 who also experiences the attack and whose traffic
separates right at Xm, and (requirement II ) another hunter H2 whose traffic
separates nearer to V at Xm−1, i.e., it just escapes the MitM attack. To meet
requirement I, the traffic must not come via the predecessor Xm+1. Neither
can it come from the successor Xm−1 (routing loop argument). Under assump-
tion (6), the probability that a hunter H1 meets our requirement I is thus
Pr[req I] := (dm − 2)/(dm − 1) ·Pr[Xm]. Similarly, the probability that a hunter
H2 meets our requirement II is Pr[req II] := (dm−1 − 2)/(dm−1 − 1) · Pr[Xm−1].

As the placement of n hunters can be viewed as a Bernoulli trial, the prob-
ability that the traffic of at least one of n hunters satisfies requirement II is
1 − (1 − Pr[req II])n, and the probability that at least one of the remaining
(n− 1) hunters satisfies requirement I is 1− (1−Pr[req I])n−1. Hence the prob-
ability that both requirements are satisfied and that the attacker can be located
at node Xm is Pr[locate(Xm)] := 1 − (1 − Pr[req II])n · 1 − (1 − Pr[req I])n. If
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we allow a defined uncertainty of M ’s position, we have to consider cases where
H1’s and H2’s traffic flows separate one or two hops further towards C or V .

Arbitrary positions of C, V and M . In reality, the hop distance � between C
and V is not fixed but can be seen as a discrete random variable that, on a
realistic router-level graph, can assume integer values between 2 and about 30
(for AS graphs, this number is naturally smaller). Note that � has not played
a role in our calculations so far, as our probability is only affected by m, i.e.,
the number of hops between attacker and victim server. We can calculate an
aggregate detection probability for the attacker by summing over all possible
values of �, and summing over all possible locations m of the attacker. Our final
closed-form model is thus:

Pr[locate] :=

max path length∑
k=1

(
Pr[� = k] ·

k∑
m=1

Pr[locate(Xm)]

)
(1)

Topological data for the closed-form model. To fill in the necessary distributions
for the number of hops � and the node degrees dj , we collected data on both
IP router as well as AS topologies. Rocketfuel [20] provides router-level maps
gained from sophisticated measurements. As networks mainly change in size but
not significantly in fundamental structure, we conjecture that these somewhat
dated maps are still usable for our application. Since they do not reveal the
positions of clients or servers, we only calculated an average degree d̄ and use
dj = d̄ in our model. Across all Rocketfuel topologies, the average degree is
3.98. We obtained the typical number of IP hops by issuing traceroutes from
our university network to about 30,000 randomly chosen hosts from the Alexa
list [21] of the top 1 million most popular Web sites. The distribution of the
path lengths (range 5–28, mean 15.28, median 15 hops) loosely resembles a
bell curve, suggesting that data collected from other vantage points will not be
fundamentally different.

For constructing a (partial) AS graph, we used the RouteViews archive [14]
and combined the 07/07/2011, 12:00h MRT-formatted full-table RIBs from Ore-
gon IX, Equinix Ashburn, ISC/PAIX, KIXP, LINX, DIXIE/WIDE, RouteViews-
4, Sydney, and São Paulo. From this graph, we determined an average degree of
3.51, as well as the distribution of path lengths (range 1–17, mean 3.25, median
3 hops). Again, the data does not reveal locations of clients and servers, so these
calculations have to be taken with a grain of salt.

Results using the model. Fig. 6 summarises the information we can gain from
our model. The model suggests that we only need a very small number of hunters
to localise the AS in which an attacker resides (dash-dotted line). With as little
as 100 hunters randomly distributed across the Internet, chances to pinpoint
the attacker to an AS approach 100%. At the router level, however, the picture
looks different. The model suggests that just 10 hunters are needed to pinpoint
the attacker to a single router (solid line) or to a set of two (dashed line) or
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Fig. 6. Estimating the number of hunters required to pinpoint an attacker

three routers (dotted line) on the path to the attacked server with a probability
between 10% and 20%. This probability rises to roughly 50% if about 5,000
hunters can be employed. However, even with one million hunters, we only have
about a 70% chance to pinpoint a malicious router. Our conclusion here is that
Crossbear works well in tracing an attacking AS, but much less so in tracing the
exact router. However, this is quite acceptable: Crossbear works well against our
state-level attacker from Fig. 4b. As for the attacker on the wireless access point
(Fig. 4a), successful localisation needs exact placement of hunters in the same
ISP network anyway, rather than a large global number of hunters.

The Challenge of Selective Attackers. Selective attackers can neither be
localised directly nor on-the-fly. Indeed, the possibility of selective attackers re-
quires that every reported attack is carefully analysed manually.

Consider Fig. 4c and 4d: no hunter, not even downstream, experiences the
attack. As far as tracerouting is concerned, these attackers become indistin-
guishable from the one in Fig. 4a. A major challenge thus lies in telling them
apart. However, the attacker may still leave clues that, using the out-of-band
information described in Section 3.1, point to the nature of the attack.

Assume that we are in possession of traceroutes from all clients that are
affected by the MitM. Ideally, we also have traceroutes from seemingly non-
affected hunters in the same AS, and ASes in the same country, and ASes that
are attached to an AS that is further upstream. Recall that the attacker cannot
deliberately forge traceroutes as the PublicIPNotification mechanism forces
him to be able to intercept replies to his IP address. Thus, he can only choose his
source IP from the system he controls or one that is attached to it. Also recall
that a traceroute can be tested for plausibility to some degree with available
BGP data (e.g., [14]). The hints we are looking for are poisoned routes from
different stub ASes, i.e., ASes on the network periphery. If we find such routes
in our data, we can conjecture that the MitM is located either where traffic from
these AS converges (the earliest possible location), or further upstream. The only
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plausible alternative would be to assume simultaneous attackers against multiple
AS. This is possible, but one way to tell them apart is to investigate if the forged
certificates share properties (like issuer, key lengths, X.509v3 extensions). If they
do, this points to a common rule set for creation, thus two separate MitM attacks
are less likely. The next step to execute is now to look up the AS and countries of
all hops in the traceroutes. A hint that a selective state-level attacker is indeed
at work is then if we find that the source IPs in the traceroutes belong to an
AS/country which we associate with radical monitoring of their own population.
If the earliest possible location is in that country, that is another hint.

If we do not find anything of the kind, however, our chances become slimmer.
One pattern that is still worthwhile to look for is the one that the selective super-
attacker in the core of the network (Fig. 4d) should show. If the purpose of the
attacker is indeed industrial espionage, one may expect that the MitM reports
and traceroutes are primarily from companies within a select few countries.

Naturally, all of the above is a mere test of plausibility, and we acknowledge
that the proposed methods require (comparatively) intensive manual labour.
However, we wish to point out that until now the research community has prac-
tically no data at all about MitM attacks occuring in the wild. Any report
providing such data will advance current research. The MitM attack in [3], for
example, became known thanks to external reports and because someone made
the effort to try and inform the outside world. Receiving automated reports is
thus useful even where automatic localisation is not possible. This is why we
advertise Crossbear as a tool to record as much data as possible about attacks,
but not as a silver bullet in exposing attackers.

4.4 Attacks against Crossbear

Due to Crossbear’s open nature, there are several options for particularly ag-
gressive attackers. Many of these cannot be entirely avoided and have to be dealt
with in a reactive way.

Hunters do not need to register nor do they have IDs. This was a conscious
choice to encourage user participation. As is true for all such systems, however,
one consequence is that attackers can freely send forged data to the Crossbear
server. Such injections are particularly hard to detect if the attacker employs
‘malicious hunters’. Here, the attacker first drops the connections of all honest
hunters in the system he controls or that are attached to it (note that this may
lead to out-of-band reports). Then, his malicious hunters send forged reports
stating that the connection via the attacker is fine and no MitM is detected.
The Crossbear server will thus have received only one report of a possible MitM
(from the client victim) and a large number of forged reports. The only defence
that Crossbear has here is that the attacker’s source IP is ascertained. As long
as the attacker is not in the core of the network, this will result in a suspicious
cluster of reports from the same AS or country. The attacker can again offset this
by renting and using other computers, e.g., in the cloud. This might be revealed
by implausible traceroutes, but blacklisting such attackers becomes much harder
(and effectively an arms race).
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The Crossbear server is a single point of failure. The usual (pro-active and
reactive) DoS defences on the IP level can be taken. However, attackers can
inflict more serious damage with the above attack or by, e.g., flooding the server
with alleged MitM reports (which lead to hunting processes being initiated).
These attacks can only be detected by continuously monitoring requests and
reports, with special focus on reports from recurring systems or countries.

5 Conclusion

We have described how our tool, Crossbear, can be employed to detect and
localise MitM attacks on SSL/TLS, and we have analysed against which attacker
types it is particularly effective.

Crossbear can reliably detect and report MitM attacks by most attacker types.
Crossbear’s effectivity in localising the attacker’s position in the network depends
strongly on the kind of attacker it faces. Best results can be expected against
an attacker who stages a non-selective MitM attack, like attackers close to the
victim client or state-level attackers monitoring all SSL/TLS traffic to some
WWW servers. Selective attackers cannot be accurately localised. However, they
do leave hints in the reported data that a careful analysis can use to reveal or
assess the nature of the attack. We have also analysed active measures that an
attacker can take against Crossbear. Like all open systems, Crossbear shows a
certain vulnerability here. However, such counter attacks leave hints, too.

We thus advertise Crossbear as a tool to make a step forward in the report-
ing and possibly also in the localisation of MitM attacks in the wild, but we
expressively do not market it as a silver bullet to expose all kinds of attackers.
We wish to invite the research community to participate. Naturally, our data
will be shared.

Acknowledgments. We wish to thank Christian Grothoff and Johann Schlamp
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Abstract. Generating secret keys using physical properties of the wire-
less channel has recently become a popular research area. The main secu-
rity assumption of these protocols is that a sufficiently distant adversary
is unable to guess a generated secret due to the unpredictable behavior
of multipath signal propagation. In this paper, we introduce a practi-
cal and efficient man-in-the-middle attack against such protocols. Using
this attack, we demonstrate: (i) intentional sabotaging of key generation
schemes, which leads to a high key disagreement rate, and (ii) a key re-
covery that reveals up to 47 % of the generated secret bits. We analyze
statistical countermeasures (often proposed in related work) and show
that attempting to detect such attacks results in a high false positive
rate, questioning the overall benefit of such schemes. We implement and
experimentally validate the attacks using off-the-shelf hardware, without
assuming any technological advantage for the adversary.

1 Introduction

Communications over the wireless channel are affected by physical wave phenom-
ena such as reflection, diffraction, or scattering, which contribute to a complex
multipath behavior of transmitted signals. The measured channel response at
the receiver is therefore considered a frequency- and position-dependent random
variable that carries a certain amount of information entropy and can serve as a
source of randomness. An additional physical property exploited in key gener-
ation protocols is channel reciprocity. If the channel response between the two
transmitters, Alice and Bob, is sampled over a short time interval (depending
on mobility patterns and the transmission frequency), both transmitters gener-
ate highly correlated estimates. Since sampling the wireless channel response
is inherently given during any wireless message exchange, this approach offers
an interesting alternative method to generate symmetric secret keys without
relying on asymmetric cryptography. One of the main assumptions is that an
eavesdropper (Eve) is unable to guess the generated bits because her view of the
channel between Alice and Bob de-correlates rapidly with distance and thus re-
sults in inaccurate estimates. Concretely, it is assumed that if Eve is positioned
at least half a wavelength λ away from Alice and Bob, then her estimates are
de-correlated from those computed by Alice and Bob (for more information, see,
e.g. [1]). Similarly, if an active attacker (Mallory) attempts to inject packets into
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© Springer-Verlag Berlin Heidelberg 2012
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the channel during key generation, he is unable to control how his signal is re-
ceived at both sides, which results in a key disagreement. In case of the 2.4 GHz
ISM frequency band, λ/2 is approximately 6.25 cm, which makes physical key
generation attractive for WLAN and wireless sensor network applications.

The variety of existing protocols signify the importance of understanding the
overall security of signal-based key generation schemes under a realistic adver-
sarial setting. In this work, we assume an active attacker without additional
knowledge or technological advantage. His only “toolbox” is the broadcast na-
ture of the wireless channel that allows him to eavesdrop and inject packets at
will. The main goal of a MITM attacker is to reveal the secret key generated by
Alice and Bob. This is done by injecting his own information during the channel
response estimation, which is subsequently used by Alice and Bob as part of
their secret key. To avoid key disagreements that may lead to attack detection,
he waits for injection opportunities that help him to keep the key generation
protocol intact and still succeed. We also show that the attacker has an effi-
cient way of forcing Alice and Bob to re-run the key generation protocol in case
the number of opportunities for key recovery is too small, or simply to launch
a DoS attack (we refer to this as sabotaging attack). To quantify the impact
of these opportunities, we introduce the attack efficiency and key recovery rate
metrics. As the goal of this work is to offer practical insights, we implement the
key generation protocol by Mathur et al. [1] and evaluate our attack against it.
Finally, we discuss countermeasures and show that an attempt to statistically
detect our attack results in a high false positive rate, i.e., it leads to the rejection
of a large number of legitimate packets required by the key generation protocol.
Since Alice and Bob cannot be sure how many of Mallory’s bits were successfully
injected (in our experiments we were successful in revealing up to 47.4 % of the
key) and this may be improved further by using better radio hardware, they are
left without any reliable method on estimating the correct length of the secret,
which questions the general applicability of such protocols.

1.1 Signal-Based Key Generation Protocols

In this subsection, we provide a bird’s-eye view on physical key generation
schemes (see [2,3] for detailed overviews). The three general phases that are
shared by most signal-based key generation protocols are (see Fig. 1a):

Quantization Phase: Alice and Bob create a time series of the wireless channel
response by exchanging packets and measuring channel properties. Examples for
such properties are the received signal strength indicator (RSSI) and the channel
impulse response (CIR). RSSI is often preferred because of its simplicity (it can
easily be measured on a per-packet basis with off-the-shelf hardware). To cre-
ate the initial secret bitstream, the series needs to be quantized by both nodes,
i.e., the measurements need to be mapped to symbols. This requires calculating
thresholds using a single threshold/multi-threshold approach or dynamic thresh-
old schemes (for more details, see Section 6). Fig. 1b shows how measurements
can be converted into bits by using two thresholds.
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(a) Timing diagram, illustrating the commu-
nication between Alice and Bob, and process-
ing steps during the protocol phases.

(b) A sample quantizer. All measure-
ments above the 1-bit threshold and be-
low the 0-bit threshold are converted into
bits, resulting in a 1100100 bit sequence.

Fig. 1. A general overview of the signal-based key generation

Information Reconciliation Phase: After quantization, the generated se-
quences at Alice’s and Bob’s side are likely to disagree because of noise and
radio hardware artifacts. Both then apply information reconciliation methods
to identify and correct such errors. Error correcting codes are one possibility to
achieve this [4]; alternatively, many protocols use an interactive approach and
reveal some information about their errors to reconcile their shared secret. If
both nodes fail to agree on a common key, the samples are discarded and the
protocol needs to be re-run. Some protocols also try to de-correlate their bit-
stream by using hash functions to extract randomness from the given imperfect
input sequence [5], the so-called privacy amplification [6].

Key Verification Phase: Finally, both parties need to cryptographically verify
the mutual secret. Usually this is done using a simple challenge-response pro-
tocol. An unsuccessful response constitutes a key disagreement and the process
starts from the beginning. If protocols use dynamic thresholds, the quantiza-
tion phase can be adapted by decreasing the number of possible thresholds,
i.e., adapting a tradeoff between secrecy (the key length) and a successful key
agreement rate.

2 General Idea of the Man-In-The-Middle Attack

The general idea of our attack is to “poison” the quantization phase between Alice
and Bob. An active attacker attempts to impersonate both participants and to
inject spoofed packets during the quantization phase, which are subsequently
used in the key generation. In the best case, Alice and Bob agree on a common
key of that Mallory knows a (preferably large) part.
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Fig. 2. Overview of the attack principle. Three different cases are depicted from
Mallory’s view of ram and rbm: Case 1 in interval [t1 − t2] is discarded as it lies within
the thresholds. Case 2 in interval [t2 − t3] is a sabotaging opportunity. Case 3 in
interval [t4 − t5] provides a key recovery opportunity.

2.1 Assumptions

We make the following assumptions about the attacker and the environment:

– The attacker adheres to all given security constraints and assumptions of
physical key generation schemes. Specifically, he is not violating any con-
straints on the physical distance, such as being near legitimate transmitters.

– The attacker is always in transmission range of both Alice and Bob.
– The attacker is able to freely control his own transmission power up to a

given (common) hardware limitation.
– The attacker is able to destroy legitimate packets sent by Alice and Bob

when required, e.g., by employing reactive jamming as described in [7].

2.2 Injection Opportunities for Sabotage and Key Recovery Attacks

There is a number of challenges when injecting packets during the quantization
phase. A naive attacker may send spoofed packets purely at random; however,
he would not know how they are received. In consequence, this attack is futile
and likely leads to a key disagreement because Alice’s estimate of the injected
packets differs greatly from Bob’s. On the other hand, if the attacker constantly
sends with a strong signal to superimpose Alice’s and Bob’s communication,
he might be able to inject some packets but risks easy detection by statistical
countermeasures. This means that we need a more sensitive approach to enable
efficient control over the outcomes of our injected packets. The key idea of our
attack is to find opportunities where we exploit the reciprocity of the channel in
the same way as Alice and Bob use it to generate the correlated estimates.
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We use a notation similar to [1]: ryx denotes the channel response received
by node x from a probe signal sent by node y. The channel responses of two
subsequent probes between Alice and Bob are thus defined as

rba = s · h+ na
rab = s · h+ nb

(1)

with s being the probe signal, nx the independent noise process at node x and
h a stochastic process describing the wireless channel between Alice and Bob.
Furthermore, Mallory’s overheard signals are

rbm = s · hbm + nm
ram = s · ham + nm

(2)

with hxm denoting the channel between node x and Mallory. If Mallory is more
than λ/2 away from Alice and Bob, ham and hbm are assumed to be uncorrelated
with h.

However, while Mallory does not know how exactly his packet is received
by Alice or Bob, he does know that the differential in the channel response
is correlated. Hence, injected packets received by Alice or Bob preserve this
differential. Assuming that nm is similar and thus negligible at two subse-
quent measurements, the scenario in Fig. 2 shows two useful cases for Mallory’s
injections:

1. rbm ≫ ram (or vice versa): Mallory measures a large differential as seen in
interval [t2− t3]. Due to the channel reciprocity, it follows that for a spoofed
answer by Mallory the responses are rmb ≫ rma . Knowing that an injected
packet will cause a highly differential channel response at both Alice and
Bob, this constitutes an opportunity to produce highly differential estimates
for Alice and Bob in the quantization phase (→ sabotage attack).

2. rbm ≈ ram: Mallory measures a small differential as seen in interval [t4 − t5].
Here, it follows that for a spoofed answer by Mallory the responses are
rmb ≈ rma . Knowing that an injected packet causes a similar channel response
at both Alice and Bob, this constitutes an opportunity to generate similar
values for Alice and Bob in the quantization phase (→ key recovery attack).

2.3 Measuring the Success of MITM Attacks

We define several metrics for the two attacks to quantify the success of this
approach in attacking physical key-generation protocols:

Sabotage Attack

1. Attack interval : Defines how many probes made by Alice and Bob are sam-
pled on average until a single disagreement bit can be injected. The ratio
reflects the time to find opportunities and have a successful spoof showing
up in the quantized bits. Obviously, the faster the attack is done, the better.

2. Required spoof attempts: This ratio measures how many spoof attempts are
necessary to cause a single disagreement bit. Fewer attempts mean a reduced
chance of detection for the attacker, thus it should be as low as possible.
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Table 1. A summary of the notation used

Symbol Meaning
d/dmax (Max.) Perceived RSSI difference by the attacker
q+/q− High/low threshold for excursions
L/L̃ Messages exchanged for information reconciliation
α Parameter needed for threshold calculation
m Number of packets above/below threshold needed for excursion
hu Vector of channel estimates of node u

σ Standard deviation of RSSI

Key Recovery Attack

1. Key recovery rate: The success of the key recovery attack is measured by
the number of bits of a secret key that are guessed by Mallory. Importantly,
this measure is sensitive to wrong guesses as they rapidly increase the search
space (i.e. the duration of the brute-force attacks)1.

2. Key recovery efficiency: Defined as the percentage of spoofing attempts that
are successfully injected and form a bit in the key. As the detection proba-
bility increases with the attacker’s activity, a high efficiency is preferable.

3 Attacking a Concrete Key Generation Protocol

To illustrate the effectiveness of our attack concept in the real world, we apply
it in a practical scenario. We consider the protocol described by Mathur et
al. [1], the best representative, and implement it on standard off-the-shelf MicaZ
hardware.

The measured wireless channel characteristic r of this protocol is the received
signal strength indicator (RSSI), taken on a per-packet basis. The quantization
phase consists of three separate steps: probing, quantization, and subsequent
bit conversion. First, Alice sends a probe to Bob, who then responds with a
probe of his own. These exchanges use a pre-defined frequency of 20 Hz (i.e., a
50 ms gap between probes). Both parties save the (highly correlated) received
signal strength of the packets. This process is repeated n times, depending
on the desired key length. When the probing completes, both Alice and Bob
have obtained n estimates of the channel, which are saved as vectors ha and hb,
respectively. They now independently calculate the thresholds qu+ = mean(hu)+
α · σ(hu) and qu− = mean(hu) − α · σ(hu), where α is a protocol parameter (0.5
in this case) and σ(hu) denotes the standard deviation of hu. The results are
quantized as follows:

Q(x) =

{
0 if x < q−

1 if x > q+

1 A bit-string of length 
 with i errors results in an additional brute-force factor of∑�
i=1

(
�
i

)
.
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Fig. 3. Illustration of the bit generation process in our implementation of [1], with
an excursion being quantized with 4 or more subsequent packets over threshold q+ or
below threshold q−

Alice and Bob then parse their measurements to find so-called excursions, i.e.,
m or more consecutive values in hu that lie above q+ or below q− (where m = 4
is again a protocol parameter). An excursion above q+ is converted to a 1-bit,
while an excursion below q− denotes a 0-bit. To reconcile the information, Alice
sends a list of k excursions in the form of array indexes L = �1, �2, . . . , �k to
Bob. Bob checks if his measurements hb contain excursions of length ≥ m−1 at
the locations specified in L. Subsequently, he sends back a list L̃ that contains
the indexes matching with excursions on his side. Excursions in L but not in
L̃ are dropped by both parties. After exchanging the L-messages, the quantizer
function is applied to all elements defined by the indexes in L̃ to form the bit
string. Fig. 3 illustrates the process for our choice of m = 4. Alice and Bob
should now have agreed on an identical key. A disagreement can only occur if
m consecutive values lie above q+ in ha and below q− at the same index in hb
or vice-versa. When this is noticed during key verification, the batch of bits is
discarded and the protocol is restarted.

3.1 Implementation of the MITM Attacks

The experimental setup consists of two mobile motes (Alice and Bob) and one
stationary attacker, Mallory. In our scenario, the two legitimate nodes and the
attacker are in the same room. The distance between Alice/Bob and Mallory is
always greater than 15 cm, as required by the security assumptions. Alice and
Bob are moved independently within the room to create the necessary uncorre-
lated measurements. While this scenario does not make unreasonable assump-
tions, the attacker might not be able to be in the same room. Thus, in a second
scenario with Mallory in a different room, we analyze whether the attack still
yields satisfying results under these more difficult circumstances.

Detecting Attack Opportunities. The key parameter defining opportunities
is the maximum RSSI difference dmax between probes. It is intuitive that the
number of spoofing attempts increases when dmax is increased. After the probing
phase, Mallory creates two arrays ha and hb, containing his own view of the two
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(a) Cumulative distribution of opportuni-
ties over RSSI differences as measured in
a 2,000-packet run.

(b) Examples of key recovery opportuni-
ties as seen by the attacker. An opportu-
nity is found when Alice and Bob’s RSSI
values are similar and exceed a threshold.

Fig. 4. Injection opportunities

independent channels between him and Alice/Bob, as illustrated in Fig. 4b. The
difference di at packet counter i is computed as di = |ha[i]− hb[i]|. The optimal
opportunity is at di = 0, but larger values of d are also suitable for the attack
because only differences d ≥ σ(hu) typically lead to a key disagreement. The
results are summarized in Table 2 and Fig. 4a, showing that opportunities occur
reasonably often. The number of excursions for the attack is sufficiently high as
well, even if there are only a few of length m ≥ 4 with d = 0. This does not
constitute a problem, although it might reduce the attack’s effectiveness.

Thresholds and Their Estimation. Besides finding the perfect attack timing,
one needs to estimate values for q+ and q−. Exact knowledge of both thresholds
is not necessary; if a packet is part of an excursion, the attacker knows that it
lies either above q+ or below q−. Fig. 5 illustrates this: an estimated threshold
only causes a wrong guess if the assumed value of q+ lies below the actual value
of q− (or vice-versa). With α = 0.5, the difference between q+ and q− equals
the standard deviation σ. Accordingly, any mistake in deriving both thresholds
smaller than this standard deviation might result in fewer recovered bits, but
does not lead to bit errors. To reduce the probability of a bit error and to
increase the attack’s robustness, a security margin is added to the estimated
thresholds.

One method to estimate thresholds is scenario-based guessing, relying on the
fact that average RSSI and standard deviation change only slightly between
independent protocol runs. Such data can be collected for several scenarios and
used as reference for an attack. While this method has proven useful in our
experiments, it may not be possible to find thresholds suitable for any setup,
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Table 2. Number of opportunities in 8,000 packets and resulting excursions in our
implementation of [1] (left). Real (qA+) and derived (qM+ ) thresholds (right).

d Opportunities Excursions
0 542 (6.8%) 15
1 1030 (12.9%) 77
2 1187 (14.8%) 132
3 955 (11.9%) 182

Run Nr. qA+ qM+
∣∣qA+ − qM+

∣∣ σ

1 −52.7 −51 1.7 7.4
2 −49.5 −49 0.5 6.5
3 −51.3 −50 1.3 8.2
4 −53.1 −52 1.1 7.7

Fig. 5. Effects of inaccurate thresholds. Only the area between the actual q+ threshold
and the estimated q− threshold is susceptible to wrong bit guesses.

rendering it unpractical. Another possibility is to manipulate the setup phase of
a protocol run. Algorithm 1 exploits the information about excursions that an
attacker gains from the L-messages. Mallory waits for opportunities and sends
spoofed messages without taking the thresholds into consideration. Afterwards,
he checks the L-messages to find his own probes. If the number of spoof attempts
was statistically significant then the thresholds should be well reflected in the
attacker’s spoof trace.

Table 2 shows that this approach yields very accurate approximations of q+,
the error

∣∣qA+ − qM+
∣∣ being considerably lower than σ. However, deriving q−

failed, as too few successful spoofs were detected in the lower RSSI-spectrum.
One possibility to deal with this is to ignore the negative threshold and to only
use q+ to detect 1-bits, which slightly reduces the overall key recovery rate.
Another method is to simply define a sufficiently large distance x between q+
and q− and setting q− = q+ − x. As explained above, if this distance is greater
than the standard deviation σ, this does not lead to bit errors. Considering the
values of σ, x = 10 is a conservative assumption.

3.2 Sabotaging Attack

In the protocol of Mathur et al., a key disagreement occurs only if m or more
packets are received with a difference in signal strength greater than the standard
deviation σ. Thus, to deliberately cause a bit error, an attacker sends packets
when the difference between the RSSI of the last packets exceeds a pre-defined
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Algorithm 1. Estimation of thresholds in the setup phase
1: Input : dmax
2: Output : Estimates of q+ and q−
3: while i < n do
4: Receive packets iAlice, iBob
5: if (|RSSIAlice − RSSIBob| ≤ dmax then
6: Send m+ 2 spoofed probes to Alice and Bob
7: spoofs.add(i, RSSIAlice)
8: end if
9: end while
10: Receive ˜L from Bob
11: Sort spoofs descending by RSSI
12: l := spoofs.length
13: Check for longest sequence S in spoofs[0, . . . , �/2] with a ∈ ˜L ∀a ∈ S
14: q+ = min(S)
15: Check for longest sequence S in spoofs[�/2 + 1, . . . , �] with a ∈ ˜L ∀a ∈ S and |S| > 3
16: q− = max(S)
17: if q− = null then
18: q− := q+ − x
19: end if
20: Return q+, q−

threshold dmax. As no quantization is needed on the attacker’s side, knowing the
values for q+ and q− is not crucial, although they can help making the attack
more precise by reducing the number of necessary packets. In our first implemen-
tation, the attacker simply waits until he receives two consecutive packets with a
greatly differing RSSI and starts injecting packets. A single bit error is generally
enough to force a complete restart of the protocol because no additional error
correction schemes are implemented and the location of the error is unknown.
In a further refined version, we altered the attacker’s own sending strength to
make the attack more efficient: every packet sent to the node with the higher
RSSI uses the maximum sending strength; packets to the other node are sent
with a significantly lower power while still allowing for the correct reception of
the packet. This power adaptation ensures a greater difference in the reception
of the packets and is more likely to create a disagreement excursion.

3.3 Key Recovery Attack

The attacker monitors the wireless channel and scans the received data for key
recovery opportunities. If one is found, he starts to inject messages. To ensure
an excursion, Mallory sends m + 2 unicast probes to both Alice and Bob. At
the same time, Mallory stores whether the opportunity was triggered by a high
or low RSSI value to determine the bit afterwards. Algorithm 2 describes this
in more detail.

In addition to sending spoofed messages, the attack requires to destroy the
legitimate packets sent by Alice and Bob. To simulate such a jamming effect,
upon receiving a spoofed probe, the motes voluntarily cease their transmission
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Algorithm 2. Key recovery attack
1: Input : Estimates of q+ and q− from Algorithm 1, dmax
2: Output : Known part of secret key
3: while i < n do
4: Receive packets iAlice, iBob
5: if (|RSSIAlice − RSSIBob| ≤ dmax) & (RSSIAlice > q+ | RSSIAlice < q−) then
6: Send m+ 2 spoofed probes to Alice and Bob
7: spoofs.add(i, RSSIAlice)
8: end if
9: end while
10: Receive ˜L from Bob
11: for all j in ˜L do
12: if ˜L[j] ∈ spoofs then
13: key[j] := quantize(spoofs[j].rssi)
14: end if
15: end for
16: Return key

until the attack is over.2 If the index of a spoofed packet appears in L̃, the
attacker can derive the RSSI of the packet from his own saved measurement and
infer the resulting bit.

4 Results

4.1 Sabotaging Attack

For the sabotaging attack, we conducted 9 identical runs comprising 5,000 probes
overall. The results in Table 3a show the efficiency of using a fixed transmission
strength. While the success depends on the nodes’ movement and the erratic
nature of the wireless channel, we can assume with 95 % confidence that 142.37
probes are enough to cause one successful disagreement. Likewise, 7.17 spoofing
attempts result in one disagreement. Assuming 2,000 probe messages are nec-
essary to generate a key with reasonable length, this leaves roughly 93 % of the
setup phase to recover the key while still ensuring a key disagreement with very
high probability once the protocol run finishes.

Table 3b reflects the gain in efficiency when employing the adaptive sending
power approach. In the previous version, 100 packets are not enough to achieve
a reliable key disagreement; however, adjusting the sending strength raises the
efficiency significantly. On average, the number of disagreements almost doubles
for the same amount of probes or spoofing attempts. Again assuming a 2,000
packets run, the attacker now requires less than 4 % of the protocol’s duration
to sabotage the complete run with 95 % confidence. This comparatively small
number of packets ensures that the distortion effect is kept minimal, preventing
detection. In combination with the key recovery attack, the increasing efficiency
enables the attacker to start sabotaging at a later point in the setup phase, thus
generating more accurate thresholds.
2 Recent work [7] shows that reactive jamming is successful at rates > 99.9 %.
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Table 3. Results of the sabotaging attack with 95 % confidence intervals. Both metrics
improve significantly when adjusting the attacker’s sending strength.

(a) Constant sending strength.

Attack
interval

Required spoof
attempts

Mean 113.58 6.01
Variance 1403.25 2.30

Error 12.49 0.50
Upper limit 84.79 4.84
Lower limit 142.37 7.17

(b) Adjusted sending strength.

Attack
interval

Required spoof
attempts

62.41 3.30
333.25 0.61
6.09 0.26
48.38 2.70
76.45 3.90

4.2 Key Recovery Attack

The results of the first scenario with all motes in the same room are documented
in Table 4. Note that the threshold estimates are close to the actual values, which
helps to mitigate bit errors. The most conservative setting d = 0 results in about
40 % of the key being revealed (assuming a length of 64 bit, this would speed up
a brute force attack by factor 223) and indeed the highest key recovery efficiency.
More than half of the sequences sent by the attacker cause an excursion with both
Alice and Bob. Increasing the maximum difference to 1 reduced the efficiency
below 50 %, but greatly increased the key recovery rate. Further increase of the
tolerance level decreases the efficiency with no benefits to the percentage of the
key known to the attacker. Another insight gained from the results is that the
revealed bits are almost exclusively 1-bits. This can be explained by the fact
that the difference in the reception of spoofed packets at Alice and Bob increases
with the distance between Alice/Bob and the attacker. However, this is not a
real issue if the overall number of bits is sufficient because the attacker is not
interested in specific random keys.

The results of the second scenario with Mallory in a different room show that
the attack performs better if the attacker is physically close to the conversation
partners. Both key recovery rate and efficiency are about halved. The number
of successfully created excursions above q+ has decreased to near zero and most
of the retrieved bits are 0-bits. This is intuitive because the attacker does not
increase his sending strength enough to match the weakening caused by the
wall. On the other hand, due to the weakened signal strength, the condition
of receiving signals below q− is fulfilled most of the time. This results in a
rather poor key recovery efficiency. Yet, the attack is successful independent of
the physical proximity of the attacker. The efficiency can easily be improved if
the attacker is able to use superior antennas as well as to increase the sending
strength without being limited by regulations or power consumption.
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Table 4. Key recovery attack results for two scenarios and different dmax

Same room Different rooms
dmax 0 1 2 0 1 2

q+ (actual/assumed) -57.4/-55 -54.2/-55 -53/-55 -53.8/-52 -53.2/-52 -53/-55
q− (actual/assumed) -65/-65 -62/-65 -62/-65 -61/-62 -61.3/-62 -62/-65

Spoof attempts 76 91 130 55 78 130
Bits recovered (0/1) 10/32 12/33 5/27 11/3 14/2 14/4
Resulting key length 108 95 84 64 69 71

Key rec. efficiency [%] 55.3 49.5 24.6 25.5 20.5 13.8
Key rec. rate [%] 38.9 47.4 38.1 21.9 23.1 25.3

5 Possible Countermeasures

There is one obvious countermeasure to spoofing attacks: Alice could recognize
that Mallory is impersonating her when he is sending a packet that carries her own
MAC address. Yet, the standard setting in most commercial wireless adapters is
to discard such packets, not to forward them above the MAC layer. Furthermore,
wireless network interfaces are typically not able to send while in monitor mode,
rendering this approach impractical for most applications. The authors of [1] pro-
pose a scheme that generates radio fingerprints, which are then used to distinguish
legitimate from spoofed packets [8]. Obviously, the attacker must not be present
at this point of time, which is a strong assumption. Additionally, the fingerprint
is bound to the receiver/transmitter pair as well as the environment where it was
generated. This makes it impossible to pre-generate fingerprints in a safe envi-
ronment. In this section, we look at defensive schemes that would allow Alice and
Bob to generate identical keys despite Mallory’s presence, while ensuring a high
level of uncertainty for the attacker. To achieve this, they have to selectively re-
move a high percentage of Mallory’s packets and keep the false positive rate as
low as possible. In any case, such an approach would limit the secret key rate be-
cause the original messages cannot be recovered. Other countermeasures include
the introduction of time into the given protocols. This opens additional statistical
detection vectors but is likely to introduce new difficulties on its own and is not
currently present in the discussed protocols.

Table 5. Effects of packet-based filtering for three selected thresholds

(a) Attacker involvement.

Threshold [dB] Discarded spoofs Discarded legit
10 216 (61.0 %) 522 (31.7 %)
15 126 (35.6 %) 216 (13.1 %)
20 54 (15.25 %) 78 (4.74 %)

(b) Standard run.

Threshold [dB] Discards
10 564 (28.2 %)
15 150 (7.5 %)
20 36 (1.8 %)
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Fig. 6. Packet trace with spoofed and legitimate packets. While there are spoofs that
seem like outliers at first, overall they are difficult to distinguish from a large number
of legitimate packets with similar or even more extreme values.

5.1 Packet-Based Detection

One approach is to discard a packet when the RSSI value differs from the pre-
vious packet by more than a threshold t. However, the signal strength of the
following packets in the spoof sequence is relatively consistent. So, when an
attack is detected, Alice and Bob must not only discard the packet that caused
the detection but also the following m − 1 packets (where m is the unknown
number of packets sent per spoof attempt). Fig. 6 shows a pattern generated by
the attacker’s activity, illustrating how some of the spoofed packets might look
suspicious. Yet, legitimate packets often follow similar patterns, making false
positives likely. Table 5 lists the results of the filtering mechanism in a 2,000
packet run. With a strict threshold of 10 dB, the majority of spoofed packets
(61 %) is rejected. However, a large part of the legitimate ones is filtered as
well, leaving only 63 % of all packets for quantization. Raising the threshold to
15 dB, only one third of the injected packets is removed and the key length is
reduced by 17 %. A threshold higher than 15 dB has negligible effects on both
spoofed and legitimate packets. If the same filtering mechanism is used without
the presence of an active attacker, the impact is smaller but a threshold of 10 dB
still removes more than a quarter of legitimate packets in every run. Thus, to
generate the same key length the number of packets must be increased by one
third. That is, packet-based detection requires to prolong the run if suspicious
packets were discarded. And because attacks are rare events it is not desirable
to severely limit the average performance of the system.

5.2 Run-Based Detection

Another approach, conceptually close to [8], is to determine whether an attack
occurred after a complete protocol run to potentially discard the run. There
are several statistics that could be altered predictably by an attack, such as the
variance of RSSI values. We also tested this method against our implementation.
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Table 6. Percentage of packets over given distance from median RSSI

Min. difference from median Standard [%] Spoofed [%] Standard (LOS Break) [%]
10 22.75 25.2 27.4
15 11.6 16.7 14.3
20 3.5 5.2 5.4
25 1.2 1.1 1.1

Table 6 summarizes the results for different scenarios and shows that reliably
accepting the legitimate run also means not to detecting an attacker. Normal
occurrences, such as breaks in the line-of-sight between Alice and Bob, render at
least this simple implementation of the run-based detection unsuccessful. Even
an imperfect reference value, causing few false positives, would require a large
amount of training data because its variance strongly depends on the scenario.

6 Related Work

In 1993, Maurer introduced a concept that describes an abstract broadcast chan-
nel accessible to three parties. This channel provides strongly correlated infor-
mation to two parties and weaker correlated information to the third party [9].
Consequently, even if an adversary is able to sample the same channel, secure
keys can still be generated by the two legitimate participants.

With the widespread deployment of wireless networks, this idea was recently
used to generate secret keys between two parties over a wireless channel by ex-
ploiting channel reciprocity (see Table 7 for an overview). In these protocols,
several different sources of information are used; the most common one is the
received signal strength indicator (RSSI) because it can be easily measured on a
per-packet basis on off-the-shelf hardware. The RSSI method is used in several
works [10,2,11,1]. While RSSI provides a convenient channel property, there
are several others that were proposed as information sources, e.g., the channel
impulse response (CIR) [12,1,13,14] that allows fine-grained measurements but
requires specialized hardware, or the carrier phase [15]. Most of these protocols
generate entropy by random device movements, although frequency-selective fad-
ing experienced through frequency hopping can also be used to generate secret
keys in stationary scenarios [16].

While most protocols assume a passive attacker, the authors of [1,13] pro-
pose countermeasures against active attacks by employing radio fingerprinting
[8]. However, despite the tremendous number of different protocols, there is
little research on the attacker’s side. A side-channel attack on signal-based key
generation schemes by exploiting re-radiation is proposed in [20], which requires
precise knowledge of the participants’ positions. As this information is often
hard to obtain and generally not considered public, the practical applicability
can be difficult. Edman et al. [21] present a passive attack that puts the practical
applicability of the theoretical foundations of signal-based key generation pro-
tocols in doubt, i.e., the assumption that the RSSI is uncorrelated at distances
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Table 7. Overview of recent physical key generation schemes

Channel propertya RSSI
[17,18,10,19,1,16,13]

CIR [12,1,13,14] Phase [15]

Entropy source Movement
[17,10,19,12,11,1,13,14]

Channel-selective
fading [16]

Angle of arrival [18]

Hardware 802.15.4 [17,18,19,11,16] UWB [10,12] 802.11a [1,13]

Quantization 1-threshold [18,10]
2-thresholds
[17,12,1,13]

Dynamic multi-
threshold

[19,11,15,16,14]

Error correction Block-based parity [17]

Quantization-

dependent
[18,10,19,12,1,16]

Error correction codes
[13,14]

Attacker model Passive
[17,18,10,19,12,15,16,14]

Active [11,1,13] —

a Some protocols use multiple channel properties.

greater than λ/2. According to the authors, a relatively high cross-correlation
exists even at larger distances (up to 90 cm), enabling passive attackers to guess
50 % of the key or more by pure eavesdropping. Our contribution consists of
a flexible active attack in a realistic scenario, requiring only publicly available
information and off-the-shelf hardware, and is entirely independent of physical
proximity. In order to demonstrate our attack’s practicality, we successfully ap-
ply it to the protocol described in [1] without violating any security assumptions.
In summary, we believe that the attack described in this work is applicable to
all protocols that use RSSI-based quantization of the wireless channel.

7 Conclusion

In this paper, we introduced a novel idea for a man-in-the-middle attack based
on injection opportunities against signal-based key generation schemes. Using
this idea, without assuming any advantage for the adversary, we implemented an
attack that exploits imperfect error correction and allows to disrupt a protocol
run by deliberately forcing a key disagreement. Following the same idea, we
designed a more severe key recovery attack that is able to reveal large parts of the
secret key generated between two legitimate transmitters. We demonstrated its
performance by attacking a concrete protocol in different scenarios using off-the-
shelf hardware. Typically, between 40 % and 50 % of the secret key were revealed
to the attacker. This success rate decreases with larger distances between the
attacker and the legitimate nodes. However, this mitigating factor could easily
be improved by using superior hardware or increased sending power. In the
worst case, we still recovered around 25 % of the key correctly.

Besides evaluating the attack itself, we analyzed potential countermeasures.
We examined statistical mechanisms to detect an attacker and filter spoofs on a
per-packet basis or to reject compromised runs entirely (as oftentimes mentioned
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in related work). However, without a significant amount of training data the
approach was shown to cause a prohibitively large number of false positives.
Given these practical problems, simply generating longer keys to impede brute-
force attacks could be superior. Yet, such a high price to pay might undermine
the advantages of current key generation protocols.
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Abstract. Virtual Private Networks (VPNs) are increasingly used to
build logically isolated networks. However, existing VPN designs and
deployments neglect the problem of traffic analysis and covert channels.
Hence, there are many ways to infer information from VPN traffic with-
out decrypting it. Many proposals were made to mitigate network covert
channels, but previous works remained largely theoretical or resulted in
prohibitively high padding overhead and performance penalties.

In this work, we (1) analyse the impact of covert channels in IPsec,
(2) present several improved and novel approaches for covert channel mit-
igation in IPsec, (3) propose and implement a system for dynamic perfor-
mance trade-offs, and (4) implement our design in the Linux IPsec stack
and evaluate its performance for different types of traffic and mitigation
policies. At only 24% overhead, our prototype enforces tight information-
theoretic bounds on all information leakage.

Keywords: IPsec, VPNs, covert channels, performance trade-offs.

1 Introduction

Virtual Private Networks (VPNs) are popular means for enterprises and organi-
zations to securely connect their network sites over the Internet. Their security
is implemented and enforced by VPN gateways that tunnel the transferred data
in secure channels, thus logically connecting the remote sites in an isolated net-
work. Abstracted this way, VPNs are increasingly used in scenarios that secure
channels were not designed for: to logically isolate networks, providing “networks
as a service” in virtualized environments like Clouds, Trusted Virtual Domains,
or the Future Internet [1–3]. What is not considered in these scenarios is the
long known problem of covert channels.

Covert channels violate the system security policy by using channels “not
intended for information transfer at all” [4, 5]. While there is a large body of
research on covert channels, few works have considered the practical implemen-
tation and performance impact of comprehensive covert channel mitigation in
modern networks. We believe such work is important for a number of reasons,
especially regarding VPNs and network virtualization:
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(1) Insider Threat: In contrast to end-to-end secure channels, where the end-
points are implicitly trusted, VPNs are also used for logical network isolation
and perimeter security enforcement. In this context, the members of a VPN are
often not fully trusted, but instead the trust is reduced to central policy enforce-
ment points, the VPN gateways, which should prevent undesired information
flows. However, malicious insiders in the LAN may leak information through the
VPN gateways using covert channels, thus circumventing the security policy.
Examples of such insiders can be actual humans or stealth malware, engaging
in industrial espionage, leaking realtime financial transaction data, or disclosing
large amounts of data from physically secured institutions (e.g., to Wikileaks).

(2) Traffic Analysis: By analysing traffic patterns and meta-data, it is also
possible to infer information about transferred data without assuming a ma-
licious insider [6, 7]. Such “passive” Man-in-the-Middle (MITM) scenarios are
becoming more prevalent with network virtualization, allowing co-located, sup-
posedly isolated systems to analyse each other [8]. To mitigate such attacks,
a common approach is to consider the maximum possible information leakage
by a colluding malicious insider. In limiting this maximum information leakage,
covert channel analysis and mitigation thus also affects traffic analysis [9].

(3) Combination with Detection: Although application-layer firewalls and in-
trusion detection systems are widely deployed, carefully designed covert channels
remain hard to detect [10,11]. In these systems, the adversary chooses a weaker
signal and mimics the patterns of regular channel usage. Covert channel mitiga-
tion can be useful here to induce noise, forcing the adversary to use a stronger
signal and thus facilitate detection. We expect the combination of covert chan-
nel mitigation and detection to significantly reduce the performance penalty of
covert channel mitigation by allowing less intrusive pattern enforcement.

Contributions. This paper provides for the first time an explicit analysis of
covert channels in IPSec based VPNs and a comprehensive set of techniques and
mechanisms to mitigate them. We identify and categorize the different types
of covert channels and determine their capacity. We develop a framework for
mitigation of these covert channels and describe mechanisms and techniques for
high-performance covert channel mitigation. In particular, we propose an algo-
rithm for on-demand adjustment of traffic pattern enforcement that increases
peak network performance while also reducing overhead during reduced usage.
We present a practical instantiation of this framework for the Linux IPSec stack
and analyse its performance for different kinds of traffic. In contrast to previ-
ous works, which achieve throughput rates in the range of modem speed [9, 12]
and taunt the performance impact of proposed mitigation mechanisms [13], our
prototype achieves 169 Mbit/s in a 200 Mbit/s VPN link at only 24% overhead.

Outline. After defining the problem of VPN covert channels in Section 2, we dis-
cuss efficient covert channel mitigation and performance trade-offs in Section 3.
An implementation for the Linux IPsec stack is presented and evaluated in
Section 4. We discuss related work in Section 5 and conclude in Section 6.
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2 Problem Setting and Adversary Model

In the following we define the problem of covert channels in VPNs. Note that
our definition differs from previous, less explicit considerations, which consider
communication between legitimate VPN participants and are better described
as steganographic channels [14–16]. Although we limit ourselves to VPNs in
state-of-the-art IPsec configuration [17], most of our results can be generalized.

2.1 System Model and Terminology

As illustrated in Figure 1(a), we consider a VPN comprised of two or more Lo-
cal Area Networks (LANs) that are inter-connected over an insecure Wide Area
Network (WAN). In our scenario, the security goal of the VPN is not only to pro-
vide a secure channel (confidentiality, authenticity, integrity) but also to confine
communication of LAN hosts to the VPN, i.e., to isolate the protected from the
unprotected domain. VPNs are increasingly used for such logical isolation, to cre-
ate secure virtualized or overlay networks, or simply enforce perimeter security
in large companies [1–3]. This de-facto security goal of isolating the protected
from the unprotected domain, and its efficient implementation, is the main focus
of this work.

For this purpose, we distinguish legitimate channels that transfer and protect
user data according to the VPN security policy from covert channels that can
be used to circumvent this policy. Covert channels exist because the legitimate
channel acts as a shared resource between the protected and unprotected domain,
exhibiting certain characteristics that can be manipulated and measured by
different parties. We denote channels from the protected to unprotected domain
and vice versa as outbound and inbound covert channels, respectively.

We measure the security of our system using the Shannon capacity of the
covert channels, i.e., the information theoretic limit on the amount of information
that can be transferred through them [6]. The covert channel capacity is given
in bits per legitimate channel packet (bpp) or, where applicable, in bits per
second (bps). The capacity of each covert channel type is denoted as Ctype. The
capacities are classified as maximum (m) vs. remaining (r) covert channel rate
for inbound (in) vs. outbound (out) covert channels. For example, the maximum
capacity of the outbound covert channel based on packet size is denoted as
CPktSize

m,out , or as CPktSize
r,out after countermeasures have been applied. The remaining

aggregated inbound and outbound covert channel rates are denoted as Ĉr,in and

Ĉr,out, respectively.

2.2 Adversary Model

The adversary controls one or more compromised hosts in the LAN sites as
well as an active MITM in the WAN. We refer to the LAN hosts controlled by
the adversary as (malicious) insiders, regardless of whether they are controlled
by actual humans or stealth malware. The adversary’s goal is to establish a
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(a) A VPN with three LAN sites. The adversary
aims to exchange information between the MITM
and malicious insiders using covert channels.

Class Type Capacity Cm in bpp
Outbound Inbound

storage
ECN 2 1
DS 6 6
Flags 1 -
PktSize 8.4 -

timing/ IPD ≥ 1 ≥ 1
channel- PktOrd - > 6.58
logic PktDrop - 1

PMTUD - 0.13
amplify DestIP log2(N) -

(b) Inbound and outbound covert
channels capacities for an IPsec
VPN with N + 1 endpoints.

Fig. 1. Problem scenario: A complex VPN with multiple identified covert channels

communication channel between the MITM and one or more possibly colluding
malicious insiders, as illustrated in Figure 1(a). This would allow the adversary
to send instructions to the insiders or to leak information from the protected to
the unprotected domain, breaching the perimeter security of the VPN. For this
purpose, we assume a state-of-the-art IPsec configuration with authenticated
encryption using ESP in tunnel mode [17], and the cryptographic primitives
and keys of the VPN are securely enforced by the VPN gateways. However, the
legitimate VPN traffic can be manipulated by malicious parties in the protected
and unprotected domains to exchange information that “survives” these packet
transformation enforced by the VPN gateways.

Unfortunately, no systematic approach is known for identifying network covert
channels apart from exhaustive search, and the categorization as storage or tim-
ing channels can be ambiguous [5]. We used a comprehensive analysis on the
IPsec specification and related work on covert channels in network protocols
(cf. Section 5), as well as source code analysis and testing1 to identify poten-
tial covert channels in IPsec VPNs. IP-Tunneling and authenticated encryption
by the IPsec gateways greatly simplified this problem, as none of the protocol
headers that the MITM can read or modify (i.e., the outer IP and Encapsulated
Security Payload (ESP) header) are directly available to the LAN hosts.

In total, we have identified only eight covert channels. As shown in Figure 1(b),
the available covert channels comprise three storage-based channels based on
fields in the outer IP header (ECN, DS, Flags) and five timing-based covert
channels that manipulate Inter-Packet Delay (IPD), packet order (PktOrd),
WAN capacity (PktDrop), and Path MTU Discovery (PMTUD). The remain-
ing characteristic of the respective destination LAN of a packet (DestIP) does
not constitute a covert channel in its own right but can act as amplification of
other covert channels. A detailed discussion of the covert channels we identified
in IPsec VPNs is available in the full version [18].

1 Specifically, we examined the IPsec implementations of the current Linux 2.6.32 to
2.6.38 and OpenBSD 4.7 to 4.8 releases.
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We emphasize that some of these channels are implementation dependant,
e.g., the treatment of ECN header flags or PMTUD at the VPN gateway, while
others (IPD, PktSize, PktOrd) are generic problems faced by all packet-oriented
channels. While we are confident to have identified all covert channels, we cannot
account for all possible implementations and interpretations of IPsec. Hence in
this paper we limit our considerations to the identified attack vectors.

3 Covert Channel-Resilient IPsec

In this section we present the design of a high-performance covert channel-
resilient IPsec, i.e., a system with low, known covert channel capacity and high
throughput. We present novel or improved techniques for efficient covert chan-
nel mitigation in Section 3.1. Section 3.2 considers the performance of different
mitigation strategies, introducing on-demand performance trade-offs. Finally, we
derive the remaining aggregated inbound and outbound covert channel capacities
of the system in Section 3.3.

3.1 Covert Channel Mitigation

In the following we present and improve efficient mitigation mechanisms for each
of the covert channels identified in Section 2.2.

Packet Size (PktSize). The packet size characteristic is usually addressed by
padding packets to maximum size or assuming them to be of constant size [6].
However, as the product throughput = pkt size · pkt rate is constant for a given
link, enforcement of small packet sizes can reduce the load per packet signifi-
cantly, allowing higher packet rates and more simultaneous connections.

It was previously proposed to allow multiple alternate packet sizes [19], but
then the ratio between packets of different sizes creates another covert channel.
Mode Security [20] was proposed to manage the switching between different
enforcement modes and audit such a remaining covert channel. However, real
network traffic is often mixed, i.e., packet streams using different packet sizes are
often transmitted at the same time. Moreover, the enforcement of small packet
sizes is problematic for IP protocols: With Path MTU Discovery (PMTUD), the
connection endpoints quickly detect and adapt to the maximum allowed packet
size of an IP route, but only slowly recover to a larger MTU using a conservative
trial-and-error approach. This active adaption also makes it harder for the VPN
gateways to estimate the actual demand for larger packets.

We address these problems by combining packet padding with transparent
fragmentation and multiplexing, mechanisms that were previously only consid-
ered for traffic obfuscation [21]. Packet fragmentation within IPsec allows us to
efficiently and transparently enforce various packet sizes at the gateway without
influencing the channel’s Path MTU (PMTU). This is different from regular IP
fragmentation before or after IPsec processing, which results in visible fragments
either on the LAN or WAN sides that could again be used as covert channels.
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On the other hand, packet multiplexing can be used to reduce packet padding
overhead, and in general to reduce the IPsec encapsulation overhead (ESP, IP).

When working with mixed traffic, the sender gateway first fragments large
packets and then attempts to multiplex small packets or fragments into the
padding area of previously processed packets that are still in the packet buffer. At
the receiving gateway, packets are first de-multiplexed and then defragmented.

Inter-Packet Delay (IPD). The covert channel based on IPDs and its mit-
igation were subject of several previous works (e.g., [6, 10, 22–24]). In theory,
it is easily eliminated by enforcing a fixed IPD at the VPN gateway, inserting
dummy packets when no real packets are available [24]. However, due to the
very high packet rates in modern networks, even short periods of non-optimal
enforcement of IPDs (and thus packet rate) at the VPN gateway quickly re-
sult in packet loss due to packet buffer overflows or network congestion. This
is particularly critical for Internet protocols, where packet loss triggers conges-
tion avoidance, degrading overall throughput independently of the packet rate
enforced by the VPN gateways. The effect can be partly mitigated with large
packet buffers; however, large buffers can also create high packet delays, de-
grading network responsiveness [26]. Also, the optimal enforced packet rate can
be very large in modern networks, creating a high computational overhead for
the time-synchronous packet processing. For example, to saturate a 100 Mbit/s
link with 200 byte packets, an average IPD of 500 byte

100·106 byte/s = 2μs should be

enforced. Finally, one must consider inaccuracies in the timing enforcement that
appear at high system loads [23, 25]: Since high activity on the LAN interface
can influence the system load of the gateway, a LAN host may induce inaccura-
cies in the IPD enforcement of the gateway that can again be measured by the
Man-in-the-Middle (MITM), yielding CIPD′

r = 0.16 bps [9].
We have implemented the traffic reshaping inside the Linux kernel, using the

modern High-Precision Event Timer (HPET) infrastructure for packet schedul-
ing with nanosecond resolution. This substantially reduces the overhead of con-
text switching and buffering, allowing an IPDs in the range of microseconds
rather than several milliseconds (e.g., [9, 12]) and noticeably improves through-
put and responsiveness. To maintain good system performance at even higher
packet rates we use packet bursts, i.e., we translate very low IPDs into bursts of
multiple packets at correspondingly larger delays. For optimal packet buffering
our system adjusts the buffer size depending on the currently enforced IPD. This
prevents long delays at low rates while allowing generous buffering at high rates.

To address the problem of timing inaccuracies, we use the high resolution of
the HPET timers to monitor and actively compensate for timing inaccuracies
in randomized IPD enforcement. Specifically, we exploit the fact that determin-
ing timing inaccuracies during randomized IPD enforcement is harder for the
remote MITM than for the local system. The adversary always requires sig-
nificantly more measurements to first detect the variance of the random IPD
enforcement and then the inaccuracy in the enforced variance [23], while the
VPN gateway itself can directly compare the intended versus actual packet send-
ing time. Hence, the gateway can approximate the current inaccuracy faster,
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requiring less measurement samples. Given this knowledge of unintended change
in IPD variance, we let the VPN gateways compensate for the enforcement inac-
curacy by dynamically compensating the variance of the IPD enforcement. This
prevents the adversary from ever measuring the actual inaccuracy, eliminating
the timing channel (CIPD

r = 0). However, further evaluation with specialized
network hardware is needed to confirm (the non-existance of) this effect.

Packet Order (PktOrd). Sequence numbers in protocol headers have been
used before to create a covert or steganographic channel based on packet re-
ordering [16, 27]. However, in contrast to previous works we can eliminate this
channel in the VPN scenario using the IPsec anti-replay window and secure
sequence numbers in Encapsulated Security Payload (ESP).

IPsec implementations maintain a bitmap of the last r seen and unseen se-
quence numbers so that replay attacks within the window size can be detected
and older packets discarded. To eliminate communication through packet re-
ordering, we propose to implement this window as a packet buffer, where new
packets are inserted sorted by their ESP sequence number and leave the buffer as
the window advances. As a result, all packets forwarded from the VPN gateway
into the LAN are ordered and the covert channel is eliminated: CPktOrd

r,in = 0.
Unfortunately, the approach is problematic for low packet rates, since the win-

dow may advance slowly and individual packets are not forwarded fast enough.
We solve this issue by establishing a certain maximum IPD (e.g., 50ms) at the
sender and assure that at least r dummy packets are sent by a gateway before
a connection is stopped. These constraints are necessary in any case to assure
network responsiveness and hide short periods of inactivity.

Packet Drops (PktDrop). In general, it appears impossible to eliminate
covert channels based on packet dropping in the WAN. Mitigation with error
correction codes is expensive and easily defeated by dropping even more pack-
ets. Instead, we propose to mitigate the channel by injecting noise, by increasing
packet loss proportionally to the actual packet loss.

Specifically, the gateways maintain a buffer p of size d. At the sender gateway,
packets are buffered in p and their order is randomized before encapsulation.
At the receiver gateway, the packets are again collected in p and the number of
dropped packets i is determined based on their ESP sequence number. If i > 0,
the gateway drops another j packets from the current buffer, such that i+j = 2x,
where 1 < x ≤ log2(d), and forwards the remaining packets after randomizing
their order once again. As a result, the MITM can choose the overall number of
packets to be dropped but cannot select which packets to drop, resulting in a
symbol space of log2(d)+1 packets per window d. The remaining covert channel

capacity is then CPktDrop
r,in = 1

d · log2(log2(d) + 1) bpp.
Similar to the above packet re-ordering mitigation, the inbound packet buffer

at the receiving gateway is problematic for very low traffic rates and requires
similar restrictions to assure a steady stream of (dummy) packets. The imple-
mentation can be simplified at the cost of a slightly higher covert channel rate
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by removing the randomization buffer at the sending gateway and re-using the
anti-replay window for dropping the additional j packets.

Path MTU Discovery (PMTUD). To our knowledge, no previous work
considered the possibility of covert channels based on PMTUD, in particular
with respect to VPNs. Since PMTUD is critical for good network performance,
we do not disable it but instead mitigate the channel by enforcing limits on the
rate and values that are propagated by the VPN gateways into the LAN.

In particular, we limit the possible PMTU values by maintaining a list of
common PMTU values and only propagate the respective next lower PMTU to
the LAN. Such common PMTUs values can be established on site or can be
derived from previously proposed performance optimizations for PMTUD [28].
The rate limitation of PMTU propagation is problematic in general, as a lack of
MTU adaption will lead to packet loss. However, in our case the current PMTU is
always known to the trusted VPN gateways, which can then use the transparent
fragmentation feature from PktSize enforcement to translate between LAN and
WAN packet sizes. Considering the 10 most common PMTUs and an average
interval of, e.g., 2 minutes [28] between propagation of PMTU changes, our
measures reduce the covert channel rate to less than CPMTUD

r,in = 0.02 bps.

Storage-Based Channels (ECN, DS, Flags). The storage-based covert
channels exploiting the Explicit Congestion Notification (ECN), Differentiated
Services (DS) and IPv4 Flags handling of IP/IPsec are easily eliminated by re-
setting the respective fields of the outer IP header at encapsulation and ignoring
them during decapsulation. Normalizing the IPv4 Flags field is unproblematic
as en-route fragmentation is deprecated in IP. However, eliminating the ECN
and DS covert channels disables these performance optimizations in the WAN.

3.2 Mitigation Policies and Performance

In this section, we discuss different covert channel mitigation policies that can
be enforced using the techniques described in Section 3.1. We start by discussing
the problems of previously proposed Fully Padded Channel and Mode Security
approaches, and then propose a new system for on-demand, dynamic adaption
of the enforced channel characteristics. We focus on the IPD and PktSize en-
forcement mechanisms, since they have by far the highest performance impact.

Fully Padded Channel. When applied without any performance trade-offs,
the mitigation mechanisms described in Section 3.1 result in a fully padded
channel : The WAN packet stream is constantly padded to the maximum de-
sired throughput rate and packet size. However, this mitigation policy has sev-
eral disadvantages: (1) The system must compromise between high throughput
and responsiveness, likely opting to enforce maximum packet sizes to reduce
fragmentation overhead; (2) the maximum (desired) network load is constantly
enforced in both directions, reducing overall performance due to network conges-
tion; (3) TCP/IP congestion avoidance algorithms do not work, since any rate
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throttling is compensated by additional channel padding. In case of temporary
reductions in WAN capacity, this leads to repeated packet loss and throttling,
until the network is not usable anymore. Hence, the fully padded channel policy
is unfit for practical use, except in private/dedicated physical infrastructures.

Mode Security. Mode Security is a generic scheme for trading covert channel-
resilience against system performance. This is done by organizing system oper-
ation in a set of alternative operation modes that can be switched at a certain
rate [20]. The current operation mode is then selected such that performance
penalty and/or overhead produced by the covert channel mitigation is mini-
mized. Since the operation mode is typically adapted depending on the actually
required usage, the adaption itself may be exploited as a covert channel. In this
case, the covert channel capacity can be given as CModeSec

out = R · log2(M), where
M is the number of operation modes and R is the maximum rate at which the
operation mode can be changed (transition rate).

Mode Security was used to estimate the theoretic network overhead and covert
channel capacity [6]. However, this assumes an algorithm that can determine the
optimal operation mode to switch to. To the best of our knowledge, no prac-
tical implementation and evaluation of this mechanism exists; in particular, no
strategies have been proposed to automatically determine and apply the optimal
operation mode in the face of often unpredictable traffic, with exponential rate
increases and congestion avoidance algorithms. In fact, our attempts to directly
apply Mode Security to on-demand covert channel mitigation resulted in poor
performance, with TCP throughput benchmarks becoming stuck at very low
packet rates or completely losing the connection.

On-Demand Mode Security Management. An algorithm for on-demand
adaptation in network covert channel mitigation must accommodate multiple
conflicting constraints. It must quickly react to changes in channel usage to
elude congestion avoidance algorithms, yet the amount of possible mode changes
should be minimal. Moreover, the employed packet queue should buffer packet
bursts at various average packet rates, yet react quickly when the current average
rate is overused by dropping individual packets. We address these conflicts using
the following regulation mechanisms:

Token Bucket Filter. We generalize the transition rate R of the Mode Security
paradigm to a token bucket filter [29]. Tokens are generated at a fixed rate R
and each mode transition consumes a token from the token bucket. This allows
us to “save up” unused mode transitions in form of tokens and consume them
on demand, at temporarily higher rates than R. The amount of cached tokens is
limited by the token bucket size and the average transition rate R̄ is bound by the
rate R at which new tokens are generated. Thus, the token bucket filter allows us
to immediately react to changes in network usage, before connection throttling
kicks in or network delays become noticeable. Further, the token bucket status
may influence and optimize decisions on the operation mode to be enforced.
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1 while true do
2 (rLAN, rfrag, rmplex) ← get-stats()
3 ropt ← rLAN + rfrag − rmplex

4 ravg ← 0.1 · ropt + 0.9 · ravg
5 case ropt > 0.9 · rnow
6 ramp ← (rmax − ropt)/tnum
7 rnew ← ropt +

1
2
rquant + ramp

8 case rnow > 1.1 · ravg ∧ tnum > tdec
9 rnew ← ravg

10 rnew ← quantatize(rnew, rquant)
11 sleep(ival)

(a) Simplified pseudo-code for dynamic
packet rate adjustment in steps of
rquant.

Type Max. Capacity Rem. Capacity
Cm in bpp Cr in bps

Outbound Inbound Outbound Inbound
ECN 2 1 0 0
DS 6 6 0 0

Flags 1 - 0 -
PktSize 8.4 - 0 -

IPD ≥ 1 ≥ 1 0 0
PktOrd - > 6.58 - 0

PktDrop - 1 - ≤ 5
PMTUD - 0.13 - 0.02
DestIP log2(N) - log2(N) -

Overall > 18.4 > 15.64 0 ≤ 5.02

(b) Maximum and remaining covert channel
capacities for VPNs with N + 1 endpoints.

Fig. 2. Design of high-performance covert channel mitigation

Aggressive Increase. Network throughput is scaled mainly based on its packet
rate r, with typically exponential rate increase until the first network bottleneck
is detected. While the optimum WAN packet rate ropt is easily calculated based
on the currently observed LAN rate rLAN, fragmented and multiplexed pack-
ets (rfrag, rmplex), the derivation of the next enforced packet rate rnew is more
involved, as shown in Figure 2(a).

To adequately consider exponential rate increases without requiring too fre-
quent changes to rnow, our rate increase phase is designed to constantly overes-
timate the current optimal packet rate ropt, by increasing rnow as soon as it is
approached by ropt (cf. Figure 2(a), Line 5). Combined with buffering and short
monitoring intervals ival ≈ 200ms, this approach successfully eludes congestion
avoidance algorithms and prevents undesired throughput throttling. However,
the overestimation should also not be too large, as it directly affects the padding
overhead and can also reduce the inbound traffic rate due to the imposed network
load. Moreover, all stored tokens may be used up before a reasonably high packet
rate rnow ≈ rmax is reached, resulting in bad performance until new tokens are
generated. Hence we also include an amplification mechanism that increases the
rate ropt in larger steps ramp, depending on the currently available amount of
tokens rnum (Line 6f.). This prevents the system from becoming “stuck” at low
packet rates, at the cost of potentially high padding overhead in cases where
such amplification was not required.

Conservative Slowdown. When putting the WAN channel in a state of decreased
performance, we must take care that sufficient transition tokens are available to
adequately adapt to a possible subsequent usage increase as outlined above. In
contrast to the aggressive rate increase policy, any reduction in the enforced
traffic rate is therefore delayed until a certain amount of tokens tdec have been
collected in the token bucket. Moreover, to reduce the impact of short-term
fluctuations in the packet rate, the rate is only reduced based on the longer-time
average traffic rate ravg, as shown in Figure 2(a) Line 8f. Overall, the described
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approach saves up tokens in the “slowdown” phases while aggressively spending
them in the “increase” phase, creating an equilibrium around tdec and ravg.

Dynamic Queue Size with RED. When dynamically adjusting the overall
throughput of the WAN channel, we must also adjust the size of the packet
queue accordingly. At small rates, a lot of packets may build up in a large
queue, leading to large delays and timeouts. Similarly, a small queue is not ef-
fective at supporting a channel with high packet rates. Hence, we dynamically
adapt the queue size based on the desired maximum buffering delay and the
currently enforced packet rate. Eventually, the WAN channel or its enforcement
policy may also reach a point where further rate increases are not possible. In
this case, the endpoints should be notified of the current throughput limit as
quickly as possible, without dropping several packets at once due to full buffers.
We achieve this by deploying Random Early Detection (RED) [30] as the packet
queue’s dropping policy, so that packets are randomly dropped with increasing
queue usage.

We implemented several variations of this approach and evaluated the effect
of different parameters on the short-term and long-term usage adaption. The
achieved performance and adaptation behavior is presented in Section 4.3.

3.3 Remaining Covert Channel Capacity

In the following we summarize the identified covert channels and derive the ag-
gregated remaining covert channel capacity of our covert channel-resilient VPN.

Unfortunately, it is not possible to give all the covert channel rates in a closed
form and with comparable units. Several covert channels also depend on addi-
tional parameters like network PMTU or minimum WAN packet rate. To provide
a reasonable overview of the overall effectiveness of the covert channel mitigation,
we have used the capacity estimations derived in the examples of Section 3.1,
assuming a state-of-the-art IPsec VPN configuration (cf. Section 2).

Figure 2(b) lists the individual covert channel capacities for the unmitigated
(Cm) and mitigated (Cr) case. Considering that today’s networks easily transmit
several thousand packets per second, i.e., 1 bpp ) 1 bps, our system results
in significant improvements over standard IPsec. In fact, all outbound covert
channels are completely eliminated, except for the DestIP channel. However, as
explained in Section 2.2, the DestIP characteristic does not by itself constitute a
covert channel but can only be used to amplify other channels. Hence, the overall
remaining covert channel capacity is given by Ĉr,out = CModeSec

out · CDestIP
out .

For the less critical inbound covert channels (e.g., control channels for stealth
malware), only the channels based on PMTUD and PktDrop remain. The Pkt-

Drop covert channel has the highest impact with CPktDrop
r,in ≤ 5 bps and is easy

to exploit. Since the PMTUD channel could be exploited at the same time, their
capacities must be added up: Ĉr,in = CPktDrop

r,in + CPMTUD
r,in = 5.02 bps.
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(a) Architecture of our Linux prototype. (b) TFC encapsulation protocol.

Fig. 3. Implementation architecture and encapsulation protocol

4 Practical Covert Channel Mitigation with Linux

In this section we describe the instantiation of our system based on the Linux
IPsec stack and analyse the achieved network performance and behavior.

In our prototype implementation and evaluation we only consider the mitiga-
tion of outbound covert channels, since information leakage from the protected
to the unprotected domain is usually considered more critical (e.g., consider
Bell-LaPadula [31]). Moreover, from our discussions in Section 3 it is clear that
outbound covert channel mitigation is more efficient, as it requires less buffering
and processing but is more effective in reducing the covert channel capacity.

4.1 Architecture and Implementation Details

We have implemented a High-Performance Covert Channel Mitigation (HPCM)
system inside the IPsec stack of the Linux kernel. The architecture and encap-
sulation protocol are based on the Traffic Flow Confidentiality (TFC) project, a
system for probabilistic traffic flow obfuscation and re-routing in IPsec [21]. We
revised and extended TFC to support High-Precision Event Timers (HPETs),
fragmentation, multiplexing and dummy packet generation that is indistinguish-
able from real traffic payloads, elimination of storage-based covert channels in the
encapsulation headers and, most importantly, a interface for packet processing
statistics and flexible policy enforcement in userspace. The resulting architecture
is illustrated in Figure 3(a). In kernelspace, the HPCM Engine processes packets
as part of the IPsec subsystem, rewriting problematic header fields and enforc-
ing the currently desired size and IPD constraints as described in Section 3.1.
In userspace, the HPCM Manager collects processing statistics from the en-
forcement engine and combines them with the observed inbound LAN traffic to
determine the optimal enforcement parameters, as presented in Section 3.2.

For flexible packet padding and rerouting, TFC deploys its own encapsula-
tion protocol with explicit signalling flags and length header [21]. To also support
transparent fragmentation and multiplexing within our system, we extend the
TFC protocol with an optional 32 bit fragmentation extension header as illus-
trated in Figure 3(b). The employed header format is compatible with the IPv4
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Table 1. Throughput and transaction rate for regular and modified IPsec VPN

Benchmarks No Padding Fully Padded On-Demand
IP ESP TFC 1422 800 R̄ = 10−1s

LAN Throughput (Mbit/s) 570 201 175 58 75 169
TCP Transaction Rate (Hz) 1756 1462 1364 611 740 532
LAN/WAN Overhead (%) 0 10 13 (73) (61) ≈24
Relative Throughput (%) 283 100 87 28 37 84

header format, allowing us to reuse the existing IP defragmentation framework
of Linux for defragmenting TFC payloads. Also note that the additional Securi-
ty Parameter Index (SPI) field is only required due to restrictions of the Linux
IPsec framework, and could be removed to reduce the TFC protocol overhead.

4.2 Testbed and Raw Performance

In this section we describe the performance achieved by our prototype in terms
of network throughout, transaction rate (i.e., roundtrip time) and protocol over-
head. Our testbed corresponds to the VPN scenario in Figure 1(a), except that
we use only two LAN sites with one physical host per LAN. The Man-in-the-
Middle (MITM) is implemented as an Ethernet bridge between the two VPN
gateways, allowing reliable observation of all transmitted packets. For our eval-
uation, the MITM is completely passive and only used to provide independent
performance measurements of the WAN. All hosts are 3.2 Ghz Intel Core i5-650
machines, equipped with two Intel PCIe GBit network cards and 4GB system
memory. All network links are established at full-duplex GBit/s speed.

We have used the Netperf2 benchmarks TCP STREAM and TCP RR to measure
the maximum TCP throughput and transaction rate between the LAN sites. By
comparing LAN and WAN throughput, we can determine the protocol overhead
of the covert channel mitigation, including dummy packets and packet padding.

We list the overall performance results in Table 1. The first two columns show
the testbed performance for raw IP (plain-text) transmission and IPsec ESP tun-
neling. With 570 Mbit/s, the raw transmission does not reach the expected GBit
throughput, likely due to deficient hardware or drivers. As the LAN hosts and the
MITM measure the same IP payloads, there is no LAN/WAN overhead. With
201 Mbit/s, the throughput of a standard IPsec ESP tunnel is already notably
slower due to 10% protocol overhead but mainly computational constraints of
the VPN gateways. As our covert channel mitigation is an extension of this ESP
tunnel configuration, we normalize the relative throughput to 100%.

For reference and confirmation of the expected implementation overhead of
our prototype, we next evaluated the raw performance of our HPCM Engine
compared to the standard IPsec ESP tunnel. The third column “TFC” of Table 1
lists the achieved network performance when tunneling TFC inside ESP with
with all covert channel mitigation techniques disabled. The overall LAN/WAN
overhead of 13% (or 3% when compared with the ESP tunnel) is the result of
the 8 to 12 byte TFC protocol encapsulation plus some computational overhead.

2 http://www.netperf.org

http://www.netperf.org
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(a) WAN adaption to repeated TCP load.
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(b) HTTP request delay in mixed traffic.
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(c) WAN adaption to pseudo-random web traffic and downloads.

Fig. 4. Behavior of mode adaptation for different token generation rates R. For refer-
ence, the grey filled graph shows LAN performance without time/size padding.

4.3 Covert Channel Mitigation Performance

We now describe the behavior and performance of different mitigation policies.
The fourth and fifth column of Table 1 show the performance of a “fully

padded channel”, enforcing packet sizes of 1422 and 800 bytes at the maxi-
mum possible packet rate. For this purpose, we first measured the maximum
bi-directional throughput of the VPN channel (201 Mbit/s per direction) and
then selected the desired packet rate (inverse IPD) such that the bidirectional
channel capacity is almost3 saturated. We then again measured the maximum
(uni-directional) throughput and roundtrip time. As shown in Table 1, the fully
padded channel configuration achieves rather poor performance in both config-
urations, reaching only 37% and 28% of the ESP tunnel throughput. Observe
that the enforcement of 800 byte packet size achieves higher transaction rate as
well as higher throughput. We believe this is due to the overhead of padding
TCP acknowledgements to maximum packet size.

We have also implemented and tested an instantiation of our on-demand
mode security management scheme presented in Section 3.2. As shown in the
last column of Table 1, the employed mode adaption heuristics reach almost the
same maximum throughput as the raw TFC encapsulation without time/size
padding (169 Mbit/s vs. 175 Mbit/s). The LAN/WAN overhead is slightly
higher (24% vs. 13%) and the transaction rate rather low. The high throughput
despite relatively high overhead is explained by the mode adaption behavior:
As shown in Figure 4(a), the WAN channel adapts to the maximum possible

3 As explained in Section 3.2, it is critical that the link is not fully saturated since
congestion leads to packet loss and congestion avoidance does not work.
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throughput, but suffers overhead in the rate increase and especially rate decrease
phases. As desired by our design in Section 3.2, the main impact of reduced to-
ken regeneration rates R̄ ≤ 15−1s in Figure 4(a) is the increased overhead in the
intervals between TCP loads, when the rate is not decreased to save tokens.

Finally, we have investigated the ability of our on-demand mode security man-
agement to adapt to random, highly heterogeneous traffic patterns one would
expect from a VPN with many users. We used Tsung, a traffic load testing
tool4, to record several HTTP sessions in our network, partly also including
larger (≈ 60 MB) HTTP downloads. We then configured one of our testbed
LANs to act as Internet gateway for the other LAN and used Tsung to replay
the recorded HTTP sessions in a pseudo-random fashion with 60 to 80 simultane-
ous users. Figure 4(c) shows how the WAN traffic enforcement for four different
token regeneration rates R̄ dynamically adapts to the LAN usage (grey filled).
For R̄ ≤ 15−1s, only the larger peaks in LAN usage influence the WAN traf-
fic enforcement, reducing information leakage at the cost of padding overhead.
As shown in Figure 4(b), the mean duration of responding to individual HTTP
requests is kept within reasonable limits. However, in contrast to unpadded traf-
fic (grey filled) the accumulated request delays become noticeable to the user.

In the presented configuration, our mode adaption algorithm switches packet
sizes in steps of 100 bytes and packet rates in steps of 1000 packets per second.
Considering the maximum WAN packet rate of about 250.000 packets/s, we can
derive CModeSec

r,out = R̄ · log2(1500100 · 250000
1000 ) = R̄ · 11.87 and an overall outbound

covert channel capacity of, e.g., Ĉr,out = 0.6 bps for R̄ = 20−1s and N = 1.

5 Related Work

Several works consider the problem of covert channels and covert channel mit-
igation in Internet protocols [32, 33], yet we know of no works that specially
discuss the problem of covert channels in IPsec. The covert channels we identify
in IPsec are generally known, but we found no previous discussion of the PM-
TUD channel. Additionally, the PktSize [19], PktSort [11, 27] and DestIP [19]
characteristics have different impact in IPsec, and the discussion of storage-based
covert channels in the IPsec specification [14] proved to be inaccurate.

Although the IPD-based covert channel is generally well-known [6, 10, 19, 22,
34], the problem of inaccuracies in timing enforcement during increased system
load remained unsolved [9, 23]. We consider this complication in our design in
Section 3.1 and present a compensation mechanism that detects and compen-
sates unintended timing inaccuracies. Also, while most works simply assume that
packets are of constant size [24] or padded to the maximum desired size [19,33],
our adoption of multiplexing and fragmentation enables flexible packet size en-
forcement. The combination of different mitigation techniques makes our imple-
mentation the first prototype for comprehensive covert channel mitigation.

4 http://tsung.erlang-projects.org

http://tsung.erlang-projects.org
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Regarding performance trade-offs, Mode Security was proposed as a general
approach to adapt to resource usage by switching between different operation
modes [20]. A similar approach called Traffic Stereotyping was proposed for net-
works [19]. To our knowledge, there is only one system that uses Mode Security
to optimize covert channel mitigation, which aims to provide sender anonymity
based on dynamic re-routing and IPD enforcement [6,24]. They assume a trusted
network stack on each network endpoint and a periodic global negotiation to
achieve an equalized traffic matrix [24]. A performance analysis was done based
on statistics collected from a medium-sized network [12]; however, no actual per-
formance measurements of their system have been provided and the problem of
determining the optimal enforcement mode was left unsolved. Alternatively, Net-
Camo [34] requires its endpoints to explicitly request their delay and throughput
demands beforehand. We extend on these works by proposing a practical algo-
rithm to determine the optimal operation mode on-demand. As we do not aim
for sender-anonymity, we do not require mix-networks and various attacks on
mixes do not apply to our approach (e.g., [35, 36]).

In contrast to probabilistic traffic obfuscation schemes such as HTTPOS [37]
or TrafficMorphing [38], our framework enforces an information-theoretic bound-
ary for the maximum information leakage. As argued in Section 1, covert channel
detection schemes such as [39,40] are complementary to our work and should be
used where mitigation is costly, e.g., for the PktSort and PktDrop characteristics.

While we know of no practical performance measurements for comprehensive
covert channel elimination, an overhead of 45%-56% was reported solely for
obfuscating the packet size in website traffic [7, 38].

6 Conclusion and Future Work

We have motivated the problem of covert channels in Virtual Private Net-
works (VPNs) and presented the design, implementation, and performance of
a covert channel-resilient VPN. We identified several covert channels and pre-
sented new countermeasures. We have investigated the problem of on-demand
adaption of operation modes and presented an implementation for comprehen-
sive, high-performance covert channel mitigation in the Linux IPsec stack. Our
evaluation shows that on-demand rate adaption is feasible and practical even
for highly unpredictive traffic. In more predictable throughput benchmarks, our
system achieves remarkable 169 Mbit/s in a 201 Mbit/s VPN connection (84%).

As part of our future work, we will consider the effectiveness of alternative
trade-off and normalization strategies. Furthermore, we aim to investigate the
impact of inaccuracies in IPD enforcement.

Acknowledgments. We thank Amir Herzberg, Haya Shulmann and Thomas
Schneider for their insightful comments and review of earlier versions of this
work.
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Abstract. Most caching DNS resolvers still rely for their security,
against poisoning, on validating that the DNS responses contain some
‘unpredictable’ values, copied from the request. These values include the
16 bit identifier field, and other fields, randomised and validated by dif-
ferent ‘patches’ to DNS. We investigate the prominent patches, and show
how attackers can circumvent all of them, namely:

– We show how attackers can circumvent source port randomisation,
in the (common) case where the resolver connects to the Internet via
different NAT devices.

– We show how attackers can circumvent IP address randomisation,
using some (standard-conforming) resolvers.

– We show how attackers can circumvent query randomisation, includ-
ing both randomisation by prepending a random nonce and case
randomisation (0x20 encoding).

We present countermeasures preventing our attacks; however, we believe
that our attacks provide additional motivation for adoption of DNSSEC
(or other MitM-secure defenses).

Keywords: DNS security, DNS poisoning, Kamisky attack, Network
Address Translator, NAT, DNS server selection, Internet security.

1 Introduction

Correct and efficient operation of the Domain Name System (DNS) is essential
for the operation of the Internet. However, there is a long history of vulner-
abilities and exploits related to DNS, mostly focusing on DNS poisoning. In a
poisoning attempt the attacker causes recursive DNS servers (resolvers) to cache
an incorrect, fake DNS record, e.g., mapping VIC-Bank.com to an IP address con-
trolled by the attacker. DNS poisoning can facilitate many other attacks, such as
injection of malware, phishing, website hijacking/defacing and denial of service.

The main technique for DNS poisoning is by sending forged responses to
DNS requests which were sent by resolvers; to foil this, resolvers validate
responses using different mechanisms. Currently, most resolvers rely only on
non-cryptographic validation, mainly, confirming that the response echoes some
unpredictable (random) values sent with the request, such as in the DNS trans-
action ID field, the source port selected by the resolver, or within the resource
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(domain) name; e.g., see RFC 5452 [1] for more details. Obviously, such mech-
anisms are insecure against a Man-in-the-Middle (MitM) attacker, who can
read the randomness from the request and send a fake response with the valid
identifiers.

Furthermore, even a weaker - and more common - off-path, spoofing attackers,
may be able to send valid DNS responses and cause DNS poisoning, when the
validated values are predictable or limited. For example, some DNS implementa-
tions use predictable identifiers (sequential, or using a weak pseudorandom gen-
erator); e.g., in [2], Klein shows how to predict the identifier for the then-current
version of Bind 9, a widely-used DNS server, and how this can be exploited for
highly-efficient DNS poisoning by a spoofing attacker. Indeed, as pointed out
already in 1995 by Vixie [3], the identifier field alone is simply too short (16
bits) to provide sufficient defense against a determined spoofing attacker, who
can foil it by sending many (but not too many) fake responses.

To improve DNS security, the IETF published DNSSEC [4,6,5], an extension
to DNS, using cryptography (signatures and hashing) to ensure security (even)
against MitM attackers. However, in spite of the publication of DNSSEC already
in 1997 [7], and the wide awareness to its existence, deployment is still limited
- e.g., less than 2% as reported in [8] for April, 2012. There are also many
caching DNS resolvers that still do not support, or do not perform validation
of, DNSSEC [9]; see discussion of the deployment status of DNSSEC in [10].
Furthermore, due to implementation errors DNSSEC protection may fail, even
when both the resolver and zone deploy it: validation of signatures of important
top level domains, e.g., mil, fails since the root does not delegate the public
signature key of mil but instead provides an incorrect indication that mil does
not support DNSSEC. This results in resolvers falling back to a non-validating
mode.

Indeed the deployment of DNSSEC is progressing slowly, due to challenges
(see [10]), and possibly due to the recent improvements (‘patches’) to non-
cryptographic defenses, causing ‘if it ain’t broke, don’t fix it’ response. These
patches are mainly by deploying new sources of ‘unpredictability’ in DNS re-
quests and responses, such as use of random source ports [11,12], random DNS
server selection [1] and random capitalisation of the domain name [13].

This manuscript focuses on relying on such non-cryptographic ‘patches’ to de-
fend against DNS poisoning. This has two goals: to help improve these patches,
since evidently they will remain widely used for years; and to further motivate
adoption of more secure solutions such as DNSSEC, by pointing out weaknesses
in the patches. While these specific weaknesses can be fixed (and we show how
- often, easily), their existence should motivate the adoption of better secu-
rity measures such as DNSSEC, providing security against MitM attacker and
allowing for better validation of security, e.g., see [14].

1.1 Patching Caching DNS Resolvers against Poisoning

Many researchers have identified vulnerabilities and improvements in the ap-
proach of relying on an ‘unpredictability’ of some fields in a DNS request and
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proposed patches; we next review some of the main results. Bernstein, [15],
suggested to improve DNS’s defense against spoofed responses by sending the
request from a random port, which can add a significant amount of entropy1. To
prevent birthday attack, where attacker causes resolver to issue multiple queries
for same domain in order to increase the probability of a match with one of
multiple fake responses, Bernstein [15] and others suggest to limit the maximal
number of concurrent requests for the same resource record (to one or to some
small number); this technique is usually referred to as the birthday protection.

Many implementations did not implement these suggestions till the recent
Kaminsky attack, [11,12], which introduced two critical improvements, allowing
devastating attacks on many Internet applications. The first improvement was to
control the time at which the resolver sends queries (to which the attacker wishes
to respond), by sending to the resolver queries for a non-existing host name, e.g.,
with a random or sequential prefix of the domain name. The second improvement
was to add, in the spoofed responses sent to the resolver, a type NS DNS record
(specifying a new name for the domain name server) and/or a type A ‘glue’ DNS
record (specifying the IP address of that domain’s name server). These records poi-
son the resolver’s entries for the victim name server. Hence, if the attack succeeds
once (for one record), the adversary controls the entire name space of the victim.

As a result of Kaminsky’s attack, it became obvious that changes were needed
to prevent DNS poisoning. Indeed, major DNS resolvers were quickly patched.
The most basic patches were known measures - source port randomisation and
birthday protection (see above). These and other additional patches were sum-
marised in RFC 5452 [1], including the use of random (valid) IP addresses for
the name server. Additional patches, implemented by some resolvers, are to
randomise DNS queries by randomly ‘case toggling’ the domain name (0x20
encoding [13]), or by adding a random prefix to the domain name [16].

It is tempting to interpret the analysis in [13,17,1,16] as indication that the
‘patches’ may suffice to make poisoning impractical, reducing the motivation
for deployment of more systematic improvements. However, we caution against
this conclusion. This work shows that in common scenarios, attackers can often
circumvent some or all of the ‘patches’, making it still feasible to poison resolvers
that rely on validation of ‘unpredictable’ values copied from requests to responses
(rather than relying on cryptographic security, as in DNSSEC).

Some concerns with ‘patches’ were presented in earlier works. In particular,
the most widely and easily deployed ‘patch’ is clearly source port randomisation.
However, security experts, e.g., [18,12], noted that DNS resolvers located behind
firewall/NAT devices, that use sequential assignment of external ports, were still
vulnerable to the poisoning attack. On the other hand, it was widely believed
that ‘port-randomising’ NAT devices, that sufficiently randomise the external
ports, could retain or even improve the defense against DNS cache poisoning,
e.g., see [12]. In addition, it was believed that ‘port-preserving’ NAT devices,
that leave the source port intact (if it were not already allocated to another

1 The exact amount of entropy added depends on the number of available ports, which
may be below 216.
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host), can be safely used with port-randomising resolvers, e.g., see [19]. Our
results show otherwise, i.e., some of our attacks show how to circumvent port
randomisation, in the resolver-behind-NAT scenario, even for port-randomising
and port-preserving NATs.

Note that the resolver-behind-NAT scenario is common [20,21]. A recent
study, [9], of DNSSEC deployment by recursive resolvers observed that a large
number of recursive DNS resolvers is located behind NAT devices, and often
many resolvers are even behind the same NAT device. Furthermore, [22] found
that 90% out of 20,000 DSL lines (from a major European ISP) were located
behind a NAT device.

1.2 Attacker Model

Fig. 1. Attack scenario and network
configuration: in attacks in Section 2 we
assume that the DNS resolver is located
behind a NAT device, along with a benign
client and a zombie; In Sections 3 and 4
we assume a puppet and do not require a
NAT. The off-path spoofer Eve is located
on the Internet.

In our attacks, we assume an off-path,
spoofing adversary connected to the
Internet and a compromised (by the
adversary) host, running malware, on
the local network; the attacker model
is depicted in Figure 1. Depending on
the attack, we assume different ca-
pabilities on the malware running on
the internal host. The attacks in Sec-
tion 2 assume a non-spoofing (user-
mode) compromised host (zombie) on
the local network (zombies exist in
many networks, e.g., see [23]); the zom-
bie can open user mode sockets and
can send arbitrary (non-spoofed) pack-
ets, [24]. In these attacks we also assume that the resolver is located behind a
NAT device. The attacks in Sections 3 and 4 use a puppet (a script confined by
a browser), and do not require the network to be connected to the Internet via
a NAT.

1.3 Contributions

The security of patched DNS resolvers relies on the randomness provided by the
validation fields. We show that it is possible to reduce and often to nullify the
randomness, thereby exposing the resolvers to Kaminsky-style poisoning attacks.
Our attacks apply to all widely-deployed ‘patches’:
Source-port randomisation. In Section 2 we expose vulnerabilities in common
source port allocation algorithms used by popular NAT devices. The vulnerabil-
ities allow to circumvent source port randomisation, thus enabling prediction of
the source port allocated to the queries of the resolver. We tested our attacks
in a lab setting against several NAT devices, see Table 1. The type of the NAT
that the resolver resides behind is important in deciding which attack to launch.
DNS server IP randomisation. We present techniques to predict (or force) the IP
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address of the name server to which the resolver will send its DNS request (Sec-
tion 3). Our techniques rely on fragmented DNS responses.
Domain name randomisation. We show (Section 4) that randomisation of DNS
queries via 0x20, or by prepending a random string, is not always effective and
does not introduce protection against poisoning attacks.

In addition to exposing the vulnerabilities, we also propose countermeasures.
However, our most important contribution may be in motivating the adoption
of systematic, secure defenses against poisoning, such as DNSSEC.

2 Source Port (de)Randomisation

In this section we present techniques to trap/predict the external port that will
be allocated by the NAT device to the DNS request, of the DNS resolver, which
the attacker wishes to poison. This phase allows to reduce (in some cases even
nullify) the randomness added by source port randomisation (SPR). We tested
our trap/predict attacks against patched DNS resolvers (supporting SPR and
random transaction ID selection) and popular NAT devices, that implement dif-
ferent mechanisms for randomisation of source ports, allocated by the NAT to
outbound packets; see Table 1.

We identified the following common (random) ports allocation algorithms: (1)
random allocation (Section 2.1) where NAT selects ports at random from a pool
of available ports until all ports are exhausted; (2) per-destination sequential
allocation (Section 2.2) where the NAT selects the first port to each destination
at random, and subsequent packets to that destination are allocated consecutive
mappings; (3) port preserving2 allocation, where the NAT preserves the original
port in the outgoing packets, and allocates sequentially upon collision; (4) re-
stricted random allocation, where the NAT maintains a mapping table that is
smaller than the pool of available ports.

We also checked the source port allocation process of the NAT devices, which
we tested in this work, via the DNS-OARC online porttest tool, [25]. The tool
assigns one of the possible three scores: great, good and poor, rating the ‘un-
predictability’ of the ports allocation process. The tool reported a great score
for all the NAT devices tested in this work. Yet we present techniques that allow
the attacker to trap/predict the ports assigned to resolvers’ DNS requests. The
conclusion is that ports that ‘appear’ to be random should not be taken as indi-
cation of security. Indeed, as we show in this work, there are ways to circumvent
this line of defense. In what follows we show trap-then-poison (Section 2.1) and
predict-then-poison (Section 2.2) attacks for selected NAT devices; attacks for
other NAT devices, in Table 1, apply with slight variations and can be found in
the extended version of this work [10].

Our descriptions and figures use illustrative choices of IP addresses, e.g.,
10.6.6.6 (for zombie), 6.6.6.6 (for spoofing adversary Eve), 1.2.3.4 (for the
authoritative name server of the ‘victim’ domain, V.com), and so on.

2 We present the attack against port preserving NAT in the full version of the
paper [10].
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Table 1. Summary of the source port derandomisation attacks presented in this work,
against different types of NAT devices that were tested

Vendor Port Allocation Porttest Rating [25] Vulnerability [Section]

Checkpoint (R70/FW-1) restricted random great Resistant to attacks
(cannot be trapped)

Linux Netfilter Iptables per-dest first random great Predict attack
(kernel 2.6) with ‘–random’ then sequential [Section 2.2]

Linux Netfilter Iptables preserving great Predict attack
(kernel 2.6) (sequential if collide) [10]

Windows XP ICS first random great Predict attack
(Service Pack 3) then sequential [Section 2.2]

Windows XP WinGate preserving great Trap attack
(Release 2.6.4) (random if collide) [Section 2.1]

CISCO IOS (release 15) preserving great Trap attack
(random if collide) [Section 2.1]

CISCO ASA (release 5500) random great Trap attack
(can be trapped) [Section 2.1]

The NAT allocates mappings (permutations) between the addressing
used by the internal host, identified by the tuple (SIP :SPort, DIP :DPort),
and the addressing used by the external host, identified by the tuple
(NATIP :NATPort, DIP :DPort), with the same values of DIP :DPort in both tu-
ples. We denote such mappings (permutations) by function f(·).

Our attacks begin with a phase which allows the spoofer, Eve, to learn the
port that will be allocated by the NAT to the DNS request of the DNS resolver.
The port learning phase is performed with the help of a non-spoofing zombie,
running with user-mode privileges.

2.1 Trap-Then-Poison for Random Ports Allocation

The attack in this section relies on the fact that the NAT implements outbound
refresh mapping for UDP connections, as specified in requirement 6 of RFC 4787
[26] (and implemented in most NATs). Namely, the NAT maintains the mappings
from an internal (source) SIP : Sport pair to an external port NATport, for T
seconds since a packet was last sent from SIP :Sport (on the internal side of
the NAT) to the external network, using this mapping. We further assume that
the NAT device selects an external port at random for each outgoing packet,
e.g., CISCO ASA. The NAT device silently drops outgoing packets, sent from
SIP :Sport to DIP :Dport, when all external ports for DIP :Dport are currently
mapped to other sources; this is the typical expected NAT behaviour, see [26].

The attack begins when the zombie contacts the attacker’s command-and-
control center, identifies its location, and receives a signal to initiate the attack.
We next describe the steps of the attack; also illustrated with simplifications in
Figure 2.

1. The zombie, at address 10.6.6.6, sends UDP packets to 1.2.3.4:53, i.e.,
to the DNS port (53) of the name server of the ‘victim’ domain, whose fully
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Fig. 2. DNS trap-then-poison attack with random ports allocation, for configuration
in Figure 1

qualified domain name (FQDN) is ns.V.com, from each port p in the set of
available ports Ports. To handle faults, the payload of each packet contains
the sending port p ∈ Ports. The NAT allocates to each packet it forwards to
ns.V.com a ‘random’ permutation f over Ports; the allocation of each external
port f(p) to a specific internal port p is held for T seconds, unless refreshed.
Since none of these packets is a legitimate DNS packet, the authoritative name
server ns.V.com ignores all of them, and does not send back any response.

2. After step 1 completed3, Eve sends a packet with a spoofed source ad-
dress 1.2.3.4:53, to external port 666 of the NAT (i.e., to 7.7.7.7:666). Since
7.7.7.7:666 is currently mapped to the internal IP address 10.6.6.6 and some
port f−1(666), the NAT relays the packet to this IP and port. Thereby, the zom-
bie learns the mapping of external port 666 to the internal port f−1(666); this
will be crucial in the continuation of the attack, where we ‘force’ the query of
the resolver to be sent using external port 666 (the ‘trap’). This packet contains
as a payload a random string of 8, or so, digits to be used as the prefix of the
FQDN in the query sent in the attack (in step 4).

3. After receipt of the packet on port f−1(666) in step 2, the zombie waits
until the mappings established in step 1 are about to expire, i.e., until t3 = t1+T
(where t1 is the time of step 1). At t3, the zombie sends additional empty UDP
packets, to all ports in Ports, except port f−1(666). As a result, the NAT re-
freshes the mappings on all of these ports; only the mapping for port 666 times
out, and hence this becomes the trap: i.e., the only available external port of the
NAT, which can be allocated for UDP packets whose destination is 1.2.3.4:53.

3 Eve can learn it is time to send the packet at the beginning of step 2, e.g., by an
appropriate packet from the zombie to Eve upon completion of step 1.
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4. Following to step 3, the attacker knows that the external port 666 of the
NAT is the only port which can be allocated to the UDP packets sent from
the internal network to the authoritative name server, at 1.2.3.4:53. The zombie
sends a single DNS query to the resolver, for a random FQDN r.V.com; the
use of a random ‘subdomain’ r allows to evade the caching of the resolver and
ensures that the resolver issues a DNS query for this FQDN. The resolver then
sends a query to ns.V.com, from some ‘random’ (more precisely, unpredictable
to attacker) port which we denote p, and using some random identifier i.

5. Next, Eve sends a forged response per each i ∈ 216 values of the ID field. If
one of these responses matches all of the validation fields in the query, the resolver
accepts the poisoned records [r.V.com A 6.6.6.6] and [V.com NS r.V.com].
Namely, from this point on, the resolver considers 6.6.6.6 as a valid IP address
for the authoritative DNS server of ns.V.com. The resolver also forwards the
response [r.V.com A 6.6.6.6] to the zombie, which detects the successful at-
tack, and informs Eve (this phase is not shown in the figure).

6. The resolver receives a legitimate ‘non-existing domain’ (NXDOMAIN) re-
sponse from the ‘real’ name server, at 1.2.3.4. If the attack succeeded this response
is ignored, since the query is not pending any more. Otherwise, the resolver for-
wards the NXDOMAIN response to the zombie, who will inform Eve; they will
repeat the attack from step 1 (as soon as the ports expire on the NAT).

7. Finally, steps 7 and 8 illustrate subsequent poisoning of ‘real’ FQDN within
the V.com domain. Since, following step 5, the resolver uses the ‘poisoned’ map-
pings [ns.V.com A 6.6.6.6], all subsequent requests for this domain are sent
to 6.6.6.6.

2.2 Predict-Then-Poison for Per-destination Sequential Ports

In practice, due to efficiency considerations, NAT devices often do not select a
random external port for every outgoing packet, but, depending on the NAT
device, select the first port (for a tuple defined by < SIP : SPort, DIP :
DPort, protocol >) at random, and subsequent ports are increased sequentially
(for that tuple), until NAT refreshes its mapping for that tuple (if no packets
arrived, e.g., after 30 seconds). For a different tuple, e.g., different destination
IP, a new random port is selected for first packet, while subsequent packets
are assigned sequentially increasing port numbers. When the NAT refreshes the
mapping, i.e., by default 30 seconds, the port for outgoing packets with destina-
tion IP and port tuple is selected at random again. This behaviour is consistent
with prominent NAT devices, e.g., Iptables NAT, Carrier Grade NAT [27].

In this section we present predict-then-poison attack on a per-destination port
randomising NAT. A variation of the attack, which applies to port preserving
NAT, is presented in full version of this work, [10]. In contrast to ‘trap’ attacks,
the ‘predict’ attacks exploit an insufficient source port randomisation mechanism
of the NAT, which allows to produce much more efficient attacks by predicting
the source port allocated for the DNS requests by the NAT. In particular, the
zombie is only required to generate and send three packets during the attack:
first packet creates a mapping in the NAT table (so that packets from Eve can
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x←$

d←$

q←$ q'←$

Fig. 3. Predict-then-poison DNS attack, for configuration in Figure 1, assuming
per-destination port sequential NAT

come through), subsequent packet lets Eve know which external port was used
by the NAT, and the third packet is a DNS query which the zombie sends to
local resolver for some random name in the victim domain r.V.com. The at-
tack can be optimised by having the zombie transmit k packets4 (1 ≤ k ≤ 216)
from consecutive ports; Eve then sends

⌊
P
k

⌋
packets (P ≡|Ports|), such that j-th

packet is sent to port Ports[j · k]. The steps of the attack (in Figure 3) follow.
1. Zombie opens the ports (to the destination IP address of the author-

itative DNS), i.e., sends k UDP packets from sequentially increasing ports
Ports[1],...,Ports[k]. All k packets have 1.2.3.4:53 as the destination IP address
and UDP port respectively (i.e., the name server of the victim domain, whose
FQDN is ns.V.com). The NAT assigns a randomly selected port Ports[x] to the
first packet (in the sequence of k packets) that it receives, the rest k− 1 packets
are assigned consecutive (sequentially increasing) external ports.

2. Eve sends
⌊
P
k

⌋
UDP packets, to sequentially increasing (by a factor of k)

external ports of the NAT, with spoofed source IP 1.2.3.4:53. The payload of
each packet contains the destination port number. The zombie receives exactly
one packet from Eve, w.l.o.g. on port Ports[i∗], and with payload containing j∗ ·k
(i.e., packet that was sent to port with index Ports[j∗ · k] of the NAT).

3. Next the zombie calculates the port that will be assigned by the NAT to
the DNS query of the local resolver: Ports[j∗ · k + (k − i∗) + 1], and sends it to

4 Typically, it may be preferable for zombie to issue less packets (i.e., to use smaller
k) to evade detection.
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Eve in the payload (from some (random) source port Ports[$] to a destination
port 666, on which Eve is configured to be listening). Since the destination IP
address of the packet sent to Eve is different from that of the authoritative name
server, NAT will select an external port at random, and not consecutively, i.e.,
some Ports[$] s.t., with high probability Ports[$] �=Ports[x+ k + 1].

4. The zombie then issues a DNS query to the local resolver, asking for a ran-
dom FQDN r.V.com. Since this domain name most likely does not exist in the
cache, the resolver sends a DNS query from some (random) port Ports[d] con-
taining a random identifier, to the authoritative name server ns.V.com. Note
that the destination in the query of the local resolver is the same as the one that
was used in the UDP packets of the zombie (i.e., the authoritative name server),
the NAT will allocate the next available (consecutive) port to the query of the
resolver, i.e., Ports[x + k + 1], following the sequence of ports assigned to the
packets of zombie.

5. As soon as Eve receives the packet containing the external port of the
NAT that is mapped to the internal port of the resolver, she will generate and
transmit P packets with different values in the ID field, with spoofed source
IP address (ostensibly originating from ns.V.com). The destination port in all
the packets is Ports[j∗ · k+ (k− i∗) + 1], and the response contains: [r.V.com A

6.6.6.6] and [V.com NS r.V.com]. Since this port was allocated by the NAT to
the query sent by the resolver, the NAT will forward all these DNS responses to
the resolver.

6. Eventually when the authentic response ‘non-existing domain’ (NXDO-
MAIN) of the real name server at 1.2.3.4 arrives, the resolver will ignore it if
one of the maliciously crafted packets (sent by Eve) matched and gets accepted.
The remaining steps are identical to steps (7) and (8), presented in Section 2.1,
Figure 2.

2.3 Experimental Evaluation

We next describe the setting that we used for validation of the attacks in this
section. We also summarise our results for each NAT device, against which we
tested the attacks, in Table 1; the NAT devices were selected from different cate-
gories, i.e., proprietary NAT devices, e.g., Checkpoint, SOHO NAT devices, e.g.,
windows XP ICS, and other prominent NAT devices. This list of NAT devices
that we tested is of course not exhaustive, but since we found that almost all of
them, except one, allowed the attacker to reduce source port randomisation of
the resolver, it is very likely that many more may be vulnerable to our (or other)
attacks, e.g., Carrier Grade NAT of Juniper Networks (based on the technical
report, [27], published in 2011).
Testbed Setup. Figure 1 illustrates the testbed used for the experimental eval-
uation of our attacks. The testbed consists of a NAT enabled gateway, which
has two network cards. One card is connected via an ethernet cable to a switch,
connecting a benign client, a compromised host, and a DNS resolver. The other
is connected to Eve (also via a switch). The DNS resolver is running Unbound
1.4.1 software. The tests were run concurrently with other benign uses of the
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network. We report on the results of the success of the DNS cache poisoning, by
running trap and predict attacks against popular NAT devices, in Table 1, and
in more detail in the technical report [10].

2.4 Improved Port Allocation Mechanism

The recommendations, [28], for NAT behaviour do not specify the implemen-
tation of port allocation mechanism. As a result, the developers and designers
of NAT devices follow different approaches which may seem secure. Based on
our findings we identify two design factors in ports allocation mechanism of the
NAT: (1) the process via which the ports are selected (i.e., random, preserving,
sequential); (2) the mapping table which maintains the allocated ports.
Randomise Ports Selection. Use port randomisation, but either with separate,
random external port for each internal port, or at least with pseudo-random
(but not sequential) increments between external port numbers5. Random ports
assignment prevents the ‘predict’ attacks.
Restricted Mapping Table. The mapping table of allocated ports, maintained by
the NAT, should be smaller than the pool of all the ports6, e.g., half or less of
the total of number of ports; a smaller mapping table prevents the attacker from
trapping the port. For each arriving packet NAT should randomly select and
assign a port from the pool of ports. Each time an entry is removed from the
table when the external port is freed, e.g., the entry is refreshed after a timeout,
NAT should select a new random port from the pool of ports.

3 IP Addresses (de)Randomisation

DNS resolvers can increase the entropy in DNS requests by randomising the

Fig. 4. The number of IP addresses in use
by Top Level Domains (TLDs)

IP addresses, i.e., selecting the
source/destination IP addresses in
the DNS request at random, and
then validating the same addresses
in the DNS response. Selecting ran-
dom source IP address is rare, the
resolvers are typically allocated one
(or few) IP address as IPv4 addresses
are a scarce resource. Furthermore,
resolvers behind NAT devices use the
IP of the NAT for their requests, and
the address of the resolver is generally known [1].

In contrast, most operators of DNS zones use a number of authoritative name
servers for performance, robustness, and enhanced resilience to cache poisoning

5 A pseudo-random permutation will provide as efficient data structure and lookup,
as when using sequential allocation.

6 This approach was supported only by the Checkpoint NAT which allowed it to evade
our trap attacks.
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attacks. We found that the majority of top level domains (TLDs) use 5 to 7
authority name servers, and important domains, e.g., com, use 13 authority
servers7; see Figure 4.

When zone operators employ multiple authority servers, the resolver should
send the query to the one with the shortest response time, and avoid querying
non-responsive name servers, see [30,31]. However, there are no instructions on
how to implement the server selection algorithm; as a result different resolvers,
and even different versions thereof, implement different server selection algo-
rithms, often resulting in inefficient implementations, [32].

Indeed, the selection of the authority server by the caching resolver can often
be predicted, e.g., if the attacker can measure the latency from the resolver to the
authority name servers for a sufficient amount of time. However, this requires a
significant effort from the attacker, andmay not always result in precise prediction.

We focus on a weaker attacker which does not keep track of the latency to all
the servers. However, our technique enables the attacker to predict the target
name server’s IP, for resolvers which avoid querying unresponsive name servers,
as per the recommendations in [32,31]. We exploit the fact that when the target
name server is not responsive, i.e., queries time-out, the resolver does not send
subsequent queries to it, but only periodically, probes the target server until it
becomes responsive. The (standard-conforming) Unbound (1.4.1) resolver sets
this probing interval to 15 minutes. A similar behaviour was observed by [32] in
PowerDNS, with the exception that PowerDNS sets the interval to 3 minutes. It
appears that relying on the DNS server IP address randomisation for additional
entropy requires careful study of particular resolver in question.

3.1 Predicting the Destination IP Address

The idea of destination IP prediction phase, in Figure 5, is to exploit large DNS
responses which result in fragmentation; fragmented IP traffic has been exploited
for denial of service attacks in the past, e.g., [33,34,35]. We performed the attack
against a 404.gov domain8, whose non-existing domain responses exceed 1500
bytes and thus get fragmented en-route.

This phase, of forcing the resolver to use a specific IP, requires a puppet, i.e.,
a script confined in a browser, which issues DNS requests via the local caching
DNS resolver, at IP 1.2.3.4 in Figure 5.

In steps 1 and 2 the puppet coordinates with the spoofer and issues a DNS
request for $123.404.gov (where $123 is a random prefix). In steps 3 and 4,
the spoofer sends a forged second fragment, for all the possible name servers
(i.e., a total of 2 spoofed fragments) except one which the attacker wants the
resolver to use for its queries during the poisoning phase; the 404.gov domain
has three name servers. This ensures that only one IP address results in a valid
response, and the other two result in malformed DNS packets. The spoofed

7 The list of TLDs is taken from the list published by IANA [29].
8 Many other zones return responses which get fragmented, e.g., mil TLD; we focused
on 404.gov since it has only three name servers, which simplifies the presentation.
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Fig. 5. The destination IP address prediction attacks: spoofing attacker crafts a forged
second fragment that gets reassembled with the authentic first fragment and results in
a malformed packet, which is discarded by the resolver

second fragment is incorrect, and contains a single arbitrary byte (in addition
to headers). In step 5, the spoofed second fragment is reconstructed with the
authentic first fragment resulting in a malformed DNS packet which leaves the
fragments reassembly buffer. This malformed DNS response is then discarded
by the resolver, and the IP of the name server is marked9 as ‘non-responsive’.
When the authentic second fragment arrives, it does not have a match and is
discarded after a timeout. As a result the resolver does not receive the response,
and after a timeout it resends the DNS request to the next DNS server, step
6. The same procedure applies here, and the response is discarded. In step 9 a
valid response arrives from IP 162.138.183.11. Note that the resolver sends two
queries to each server and marks the name server as non-responsive when two
queries to that server result in a timeout; for simplicity in Figure 5 we present
the process for one query to each server. As a result of ‘wrecking‘ the responses
from all name servers except one, we forced the resolver to direct all its queries
for 404.gov domain to one name server at IP 162.138.183.11.

Note that crafting a forged second fragment that would get matched with the
authentic first fragment requires a match with the identification field (IP-ID) in
the IP header. According to [36,34] the fragments of a datagram are associated
with each other by their protocol number, the value in their IP-ID field, and
by the source/destination address pair. Therefore the attacker is required to hit
the correct IP-ID value, which is used by the name server in its DNS response.
Many domains, as well as 404.gov, use per-destination sequential incrementing
IP-ID values (or even globally sequential incrementing IP-ID, e.g., Windows OS).
Other domains (mainly top level domains and the root servers) increment the
IP-ID value in randomised quotas; we provide more details on this in [10].

9 In reality the resolver marks the server as ‘non-responsive’ after two unsuccessful
respopnses, and this is easily handled by the attacker by sending two spoofed
fragments with consecutive IP-ID in each IP header.
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The IP-ID allocation algorithm does not have a significant impact10 on our
attacks against Unbound (and alike) resolvers, as the number of ‘misses’, i.e.,
valid responses arriving to the resolver from some IP, does not prevent the attack
since two failed (timed-out) queries suffice for Unbound to mark the server as
non-responsive for 15 minute interval.

3.2 Experimental Evaluation

The Wireshark capture, in Figure 6, that was run on the resolver, demonstrates
the experimental evalutation, i.e., the DNS packets entering/leaving the net-
work card of the resolver. During the course of the experiment the puppet is-
sued 6000 queries11 to the resolver. The spoofer initiates the attack by sending
three spoofed fragments to each IP address except 162.138.183.11. For simplic-
ity, the capture presents only the packets exchanged between the resolver and
the name server of 404.gov at 162.138.191.23 (by adjusting a corresponding fil-
ter in wireshark); the complete capture contains queries/responses from other
name servers too. Packets numbered 18-20 are the forged fragments sent by the
spoofer, with sequentially incrementing IP-IDs. Then zombie triggers a DNS re-
quest (packet 29). The response from the name server contains two fragments,
packets 33 and 34. The first fragment is reassembled with a spoofed fragment
(packet 18), resulting in a malformed packet which is discarded by the resolver.

The second fragment is discarded after a timeout. In packet 48 the resolver re-
quests a public verification key of the 404.gov zone. The response contains three
fragments 49-51; the first fragment is reconstructed with the spoofed fragment
in packet 20, which also results in a malformed DNS response and is discarded.
Note that this request, in packet 48, was sent at 19:28. Based on our tests it can
be seen that when Unbound encounters a timeout twice for the same destination

Fig. 6. The wireshark capture of the attack, presenting only the packets exchanged
between the name server 162.183.191.23 and the resolver. As can be observed, after
two malformed responses the resolver refrains from sending further queries to that
name server for 15 minutes. Fragmented packets are coloured in white, DNS requests
in black, and reassembled DNS fragments in blue.

10 Windows OS allows for a more efficient attack requiring less DNS queries.
11 Note that our goal was to test the behaviour of the resolver, and to check the

frequency of the queries to non-responsive servers; in real attack, once the IP-ID is
known, it suffices to issue two queries to mark the server as non-responsive.
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IP, it stops sending further packets to that destination for 15 minutes. Indeed,
the next packet that is sent to that IP is packet number 6848, at time 19:43.
The same scenario was observed with IP 162.138.191.11. The queries between
19:28 and 19:43 were sent only to 162.138.183.11, avoiding 162.138.191.11 and
162.183.191.23. Note that even if some of the responses (between packets 33 and
49) were valid and accepted by resolver, e.g., if they were not fragmented, it
did not make a difference, and two timed-out responses in a 15 minute interval
were sufficient for Unbound to stop querying those IP addresses; this also implies
that the success probability of the attack does not depend on the IP-ID selection
mechanism.

3.3 Improved IP Address Randomisation

The attack we presented holds against a specific DNS resolver software, however
we caution that variations of our ideas may apply to other server selection algo-
rithms, and we believe that in the long term best answer to our derandomisation
attacks is to deploy DNSSEC.

In the meanwhile we suggest (1) increasing the number of IP addresses, both
of the name server and of the DNS resolver, e.g., an approach recently proposed
by [37] is to superficially increase the number of IP addresses of the resolver for
its DNS requests by reusing the available IP addresses allocated to the network.
Derandomising the IP addresses of the resolver seems to be a challenging task
for the attacker; and (2) improving name server selection mechanisms, in partic-
ular, it seems that further investigation of server selection mechanism is required
to adjust the recommendations in [32,31] to enhance the robustness of resolvers
against such (or similar) attacks.

4 DNS Query (de)Randomisation

In this section we describe two prominent defenses, ‘case toggling’ and random
prefix, which are known to add significant extra entropy to DNS requests and
show simple ways to circumvent them.

‘cASe toGgLiNg’. Dagon et al. [13] present 0x20 encoding for prevention
of DNS poisoning. The technique is to randomly toggle the case of letters of
which the domain name consists, and validate them in response. However, we
believe that the distribution of domain queries with sufficient 0x20 characters,
as reported by Dagon et al., is not indicative of the number of characters in
queries that attackers will try to poison, and hence the impact of 0x20 encoding
can be easily circumvented. In fact, in Kaminsky-style attacks, the query is
intentionally for a non-existing domain name chosen by the attacker, e.g., .com
and .uk; indeed the attackers prefer to poison a response to com rather than
to www.google.com. Also note that poisoning com allows the attacker a control
over all subdomains of com (including www.google.com).
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Random Prefix. Prepending a random prefix to a DNS query12 can ensure
that a sufficiently large DNS query is sent, allowing to apply the 0x20 encoding
on more letters and also making it more difficult for the attacker to guess the
query (and the case of each letter).

The DNS query is composed of subdomains, at most 63 bytes each, sepa-
rated by dots, s.t., the total number of characters cannot exceed 255 bytes. So,
prepending a random string $1 to query abc.tld, results in $1.abc.tld and in-
creases the query by the size of $1.

A naive implementation of this protection mechanism can be foiled by the
attacker. The attacker that wishes to poison an entry for some top level domain,
e.g., com, can issue a maximal size DNS query, i.e., 255 bytes, consisting of
numbers, that will not allow prepending any more characters: 1-36.1-36.1-36.1-
33.com (the ‘1-36’ denotes a string containing all numbers between 1 and 36).
As a result, the attacker circumvents the 0x20 protection (which does not apply
to numbers) and further avoids the addition of a random prefix to DNS request
(since the query is already of maximal size). A slight variation of this attack, see
[38], also foils protection offered by WSEC DNS [16].

The size of queries to top level domains should be restricted, to prevent cir-
cumventing the query randomisation defenses by attackers.

5 Conclusions

Currently, the popular protection used by most DNS resolvers against poison-
ing relies on echoing the validation fields in DNS response. Such mechanisms
are clearly insufficient to prevent poisoning by MitM attackers. A secure stan-
dard alternative exists: DNSSEC, which uses cryptography to achieve verifiable
security. However, the deployment of DNSSEC is quite slow. One reason are
significant interoperability and performance concerns; another reason may be
the existence of several ‘patches’, adding more ‘unpredictable’ identifiers. Such
‘patches’ are trivial to deploy and involve no or negligible overhead, hence, ad-
ministrators may prefer to deploy them instead of deploying DNSSEC.

We study the major proposed ‘patches’, and find vulnerabilities in all of them.
Our ‘trap’ and ‘predict’ attacks show that source ports may be disclosed or im-
pacted by network devices such as NAT gateways. We show that the attacker
can also nullify IP address randomisation of standard-conforming resolvers such
as Unbound, forcing the resolver to query a specific name server. We also de-
scribe simple techniques to circumvent the DNS query randomisation via a ran-
dom prefix and 0x20 encoding. We validated our attacks against popular NAT
devices and standard DNS resolver software. Our derandomisation attacks are
deployed ‘sequentially’ in phases, removing the randomisation of each identifier
independently, and eventually strip the DNS request of the entropy offered by
those ‘unpredictability’ fields, exposing the caching DNS resolvers to efficient
poisoning attacks by off-path spoofing adversaries.

12 A random prefix is a variation of the defense proposed in [16].
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We show simple and effective countermeasures to our attacks. However, while
using such ‘patched patches’ is tempting and easy, we believe that our work shows
the importance of basing security on solid, strong foundations, as provided by
DNSSEC, i.e., cryptographic protocols designed and analysed to ensure security
even against MitM attackers.
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Abstract. This paper presents a novel specification-based investigation
logic and applies it to tackle abuse of channel assignment protocols in
multi-channel wireless networks. The investigation logic looks into ma-
licious operations that violate the specification of channel assignment
protocols. With logged operations, it reconstructs the process of channel
assignment as an information flow that captures essential dependency
relations among protocol-specific channel assignment operations. Then,
it derives and applies reasoning rules to conduct consistency check over
the logged operations and identify the source of abuse where the logged
operations are inconsistent. Through simulation, the proposed investiga-
tion logic presents desired quality with zero false negative rate and very
low false positive rate.

1 Introduction

Recent studies [5,15] have shown that using multiple non-interfering channels
appropriately can significantly reduce interference among neighboring nodes
and improve the overall capacity of a wireless network. Various channel as-
signment (CA) protocols have been developed for multi-channel wireless net-
works [16,2,28,8]. However, CA protocols are vulnerable to various new attacks
[6,21,11,30], in addition to existing security threats in single channel wireless
networks. These new threats can effectively ruin the “good will” of the CA pro-
tocols, reduce the network throughput, and downgrade the quality of network
access. Examining these attacks, we found that it is very easy for attackers to
abuse CA protocols to cause channel conflicts in multi-channel networks. Attack-
ers can claim wrong, no-existing or incomplete channel information. Attackers
can conduct mis-operations to provide different channel information to different
nodes. All such abuses of CA protocols force or misguide the victims to change
channels so that the network capacity is worse utilized or even the network access
is disabled.

Unfortunately, securing multi-channel wireless networks is not as simple as
adapting the existing defenses in single channel wireless networks. Authentication-
based defense approaches [31,18] have been studied in multi-channel networks.
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They ensure the integrity of the node identity and the information carried
in channel assignment packets. But, their defense capacity is limited to non-
authentic information. For example, they cannot stop compromised nodes from
providing authentic information with compromised credentials, or stop attack-
ers from providing in-consistent yet authentic information to victims. Intrusion
detection frameworks [25,9] have also been proposed in multi-channel networks.
These frameworks still have their stands on the assumption that intrusive ac-
tions can be observed as in single channel wireless networks. Nevertheless, CA
protocols intend to have nodes work on different channels and thus channel as-
signment operations (including attackers’) on a particular channel may not be
observed at all when intrusion detection agents are “cruising” on other channels.

Knowing the difficulties of securing multi-channel wireless networks, we ex-
plore new means of investigating abuses of CA protocols based on evidence (i.e.
logged channel assignment operations). We propose a specification-based inves-
tigation logic to reveal abuses of CA protocols. Our proposal is built upon the
fact that all good nodes will follow CA protocols in channel assignment. Any
abuse of CA protocols must inherently have some operations or information that
are either contradictory to the protocols or inconsistent inside the abuse itself.
A key difference between the abuse investigation and existing intrusion detec-
tion in wireless networks is that it exploits the dependency among evidence.
The investigation gathers both true and phony evidence in network, builds de-
pendency among evidence using a generalized model of protocol specifications,
and locates the inconsistency among evidence. The investigation helps the net-
work administrators to track down the sources of abuse that inevitably results
in contradictory evidence.

The investigation is challenging in several aspects though. First, CA protocols
vary in their specifications. The operations and the causal relations among op-
erations are specified by protocols, while the operations performed by nodes are
stochastic and determined by the channel condition at the time being. Hence, it
is neither simple to reconstruct the possible attack scenes nor straightforward to
identify the relations among evidence. Second, nodes have only localized views
on their channels, and may miss information due to packet loss. The evidence
they can provide is always limited to what they can observe on their channels and
in their neighborhood. The evidence provided by nodes may not directly include
the information about attackers. The limited information is also an obstacle
to justifying the operations of good nodes. Third, attackers can compromise
deployed nodes to obtain credentials and provide seemingly authentic channel
information. Evidence built upon such authentic but wrong information may
deceive investigators. Attackers can “lie” in investigation by providing phony
evidence that are not generated from their attack operations. Meanwhile, it is
hard to identify phony evidence as attackers can claim that the phony evidence
is established on information and operations missed by other nodes.

The proposed investigation logic contributes to the security of multi-channel
wireless networks in the following aspects: (1) An investigation model that
captures essential dependency relations among protocol-specific
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channel assignment operations.CA protocols are complex in nature for man-
aging multiple channels and multiple radio interfaces. We identify three types
of dependency among operations. We show that such relations would enable
one to link together channel assignment operations among nodes and rebuild
the channel assignment process with the use of standard operation logs. Unlike
static logic-based approaches that analyze security protocols or security con-
figurations, the investigation is adapted to the dynamic evidence derived from
channel assignment traffic and operations. (2) Investigation reasoning rules
that identify the source of abuse where the evidence is inconsistent.
Based on stochastic profiles of channel assignment operations, we identify two
types of inconsistency that need different investigation mechanisms. Various in-
vestigation logic rules are derived to detect possible abuses with each category of
evidence, and algorithms are developed to apply the investigation rules to locate
inconsistency among evidence and identify the suspects involved with the sus-
picious evidence. Although the investigation does not directly locate the exact
attacker, it enables the investigator to quickly narrow down the investigation
onto a small range of suspicious operations and reduce investigation efforts and
costs in orders of magnitude.

The rest of the paper is organized as follows. Section 2 states the assumptions,
the threat model, and the investigation goal. Then, we propose the investigation
model in Section 3, and the investigation reasoning in Section 4. Evaluation is
given in Section 5. Related work is discussed in Section 6. Finally, we summarize
our work in Section 7.

2 Preliminary

2.1 Network Model and Assumptions

Similar to many studies for multi-channel wireless networks, we assume a wire-
less network has multiple non-interfering communication channels (channels for
short thereafter). The number of channels is specified by communication pro-
tocols. For example, IEEE802.11A has 13 channels, and IEEE802.11B has 3.
To communicate with neighbors on different channels, a node is equipped with
multiple radio interfaces. A node obtains its channels through the interaction
with their neighbors following a CA protocol. Then, the node switches its radio
interfaces onto the obtained channels. The gateway nodes of a network are the
nodes statically connected to the wired network. They have pre-assigned chan-
nels. All other nodes obtain their channels after joining the network. We also
assume good nodes in the network do not have the knowledge of the whole net-
work. Each node can only observe network traffic on its working channels in its
vicinity. If an attacker is communicating with a victim on the victim’s channel
while no other nodes are working on the victim’s channel, no nodes other than
the victim and the attacker can know the attacker’s action.
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2.2 Threat Model and Assumptions

For security, we assume proper authentication schemes have been applied. Mean-
while, we assume attackers can disseminate wrong but authentic channel in-
formation. For example, attackers can capture and compromise some deployed
nodes to obtain credentials. We also assume attackers can lie during investiga-
tion. They can create phony evidence from wrong or non-existing operations, as
long as they can authenticate the evidence. The only trusted nodes in network
are the gateways, which are usually better secured than other nodes.

Multi-channel wireless networks are vulnerable to various attacks. Based on
the common characteristics of attacks, we define two types of attacks that per-
form malicious actions in channel assignment to deceive the perception of good
nodes on channels and make good nodes to switch to channels that are only
“perceived” better. The formulation and implication of the two types of attacks
will be discussed in detail in Section 3.4.

Definition 1. Type-I attack: a malicious operation that violates the specifica-
tion of a protocol and a good node does not perform.

Definition 2. Type-II attack: a malicious operation that follows the specifica-
tion of a protocol but a good node may only perform with a low probability.

2.3 Investigation Goal

Based on the above observations of the known threats, we define good operations
as the operations that follow the specification of CA protocols, including using
verifiable channel information, taking specified actions, and transmitting speci-
fied packets. Correspondingly, malicious operations do not use verifiable channel
information, do not take specified actions, or do not transmit specified packets.

The objective of our investigation is not to identify which node or which
operation triggers other nodes to change channels. Rather, our investigation
goal is to identify the malicious operations that violate the specification of CA
protocols. Because such malicious operations lead to the aforementioned attacks,
our investigation can deter attackers from launching such attacks.

As malicious operations violate the specification of CA protocols, they must
leave traces that in fact mismatch the actual status and audit data in good
nodes and are not justifiable by attacker-provided information. Hence, if we
could detect the mismatch in the traces that are supposed to hold consistent
information, we could identify the malicious actions. Based on this rationale, we
propose an investigation logic that can effectively investigate a possible attack.

3 Investigation Model

The foundation of our investigation is built upon the specification of CA pro-
tocols and the operations of nodes in channel assignment. This section presents
the notations and the modeling used in the investigation logic.
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3.1 Notations

To investigate the past operations of nodes, we first model the logged operations
with a triple 〈A,M,K〉 based on an earlier audit model in [13]. In this model, A is
a set of nodes, M is a set of messages, and K is a set of actions. The investigation
model captures the relation among the operations of nodes in channel with the
three components:

Nodes could be honest (good) or dishonest (malicious). Gateways of a multi-
channel network are assumed to be honest nodes in this paper, as they are usually
better protected physically and logically than other nodes.

Messages include internally maintained information, externally transmitted
packets, and so on. They are the information used in channel assignment, and
are recorded for investigation. Fields of a message m is protocol-specific, and
could include identities, assigned channels, traffic quality metrics, paths, se-
quence numbers (or time marks), neighbors’ channel and traffic information,
and so on.

Actions are operations performed by nodes in A over messages in M. An action

k is thus defined as k = {m a:ρ→ r}, where a ∈ A is the acting node, m ∈ M is the
input message, r ∈ M is the result message, and ρ is the operation. The action k
means that a performs ρ on the input m and gets the result r. k is a fixed action
if r is fixed given m. Otherwise, if r is random given m, k is a random action.

Actions can be concatenated or combined. Given two actions k1 = {m1
a:A→ r1}

and k2 = {m2
b:B→ r2}, the two actions are concatenated as k1‖k2, if the result

of k1 is an input of k2, i.e. r1 ⊆ m2. The two actions are combined as k1 ∪ k2,
if the results of k1 and k2 are the input of another action k3 = {m3

c:C→ r3}, i.e.
r1 ∪ r2 ⊆ m3.

Actions are also categorized as external and internal. An action is external if
either the input or the result of the action is a transmitted packet. For example,

two external actions are involved when a sends ma to b: ka = {ma
a:S→ pab} and

kb = {pab b:R→ ma}, where pab is a transmitted packet containing ma, S means
sending, and R means receiving. The two external actions are concatenated as

ka‖kb, and simplified as kab = ka‖kb = {ma
a:S→ pab}‖{pab b:R→ ma} = {ma

ab:SR→
ma}. An action is internal if both the input and the result of the action are φ or
internally kept information by the node. For example, the internal action for a’s
periodic timer is ka = {ma

a:σ→ ma}, where σ is timer and ma is the information
kept in a. The timer action is simplified as σ. Another example of internal action
is that a updates its neighbor informationma with a received update mb from its

neighbor b. The internal action is {(mb∪ma)
a:U→ m′

a}, where U means updating
and m′

a is the neighbor information after update.

3.2 Dependency among Actions

In a sequence of actions, we observe that the input of an action is usually the
output of an earlier action. Thereby, we can concatenate an action with an earlier
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action. The concatenation of the two actions represents the dependency between
the two actions as defined below. We show three types of dependent actions that
capture all possible dependency among actions in processes.

Definition 3. Action x depends on an earlier action y if they can be concate-
nated as y‖x. x is called a dependent action and y is the dependency of x.

– Dependent Internal Actions. After a node obtains a channel, it needs
to conduct periodic operations to keep update with its neighbors and select
better channels. These operations form a sequence of internal actions inside
each individual node. Three types of internal actions are involved: periodic
timer action, update action, and channel selection action. The three types
of internal actions are dependent internal actions and are concatenated with
earlier internal or external actions.

– Dependent External Actions. The operations of individual nodes are not
isolated. A node needs to send its latest channel to other nodes so that they
can keep up-to-date information with each other. The sending and receiving
actions involved in the information exchange are concatenated as dependent
external actions. This type of dependent actions establish the connections
between the operations of different nodes when they communicate to ex-
change information.

– Leaf Actions. CA protocols require nodes to conduct the channel assess-
ment operation to assess the traffic condition of their channels. The assess-
ment actions do not take any results from other actions as input. Hence,
although they are internal actions, they do not depend on any earlier ac-
tions. The leaf actions cannot be concatenated to any earlier actions, but
are always concatenated to later dependent internal actions.

3.3 Process Model

Although CA protocols vary, the operations of good nodes can always be repre-
sented as a process. A process is a triple 〈S, s0,⇒〉, where S is a set of states,
s0 is the starting state, and ⇒ is a sequence of concatenated actions. In channel
assignment, states are aligned with the assigned channels. For example, sφ is the
state without assigned channel and sc is the state with an assigned channel c. If

a node changes from s1 to s2 after action k, the process is s1
k⇒ s2.

As each node maintains the information of its neighbors and channel condi-
tions, dependent internal actions in ⇒ are concatenated to form an information
flow of the process as illustrated in Figure 1(a). Letmt be the information a node
maintains and ρt be the internal operation at time t. The dependent internal
actions are concatenated in the order of updating mt.

The information flow of a node’s process starts with mt0 = φ in state st0 at
t0. Over a sequence of time points t0, t1, t2, ..., the node conducts a sequence of
operations ρt1 , ρt2 , ... Each operation ρtj takes mtj−1 as input and outputs mtj

to operation ρtj+1 . The information flow is segmented with different states. The
last operation in each state segment is what the node performs to select new
channels.
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Fig. 1. Process Model

ρtj also take δtj as input, which is a union of new information of channels
received between tj−1 and tj . δtj = φ indicates that the node didn’t perceive any
change in channels. Otherwise, δtj = ∪m∗a∪qc∪fl, which includes the messages
received from neighbors and the results of channel and link assessments. Hence,
δtj is the results of combined dependent external actions and leaf actions. The
output mtj of operation ρtj may also be sent out as εtj ⊆ mtj to neighbors
through the sending action.

Processes of multiple nodes are further modeled as interconnected chains via
δt and εt. Figure 1(b) shows two processes of two neighbor nodes. As they ex-
change information, their processes are interconnected. The connections of chains
represent the dependency of dependent external actions.

The process model captures the dependency among actions of good nodes
and represents the protocol specification as an information flow of processing
mt. Hence, abuse of CA protocols is in fact an attempt to change or break the
information flow. The hypothesis of our investigation is that no attack presents
to affect the channel assignment if the information flow can be verified.

3.4 Statistic Profile of Actions

As outlined in [12], the actions in the process are stochastic. K (the set of actions
as discussed in the above investigation model) is a mixture of a good action set
G and a malicious action set B, i.e. K = G∪B. Following Definitions 1 and 2, the
set of type-I attacks is BI = G∩ B and the set of type-II attacks is BII = G ∩ B.

Let G(t) ∈ G be a possible good action at t, and let B(t) ∈ B be a possible
malicious action at t. Let k(t) be the logged action at time t. Then, k(t) ∈ K
is either G(t) or B(t). Following the notations of [12], we define the following
probabilities for good actions and malicious actions.

– g(k(t)) = Pr{G(t) = k(t)} is the probability that the good action at t is
k(t).
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– b(k(t)) = Pr{B(t) = k(t)} is the probability that the malicious action at t
is k(t).

Let kg(t) ∈ G be the logged good action at t, kI(t) ∈ BI be the logged type-I
attack action at t, kII(t) ∈ BII be the logged type-II attack action at t. We have
the following statistic profiles of good actions and malicious actions.

1. Statistic profile of good actions:
– g(kg(t)) = 1 for fixed good actions, because a fixed action always has

only one specific result at t.
– 0 < g(kg(t)) < 1 for random good actions, because a random action may

end with different results at t.
– g(kI(t)) = 0 for good actions, because kI(t) /∈ G due to BI ∩G = φ.
– 0 < g(kII(t)) < 1 for random good actions, because kII(t) ∈ BII and

BII ⊂ G.
2. Statistic profile of malicious actions:

– b(kg(t)) = 0 for type-I attack actions, because kg(t) /∈ BI due to BI∩G =
φ.

– 0 < b(kI(t)) ≤ 1 for type-I attack actions.
– 0 < b(kII(t)) ≤ 1 for type-II attack actions.

As discussed in the investigation models, actions can be classified as fixed and
random. The dependent external actions and the dependent internal actions
(excluding the last internal action at the end of each state in a process) are
usually fixed actions, because their results are fixed given their inputs. The
dependent internal action at the end of each state in a process is the channel
selection action. It is fixed if the CA algorithm of the protocol is deterministic,
e.g. the algorithm always selects the least used channel. Otherwise, it is random
if the CA algorithm is non-deterministic. The leaf actions are usually random
actions, because their results are the assessment of channel condition that always
includes noise and errors.

4 Investigation Reasoning

For investigation, the actions are recorded by nodes and later retrieved to recon-
struct the processes by investigators. A log entry includes the input, the result,
the operation, and the sequence number of the action. Because the abuse actions
violate the protocol specification, the log entries corresponding to the abuse will
not fit into the information flow. The key of investigation is to locate such prob-
lematic log entries by conducting consistency checks on M and K following the
information flow.

4.1 Consistency

As discussed in [12], the effectiveness of investigation is limited by the disparity
of b(k(t)) and g(k(t)) for k(t) ∈ BI∪BII. When the two probabilities are very dif-
ferent, the investigation can detect malicious actions with high confidence. When
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the two probabilities are highly similar, the investigation cannot distinguish be-
tween good and malicious actions. In other words, when malicious actions follow
the same statistic profile of good actions, attackers in fact behave as good nodes
and thus do not threat channel assignment.

The investigation measures the disparity of the two probabilities as d(k(t)) =
| log b(k(t))−log g(k(t))|. Then, the overall disparity of all past actions is given in
Eq.(1), where DI is the disparity between type-I attack actions and good actions
and DII is the disparity between type-II attack actions and good actions. Note
that actions in G∩BII will not be performed by attackers, and thus D

G∩BII
= 0.

D =
∑
t

d(k(t)) =
∑
t

| log b(k(t))− log g(k(t))| = DI +DII (1)

DI =
∑

t d(kI(t)). Because g(kI(t)) = 0, DI =
∑

t | log b(kI(t)) − log 0|.
DII =

∑
t d(kII(t)) =

∑
t | log b(kII(t)) − log g(kII(t))|. Because the goal of a

good random action is to improve the channel usage, a good node will less likely
to perform a type-II attack action that results in worse channel usage, and thus
b(kII(t)) ≥ g(kII(t)). Thereby, DII =

∑
t(log b(kII(t))− log g(kII(t))) > 0, and∑

t log b(kII(t)) >
∑

t log g(kII(t)).
The above disparity analysis shows quantitatively and theoretically how at-

tack actions are inconsistent with good actions. However, in practice, we do not
know exactly BI and BII, and their statistic profiles b(kI(t)) and b(kII(t)). There-
fore, in the following, we propose reasoning rules to conduct consistency checks
for investigating the two types of attacks based on the analysis of DI and DII .

4.2 Consistency Check on Type-I Attack

The disparity DI shows that the inconsistency of a type-I attack action can be
detected when a logged action should not occur but present in log. Hence, the
consistency check on type-I attack is equivalent to the check on whether or not
a logged action can fit into the processes built upon the log. The consistency
check on type-I attack includes two steps: (i) rebuild processes from log and (ii)
check dependency among actions.

Rebuild Processes. As discussed in Section 3.3, the process of a node is made
of dependent and leaf actions that form an information flow. Upon investigation,
the procedure in Algorithm 1 is executed to rebuild the processes for all nodes. If
the information flow is not complete due to a missing earlier dependency action,
inconsistency is detected. Lemma 1 states that such an inconsistent situation is
caused by a type-I attack or a lie.

Lemma 1. For a dependent action, if the search of an earlier dependency action
in Algorithm 1 fails, (i) at least one of the two actions is a type-I attack action,
or (ii) at least one of the owners of the two actions lies.
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Algorithm 1. Procedure of rebuilding processes

1: Collect log entries over an investigation period
2: for each node do
3: Sort log entries according to their sequence numbers
4: for each log entry do
5: if the action is a dependent internal action then
6: Search earlier dependent internal actions following its inputs
7: Report inconsistency on the current action if search fails
8: Add edges with the earlier actions that can be concatenated
9: end if
10: if the action is a sending action then
11: Search earlier dependent internal action
12: Report inconsistency on the current action if search fails
13: Add an edge from the earlier internal action to the current action
14: end if
15: if the action is a receiving action then
16: Search the sending action from the sending node
17: Report inconsistency on the current action if search fails
18: Add an edge from the sending action to the current action.
19: end if
20: end for
21: end for

Dependency Check on Dependent Actions. Although the information flow
presents the dependency relations among logged actions, the actions may con-
tain false information. For example, attackers provide bogus log entries in order
to form a complete information flow in a rebuilt process. The bogus log entries
will then cause inconsistency on the dependency among actions. To inspect de-
pendent actions, investigation needs to check the operation consistency and the
dependency consistency of the actions.

Definition 4. Operation consistency: A logged action is operation consistent if
the logged result matches the result of the action given the logged input.

Definition 5. Dependency consistency: Assume in the information flow of a
process, a logged dependent action has edges with some earlier dependency ac-
tions. The dependent action is dependency consistent if the logged input of the
action is the union of the logged results of the earlier dependency actions.

To evade investigation, attacking nodes must lie to ensure that the logged ac-
tions can pass the two dependency checks. Because attacking nodes can only
provide bogus actions in their own processes, they must provide actions with
self-sustained operation consistency and dependency consistency in the processes
that can prove each other. Lemma 2 and Lemma 3 can be established to ensure
that no type-I attack can enable attackers to evade the investigation by lying on
dependencies.
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Lemma 2. An attacking node cannot lie with a set of bogus type-I attack actions
with self-sustained consistency to evade investigation.

Lemma 3. A set of colluding attacking nodes cannot lie with a set of bogus
type-I attack actions with self-sustained consistency to evade investigation.

Theorem 1. A type-I attack is detectable with 100% guarantee.

4.3 Consistency Check on Type-II Attack

The disparity DII shows that the inconsistency of a type-II attack action can
be detected when a logged action should occur less but present too often in log.
Although we do not know the exact statistic profile of type-II attack b(kII(t)),
we can establish Lemma 4 stating that

∑
t log b(kII(t)) is an approximate of the

entropy of type-II attack actions. Then, we can further establish Theorem 2 that
type-II attack actions are detectable.

Lemma 4. Let T be the number of type-II attack actions in log.
limT→∞ −

∑
t log b(kII(t)) = HT (BII), where HT (BII) is the entropy of the T

type-II attack actions.

Theorem 2. Given HT (BII), type-II attack actions are detectable with their cu-
mulative information content as good random actions, i.e.
− limT→∞

∑
t log g(kII(t)) > HT (BII).

Accordingly, the consistency check on a type-II attack action is to compare
the information content of a logged action as a random good action with the
entropy of the action. Since we do not have HT (BII), the detectability only
works in theory. In practice, we develop heuristic consistency check on two types
of random good actions: (i) leaf actions and (ii) channel selection actions.

Cross-Verification on Leaf Actions. Leaf actions are stochastic in that they
are used to sample time-variant channel conditions. In particular, we see two
types of leaf actions for all the protocols we have studied. Our investigation
logic cross-verifies them with other log entries based on some heuristics.

– The link failure action occurs when a node changes its channel or leaves the
network which results in the link failure. An attacking node may exploit
this action to claim the change in its channel usage. The heuristic of our
investigation is to compare the channel of the link before and after the failure.
A logged link failure action is determined as a type-II attack action, if the
channel of the link is not changed.

– The channel assessment action measures the channel usage condition.
To verify a logged channel assessment action, our investigation compares
the assessed channel condition with the channel usage information in the
log entries of its neighbor nodes. A logged channel assessment action is
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Algorithm 2. Procedure of Consistency Check

1: Start from a logged channel selection action.
2: Initiate an empty set INV
3: Add the starting action to INV
4: repeat
5: Follow the information flow edges of the logged actions.
6: Add the dependency actions and the edges to INV
7: until no more dependency actions in the investigation window
8: for each dependent action in INV do
9: Check the operation consistency of the action
10: Check the dependency consistency of the action with its dependency actions
11: if the action does not satisfy the consistency then
12: Report the action, its dependency action, and the owners of these logged

actions
13: end if
14: end for
15: for each leaf action and channel selection action in INV do
16: Verify the action according to its type
17: if the log entry does not satisfy the consistency then
18: Report the log entry, the log entries used for verification, and the owners of

these log entries as suspicious
19: end if
20: end for

determined as a type-II attack action if the difference of the channel usage
falls outside a reasonable statistical range.

Entropy Check on Channel Selection Actions. In most CA protocols, the
channel selection action is a random action. When a node finds a set of better
channels, the node can select a new channel or stay at its current channel with
some probabilities. Following Theorem 2, we substitute HT (BII) with HT (G).
This heuristic is based on (i) the simplification that g(kg(t)) and b(kII(t) are
symmetrically skewed, because a less performed good action will be more per-
formed by attackers and vise verse; (ii) the information content of a less per-
formed good action is larger than the entropy.

4.4 Procedure of Consistency Check

Algorithm 2 shows the procedure of applying the two consistency checks after the
processes are rebuilt. It first identifies the log entries needed for investigation and
extracts them out to form a reasoning graph for investigation. Then, it verifies
the consistency among these log entries. It reports both the inconsistent log
entries that cannot be justified and the supporting log entries that are directly
involved in the verification of the inconsistent log entry.
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Fig. 2. Topology of Roofnet

5 Evaluation

5.1 Simulation Settings

The investigation logic has been implemented in the multi-channel wireless net-
work simulation framework [14] in OMNET++/INET [1]. The investigation logic
has been tested with two CA protocols MCR [15] and ROMA [8]. We use the
topology of Roofnet to build the network for simulation. Roofnet is a testbed
of wireless mesh network [3]. The coordinates of the mesh nodes in Roofnet are
published online.

Figure 2 shows the reconstruction of the topology with 90 deployed good
nodes in simulation. Each node is equipped with two radio interfaces. According
to the specifications, 13 channels are used for IEEE802.11A and 3 channels for
IEEE802.11B. The channel capacity is set to 2Mbps per channel. Good nodes
are given random starting time points within the first 30 seconds, from which
they start searching channels to join the network. Once they get channels, they
broadcast their channel and load information every 10 seconds following the CA
protocols, and send traffic to the gateway.

We also deploy 4 attacking nodes to inject false CA packets following the
known attack techniques [21,11,30]. For type-I attack, the attacking nodes inject
non-existing channel usage packets, and send different channel usage packets to
different nodes. For type-II attack, the attacking nodes notify other nodes of
newly assigned channels, which are less possibly selected by good nodes.

In simulation, we vary the traffic volume of good nodes so that the load of
aggregated traffic at the gateway ranges from 10% to 80% of channel capacity
at the gateway, i.e. 200Kbps to 1600Kbps. We fixed the communication range of
each router but adjusted the distance among routers proportionally to control
the node degree, i.e. the number of neighbors per router. The average node
degrees are set to 9, 14, and 27 for simulation with different network density.
Each experiment ran 200 seconds and all data points are the averages over 10
repeats.
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5.2 Quality of Investigation

The quality of investigation logic is measured by the false positive (FP) rate
(the percentage of good actions that are determined as malicious) and the false
negative (FN) rate (the percentage of attack actions that are determined as
good). Note that the two rates do not indicate the quality of final judgment on
good and malicious nodes. Our investigation goal is to mark suspicious attack
actions so that the intrusion detection can zero onto the nodes involved with the
marked actions.

In simulation, the FN rates achieved by the investigation logic are 0 for two
reasons. First, the type-I attack actions do not follow the specification. They
cannot evade detection following Theorem 1. Second, the type-II attack actions
in simulation always have lower probabilities than the good actions performed
by good nodes. They can thus be detected using Theorem 2. This result indicates
that the investigation logic will not miss any attack actions.

Figures 3(a) and 4(a) show the overall FP rates with MCR and ROMA.
The overall FP rates are below 2% for MCR and below 1% for ROMA. With
further examination, we find that the FP rate of type-I attack (i.e. a good action
is determined as a type-I attack) is zero. Hence, the FP actions are in fact
determined as type-II attack. We calculated the FP rates of type-II attack with
only the good actions, which could be mis-classified, as illustrated in Figures
3(b) and 4(b). Because the number of such good actions is only a small portion
(4% to 10%) of all good actions, the overall FP rates are low even though the
FP rates of type-II attack could be as high as 30%.

With further examination of the FPs of type-II attack, we find the actions and
the reasons that lead to the FPs. First, the leaf actions of channel assessment
and link failure could be determined as type-II attack. The leaf action of channel
assessment reports the channel condition perceived by nodes. Such perception
can hardly be accurate and uniform among different nodes. A good node may
perceive a channel condition that appears abnormal to other nodes and thus
the leaf action of this channel assessment will be determined as a type-II attack
action. Similar reason applies to the leaf action of link failure when a link fails
due to temporary communication problems.

The other action that could be determined as type-II attack is the channel
selection action. For MCR, when a node finds a better channel, it may switch
to that channel at a probability of 60%. In contrast, for ROMA, the node will
switch to the better channel. Hence, for MCR, when the node stays on its current
channel, the channel selection action is more likely determined as type-II attack.
It is also the reason that MCR’s FP rate of type-II attack is significantly larger
than ROMA’s.

Another observation of Figures 3 and 4 is that the traffic load may influence
the FP rate only when the network is dense. When the node degree is 27 (i.e.
a node has 27 neighbors in average), the FP rates grow as the traffic load in-
creases. This is because the network is less stable with the growing traffic load in
a dense network. The instability of network contributes more into the uncertainty
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Fig. 4. False Positive with ROMA

in channel assessment and link failure, which results in more wrong perceptions
of channel and link conditions in good nodes.

6 Related Works

6.1 Logic Methodology

The taxonomy of secure protocol analysis methods includes two methodologies to
handle not-so-sophisticated attacks, which are Protocol Logic and Model Check-
ing [7,20,19], and two methodologies to handle sophisticated attacks, which are
Poly-ti e calculus [17] and Symbolic methods (MSR) [4]. We choose to adopt the
logic methodology due to its simplicity and efficiency.

BAN logic has been used for describing security protocols. It formulates
the security protocol analysis problem as feeding “formal protocol” and “in-
truder model” as two inputs into an analysis tool, which finds errors. Compared
with this problem formulation, a major difference is that our investigation logic
does not require an explicit intruder model. Instead, our investigation logic is
specification-based, that is, it is based on specification of expected protocol be-
havior. In this way, our investigation logic has the potential capability to identify
unknown attacks.
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Datalog is another logic-based approach used in security systems. The Mul-
VAL [23,22] analyzes the vulnerabilities of a system. It adopts Datalog as the
modeling language for system elements, which are configuration, privilege, rea-
soning rules, and so on, in analysis. The Datalog-based logic approaches are
different from our investigation logic in that our objective is to track down the
sources of protocol abuses instead of finding vulnerabilities in protocols or system
configurations. In addition, they build reasoning graphs based on static informa-
tion, while our reasoning graph adapts to evidence produced by dynamic channel
assignment traffic and operations.

6.2 Node Compromise Detection

A number of node compromise detection schemes have been studied in wire-
less sensor and ad hoc network [29,24,27,26]. A compromised node may be-
have less trustable after compromise as it will conduct malicious operations to
serve attackers. Hence, researchers proposed reputation-based trust management
schemes [10,27], in which the reputation of each node is evaluated by other nodes
or the system in accordance with its activities. A node with low reputation will
be considered as untrustable. Various approaches can be used to evaluate the
trust of a node, such as Bayesian-based [10] and entropy-based [27].

Attackers may insert malicious code into compromised nodes to conduct at-
tack operations. Remote software-attestation schemes [29,24] were proposed with
which the base station or the neighbors of a suspect node can detect the com-
promise via checking the change of the code image inside the node. In our study,
attackers do not need to run extra malicious code in compromised node. They
mainly need the credentials from the compromised nodes to abuse CA protocols
in an authentic manner.

Our work is different from all the above works in that we look into the inher-
ent properties of attacks rather than detecting if a node has been changed by
attackers. We base our investigation logic on the fact that abusing CA protocols
will violate the specification of the protocols, whether or not the attacking nodes
are made from compromised nodes. The investigation logic tracks down to the
attack activities directly without inspecting if the attack activities are caused
by the change of nodes.

7 Conclusions

In this paper, we presented a specification-based investigation logic for reveal-
ing abuse of CA protocols in multi-channel wireless networks. We identified the
key dependency relations among channel assignment operations and modeled
the process of channel assignment as information flows with logged actions that
are collected from nodes. We showed the fundamental differences among good
actions and malicious actions based on their statistic profiles. We developed in-
vestigation reasoning approaches that inspect consistency among actions to lo-
cate the sources of abuse. We implemented the investigation logic and conducted
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simulation with two CA protocols. The simulation shows that the investigation
logic can achieve decent quality of zero false negative rate and low false positive
rate.
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Abstract. Large numbers of people all over the world read and con-
tribute to various review sites. Many contributors are understandably
concerned about privacy in general and, specifically, about linkability of
their reviews (and accounts) across multiple review sites. In this paper,
we study linkability of community-based reviewing and try to answer the
question: to what extent are ”anonymous” reviews linkable, i.e., highly
likely authored by the same contributor? Based on a very large set of
reviews from one very popular site (Yelp), we show that a high per-
centage of ostensibly anonymous reviews can be accurately linked to
their authors. This is despite the fact that we use very simple models
and equally simple features set. Our study suggests that contributors
reliably expose their identities in reviews. This has important implica-
tions for cross-referencing accounts between different review sites. Also,
techniques used in our study could be adopted by review sites to give
contributors feedback about linkability of their reviews.

1 Introduction

In recent years, popularity of various types of review and community-knowledge
sites has substantially increased. Prominent examples include Yelp, Tripadvisor,
Epinions, Wikipedia, Expedia and Netflix. They attract multitudes of readers
and contributors. While the former usually greatly outnumber the latter, con-
tributors can still number in hundreds of thousands for large sites, such as Yelp
or Wikipedia. For example, Yelp had more than 39 million visitors and reached
15 million reviews in late 2010 [1]. To motivate contributors to provide more
(and more useful/informative) reviews, certain sites even offer rewards [2].

With the surge in popularity of community-based reviewing, more and more
people contribute to review sites. At the same time, there has been an increased
awareness with regard to personal privacy. Internet and Web privacy is a broad
notion with numerous aspects, many of which have been explored by the re-
search community. However, privacy in the context of review sites has not been
adequately studied. Although there has been a lot of recent research related to
reviewing, its focus has been mainly on extracting and summarizing opinions
from reviews [5, 6, 15] as well as determining authenticity of reviews [8, 9, 11].

In the context of community-based reviewing, contributor privacy has several
aspects: (1) some review sites do not require accounts (i.e., allow ad hoc reviews)
and contributors might be concerned about linkability of their reviews, and (2)

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 307–324, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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many active contributors have accounts on multiple review sites and prefer these
accounts not be linkable. The flip side of the privacy problem is faced by review
sites themselves: how to address spam-reviews and sybil-accounts?

The goal of this paper is to explore and measure linkability of reviews by in-
vestigating how close and related are a person’s reviews. That is, how accurately
we can link a set of anonymous reviews to their original author. Our study is
based on over 1, 000, 000 reviews and % 2, 000 contributors from Yelp. This
paper makes the following contributions:

1. We provide a privacy measurement study where we extensively assess and
measure reviews’ linkability and show that anonymous reviews are accurately
de-anonymized in the presence of very simple features. For example, using
only alphabetical letter distributions, we can link up to 83% (and 96% with
few additional features) of the anonymous reviews to their real authors. We
believe that the findings in this study are very important and alarming for
reviewers who are concerned about their privacy.

2. We propose several models and improvements that quite accurately link
“anonymous” reviews.

Our results have several implications. One of them is the ability to cross-reference
contributor accounts between multiple (and similar) review sites. If a person
regularly contributes to two similar review sites under different accounts, anyone
can easily link them, since many people tend to consistently maintain their
traits in writing reviews. This is possibly quite detrimental to personal privacy.
Another implication is the ability to correlate reviews ostensibly emanating from
different accounts that are produced by the same author. Our approach can thus
be very useful in detecting self-reviewing and, more generally, review spam [8]
whereby one person contributes from multiple accounts to artificially promote
or criticize products or services.

One envisaged application of our technique is to have it integrated into review
site software. This way, review authors could obtain feedback indicating the
degree of linkability of their reviews. It would then be up to each author to
adjust (or not) the writing style and other characteristics.

2 Background

This section provides some background about statistical tools used in our study.
We use two well-known approaches based on: (1) Näıve Bayes Model [10], (2)
Kullback-Leibler Divergence Metric [4]. We briefly describe them below.

2.1 Näıve Bayes Model

Näıve Bayes Model (NB) is a probabilistic model based on the eponymous as-
sumption stating that all features/tokens are conditionally independent given
the class. Given tokens: T1, T2, ..., Tn in document D, we classify D by returning
the class value with maximum probability:
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Class = argmaxCP (C|D) = argmaxCP (C|T1, T2, ..., Tn) (1)

Since P (T1, T2, ..., Tn) is the same for all C values, and assuming P (C) is the
same for all class values, the above equation is reduced to:

Class = argmaxCP (T1|C)P (T2|C).....P (Tn|C)

Probabilities are estimated, fromall classCdocuments (DC), using theMaximum-
Likelihood estimator [4] along with Laplace smoothing [12] as follows:

P (Ti|C) =
Num of Occurrences of Ti in DC + 1

Num of Occurrences of Tokens in DC + Num of Possible T okens

2.2 Kullback-Leibler Divergence Metric

Kullback-Leibler Divergence (KLD) metric measures the distance between two
distributions. For any two distributions P and Q, it is defined as:

Dkl(P‖Q) =
∑
i

P (i)log(
P (i)

Q(i)
)

KLD is always positive: the closer to zero, the closer Q is to P . It is an asymmet-
rical metric, i.e., Dkl(P‖Q) �= Dkl(Q‖P ). To transform it into a symmetrical
metric, we use the following formula (that has been used in [17]):

SymDkl(P,Q) = 0.5× (Dkl(P‖Q) +Dkl(Q‖P )) (2)

Basically, SymDkl is a symmetrical version of Dkl that measures the distance
between two distributions. As discussed below, it is used heavily in our study.
In the rest of the paper, the term ”KLD” stands for SymDkl

1.

3 Data Set and Study Settings

Data Set. Clearly, a very large set of reviews authored by a large number of
contributors is necessary in order to perform a meaningful study. To this end,
we collected 1, 076, 850 reviews for 1, 997 contributors from yelp.com, a very
popular site with many prolific contributors. The minimum number of reviews
per contributor is 330, the maximum – 3, 387 and the average – 539 reviews,

1 Note that, under certain conditions, NB and asymmetrical KLD models
could be equivalent. That is, argmaxClassP (Class|T1, T2, ..., Tn) is equivalent to
argminClassDkl(Token distribution‖Class distribution), where T1, T2, ...Tn are the
tokens of a document D and Token distribution is their derived distribution. The
proof for this equivalency is in [17]. However, this equivalence does not hold when
we use the symmetrical version SymDkl.

yelp.com
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with a standard deviation of 354. For the purpose of this study, we limited au-
thorship to prolific contributors, since this provides more useful information for
the purpose of review linkage. Note that 50% of the contributors authored fewer
than 500 reviews and 76% authored fewer than 600. Only 6% of the contribu-
tors exceed 1, 000 reviews. Additionally, 50% of the contributors write reviews
shorter than 140 words (on average) and 75% – have average review size smaller
than 185. Also, 97% of contributors write reviews shorter than 300 words. The
overall average review size is relatively small – 149 words.

Study Settings. Our central goal is to study linkability of relatively prolific
reviewers. Specifically, we want to understand – for a given prolific author – to
what extent some of his/her reviews relate to, or resemble, others. To achieve
that, we first randomly order the reviews of each contributor. Then, for each
contributor U with NU reviews, we split the randomly ordered reviews into
two sets:

1. First NU −X reviews: We refer to this as the identified record (IR) of U .
2. Last X reviews: These reviews represent the full set of anonymous reviews of
U from which we derive several subsets of various sizes. We refer to each of
these subset as an anonymous record (AR) of U . An AR of size i consists
of the first i reviews of the full set of anonymous reviews of U . We vary
the AR size for the purpose of studying the user reviews linkability under
different numbers of anonymous reviews.

Since we want to restrict the AR size to a small portion of the complete user
reviews set, we restrict X to 60 as this represents less than 20% of the minimum
number of reviews for authors in our set (330 total). We use the identified
records (IRs) of all contributors as the training set upon which we build mod-
els for linking anonymous reviews. (Note that the IR size is not the same for
all contributors, while the AR size is uniform.) Thus, our problem is reduced to
matching an anonymous record to its corresponding IR. Specifically, one anony-
mous record serves as an input to a matching/linking model and the output
is a sorted list of all possible account-ids (i.e., IRs) listed in a descending or-
der of probability, i.e., the top-ranked account-id corresponds to the contributor
whose IR represents the most probable match for the input anonymous record.
Then, if the correct account-id of the actual author is among top T entries, the
matching/linking model has a hit; otherwise, it is a miss. We refer to the ratio of
the users anonymous records (of a specific size) whose corresponding identified
record is among the most probable top T entries as Top-T linkability(or hit)
ratio.

Consequently, our study boils down to exploring matching/linking models
that maximize the linkability(hit) ratio of the anonymous records for varying
values of both T and AR sizes. We consider two values of T : 1 (perfect hit) and
10 (near-hit). Whereas, for the AR size, we experiment with a wider range of
values which includes: 1, 5, 10, 20, 30, 40, 50 and 60.

Even though our focus is on the linkability of prolific users, we also attempt
to assess performance of our models for non-prolific users. For that, we slightly
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Table 1. Notation and abbreviations

NB Näıve Bayes Model

KLD Symmetrical Kullback-Leibler Divergence Model

R Token Type: rating, unigram or digram

LR Linkability Ratio

AR Anonymous Record

IR Identified Record (corresponding to a certain reviewer)

SymDKLD(IR,AR) symmetric KLD distance between IR and AR

change the problem setting by making the IR size smaller; this is discussed in
Section 4.4.

4 Analysis

As mentioned in Section 2, we use Näıve Bayes (NB) and Kullback-Leibler Di-
vergence (KLD) models. Before analyzing the collected data, we tokenize all
reviews and extract four types of tokens:

1. Unigrams: set of all single letters. We discard all non-alphabetical charac-
ters.

2. Digrams: set of all consecutive letter-pairs. We discard all non-alphabetical
characters.

3. Rating: rating associated with the review. (In Yelp, this ranges between 1
and 5).

4. Category: category associated with the place/service being reviewed. There
are 28 categories in our dataset,

Note that we experimented our models on larger token sets, namely trigram and
stemmed-word sets. Surprisingly, they mostly perform worse(in terms of link-
ability) than unigrams or digrams. Before proceeding, we re-cap abbreviations
and notation in Table 1.

4.1 Methodology

We begin with the brief description of the methodology for the two models.

Näıve Bayes (NB) Model. For each account IR, we built an NB model,
P (tokeni|IR), from its identified record. Probabilities are estimated using the
Maximum-Likelihood estimator [4] and Laplace smoothing [12] as shown in 2.
We then construct four models corresponding to the four aforementioned token
types. That is, for each IR, we have Punigram, Pdigram, Pcategory and Prating.

To link an anonymous record AR to an account IR with respect to token
type R, we first extract all R-type tokens from AR, TR1 , TR2 , ....TRn (Where
TRi is the i-th R token in AR). Then, for each IR, we compute the probability
PR(IR|TR1 , TR2 , ....TRn). Finally, we return a list of accounts sorted in decreasing
order of probabilities. The top entry represents the most probable match.
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Fig. 1. LRs of NB and KLD models for unigrams and digrams

Kullback-Leibler Divergence (KLD) Model. We use symmetric KLD (see
Section 2) to compute the distance between anonymous and identified records.
To do so, we first compute distributions of all records and then we smooth the
distributions via Laplace smoothing [12](same as the probability estimation in
explained in Naive Bayesian in Section 2). As before, we compute four distribu-
tions. To link AR with respect to token type R, we compute SymDkl between
the distribution of R for AR and the distribution of R for each IR. Then, we
return a list sorted in ascending order of SymDKLD(IR,AR) values. The first
entry represents the account with the most likely match.

4.2 Study Results

We now present the results corresponding to the lexical tokens. Then, in the
next section, we experiment with some combinations of lexical and non-lexical
ones.

Lexical – Results. Figures 1(a) and 1(b) depict LRs (Top-1 and Top-10) for
NB and KLD with the unigram token. As expected, with the increase in the
anonymous record size, the LR grows: it is high in both Top-1 and Top-10 plots.
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For example, in Top-1 of both figures, the LRs are around: 19%, 59% and 83%
for anonymous record sizes of 10, 30 and 60, respectively. Whereas, in Top-
10 of both figures, the LRs are around: 45.5%, 83% and 96% for same record
sizes. This suggests that reviews are highly linkable based on trivial single-letter
distributions. Note that the two models exhibit similar performance.

Figures 1(c) and 1(d) consider the digram token. In both models, the LR is
impressively high: it gets as high as 99.6%/99.2% in Top-1 for NB/KLD for an
AR size of 60. For example, the Top-1 LRs in NB are: 11.7%, 62.9%, 87.5% and
97.1%, for respective AR sizes of 1, 5, 10 and 20. Whereas, in KLD, the Top-1
LRs for record sizes of 10, 30 and 60 are: 1.9%,74.9% and 99.2%, respectively.

Unlike unigrams – where LRs in both models are comparable – KLD in digram
starts with LRs considerably lower than those of NB. However, the situation
changes when the record size reaches 50, with KLD performing comparable to
NB. One reason for that could be that KLD improves when the distribution
of ARs is more similar to that of corresponding identified records; this usually
occurs for large record sizes, as there are more tokens.

Not surprisingly larger AR sizes entail higher LRs. With NB, a larger record
size implies that, a given AR has more tokens in common with the corresponding
IR. Thus, an increase in the prediction probability P (IR|T1, T2, ...Tn). For KLD,
a larger record size causes the distribution derived from the AR to be more
similar to the one derived from the corresponding IR.

4.3 Improvement I: Combining Lexical with Non-lexical Tokens

In an attempt to improve the LR, we now combine the lexical tokens with the
non-lexical ones.

Combining Tokens Methodology. This is straightforward in the NB. We
simply increase the list of tokens in the unigram- or digram-based NB by adding
the non-lexical tokens. Thus, for every IR, we have the following:
P (lexical tokeni|IR), P (category tokeni|IR) and P (rate tokeni|IR).

Combining non-lexical with lexical tokens in KLD is less clear. One way is
to simply average SymDKLD values for both token types. However, this might
degrade the performance, since lexical distributions may convey much more infor-
mation than their non-lexical counterparts. Thus, giving them the same weight
would not yield better results. Instead, we combine them using a weighted aver-
age. First, we compute the weighted average of rating and category SymDKLD:

SymDKLD r c(P,Q) =

β × SymDKLD r(P,Q) + (1− β)× SymDKLD c(P,Q)

Then, we combine the above with SymDKLD of the lexical tokens to compute
the final weighted average:

SymDKLD l r c(P,Q) =

α× SymDKLD l(P,Q) + (1 − α)× SymDKLD r c(P,Q)
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Fig. 2. Results of combining different tokens using different β and α values

Thus, our goal is to get the right β and α values. Intuitively, lexical SymDKLD

should have more weight as it carries more information. Since there is no clear
way of assigning weight values, we experiment with several choices and pick
the one with the best performance; we discuss the selection process below. We
experiment only within the IR set and then verify the results generalize to the
AR. This is done as follows:

First, for every IR, we allocate the last 30 reviews as a testing record and
the remainder – as a training record. Then, we experiment with SymDKLD r c

using several β values and set β to the value that yields the highest LR based
on the testing records. Then, we experiment with SymDKLD l r c using several
α values and, similarly, pick the one with the highest LR.

Since β or α could assume any values, we need to restrict their choices. For
β, we experiment with a range of values, from 0 to 1.00 in 0.1 increments. For
α, we expect the optimal value to exceed 0.9, since the LR for lexical tokens
is probably higher than non-lexical ones. Therefore, we experiment with the
weighted average by varying α between 0.9 and 0.99 in 0.01 increments.

If the values exhibit an increasing trend (i.e., SymDKLD l r c at α of 0.99 is
the largest in this range) we continue experimenting in the 0.99−−1.00 range in
0.001 increments. Otherwise, we stop. For further verification, we also experiment



Exploring Linkability of User Reviews 315

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 5 10 20 30 40 50 60

Li
nk

ab
ili

ty
 R

at
io

Anonymous Record Size

NB Model-Rating, Category and Unigram

Top 1 uni+r+c
Top 1 uni

Top 10 uni+r+c
Top 10 uni

(a)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 5 10 20 30 40 50 60

Li
nk

ab
ili

ty
 R

at
io

Anonymous Record Size

KLD Model-Rating, Category and Unigram

Top 1 uni+r+c
Top 1 uni

Top 10 uni+r+c
Top 10 uni

(b)

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 5 10 20 30 40 50 60

Li
nk

ab
ili

ty
 R

at
io

Anonymous Record Size

NB Model-Rating, Category and Digram

Top 1 di+r+c
Top 1 di

Top 10 di+r+c
Top 10 di

(c)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 5 10 20 30 40 50 60

Li
nk

ab
ili

ty
 R

at
io

Anonymous Record Size

KLD Model-Rating, Category and Digram

Top 1 di+r+c
Top 1 di

Top 10 di+r+c
Top 10 di

(d)

Fig. 3. LRs for NB and KLD for combining ratings and categories with unigrams or
digrams

with smaller α values: 0.0, 0.3, 0.5, 0.7, and 0.8, all of which yield LRs significantly
lower than 0.9 for both the unigram and digram. We acknowledge that we may
be missing α or β values that could further optimize SymDKLD l r c. However,
results in the following section show that our selection yields good results.

Figure 2(a) shows LRs (Top-1) for β values. The LR gradually increases until
it tops off at 3.4% with β = 0.5 and then it gradually decreases. Figure 2(b)
shows LRs (Top-1) for α values in the unigram case. The LR has an increasing
trend until it reaches 67.8% with α = 0.997 and then it decreases. Figure 2(c)
shows LRs (Top-1) for α values in the diagram case where it tops off at 75.9%
with α = 0.97. Thus, the final values are 0.5 for β and 0.997/0.97 for alpha in
the unigram/digram case. Even though we extract α and β values by testing on
a record size of 30, the results in following sections show that the derived weights
are effective when tested on ARs of other sizes.

Combining Lexical with Non-Lexical Tokens – Results. Figures 3(a) and
3(b) show Top-1 and Top-10 plots in NB and KLD models of unigram tokens
before and after combining them with rating and category tokens. Adding non-
lexical tokens to unigrams substantially increases LRs in several record sizes.
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Fig. 4. LRs for NB and KLD in full and restricted identified set

In NB, the gain in Top-1 LRs ranges from 0.25-18.9% (1.4 - 15.7% for Top-10
LRs). In KLD, the gain in Top-1 LRs ranges from 2.5-11.9 (2-7.8% in Top-10
LRs) for most record sizes. These findings shows how effective is combining the
non-lexical tokens with the unigrams. In fact, we can accurately identify almost
all ARs.

Figures 3(c) and 3(d) show the effect of adding ratings and categories to
digrams. The overall effect is less: in NB (KLD) model, the increase in Top-1
LRs ranges from 0.3-1.8% (0.2-2.7%) for most record sizes. The increase is very
similar in Top-10 plots.

4.4 Restricting Identified Record Size

In previous sections, our analysis was based on using the full data set. That is,
except for the anonymous part of the data set, we use all of the user reviews as
part of our identified set. Although the LR is high in many cases, it is not clear
how the models will perform when we restrict the IR size. To this end, we re-
evaluate the models with the same problem settings, however, with a restricted
IR size. We restrict the IR size to the AR size; both randomly selected without
replacement.

Figures 4(a) and 4(b) show two Top-1 plots in NB and KLD models: one
plot corresponds to the restricted identified set and the other – to the full set.
Tokens used in the models consist of digrams, ratings and categories (since this
combination gives the highest LR). Unlike the previous sections, where NB and
KLD behaved similarly, the two models now behave differently when restricting
the identified set. While NB performs better than KLD on the full set, the latter
performs much better than NB when the identified set is restricted. In fact, in
some cases, KLD performs better when the set is restricted.

The reason for this improved KLD performance might be the following: in
the symmetric KLD distance function, the distributions of both the IR and AR
have to be very close in order to match regardless of the size of the IR; unlike
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the NB, where larger training sets would lead to better estimates of the token
probabilities and thus more accurate predictions.

In KLD, we achieve high LRs for many record sizes. For example, Top-1
LRs in the restricted set are 74.5%, 88% and 97.1% when the anonymous (and
identified) record sizes are 30, 40 and 60, respectively. Whereas, the LRs in the
full set for the same AR sizes are: 76.5% , 93% and 99.4%. When the record
size is less than 30, KLD performs better in the restricted set than the full one.
For example, when the AR size is 20, the LR in the restricted set is 50.1% and
34.3% in the full set. In NB, Top-1 LR in the restricted set is lower than the
full set. For instance, it is 20.8%, 35.3% and 62.4% for AR sizes of: 30, 40 and
60, respectively. Whereas, for the same sizes, the LR is more than 99% in the
full set.

This result has one very important implication: even with very small IR sizes,
many anonymous users can be identified. For example, with only IR and AR
sizes of only 30, most users can be accurately linked (75% in Top-1 and 90%
in Top-10). This situation is very common since many real-world users generate
30 or more reviews over multiple sites. Therefore, even reviews from less prolific
accounts can be accurately linked.

4.5 Improvement II: Matching All ARs at Once

We now experiment with another natural strategy of attempting to match all
ARs at once.

Methodology. In previous sections, we focus on independently linking one AR
at a time. That is, the input to our matching/linking model is one AR and the
output is the user of the closest IR. If we change the problem settings and make
the input a set of ARs(instead of one) where each AR belongs to a different
user, we may be able to improve the linkabilty knowing that an AR cannot be
mapped to more than one user. To this end, we construct algorithmMatch All()
in Figure 5 as an add-on to the KLD models suggested in previous sections where
the input is a set of ARs, each of which belongs to a different user. The number
of ARs in the input is equal to the number of users in our dataset.
SymDKLD(IRj , ARi) symmetrically measures the distance between their

(IRj ’s and ARi’s) distributions. Since every AR maps to a distinct IR (ARi

maps to IRi), it would seem that lower SymDKLD would lead to a better
match. We use this intuition to design Match All(). As shown in the figure,
Match All() picks the smallest SymDKLD(IRj , ARi) as the map between IRj

and ARi and then deletes the pair (IRj , Vkj) from all remaining lists in SL. The
process continues until we compute all matches. Note that, for any ListARk

,
(IRj , Vkj) is deleted from the list only when there is another pair (IRj , Vlj) in
ListARl

, such that SymDKLD(IRj , ARl) ≤ SymDKLD(IRj , ARk), and IRj has
been selected as the match for ARl.The output of the algorithm is a match-list:
SM = {(IRi1 , ARj1), ..., (IRin , ARjn)}.

We now consider how Match All() could improve the LR. Suppose that we
have two ARs: ARi and ARj along with corresponding sorted lists Li and
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Algorithm Match All: Pseudo Code

Input: (1) Set of ARs: SAR = {AR1, AR2, ..., ARn}
(2) Set of reviewer-ids / identified records:
SIR = {IR1, IR2, ..., IRn}
(3) Set of matching lists for each AR:
SL = {ListAR1 , .., ListARn}

Output: Matching list: SM = {(IRi1 , ARj1), ..., (IRin , ARjn)}
1: set SM = ∅
2: While |SAR| �= 0:
3: Find ARi with smallest SymDKLD in all lists in SL

4: Get corresponding reviewer-id IRj

5: Add (IRj, ARi) to SM

6: Delete ARi from SAR

7: Delete ListARi from SL

8: For each Listt in SL,
9: Delete tuple containing IRj from Listt
10: End For
11: End While

NOTE 1: ListARi in SL is a list of pairs (IRj , Vij) where Vij = SymDKLD(IRj , ARi),
for all j
NOTE 2: ListARi is sorted in increasing order of Vij , i.e., IRj with lowest
SymDKLD(IRj , ARi) at the top.

Fig. 5. Pseudo-Code for matching all ARs at once

Lj and assume that IRi is at the top of each list. Using only KLD (as in
previous sections), we would return IRi for both ARs and thus miss one of
the two. Whereas, Match All, would assign IRi to only one AR – the one
with the smaller SymDKLD(IRi, ...) value. We would intuitively suspect that
SymDKLD(IRi, ARi) < SymDKLD(IRi, ARj) since IRi is the right match for
ARi and thus their distributions would probably be very close. If this is the case,
Match All would delete IRi (erroneous match) from the top of Lj which could
help clearing up the way for IRj (correct match) to the top of Lj.

We note that there is no guarantee that Match All() will always work: one
mistake in early rounds would lead to others in later rounds. We believe that
Match All() works better if SymDKLD(IRi, ARi) < SymDKLD(IRj , ARi)
(j �= i) holds most of the time.

In the next section, we show the results of Match All() when we experiment
with the KLD model with digram, rating and category tokens.2.

Results. Figures 6(a) and 6(b) show the effect of Match All() on Top-1 LRs
in both the restricted identified set and the full identified set, respectively. The
combination of diagram, rating and category tokens are used. Each figure shows
two Top-1 plots: one for the LR after usingMatch All and the other – for the LR

2 We also tried Match All() with the NB model and it did not improve the LR.
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Fig. 6. Effects of Match All() on LRs in full and restricted identified set: before and
after plots
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Fig. 7. Effects of smoothing and review length on LRs: before and after plots

before using it. Clearly,Match All is effective in improving the LR for almost all
record sizes. For the restricted set, the gain in the LR ranges from 1.6-16.4% for
nearly all AR sizes. A Similar increase is observed in the full set that ranges from
1-23.4% for most record sizes. This shows that the Match All is very effective
when used with diagram, rating and category tokens. The privacy implication
of Match All is important as it significantly increases the LR for small ARs in
the restricted set. This shows that privacy of less prolific users is exposed even
more with Match All.

4.6 Improvement III: Improving Linkability for Small Anonymous
Records

Although most of the proposed exhibits high LR’s when the AR size is large, the
linkability is not as high for small record sizes. For improving the LR for small
AR (in the full identified set), we consider the NB model that uses diagrams,
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ratings and categories as its tokens (see Section 4.3) as a base for our improve-
ment. We use this model as it performs the best for small ARs comparable to
other models. To that end, we first change the way we smooth the probabilities
as follows:

P (tokeni|IR) =
Num of Occurrences of Tokeni in IR + η

Num of Occurrences of all T okens in IR+ η ×Num of Possible T okens

Unlike the models in the previous sections, η could take values other than 1.
In fact, we experiment with several different values and we find that η value of
0.5 gives the best performance3. The intuition is that setting η to a value less
than 1 may help downscale the effect of noisy digrams that the user rarely use.
Additionally, we leverage the length of the reviews, the number of the alphabet-
ical letters, as an additional feature to the model. We consider the length of the
reviews as we intuitively believe that different users tend to write longer/shorter
reviews than others. We model the length as a normal distribution and we use
the maximum likelihood estimate to set the distribution parameters [4, 12].

Figure 7 shows the effect of this improvement. For clarity, we only show the
improvement resulting from combining the two aforementioned steps. As shown,
the Top-1 LRs gain roughly ranges from 0.5%-5%. For example, for AR size of
5, 7 and 10, the Top-1 LR approximately increases from 65%, 79% and 89% to
68%, 84% and 92%, respectively. Similar increases are observed in the Top-10
LR which reach 88%/98% for AR size of 5/10 (and up to 30%/54% for AR size
of 1/2).

4.7 Study Summary

We now summarize the main findings and conclusions of our study.

1. The LR becomes very high – reaching up to ∼ 99.5% in both KLD and NB
when using only digram tokens. (See Section 4.2).

2. Surprisingly, using only unigrams, we can link up to 83% in both NB and
KLD models, with 96% in Top-10. (See Section 4.2). This suggests that
reviewers expose a great deal merely from their single letter distributions.

3. Non-lexical tokens are very useful in tandem with lexical tokens, especially,
the unigram: we observe a ∼19%/12% Top-1 LR increase in NB/KLD for
some cases. (See Section 4.3).

4. Relying only on unigram, rating and category tokens, we can accurately link
96%/92% of the ARs (size 60) in NB/KLD. (See Section 4.3).

5. Restricting the IR size does not always degrade linkability. In KLD, we can
link as many as 97% ARs when the IR size is small. (See Section 4.4).

6. Linking all ARs at once (instead of each independently) helps improve ac-
curacy. The gain is up to 16/23% in restricted/full set. (See Section 4.5).

3 Note that we experiment η on only the training set and pick the best value.
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7. Generally, NB performs better than KLD when we use the full identified set
and KLD performs better when we use the restricted identified set.

8. Combining review length with different smoothing techniques is helpful in
increasing the linkability for small AR and the Top-1/Top-10 LR reach
92%/98% for AR size of 10(See Section 4.6).

5 Discussion

Implications. We believe that the results of, and techniques used in, this study
have several implications. One implication is the possibility to cross-reference
accounts (and reviews) among multiple (similar)review sites. If a person con-
tributes to two similar review sites under two identities, it is likely that sets
of reviews from these sites can be linked. This could be quite detrimental to
contributors’ privacy. Another implication is the ability to correlate – on the
same review site – multiple accounts that are in fact manipulated by the same
person. This could make our techniques very useful in detecting review spam [8],
whereby a contributor authors reviews under different accounts to tout (also
self-promote) or criticize a product or a service. One concrete application of our
techniques is via integration with the review site’s front-end software in order to
provide feedback to authors indicating the degree of linkability of their reviews.
For example, when the reviewer logs in, a linkability nominal/categorical value
(e.g. high, medium, and low) could be shown indicating how some of his/her
reviews (selected randomly) are linkable to the rest. It would then be up to to
the individual to maintain or modify their reviewing patterns to be less linkable.

Prolific Users. While there are clearly many more occasional (non-prolific)
reviewers than prolific ones, we believe that our study of prolific reviewers is
important, for two reasons. First, the number of prolific contributors is still
quite large. For example, from only one review site – Yelp – we identified ∼
2, 000 such reviewers. Second, given the spike of popularity of review sites [1],
we believe that, in the near future, the number of such prolific contributors
will grow substantially. Also, even many occasional reviewers, with the passage
of time, will enter the ranks of “prolific” ones, i.e., by slowly accumulating a
sufficient corpus of reviews over the years. Nevertheless, our study suggests that
privacy is not high even for non-prolific users, as discussed in Section 4.5. For
example, when both IR and AR sizes are only 20 (i.e., total per user contribution
is 40 reviews), we can accurately link around 70% of anonymous records to their
reviewers.

Anonymous Record Size. Our models perform best when the AR size is 60.
However, for every reviewer in our dataset, 60 represents less than 20% of that
person’s total number of reviews. Also, using NB coupled with digram, rating,
category and length features, we can accurately link most anonymous records
when AR size is small (see Section 4.6).

Unigram Tokens. While our best-performing models are based on digram to-
kens, we also obtain high linkability results from unigram tokens that reach up to
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83% (96% in the Top 10) in NB or KLD. The results improve to 96/92% when we
combine unigrams with rating and category tokens. Note that the number of to-
kens in unigram-based models is 59 (26) tokens with (without) combining them
with rating and category tokens. Whereas, the number of tokens in diagram-
based models is 676 (709 when combined with rating and category tokens).
This makes linkability accuracy based on unigram models very comparable to
its diagram counterpart, while the number of tokens is significantly fewer. This
implies a substantial reduction in resources and processing power in unigram-
based models which would make them scale better. For example, if we assume
that the attacker wants to link a set of anonymous reviews to many large review
datasets, unigram-based models would scale better, while maintaining similar
level of accuracy.

6 Related Work

Many authorship analysis studies are in the literature. Among the most related
recent studies are [3,13,14]. In [14], a large scale author identification techniques
(based on linguistic stylometry) are evaluated on blog de-anonymization. While
the problem formulation is similar to ours, there are notable differences. First, we
study the linkability in a different context; i.e., user reviews. User reviews have
ratings and categories, which prove useful in some scenarios, while blogs(used
in [14]) do not. Additionally, user reviews are shorter while blogs could be as
long as an article. Moreover, user reviews are mainly about user evaluations
of a specific service/product while blogs could be very random, such as news
reporting or literature-related work. Second, our study points to high linkability
ratios in user reviews, nearly 100% Top-1 linkability ratio, where as in [14], the
Top-1 linkability ratio is around 20% 4. Third, our study shows high linkability
ratios in the presence of very simple features.

A related problem is explored in [13]. It focuses on identifying authors based
on reviews in both single- and double-blinded academic peer-reviewing processes
of scientific journals and conferences. Näıve Bayes classifier is used – along with
word-based tokens – to identify authors and the best result is around 90%.
This work is different from ours in several aspects. First, it explores the author
identification in a very restricted domain; i.e., academic paper reviews. Second,
the number of candidate authors is around 20 which is less than ours(∼ 2000).
Third, the number of features used in [13] is large where unigram, bigram, and
trigrams based on words(a sequence of one, two and three words) are used. In
ours, we only use unigrams and bigrams that are based on letters (in addition to
the ratings and categories). The work in [3] also considered author identification
and similarity detection by incorporating a rich set of stylistic features along
with a novel technique(based on Karhunen-Loeve-transforms) to extract write-
prints. An identification performance of 91% is achieved. The same approach is

4 Note in [14], the identification accuracy is increased to 80% by not making a guess
when there is not enough confidence; however, this does not increase the linkability
ratio (recall is low).
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tested on a large set of Buyer/Seller Ebay feedback comments collected from
Ebay. Such comments typically reflect one’s experience when dealing with a
buyer or a seller. Unlike our general-purpose reviews, these comments do not
review products, services or places of different categories. Additionally, the scale
of the problem is different and the analysis is performed for only 100 authors. An
author identification technique based on frequent pattern write prints is shown
in [7] and author identification techniques based on extracting lexical, syntactic,
structural and content-specific features and then feeding them to some classifiers
are shown in [18]. For a comprehensive overview of authorship analysis studies,
we refer to [16].

While many of the author identification studies are somewhat similar to our
present work, there are some notable differences. First, we perform authorship
identification analysis in a context that has not been extensively explored –
generic user reviews. User reviews are generally are less formal and less restrict-
ing in the choice of words. In a review, the author generally assesses something
and thus the text conveys some evaluation and personal opinions. In addition,
reviews contain other non-textual information, such as the ratings and cate-
gories of things being reviewed. These types of extra information provide added
leverage(shown in 4.3). Second, our problem formulation is different. We study
linkability of reviews in the presence of a large number of prolific contributors
where the number of anonymous reviews could be more than one (up to 60 re-
views). Whereas, most prior work attempts to identify authors from a small set
of authors, each with small sets of texts. Third, we show high linkability ratios in
the presence of very simple features. For example, reviewers can be accurately
identified from their letter distributions. These measurement results are very
alarming for users concerned about their privacy.

7 Conclusion

Large numbers of Internet users are becoming frequent visitors and contributors
to various review sites. At the same time, they are concerned about their privacy.
In this paper, we study linkability of reviews. Based on a large set of reviews,
we show that a high percentage (99% in some cases) are linkable, even though
we use very simple models and very simple features set. Our study suggests
that users reliably expose their identities in reviews. This has certain impor-
tant implications for cross-referencing accounts among different review sites and
detecting people who write reviews under different identities. Additionally, tech-
niques used in this study could be adopted by review sites to give contributors
feedback about linkability of their reviews.
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Formal Analysis of Privacy

in an eHealth Protocol
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Abstract. Given the nature of health data, privacy of eHealth systems
is of prime importance. An eHealth system must enforce that users re-
main private, even if they are bribed or coerced to reveal themselves or
others. Consider e.g. a pharmaceutical company that bribes a pharma-
cist to reveal information which breaks a doctor’s privacy. In this paper,
we identify and formalise several new but important privacy notions
on enforcing doctor privacy. Then we analyse privacy of a complicated
and practical eHealth protocol. Our analysis shows to what extent these
properties as well as properties such as anonymity and untraceability
are satisfied by the protocol. Finally, we address the found ambiguities
resulting in privacy flaws, and propose suggestions for fixing them.

1 Introduction

Traditionally, data in health care (e.g., patient records) was stored on paper
files. Given the sensitive nature of health data, handling this data must meet
strict security and privacy requirements. This was relatively easily satisfied by
controlling access to the physical documents. Those who had access could be
considered trusted not to violate security nor privacy of the data. With the
advent of eHealth systems – systems that digitally store and exchange health
data – security and particularly privacy requirements were often achieved using
access control (e.g., see [1, 2]).

However, the introduction of eHealth systems has changed the setting. The
main benefit of eHealth systems is that they facilitate the digital exchange of in-
formation amongst various roles in health care. This has two major consequences:
the health care data is shared digitally with more parties, such as pharmacists
and insurance companies; and, this data can be easily shared by any party with
an outsider. Clearly, the assumption of a trusted network can no longer hold in
such a setting. Given that it is trivial for a malicious entity to intercept or even
alter digital data in transit, access control approaches to privacy and security
are no longer sufficient. In this paper, we consider security and privacy of the
involved parties with respect to an outsider, the Dolev-Yao adversary [3], who
controls the communication network (i.e. the adversary can observe, block, cre-
ate and alter information). In this setting, communication security and privacy
are mainly achieved by employing cryptographic communication protocols. It is
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well known that designing such protocols is error-prone: time and again, flaws
have been found in protocols that claimed to be secure (e.g., electronic voting
systems [4, 5] have been broken [6, 7]). Therefore, we believe that the claims
of an eHealth protocol must be verified before the protocol is used in practice.
Without verifying that a protocol satisfies its security claims, subtle flaws may
go undiscovered.

In order to verify whether a protocol satisfies security and privacy require-
ments, each property must be formally defined. Various security and privacy
properties have already been defined in the literature, such as secrecy, authen-
tication, anonymity and untraceability. We refer to these properties as regular
security and privacy properties. While they are necessary to ensure security and
privacy, by themselves these regular properties are not sufficient. Benaloh and
Tuinstra pointed out the risk of subverting a voter [4] to sell her vote. This
idea, of coercing or bribing a party into nullfying their privacy, is hardly con-
sidered in the literature of eHealth systems (notable exceptions include [8, 9]).
However, this notion is important for health care – e.g., a pharmaceutical com-
pany may bribe doctors to prescribe only their medicine. Therefore, we consider
not only privacy with respect to a Dolev-Yao adversary, but also privacy in the
presence of an active coercer – someone who is bribing or threatening parties
to reveal their privacy. We refer to these properties as enforced privacy proper-
ties. In particular, we identify the following notions of privacy [10] to counter
doctor bribery: prescribing-privacy : a doctor cannot be linked to his prescrip-
tions; enforced prescribing-privacy : preventing doctor bribes; independency of
prescribing-privacy : preventing others to reduce a doctor’s prescribing-privacy;
and independency of enforced prescribing-privacy : preventing anyone from af-
fecting a doctor’s enforced prescribing-privacy.

Contributions. We identify three notions of enforced privacy in eHealth sys-
tems and are the first to provide formal definitions for them. In addition, we
develop an in-depth applied pi model of the DLVV08 eHealth protocol [9] which
is rather complicated and aims for practical usage in Belgium. Furthermore, we
formally analyse privacy and enforced privacy properties of the protocol, as well
as regular security and privacy properties. We find ambiguities in the protocol
which lead to flaws on privacy, and propose suggestions for fixing them. The
modelling and full analysis of the DLVV08 protocol can be found in [11].

2 The Applied Pi Calculus

The applied pi calculus is a language designed for modelling and analysing secu-
rity protocols [12]. It assumes an infinite set of names (modelling channels and
data), an infinite set of variables and a set of functions (to model cryptographic
primitives). A term is a name or variable, or a function applied to other terms.
Terms are used to model messages. An equational theory E defines equivalences
between terms. A protocol is modelled as a set of roles running in parallel. The
behaviour of each role is modelled as a process, defined as follows.
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P,Q ::=0 | P |Q |!P | νn.P | in(u, x).P | out(u,M).P | if M=EN then P else Q

A,B ::=P | A |B | νn.A | νx.A | {M /x}

A plain process P,Q can be the empty process 0, two sub-processes running in
parallel P | Q, a replication !P , a name restriction on a process νn.P , an input or
output action followed by a process (in(u, x).P and out(u,M).P , respectively),
or a conditional choice based on the equational theory (if. . . then. . . else). To this,
extended processes add variable restrictions and active substitution.

The semantics of applied pi consists of three parts: structural equivalence,
which defines equivalence relations between two processes which only differ in
structure; internal reduction which defines sub-process communication rules and
if-then-else evaluation rules; and labelled reduction which defines reduction rules
to model the communication between the adversary and the protocol. We use
“P{M /x}” (equivalently: “let x=M in P”) to denote syntactical replacement
of x with M in process P . Names and variables are free if they are not delimited
by restriction and by inputs. A process is closed if it does not contain free
variables. Several equivalence relations on processes are defined in applied pi. We
use labelled bisimilarity (≈�), which is based on static equivalence of processes.
Labelled bisimilarity compares the dynamic behaviour of processes, while static
equivalence compares the static states of processes. For more details, see [12].

Applied pi assumes the Dolev-Yao adversary [3], which controls the network
and can eavesdrop, block, create, and inject messages, as well as applying crypto-
graphic primitives (e.g., decrypting eavesdropped messages). Normally, dishonest
users are considered as part of the adversary. However, coerced/bribed users are
not modelled as part of the adversary, as the adversary does not fully trust them.

3 Formalising Privacy Properties

In order to formally verify privacy properties of a protocol, the first step is to
give precise definitions of privacy properties. Properties such as anonymity and
untraceability have been formally studied in the literature (e.g., [13–18]), which
can be lifted to the eHealth domain. In eHealth it is important to protect doctor’s
prescription behaviour against bribery. Such kinds of privacy properties have not
been studied formally so far.

In this section, we first define prescribing-privacy to model protecting a doc-
tor’s prescription behaviour without considering bribery. Next, we formally de-
fine three new privacy properties to protect a doctor’s prescribing-privacy against
bribery: enforced prescribing-privacy, independency of prescribing-privacy, and
independency of enforced prescribing-privacy. In the end, we briefly show the
definitions of anonymity, strong anonymity, untraceability and strong untrace-
ability for eHealth protocols.

In the following discussions, we model an eHealth protocol EHP as a n-role
well-formed [17] protocol of the form: EHP = νm̃.init .(!R1 | . . . |!Rn). In par-
ticular, we have a doctor role Rdr of the form: Rdr = νIddr .initdr .!Pdr , where
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Pdr = νpresc.maindr . Essentiality, this formalisation allows us to model an un-
bounded number of users and represent each user as an instance of a role. We
focus on the behaviour of a doctor. Each doctor is associated with an identify
and can execute an infinite number of sessions. Within each session, the doctor
will create a prescription. Processes init and initdr model the initialisation of
the protocol and the doctor role. Process Pdr models a session of the doctor
role. Furthermore, we use C to denote a context (a process with a hole) consist-
ing of honest users; Iddr and presc are free variables; A and B are free names,
representing doctor identities known to the adversary; and a and b are two free
names, representing two different prescriptions.

3.1 Prescribing-Privacy

Prescribing-privacy aims to protect doctors’ prescription behaviour, which can
be captured by the unlinkability of a doctor and his prescriptions. Unlinkabil-
ity is normally modelled as indistinguishability when two honest users swap
their actions (or items), e.g., see the formalisation of vote privacy [19]. Thus,
prescribing-privacy is modelled as the equivalence of two doctor processes: in
the first process, an honest doctor A prescribes a in one of his sessions and an-
other honest doctor B prescribes b in one of his sessions; in the second one, A
prescribes b and B prescribes a.

Definition 1 (Prescribing-privacy). A well-formed eHealth protocol EHP
satisfies prescribing-privacy if

C[
(
initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})
)
]

≈� C[
(
initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})
)
].

3.2 Enforced Prescribing-Privacy

Enforced privacy properties have been proposed and formally studied in dif-
ferent domains to prevent bribery and coercion, for instance, receipt-freeness
and coercion-resistance in voting [19, 20], receipt-freeness in online auction [21].
In eHealth, De Decker et al. [9] identify the need to prevent a pharmaceuti-
cal company from bribing a doctor to favour their medicine. Hence, doctor’s
prescribing-privacy should be enforced by protocols to prevent doctor bribery.

This means that intuitively, even if a doctor collaborates, the adversary cannot
be certain that the doctor has followed his instructions. Bribed users cannot be
modelled as part of the adversary, as they are not trusted by the adversary. In
addition, we need to model how bribed users share information obtained from
channels hidden from the adversary. Inspired by Delaune et al.’s formalisation of
receipt-freeness in electronic voting [19], we define enforced prescribing-privacy
to be satisfied if there exists a process where the bribed doctor does not follow
the adversary’s instruction (e.g., prescribing a particular medicine), which is
indistinguishable from a process where she does.



Formal Analysis of Privacy in an eHealth Protocol 329

Modelling this property necessitates modelling a doctor who genuinely reveals
all her private information to the adversary. In [19], this is achieved by process
transformation P chc, which transforms a plain process P into one which shares all
private information over the channel chc with the adversary. In addition, we also
use their other transformation P \out(chc,·). This [19] models a process P which
erases all outputs on channel chc. Formally, P \out(chc,·) := νchc.(P |!in(chc, x)).

Definition 2 (Enforced prescribing-privacy). A well-formed eHealth pro-
tocol EHP satisfies enforced prescribing-privacy, if there exist processes init ′dr
and P ′

dr , such that:

1) C[
(
init ′dr{A/Iddr}.(!Pdr{A/Iddr} | P ′

dr{A/Iddr})
)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})
)
]

≈� C[
(
(initdr{A/Iddr})chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})chc)

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})
)
];

2) init ′dr{A/Iddr}
\out(chc,·)

.(P ′
dr{A/Iddr}

\out(chc,·)
)

≈� initdr{A/Iddr}.(maindr{A/Iddr , b/presc}),

where init ′dr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr}) is a closed plain process, and

chc is a fresh channel name.

3.3 Independency of Prescribing-Privacy

Usually, eHealth systems have to deal with a complex constellation of roles: doc-
tors, patients, pharmacists, insurance companies, medical administration, etc.
Each of these roles has access to different private information and has different
privacy concerns. An untrusted role may be bribed to reveal private information
to the adversary such that the adversary can break another roles’ privacy. De
Decker et al. [9] also note that preserving doctor privacy is not sufficient to pre-
vent bribery: pharmacists could act as go-betweens. For instance, pharmacists
may have sensitive data which can be revealed to the adversary to break a doc-
tor’s prescribing-privacy. To prevent a party (not a doctor) to do this, eHealth
protocols are required to satisfy independency of prescribing-privacy, meaning
that even if another party Ri reveals their information (i.e., Rchc

i ), the adversary
should not be able to break a doctor’s prescribing-privacy.

Definition 3 (Independency of prescribing-privacy). A well-formed eHealth
protocol EHP satisfies prescribing-privacy independent of role Ri if

C[!Ri
chc |

(
initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , a/presc})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})
)
]

≈� C[!Ri
chc |

(
initdr{A/Iddr}.(!Pdr{A/Iddr} | maindr{A/Iddr , b/presc})

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})
)
].

where Ri is a non-doctor role.

Note that we assume a worst situation in which a pharmacist genuinely cooper-
ates with the adversary. For example, the pharmacist forwards all information
obtained from channels hidden from the adversary.
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3.4 Independency of Enforced Prescribing-Privacy

We have discussed two situations where a doctor prescription behaviour can be
revealed when either the doctor or another different party cooperates with the
adversary. It is natural to consider the conjunction of these two, i.e., a situation
in which the adversary coerces both a doctor and another party (not a doctor).
Since the adversary obtains more information, this constitutes a stronger attack
on doctor’s prescribing-privacy. To address this problem, we define independency
of enforced prescribing-privacy, which is satisfied when a doctor’s prescribing-
privacyis preserved even if both the doctor and another party reveal their private
information to the adversary.

Definition 4 (Independency of enforced prescribing-privacy). A well-
formed eHealth protocol EHP satisfies enforced prescribing-privacy independent
of role Ri, if there exist processes init ′dr and P ′

dr , such that:

1) C[!Rchc
i |

(
init ′dr{A/Iddr}.(!Pdr{A/Iddr} | P ′

dr{A/Iddr})
)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , a/presc})
)
]

≈� C[!Rchc
i |

(
(initdr{A/Iddr})chc.(!Pdr{A/Iddr} | (maindr{A/Iddr , a/presc})chc)

)
|(

initdr{B/Iddr}.(!Pdr{B/Iddr} | maindr{B/Iddr , b/presc})
)
];

2) init ′dr{A/Iddr}\out(chc,·).(P ′
dr{A/Iddr}\out(chc,·))

≈� initdr{A/Iddr}.(maindr{A/Iddr , b/presc}),

where init ′dr{A/Iddr}.(!Pdr{A/Iddr} | P ′
dr{A/Iddr}) is a closed plain process, Ri

is a non-doctor role, and chc is a fresh channel name.

We conjecture that independency of enforced prescribing-privacy implies inde-
pendency of prescribing-privacy and enforced prescribing-privacy, each of which
also implies prescribing-privacy.

3.5 Anonymity and Strong Anonymity

Anonymity is a property that protect users’ identities. We model anonymity as
indistinguishability of processes initiated by two different users.

Definition 5 (Doctor anonymity). A well-formed eHealth protocol EHP sat-
isfies doctor anonymity for a doctor A if there exists another doctor B, such that

C[initdr{A/Iddr}.!Pdr{A/Iddr}] ≈� C[initdr{B/Iddr}.!Pdr{B/Iddr}].

A stronger notion of anonymity is defined in [17], capturing the situation that the
adversary cannot even find out whether a user (with identity A) has participated
in a session of the protocol or not.

Definition 6 (Strong doctor anonymity [17]). A well-formed eHealth pro-
tocol EHP satisfies strong doctor anonymity, if

EHP ≈� νm̃.init .
(
!R1 | . . . |!Rn | (initdr{A/Iddr}.!Pdr{A/Iddr})

)
.

Similarly, we can define anonymity and strong anonymity for patient and other
roles in an eHealth protocol, by replacing the doctor role with a different role.
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3.6 Untraceability and Strong Untraceability

Untraceability is a property preventing the adversary from tracing a user, mean-
ing that he cannot tell whether two executions are initiated by the same user.

Definition 7 (Doctor untraceability). A well-formed eHealth protocol EHP
satisfies doctor untraceability if, for any two doctors A and B �= A,

C[initdr{A/Iddr}.(Pdr{A/Iddr} | Pdr{A/Iddr})]
≈� C[(initdr{A/Iddr}.Pdr{A/Iddr}) | (initdr{B/Iddr}.Pdr{B/Iddr})].

A stronger notion of untraceability is proposed in [17] that captures the adver-
sary’s inability to distinguish the situation where one user executes the protocol
multiple times from no user executing the protocol more than once.

Definition 8 (Strong doctor untraceability [17]). A well-formed eHealth
protocol EHP satisfies strong doctor untraceability, if

EHP ≈� νm̃.init .
(
!R1 | . . . |!Ri−1 |!Ri+1 |!Rn |!(νIddr .initdr .Pdr )

)
.

Similarly, we can define untraceability and strong untraceability for patient and
other roles in a protocol, by replacing the doctor role with a different role.

4 Description and Modelling of the DLVV08 Protocol

De Decker. et al develop a complex healthcare protocol for the Belgium situa-
tion [9], which captures most aspects of the current Belgian healthcare practice
and aims to provide a strong guarantee of privacy for patients and doctors.

To ensure security and privacy properties, the DLVV08 protocol employs cryp-
tographic primitives such as privacy-preserving credential systems and verifiable
public key cryptography. We briefly describe the used primitives and explain
how to model them in applied pi. Then we briefly discuss the DLVV08 protocol
and focus on the modelling of two sub-protocols in details.

4.1 Cryptographic Primitives

Zero-Knowledge Proofs. A zero-knowledge proof (ZKP) is a cryptographic
scheme in which one party (the prover) proves to another party (the verifier) that
a statement is true, without leaking any information on the statement. A ZKP
scheme can be either interactive or non-interactive. We model non-interactive
ZKPs as zk(secrets, pub info), where secrets models private information and
pub info models public information [22, 23]. Verification of a ZKP is modelled
as Vfy-zk(zk(secrets , pub info), verif info), with a proof zk(secrets, pub info) to
be verified, and some verification information verif info. Since the private infor-
mation in a ZKP is known only by the prover, only he can construct a correct
ZKP. To verify a ZKP is to check whether a specific relation between the se-
cret information and the verification formation is satisfied. Since pub info and
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verif info happen to be the same in all ZK proof verifications in this paper, the
generic structure of a verification is Vfy-zk(zk(x, f(x, y)), f(x, y)) = true, where x
denotes private information and y denotes public information.

In DLVV08, both anonymous authentication and verifiable encryption are es-
sentially ZKPs. Anonymous authentication is modelled as a ZKP with a creden-
tial as public information, while verifiable encryption is modelled as a ZKP with
the encrypted message as part of the public information. The specific function
to check a ZKP of type x is denoted as Vfy-zkx, e.g., verification of a patient’s
anonymous authentication is modelles by function Vfy-zkAuthpt .

Signed Proofs of Knowledge. Signed proofs of knowledge uses proofs of
knowledge as a digital signature scheme (for details see [24]). Intuitively, a prover
signs a message using some private information, which can be considered as a
secret signing key. The prover uses a proof of knowledge to convince the ver-
ifier that he possesses the private signing “key”. We denote a signed proof of
knowledge as spk(secrets, pub info,msg), which models a message msg and pub-
lic verification information pub info signed with signing key secrets [25]. What
knowledge is proven depends on the instance of the proof and is captured by the
verification functions for the specific proofs. These proofs are verified by check-
ing that the signature is correct given the signed message and the verification
information, generically: Vfy-spk (spk (x, f(x, y),m) , f(x, y),m) = true. Note that
specific verification functions depend on the proof to be verified.

Further Cryptographic Primitives Used. A digital credential proves that
the owner possesses some specific properties. We model a doctor credential as a
private function drcred with the doctor’s private information as parameter. Sim-
ilarly, a patient’s credential is modelled as a private function ptcred. Functions
getpublic, getSpkVinfo and getSpkMsgmodel retrieving public information from a
ZKP, from a signed proof of knowledge, and obtaining the message from a signed
proof of knowledge, respectively. Bit-commitments, hash functions, encryptions
and signing messages are modelled by functions commit, hash, enc, and sign, re-
spectively. Opening a commitment, decryption and retrieving the message from
a signature are modelled as functions open, dec and getsignmsg.

4.2 Description of the DLVV08 Protocol

The protocol involves five roles: doctor, patient, pharmacist, medicine prescrip-
tion administrator (MPA) and health insurance institute (HII).

– A doctor has an identity (Iddr ), a pseudonym (Pnymdr ), and an anonymous
doctor credential (Creddr ) issued by trusted authorities.

– A patient has an identity (Idpt ), a pseudonym (Pnympt ), an HII (Hii), a social
security status (Sss), a health expense account (Acc) and an anonymous
patient credential (Credpt ) issued by trusted authorities.

– Pharmacists, MPA, and HII are public entities, each of which has an identity
(Idph , Idmpa , Idhii), a secret key (skph , skmpa , skhii) and an authorised
public key certificate (pkph , pkmpa , pkhii) issued by trusted authorities.
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The DLVV08 protocol works as follows: a doctor prescribes medicines to a pa-
tient; next the patient obtains medicine from a pharmacist according to the pre-
scription; following that, the pharmacist forwards the prescription to his MPA,
the MPA checks the prescription and refunds the pharmacist; finally, the MPA
sends invoices to the patient’s HII and is refunded.1 Each step is described as a
sub-protocol in [9]. Due to space limitations and the fact that the studied privacy
properties mainly involve doctors, patients and pharmacists, we focus on the first
two sub-protocols: the doctor-patient sub-protocol and the patient-pharmacist
sub-protocol.

4.3 Underspecification of the DLVV08 Protocol

The DLVV08 protocol leaves the following issues unspecified:

a1 whether a zero-knowledge proof is transferable;
a2 whether an encryption is probabilistic;
a3 whether a patient/doctor uses a fresh identity/pseudonym for each session;
a4 whether credentials are freshly generated in each session;
a5 what a patient’s social security status is and how it can be modified;
a6 how many HIIs exist and whether a patient can change his HII;
a7 whether a patient/doctor can obtain a credential by requesting one;
a8 what type of communication channels are used (public or untappable).

To be able to discover potential flaws on privacy, we make the following (weakest)
assumptions in our modelling of the DLVV08 protocol:

s1 the zero-knowledge proofs used are non-interactive and transferable;
s2 encryptions are not probabilistic;
s3 a patient/doctor uses the same identity and pseudonym in every session;
s4 a patient/doctor has the same credential in every session;
s5 a patient’s social security status is the same in every session;
s6 there are many HIIs, different patients may have different HIIs, and a pa-

tient’s HII is fixed and cannot be changed;
s7 a patient/doctor’s credential can be obtained by requesting one;
s8 the communication channels are public.

4.4 Modelling the Doctor-Patient Sub-protocol

This sub-protocol is used for a doctor, whose steps are labelled di in Fig. 1, to
prescribe medicine for a patient, whose steps are labelled ti in Fig. 2.

First, the doctor anonymously authenticates to the patient using credential
Creddr (d1). The patient reads in the doctor authentication (t1), obtains the
doctor credential (t2), and verifies the authentication (t3). If the verification in

1 As we do not focus on properties such as revocability and reimbursement, we do not
consider the other two roles: public safety organisation (PSO) and social security
organisation (SSO).
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let Pdr =
d1. out(ch, zk((Pnymdr , Iddr ), drcred(Pnymdr , Iddr )));
d2. in(ch, (rcv Authpt , rcv PtProof ));
d3. let c Credpt = getpublic(rcv Authpt ) in

d4. let (c Comtpt ,= c Credpt ) = getpublic(rcv PtProof ) in

d5. if Vfy-zkAuthpt (rcv Authpt , c Credpt ) = true then

d6. if Vfy-zkPtProof(rcv PtProof , (c Comtpt , c Credpt )) = true then

d7. νpresc;
d8. νrdr ;
d9. let PrescriptID = hash(presc, c Comtpt , commit(Pnymdr , rdr )) in

d10. out(ch, (spk((Pnymdr , rdr , Iddr ), (commit(Pnymdr , rdr ), drcred(Pnymdr , Iddr )),
(presc,PrescriptID , commit(Pnymdr , rdr ), c Comtpt )), rdr )).

Fig. 1. The doctor process Pdr

(t3) succeeds, the patient anonymously authenticates himself to the doctor using
his credential (t5, the first zk function), generates a nonce rpt (t4), computes a
commitment with the nonce as opening information, and proves that the patient
identity used in the patient credential is the same as in the commitment, thus
linking the patient commitment and the patient credential (t5, the second zk).

The doctor reads in the patient authentication as rcv Authpt and the patient
proof as rcv PtProof (d2), obtains the patient credential from the patient au-
thentication (d3), obtains the patient commitment c Comtpt and the patient
credential from the patient proof, tests whether the credential matches the one
embedded in the patient authentication (d4), then verifies the authentication
(d5) and the patient proof (d6). If the verification in the previous item suc-
ceeds, the doctor generates a prescription presc (d7), generates a nonce rdr
(d8), computes a prescription identity PrescriptID (d9), and computes a com-
mitment Comtdr using the nonce as opening information (d10). Next, the doctor
signs the message (presc, PrescriptID , Comtdr , c Comtpt ) using a signed proof
of knowledge. This proves the pseudonym used in the credential Creddr is the
same as in the commitment Comtdr , thus linking the prescription to the cre-
dential. The doctor sends the signed proof of knowledge together with the open
information of the doctor commitment rdr (d10).

The patient reads in the prescription as rcv PrescProof and the opening in-
formation of the doctor commitment (t6), obtains the prescription c presc, pre-
scription identity c PrescriptID , doctor commitment c Comtdr , and tests the
patient commitment signed in the receiving message (t7). Then the patient ver-
ifies the signed proof of prescription (t8). If this succeeds, the patient obtains
the doctor’s pseudonym c Pnymdr by opening the doctor commitment (t9).

4.5 Modelling the Patient-Pharmacist Sub-protocol

This sub-protocol is used for a patient, whose steps are labelled ti in Fig. 3, to
obtain medicine from a pharmacist, whose steps are labelled hi in Fig. 4.



Formal Analysis of Privacy in an eHealth Protocol 335

let Ppt p1 =
t1. in(ch, rcv Authdr );
t2. let c Creddr = getpublic(rcv Authdr ) in

t3. if Vfy-zkAuthdr (rcv Authdr , c Creddr ) = true then

t4. νrpt ;
t5. out(ch, (zk((Idpt , Pnympt , Hii, Sss, Acc), ptcred(Idpt , Pnympt , Hii, Sss, Acc)),

zk((Idpt , Pnympt , Hii, Sss, Acc),
(commit(Idpt , rpt ), ptcred(Idpt , Pnympt , Hii, Sss, Acc)))));

t6. in(ch, (rcv PrescProof , rcv rdr ));
t7. let (c presc, c PrescriptID , c Comtdr ,= commit(Idpt , rpt ))

= getSpkMsg(rcv PrescProof ) in

t8. if Vfy-spkPrescProof(rcv PrescProof , (c Creddr , c presc, c PrescriptID ,
c Comtdr , commit(Idpt , rpt ))) = true then

t9. let c Pnymdr = open(c Comtdr , rcv rdr ) in 0.

Fig. 2. The patient process Ppt in doctor-patient sub-protocol

First, the pharmacist authenticates to the patient using a public key authen-
tication (h1). Note that the pharmacist does not authenticate anonymously, and
that the pharmacists’s MPA identity is embedded. The patient reads in the phar-
macist authentication rcv Authph (t10) and verifies the authentication (t11). If
the verification succeeds, the pharmacist obtains the pharmacist’s MPA identity
from the authentication (t12), thus obtains the public key of MPA (t13). Then
the patient anonymously authenticates himself to the pharmacist, and proves his
social security status using the proof PtAuthSss (t14). The patient generates a
nonce which will be used in a signed proof of knowledge (t15), and computes
verifiable encryptions vc1, vc2, vc3, vc

′
3, vc4 and vc5 (t16-t21). These divulge

the patient’s HII, the doctor’s pseudonym, and the patient’s pseudonym to the
MPA, the patient’s pseudonym to the HII, and the patient pseudonym and
HII to the social safety organisation, respectively. The patient encrypts vc5 with
MPA’s public key as c5 (t22). The patient computes a signed proof of knowledge
PtSpk which proves that the patient identity embedded in the prescription is the
same as in his credential2. The patient sends the prescription rcv PrescProof ,
the signed proof PtSpk , and vc1, vc2, vc3, vc

′
3, vc4, c5 to the pharmacist (t23).

The pharmacist reads in the authentication rcv PtAuthSss (h2), obtains the
patient credential and his social security status (h3), verifies the authentica-
tion (h4). If the verification succeeds, the pharmacist reads in the patient’s
prescription rcvph PrescProof , the signed proof of knowledge rcvph PtSpk , the
verifiable encryptions rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4, and cipher text
rcv c5 (h5); and verifies rcvph PrescProof (h6-h8), rcvph PtSpk (h9-h10), and
rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4 (h11-h20). If all the verifications suc-
ceed, the pharmacist charges the patient, and delivers the medicine (neither are

2 In the prescription, this identity is contained in a commitment. For simplicity, we
model the proof using the commitment instead of the prescription. The link between
commitment and prescription is ensured when the proof is verified (h10).
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let Ppt p2 =
t10. in(ch, rcv Authph );
t11. if Vfy-sign(rcv Authph , rcvpt pkph ) = true then

t12. let (= cpt Idph , cpt Idmpa) = getsignmsg(rcv Authph , rcvpt pkph ) in

t13. let cpt pkmpa = key(cpt Idmpa) in

t14. out(ch, zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), Sss)));

t15. νnonce;
t16. let vc1 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Hii, cpt pkmpa ))) in

t17. let vc2 = zk((c Pnymdr , rcv rdr ),
(rcv PrescProof , enc(c Pnymdr , cpt pkmpa))) in

t18. let vc3 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , pksso))) in

t19. let vc′3 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Hii, pksso))) in

t20. let vc4 = zk((Idpt , Pnympt , Hii, Sss, Acc),
(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , cpt pkmpa ))) in

t21. let vc5 = zk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), enc(Pnympt , cpt pkhii ))) in

t22. let c5 = enc(vc5, cpt pkmpa) in

t23. out(ch, (rcv PrescProof ,
spk((Idpt , Pnympt , Hii, Sss, Acc),

(ptcred(Idpt , Pnympt , Hii, Sss, Acc), commit(Idpt , rpt )),nonce),

vc1, vc2, vc3, vc
′
3, vc4, c5));

t24. in(ch, rcv invoice);
t25. let ReceiptAck = spk((Idpt , Pnympt , Hii, Sss, Acc),

ptcred(Idpt , Pnympt , Hii, Sss, Acc),
(c PrescriptID , cpt Idph , vc1, vc2, vc3, vc

′
3, vc4, c5)) in

t26. out(ch,ReceiptAck ).

Fig. 3. The patient process Ppt in patient-pharmacist sub-protocol

modelled as they are out of DLVV08’s scope). Then the pharmacist generates
an invoice with the prescription identity embedded in it and sends the invoice
to the patient (h21).

The patient reads in the invoice (t24), computes a receipt: a signed proof
of knowledge ReceiptAck which proves that he receives the medicine (t25); and
sends the signed proof of knowledge to the patient (t26). The pharmacist reads
in the receipt rcv ReceiptAck (h22) and verifies its correctness (h23).

4.6 Claimed Privacy Properties

The DLVV08 protocol claims to satisfy the following privacy properties:

– Prescribing-privacy: the protocol protects a doctor’s prescription behaviour.
– Enforced prescribing-privacy: the protocol prevents pharmaceutical compa-

nies from rewarding doctors for prescribing their medicine.
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let Pph =
h1. out(ch, sign((Idph , cph Idmpa), skph));
h2. in(ch, rcv PtAuthSss);
h3. let (cph Credpt , cph Sss) = getpublic(rcv PtAuthSss) in

h4. if Vfy-zkPtAuthSss(rcv PtAuthSss , (cph Credpt , cph Sss)) = true then

h5. in(ch, (rcvph PrescProof , rcvph PtSpk ,
rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4, rcv c5));

h6. let (cph Comtdr , cph Creddr ) = getSpkVinfo(rcvph PrescProof ) in

h7. let (cph presc, cph PrescriptID ,= cph Comtdr , cph Comtpt )
= getSpkMsg(rcvph PrescProof ) in

h8. if Vfy-spkPrescProof(rcvph PrescProof , (cph Creddr , cph presc,
cph PrescriptID , cph Comtdr , cph Comtpt )) = true then

h9. let c msg = getSpkMsg(rcvph PtSpk) in

h10. if Vfy-spkPtSpk(rcvph PtSpk , (cph Credpt , cph Comtpt , c msg)) = true then

h11. let (= cph Credpt , c Enc1) = getpublic(rcv vc1) in

h12. if Vfy-zkVEncHii(rcv vc1, (cph Credpt , c Enc1, rcvph pkmpa )) = true then

h13. let (= rcvph PrescProof , c Enc2) = getpublic(rcv vc2) in

h14. if Vfy-zkVEncDrnymMpa(rcv vc2, (rcvph PrescProof ,
c Enc2, rcvph pkmpa)) = true then

h15. let (= cph Credpt , c Enc3) = getpublic(rcv vc3) in

h16. if Vfy-zkVEncPtnym(rcv vc3, (cph Credpt , c Enc3, pksso)) = true then

h17. let (= cph Credpt , c Enc′3) = getpublic(rcv vc′3) in

h18. if Vfy-zkVEncHii(rcv vc′3, (cph Credpt , c Enc′3, pksso)) = true then

h19. let (= cph Credpt , c Enc4) = getpublic(rcv vc4) in

h20. if Vfy-zkVEncPtnym(rcv vc4, (cph Credpt , c Enc4, rcvph pkmpa )) = true then

h21. out(ch, invoice(cph PrescriptID));
h22. in(ch, rcv ReceiptAck );
h23. if Vfy-spkReceiptAck(rcv ReceiptAck , (cph Credpt , cph PrescriptID ,

Idph , rcv vc1, rcv vc2, rcv vc3, rcv vc′3, rcv vc4, rcv c5)) = true then 0.

Fig. 4. The pharmacist process Pph in Patient-Pharmacist sub-protocol

– Independency of prescribing-privacy: pharmacists are not able to provide
evidence to pharmaceutical companies about doctors’ prescription.

– Patient anonymity: no party should be able to determine a patient’s identity.
– Patient untraceability: prescriptions issued to the same patient should not

be linkable to each other.

5 Analysis

We analyse (enforced) prescribing-privacy, independence of (enforced) prescribing-
privacy, (strong) patient and doctor anonymity, (strong) patient and doctor un-
traceability of the DLVV08 protocol, under the assumptions stated in Sect. 4.3.
Doctor anonymity and untraceability are not required by the protocol but are
still interesting to analyse. The verification results are summarised in Tab. 1.

The above privacy properties are modelled using equivalences in the applied
pi calculus (see Sect. 3). To verify them is to check the satisfiability of the corre-
sponding equivalence between processes, which can be captured by a bi-process
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Table 1. Verification of the DLVV08 protocol with original/revised assumptions

checked privacy property initial model cause(s) improvement revised

prescribing-privacy × s4 s4’
√

enforced presc.-priv. × (with s4’) s8’
√

independency of presc.-priv.
√

(with s4’)
√

independ. of enf. presc.-priv. × (with s4’) s8’ ×
patient anonymity

√ √

strong patient anonymity
√ √

doctor anonymity × s4 s4’
√

strong doctor anonymity × s4 s4’
√

patient untraceability × s2, s4, s5, s6 s2’, s4”, s5’, s6’
√

strong patient untraceability × s2, s4, s5, s6 s2’, s4”, s5’, s6’
√

doctor untraceability × s3 s3’
√

strong doctor untraceability × s3 s3’
√

and automatically checked in the tool ProVerif [26]. A bi-process models two
processes sharing the same structure and differing only in terms or destructors.
The two processes are written as one process with choice-constructors which
tells ProVerif the spots where the two processes differ. For example, choice[x, y]
means that the first process uses x to replace choice[x, y] while the second pro-
cess uses y. The context C in the DLVV08 protocol for the analysis of privacy
properties is defined as C = νm̃.init .(!Rpt |!Rdr |!Rph | ).

5.1 Prescribing-Privacy

The verification shows that the DLVV08 protocol does not satisfy prescribing-
privacy, i.e., the adversary can distinguish whether a prescription is prescribed
by doctor A or doctor B. In the prescription proof, a prescription is linked to a
doctor credential. And a doctor credential is linked to a doctor identity. Thus,
the adversary can link a doctor to his prescription. To break the link, one way
is to make sure that the adversary cannot link a doctor credential to a doctor
identity. This can be achieved by adding randomness to the credential (s4’).

5.2 Enforced Prescribing-Privacy

The definition of enforced prescribing-privacy is modelled as the existence of a
process P ′

dr , such that the two equivalences in Def. 2 are satisfied. Due to the
existence quantification, we cannot verify the property directly using ProVerif.

Examining the DLVV08 protocol, we find an attack on enforced prescribing-
privacy, even after fixing prescribing privacy (with assumption s4’). A bribed
doctor is able to prove to the adversary of his prescription as follows:

1. A doctor communicates with the adversary to agree on a bit-commitment
that he will use, which links the doctor to the commitment.

2. The doctor uses the agreed bit-commitment in the communication with his
patient. This links the bit-commitment to a prescription.
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3. Later, when the patient uses this prescription to get medicine from a phar-
macist, the adversary can observe the prescription being used. This proves
that the doctor has really prescribed the medicine.

Formally, using ProVerif, we can show that if a doctor reveals all his information
to the adversary, the doctor’s prescribing-privacy is broken. To prove that there
exist no alternative precesses for a doctor to cheat the adversary, we assume that
there exists a process P ′

dr which satisfies the definition of enforced prescribing-
privacy, and then derive some contradiction. A bribed doctor reveals the nonces
used in the commitment and the credential to the adversary. Thus, the adversary
links a bribed doctor to his commitment and credential. In the prescription proof,
a prescription is linked to a doctor’s commitment and credential. Suppose there
exists a process P ′

dr in which the doctor lies to the adversary that he prescribed
a, while the adversary observes that the commitment or the credential is linked
to b. The adversary can detect that the doctor has lied.

5.3 Doctor’s (Enforced) Prescribing-Privacy

The doctor’s prescribing-privacy independent of the pharmacist is modelled by
replacing Ri with Rph in Def. 3. The verification shows that the protocol (after
fixing the flaw on prescribing-privacy with assumption s4’) satisfies this property.

Similarly, the doctor’s enforced prescribing-privacy independent of pharmacist
is defined as replacing Ri with Rph in Def. 4. The flaw described in Sect. 5.2 is
also applied here. Intuitively, when a doctor can prove his prescription without
the pharmacist sharing information with the adversary, the doctor can prove it
when the pharmacist genuinely cooperates with the adversary.

5.4 (Strong) Patient and Doctor Anonymity

Our verification show that the protocol satisfies patient anonymity and strong
patient anonymity but not doctor anonymity, nor strong doctor anonymity.

For strong doctor anonymity, the adversary can distinguish a process initiated
by an unknown doctor and a known doctor. Given a doctor process, where
the doctor has identity A, pseudonym Pnymdr , and credential drcred(Pnymdr , A).
Pnymdr and drcred(Pnymdr , A) are revealed. We assume that the adversary knows
another doctor identity B. The adversary can fake an anonymous authentication
by faking the zero-knowledge proof as zk((Pnymdr , B), drcred(Pnymdr , A)). If the
zero-knowledge proof passes the corresponding verification Vfy-zkAuthdr by the
patient, then the adversary knows that the doctor process is executed by the
doctor B. Otherwise, not.

For the same reason, doctor anonymity fails the verification. Both flaws can
be fixed by requiring a doctor to generate a new credential in each session (s4’).

5.5 (Strong) Patient and Doctor Untraceability

The DLVV08 protocol does not satisfy patient/doctor untraceability (see Def. 7),
nor strong untraceability (see Def. 8).
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The adversary can distinguish sessions initiated by one doctor and by differ-
ent doctors. The doctor’s pseudonym is revealed and a doctor uses the same
pseudonym in all sessions. Sessions with the same doctor pseudonyms are ini-
tiated by the same doctor. For the same reason, doctor untraceability also
fails. Both of them can be fixed by requiring a doctor to freshly generate his
pseudonym in each session (s3’).

For strong patient untraceability, the adversary can distinguish sessions ini-
tiated by one patient (with identical social security statuses) and initiated by
different patients (with different social security statuses). Second, the adver-
sary can distinguish sessions initiated by one patient (with identical cipher texts
enc(Pnympt , pksso) and identical cipher texts enc(Hii, pksso)) and initiated by
different patients (with different cipher texts enc(Pnympt , pksso) and different ci-
pher texts enc(Hii, pksso)). Third, since the patient credential is the same in all
sessions and is revealed, the adversary can also trace a patient by the patient’s
credential. Fourth, the adversary can distinguish sessions using the same HII and
sessions using different HIIs. For the same reasons, patient untraceability fails.
Both flaws can be fixed by revising the assumptions (s5’, s2’, s4” and s6’).

5.6 Addressing the Flaws of the DLVV08 Protocol

We modify assumptions in Sect. 4.3 to fix the flaws found in our analysis.

s2’ The encryptions are probabilistic.
s3’ A doctor’s pseudonym is freshly generated in every session.
s4’ A doctor freshly generates an unpredictable credential in each session. We

model this with another parameter (a random number) of the credential. Fol-
lowing this, anonymous authentication using these credentials proves knowl-
edge of the used randomness.

s4” A patient freshly generates a credential in each session.
s5’ A patient’s social security status is different in each session.
s6’ All patients share the same HII.

The modified protocol is verified again using ProVerif. The verification results
show that the protocol with revised assumptions satisfies prescribing-privacy,
doctor anonymity and strong anonymity, patient and doctor untraceability and
strong untraceability.

To make the protocol satisfy enforced prescribing-privacy, we apply the fol-
lowing assumption on communication channels.

s8’ The communication channels are untappable, except that communication
channels for authentications remain public.

Our model of the protocol is accordingly modified as follows: replacing channel
ch in lines d10, t6 with an untappable channel chdp , replacing channel ch in lines
t23, t26, h5, h22 with an untappable channel chptph , and replacing channel ch
in lines t24, h21 with an untappable channel chphpt . We prove that the protocol
(with s4’ and s8’) satisfies enforced prescribing-privacy by showing the existence
of a process P ′

dr such that the equivalences in Def. 2 are satisfied.
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However, with the above assumptions the DLVV08 protocol does not satisfy
independency of enforced prescribing-privacy. We first show that P ′

dr is not suf-
ficient for proving this with ProVerif. Then we prove (analogous to the proof in
Sect. 5.2) that there is no alternative process P ′

dr which satisfies Def. 4. Intu-
itively, all information sent over untappable channels are received by pharmacists
and can be genuinely revealed to the adversary by the pharmacists (do not lie by
assumption). Hence, there still exist links between a doctor, his nonces, his com-
mitment, his credential and his prescription, when the doctor is bribed/coerced
to reveal the nonces used in the commitment and the credential to the adversary.

6 Conclusion

In this paper, we have identified new privacy requirements for eHealth systems
and formalised them in the applied pi calculus. Then we took the DLVV08
protocol as a case study. We have found ambiguities in the protocol and privacy
flaws as consequence, and proposed possible solutions for fixing them. We hope
that our findings can help to clarify and improve the design of the DLVV08
protocol, satisfying a number of necessary privacy requirements.
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Abstract. In smart power grids, a smart meter placed at a consumer-
end point reports fine-grained usage information to utility providers.
Based on this information, the providers can perform demand predic-
tion and set on-demand pricing. However, this also threatens user pri-
vacy, since users’ specific activity or behavior patterns can be deduced
from the finely granular meter readings. To resolve this issue, we de-
sign Privatus, a privacy-protection mechanism that uses a rechargeable
battery. In Privatus, the meter reading reported to the utility is prob-
abilistically independent of the actual usage at any given time instant.
Privatus also considerably reduces the correlation between the meter
readings and the actual usage pattern over time windows. Further, us-
ing stochastic dynamic programming, Privatus charges/discharges the
battery in the optimal way to maximize savings in the energy cost, given
prior knowledge of time periods for the various price zones.

Keywords: smart grid, smart meter, privacy, cost saving, dynamic pro-
gramming, battery.

1 Introduction

A smart grid is a type of the electrical grid in which electricity delivery systems
are equipped with computer-based remote control and automation, which can
revolutionize the way that energy is generated and consumed. A key component
of the smart grid is the use of the smart meters, which measure energy usage at
a fine granularity (e.g., once in a few minutes). However, by gathering hundreds
of data points even in a day via the smart meter, the utility companies and third
parties may learn a lot about our daily lives, e.g., when we wake up, when we
go out for work, and when we come back after work. In an industrial setting,
this may be used to reveal details of the industrial process being used, or when a
new process is adopted (which is achievable if the new machinery has electricity
usage very distinct from prior machinery). Because of this privacy concern, there
have been lawsuits to stop the installation of smart meters [1]. As a result, such
privacy concerns have delayed the wide and quick deployment of smart grids.

There are a number of possible threat models for the above privacy risks.
Given that we do need to report our energy usage profile to the utility company,
the most important threat is that the metering data may be unwittingly disclosed
from the utility company to third-party vendors. This problem is well illustrated

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 343–360, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



344 J. Koo, X. Lin, and S. Bagchi

in an article in MSNBC RedTape [2]. This article introduces a possible scenario
with the smart grid that you get a discount with your power company at the cost
that your auto insurance company may learn when you are home from the utility
company. Additionally, due to possibly poor implementation of cryptography
mechanisms, an eavesdropper on the wireless channel between the consumer’s
premises and the wireless network collection point may also determine the usage.

To resolve this issue, the first objective of this paper is to make it difficult for an
adversary to infer, based on the energy usage profile reported to the utilities, what
is going on inside the house. We achieve this objective by putting a rechargeable
battery at the user-end point (e.g., a home). The rechargeable battery acts like
a buffer between the power grid and the end user in such a way that the actual
energy usage pattern looks different from the energy usage pattern reported to
the utility.

Additionally, the rechargeable battery provides us with an opportunity to
lower the energy bill, by exploiting the time-of-use (TOU) pricing feature of
smart grid, whereby electricity price varies according to pre-established time
zones during a day. Basically, the cost-saving will be accomplished by charging
the battery when the price is low and using the saved energy from the battery
when the price is high. However, the two goals of privacy protection and cost
saving are not always compatible with each other.Our goal is therefore to achieve
as much energy cost savings as possible, subject to privacy protection constraints.
To the best of our knowledge, we are the first to propose a mechanism that
considers both privacy protection and cost saving simultaneously.

In this paper, we present Privatus, our solution that guarantees that instan-
taneous values of the actual usage and the energy draw visible outside the home
are independent in an information-theoretic sense. Further, the patterns of both
of these variables are also designed to look dissimilar. We set up a dynamic pro-
gramming problem that minimizes the energy cost while preserving the privacy
guarantee mentioned above.

We evaluate our solution in terms of both the privacy information leakage
and the cost saving, and compare it to a previous solution that masked high
frequency variation in energy usage [3]. In our simulation environment,Privatus
can preserve at least 83% of the uncertainty of the actual usage sequences. In
addition, Privatus can achieve 72% of the theoretically-possible maximum cost
saving with a 6.43kWh battery. This translates to a saving of $16 per month in a
typical residential pricing plan [4], assuming the average daily usage of 30kWh.
We believe that this saving could provide an extra and significant incentive for
users to invest in our solution in addition to privacy protection. The interested
reader is referred to Appendix A for further discussion about this incentive.

2 Related Work

There has been extensive research about privacy protection in the area of
database systems, where the goal is to provide statistical information (such
as sum, average, or maximum) without revealing sensitive information about



PRIVATUS 345

individuals. The common approach to achieve this goal is data perturbation
[5, 6]. However, none of methods in this area is directly applicable to hide
the privacy information in the meter readings from the smart meters, because
the utility companies do have to know precise meter reading records for billing
purpose.

Recently, many studies raised the privacy concern in the smart grid both from
a technical perspective and from a legal perspective [7–9]. However, only a few
works have been proposed so far on the design of technical solutions to handle the
privacy issue in the smart grid. Rial et. al. [10] proposed a privacy-preserving me-
tering system, where the energy bill for a specific period is calculated by the user
and then sent to the utility company. This system allows the user not to report
the fine-granularity meter readings. However, it limits the power grid operator’s
capability such as demand prediction. Kalogridis et. al. [3] used a rechargeable
battery to perform low-pass filtering over the load profile. Their algorithm forces
the battery to charge (or discharge) a certain amount of energy if possible, when
the required load is smaller (or larger) than the previously metered load. Thus,
the high-frequency variation on energy usage profile is not visible to the smart
meter. This approach can help eliminate load signatures that indicate which ap-
pliance is being used. However, the low-frequency components of a load profile
are still revealed without any protection. Further, the proposed solution did not
consider the cost-saving opportunity of using the rechargeable battery. Another
work using the rechargeable battery is proposed by Varodayan et. al. [11]. They
considered a simple binary-state battery model, where the battery is probabilis-
tically charged by drawing the energy from the grid and discharged to feed the
appliances. However, in their model, the charging and discharging processes at a
given time instant are not independent of each other. This leads to a high level
of information leakage (at least 0.5 bit for one-bit information). The authors
also failed to consider the possible saving in the electricity cost by using the
rechargeable battery.

Our work also adopts the rechargeable battery to protect the user privacy,
but we design a mechanism by which the charging and discharging processes are
guaranteed to be independent of each other at a given time instant. Further,
our design also considers to reduce the correlation between the sequences of
the charging and discharging processes over multiple time instants (instead of
just for a single time instant). This makes it difficult for the adversary to make
a meaningful guess on the user behavior by observing the sequence of meter
readings. In addition, our design ensures that the way of charging the battery is
optimal in the sense that we can maximize the average saving in the energy cost.
This is achieved by controlling the charging process by dynamic programming.

3 System Model

Suppose that the smart meter measures the energy consumption once in every
fixed interval (e.g., 15 minutes), which we call the measurement interval. We
denote by X(n) the amount of energy consumed in the n-th measurement inter-
val. We call X(n) the use process. Denote the amount of energy that we draw
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(a) Abstract model to draw and use
energy.

(b) The battery as a buffer.

Fig. 1. System model

from the power grid in the n-th measurement interval by Y (n), which we call
the draw process. The smart meter measures Y (n) and reports it to the utility.
Without any special technique, i.e., as it happens today, the draw process Y (n)
is the same as the use process X(n). What we want to achieve in this paper is
to de-correlate X(n) and Y (n) so that even if an adversary can observe Y (n),
no information is leaked about the use process X(n). Toward this end, we put a
rechargeable battery at the user-end as shown in Figure 1(a). The rechargeable
battery acts as a buffer between X(n) and Y (n): instead of directly feeding X(n)
by Y (n), we charge the battery by Y (n), and use the saved energy in the battery
to supply X(n). We will design an algorithm in the charging controller, which
will choose the value of Y (n) carefully to ensure that the battery always has the
appropriate level of energy (i.e., no shortage to feed X(n) or no overflow), and
that X(n) looks independent of Y (n).

We assume that the values of X(n) and Y (n) may take any of theM different
levels {0, u, 2u, . . . , (M − 1)u}, where u represents a unit amount of energy. We
denote by B(n) the energy level remaining in the battery at the end of the n-th
measurement interval. Assuming for simplicity that there is no energy loss when
charging and discharging the battery (for extension to the case with energy loss,
see Appendix A), the value of B(n) can be expressed as

B(n) = B(0) +

n∑
m=1

D(m), (1)

where D(m) = Y (m)−X(m) and B(0) is the initial energy level of the battery
that is also a multiple of u. Note that D(n) also takes its value as a multiple
of u, which is over the range [−(M − 1)u, (M − 1)u]. We model the battery as
a buffer of size K as illustrated in Figure 1(b), which implies that the battery
capacity is Ku, i.e., the range of B(n) is 0 ≤ B(n) ≤ Ku.

The probability distributions of X(n) and Y (n) are described by
pX(i;n) and pY (i;n), respectively, where pX(i;n) = P (X(n) = iu) and
pY (i;n) = P (Y (n) = iu). Define the distribution vectors of X(n) and Y (n) as
PX (n)=[pX(0;n),pX(1;n),...,pX (M−1;n)] and PY (n)=[pY (0;n),pY (1;n),...,pY (M−1;n)], respec-
tively. We assume that PX(n) is known to the user (i.e., the home owner). We
also assume that X(n) is independent, but does not need to be identically dis-
tributed across the measurement interval index n. This means that for instance,
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X(5) is independent of X(11), but PX(5) can be different from PX(11). As we
will see later, PY (n) is our control parameter.

We are interested in the case where the electricity price per unit amount of
energy varies from time to time. More specifically, we first focus on the case
where there exist two time zones within a day, one of which has a low rate
RL (dollars/u) and the other has a high rate RH (dollars/u). The zone with a
low rate is called the low-price zone and the other is called the high-price zone.
For ease of exposition, we assume that the measurement intervals from n = 1
to n = nL fall into the low-price zone, and the measurement intervals from
n = nL + 1 to n = nH correspond to the high-price zone. We treat the initial
point n = 0 as the beginning of a day and the end of the measurement interval
of n = nH as the end of the day. In Appendix A, we will discuss how we can
generalize the solution to handle the case with more than two price zones in a
day, and the case when the low-price and high-price zones are interleaved.

Because of the page limit, this paper assumes that the total amount of energy
usage per day is the same over days on average. Appendix A introduces a way
to release this assumption and generalize our solution.

4 Solution Approach I: Basic Formulation

4.1 Mapping between X(n) and Y (n)

In order to hide X(n) from an external adversary (i.e., an adversary
outside the home), we make Y (n) be independent of X(n). This im-
plies that observing Y (n) gives no meaningful information about X(n).
This is achieved when we map X(n) to Y (n) in such a way that
pY (i;n) ≡ P (Y (n) = iu) = P (Y (n) = iu|X(n) = ju) for any possible i and j.
Practically, we achieve this by probabilistically choosing the value of Y (n) ac-
cording to PY (n), which is decided before the n-th measurement interval starts,
without considering what the value of X(n) will be.

However, selecting Y (n) randomly without being aware of X(n) may cause
energy shortage or overflow in the battery. For example, when B(n− 1) = 0
(i.e., there is no energy remaining in the battery before the n-th measurement
interval starts), if Y (n) is chosen to be zero, we cannot feed any non-zero value of
X(n). This means that sometimes we cannot use the appliances when we want.
Similarly, when B(n − 1) = Ku (i.e., the battery is full), a non-zero value of
Y (n) does not make sense if X(n) = 0, since we cannot draw the energy from
the power grid unless we throw it away.

To handle this issue, we put a restriction on PY (n) when the energy left in the
battery is smaller than (M − 1)u (near-empty) or larger than (K − (M − 1))u
(near-full), which we call the corner cases. More specifically, when B(n−1) = ju
for j < (M−1), we choose PY (n) such that pY (i;n) = 0 for i < (M−1)−j. Sim-
ilarly, when B(n− 1) = (K − j)u for j < (M − 1), we choose PY (n) such that
pY (i;n) = 0 for i > j. We refer the readers to [12] for more detailed explanation
of what this restriction means. The rationale behind this restriction on PY (n)
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Fig. 2. Desired battery state profile

is that the battery must always have enough amount of energy to feed X(n)
even at the near-empty case, and that we never charge the battery more than
its capacity whatever X(n) is.

4.2 Strategy for Charging/Discharging the Battery

The only way to achieve cost saving by exploiting the time-of-use pricing policy
is to charge the battery in the low-price zone and use the stored energy in the
high-price zone. If we charge iu amount of energy in the low-price zone and use
it in the high price zone, we can save (RH − RL)i (dollars). For this reason,
the maximum possible cost saving is (RH − RL)K (dollars) per day, which is
obtained when we charge the battery from empty to full in the low-price zone
and discharge the battery to zero by feeding X(n) in the high-price zone. Note
that the maximum cost saving is proportional to the battery capacity Ku.

Therefore, our strategy to achieve the saving in the energy bill is to force the
battery state to follow the trend shown in Figure 2. We achieve this by changing
PY (n) for every n, which is discussed in detail in the following subsection.

4.3 Basic Approach

We first define the distribution vector space P as follows.

P =

{
[p0, p1, . . . , p(M−1)] :

M−1∑
i=0

pi = 1, 0 ≤ pi ≤ 1

}
, (2)

where we limit the value of pi to be a multiple of a constant c (0 < c < 1), in order
to make P be a finite set. For example, when c = 0.1 andM = 4, the distribution
vector space P contains [0.1, 0.2, 0.3, 0.4] and [0.5, 0.5, 0, 0] as two of its elements.
Then, PY (n) is assigned one element in P in the n-th measurement interval.
Recall that we force some elements of PY (n) to be zero, depending on the battery
level (Section 4.1). Therefore, the possible choice set in the n-th measurement
interval is dependent on B(n − 1) and we denote it by PB(n−1). Now, the key
question for us is “what would be the best choice for PY (n) ∈ PB(n−1) for each n
to maximize the cost saving?” This question is answered by solving the following
stochastic optimal control problems:
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Fig. 3. An example to derive the dynamic programming framework

max
PY (n)∈PB(n−1)

0<n≤nL

E (B(nL)|B(0), PY (1), PY (2), . . . , PY (nL)) (3)

in the low-price zone, and

min
PY (n)∈PB(n−1)

nL<n≤nH

E (B(nH)|B(nL), PY (nL + 1), PY (nL + 2), . . . , PY (nH)) (4)

in the high-price zone. Namely, we maximize (or minimize) the expected amount
of the energy in the battery when each zone ends, given the battery level at
the beginning of the zone and the distribution vectors PY (1) through PY (nL)
(or PY (nL + 1) through PY (nH)). We solve these optimization problems using
dynamic programming [13].

To see how we use dynamic programming, let us first consider the following
simple example in the low-price zone, where nL = 3. Then, the optimization
objective is to maximize E (B(3)|B(0), PY (1), PY (2), PY (3)), which is equal to

B(0) +E
(∑3

n=1D(n)|B(0), PY (1), PY (2), PY (3)
)
, where D(n) = Y (n)−X(n)

as introduced earlier. Since B(0) is given, we only need to focus on maximizing

E
(∑3

n=1D(n)|B(0), PY (1), PY (2), PY (3)
)
, which can be re-written as shown in

Figure 3. Note in the figure that the calculations can be done recursively. Stage
2 calculations are based on stage 3, stage 1 only on stage 2. Thus, the optimal
solution can be performed by maximizing the stage 3, stage 2, and stage 1 in
this order. In this manner, we first compute the optimal value of PY (3) given
B(2), then we compute the optimal value of PY (2) given B(1) until we reach and
compute the optimal value of PY (1). In the general case, PY (nL) is computed
first and then other PY (n)’s are computed in a backward direction (time-wise)
till PY (1) is computed.

Namely, the optimal solution for (3) is obtained by a backward-directional
computation procedure. In general, this procedure can be described by the fol-
lowing recursive equation, called the Bellman equation:

J(nL + 1, B(nL)) = 0,

J(n,B(n− 1)) = max
PY (n)∈PB(n−1)

E (D(n) + J(n+ 1, B(n))|B(n− 1), PY (n)) ,

(5)
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Fig. 4. Simulation results for the basic approach

for n = nL, (nL− 1), . . . , 1. Solving (5) results in the optimal decision for PY (n)
when the value of B(n − 1) is given, in the sense that PY (n) will maximize
E(B(nL)). Refer to [12] for further detail to solve (5). The optimal solution for
(4) can also be obtained in a similar way.

In summary, what we have done is to calculate a decision table. Each entry in
the decision table maps the given values of n and B(n−1) to the optimal vector
PY (n) at the state. Note that the decision table can be pre-calculated before the
run-time. During the run-time, we just look up the decision table for a given
state, i.e., n and B(n − 1), and probabilistically choose the value of Y (n) via
the distribution specified by the decision table entry. The size of this table can
be large in practice if K and nH are large. Thus, calculating the decision table
can be computationally expensive. However, note that the table can be reused
from one day to another till the distribution of the use process X(n) changes
significantly. Discussion about table complexity can be found at [12].

4.4 Simulation Study for the Basic Approach

We now present simulation results for our basic solution approach. By this sim-
ulation study, we will identify the issues with the basic approach, which will
motivate us to improve our solution in Section 5.1 and propose Privatus.

In the simulation, we choose M = 4, K = 20, and c = 0.1. We fix each mea-
surement interval to be 15 minutes and thus we have 96 measurement intervals
a day. Thus, the value of nH becomes nH = 96 and we set nL = 32. In order
to see more clearly what Y (n) looks like compared to X(n), we make X(n) as a
known repeated pattern, instead of generating it randomly (Figure 4).

A sample result of the simulation is shown in Figure 4, where “PY (n) (index)”
in the bottom graph means the index number of the element in P selected as
PY (n). We can see that at each measurement interval, the values of X(n) and
Y (n) are mapped to each other in a random fashion. Further, the battery level
indeed moves according to the trend that it is charged to the full level in the
low-price zone and fully discharged in the high-price zone. However, we also
observe that there exist similar patterns for the sequences of X(n) and Y (n) for
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the measurement intervals of 16 ≤ n ≤ 32 and 70 ≤ n ≤ 96. More precisely, we
see that the value of X(n) highly likely reappears as the value of Y (n+1) when
the battery is at the corner cases. This is an undesirable behavior because if the
adversary learns this characteristic, he or she may infer the original values of
X(n) with high accuracy by observing the values of Y (n+1). Through this, we
realize that our point-by-point de-correlation between X(n) and Y (n) leaves an
obvious vulnerability in practice.

After more careful study, we find that this issue occurs because of two reasons:
(R1) The first reason is that we charge/discharge the battery too fast. In the
low-price zone, the battery reaches the full state much earlier than the end of the
zone. Once at the full state, the battery stays close to the near-full states, since
there is no benefit to bring the energy level down to a lower one according to our
optimization objective in (3). The near-constant energy level of the battery im-
plies that whatever the value of X(n) is, the draw process Y (n) should somehow
compensate for it. Since the value of Y (n) is chosen before the value of X(n), we
see this compensation effect in Y (n+ 1). Similar logic applies to the high-price
zone; (R2) The second reason is that we have too much freedom when choosing
PY (n). As a result, the draw process can take a specific symbol with a very high
probability to compensate the use process. For example, if X(n) = 3u and the
draw process needs to compensate it (due to the first reason), the basic approach
will likely choose PY (n + 1) = [0, 0, 0, 1]. This implies that we will charge with
the current value of 3u with probability 1 at the (n+ 1)-th measurement inter-
val. In other words, due to the high degree of freedom to choose PY (n), Y (n) is
chosen to be very similar to X(n− 1) in the corner cases.

In the next section, we will propose Privatus that suppresses these undesir-
able effects (R1) and (R2).

5 Solution Approach II: Advanced Formulation

5.1 Advanced Approach: Privatus

In order to fix (R1), we introduce penalty areas for when the battery level
gets too close to empty or too close to full as shown in Figure 5. The penalty
areas correspond to the battery states higher than the upper threshold TH or
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lower than the lower threshold TL. In each zone (low-priced or high-priced), the
penalty areas begin after n0 measurement intervals, and end n0 measurement
intervals before the end of the zone. We modify our optimization objective in
such a way that we incur some penalty, whenever the battery state B(n) falls
into the penalty areas. Hence, the optimal decision for PY (n) would be changed
to the one that still charges or discharges the battery according to the trend in
Figure 2, but does not hit the penalty areas in the middle of the zones. In this
sense, the modified optimization objective would result in “path 1”-like battery
profile rather than “path 2”-like one in Figure 5. The “path 2”-like battery profile
is what we have seen in the basic approach.

We consider the effective battery state Be(n) in the optimization objective
function, instead of the actual battery state B(n). The effective battery state
Be(n) is designed to increase as the actual battery state B(n) increases in the
low-price zone (or B(n) decreases in the high-price zone). However, every time
B(n) goes into a penalty area, Be(n) is deducted by some penalty amount.
Denote by [x]+ the projection of x to non-negative values, i.e., [x]+ = x if
x > 0, and [x]+ = 0 if x ≤ 0. Then, the effective battery state Be(n) in the low-
price zone is defined as Be(n) = Be(0)+

∑n
m=1De(m). Here, Be(0) = αB(0) and

De(m) is given as, if m ≤ n0 or m > nL−n0 (i.e., in near-beginning or near-end
of the low-price zone), De(m) = αD(m), and if m > n0 and m ≤ nL − n0,

De(m) = αD(m) − β
(
[B(m)− TH ]+ + [TL −B(m)]+

)
, (6)

where α and β are positive integers, TL = (M − 1)u, and TH = (K − (M − 1))u.
In the high-price zone, we define Be(n) as Be(n) = Be(nL) +

∑n
m=nL+1De(m),

where Be(nL) = α(Ku−B(nL)), and further, if m ≤ nL + n0 or m > nH − n0,
De(m) = −αD(m), and if m > nL + n0 and m ≤ nH − n0,

De(m) = −αD(m)− β
(
[B(m)− TH ]+ + [TL −B(m)]+

)
. (7)

Note that if we ignore the second terms in (6) and (7), we simply have
Be(n) = αB(n) in the low-price zone, and Be(n) = α(Ku−B(n)) in the high-
price zone. That is, Be(n) increases from zero to the maximum αKu in both
zones as B(n) moves like in Figure 2. Thus, our optimization objective for achiev-
ing the maximal cost saving is to maximize E(Be(nL)) in the low-price zone and
E(Be(nH)) in the high-price zone, given initial conditions. On the other hands,
the terms leading by β in (6) and (7) take into account the penalty. Whenever
D(n) causes B(n) to fall into a penalty area, we subtract β[B(n)− TH ]+ or
β[TL −B(n)]+ from Be(n). Hence, we will expect that in the optimal decision
for PY (n), B(n) would avoid hitting the penalty area, or B(n) would attempt
to get out of a penalty area if B(n − 1) was already in the penalty area. The
relative magnitudes of α and β determines how sensitive we are to the penalty.
If β is very large compared to α, B(n) may not even go close to the penalty area
to avoid any chance of incurring a high penalty score. Refer to [12] to see more
detail about the choices for α and β.

On the other hand, to address (R2), we adopt two strategies. First, we put
the restriction on PB(n−1) that it only contains the vectors v ∈ P such that
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‖v − Vk‖ < Tk. Here, Tk is a threshold at B(n − 1) = ku, and Vk is the distri-
bution vector of Y (n) for which the possible values of Y (n) at B(n − 1) = ku
are selected equi-probably. For instance, when M = 4 and K = 10, we have
V5 = [0.25, 0.25, 0.25, 0.25] when B(n − 1) = 5u, and V1 = [0.5, 0.5, 0, 0] when
B(n− 1) = u. With this strategy, we are forcing the different elements of PY (n)
to be more or less equal, thus eliminating the possibility that Y (n) is chosen
deterministically (or with a high probability). By controlling the threshold Tk,
we can control how close to equal probability we want. If Tk is low, then the
choices are close to equally probable, but we also lose controllability in forcing
B(n) to the desired state according to the trend in Figure 2.

Second, we add one more restriction on PY (n) in non-corner cases (i.e., battery
neither empty nor full) such that it does not differ significantly from PY (n− 1).
If the two differ significantly, then Y (n) may try compensating for the use value
in the previous measurement interval and will hence track X(n− 1). Therefore,
our strategy is that ‖PY (n)−PY (n− 1)‖ < TD, where TD is called the distance
threshold. We enforce this restriction to be applied only when the actual battery
state stays in non-corner cases for two consecutive measurement intervals, i.e.,
TL ≤ B(n− 2) ≤ TH and TL ≤ B(n− 1) ≤ TH . Our intention behind this is to
quickly get out of the corner cases (which hits the penalty areas). In the extreme
case, with this strategy, PY (n− 1) = PY (n) implying that Y (n) is independent
of X(n− 1).

Reflecting all the changes, the optimal choice for PY (n) in the low-price zone
is obtained by solving the following Bellman equation.

J(S(nL + 1)) = 0,

J(S(n)) = max
PY (n)∈P∗

B(n−1)

E (De(n) + J(S(n+ 1))|S(n)), (8)

for n = nL, (nL − 1), . . . , 1. Here, S(n) represents the state vector defined as
S(n) = [n,B(n− 1), Be(n− 1), PY (n − 1)]. P∗

B(n−1) is defined as a subset of P
whose element v is such that the two restrictions described above are satisfied,
i.e., v ∈ PB(n−1), and if TL ≤ B(n − 2) ≤ TH and TL ≤ B(n − 1) ≤ TH ,
‖v−PY (n− 1)‖ < TD. The optimal choice for PY (n) in the high-price zone can
also be decided in a similar way.

5.2 Simulation Study for Privatus

Now, we conduct a simulation test for Privatus. In order to see the difference
from the basic approach, we use the same simulation environment as in Section
4.4. We choose Tk = 0.3 for k = 3, 4, . . . , 17; Tk = 0.25 for k = 2, 18; Tk = 0.2 for
k = 1, 19; Tk = 0.1 for k = 0, 20. With these threshold values, Pk only contains
[0, 0, 0.4, 0.6], [0, 0, 0.5, 0.5], and [0, 0, 0.6, 0.4] for k = 1, 19, for instance. For the
remaining parameters, we set α = 2, β = 1, n0 = 3, and TD = 0.2.

Figure 6 shows a sample result for the simulation, where the solid red lines
in the “B(n)/u” graph indicate the energy levels corresponding to the penalty
area thresholds TH and TL. First, we can see that B(n) follows the trend in
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Fig. 6. Simulation results for Privatus

Figure 2, and it seldom hits the penalty area as we desired. Although B(n)
enters the penalty area at around n = 39, 76, 92, we can also see that B(n)
tries to get out of penalty area quickly. As a result, the battery neither goes to
the full-state too quickly in the low-price zone, nor goes to the empty-state too
quickly in the high-price zone. Second, in the “PY (n)(index)” graph, we observe
that for many times, the decision for PY (n) remains the same, or the speed of
changing a decision becomes much slower (compared to the result in Figure 4).
By these two fixes, we see that the correlation between the use process and the
draw process is significantly reduced. We can no longer find similar patterns
between the two. The point-by-point comparison of X(n) and Y (n) still gives
no meaningful clue from Y (n) to X(n), as this is by design that is maintained in
the basic approach and Privatus. Of course, this might be seen as a subjective
interpretation of the result. Thus, in the experiment section, we will consider
a metric to quantitatively measure how well we are protecting the privacy and
re-visit these results.

6 Experiment

6.1 Metrics and Simulation Parameters

First, we define the metric of information leakage from the use process to the
draw process as follows: for a positive integer m,

Ls
(n,m) = I(X̄(n,m); Ȳ

s
(n,m))/H(X̄(n,m)), (9)

where X̄(n,m)=[X(n−m+1),X(n−m),...,X(n)], and Ȳ s
(n,m)=[Y (n−m+1+s),Y (n−m+s),...,Y (n+s)],

and s is a non-negative integer called the timeshift offset. Here, H(X ) denotes
the uncertainty of X , and I(X ;Y) is the mutual information between X and Y.
Namely, H(X ) = −

∑
i P (X = i) logP (X = i) and

I(X ;Y)=
∑

i

∑
j P (X=i,Y=j) log P(X=i,Y=j)

P (X=i)P (Y=j)
(10)

Note that X̄(n,m) and Ȳ
s
(n,m) represent sequences of length m in the use process

and the draw process, respectively, with the draw process being time delayed by s
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Fig. 7. Information leakage when K = 20 and m = 1

measurement intervals. Since I(X̄(n,m); Ȳ
s
(n,m)) = H(X̄(n,m))−H(X̄(n,m))|Ȳ s

(n,m)),
the metric Ls

(n,m) can be interpreted as a measure of the uncertainty reduction

in X̄(n,m) by observing Ȳ s
(n,m), normalized to the uncertainty of X̄(n,m). Thus,

by this metric, we can quantify how uncertain the adversary is when he attempts
to guess the sequence X̄(n,m) of the use process, based on the observed sequence
Ȳ s
(n,m) of the draw process. For example, the adversary knows that X̄(n,m) is

surely the same as Ȳ s
(n,m), when L

s
(n,m) = 1. In contrast, Ls

(n,m) = 0 means that

Ȳ s
(n,m) gives no clue about X̄(n,m) at all.
Second, given that the battery capacity is Ku, we define the metric for the

cost saving for a day as

S(r,K) = E

(
−

nL∑
m=1

rRHD(m)−
nH∑

m=nL+1

RHD(m)

)
, (11)

where r denotes the ratio of RL to RH . The term S(r,K) is the expected difference
between the original cost for what the user actually consumes (

∑nL

m=1 rRHX(m)+∑nH

m=nL+1RHX(m)), and the money that a user pays to the utility company

(
∑nL

m=1 rRHY (m)+
∑nH

m=nL+1RHY (m)). A positive value of S(r,K) means that
we achieve cost saving. If S(r,K) is negative, it means that we have to pay more
compared to the baseline no-privacy-protection scheme.

To be consistent with the previous simulations (in Figures 4 and 6), we use
the same parameters as before (i.e., M = 4; K = 20; nL = 32; nH = 96; α = 2;
β = 1; n0 = 3; c = 0.1) throughout the whole experiments, unless otherwise
stated. However, we randomly generate X(n) through PX(n) = [0.5, 0.2, 0.2, 0.1]
in the low-price zone and PX(n) = [0.1, 0.3, 0.4, 0.2] in the high-price zone. This
setting results in about 138u for the expected daily usage E(

∑nH

n=1X(n)). To
get the results, we run 100,000 days in such a way that the remaining energy in
the battery at the end of a day becomes the initial energy level of the battery
in the next day.

6.2 Information Leakage and Cost Saving

General Performance Trend: Figure 7 shows the general performance trend
of our solution approaches (for m = 1). We can see that when s = 0, X(n)
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Fig. 8. Effects of sequence length m and capacity K in Privatus (α = 2; β = 1)

and Y (n) are indeed independent in both the basic approach and Privatus.
We can also see that information leakage is the highest when s = 1, i.e., X(n)
and Y (n + 1) has the highest dependency in our solution approaches. This is
due to our solution’s inherent nature that Y (n) is chosen to change the current
battery state resulting from X(n − 1) and the previous battery state. Figure
7(a) confirms again that in the basic approach, this issue can be quite significant
because Y (n) perfectly compensates X(n− 1) and reveals all information about
X(n − 1) (i.e., L1

(n,1) = 1) when the battery is in the corner cases. However,

we see in Figure 7(b) that this compensation effect is greatly reduced. That
is, in Privatus, Y (n) results in mostly near-zero uncertainty reduction about
X(n − 1). In even the worst case (for some measurement intervals, with delay
of 1 measurement interval), the uncertainty reduction is less than 10%. We see
that the worst-case information leakage in the advanced approach occurs around
the price zone boundaries. We suspect that this is because around the price zone
boundaries, there is no penalty defined and thus the battery state has a relatively
higher chance to remain costant, which again makes it more likely that Y (n) tries
to compensate for X(n− 1). On the other hand, we can see from the case when
s = 10 that, with higher delays (i.e., larger values of s), the sequences of the use
process and the draw process become independent.

Effect of Sequence Length: In Figure 8(a), we see that in Privatus, the
information leakage increases as the sequence length m increases. This seems to
imply that the adversary gains more information when he observes longer se-
quences. However, note from Figure 8(b) that the uncertainty of the use-process
sequence H(X̄(n,m)) also grows as m increases. In Figure 8(b), x-bit uncertainty
can be understood in such a way that approximately the use-process sequence
has 2x possible realizations with equal probability 1/2x. Since M = 4, the un-
certainty of the use-process sequence becomes larger by a factor close to log2 4
(more precisely, log2 2

1.7 in our simulation setting) as m increases by 1. Thus,
the minor increment in percentage-wise uncertainty reduction does not make it
easier for the adversary to make guesses about the use-process sequence. For
example, when m = 3 and n = 32, the uncertainty of the use-process sequence is
5.3 bits and uncertainty reduction is 11%. This implies that the remaining uncer-
tainty of the use-process sequence after observing the draw-process sequence is
5.3(1−0.11) = 4.72 bits, i.e., the adversary faces the uncertainty to pick one out
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Fig. 9. Information leakage comparison between Privatus with α = 2 and β = 1
(legend: ‘prop’) and an existing scheme [3] (legend: ‘conv’), when K = 20 and m = 2.
The higher is L1

(n,2), the worse is the information leakage.

0 0.5 1

0

5

10

ratio r=R
L
/R

H

30
× 

S (r,
K)

(d
ol

la
r)

max
prop
conv

(a) K = 10
(2.15kWh).

0 0.5 1
0

10

20

ratio r=R
L
/R

H

30
× 

S (r
,K

)
(d

ol
la

r)

max
prop
conv

(b) K = 20
(4.3kWh).

0 0.5 1
0

10

20

30

ratio r=R
L
/R

H

30
× 

S (r,
K)

(d
ol

la
r)

max
prop
conv

(c) K = 30
(6.43kWh).

Fig. 10. Cost saving comparison between Privatus and an existing scheme [3]. Here,
we set u = 0.2143kWh and RH = $0.033/u = $0.155/kWh. This results in the average
daily usage (i.e., E(

∑nH
n=1 X(n))) equal to 30kWh.

of 25.3(1−0.11) = 26.3 possible sequences, in order to make a guess about the use-
process sequence. On the other hand, whenm = 4 and n = 32, the uncertainty is
7.0 bits and the uncertainty reduction is 17%. This results in 27.0(1−0.17) = 56.1
possible sequences as candidates for the use-process sequence. Therefore, we con-
clude that the adversary has no advantage in observing a longer sequence in the
draw process.

Effect of Battery Capacity: Figure 8(c) shows how Privatus acts when the
battery capacity varies. We can infer from the figure that when the battery
capacity is too small, information leakage may be significant. This can be ex-
plained again by the compensation effect of our solution. If the battery capacity
is too small, there is not much room for the battery state to fluctuate between
the two penalty area thresholds TL and TH (see Figure 6). This means that the
battery state remains relatively constant, which makes the compensation effect
prominent. On the other hand, once the battery capacity is above a threshold,
further increasing the battery capacity leads to little benefit in terms of further
reducing the information leakage.

Comparison to Prior Work: In Figures 9 and 10, we compare Privatus

(‘prop’ in the figures) with an existing scheme (‘conv’ in the figures) proposed
by Kalogridis et. al. [3]. Kalogridis’ scheme performs a simple low-pass filtering
over the use process in a best-effort manner without considering the energy
cost factor. Thus, it reduces the high frequency variations in the resulting draw
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process. Kalogridis’ scheme needs to estimate the value ofX(n) beforehand (refer
to [3] for detail). We assume in the simulation that the estimation is perfect (i.e.,
without errors). Figure 9(a) shows a sample realization of X(n), obtained from
PX(n) given in Section 6.1. Note that since X(n) is randomly chosen among
M possible values from PX(n), which is the same within each price-zone, there
is not a significant low-frequency component in X(n). In this case, we can see
from Figure 9(b) that Privatus performs slightly better than Kalogridis’ to
keep the privacy information, except at the price zone boundaries. However,
if there is a significant low-pass component in X(n), Privatus will provide
much better privacy protection than Kalogridis’. This is because Kalogridis’
scheme still allows the low-pass component of load profile to be revealed. To see
this, we generate X(n) by adding a random value 0 or u to a rectangular pulse
whose period is 20 measurement intervals, as shown in Figure 9(c). Comparison
result in such a case is given in Figure 9(d). Indeed, Privatus results in better
lower information leakage than Kalogridis’ when there exists a considerable low-
frequency component in X(n). Meanwhile, Figure 10 shows that from the cost
saving point of view, Privatus has a huge advantage against Kalogridis’. In
all of the cases studied, Kalogridis’ scheme does not achieve a significant cost
saving. On the other hand, compared to the maximum possible cost saving,
computed according to Section 4.2 (‘max’ in the figures), Privatus achieves
the saving of 48% of the maximum when K = 10, 66% of the maximum when
K = 20, and 72% of the maximum when K = 30. Thus, Privatus strikes a
desirable balance between privacy and cost saving. Considering that the average
electricity consumption for a U.S. residential customer was 30kWh per day [14],
Figure 10(c) shows that a typical home can achieve about $16 saving for a month
with a 6.43kWh battery, based on the following tariff example: RL = 0.04/kWh
and RH = 0.15/kWh [4].

7 Conclusion and Future Work

In order to resolve the privacy issue in smart grid, we proposed Privatus to
de-correlate the meter reading information from user behavior. Privatus uses
a rechargeable battery to make the meter reading reported to the utilities look
independent of the actual usage at any given measurement interval. The corre-
lation between the meter readings and the actual usage pattern over multiple
measurement intervals is also reduced by changing the probability distribution
of charging the battery in each interval through careful design. Privatus is
also geared to the future of time-of-use pricing of electricity and it ensures that
the battery is charged to achieve the maximal savings in the energy cost. We
formulate the problem rigorously and use stochastic dynamic programming to
devise our solution. The experiment results show that Privatus is successfully
able to hide the actual usage from what is drawn from the grid, and achieves
considerable amount of saving in the energy cost, subject to the availability of a
reasonable-sized battery. Compared to prior work, we achieve much better pri-
vacy when there is a conspicuous low-frequency component in load profile, and
significantly higher cost savings.
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Our future work will focus on generalizing Privatus under more dynamic
scenarios, e.g., where the price zones are dynamically changed from one day to
the next, or the price varies over time in a demand-driven and adaptive manner.

Acknowledgments. This work has been partially supported by the National
Science Foundation through award CNS-0831999. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the National Science
Foundation.

References

1. Beckman, H.: Lawsuit filed to stop installaton of smart meters,
http://napervillesun.suntimes.com/news/9723766-418/lawsuit-filed-to-

stop-smart-meter-installation.html

2. Sullivan, B.: What will talking power meters say about you?,
http://redtape.msnbc.msn.com

3. Kalogridis, G., Efthymiou, C., Denic, S.Z., Lewis, T.A., Cepeda, R.: Privacy for
smart meters: Towards undetectable appliance load signatures. In: 2010 First IEEE
International Conference on Smart Grid Communications (2010)

4. Tucson electric power: Residential time-of-use pricing plan,
https://www.tep.com/doc/customer/rates/R-21F.pdf

5. Agrawal, D., Aggarwal, C.C.: On the design and quantification of privacy pre-
serving data mining algorithms. In: PODS 2001, pp. 247–255. ACM, New York
(2001)

6. Sweeney, L.: k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10, 557–570 (2002)

7. Stallman, R.: Is digital inclusion a good thing? How can we make sure it is? Comm.
Mag. 48, 112–118 (2010)

8. Khurana, H., Hadley, M., Lu, N., Frincke, D.A.: Smart-grid security issues. IEEE
Security and Privacy 8, 81–85 (2010)

9. Quinn, E.L.: Privacy and the new energy infrastructure. In: SSRN (2009)

10. Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Proceedings of the
10th Annual ACM Workshop on Privacy in the Electronic Society, WPES 2011.
ACM (2011)

11. Varodayan, D.P., Khisti, A.: Smart meter privacy using a rechargeable battery:
Minimizing the rate of information leakage. In: ICASSP (2011)

12. Koo, J., Lin, X., Bagchi, S.: Technical Report: Wallet-Friendly Privacy Protection
for Smart Meters, https://engineering.purdue.edu/~linx/papers.html

13. Bertsekas, D.P., Shreve, S.E.: Stochastic Optimal Control: The Discrete-Time
Case. Athena Scientific (2007)

14. Administration, U.E.I.: Average electricity consumption for a us residential cus-
tomer, http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3

15. U.S. Department of Energy: Battery power for your residentialsolar electric system,
http://www.nrel.gov/docs/fy02osti/31689.pdf

http://napervillesun.suntimes.com/news/9723766-418/lawsuit-filed-to-stop-smart-meter-installation.html
http://napervillesun.suntimes.com/news/9723766-418/lawsuit-filed-to-stop-smart-meter-installation.html
http://redtape.msnbc.msn.com
https://www.tep.com/doc/customer/rates/R-21F.pdf
https://engineering.purdue.edu/~linx/papers.html
http://www.eia.gov/tools/faqs/faq.cfm?id=97&t=3
http://www.nrel.gov/docs/fy02osti/31689.pdf


360 J. Koo, X. Lin, and S. Bagchi

A Discussion

Battery Cost: In Section 6, we showed that a 6.43kWh battery can achieve
$16 saving per month, assuming 30kWh use in a day. People may argue that
this is the relatively small savings compared to the high battery cost. Indeed,
initial costs for residential batteries range from $80 to $200 per kWh [15], and
thus the battery cost of 6.43kWh may range from $514 to $1,280. However,
note that people buy a hybrid car to save the fuel-cost and the environment,
although it requires a considerable initial cost due to the battery. Even though
the fuel saving of the hybrid cars does not completely offset its high cost, the
fuel saving serves as a significant incentive for consumers (who may only be
mildly environment-conscious) to buy hybrid cars. Similarly, in our case, the
cost savings will encourage privacy-conscious customers to buy our solution. In
addition, given a 6.43kWh battery and $16 saving per month, the battery cost
may be balanced out by the saving in 2.6 to 6.6 years. We think that this is
similar to the period to recover the additional cost of a hybrid car compared to
a normal car.

Energy Loss in a Battery: By multiplying coefficients (< 1) by X(n) and
Y (n) in (1), our model can be easily extended to include the energy loss in the
battery that occurs when charging and discharging.

More Than Two Price Zones: Once we know the rates of energy usage and
the boundaries of each price zone, we can calculate the desired pattern of battery
charge and discharge—akin to that in Figure 2. Namely, what we need to do is
to calculate to what level the battery can be charged or discharged in each zone.
Then, the solution approach outlined earlier applies directly to the case with
more than two price zones.

Interleaved Low-Price and High-Price Zones: This situation is equivalent
to the case where there are multiple price zones, one group of which have a low
price, and the other group have a high price. Thus, this case can be treated in
the same way as the above.

The Amount of Energy Usage Per Day Varying Over Days: This paper
focuses on hiding the energy consumption pattern within a day. Across days,
the total usage per day can still be revealed to the adversary (by which the
adversary may know whether you are home or not for a given day). The other
part of Privatus, which is not presented in this paper due to the page limit,
handles this issue. At the high level, the solution is to flatten the energy use across
days, by charging more in days with less usage and by using the saved energy in
days with more usage. The solution does not affect the current randomization
framework within each day; it only modifies the total use in each day.
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Abstract. A location proximity test service allows mobile users to de-
termine whether they are in close proximity to each other, and has found
numerous applications in mobile social networks. Unfortunately, existing
solutions usually reveal much of users’ private location information dur-
ing proximity test. They are also vulnerable to location cheating where an
attacker reports false locations to gain advantage. Moreover, the initial
trust establishment among unfamiliar users in large scale mobile social
networks has been a challenging task. In this paper, we propose a novel
scheme that enables a user to perform (1) privacy-preserving proximity
test without revealing her actual location to the server or other users not
within the proximity, and (2) secure handshake that establishes secure
communications among stranger users within the proximity who do not
have pre-shared secret. The proposed scheme is based on a novel con-
cept, i.e. location tags, and we put forward a location tag construction
method using environmental signals that provides location unforgeabil-
ity. Bloom filters are used to represent the location tags efficiently and a
fuzzy extractor is exploited to extract shared secrets between matching
location tags. Our solution also allows users to tune their desired location
privacy level and range of proximity. We conduct extensive analysis and
real experiments to demonstrate the feasibility, security, and efficiency
of our scheme.

1 Introduction

The proliferation of smartphones has given rise to location-based service (LBS),
which has drawn considerable research attention in recent years. The key en-
abler of LBS is the availability of user locations, which can be easily measured
and reported by a smartphone today. With LBS, users report their locations in
real-time to a location server, which allows users to ubiquitously query places of
interest around them, or test if their friends are within certain physical proxim-
ity. Especially, the latter is called “proximity test” [1] and has found numerous
mobile applications, for example, to locate nearby friends (e.g., in a mobile social
network [2]), or in an emergency situation to find nearby medical personnel (e.g.,
in mobile healthcare [3, 4]), only to name a few. The former is representative for
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proximity test between friends, while the latter is an example of proximity test
between strangers, who may not share any secret a prior.

Similar to many LBS services, there are many security and privacy concerns
associated with proximity test that may prevent its widespread adoption. One of
the major security concerns is that the reported locations could be easily forged
by malicious users in order to exploit the benefits of proximity test service.
There are many incentives for users to not report their locations truthfully. For
example, in [5], a location cheating attack has been discovered in which the
attacker reports false locations to gain revenue by acquiring shopping coupons.
In addition, a curious user may try to profile other users’ locations by setting
hers to any desired place. Thus, it is essential to provide location unforgeability
in proximity match, so as to ensure the social welfare of LBS. On the other
hand, the location privacy is also an important concern for common users. The
primary reason is that the location servers are often operated by third-party
service provider such as a cloud platform, which tends to be not fully trusted by
people since the location data could be leaked to the server or outsider attackers
[6]. Meanwhile, users also do not want to simply let all her friends or even
strangers in the system know about her location and track her down.

To design a privacy-preserving proximity test scheme that is also cheat-proof
involves several challenges. First and foremost, given the mobile and distributed
nature of LBS users, how can we make sure that a user’s reported location is
truthful without involving a trusted authority? Some researchers suggest a dis-
tributed proof approach using presence evidences from peer devices [7]. However,
the proof generation involves the use of digital signature which further requires
a public-key infrastructure (PKI). This would require significant modifications
to the existing security architecture. In addition, the traditional cryptography-
based methods do not guard against stolen/compromised keys or credentials.
Ideally, each device should extract unforgeable location tags relying on its own.
Second, shared keys are usually required for preserving privacy during proxim-
ity test and secure communications between matched users. However, the initial
trust establishment among users in a large-scale mobile social network remains
a difficult task, simply because managing shared keys with everyone else is not
scalable without a trusted authority. Most existing solutions to date have relied
on a-priori shared secrets between each pair of users [1, 8], which severely lim-
its their applicability and scalability. Finally, efficiency and usability need to be
achieved simultaneously. To achieve strong privacy guarantee, previous protocols
either rely on computational intensive cryptographic primitives, or do so at a
cost of high communication overhead.

In this paper, we propose a novel proximity test scheme that is secure against
location cheating, and also performs secure handshakes between matched users
to secure their subsequent communication without relying on pre-shared secrets.
We focus on a general one-to-many proximity match setting, that is, user Alice
can find out from a group of users the one(s) that are within certain proximity to
her with the help of a semi-trusted server. In order to defeat location cheating,
we propose a novel form of location representation – spatial-temporal location
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tag that is constructed from wireless signals captured in a device’s surrounding
environment, such as WiFi and cell tower signals. An attacker cannot forge a
location tag if she is not at the corresponding location and time, due to the high
freshness (entropy) and spatial variety of environmental signals. Our proposed
privacy-preserving proximity test protocol is then based on the location tags.
We exploit fuzzy extractor [9], a lightweight crypto primitive, to extract secret
keys automatically between users within certain proximity, while ensuring that
a user’s location is revealed to neither the server nor users not within proximity.
We also make use of bloom filter to efficiently represent users’ location tags.

1.1 Our Contributions

The main contributions of this paper are as follows.

(1) We propose a novel form of user location representation – spatial-temporal
location tag, to defeat location cheating attacks in LBS. We demonstrate our
concept using collected real-world WiFi and cellular signal traces, and employ
entropy analysis to show the feasibility of generating unforgeable location tags
in practice.

(2)We propose a novel private proximity test scheme based on spatial-temporal
location tags, which performs proximity test and establishes secure handshake be-
tween one user and many others at the same time. We uniquely combine bloom fil-
ter and fuzzy extractor to meet the stringent privacy and efficiency requirements.
Our scheme also supports user-defined privacy level, and avoids the complexity of
key management among users as it does not rely on prior-shared secrets.

(3) We carry out both thorough security analysis and performance evaluation.
We first quantitatively characterize the security level of our protocol using en-
tropy analysis. Then, using a proof-of-concept implementation, we study the sys-
tem functionality and overhead, and show its superiority over existing protocols in
efficiency. To the best of our knowledge, this is the first work that systematically
studies unforgeable location tag and its use in location-based services.

1.2 Related Work

For privacy in location-based services, most previous works have been focusing on
privacy in location queries, i.e., a model in which users report their “encrypted”
location data to a central database server to perform range or k-nearest-neighbor
(kNN)) queries [10–13]. Note that in this model the database stored in the server is
assumed to be public. In contrast, the recently emerged proximity test is a different
model where location-based matching is done only between users, while the users’
locations are private information. In this paper we focus on proximity test.

Proximity Test: Proximity test is a special form of location sharing [6], where
the information being shared is whether or not two users are within a certain
range or in the same geographic region. The main privacy concern in proximity
test is that user’s actual location may be involuntarily revealed to either the
server or other users. To this end, a privacy-preserving proximity test solution is
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proposed in [8], using a grid-based encryption algorithm. In [14], Mascetti et. al.
proposed proximity detection schemes based on service provider (SP) filtering,
in which privacy protection is achieved by user-chosen location representation
that controls its granularity. However, their protocol leaks coarse-grained lo-
cation information to the server. In [1], Narayanan et. al. proposed a suite of
private proximity test protocols. The possibility of constructing location tags
from environmental signals was noted; however, their protocols either require
pre-shared secret key between users, or is not scalable and efficient enough to
handle one-to-many proximity test as studied in our paper. Another proximity
test scheme was proposed in [15], where users can also control their privacy lev-
els via leveled publishing. The protocol is based on keyed hashing which suffers
from dictionary attack. In [16], Lin et. al. proposed a proximity test scheme by
applying shingling technique [17] on GSM cellular message. However, they did
not thoroughly analyze its security. In this paper, we carry out a systematic
study of unforgeable location tags and its use in proximity test, and formally
analyze the security using entropy theory.

Private Matching: Our proposed scheme constructs location tags and takes
the location tags as the inputs to private matching scheme to realize proxim-
ity test. Different location tag construction methods will yield different types
of location tags with different data structure representation, which in turn de-
mand different secure matching algorithms. Secure inner product computation
has been proposed to compute the number of matching keywords between two
binary-valued vector inputs, where each bit in the vector represents the presence
or absence of a keyword [18]. Secure multi-party computation (SMC) techniques
have also been used in private matching. For example, in [19], Freeman et. al. pro-
posed a private set intersection protocol using homomorphic encryption, where
the inputs to be matched are two sets of elements. In this paper, we are matching
two location tags, which are environmental signals represented using bloom filter
and further coded using BCH coding. The method used to realize the private
matching is also very different from previous known private matching meth-
ods. Essentially our matching method is based on polynomial reconstruction.
Compared to previous private matching algorithm, our scheme is more efficient
because it does not involve any public key cryptography operations.

2 System Model and Design Challenges

2.1 System Overview

Our system model consists of two types of entities: a server and a large number of
users. Users are subscribers of the proximity test service provided by the server.
For convenience, we use Alice to refer to the user who initiates the proximity
test, and Bob/Charlie/David et al to refer to the testees upon Alice’s request.
The centralized online server that provides the service is only responsible for
assisting participants relay messages. The selection of the testee group is based
on certain criteria specified in each test request. At the end of the proximity test,
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the testee(s) that are within the proximity of Alice will establish a secret key
with Alice, while the testees faraway will learn nothing about Alice’s location.
The server also remains oblivious to the result of the proximity test.

Our security goal is to prevent location forgery from all users and the privacy
goal is to prevent unnecessary leakage of users’ location information against both
other users and the server.

2.2 Design Challenges and Goals

We noticed that proximity test between strangers is usually one-to-many. Con-
sider the following example. A patient in an emergency situation may only wish
to grant nearby emergency medical technicians (EMT) access to her personal
health data on her phone. Since the patient can not specify which EMT she
wants to test, she can only select a group of EMTs based on certain searching
criteria, e.g. EMTs from organization A. Previous client-server based solution
[1] becomes inefficient in such circumstances because the test has to be done
one-to-one. To cope with this problem, we choose a broadcast system model
since it allows non-interactive proximity testing [1] while using less bandwidth
than client-server model. Some particular challenges and our design goals based
on the broadcast system model are as follows.

Distance-Bounded Key Establishment: The main motivation of our study
is to address the situation when Alice wishes to test the proximity with a group
of users she has not met. Hence, if a proximity test yields a positive result
(i.e., two users are close by), a secure handshake protocol shall follow, allowing
Alice and Bob to establish a secure channel to communicate subsequently. If the
proximity test needs to be carried out between each pair of users, it will be more
communication-efficient if the handshake can be performed in non-interactive
fashion.

Tunable Granularity Level: One main drawback of broadcast model is users’
loss of granularity control of proximity testing, since Alice can not implement
different granularities for different users in the broadcast messages. In order to
achieve fine-grained privacy control, our design should allow users to negotiate
a mutually agreed granularity level before proximity test.

Security: The main security goal for proximity test is to design unforgeable
location tags so that the protocol is robust against location cheating. A location
cheating happens when one party is able to convince the other party with an
untruthful location. In our case, if Bob can trick Alice into believing that he is
within her proximity while he actually is not, he has successfully launched a lo-
cation cheating attack. Unforgeable location is extremely important for location
based services. To the best of our knowledge, we are among the first to address
the location unforgeability in proximity test.

Privacy: From the server perspective, the privacy goal of the protocol is to con-
ceal users’ location information from the server. Specifically, after the proximity
test, the server can not infer users’ locations. From the users’ perspective, users
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should have location privacy against each other when they are far away. When
they are nearby, user should learn nothing except the fact that they are close.

Efficiency: Existing private proximity test protocols [1, 8] operate on pairs of
users. If Alice wants to test a group of n users, she has to run the protocol n times
with each and every user in the group. This results in a bandwidth complexity of
O(n) and a computation complexity of O(n) at Alice side. Our goal is to design
an efficient protocol where Alice and each participant only submit their location
tags once to the server. This leads to a communication complexity of O(1) at
user’s side. This represents significant efficiency improvement comparing to the
existing schemes.

3 Location Tags from Environmental Signals

Introduced in [1], a location tag can be regarded as a token of proof associated
with a point in space and time. It is a collection of signals presented at a certain
location at a certain time. From the functionality point of view, a good location
tag should at least have the reproducibility property: If two measurements at
the same space and time yield tags T1 and T2, then T1 and T2 match with
high probability. On the other hand, from the security point of view, in order
to be cheat-proof, a good location tag must have unpredictability property: An
adversary not at a specific place and time is unable to produce a tag that matches
the tag constructed at that location at that time. Note that this feature basically
requires a location tag carries high entropy.

3.1 Sources of Location Tags

...

...

Fig. 1. Features, observa-
tions of location tag

In our study, we have explored two possible sources
of location tags: (1) using 802.11 frames in WiFi
network. (2) using control messages in 4G LTE net-
work. We consider 802.11 frame headers as a per-
fect location tag source with appropriate length
and sufficient entropy. In our early design, we also
tried using frame bodies as location tag sources.
Though the resulting location tags pass the en-
tropy and unpredictability evaluation, the low re-
producibility quality rendered the location tag un-
usable. The shortcoming of WiFi-based location
tag is its limited range. To provide wider coverage,
we also study the possibility of generating location
tags through cellular network traffic. The control
messages, such as the temporary cell radio-network
temporary identifier (TC-RNTI), are messages sent
between LTE eNodeB (i.e., base station) and users’
terminals for identification and resource allocation.
They are usually locally assigned by the eNodeB
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and can be captured by all terminals. For example, the TC-RNTI is a 16-bit
random number assigned to mobile terminal. Therefore, users who observe sim-
ilar set of TC-RNTIs are likely under the same region.

For each location tag source, the amount of traffic necessary to generate a
distinct and secure location tag is significant. Consequently, it consumes storage
space and computing power of mobile devices to store and process the data. To
cope with this problem, we propose to divide the traffic into different groups
based on the types of frames and store them using a space-efficient data struc-
ture. As shown in figure 1, each type of 802.11 frames or cellular messages forms
a feature of the signal source. A location tag, therefore, can be represented by
a collection of features {f1, f2, ..., fz} of the signal source. Each feature consists
of many elements, or observations, which corresponding to data capture from
one 802.11 frame or cellular message. For storage efficiency, we utilize a bloom
filter to represent the many observations for each feature, which we will discuss
in detail in section 4.

3.2 Entropy and Unpredictability

A good location tag should be time-variant and have sufficiently high entropy
in order to satisfy the unpredictability requirement. The most straight forward
way to measure the entropy of location tags is by measuring the length of the
random values contained in the location tag. However, it is not difficult to see
that not all sources we used are truly random. Hence, the traditional method
tends to overestimate the entropy amount. In order to estimate the entropy more
accurately, we use techniques from statistical language processing [20], namely
n-gram Markov model, to evaluate the entropy contained in location tags.

The idea is that, if a feature of a location tag is a sequence of observations,
the randomness of the feature can be interpreted as the probability that an
adversary successfully predicts the next observation based on previous n obser-
vations. This probability can be modeled using an n-gram Markov model. For a
feature consists of N observations w1, ..., wN , the probability that the adversary
successfully predicts the entire sequence is

P (w1, ..., wN ) =

N∏
i=1

P (wi|wi−n+1, ..., wi−1) (1)

where the conditional probabilities can be computed from the following formula

P (wi|wi−n+1, ..., wi−1) =
C(wi−n+1, ..., wi−1, wi)∑
x∈V C(wi−n+1, ..., wi−1, x)

(2)

where C(w1, ..., wn) represents the frequency of n-gram w1, ..., wn in the initial
sequence. In our experiment, the size of the captured observations for each fea-
ture is between 2000 to 5000 depending on the type of features. Due to the
computation capability of our workstation, we use a trigram model to estimate
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the entropy of the sequence. According to the definition of Shannon entropy, the
entropy of the feature is calculated as

H(w1, ..., wN ) = P (w1, ..., wN ) logP (w1, ..., wN ) (3)

We show the entropy of 802.11 frame headers in figure 2. The beacon frames
contain the least amount of entropy since they are transmitted at a regular 1,024
microseconds (μs) intervals with consecutive sequence numbers. The probing
request frames, on the other hand, contain the most amount of entropy since
the algorithm used to scan for access points is not explicitly defined in 802.11
standard. The interval and format of probing frames are different depending on
the device drivers and user’s access pattern [21]. In figure 3, we show the entropy
of LTE control messages. Among them, the TC-RNTI and UL-Grant messages
contain the highest entropy since the eNodeB issues different TC-RNTI and
UL-Grant for the same terminal during each random access session. Compared
to that, the entropy in random access preamble and C-RNTI is significantly
lower due to limited formats or timing variations. Heuristic results show that
location tags with entropy higher than 64 bits is considered ”unpredictable” [1].
Therefore, only by including multiple features we can construct location tags
that are unpredictable to adversaries.

Fig. 2. 802.11 frame headers entropy Fig. 3. LTE control messages entropy

4 SHARP: Private Proximity Test and Secure Handshake
Protocol

Our private proximity test and secure handshake protocol, SHARP, is a two-step
protocol designed for one-to-many proximity test between users that share no
prior-secrets. During the first step, upon receiving the request from Alice, the
server identifies a group of users designated by Alice and notifies users to con-
struct their location tags simultaneously. Alice embeds a temporary session key
K in her location tag and sends it to the group. During the second step, users in
the group first try to extract K. Only those within a coarse-grained proximity
of Alice can succeed, who then return a keyed hash of their current locations
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using grid map representation to Alice for fine-grained matching. We exploit
bloom filter, a space-efficient randomized data structure, to compactly represent
everyone’s location tag while using fuzzy extractor technique to accomplish se-
cure handshake. The protocol has the following main advantages: (1) it is far
more scalable in that it effectively filters out users who are far away during key
establishment without letting Alice interact with each and every one of them.
(2) it allows users to control granularity by negotiating the size of cells on the
grid map.

4.1 Bloom Filter and Fuzzy Extractor

A Bloom filter is a space-efficient probabilistic data structure that is used to suc-
cinctly represent a set in order to support membership queries [22]. A bloom filter
is a bit array of lengthm, and k independent hash functions H1(), H2(), ..., Hk() :
{0, 1}∗ → {0, 1}logm are used to insert and query the original data elements in
the array by their hashed locations. In a bloom filter based membership test,
false positives are possible, but false negatives are not. In our case, we represent
each feature of a location tag with a bloom filter by adding all the observations
into the bloom filter.

A fuzzy extractor [9] is a pair of randomized procedures, generate and repro-
duce, that allow one to extract some randomness value from an input and then
successfully reproduce it from any inputs that is similar to the original input. In
our case, the randomness value represents the temporary session key K, whereas
the input represents the location tag. In other words, only a user with a similar
location tag can reproduce K. In [9], Dodis et. al. proposed using error correct-
ing code as a building block of fuzzy extractor. Particularly, we use the BCH
error correcting code in our implementation. It has been shown that BCH code
can be decoded in polynomial time w.r.t. the weight of the received corrupted
codeword using syndrome decoding. The details of syndrome decoding can be
found in [9, 23].

4.2 System Setup

L(0)

L(1)

L(2)

Fig. 4. Grid reference
system

As shown in figure 4, the system adopts a grid ref-
erence to represent locations, where grid indices rep-
resent areas covered by grid cells. Users share a list
of coordinate-axis aligned grid system G = {g0, ..., gl}
of different levels. At each level l, the grid cell size,
i.e., width and height, is fixed and equal to L(l). Let
L(0) > L(1) > ... > L(l). Additionally, the system de-
fines a security parameter κ, a cryptographic hash func-
tion H(·) : {0, 1}∗ → {0, 1}s, and a keyed cryptographic
hash function H′(·, ·) : {0, 1}s × {0, 1}∗ → {0, 1}s (can
be an HMAC instantiated by SHA-256). Note that, H,
H′ and G are known by all users and the server.
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4.3 Proximity-Based Filtering

The protocol starts by Alice sending her test request to the server, declaring the
user group she wants to test. Upon receiving the request, the server broadcasts
a synchronization signal to Alice and her intended testing group, and all users
construct their location tags by collecting observations from a set of features
{f1, f2, ..., fz}. For each f , Alice constructs a bloom filter bit array Bf with a
given false positive rate p.

Alice adds each observation w of f into Bf by hashing it to k positions in the
bit array using H1(), H2(), ..., Hk(). Alice then computes t “syndromes”1 using
the following equation, where t is the number of errors that the BCH code can
correct:

Si =
∑
x∈Bf

xi i ∈ {1, 3, ..., 2t− 1} (4)

where x represents the index of those positions in Bf that are set to 1. The
computations are done within a Galois Field. Assume the resulting syndrome
set for each Bf is syn(Bf ) = (S1, S3, ..., S2t−1). Alice generates a location tag T
that can tolerate up to t errors in each feature:

T = {syn(Bf1), ..., syn(Bfz )} (5)

Next, in order to embed a secret session key in the location tag, Alice cre-
ates a fuzzy extractor by hashing all the location features by computing B0 =
H(Bf1 ||Bf2 || · · · ||Bfz ). Alice then generates a κ-bit random number (helper
string) y, and computes K = H′(B0, y) as the temporary session key. Alice
can control testing granularity by choosing a subset GAlice ⊂ G. Let |B| =
{|Bf1 |, ..., |Bfz |}, representing the length of all bloom filters. Together, Alice
sends a messagema = {“Alice”, T, |B|, y, GAlice} to the server. The server broad-
casts ma to the testing user group.

4.4 Fine-Grained Proximity Test

Upon receiving ma, Bob tries to extract Alice’s temporary session key using his
observations of the features set. For each feature, Bob creates a bloom filter bit
array B′

f of the same length as Bf and uses syn(Bf ) to correct the difference be-
tween Bf and B′

f . Assume the syndromes of B′
f is syn(B′

f ) = (S′
1, S

′
3, ..., S

′
2t−1),

Let σi = S′
i − Si. The error detecting vector [9] of B′

f is:

syn(B′
f ) = (σ1, σ3, ..., σ2t−1) (6)

The corresponding error correcting vector supp(B′
f ) , which represents the dif-

ference of Bf and B′
f , can only be computed correctly from syn(B′

f ) when
supp(B′

f ) < t [9].

supp(B′
f ) = Bf Δ B′

f � {x ∈ Bf ∪B′
f |x /∈ Bf ∩B′

f} (7)

1 Intuitively, a syndrome is an error checking value of a codeword (here, Bf is consid-
ered as a codeword).
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(a) Initial Proximity-based Filtering:
Alice embeds a secret key in her loca-
tion tag

(b) Fine-Grained Proximity Test: Al-
ice learns users’ locations by evaluating
the grid indices

Fig. 5. Two steps of SHARP

When Bob and Alice are nearby, the difference between Bf and B′
f is smaller

than t. Bob succeeds in computing syn(B′
f ) and obtains the original Bf through

Bf = B′
f Δ supp(B′

f ) (8)

Once Bob reconstructed all the Bf s, he can derive the original B0 and recover
K = H′(B0, y). Bob can control the testing granularity by searching through
GAlice to find a reasonable granularity level and blind his grid index b withK, by
computing B = H′(K, b||“Bob”). If Bob does not agree on any of the granularity
levels, he has two choices: (1) submit nothing indicating he does not allow Alice to
carry out fine-grained proximity test. (2) submit multiple location index numbers
to mask his actual location. Finally, Bob sends the message mb = {“Bob”, B}
back to server.

The server forwards mb to Alice. Alice can then searches through all the grid
cells that she regarded as in her proximity; if she can find one b that is within
one of her nearby cells and satisfies H′(K, b||“Bob”) = B, then Alice learns that
Bob is located in b. After that, Alice knows a list of users within her proximity
range, and she can choose to securely communicate with one (or more) of them
using the session key K.

Note that, an attacker may try to send back multiple malformed responses to
Alice to exhaust her resources. However, dealing with denial-of-service attack is
out of the scope of this paper. We can use existing methods, for example, IPSec
or TLS where the server can authenticate the users.

5 Security and Privacy Analysis

5.1 Entropy Loss and Location Unforgeability

SHARP provides unforgeable (unpredictable) location tags. In section 3 we eval-
uated the entropy contained in location tag sources. However, best practices
mandate that we also consider the entropy loss during data processing. In this
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(a) Create Location Tag

Bloom filters

. . .

. . .

. . .

. . .

.

.

.

(b) Embed Ephemeral Key

Fig. 6. Construct location tag using fuzzy extractor and bloom filter

section, we derive the total entropy loss in our design. Consequently, we show
that total amount of entropy loss is limited and the remaining guessing entropy
of location tag remains high.

Assuming the location source contains h0 bits of entropy. In our protocol, the
entropy loss happens in two places: (1) when we pack the location tag sources
into bloom filters. (2) when we generate the fuzzy extractor from bloom filters.
Note that when packing a set of elements into a bloom filter, the entropy loss
is related to the probability rate of false positive [22]. Consider a bloom filter of
length m is used to represent a set of nb elements. From [22], the probability of
a false positive is

p = (1− (1− 1

m
)knb )k ≈ (1− e−knb/m)k = (1− v)k (9)

where v = 1−p1/k is probability of a bit being set to 1 in the bloom filter. Hence
the entropy loss during bloom filter construction is

h1 = (1 + v log v + (1− v) log(1− v))h0 (10)

By taking the derivative of the formula, p has a global minimum value (1/2)k =
(0.6185)m/n) when k = (ln 2) · (m/n). However, we shall explicitly note that
in our design, balancing among m, n, k to achieve minimum p is not our main
focus.

The second entropy loss happens during fuzzy extractor construction. In gen-
eral, [24] shows that the entropy loss of a fuzzy extractor is upper-bounded by
its entropy loss on the uniform distribution of inputs. In particular, the input
of the fuzzy extractor in our design is the bloom filter bit array of length m.
Assuming we apply BCH code with code length nB to the bit array. Since the
BCH code family is optimal for t$ nB by the Hamming bound [23]. the entropy
loss of syndrome fuzzy extractor with a BCH code is

h2 =
t(h0 − h1)

nB
log(nB + 1) (11)
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The overall entropy loss of our design is thus

h = h1 + h2 (12)

Particularly, in Table 1, we show the entropy loss using a location tag source of
entropy equal to 64 bits. In our evaluation, the average length of the bloom filter
is m = 210 = 1024(bits). The total entropy loss is around 7.8 bits. Therefore, the
remaining guessing entropy remains high to secure the protocol against location
cheating attack.

Table 1. Entropy Loss

false positive rate error tolerance entropy loss

0.01 10/1024 3.7 bits
0.01 30/1024 7.1 bits
0.1 10/1024 4.3 bits
0.1 30/1024 8.7 bits

5.2 Location Privacy

When Alice and Bob are far apart, the set difference between their location
tags, A and B, will be greater than t. This means Bob can not correct all the
errors using BCH syndrome, and therefore his view of Alice’s location tag is
indistinguishable from random. Next, when multiple users b1, ..., bn outside of
Alice’s proximity range collude, denoting their location tags by B1, ...Bn, we
have

A Δ Bi > t 1 ≤ i ≤ n (13)

Assuming Bis are pairwise disjoint. It is easy to see that the symmetric difference
between the joint location tags B = B1

⋃
B2, ...,

⋃
Bn and A is still greater than

t. Hence, Alice has privacy when multiple unmatched users collude. The server
can not learn Alice’s location or secret session key, since it is infeasible to record
the environmental signal of all locations at all times.

We should note that unlike previous work [1] in our protocol, when Alice and
Bob are nearby, Alice still has location privacy against Bob. The reasons is: Bob
only gains knowledge of Alice’s rough whereabouts during the key establishment
step. In the second step, Bob does not receive any message from Alice, therefore
can not know Alice’s exact location even if the matching result is positive. Bob,
too, can protect his location privacy against Alice by hiding his actual loca-
tion within multiple grid indices. Compared with protocol using expensive PTSI
operation, we achieve the same privacy level with less computational cost.

6 Experimental Evaluation

6.1 Experiment Setup

To test our design, we carry out a proof-of-concept experiment on the 802.11g
WLAN network on campus. We use Dell inspiron 5100 with a 32-bit, 533MHz
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Pentium 4 CPU to log the WLAN traffic at varying distances. Using the logged
data, we evaluate the performance of SHARP from the following aspects: (1)
we measured the success probability of extracting temporary key using location
tags. (2) we evaluated how the success rate is affected by the size of the bloom
filter, clock synchronization error, and user mobility. (3) we measured the CPU
time required to generate the location tag and to extract the temporary key.
The detailed experiment configuration is as follows.

Fig. 7. Experiment configuration Fig. 8. Traffic Summary

1. We deployed three client laptops at different locations running Wireshark
in the promiscuous mode. All three laptops are loosely synchronized before the
test.

2. We configured one of the laptop to act as Alice. Before each capture, Alice
sends out the synchronization signal to state the starting time of next capture.
The other two laptops were configured as testees who participate in the proximity
test. They receive the synchronization signal and schedule the next capture. Each
capture is carried out for ten seconds. Captures are repeated for multiple times
at the radius of 0meter, 5meter, 10meter, 15meter, 20meter, 25meter, 30meter
and 35meter.

3. After each capture, the program running on Alice reads frames from the
capture (.pcap) file and sorts them according to the frame type of the packets.
It generates the location tags based on captured packets and sends the size of
the bloom filters to the other two laptops. Upon receiving these parameters, the
other two laptops generate their location tags.

In figure 8, we show the histogram of various frame types from traffic analysis.
During the test, we saw an average of 8432 packets on channel one. Half of them
are 802.11 beacon packets. The rest of the packets are ACK, Probe response,
Probe request, etc. In table 2, we show that an average of 105 different MAC
addresses was detected during the test. 95 of them are 802.11 client stations
whereas 10 of them are 802.11 access points. According to [25], our testing envi-
ronment can be considered as a typical WLAN networks scenario in metropolitan
areas.
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Table 2. Number of 802.11 station and access points detected during the test

Wireless Stations Access Points

avg max min avg max min
95 121 73 10 13 9

6.2 Location Tag Reproducibility

Figure 9(a) shows users’ success probability of extracting Alice’s temporary ses-
sion key at various distances. Interestingly, there is a clear cut-off distance in
the graph. Within 30 meters, the difference between location tags is fairly small
which indicates Bob can successfully reproduce Alice’s location tag. Beyond 30
meters, with quickly increased probability Bob won’t be able to reproduce Alice’s
location tag due to the larger difference between location tags. In other words,
the location tags we tested are either nearly disjoint or nearly identical. Thus,
an efficient test that can accept near-identical sets and reject near-disjoint set is
sufficient for our purpose. In [16], Lin et al. showed similar result using paging
channel messages in GSM cellular networks. Hence, with all these findings, we
argue that BCH error correcting coding approach with small t is superior to
private cardinality threshold set matching approach [19] for our purpose in term
of practicality and usability.

Bloom Filter and Reproducibility. In figure 9(b), we show how the size
of the bloom filter affects location tag reproducibility. It appears that when
we increase the false positive rate of the bloom filter, the success probability
at the far side increases. The reason is that increasing the false positive rate
f is equivalent to reducing the length of the bit array. When the length of a
bloom filter is small, the probability that each bit in the bit array being set
to 1 increases. If the probability increases to 100%, the bloom filter contains
no information entropy. The corresponding location tag becomes independent
of location. Hence the difference between location tags is always 0 regardless
of the distance. Clearly, there is a balance between the entropy loss versus the
location tag reproducibility. When bloom filter is large, the entropy loss is small,
yet it requires Bob to have stronger error correcting capability to reproduce the
location tag. When the bloom filter is small, the location tag reproducibility is
high, yet, the location tag itself become less distinct.

Clock Synchronization Error and Reproducibility. We tested the proto-
col’s performance against clock synchronization error. As shown in figure 9(c),
when users did not start the location feature extraction process simultaneously,
the average difference between location tags increased. Yet, the cut-off distance
stays the same. Hence, our protocol only requires very loose time synchronization
between users.

Mobility and Reproducibility. We evaluated how the users’ mobility affects
the performance of the protocol. In the experiment, we let Bob randomly move
slowly around Alice. Compared with the stationary case, Bob’s chance of suc-
cessfully extracting Alice’s secret key slightly increases. The reason is when Bob
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is moving, he is able to see more access points and wireless stations compare
to a stationary testee. However, the advantage Bob gains by moving is minimal
since each capture window is only 10 seconds.

6.3 Storage and Communication Efficiency

The use of the bloom filter and BCH encoding during location feature extraction
reduces the communication cost of the protocol. In this section, we show the
location tag size and location generation time of our protocol.

Location Tag Size. We compared the size of the location tag of our design and
the location tag generated through other polynomial based reconstruction [1].
We defined the fuzzy match threshold as follows. Assume a total number of n
packets are captured. For our protocol, in order to generate a total of (n, t) fuzzy
match, the number of t is distributed into each location tag source according to
the total number of observations from that source. For example, if a location
feature contains m packets, we create a (m, tmn ) fuzzy match. In [1], the location
tag is generated by create a n− t degree polynomial.

As shown in figure 9(e), if the size of each packet’s hash value is k bit, the
size of the location tag generated in [1] is approximately 2(n− t)k, whereas the
location tag generated with SHARP is approximately t ln(n ln(p)

m ). SHARP clearly
shows superior performance to polynomial based location tag construction. This
is due to the usage of bloom filter and the fact that the location tag in SHARP
only consists of the syndromes of the BCH code.

(a) Probability of suc-
cessful key establish-
ment versus distance

(b) Probability of suc-
cessful key establish-
ment versus false posi-
tive rate of bloom filters

(c) Probability of suc-
cessful key establish-
ment versus clock syn-
chronization error

(d) Probability of suc-
cessful key establish-
ment versus mobility

(e) Location tag size ver-
sus sniffing time

(f) Location tag genera-
tion time versus number
of observations



SHARP: P-P-T & S-H with C-P Location Tags 377

Location Tag Generation Time. In Figure 9(f), we show the location tag gen-
eration time of our design. The main part of the generation time is contributed by:
(1) Adding element to the bloomfilter, and (2) calculatingBCH syndromes. In (1),
in order to add one element to the bloom filter, k hash functions are used. In our
implementation, we use a 160 bit SHA-1 hash function which costs around 0.5ms
to finish on the laptop. The total time of part (1) will grow linearly with the num-
ber of observations. In (2) the time consumption of BCH encoding is polynomial
in logn, where n is the size of the bloom filter [9]. Therefore, the time consumption
of (1) dominates the overall location tag generation time.

7 Conclusion

In this paper, we address the privacy and security issues of proximity test in
location based services. We aim at letting users to find others who are within a
certain geographical region or range with a help of a oblivious server, without pre-
established secret keys while hiding user location information from the server. In
order to prevent location cheating, we propose to use multiple types of real-time
and location-dependent environmental signals to construct location tag. The
location tag is the key to proximity matching, where fuzzy extractor is exploited
to extract a secret key from two matching users. In addition, the location tag
is organized in a bloom filter, such that users can choose their own matching
sensitivity at ease via tuning the parameter of the bloom filter. Furthermore,
we also improve the accuracy and fine-grainedness of the proximity test using
geographical grid and keyed hashing. We allow user to control granularity by
negotiating between different grid cell sizes. Through both theoretical analysis
and experimental evaluation, we show that our location tag has enough freshness
and entropy to defend against location cheating. Our scheme is mostly non-
interactive, does not require strict synchronization, and enjoys high scalability
and efficiency.
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Abstract. In certain applications, it is important for a remote server
to securely determine whether or not two mobile devices are in close
physical proximity. In particular, in the context of an NFC transaction,
the bank server can validate the transaction if both the NFC phone and
reader are precisely at the same location thereby preventing a form of a
devastating relay attack against such systems.

In this paper, we develop secure proximity detection techniques based
on the information collected by ambient sensors available on NFC mobile
phones, such as audio and light data. These techniques can work under
the current payment infrastructure, and offer many advantages. First,
they do not require the users to perform explicit actions, or make security
decisions, during the transaction – just bringing the devices close to each
other is sufficient. Second, being based on environmental attributes, they
make it very hard, if not impossible, for the adversary to undermine the
security of the system. Third, they provide a natural protection to users’
location privacy as the explicit location information is never transmitted
to the server. Our experiments with the proposed techniques developed
on off-the-shelf mobile phones indicate them to be quite effective in sig-
nificantly raising the bar against known attacks, without affecting the
NFC usage model. Although the focus of this work is on NFC phones,
our approach will also be broadly applicable to RFID tags or related
payment cards equipped with on-board audio or light sensors.

Keywords: NFC, RFID, relay attacks, context awareness, sensors.

1 Introduction

Radio Frequency Identification (RFID) systems are becoming increasingly ubiq-
uitous in both public and private domains enabling computerized identification
of objects and individuals. An RFID system usually consists of RFID tags and
readers. Tags are miniaturized wireless radio devices that store information, such
as a unique identification number, about their corresponding subject. Readers
broadcast queries to tags in their radio transmission ranges for information con-
tained in tags and tags reply with such information. Some of the prominent
RFID applications include supply chain management (inventory control) [1],
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e-passports [2], credit cards [3], driver’s licenses [4, 5], vehicle systems (toll col-
lection or car key) [6, 7, 8], access cards (building, parking or public transport)
[9], and medical implants [10].

NFC, or Near Field Communication [11], is an upcoming RFID technology
which allows devices, such as smartphones, to have both RFID tag and reader
functionality. In particular, the use of NFC-equipped mobile devices as payment
tokens (such as the Google Wallet app) is considered to be the next generation of
payment system and the latest buzz in the US financial industry. Technological
companies, such as Google and Apple, financial institutions, such as JPM, Visa,
Mastercard and Citi, and telecommunication providers, such as Verizon and T-
Mobile, have worked together and started launching test programs of NFC based
payment system in the US [12]. It is predicted that mobile payments using NFC
will reach $670 billion by 2015 [13].

Due to the inherent weaknesses of underlying wireless radio communication,
NFC systems are plagued with a wide variety of security and privacy threats
similar to the RFID systems [14]. In particular, the threat of relay attacks on
such devices is real. One class of these attacks is referred to as “ghost-and-
leech” [15]. In this attack, an adversary, called a “leech,” relays the information
surreptitiously read from a legitimate RFID tag to a colluding entity known as
a “ghost.” The ghost can then relay the received information to a corresponding
legitimate reader and vice versa in the other direction. This way a ghost and
leech pair can succeed in impersonating a legitimate RFID tag without actually
possessing the device.

The focus of this paper is on a more severe form of relay attacks, called
“reader-and-ghost”. It involves a malicious reader and an unsuspecting owner
intending to make a transaction [16]1. In this attack, the malicious reader, serving
the role of a leech and colluding with the ghost, can fool the owner of the card
into approving a transaction which she did not intend to make (e.g., paying for a
diamond purchase made by the adversary while the owner only intends to pay for
food). We note that addressing this problem requires transaction verification, i.e.,
validation that the tag is indeed authorizing the intended payment amount. The
feasibility of executing reader-and-ghost attacks has already been demonstrated
on the Chip-and-PIN credit card system [16].

With an expected ubiquitous deployment of NFC systems, there is a pressing
need for the development of security primitives to defeat the relay attacks. Doing
so, however, presents a unique and formidable set of challenges. Although the
NFC devices are not as constrained as the stand-alone RFID tags, the inherent
difficulty stems from the unusual usability requirements imposed by NFC appli-
cations (originally geared for automation). Consequently, solutions designed for
NFC systems need to satisfy the requirements of the underlying applications in
terms of not only efficiency and security, but also usability.

1 In contrast to the “ghost-and-leech” attack, the owner in the “reader-and-ghost”
attack is aware of the interrogation from the (malicious) reader.
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1.1 Sensing-Enabled Automated Defense

Although a variety of solutions to address the reader-and-leech attacks exist,
many of them do not fully meet the requirements of the underlying NFC appli-
cations in terms of (one or more of): efficiency, security and usability. We discuss
prior work in Section 2.

In an attempt to resolve this situation, this paper proposes the use of sensing
technologies for preventing reader-and-ghost relay attacks without necessitating
any changes to the traditional NFC phone usage model, i.e., without incorpo-
rating any explicit user involvement beyond what is practiced today.

The premise of our work is a current technological advancement that enables
many NFC phones with low-cost sensing capabilities. Various types of sensors
have been incorporated on many NFC phones, including accelerometers, micro-
phones, and light sensors. This new generation of NFC phones can facilitate
numerous promising applications for ubiquitous sensing and computation. They
also suggest new ways of providing security and privacy services by leveraging
the unique properties of the physical environment or physical status of the phone
(or its owner).

The physical environment measured by these sensors offers a rich set of at-
tributes that are unique in space, time, and to individual objects. These at-
tributes – such as sound and light – reflect either the current condition of a
phone’s surrounding environment or the condition of the phone (or its owner)
itself. An NFC phone can therefore acquire useful contextual information, and
this information can be utilized for enhanced security.

1.2 Our Contributions

In this paper, we show that the contextual information can be effectively lever-
aged to defend against the reader-and-ghost attacks on NFC devices.

Specifically, we develop a new transaction verification mechanism that can
determine the proximity (or lack thereof) between a valid server and a valid
phone by correlating certain sensor data extracted from the two devices. This is
based on the assumption that certain ambient information, extracted by the NFC
device and reader at the same time (transaction time), will be highly correlated if
the two devices are in close physical proximity. Said differently, if a certain sensor
attached to the server and the same type of sensor attached to the phone report
mismatching ambient information, this will indicate that the server and phone
are (most likely) not at the same location or close to each other. In particular, we
demonstrate that audio sensors (microphones) and ambient light sensors can be
effectively used for such transaction verification. We present several techniques
that can be used for determining similarity between two short audio signals
as well as between the light data extracted by the valid NFC phone and valid
reader, and show that these techniques are quite useful in significantly raising
the bar against the reader-and-ghost attacks.

Our approach can be seamlessly deployed on the current payment infrastruc-
ture, and offers many advantages. First, it does not require the users to perform
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explicit actions, or make security decisions, during the transaction – just bringing
the devices close to each other is sufficient. Second, being based on environmental
attributes, the approach makes it very hard, if not impossible, for the adversary
to undermine the security of the system. Third, it provides a natural protection
to users’ location privacy as the explicit location information is never transmit-
ted to the server. Our experiments with the proposed techniques developed on
popular mobile platforms (Java ME and Android) indicate them to be fairly
robust to errors and effective for off-the-shelf mobile phones.

1.3 Scope of Our Work

Errors are inherent to any context recognition approach. Our approach is no
different in this regard in that it would yield non-zero, although quite low, false
positive and false negative rates in practice. Thus, the proposed approaches can
not guarantee absolute security and usability. However, our technique signif-
icantly raises the bar even for sophisticated adversaries without affecting the
NFC phones usage model. Moreover, although the proposed technique can work
in a stand-alone fashion, it can also be used in conjunction with other security
mechanisms, such as cryptographic distance bounding protocols [16], to provide
stronger cross-layer security protection. In addition, our proximity detection ap-
proach is broadly applicable in the realm of other wireless (or wired) devices
equipped with sensors.

1.4 Paper Outline

The rest of the paper is organized as follows. We review related work in Section 2.
We present, in Section 3, the current payment system and our threat model, and
provide a higher level overview of our proximity detection approach. Next, we
elaborate on our proximity detection techniques based on audio and light sensor
data in Section 4. Finally, we report on our experimentation and associated
results in Section 5, followed by a discussion in Section 6. Section 7 provides
concluding remarks.

2 Related Prior Work

In this section, we discuss prior work that is applicable to address the problem
of reader-and-ghost attacks.

The distance bounding protocols have been explicitly proposed for preventing
reader-and-ghost relay attacks [16, 6]. A distance bounding protocol is a crypto-
graphic challenge-response authentication protocol which allows the verifier to
measure an upper-bound of its distance from the prover [17]. (We stress that
traditional “non-distance-bounding” cryptographic authentication protocols are
completely ineffective in defending against relay attacks). Using this protocol,
a valid RFID reader can verify whether the valid tag is within a close proxim-
ity thereby detecting both ghost-and-leech and reader-and-ghost relay attacks
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[16, 6]. However, these protocols may not be currently feasible on commodity
devices (such as NFC phones) due to their high sensitivity to time delay or need
for special-purpose hardware.

A straight-forward solution to the reader-and-ghost attacks is to show the
transaction details (e.g., the amount of transaction) on the NFC device itself [18],
and have the user validate the details. This approach, however, is problematic
because it requires explicit user involvement that may lead to the success of an
attack. In particular, users will need to compare the amount/currency displayed
on the reader’s screen and that on their NFC phone’s screen. If they make an
error in the comparison, they may still be susceptible to the attack. Human users
are known to make such mistakes (as demonstrated in [19]).

As suggested in [16], and demonstrated in [20], GPS data can be used in a
straight-forwardmanner to determine whether the NFC phone and the reader are
in close proximity. As opposed to our sensor-centric approach, however, the use of
GPS data relies on an additional infrastructure (GPS). GPS is also known to not
work well in an indoor environment (which is where the payment transactions
take place commonly). Moreover, since GPS information is directly sent to the
payment server, this approach raises location privacy concerns – users’ location
during the transaction is revealed to a potentially untrusted third party.

Our idea of secure proximity detection based on sensor information is related
to the Bump application [21]. This application associates two phones based on
a mutually shared “bump” event. However, there are significant differences be-
tween the two approaches. First, we work with audio/light data, while Bump
uses accelerometer as well as GPS data. Second, we do not require users to ex-
plicitly Bump their devices; rather only bringing the phone close to the reader is
sufficient (a gesture that already needs to be performed as part of the payment
process). Third, we develop open-source sensor data correlation and similarity
detection techniques, whereas the techniques employed by the Bump server are
not transparent.

3 Background and Overview

3.1 Payment Infrastructure, and Threat Model

EMV, named after its creators, Europay, Mastercard and Visa, is a global stan-
dard for debit and credit card payments. Payment systems based on EMV have
been introduced across the world, known by a variety of different names such as
“Chip and PIN” [16]. Mastercards PayPass is another EMV compatible “contact-
less” payment protocol. Figure 1 presents a simplified version of the EMV-based
mobile payment system which consists of three entities of interest: the card-
holder, the merchant and the issuer bank which issues the card. The payment
application (such as Google Wallet) on the NFC-enabled phone of a cardholder
stores the details such as the credit card number, name of the owner, and ex-
piration date. It also stores a symmetric key shared with its issuer bank. The
Point-of-Sale (PoS) terminal at the merchant side is equipped with NFC Con-
tactless Readers (such as MasterCard PayPass). A transaction starts with the
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merchant issuing a challenge to the payment app. The app calculates a cryp-
tographic response based on the challenge and other information using the key
shared with the issuer bank. It then transfers the response to the merchant ter-
minal using the NFC chip on the mobile device. The response is next forwarded
by the terminal to the issuer bank which verifies the response and approves the
transaction, if authentication is successful.

In the rest of this paper, we use the terms card, card holder and (NFC) phone
interchangeably, all depicting the valid user’s device involved in a transaction.

$

Bank

cardholder merchant

challenge

response= (challenge, …)key

response

result

Fig. 1. Online authorization in a mobile payment system

Our proposed approach can work under the current payment infrastructure. It
is meant to defend specifically against the reader-and-ghost attacks which NFC
payment systems are susceptible to. We call the NFC card (reader) under attack
a valid card (reader), and call the tag (reader) controlled by the adversary as
malicious card (reader).

Under the threat model of the reader-and-ghost attack, originally called the
“mafia fraud” attack [22, 16], the adversary controls a malicious reader and card
pair, just like in the ghost-and-leech attack. However, the malicious reader con-
trolled by the reader-and-ghost adversary is a legitimate reader or believed by
the valid card to be a legitimate reader. Hence, the valid card (or its owner) is
aware of and agrees to communicate with the malicious reader. That is, inter-
rogations from the malicious reader to the valid card are not surreptitious as in
the ghost-and-leech attacks. The goal of the adversary is still to impersonate the
valid card.

We assume that the adversary does not have direct access to the valid card.
So tampering or corrupting the card physically is not possible, or can be eas-
ily detected. The adversary is also unable to tamper the card remotely through
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injected malicious code. We further assume that the adversary is unable to spoof
the ambient sensor signals, such as by changing the environmental conditions.
We also do not consider loss or theft of card.

In addition to security, our threat model also considers the privacy of the card
owners. In particular, a (malicious) bank server may be interested in determining
the location of a card owner at the time of transaction, and track the whereabouts
of the owner. Thus, transmitting explicit location information to the bank server,
such as when using the GPS sensors, would be prone to location privacy attacks.

3.2 Overview of Our Approach

As mentioned above, our approach can work under the current mobile payment
infrastructure. The card (NFC phone) already shares a symmetric key with its
issuer bank. We only require that both the card and terminal measure certain
location-dependent information using on-board sensors (such as audio and ambi-
ent light). Location-dependent data captured by both sensors are then forwarded
to the bank. The bank server decides whether to approve the transaction after
“comparing” the data received from the two ends. Figure 2 provides an overview
of our approach. The user-side sensor generates its location-dependent infor-
mation loccard while the merchant-side sensor generates its version of location-
dependent information locmerchant. loccard is protected (e.g., via MAC) with the
key shared with the issuer bank before it is sent to the merchant’s terminal which
then forwards its own location information locmerchant along with the (phone’s)
card credentials to the bank for transaction verification and authorization. Since
the integrity of loccard is protected by the shared key between the card and bank,
a malicious reader would be unable to change this value.

$

bank

cardholder merchant

challenge

response= (challenge, loccard …)key

response, 
loccard, locmerchant 

result

user-side 
sensor: loccard

merchant-side 
sensor: locmerchant 

Fig. 2. Online authorization in a mobile payment system enhanced with our proximity
detection approach
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4 Proximity Detection Techniques

4.1 Correlation Using Audio

We explore the use of audio sensors (microphones) for accomplishing the afore-
mentioned approach to proximity detection. This choice is motivated by the
intuition that the audio data captured at two different locations at a given time
is different to some extent.

We first need to determine if the audio recordings captured from the same
location have higher similarity than recordings taken at different locations. To
this end, we investigate a few methods to detect such similarity including: time-
based methods, frequency-based methods as well as a combined time-frequency
method.

Time-Based Similarity Detection: To detect the similarity between the time-
based signals Xi and Xj , we propose using two methods: correlation and differ-
ence. The signals will first be normalized according to their energy (so that each
signal had a total energy equal to 1). Then, in the first method, the correlation
between each two signals will be calculated and the maximum correlation will
be used. Therefore, the correlation based similarity between two signals Xi and
Xj can be measured by:

Sc(i, j) = max(Cross-Corr(Xi, Xj)) and Dc(i, j) = 1− Sc(i, j) (1)

In the second method, the distance between each bit of the signals is calculated
and the overall Euclidean norm of the distance is used as below:

Dd(i, j) = ‖Xi −Xj‖ and Sd(i, j) = 1−Dd(i, j) (2)

Frequency-Based Similarity Detection: In the frequency-based detection
approach, we use Fast Fourier Transform (FFT) to create the frequency co-
efficients for each recorded signal. We then use both the correlation and the
difference between the FFT coefficients in order to evaluate the similarity be-
tween different segments taken at the same place (in consecutive time periods)
vs. recordings taken at different locations.

Time-Frequency Based Similarity Detection: This novel method combines
both the time and frequency based measurements to create a point in 2-D space.
In this technique, the overall time-frequency similarity measure is calculated by:

D(i, j) =
√
(Dc,time(i, j))2 + (Dd,frequency(i, j))2 and S(i, j) = 1−D(i, j) (3)

This implies that the similarity measurement will be higher for closer signals.

4.2 Correlation Using Ambient Light

We also explore the use of light sensors for the purpose of proximity detection.
This choice is inspired by an observation that different types of places may
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have different lighting conditions. For example, fast food restaurants usually use
bright lights to attract customers and to signify a place bustling with activity
and very fast service, while fine dinning restaurants typically use low-intensity of
light to create an intimate and leisurely atmosphere. As lighting conditions are
location dependent, the ambient light can be used as the contextual information
to determine the proximity between two devices (or a lack thereof).

Unlike ambient audio which can be heavily affected by surrounding human/
non-human activity, indoor ambient light (without natural light) is intuitively
quite steady over time as the lighting infrastructure usually remains untapped –
this intuition is later validated through the experiments as illustrated in Section
5.1. Hence, in this case, we use a simple strategy that involves just comparing the
mean value of the illuminance data to determine whether ambient light readings
captured from the same location have higher similarity than recordings taken at
different locations.

Let Li and Lj be the mean value of illuminance data captured in a short
time interval by two devices at location i and j. The difference of mean value is
calculated as:

D(i, j) = |Li − Lj | (4)

As long asD(i, j) is below a threshold, we consider the two readings to be similar
enough and believe that they are captured from the same location. Otherwise,
the two readings are believed to be captured from different locations. We will
discuss how to establish the threshold via experiments in Section 5.1.

5 Experiments and Results

To evaluate our Near Field Communication (NFC) phone sensor data correlation
techniques, we develop a proof-of-concept prototype on mobile phones, which
allows us to collect data from different locations, and demonstrate the feasibility
of our proximity detection approach.

5.1 Audio Data Experiments

In this section, we present our evaluation of the techniques for transaction veri-
fication based on audio data correlation.

Data Collection: The goal of sensor data correlation is to detect whether
the valid card (phone) and valid reader are at the same or different locations.
Therefore, we needed to collect the sensor data when the two devices are located
in close physical proximity as well as when they are at two different locations.
We work with two mobile phones (two Nokia N97s), simulating a valid NFC
device and a valid RFID reader.

To enable recording of background sounds using the phones, we developed a
program that captures audio from the phone’s built-in microphone and installed
it on two mobile phones. The program was designed to record up to 30 seconds
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of continuous audio data. The audio-capturing programs were launched on both
phones and activated at about the same time to record the samples (the phones
were synchronized by means of a wireless signal). We recorded, with the micro-
phones, a few audio samples at different locations. We needed to determine if it
was possible to distinguish between recordings taken at the same location versus
at different locations.

We first examined the likelihood that different techniques can be used to
find similarities between recordings taken at the same location and differentiate
between recordings taken at separate locations. To determine the performance
of the different techniques and find the optimal one, we initially created our
“first dataset”. For this, we used 7 groups of 20 1-sec recordings (for a total of
140 distinctive 1-sec audio recordings). Each group of recordings was captured
at a separate location at consecutive time periods. The recordings were taken
from 5 different locations, including a few retail stores and fast food restaurants.
Specifically, we recorded surrounding noise at: McDonald’s and Target (samples
captured at two different occasions in each of the two), Wendy’s, and our univer-
sity cafeteria and library. We explored a few signal processing methods to detect
the similarities between the different recordings taken at the same location at
consecutive time periods vs. the similarities between recordings taken at differ-
ent locations. The dataset was used to test the different techniques and find the
optimal detection method.

To test the performance of the detection method in both a normal usage
scenario (i.e., when no attacks occur) as well as in attack scenario, we created a
“second dataset”. For this dataset, we again took recordings at different locations
with two phones simultaneously, separated by a distance of 3-12 inches. In this
case, we collected the data from 5 different locations, including a concert hall,
library (at two different locations), Mcdonalds and a coffee shop. We recorded
at each location 20 1-sec segments from the two sensors simultaneously (located
a few inches apart), capturing a total of 200 separate (100 pairs) 1-sec audio
recordings.

All recorded audio files were then converted from the 3GPP format to the
WAV format to be fed into our matlab algorithms for signal correlation (discussed
in Section 4.1). Conversion from 3GPP to WAV, unlike the inverse, is considered
lossless, since there is no compression used in WAV format. Thus, no important
information was lost during this conversion.

Performance of Similarity Detection Techniques: We test the perfor-
mance of various techniques, outlined in Section 4, to identify which one can
most accurately detect the similarity between recordings taken at the same loca-
tion. Specifically, in every test group, we use 5 pairs of 1-sec recording segments.
The two samples in each pair were taken by two different sensors at the same
location simultaneously (each pair was recorded at a separate location). For all
the techniques, we calculated the probability that the recording, identified as
the most similar one to a given recording, was the recording taken at the same
location.
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We ran the test for the dataset collected previously. Our results showed that
the time-based “correlation” (Equation 1) gave better result (38% detection rate)
compared to the “distance” (Equation 2) between the signals (which resulted in
detection rate of 14%). Also, our tests showed that frequency-coefficients based
distance yielded better results (50% detection rate) compared to time-based
methods and to frequency-based distance methods (which resulted in 39% de-
tection rate). Finally, our tests also demonstrated that the result corresponding
to time-frequency classification is superior to all other methods, with a suc-
cessful detection rate of 53%. In the rest of our analysis, therefore, we use the
time-frequency based technique.

Performance of Audio-Based Proximity Detection: We next used the test
dataset to determine the performance of our time-frequency detection on data
taken under normal usage as well as attack scenario. We calculated the time-
frequency distance measure between each two different samples. We found the
square distance D(i, j)2 (Section 4.1) and used it as our data features. For each
pair of locations, we calculate the mean of the square distance. We generated a
confusion matrix for our dataset as shown in Table 1.

Table 1. Confusion Matrix of Square Time-Frequency Distance

Concert Hall Library McDonalds Library (2) Cafe

Concert Hall 0.4678 1.7889 1.8645 1.7556 1.8412

Library 1.7889 0.8539 1.7878 1.6753 1.7545

McDonalds 1.8645 1.7878 0.6018 1.7962 1.7241

Library (2) 1.7556 1.6753 1.7962 0.8213 1.8140

Cafe 1.8412 1.7545 1.7241 1.8140 0.5289

To distinguish between recordings taken at the same approximate location we
compare the time-frequency square distance between each recorded signal and
the one taken by the second microphone at the same location as well as with all
the recordings taken at different locations. We construct the similarity matrix
s using the similarity measurements and use it as our feature data. We use the
input data to train the classifier to find the similarity threshold for each couple
of samples. We use the SimpleLogistics classifier from the WEKA package to
classify the samples. We run a 10-fold classification, which partitions the data
into 10 partitions, trains the classifier over 9 of the partitions (which act as
the training set) and classify the remaining samples (the testing set). This is
repeated for each partition and training set in the dataset.

We note that the classifier arrived at a simple classification formula: if y =
11.49×Corr−8.69 < 0, then both samples will be considered to be taken at the
same place. Otherwise, they will be considered to be taken at different locations.
This is a simple calculation (one multiplication and one addition) and will take
the server a negligible amount of time to validate whether both samples were
captured at the same location.
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Using the classifier results, we find the detection rate for each pair of locations
in which the samples were taken (where one sample is captured in each location).
The detection rate is calculated over all the pairs of samples which were taken at
the two locations, by dividing the number of pairs of samples that were correctly
classified by the number of total pairs of samples (taken at those locations).
The result of the correct recognition rates can be found in Table 2. As can be
seen from the table, our audio signal based correlation technique yields 100%
detection rate.

Table 2. Experimental result of “positives” using WEKA SimpleLogistics classifier

Concert Hall Library McDonalds Library (2) Cafe

Concert Hall 100% 100% 100% 100% 100%

Library N/A 100% 100% 100% 100%

McDonalds N/A N/A 100% 100% 100%

Library (2) N/A N/A N/A 100% 100%

Cafe N/A N/A N/A N/A 100%

False Accept Rate vs. False Reject Rate: We next determined the prob-
abilities of incorrectly approving the transaction with an unauthorized phone
and rejecting the transaction with an authorized phone, by calculating the False
Accept Rate (FAR) vs. the False Reject Rate (FRR). FAR is the sum of false
positives, which occur when the audio signal captured by a valid reader matches
the audio signal captured by a phone, even when the two devices are at different
locations. FRR, on the other hand, is the sum of false negatives, and denotes
the probability that the transaction is rejected even when the valid phone and
valid reader are in close physical proximity.

Using the classifier results, since our detection rates are 100%, our FAR and
FRR are both clearly equal to 0%. This indicates that our audio-based proximity
detection technique is very robust.

5.2 Light Data Experiments

In this section, we present our evaluation of the techniques for transaction veri-
fication based on light data correlation.

Data Collection: We conducted this set of experiment with two mobile phones
(Google Nexus S) which are equipped with ambient light sensors. The light sensor
on the phone is generally utilized for the purpose of auto-adjustment of screen
brightness. We develop a simple Android application to capture data readings
from the light sensor. The sampling rate is set to be 25 Hz which records 50 data
points every 2 seconds.

As in the audio test, to simulate a normal usage, we used two phones repre-
senting the valid NFC phone making the transaction and the valid reader. They
are separated by a distance of 3-12 inches and hand-held during the transaction.



Secure Proximity Detection for NFC Devices Based on Ambient Sensor Data 391

To simulate attack scenarios, we recorded light data at five different loca-
tions with different business types: two different types of restaurants (fast food
restaurant vs. fine dining restaurant), two different types of retailer stores (su-
permarket vs. department store) and a car dealership. Our purpose is to find
(dis)similarity in term of lighting conditions at locations of different business
types.

Threshold Establishment: Figures 3 and 4 prove our intuition that lighting
conditions are location-dependent. Curves in Figure 3 illustrates that lighting
data collected from the aforementioned five different locations. Although light
readings at a specific location fluctuate around a baseline, these curves are par-
allel to one other and clearly disparate which means the mean value can be used
to distinguish different locations. Illuminance readings can be affected by several
factors. The first is that the user cannot hold the phone firmly static. So the ori-
entation of the phone and its relative position to the surrounding light sources
can change which can affect the light sensor readings. Also, at different types
of locations, surrounding human movements such as hand waving, may induce
shadowing effect on the sensor causing changes to the data readings. Figure 4
shows the mean value of the data we collected from various locations and it gives
us a more direct view of how the mean values of illuminance differ at different
locations.

As described in Section 4.2, the transaction should be approved when the
difference of mean values captured by two sensors is below a threshold, which
indicates that the phone and the reader are at the same place. The transaction
should be terminated otherwise, i.e., if the difference of mean values is above
the threshold. To establish the threshold, we recorded 10 samples of light data,
each consisting of 50 data points over a period of 2 seconds, on both devices at
each location selected. From the captured data, we generate a confusion matrix
as shown in Table 3. Values across the diagonal represent the average mean
difference when phone and reader are at the same location while the others
represent the average mean difference when the two devices are at different
locations. From the table, we can observe that the threshold could be chosen
in the range between 20.6 and 55.3 (lux) if we want to distinguish between
these locations. The lower bound (20.6) is the maximum difference when the
two phones are placed at the same location while the upper bound (55.3) is the
minimum difference when phones are put at two different locations.

We picked 38 lux as the threshold value, and measure the performance of
light-based proximity detection as discussed in the next section. We note that
an interesting observation from the table is that the brighter the place, the higher
is difference of readings captured by two devices at the said location.

Performance of Light-Based Proximity Detection: We further collected
40 samples of light data on both phones at each location. We then calculate
their mean difference according to Equation 4 and compare the result using the
threshold value 38. Similar to the audio tests, we next find the detection rate
for each pair of locations in which the samples were taken (where one sample is
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captured in each location). The detection rate is calculated over all the pairs of
samples which were taken at the two locations, by dividing the number of pairs
of samples that were correctly classified by the number of total pairs of samples
(taken at those locations). Our experimental results of the light-based detection
rate is shown in Table 4.

False Accept Rate vs. False Reject Rate: We next determined the FAR
and FRR for the light-based detection method, similar to the case of our audio
data tests. We found that our FAR is equal to 6.5% while the FRR is equal to
5%. This means that the light-based detection is likely to fail, both under normal
scenario and attack scenario, although on only on a small fraction of times.

Although these error rates are non-zero and higher than that produced by
our audio-based correlation technique, these results generally demonstrate good
recognition rates, especially for locations with smaller mean difference such as
fine dining and department store.
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Table 3. Confusion Matrix of Mean Difference (lux)

Fine Department Supermarket Fast Food Car
Dining Store Dealer

Fine Dining 1.1 71.0 283.5 291.9 347.1

DepartmentStore 71.0 6.4 163.6 220.9 276.1

Supermarket 283.5 163.6 9.9 58.3 113.5

Fast Food 291.9 220.9 58.3 17.0 55.3

Car Dealer 347.1 276.1 113.5 55.3 20.6

Table 4. Experimental results of “positives” based on mean differences (threshold 38
lux)

Fine Department Supermarket Fast Food Car
Dining Store Dealer

Fine Dining 100% 97.5% 100% 100% 100%

DepartmentStore N/A 100% 100% 100% 100%

Supermarket N/A N/A 95% 82.5% 95%

Fast Food N/A N/A N/A 92.5% 60%

Car Dealer N/A N/A N/A N/A 87.5%

6 Discussion

6.1 Audio vs. Light Data Proximity Detection

Our results show that audio and ambient light can serve as two different means
of detecting proximity between two NFC devices involved in a transaction. Both
result in quite low error rates, FAR as well as FRR, demonstrating the effective-
ness of our approach. In fact, our experiments with the audio-based proximity
detection approach yields no errors at all.

This suggests that audio is a potentially stronger signal for detecting the
proximity of two devices when compared to light. The robustness of audio in
this regard could be attributed to the fact that audio at two distinct locations
is highly distinct in nature. On the other hand, the use of light is likely to result
in a few false accepts in scenarios where the lighting conditions of two distinct
locations is similar enough, and in a few false rejects in scenarios where the
orientation of two close by phones affects their recorded light readings.

These results imply that when using our audio-based approach, it will be very
difficult, if not impossible, for the attacker to succeed in launching the reader-
and-ghost relay attack. When using the light sensor, in contrast, the adversary
will need to choose a remote location having very similar lighting conditions as
the one where a valid card is located at the time of transaction. This restriction,
however, still significantly complicates the task of the attacker. Nevertheless, the
specific attack demonstrated in [16] where the valid card is at a restaurant and
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the valid reader is at a jewellery store can be easily prevented when using our
light based approach.

We note that our data was taken at locations typical to financial transactions.
These are likely to be commercial environments, such as restaurants, shops and
department stores. Since these are environments with customers, there will likely
always be some background noise (e.g., due to people talking) which will be
captured by the sensors. Therefore, this demonstrates a promising feasibility of
our approach. While we can not completely rule out the probability of a false
accept, our results show that it is unlikely that the attacker can capture similar
enough audio data at a far-off location.

6.2 Location Privacy of Card Owners

As discussed in Section 3, our threat model covers the privacy of the card own-
ers when making transactions. In particular, we are interested in protecting the
location privacy of the card owners from a malicious bank server during the trans-
action process. Our sensor-centric proximity detection approach indeed provides
a natural protection in this regard. In fact, we do not even need to use private
proximity testing protocols proposed in the literature [23]. This is due to the
fact that our approach does not require the card or the reader to transmit their
explicit location information (unlike the GPS-based approach of [20]). Rather,
only the captured audio or light readings are sent to the server. Although these
readings possess some correlation with the exact location, it seems very difficult
to infer this location just by analyzing these readings. This is especially true for
the audio readings since they fluctuate over time drastically. The only possibility
for the attacker to learn the location of the owner in this case is to be physically
present at the said location at the time of transaction.

6.3 Manipulating Physical Environment

If the adversary can tamper with the physical environment, at the side of the
valid card (NFC phone) and/or valid reader, it can enforce the two devices
to capture similar enough data even from different locations. For example, if
the adversary can induce similar lighting or acoustic conditions at two differ-
ent locations at the time of the transaction, then it may succeed in launching
the reader-and-leech attack. However, tampering with such environmental at-
tributes (light or audio) looks like a daunting task. It may require sophisticated
equipment as well as close proximity to the devices and will likely be easily de-
tected. We believe this characteristic to be an inherent strength of our proximity
detection approach.

6.4 Other Sensors

It is a natural question as to what other sensors are suitable for the purpose of
proximity detection.

Temperature sensors are likely not going to be useful because indoor tempera-
tures at different locations do not vary significantly. We also tried to use magnetic



Secure Proximity Detection for NFC Devices Based on Ambient Sensor Data 395

field data in this context, given that most modern phones come equipped with
magnetometers. However, we could not find any method to detect the similarity
between measurements taken at the same location (at consecutive time peri-
ods) vs. measurements taken at different locations. Therefore, we conclude that
a magnetometer does not provide data which can be used reliably to derive a
location-specific information. This is because the magnetic sensor readings are
dominated by the Earth’s background magnetic field, which do not change signif-
icantly across different locations. Odor sensors might be more promising for our
application. However, we are not aware of any commercial phones that possess
odor sensors as yet.

7 Conclusions

In this paper, we developed a secure proximity detection approach based on
the information collected by audio and ambient light sensors available on NFC
mobile phones. This approach is geared for preventing reader-and-ghost attacks,
and offer many advantages. First, it does not require the users to perform explicit
actions during the underlying operation – just bringing the devices close to each
other is sufficient. Second, being based on environmental attributes, our approach
makes it very hard, if not impossible, for the adversary to undermine the security
of the system. Third, it provides a natural protection to users’ location privacy
as the explicit location information is never transmitted to the server.

Our evaluation of the proposed mechanism on common mobile platforms
demonstrate its feasibility in effectively and significantly raising the bar against
the reader-and-ghost attacks without negatively affecting the currently employed
usage model of the underlying NFC applications. In particular, we found the
audio-based detection to be quite powerful. In the future, we plan on identifying
other sensors (besides microphones and light sensors), and combinations thereof,
that can be used for the purpose of proximity detection.
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Abstract. An electric vehicle is a promising and futuristic automobile
propelled by electric motor(s), using electrical energy stored in batteries
or another energy storage device. Due to the need of battery recharging,
the cars will be required to visit recharging infrastructure very frequently.
This may disclose the users’ private information, such as their location,
which may expose users’ privacy. In this paper, we provide mechanisms
to enhance location privacy of electric vehicles at the right time, by
proposing an anonymous payment system with privacy protection sup-
port. Our technique further allows traceability in the case where the cars
are stolen.

1 Introduction

An electric vehicle (also known as EV) is powered by an electric motor instead
of a gasoline engine. The electric motor obtains energy from a controller, which
regulates the amount of power based on the driver’s use of an accelerator pedal.
The electric vehicle uses energy stored in its rechargeable batteries, which can be
recharged by the common household electricity for normal charging (slow charg-
ing). Electric vehicles have several potential benefits compared to conventional
internal combustion automobiles that include a significant reduction of urban
air pollution as they do not emit harmful tailpipe pollutants from the onboard
source of power at the point of operation (zero tail pipe emissions); reduced
greenhouse gas emissions from the onboard source of power depending on the
fuel and technology used for electricity generation to charge the batteries; and
less dependence on foreign oil, which for many developed and emerging coun-
tries is a cause of concern due to its vulnerability to price shocks and supply
disruption.

Future electric vehicles may even support Vehicle-to-grid (V2G). The con-
cept allows V2G cars to provide power to help balance loads by “valley filling”
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(charging at night when the demand is low) and “peak shaving” (sending power
back to the grid when the demand is high). It can enable utilizing new ways to
provide regulation services (keeping voltage and frequency stable) and provide
spinning reserves (meet sudden demands for power). In future development, it
has been proposed that such use of electric vehicles could buffer renewable power
sources such as wind power, for example, by storing excess energy produced dur-
ing windy periods and providing it back to the grid during high load periods,
thus effectively stabilizing the intermittency of wind power. If the car has in-
stalled solar panel, it may further generate additional electricity and sell it back
to utilities when it is parked outside under a sunshine. One may also regard this
application of vehicle-to-grid technology as a renewable energy approach that
can penetrate the baseline electric market.

Despite their potential benefits, widespread adoption of electric vehicles faces
several hurdles and limitations. One of the major problems is the driving range.
Most electric vehicles can only go about 100 to 150 km before recharging, while
gasoline vehicles can go over 500 km before refueling. This may be sufficient for
city trips or other short hauls. Nevertheless, people can be concerned that they
would run out of energy from their battery before reaching their destination, a
worry known as the range anxiety.

One of the solutions is to install more fast charging stations with high-speed
charging capability so that consumers could recharge the 100 km battery of their
electric vehicle to 80 percent in about 30 minutes. Electric vehicle drivers may
then charge their vehicles at their homes, offices, shopping malls or car parks
outside restaurants when they are having dinner.

Location Privacy Concern. Paying for recharging in those infrastructures
may disclose the users private information such as their location privacies [1].
Those location privacies include the drivers’ living places, working companies,
the amusement places they usually go, etc. [2–4]. Privacy is regarded as a fun-
damental human right and leaking them is possible to identify at many negative
effects [5–7]. The first one is Location-based “spam”, which means that the loca-
tion information could be used by malicious businesses to bombard an individual
with unsolicited marketing for products or services related to that individuals
location. Another negative effect is that the location can be used to infer an in-
dividual’s political views, state of health, or personal preferences. Furthermore,
the disclosure of location privacy may also result in safety problems. For exam-
ple, it may be used by unscrupulous persons such as the robbers for stalking or
physical attacks.

The location privacy problem does not exist in gasoline cars. There are two
main reasons for that. First, when the car is running out of gasoline, drivers
may choose to pay cash instead of credit card when they pay for the gasoline in
the gas station. Cash is a form of anonymous payment that cannot be traced.
Second, gasoline vehicles do not need to be re-filled within a short distance.
Even for daily drivers they may only re-fill the gasoline once a week. Activities
within that week will be unknown even if they choose to pay by credit card at
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the gas station. Another reason is that EV can support V2G charging which is
not existed in gasoline cars.

We will examine other payment systems and their impact on location privacy
in Section 1.2.

Revocation of Location Privacy at the “RIGHT” time. Yet providing
unconditional location privacy is not always good. In the case that when a car
is stolen, the car owner definitely wants to know the location of his stolen car.
Currently some anti-theft or thief-tracing devices can be installed in the car (e.g.
GPS with GSM communication device) so that if the car is stolen, the device will
send a signal to the car owner telling about the current location of the stolen
car. Although these kind of devices can be used to trace any stolen car, the
installation and running cost are very high. It is fine for a luxury car as the cost
of the anti-theft device compared to the cost of the car itself is just negligible.
However, for some lower-end used cars, it is impractical to install such devices
where the price is comparable to the value of the used car.

The short driving range is one of the disadvantages of electric vehicles. Yet
on the other side, it provides a cheap solution to trace a stolen vehicle. As the
vehicle is required to be re-charged very frequently, charging stations can be
used to trace any stolen vehicle. If a stolen car is being re-charged at a charging
station, the charging station can report to the police or the car owner about the
location of this stolen car. It may also refuse to provide charging service to any
stolen cars.

1.1 Contributions

In this paper, we enhance the location privacy of electric vehicles at the right
time, by proposing a new payment system that provides the following privacy
related features:

Two-way Anonymous Payment: It supports anonymous payment in both di-
rections. First, the electric vehicle remains anonymous when it re-charges at any
charging station. It further supports V2G system. That is, if the car wants to
sell back its stored or solar generated electricity to the grid through the charging
station, it will receive its credit anonymously. The location privacy of the car is
protected in normal operations.

Traceability of Stolen Car: If the electric vehicle is stolen, the owner may
provide some secret information to charging stations so that next time when
the stolen car is being re-charged at any charging station, its location will be
revealed.

We argue that our system is practical, as it also provides some additional
features that can be favoured by users or supplier:

1. Prevention of Cheating User: Different from e-cash which cannot prevent
users from cheating or double-spending (it can only detect such behaviour),
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our payment system supports prevention of any cheating behaviour. If any
party does not follow the algorithms, the other party can stop providing
service immediately. This protects the supplier from being cheated. (The
difference between prevention and detection of cheating user will be further
explained in Section 1.2.)

2. Support Judging Authority (JA): In case there are some disputes be-
tween two parties (maybe due to some physical factors such as sudden break-
down of electricity supply), the affected party may submit all transactions to
a Judging Authority. The authority can reveal the identity and investigate
the situation.

3. Low Implementation Cost: Our system does not require any special secu-
rity device (e.g. different from ATM). Our security comes from cryptographic
algorithms. Our system is also efficient enough to be implemented into mo-
bile device (e.g. smart phone) for the user side.
Also different from some of the current theft-tracing anti-stolen devices, we
do not require any GPS or GSM communication. Thus the cost is much
cheaper than those devices.

4. Lost Protection of Prepaid Credit: Since our system is account based,
we support lost protection. That is, even if the user has lost his mobile device
(used for charging), the credit stored in his account cannot be used by any
party. He can regain his credit by providing some authenticated information.

We further analyze our system in security, efficiency and cost to prove that it is
practical to be used.

1.2 Existing Payment Systems

There are many different forms of existing payment systems. We examine some
of the most practical ones and explain why they are not suitable for electric
vehicles.

– Paper cash: Different from gas stations, charging stations for electric ve-
hicles are all machine operated. If they allow cash payment, the installation
costs will be very large due to high security requirement of cash machine
(similar to those for ATM). Note that currently there are many ticketing
machine installed in car parks or automatic selling machines (e.g. selling
softdrink) which can accept paper cash or coins. However, as the cost for car
park or softdrink is far less than charging electric vehicles, the physical secu-
rity requirement can be much lower. Thus although paper cash can provide
anonymity, the high installation and running cost are the main obstacles
that are disfavoured by supplier to adopt paper cash as a kind of payment
system in the charging station.

– E-cash: Alternatively, e-cash is the electronic form of paper cash which also
provides anonymity. However, e-cash is mainly used in small amount trans-
action (e.g. a few dollars) instead of large amount transaction (e.g. a few
hundred dollars) due to security and efficiency concerns. In order to support
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two-way payments, transferrable e-cash is needed and it has been shown com-
plexity of transferrable e-cash grows linearly in the number of transfer sup-
ported [8]1. Apart from that, off-line e-cash cannot provide double-spending
prevention. It can only detect double-spending and reveal the identity of the
double-spender when the electronic coins are deposited back to the bank. If a
cheating user double-spends many times before going bankrupt, the deceived
shops cannot get back the money that they deserved to have. Furthermore,
different from credit card, e-cash does not provide lost protection. No one
will put a few thousand or even a few hundred dollars in the e-wallet. Thus
e-cash is only suitable for small amount transaction. Charging for an electric
vehicle definitely does not belong to the small amount transaction category.

– Prepaid cash card or cash coupon: Prepaid cash card or cash coupon is
another common way of anonymous e-payment. However, similar to e-cash,
it does not support lost protection. Executing large amount transaction may
bring inconvenience to user: They may neither want to bring many coupons
together, nor buy the coupons or topup everyday. In addition, it also does
not fully support 2-ways transactions, which is a necessary requirement for
the future Vehicle-to-grid system.

– Paypal: Paypal is a kind of most commonly used electronic prepaid sys-
tem. However, it requires a third party (PayPal company). If the authority
colludes with the PayPal company (e.g. by telling the PayPal company the
exact time and location of a particular transaction), the user can be traced.
Thus we regard PayPal providing partial location privacy only.

– Credit card: Credit card is a widely adopted payment system for large
amount transaction instead. It also supports 2-ways transaction. Neverthe-
less, credit card is not anonymous. Due to the frequent charging requirement
for electric vehicles, location privacy will be lost by tracing the credit card
payment easily.

Note that none of the existing payment systems can support traceability of stolen
cars. We summarize the comparison of our system with some existing payment
systems in Table 1.

2 System Architecture

2.1 Entities

We consider a system which is composed of the following entities:

1. User: A user refers to an electric vehicle or driver, which depends on the
mode of operation (will be defined in next Section).

2. Supplier: It refers to the power grid company. It supplies (sells) electricity
to the cars, and also collects (buy) electricity back from the cars. It is re-
sponsible for account opening. Every user needs to obtain an account from
it and deposits some money into this account.

1 A recent approach achieve constant size transferrable e-cash, at the expense that the
user storage is linear to the number of his spent coins[9].
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Table 1. Comparison of existing payment systems

Scheme
Location Prevent. of Support Low imple- Lost 2-ways Stolen car
privacy cheating JA ment cost protect. transac. trace.

Paper cash ✓ ✓ × × × ✓ ×

Prepaid cashcard ✓ ✓ × ✓ × ̸ ×

/Cash coupon

Transferrable ✓ × ̸
a

✓ × ✓ ×

e-cash

Credit card × ✓ ✓ ✓ ✓ ✓ ×

PayPal ̸ ✓ ✓ ✓ ✓ ✓ ×

Our system ✓ ✓ ✓ ✓ ✓ ✓ ✓

a Most of the existing e-cash systems do not support judge, though some of them (e.g.
[10–13]) do support judge.

3. Judging Authority (JA): It is responsible to investigate into some dis-
puted transactions between user and power company. It has the power to
open any transaction in case of any dispute. It maybe the government au-
thority or the court.

2.2 Overall Structure

We briefly describe the overall structure of our system. It can be implemented
in two different modes:

1. Portable Mode: In the portable mode, the account unit for user is per
person. That is, if a person has more than one electric vehicles, he can use one
single account to manage all cars. The hardware device for the user interface
will be a portable device (e.g. smart phone). Note that data connectivity is
not required.
When the user is driving his car to the charging station, his portable device
will communicate with the charging station. Thus traceability of stolen car
cannot be operated under this mode. This mode maybe suitable for those
users who want to manage more than one car in a single account; or if the
car is driven by different persons everyday (e.g. taxi).

2. Embedded Mode: In the embedded mode, the account unit for user is per
car. That is, one single car has an unique account. The hardware device for
the user interface will be an In-Car-Unit.
Traceability of stolen car is supported under this mode. This maybe suitable
for those users whose car is used by themselves or their family only. Similar
to portable mode, data connectivity is not required. However, a USB storage
device (e.g. USB thumb drive) is needed in order to support traceability of
stolen car.



Enhancing Location Privacy for Electric Vehicles (at the Right time) 403

Our system contains the following processes regardless of the running mode:

– Registration: The user contacts the supplier for registration and account
opening. He needs to pay a deposit for his account so that the balance
should have at least D dollars. The supplier returns a token to the user
which stores the current value of this account. The user may store this token
into his smart phone or In-Car-Unit. (The supplier may develop a new app,
or a new physical device for this.) The token is valid for a period of time
(e.g. a month). The user needs to update the token before the expiration
date.

– Charging: The user presents his token (from his smart phone) and carries an
interactive protocol with the charging station, which first checks with the grid
management server to confirm the grid capacity is fine. If the price is dynamic
(if it is within peak period the price maybe set higher) it further checks
with the grid management server for the updated price. Other than that,
the charging station works as a front-end terminal and the major
(cryptographic) computation (e.g. those involving secret key) is
done in the supplier’s billing server. It communicates with the billing
server to make sure the token is valid. If it is valid and the balance of the user
account is larger than the price of the requested service, the charging station
starts to charge the car. The user obtains an updated token with decremented
balance and stores it into the his portable device (e.g. smartphone).
The process is described in Figure 1.

Fig. 1. Charging/Topup Scenario
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– Discharging or Topup: The process is similar to charging. The only difference
is that upon completion of the protocol, the user’s updated token contains
an incremented balance.

– Statement: Every statement period, the user goes to the supplier to topup
the balance in the account if it is less than D dollars and update his token.

– Tracing Stolen Car (Embedded mode): If the user’s car has been stolen, he
needs to retrieve from his backup token and sends the backup token to the
supplier. It checks whether this information is correct. If yes, in case a vehicle
using this token is being charged in any charging station, it will report to
the user and the police about the location.

– Report of Lost Token (Optional): If the user has backuped every newly gen-
erated token, in case he has lost his token (e.g. if his smart phone is stolen),
he needs to retrieve from his backup and sends the backup token to the sup-
plier. It checks whether this information is correct. If yes, it will block any
party from using his lost token. The process is similar to the report of lost
credit card.

– Open (Optional): If the user has some disputes with the supplier, he may
reveal his identity together with the corresponding transaction information
(e.g. location, time) to the JA. It may also request the supplier to provide
related information and investigate this particular transaction.

3 Primitives

In this section we first review some cryptographic primitives that will be used.

Bilinear Pairing. Bilinear pairing (or bilinear map) is a popular building block
in public key cryptography. We briefly review its property here. Let G,GT be
two cyclic groups of prime order p where p is of λ-bit for some security parameter
λ. A function ê ∶ G ×G→ GT is called a bilinear pairing if the following holds:

1. Bilinearity: For all g, h ∈ G, and a, b ∈ Zp, ê(g
a, hb) = ê(g, h)ab.

2. Non-degeneracy: There exists g ∈ G such that ê(g, g) has order p in GT .
3. Computability: It is efficient to compute ê(g, h) for all g, h ∈ G.

Commitment. Our system uses the well known commitment scheme due to Ped-
ersen [14]. Let G be a cyclic group of prime order p and g, h be generators of G.
On input a value x ∈ Zp, the committer randomly chooses r ∈ Zp, computes and
outputs C = gxhr as a commitment of value x. To reveal the value committed in
C, the committer outputs (x, r). Everyone can test if C = gxhr. Sometimes we
say r is the opening of C with respect to x. One could extend the commitment
scheme to allow committing a tuple of elements (x1, . . . , xn) at the same time
by setting C = gx1

1 ⋯g
xn
n hr, where gi are independent generators of G.

We use CMT(x) (resp. CMT(x1, . . . , xn)) to denote a Pedersen Commitment
of a value x (resp. (x1, . . . , xn)). Note that this commitment scheme is homo-
morphic: CMT(a)∗CMT(b) gives CMT(a+ b) and the opening of the later is the
sum of that of the formers.
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BBS+ Signature. We employ the signature scheme proposed by Au et al. [15],
which is based on the schemes of Camenisch and Lysyanskaya [16] and of Boneh
et al. [17]. Their scheme is called BBS+ signature. Due to space limitation, full
description of BBS+ signature will be given in the full version of this paper [18].

Zero-knowledge Proof. A zero-knowledge proof [19] is an interactive protocol
for one party, the prover, to prove to another party, the verifier, that some
statement is true, without revealing anything other than the veracity of the
statement. We follow the notation introduced by Camenisch and Stadler [20].
For example, PK{(x) ∶ y = gx} denotes a zero-knowledge proof that the prover
knows an integer x such that the statement y = gx holds. For the details, reader
may refer to the full version of this paper [18].

4 Our Proposed System

4.1 Assumptions

As discussed, our system is constructed using cryptographic techniques and
hence, it does not depend on any proprietary hardware. Nonetheless, we would
like to re-state that security of any cryptographic algorithms depends on the
confidentiality of the secret key. Implicitly, when we state some values are to
be kept secret, we assume they are stored privately inside the user’s device. For
example, the secret value stored inside the user’s device (e.g. the smartphone)
should be kept away from the adversary. This is assumed to be achieved by ex-
ternal means, such as keeping the device to be always in possession or set it to
be password-protected.

Our system can only protect location privacy of the payment system and
when considering its physical security, it is out of the scope of this paper. For
instance, suppose a physical camera is installed in each charging station and
it records the physical identifier of the vehicle (e.g. registration plate number),
and therefore, it is obvious that location privacy cannot be maintained. This is
analogous to the use of physical money. Suppose the cash register records the
image of the payer, then it is always possible to link the payment from the user
across different locations, and therefore anonymity is no longer preserved.

We further assume that all communication channels are encrypted and au-
thenticated. When considering some attacks such as IP hijacking, distributed
denial-of-service attack, man-in-the-middle attack etc., it is out of the scope of
this paper.

4.2 High Level Description

Our construction is motivated from the reputation-based blacklistable anony-
mous authentication system [21]. Authentication in their system results in an
increase or decrease in the user reputation, which is stored at the user side. We
adapt their idea and view the reputation as the user’s balance. A top-up trans-
action is an authentication that leads to an increase in reputation. Likewise, a
charging transaction is an authentication that leads to a decrease in reputation.
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– Registration: User pays a deposit D for registration. The balance B of the
user is the value D. Supplier assigns a unique identifier I to the user. User
chooses a random number s. User sends CMT(I,B, s) to the supplier and
obtains σs which is a BBS+ signature on (I,B, s). Due to the property of
the commitment scheme, the value s remains hidden to the supplier. User
stores (σs, I,B, s) as his secret.

– Charging: The user charges his vehicle with fee v as follow. User is in pos-
session of (σs, I,B, s). He/she first checks if the balance B > v. If yes, the
user randomly chooses a number s′ and sends CMT(I), CMT(B), CMT(B −
v), CMT(s′), s to the supplier. The user proves to the supplier, in zero-
knowledge, that he/she knows four values (σs, I, B, s) such that the follow-
ing statements are true:

1. σs is a valid signature on (I,B, s)
2. CMT(I), CMT(B), CMT(B − v), CMT(s′) are formed correctly
3. B − v > 0

The supplier further checks that s has never been shown by anybody. Note
that this check is necessary as it ensures the user cannot use his previous
balance after making a payment. After that, the supplier creates a new sig-
nature σs′ on the tuple (I,B′, s′) where B′ = B − v for the user.
We stress again that in the process, all that the supplier can infer are the
commitments, but not the actual values, of I, B, B − v, s′, and thus the
user’s identity remains hidden.

– Discharging or Topup: Discharging or topup the balance is similar to the
Charging process. User is in possession of (σs, I,B, s). Let say the topup
amount is v. The user chooses a new random number s′ and sends CMT(I),
CMT(B), CMT(s′), s to the supplier. The user proves to the supplier, in
zero-knowledge, that he/she knows four values (σs, I, B, s) such that the
following statements are true:

1. σs is a valid signature on (I,B, s)
2. CMT(I), CMT(B), CMT(s′) are formed correctly

The supplier further checks that s has never been shown by anybody. After
that, the supplier creates CMT(B+v) from CMT(B) and v and issues a new
signature σs′ on the tuple (I,B′, s′) where B′ = B + v for the user.

– Statement: Every statement period, the user sends (I, B, s) to the supplier,
along with a proof that he has a signature σs on the tuple (I,B, s). The
supplier further checks s has never been shown by anybody. The user pays the
amount d such that D = B +d. The user then sends CMT(s′) to the supplier
and obtains a new signature σs′ from the supplier which is a signature on
(I,D, s′).

– Tracing Stolen Car: (Embedded mode) Assume the user has done a backup
for every newly generated token. In case of his car being stolen, the user
could report to the supplier immediately and present the value s so that the
use of the stolen device could be identified. Any charging station receiving
this s in the future will terminate the service and report to the user and the
police.
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– Report of Lost Token: (Optional) Assume the user has done a backup for
every newly generated token. In case of losing the token (e.g. iPod has been
lost or stolen), the user could report to the supplier immediately and present
the value s so that the use of the stolen device could be identified. Then, a
new token containing the same balance could be issued to the user easily.
Further details are discussed in Section 5.

– Open: (Optional) Observe that the user secret after each operations contains
the same identifier I and that I is either sent in plain (in the statement
protocol) or in the commitment CMT(I) (in all other protocols). Suppose
we replace the function CMT(I) with an encryption of I under the public
key of a trusted party called judge, that party would be capable of revealing
the identifier of the user in any transactions. Further details are discussed in
Section 5.

4.3 Detailed Description

We first describe our system under the portable mode. Later we will show how
to modify it into the embedded mode.

Portable Mode

– System Setup: Let ê ∶ G×G→ GT be a bilinear map as discussed. In practice,
we could use asymmetric pairing (such as type D pairing) for better space
efficiency. G will be chosen so that it is of prime order p where p is of length
λ, the security parameter. Let g, g0, g1, g2, g3 ∈R G. The supplier randomly
picks γ ∈R Zp and computes w = gγ . The system parameter is param =
(G,GT , ê, g, g0, g1, g2, g3,w) and the secret key of the supplier is γ.

– Registration: Each user is assigned a unique identity I in the system. In
practice, this could be his driver license number. Let D be the deposit. The
user engages the supplier and enrolls into the system as follow.

1. The user randomly picks y′, s ∈R Zp, computes and sends C = gy
′

0 g
s
3 to

the supplier, along with the following proof: PK1{(y
′, s) ∶ C = gy

′

0 g
s
3}.

PK1 assures the supplier that the value C is computed correctly. Precise
description of the proof (and subsequent proofs) will be given in the full
version of this paper [18].

2. The supplier randomly picks y′′, e ∈R Zp, computes A = (Cggy
′′

0 g
I
1g

D
2 )

1
e+γ

and returns (A,y′′, e) to the user.

3. The user computes y = y′+y′′ and checks if ê(A,wge)
?
= ê(ggy0g

I
1g

D
2 g

s
3, g).

User parses σs = (A,e, y) and stores a four tuple (σs, I,D, s). Note that
σs is a BBS+ signature on the tuple (I,D, s).

The registration protocol is shown in figure 2.
– Charging: Let v be the value of the transaction. The user parses his storage

as (σ̃s ∶= (Ã, ẽ, ỹ), I, B̃, s̃) and checks if B̃ − v ≥ 0. Next, they engages in the
following protocol.
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Fig. 2. Registration

1. The user randomly picks y′, s ∈R Zp, computes and sends C = gy
′

0 g
I
1g

B̃
2 g

s
3

as well as s̃ to the supplier, along with the following proof: PK2{(Ã, ẽ, ỹ, I,

B̃, y′, s) ∶ C = gy
′

0 g
I
1g

B̃
2 g

s
3 ∧ ê(Ã,wg

ẽ
) = ê(ggỹ0g

I
1g

B̃
2 g

s̃
3, g) ∧D ≥ B̃ − v ≥ 0}.

2. The supplier checks that s̃ has never been used2 and randomly picks

y′′, e ∈R Zp, computes A = (Cggy
′′

0 g
−v
2 )

1
e+γ and returns (A,y′′, e) to the

user.

3. The user computes y = y′ + y′′, B = B̃ − v and checks if ê(A,wge)
?
=

ê(ggy0g
I
1g

B
2 g

s
3, g). User parses σs = (A,e, y) and stores a four tuple (σs, I,

B, s). Note that σs is a BBS+ signature on the tuple (I,B, s).

The charging protocol is shown in figure 3.

– Topup: Let v be the topup value. The user parses his storage as (σ̃s ∶=

(Ã, ẽ, ỹ), I, B̃, s̃) and checks if B̃ + v ≤ D. We assume D is the maximum
account balance. Next, they engages in the following protocol.

1. The user randomly picks y′, s ∈R Zp, computes and sends C = gy
′

0 g
I
1g

B̃
2 g

s
3

as well as s̃ to the supplier, along with the following proof: PK3{(Ã, ẽ, ỹ, I,

B̃, y′, s) ∶ C = gy
′

0 g
I
1g

B̃
2 g

s
3 ∧ ê(Ã,wg

ẽ
) = ê(ggỹ0g

I
1g

B̃
2 g

s̃
3, g) ∧D ≥ B̃ + v ≥ 0}.

2. The supplier checks that s̃ has never been used and randomly picks

y′′, e ∈R Zp, computes A = (Cggy
′′

0 g
v
2)

1
e+γ and returns (A,y′′, e) to the

user.

2 The practical issue of the checking process will be described in the full version of
this paper [18].



Enhancing Location Privacy for Electric Vehicles (at the Right time) 409

Fig. 3. Charging

3. The user computes y = y′ + y′′, B = B̃ + v and checks if ê(A,wge)
?
=

ê(ggy0g
I
1g

B
2 g

s
3, g). User parses σs = (A,e, y) and stores a four tuple (σs, I,

B, s). Note that σs is a BBS+ signature on the tuple (I,B, s).
– Statement: The user parses his storage as (σ̃s ∶= (Ã, ẽ, ỹ), I, B̃, s̃) and pays

v =D− B̃ to settle his account. Next, they engages in the following protocol.

1. The user randomly picks y′, s ∈R Zp, computes and sends C = gy
′

0 g
s
3 as

well as s̃, I, B̃ to the supplier, along with the following proof: PK4{(Ã, ẽ,

ỹ, y′, s) ∶ C = gy
′

0 g
s
3 ∧ ê(Ã,wg

ẽ
) = ê(ggỹ0g

I
1g

B̃
2 g

s̃
3, g)}.

2. The supplier checks that s̃ has never been used and randomly picks

y′′, e ∈R Zp, computes A = (Cggy
′′

0 g
I
1g

D
2 )

1
e+γ and returns (A,y′′, e) to the

user.
3. The user computes y = y′+y′′ and checks if ê(A,wge)

?
= ê(ggy0g

I
1g

D
2 g

s
3, g).

User parses σs = (A,e, y) and stores a four tuple (σs, I,D, s). Note that
σs is a BBS+ signature on the tuple (I,D, s).

The statement protocol is shown in figure 4.

Embedded Mode: In embedded mode, all operations are the same, except that
on the user side operations are run in the In-Car-Unit instead of the portable
device. We assume this In-Car-Unit is tamper resistance in order to support
tracing of stolen car.
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Fig. 4. Statement

In order to support traceability of stolen car, the user needs to backup the
newly generated token after each operation (including Registration, Charging,
Topup, Statement) into his backup device (e.g. USB thumb drive).

Tracing Stolen Car: In case the car is stolen and the user wants to trace his stolen
car, he can reveal his token {(A,e, y), I,D, s} to the supplier (and all charging
stations). Any charging station receiving the token containing s in the future
will refuse to provide service and report to the user and the police immediately
since that means the stolen car is at that charging station requesting a service.

Note that this requires the user to report the lost before the thief makes a
recharge. In this aspect it is similar to credit card. In our extension described
in Section 5.3, we discuss how the thief can be traced even if he/she makes a
recharge before the user’s report.

5 Extensions

5.1 Incorporating Token Expiry

In our basic construction, token never expires and the supplier needs to store
all the s forever. An expiration mechanism can be incorporated easily. Let
H ∶ {0,1}∗ → G be a collision-resistant hash function. Let T ∈ {0,1}∗ be the iden-
tifier of the current time period. In practice, T could be the bit string Jan2012,
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Feb2012, etc. The public parameter g1, g2, g3 in param is replaced with the hash
function H .

Let Tj be the current period and Tj+1 be the next period. For example, Tj =
Jan2012 and Tj+1 = Feb2012. In the protocols, the value gi will be replaced with
H(T, i) for i = 1 to 3. At the end of period Tj , all users will contact the supplier
in the statement protocol. During the execution of the protocol, gi = H(Tj+1, i)
will be used in the computation of the value A. Thus, in period Tj+1, the user
will be using gi =H(Tj+1, i) for charging and topup and the previous token will
not be usable.

Fig. 5. Timeline demonstrating the expiration mechanism

Of course, to accommodate the user who executes the statement protocol
before the end of Tj , both gi = H(Tj, i) and gi = H(Tj+1, i) will be accepted at
the end of period Tj . Fig.5 illustrates our idea. This extension does not alter the
efficiency of our system.

5.2 Incorporating Judge (Open Operation)

Sometimes giving user too much privacy is not preferable. Thus, it is natural
to introduce an external entity to the system, called judge, which is capable of
identifying the user in all transactions. The judge would be trusted to exhibit
its power in appropriate situation only, for example, under the court order. To
introduce this additional feature, we review another cryptographic tool called
verifiable encryption.

Verifiable Encryption. A verifiable encryption scheme is a public key encryp-
tion scheme with an additional feature. In its basic form, it allows a prover to
prove to a verifier that the plaintext PT encrypted in a known ciphertext CT
under the public key of a third party PKE satisfies some binary relation R.
The concept of verifiable encryption was introduce in [22]. In [23], it has been
shown that any public key encryption scheme can be turned into a verifiable
encryption scheme for all relation having a 3-move proof-of-knowledge protocol
(as known as honest verifier zero-knowledge protocol). An efficient construction
of such primitive has been proposed in [24].
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Introducing Judge in Our System. Let PKE be the public key of the

judge. Recall that in all our protocols, user is required to send C = gy
′

0 g
I
1g

B̃
2 g

s
3 (or

C = gy
′

0 g
s
3 in case B̃ and I are sent in plain in registration and statement). In our

extension, a user is required to produce a ciphertext CT which is the encryption
of (y′, I, B̃, s) under the public key PKE, and produces a proof that CT is the
encryption of the correct values with respect to C. In this case, the judge can
always decrypt CT and obtains the values (y′, I, B̃, s) and traces the action of
the user.

The most efficient verifiable encryption due to [24] has a message space of
Zn, where n is the product of two primes. One subtlety arises since the values
(y′, I, B̃, s) in our basic construction are treated as elements of Zp. Direct com-
bination of the two would not be secure since a cheating user can encrypt his
identity as I + kp for some integer k and produce a proof that he has encrypted
his identity. The decrypted value from the Judge would be I + kpmod n, which
may not be I mod p. To make it compatible with our system, we can change our
groups of prime order p to groups of composite number n. This change, however,
would make the pairing operation rather inefficient. The reason is that ∣p∣ = 170
would offer a similar security compared with ∣n∣ = 1024.

A more effective alternative is to employ the signature scheme [25] instead
of BBS+ if judge is introduced in our system3, which works in a cyclic group
of unknown order. In that case, (y′, I, B̃, s) are all treated as integers within a
specific range and the above attack is not possible.

5.3 Report of Lost Token/ Tracing Stolen Car

The user token is completely software-based. The user should backup his secret
(σs, I,B, s) in another USB storage device after each recharge or topup. He
sends the token to the supplier to report his lost. The supplier checks whether
it is a valid one. If yes, it extracts the value s and blocks any future transaction
involving s. The supplier also issues a new token to the user using Statement
operation associated with his remaining balance. This process is similar to the
traceability of stolen car described in the Section 4.3.

In the case of the lost token (or the lost car in the embedded mode) that
has been used by the thief already for recharge, it still could be located. In this
situation, the judge will open all transactions within the range of the electric
vehicle and look for the identity of the lost token/vehicle. Hence, the lost token
can still be traced.

6 Practicality Analysis

Due to space limitaion, efficiency, cost and security analysis data of our scheme
will be given in the full version of this paper [18].

3 In other words, BBS+ is more efficient in systems without the need of a Judge. With
judge, [25] will be more efficient.
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7 Concluding Remarks

In this paper, we presented a mechanism to enhance location privacy for electric
vehicles. Our proposed solution provides an anonymous payment system with
privacy protection support. In the case where traceability is required, such as
when the electric vehicle is stolen, this feature can also be provided. Hence, our
solution provides location privacy enhancement at the right time, which will
make the adoption of electric vehicles practical.

Our system provides an option to incorporate a judge who can open all trans-
actions in case of any dispute. Currently the judge cannot selectively open a
particular user but to open every user’s transactions. We leave it as an open
problem to allow the judge selectively open a particular user while keeping oth-
ers unopened.

We also note that the scheme described in this paper is specifically designed
for electric vehicles. However, we do not eliminate the possibility to apply our
scheme (or modified version) in other environments if they find it suitable.
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Abstract. Given the requirements of fast processing and the complex-
ity of RF ranging systems, distance bounding protocols have been chal-
lenging to implement so far; only few designs have been proposed and
implemented. Currently, the most efficient implementation of distance
bounding protocols uses analog processing and enables the prover to
receive a message, process it and transmit the reply within 1 ns, two or-
ders of magnitude faster than the most efficient digital implementation.
However, even if implementing distance bounding using analog process-
ing clearly provides tighter security guarantees than digital implementa-
tions, existing analog implementations do not support resilience against
Terrorist Fraud attacks; they protect only against Distance Fraud and
Mafia Fraud attacks. We address this problem and propose a new, hy-
brid digital-analog design that enables the implementation of Terrorist
Fraud resilient distance bounding protocols. We introduce a novel attack,
which we refer to as the “double read-out” attack and show that our pro-
posed system is also secure against this attack. Our system consists of a
prototype prover that provides strong security guarantees: if a dishonest
prover performs the Terrorist Fraud attack, it can cheat on its distance
bound to the verifier only up to 4.5m and if it performs Distance Fraud
or Mafia Fraud attacks up to 0.41m. Finally, we show that our system
can be used to implement existing (Terrorist Fraud resilient) distance
bounding protocols (e.g., the Swiss Knife and Hancke-Kuhn protocol)
without requiring protocol modifications.

Keywords: Secure Ranging, Distance Bounding, Terrorist Fraud.

1 Introduction

Wireless localization solutions that emerged in the last decade [19] promise to
support a broad set of security- and safety-critical applications, including peo-
ple and asset tracking, emergency and rescue support [9], secure routing [16]
and access control [12,24]. Given the sensitivity of location information in those
applications, this information needs to be obtained and/or verified securely.
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One of the most prominent problems in the field of secure localization is
that of proximity verification: how can one device (the verifier) establish its dis-
tance, either exact or as an upper bound to another device (the prover). This
problem was first introduced in [4] and prompted a design of a set of distance
bounding protocols [29,30,14,25,20,26,5,6,21,22,27]. Broader deployment of wire-
less networks and the attacks on proximity-based access control systems (e.g.,
in cars [10]), routing [15] and payment systems [11] led to an increased interest
in the design and implementation of distance bounding protocols [18,29,25,13].
The security of these protocols was mainly analyzed against three types of at-
tacks: Distance Fraud attacks, Mafia Fraud attacks and Terrorist Fraud. Distance
bounding protocols were further formally analyzed in a number of works [2,5,3].

Distance bounding protocols rely on the exchange of timed challenges and
responses between the verifier and the prover. However, given that the prover is
not trusted by the verifier and no assumptions can be made about its processing
capabilities, the time that the prover spends in processing the verifier’s challenge
should be negligible compared to the measured round-trip time, which depends
on the speed of light. If the verifier would overestimate the prover’s processing
time (i.e., the prover is able to process signals in a shorter time than expected),
the prover would be able to pretend to be closer to the verifier. The challenge
in implementing distance bounding protocols is therefore first to implement a
prover that is able to receive, process and transmit signals in negligible time.

Although a number of protocols have been proposed, it is not clear if the pro-
posed distance bounding protocols can be implemented with the required tight
processing (and therefore security) guarantees or can be integrated within the
existing RF ranging systems. For example, almost all distance bounding proto-
cols assume that a prover will be able to receive a single bit of the challenge,
XOR it or compare it with some locally stored value, and transmit the response;
all within negligible time. XORs and comparisons require digital processing and
the most efficient implementation in the open literature that can realize such
distance bounding protocols requires 170 ns [28] and thus enables the attacker
to cheat on its distance by at most 27m. An alternative implementation of dis-
tance bounding protocols, using analog processing was proposed in [25] enabling
signal reception/processing/transmission within 1 ns and thus provided a tight
security guarantee of 15 cm. Instead of using XOR or comparison, this design re-
lied on a processing function called Challenge Reflection with Channel Selection
(CRCS), which can be implemented using only analog processing techniques.
In [13], a design for implementing a secure distance bounding channel for the
rapid bit-exchange in a near-field environment was presented. The experimental
implementation used improvised wideband pulses and achieved a distance bound
of 1m in the case of Mafia Fraud attacks and 11m for Distance Frauds.

However, even if implementing distance bounding using analog processing
techniques clearly provides tighter security guarantees than digital implemen-
tations, existing analog implementations do not support resilience against Ter-
rorist Fraud attacks; they are only suited for the prevention of Distance Fraud
and Mafia Fraud attacks. We address this problem and propose a new, hybrid
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digital-analog design of a distance bounding system called Switched Challenge
Reflector with Carrier Switching that enables the implementation of Terrorist
Fraud resilient distance bounding protocols such as the Swiss Knife Protocol [17].
Our system does not introduce new processing functions at the prover (such
as CRCS); instead, it uses the “bit comparison” function that is commonly
used in a number of distance bounding protocols including the Hancke-Kuhn
protocol [14].

In our proposed design, the verifier transmits challenges on two different car-
rier frequencies; the switching time synchronized with the prover. Four possible
reply channels are created before activating the appropriate reflected carrier fre-
quency. Based on the credentials held by the prover and the carrier frequency of
the received challenge, an activation circuity inside the system appropriately en-
ables the reply channel. Analysis of our prototype shows that the verifier can be
cheated only up to 4.5m in the scenario of a Terrorist Fraud attack and further
only up to 0.41m under a Distance or Mafia Fraud attacker model. Given its
design, our system can be used to implement existing Terrorist Fraud resilient
distance bounding protocols (e.g., the Swiss Knife protocol). Furthermore, it can
be used to implement all distance bounding protocols that follow the Hancke-
Kuhn construction without requiring any modifications of the protocol.

2 Background

The goal of a distance bounding protocol is that a verifier establishes an upper
bound on its distance to a prover. Although many distance bounding protocols
were proposed so far [4,23,29,20,14,30,17], they all follow a similar pattern. The
protocols consist of either two or three phases. In the first phase, the verifier
and the prover agree or commit to the nonces that will be used in the rest of
the protocol. In the second phase, also called the rapid bit exchange, the verifier
challenges the prover with a number of single-bit challenges to which the prover
replies with single-bit replies. The verifier measures the round-trip times of these
challenge-reply pairs, based on which the verifier estimates its upper distance
bound to the prover. The distance D between the verifier and the prover is

calculated using the equation D =
c.(tRTOF−tp)

2 , where c is the speed of light
(3 ·108m/s), tRTOF is the round-trip time elapsed and tp is the processing delay
at the prover before responding to the challenge. The final phase of the protocol
is used for confirmation and authentication; note that in a number of protocols
this last phase is not present.

Traditionally, the security of distance bounding protocols was evaluated by
analyzing their resilience against three types of attacks: Distance Fraud, Mafia
Fraud and Terrorist Fraud attacks. In a Distance Fraud attack a dishonest prover
tries to shorten the distance measured by the verifier (e.g., by sending its replies
before receiving the challenges). This type of attack is executed by the dishonest
prover alone, without collusion with other (external) parties.

Mafia Fraud attacks, also called relay attacks, were first described by Desmedt
[8]. In this type of attack, both the prover and verifier are honest. The external
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attacker attempts to shorten the distance measured between the honest prover
and the verifier by relaying the communications between the entities.

Finally, in the Terrorist Fraud attacks, a dishonest prover collaborates with
an external attacker to convince the verifier that he is closer than he really is.
All countermeasures to Terrorist Fraud make the assumption that the dishonest
prover is unwilling to reveal his long-term (private or secret) key to the attacker
that he collaborates with. Possible grounds for this unwillingness are imper-
sonation, i. e., the external attacker can later use the key to impersonate the
dishonest prover, and traceability, i. e., the key may later be used to implicate
the dishonest prover in performing a Terrorist Fraud attack. Furthermore, from
the perspective of the verifier, it is impossible to distinguish between the external
attacker and the prover if the attacker knows the long term key of the prover.
Recently, another type of an attack, called the Distance Hijacking attack was
introduced [7]. In this attack a dishonest prover convinces the verifier that it is
at a distance at which some other honest prover resides, which differs from the
actual physical distance of the dishonest prover to the verifier.

2.1 Terrorist Fraud Resilient Protocols

Terrorist Fraud resilient protocols preserve the basic structure of distance bound-
ing protocols, but bind the prover’s long term secret to the nonces that are ex-
changed in the protocol. This prevents the prover from simply handing over the
nonces to the external attacker without disclosing its long term secret.

We illustrate the operation of these protocols through an example: the Swiss
Knife protocol. This protocol was proposed by Kim et al. in 2009 [17] (see
Fig. 1). The protocol assumes that the verifier has a database containing prover
identities (ID) and their symmetric keys (x) and that each prover possesses his
own identifier and key. The protocol is executed in three phases.

Preparation phase: From its locally generated nonce NB, a shared secret x and
a constant CB, the prover creates two m-bit strings (R0 and R1) using a keyed
pseudorandom function f . Disclosing both R0 and R1 would immediately reveal
m bits of x.

Rapid-bit-exchange phase: In each round i of the rapid-bit-exchange phase, the
verifier sends a random single-bit challenge ci. Upon reception of c′i, the prover
replies with the value taken from R0

i , if c′i = 0 and from R1
i , if c′i = 1. c′i

denotes the modification of ci over the channel either due to an attack or due to
transmission errors.

Concluding phase: The prover sends a Message Authentication Code (MAC)
computed over the nonces and received challenges. The verifier then makes a
number of checks: he tries to find an entry x in his database for which the MAC
is valid; he checks if the number of transmission errors in the challenges are not
too high; if the number of incorrect responses to correctly received challenges is
not too high; and if the responses were sent in time. If all these checks pass, the
verifier authenticates itself to the prover by computing a MAC on the prover’s
nonce NB.
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Fig. 1. The Swiss Knife protocol. Picture adapted from [17]

In this protocol, the values of the registersR0 and R1 are bound to the prover’s
long term secret x. If the prover would like to perform a terrorist attack, it would
need to give R0 and R1 to the external attacker, thus disclosing x.

2.2 Implementations of Distance Bounding Protocols

The security of distance bounding protocols largely depends on the assump-
tion that the prover’s processing time is negligible compared to the measured
challenge-response round-trip times. Given that the verifier does not trust the
prover and cannot estimate the prover’s hardware and processing capabilities,
the safest assumption that the verifier can make is that the prover is able to
process the challenges and transmit the replies in negligible time. If the verifier
overestimates the prover’s processing time (i.e., the prover is able to process
signals in a shorter time than expected), the prover would be able to pretend
to be closer, thus violating the distance bound. The challenge in implementing
distance bounding protocols is therefore first to implement a prover that is able
to receive, process and transmit signals in negligible time.

Implementations of distance bounding protocols took two distinct directions.
One set of solutions focused on digital signal processing, that would enable the
implementation of arbitrary processing functions at the prover. In the case of
the Swiss Knife protocols, the prover’s processing function is the bit comparison
(interpretation of the verifier’s challenge bit) and the read-out of the register
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value. This processing function was initially proposed in the Hancke-Kuhn pro-
tocol [14]. In the Brands and Chaum’s distance bounding protocol, the prover’s
processing function is an XOR; upon receiving the challenge from the verifier,
the prover XORs the challenge bit with a locally stored bit. In [28] Tippenhauer
presented an implementation of a digital distance bounding prover that is able
to receiver a challenge bit, XOR it with a locally stored bit and transmit the
computed response within 170ns.

Another set of solutions focused on analog signal processing. One such solution
was proposed in [25] and is based on challenge reflection. The challenge signal
sent by the verifier is directly retransmitted by the prover without demodulation
and remodulation of the reply signal. This resulted in a small processing delay
in the order of nanoseconds. To realize this solution, the authors modified the
processing function, such that it can be implemented using solely analog pro-
cessing, without requiring the prover to digitize the received challenges before
replying. The resulting scheme ended up being much more efficient than distance
bounding implementations that rely on digital processing, but did not allow the
implementation of Terrorist Fraud resilient distance bounding protocols.

This means that, so far, in the space of distance bounding protocol imple-
mentations, we could either build efficient implementations, that resist Distance
Fraud and Mafia Fraud but not Terrorist Fraud attacks, or less efficient imple-
mentations that resist all three types of attacks.

3 Switched Challenge Reflector with Carrier Shifting

As discussed in Section 2, one of the open problems in distance bounding proto-
col design space is the realization of Terrorist Fraud resilient distance bounding
with low processing delay at the prover. Prover designs based on digital signal
processing techniques allow implementation of processing functions such as XOR
or register read-out based on challenge bits. However, the process of demodu-
lating the received challenge, computing the response (e.g., XOR with a shared
secret), modulating and transmitting back the response incurs significant pro-
cessing delay. This delay allows attackers executing Distance and Mafia Frauds
to gain distance in the order of several tens of meters. Although solutions using
only analog processing techniques achieved low processing delay, implementing
processing functions such as register selections (critical for Terrorist Fraud re-
silience) gives rise to new attack scenarios. Due to the nature of analog signals
and components, such solutions based on register selection are vulnerable to a
new attack that we call the “double read-out” attack (detailed in Section 4)
which could potentially leak the long-term shared secret. Here we present a hy-
brid digital-analog solution to this problem, which we call Switched Challenge
Reflector with Carrier Shifting (SCRCS). We show that a prover implementing
SCRCS has low processing delay and resists not only Mafia and Distance Frauds
but also Terrorist Fraud attacks without allowing any possible “double read-out”
attacks.
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3.1 Design Overview

In Terrorist Fraud resilient protocols [26,17,30], the verifier challenges the prover
with randomly selected bits; in each of the m rounds, based on the received
challenge bit the prover replies with a bit from one of the two local registers.
The prover’s processing therefore consists of receiving the challenge bit and
then transmitting a bit from one of the registers, selected based on the received
challenge bit. We design SCRCS to implement this functionality.

In our system the verifier challenges the prover with a challenge signal c(t);
if the verifier wants the prover to respond with a value from register R0, it
transmits a signal on a predefined carrier frequency ω0 (encoding the challenge
bit “0”) and if it wants to query R1, it transmits on the carrier frequency ω1

(thus encoding the challenge bit “1”).
The prover implements switched challenge reflection with carrier shifting. Fig-

ure 2 shows the two main building blocks of the prover: (i) Channel Shifter and
(ii) Switched Channel Activator. The prover takes as input the challenge sig-
nal c(t), which will be at the carrier frequency ω0 or ω1; its Channel Shifter
component (details in Section 3.2) creates two copies of the received signal: at
ω0 + ωΔ and ω0 − ωΔ or at ω1 + ωΔ and ω1 − ωΔ where ωΔ < (ω1 −ω0)/2. The
two created signals (e.g., the signals at ω0 ± ωΔ) are then fed into the Switched
Channel Activator circuit which then, depending on the current value of the
queried register, outputs (r(t)) only one of the two signals (e.g., the signal at
ω0 + ωΔ). The Switched Channel Activator circuit is constructed such that it
only allows either the signals at ω0 ± ωΔ or signals at ω1 ± ωΔ but not both
simultaneously.

The start of each rapid bit exchange round i.e., the times at which the verifier
switches its challenge carrier frequency is synchronized with the prover. This is
achieved by the verifier sending an initial preamble defining the exact starting
time of the rounds in the rapid-bit exchange phase. This allows the prover to
provide an accurate clock to the switched channel activator block (details in
Section 3.3) that is responsible for enabling the appropriate reply channel.

Below we discuss our prover design in more detail.

3.2 Channel Shifter

The channel shifter receives the incoming challenge signal c′(t) and applies filters
creating four possible reply channels. Figure 3 illustrates in detail the operation
of channel shifter module. The received challenges are mixed with an offset
frequency ωΔ (ωΔ < (ω1 − ω0)/2). Based on the carrier frequency on which
the challenge is transmitted, the mixer output signal consists of two out of four
possible frequency components (ω0 ± ωΔ or ω1 ± ωΔ). A set of low-pass and
high-pass filters separate the frequency components resulting in four possible
reply channels. These are then fed into the switched channel activator block.
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Fig. 2. Overview of the switched challenge reflector with carrier shifting

Fig. 3. The channel shifter. The incoming signal c(t) contains the challenges on either
carrier frequency ω0 or ω1. After mixing c(t) with ωΔ, the signal is filtered appropriately
to generate the four possible response channels: ω0 − ωΔ,ω0 + ωΔ,ω1 − ωΔ,ω1 + ωΔ.

3.3 Switched Channel Activator

The switched channel activator module enables the appropriate reply channel
based on amount of energy detected in each of the four signals output by the
channel shifter. The module consists of two clocked registers R0 and R1, a chan-
nel activation circuitry and a memory element to store which channel was ac-
tivated every round as shown in Figure 4. Both the memory and registers R0

and R1 are clocked with the signal CLK, which signals the start of each round
in the rapid bit-exchange phase of the protocol. The output r(t) depends on
the carrier frequency of c′(t) and the content of R0 and R1 during the current
round. For example, if the challenge is sent on ωi, the output is on the channel
ωi +(2Ri− 1)ωΔ. The channel activation circuitry detects the carrier frequency
of the challenge signal based on energy detection. Once a channel is activated,
it will disable the other channel’s activation circuit (i.e. O1 = EN0).

Channel Activation: Figure 5 shows the internals of the channel activation
circuitry. The channel activation mechanism ensures that only one of the output
channels is activated in each round of the rapid-bit exchange. After this initial
activation, the channel then stays active for the remainder of the current round,
reflecting all challenges on this frequency. This selection requires an initial energy
and carrier detection, which takes δa time in each round of the rapid bit exchange.
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Fig. 4. Switched channel activator. The registers R0 and R1 select which two of the
four reply channels are used in this round. The channel in which sufficient energy is
encountered first gets enabled. After a channel is activated, it stays active until the end
of this rapid bit-exchange round while the other channels remain de-activated until the
end of this round.

After δa, the correct reply channel is activated and reflects c′(t) with very low
delay (incurred by mixing and filtering). The selection of the reply channel is
based on the first carrier frequency which contained energy above the threshold
TE. After each round in the rapid bit exchange, all reply channels are deactivated
by asserting the RST signal until energy is encountered again in the next round.

Security of Terrorist Fraud resilient protocols relies on the fact that extracting
the contents of both the registers R0 and R1 compromises the long term shared
secret. In fully digital implementation of provers it is not possible to read-out
both the register contents simultaneously. However, in our design due to the
nature of analog signals and components, there is a possibility of extracting
both register contents. We explain this in detail in Section 4. The important role
of the channel activation module is to prevent an attacker from executing such
double read-out attacks by ensuring only one reply channel is active at any given
point in time of a particular round.

Synchronization between the Verifier and Prover: Synchronization be-
tween the verifier and the prover is essential for easy verification of the reflected
signal later in the concluding phase of the protocol. As discussed in Section 3.1,
a preamble sequence transmitted by the verifier is used to establish this synchro-
nization and to generate the switched channel activator’s CLK signal. Using this
clock, channels are reset at the start of each round of the rapid bit-exchange.
It is important to note that the processing time of the preamble does not have
strict limitations or security implications. The prover can take some determinis-
tic time δp to process the preamble, as long as the challenge data sequence starts
at a time greater than δp after the preamble.
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Fig. 5. Internals of channel activation. We obtain a DC component of the squared
signal to detect energy in the channel and store the value for this round in a latch-like
circuit. The channel activation can be disabled by pulling EN (enable signal) low and
is automatically reset at the beginning of each round of the rapid-bit exchange (RST).

4 Security Analysis

We investigate the security impact of our proposed distance bounding system
with respect to each of the three attack scenarios. In addition, we consider a
fourth attack: double read-out attacks on Terrorist and Mafia Fraud resilient
systems with multiple registers at the prover side.

4.1 Resilience against Distance Fraud Attacks

In Distance Fraud attacks, the malicious prover is further than D away from the
verifier. In order to shorten the measured distance, he will have to send the reply
signal r(t) earlier than an honest prover. To achieve this goal, the prover has
two options: (a) predict the challenge signal c(t), including the carrier frequency
used for each round, or (b) reflect c(t) in with less delay than expected.

The probability to correctly predict the challenge signal c(t) for m rounds of
rapid bit exchange depends on the nature of the baseband data signal modulated
on the challenge carrier. In the worst case, a constant data signal is modulated
on the carrier, which enables the malicious prover to predict it. In this case, our
system matches the security analysis of the distance bounding protocol it is used
in, as the malicious prover only has to predict which of the registers R0 and R1

gets queried in each round. If the baseband signal in c(t) contains data which is
unpredictable for the prover, the chance to send a early correct r(t) is strictly
smaller than predicted by the overlying protocol. An exact specification depends
on the nature of the baseband data signal.

In the following, we analyze the security impact of timing parameters (see
Figure 6).

Reflection Delay (δr): Even if the malicious prover can reflect the challenge
with less delay than expected, this will only yield an improvement in the order
of nanoseconds. In our implementation, the reflection delay δr once the channel
is activated is around 3 ns. This means the attacker can only gain a distance
advantage of 50 cm by reducing δr to 0.
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Fig. 6. Timing related variables for challenge reflection : In each round, channel activa-
tion adds an initial delay δa. After channel activation, the challenges are reflected with
a very small delay δr. The start time of each round depends on the initial preamble
synchronization by the prover.

Activation Delay (δa): If the prover is able to shorten δa, the correct channel
can be activated sooner. Nevertheless, this will not shorten the reflection delay
δr, and therefore not influence the measured distance for this attack case.

Round start time (δp): In our design, we assume that the prover was able to
establish the exact start time for each round due to a synchronization preamble
sent earlier. This time is required to successfully run the protocol—if the timing is
changed, the protocol will most likely fail, instead of returning a wrong distance
measure.

If the malicious prover (or external attacker) advances the local round start
time of the prover, the channel might be activated by the previous round’s carrier
frequency. This leads to incorrect reflection of the challenge in 50% of the rounds.
If the round start time at the prover is delayed, the prover will not switch to the
correct reply channel early enough. Since we have a strict requirement for δa,
the channel activation delay, this will also cause the protocol to fail. Therefore,
changing the round start time does not give an advantage to either malicious
prover or external attacker.

4.2 Resilience against Mafia Fraud Attacks

In the Mafia Fraud, an external attacker close to the verifier tries to impersonate
the prover. To successfully impersonate the prover, the attacker can either (a)
guess the content of the registers R0 and R1 in advance (with probability as
predicted in the original protocols), or (b) try to send early challenges to the
honest prover, to obtain the actual content of registers in advance. Since our
system allows the prover to record the received challenges, these can be sent
to the verifier in the concluding phase of the protocol later. If the protocol
performs this reconciliation on the received challenges, the attacker will have
to correctly predict the challenge carrier frequencies used in each round of the
rapid-bit-exchange to avoid detection. If no reconciliation phase is supported by
the protocol (as in [14]), the attacker’s chances are better as discussed in the
original protocol.
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As the Mafia Fraud is an external attack, the attacker cannot influence the
processing delays δp, δa and δr of an involved honest prover. The same reason-
ing as in the Distance Fraud attack holds good for the round start time. Any
modification to the round start time will only result in failure of the protocol
execution.

4.3 Resilience against Terrorist Fraud Attacks

In a Terrorist Fraud attack, an attacker close to the verifier tries to impersonate
the prover. The prover will support the attacker, if this does not compromise his
long-term secret. In our rapid-bit-exchange scheme, the content of both registers
R0 and R1 is needed by the attacker to successfully impersonate the prover.
But as both register values combined allow the attacker to derive the long-term
secret, the prover will not be able to provide these.

Another possibility is for the attacker to early detect the current round’s
challenge carrier frequency, forward it to the malicious prover and obtain that
round’s register value. In this case, the long term secret of the malicious prover
would not be revealed. To estimate the impact of this attack, we consider a strong
attacker and prover with both zero processing time for incoming challenges and
messages. In this setting, the attacker could use the channel activation time at
the start of each round to forward the current round’s challenge carrier frequency.
In this setting, the attacker could shorten the measured distance by up to δa/2.
As this delay is typically short (< 30 ns in our implementation), the maximal
gain is only in the range of few meters (≈ 2.5m for 30 ns and instantaneous
processing).

Reducing the preamble processing delay δp will not yield an advantage to
the attacker, while a reduction of the reflection delay can reduce the measured
distance as discussed above.

4.4 Double Read-Out Attacks

The double read-out attack targets a potential implementation weakness of ana-
log provers with multiple registers. If the attacker manages to simultaneously
query (read-out) the values from both registers of the prover, he would be able
to reconstruct the prover’s long term secret in Terrorist Fraud resilient protocols.
In the case of Mafia Fraud resilient protocols, this would allow the attacker to
mount a Mafia Fraud attack instead.

Analog implementations e.g., those that would build on CRCS [25] would typ-
ically allow a double read-out attack, since they would not prevent the verifier
(and the attacker) to transmit the challenge signals on both carrier frequencies
simultaneously. To prevent this attack, a digital component is needed (e.g., a
channel activation component) that prevents that both register values are trans-
mitted by the prover simultaneously.

More precisely, consider our SCRCS scheme without the channel activation
part, i.e. we assume that only the challenge signal and the values of R0 or R1

are used to determine the reply channel. In this setting, the attacker could craft
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a challenge signal which alternates between two challenge carrier frequencies
within each round of the rapid bit-exchange and obtain the content of both
registers, allowing him to derive the prover’s long term secret. Although this
attack will most likely be detected by challenge reconciliation in the concluding
phase (the MAC’ed c′ sent by the prover), the long term secret would still be
revealed to the attacker.

In our system, this attack is prevented by the channel activation circuit—this
circuit will only allow one register to be read in each round (see Figure 4 and
Figure 5). To show that both registers can never be read at the same round, we
first show that signal Oi, once activated, can only be deactivated by RST. In
Boolean logic, we can write Oi = (DETi ∨Oi) ∧ RST ∧ ENi, with ∨ as boolean
OR and ∧ as AND. Therefore, once Oi is high, it only transitions to false (low) if
either RST or ENi are low. Using j = |i−1| we can write ¬ENi = Oj . Therefore,
once Oi is true (high) and assuming that RST is high, Oi can only turn false
if Oj is also true. Using the equation above, one can write ENi = ¬[(DETj ∨
Oj)∧RST∧ENj ]. Since Oi is true and ENj = ¬Oi, Oj will always return false.
Summarizing, this result shows that a channel can only be deactivated if both
channels are true, which cannot happen once one channel is activated. Therefore,
both registers cannot be read in the same round.

In addition, our design also prevents unintentional double read-out by the
verifier, which might occur if the round start timing of the prover is not aligned
well with the verifier. As discussed above, our channel activation will cause the
protocol to fail in this case, instead of unintentionally revealing the long-term
secret of the prover.

5 Implementation and Analysis

In this section we describe our prototype implementation of the prover and
the results of our experiments. We implement our design using commercially
available RF modules [1]. The analog components of the prover implementing
the switched challenge reflection with carrier shifting is shown in Figure 7. The
two carrier frequencies ω0 = 3.5GHz and ω1 = 5GHz used for transmitting the
challenge signal c(t) are generated using function generators and given as input
to the prover.

5.1 Channel Shifter

As described in Section 3.2 the channel shifter is implemented using a mixer and
six filters (3 low-pass and 3 high-pass). In Figure 7, components 1–4d constitute
the channel shifter module. The received signal is amplified and mixed (2) with
an intermediate frequency ωΔ = 500MHz generated by a voltage controlled
oscillator (1).

Depending on the received carrier frequency (ω0 or ω1), the mixer output
contains either the frequency components ω0 ± ωΔ or ω1 ± ωΔ. This signal now
passes through the combination of low-pass and high-pass filters separating the
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Fig. 7. Experimental Setup: 1: voltage controlled oscillator; 2: mixer; 3a,3b, 4a, 4b, 4c,
4d: filters that constitutes the channel shifter module; 5a, 5b: switches whose output
depends on the contents of registers R0

i and R1
i ; 6a, 6b: switches that activate the reply

channel based on the channel activation circuit outputs (O0, O1).

signal into four possible reply channels. For example, if c(t) was transmitted on
ω0, the filters 3a, 4a and 4b (see Figure 7) create the signals with frequency
components ω0 +ωΔ and ω0 −ωΔ. Similarly for ω1, filters 3b, 4c and 4d output
ω1+ωΔ and ω1−ωΔ. These shifted signals are then fed to the switched channel
activator block.

5.2 Channel Activation

The channel activation circuitry constitutes an important part of the prover
design to prevent double read-out attacks, as explained in Section 4. The circuit
is implemented using a mixer squaring the signal followed by a low-pass filter and
a switch. The output of the low-pass filter is the control voltage for the switch.
The switch, with one input connected to 5V and the other grounded acts as
a threshold detector whose output is a logic high when its control voltage is
above TE.

We measured the time delay of the channel activation circuitry from the mo-
ment the signal is available for energy detection (output of switches 5a, 5b)
until the channel is actually activated or deactivated (depends on control sig-
nals O0, O1 to switches 6a, 6b). Figure 8 shows the control voltage Vctrl and the
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Fig. 8. Delay in switching channels

channel signal. We can see that the switching delay δa is approximately 30 ns.
As discussed in Section 4 the delay δa does not have any security implications
in the scenarios of Distance and Mafia Frauds. In the case of Terrorist Fraud an
attacker can shorten the distance only up to 4.5m for δa = 30 ns.

5.3 Challenge Reflection Delay

The time taken by the prover to process and reflect back the challenge (δr)
directly impacts the maximum distance advantage an attacker gains as discussed
in Section 4. The challenge signal c(t) is pulse modulated using a 2μs pulse
in order to capture and estimate the delay more accurately. The challenge is
processed by the prover circuit, and the delay is estimated by tapping into the
signal at the circuit’s input and output. An oscilloscope with high sampling rate
of 40GSa/s is used to visualize the delay of the signals. Figure 9 shows both input
challenge signal and the prover output with a delay of approximately 2.75 ns.
This implies that a dishonest prover can gain a maximum distance of 0.41m by
implementing SCRCS with 0 ns delay. The measured delay is independent of the
carrier frequency on which the challenge is transmitted and same for both the
carrier frequencies (ω0 and ω1).

Table 1 summarizes all the delays and the attack scenarios in which they are
applicable. It is important to note that these delays would be further reduced
by implementing the system as an integrated circuit.
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Fig. 9. Prover path delay: The total delay incurred due to mixing, filtering and channel
activation switch is estimated to be 2.75ns

Table 1. Summary of prover delays and the attack scenarios under which they are
applicable. Reducing or enlarging round start time δp would only cause the protocol
to fail.

Delay Max. distance gained Attack Scenario

δr = 2.75 ns 0.41m DF, MF and TF
δa = 30 ns 4.5m TF
δp -NA- -NA-

6 Summary

In this paper, we designed and implemented a distance bounding system that is
resilient to the three well-known distance modification attacks: Distance, Mafia
and Terrorist Frauds. Our mixed digital-analog realization allows challenge pro-
cessing delays of the order of few nanoseconds, thereby limiting the maximum
distance an attacker can cheat on. To the best of our knowledge, this is the
first implementation of a distance bounding system that is secure against all the
three forms of attacks, while having a low processing delay. We introduced a
new attack called the “double read-out” attack and showed how our proposed
system is secure against it.

With the example of the Swiss Knife protocol, we illustrated how our sys-
tem design allows implementation of existing Terrorist Fraud resilient protocols
and also other distance bounding protocols that are based on the Hancke-Kuhn
construction model. We conclude from the delay measurements of our prover
prototype that the attacker will be able to decrease distance by not more than
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4.5m in the Terrorist Fraud scenario. This was derived from the processing de-
lay of 2.75 ns and delay incurred during channel activation. This bound further
reduced to 0.41m for the Distance and Mafia Fraud cases. We plan to explore
realizing a complete prototype system including the verifier and analyze its secu-
rity and performance under different real-world environments and applications.
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Applying Divertibility to Blind Ballot Copying

in the Helios Internet Voting System

Yvo Desmedt and Pyrros Chaidos�

University College London, UK

Abstract. Cortier & Smyth have explored ballot copying in the Helios
e-voting platform as an attack against privacy. They also pointed out that
their approach to ballot copying could be detected by a modified Helios.
We revisit ballot copying from a different viewpoint: as a tool to prevent
vote diffusion (the division of votes among multiple weak candidates)
and to lessen the effect of established voting blocs. Our approach is
based on blinding the ballot casting protocol to create an undetectable
copy. A willing voter can cooperate with a prospective copier, helping the
copier produce a blinded copy of his ballot without revealing his vote. We
prove that Helios is unable to detect the copying. The possibility of such
cooperation between voters is manifested only in internet voting and as
such is a fundamental difference between internet and booth voting.

1 Introduction

Electronic voting, suggested by Chaum in [12] is one of the more important areas
of computer security. It is identified as such in the “Four Grand Challenges in
Trustworthy Computing” report [14]:

There are many new systems planned or currently under design that
have significant societal impact, and there is a high probability that we
will come to rely on these systems immediately upon their deployment.
Among these systems are electronic voting systems, . . . A grand research
challenge is to ensure that these systems are highly trustworthy despite
being attractive targets for attackers.

The move towards electronic voting is justified by factors such as convenience,
accessibility and ease of use but more importantly by the existence of provable
security properties unavailable to conventional systems, for example universal
verifiability [39,17] which satisfies the need for transparent elections by enabling
election participants as well as outsiders to effectively audit an election. However,
even as internet voting systems have been deployed alongside paper ballots in
local as well as parliamentary elections [25,29,30], the security of electronic voting
systems in general has been often found lacking [4,34].
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Helios [1] is a state of the art web-based, universally verifiable Internet vot-
ing system. To facilitate universal verifiability, Helios ballots are encrypted and
public. Ballots are cast over the Internet via a web browser. Since users have full
control over the ballots they submit, Helios is susceptible to coercion, and is thus
best suited for use in low-coercion environments. This might appear to limit its
use to “low-stakes” elections but may not necessarily be the case. In Estonian
parliamentary elections [25] for example, the ability of overwriting a vote with
a later one is used in place of coercion resistance. As such, it is conceivable that
a system like Helios might be used in a high profile election.

Even though Helios has been based on 30 years of sound cryptographic prim-
itives, previous works have described attacks against Helios compromising both
secrecy [15] and correctness [24]. The former, presented by Cortier & Smythe
in the 2011 Computer Security Foundations Symposium exploits the lax check-
ing of Helios against duplicate votes. In light of these attacks, security using an
add-on approach may be unavoidable even for systems designed with security
built-in. Our work has a different goal though: blinded ballot copying. A blinded
copy of a ballot is a copy that cannot be detected as such. Instead of a forced re-
lationship between coerced and coercer, this form of ballot copying relies on the
cooperation of both parties, and is based on trust rather than threats or bribes.
This demonstrates how an unspecified property of Helios (the ability to create
blinded copies of votes) can be expanded upon to build a secondary system on
top of it. The potential for this was also mentioned in [7], independently of [21].

Assume that Alice, Bob, Carol and Dianne are coworkers. Carol and Dianne
are candidates for the “employee of the year award”. Bob has recently returned
from a project abroad and is unsure about the candidates. He would like to ask
Alice whom he trusts. Alice does not want to reveal her choice so as not to upset
the other candidate. Our goal is to provide a system where Alice (the voter) can
assist Bob (the copier) in producing a copy of her ballot whilst ensuring that:

– Bob will not learn anything about Alice’s vote that is not also revealed by
the tally, but will know that the ballot produced by the copying system
contains the same vote as Alice’s.

– Alice cannot distinguish the ballot that is produced by the system from a
random valid ballot. Therefore, the copier is explicitly given the option of
backing out (by using his own choice instead of the copied one) undetected.

– Helios (or any observer) cannot recognise the ballot produced by the system
as a copy.

Such a system would allow groups of voters to organise around a trusted figure,
partly avoiding the spoiler effect [3] prevalent in plurality elections, thus increas-
ing the weight of their vote and the possibility of obtaining a desired result (to
the degree where trust in the original voter is well-deserved).

Using non-malleable encryption (instead of Elgamal) will only make our col-
laboration between a voter and copiers more complex, but cannot avoid it (due to
secure multi-party computation). In fact the only solution seems to necessitate
the use of private-key encryption (for example by using code voting) so that a po-
tential copier is able to decrypt a copied vote, making blinded copying impossible.
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Even with this caveat, this demonstrates internet voting introduces new features
not foreseen by 30 years of research.

2 Background

Our work is based on modifying the protocols used by Helios so that they involve
three parties (voter, copier, Helios) instead of just two. As such, we need to
explain the design and operation of Helios before describing the modifications.

Helios 3.0 [1,2] is a state of the art web-based voting system, based on decades
of cryptographic research. An important feature implemented by Helios is uni-
versal verifiability [39,17] : any party, even one uninvolved in the election can
opt to verify the integrity of an election that uses Helios. This is achieved by
making the ballots cast by each voter public, albeit encrypted with the ElGamal
[23] cryptosystem.

Each ballot also contains a proof of its validity which can be verified without
requiring specific knowledge or access and without revealing the contents of the
ballot. The proofs of validity are based on a disjunctive version of the Chaum-
Pedersen protocol [16,11] previously used in [17]. This ensures that no invalid
ballots have been accepted and that no ballot tampering has taken place. The
public list of ballots also guards against the election officials injecting votes from
unregistered voters if the registration list is public. As the encryption scheme
used is additively homomorphic, the product of all encrypted votes is an encryp-
tion of the sum of all votes. Since the encrypted ballots are all public, there is no
way for a corrupt server to tamper with the product in an undetected way. The
vote sum is obtained by the election trustees using threshold decryption. Each
trustee is able to provide a partial decryption factor along with a proof of cor-
rectness for his individual calculations. The partial decryption factors are then
combined to arrive at the decrypted result. Again, once the partial decryption
factors have been made public there is no opportunity for foul play.

In this section we will analyze the parts of Helios that are relevant to this
work. We will start by briefly mentioning the relevant parts of the Helios Imple-
mentation before moving to the cryptographic design. The design of Helios 3.0
is based on the ElGamal cryptosystem [23], used for encrypting votes and ho-
momorphic tallying. It also uses disjunctive zero-knowledge proofs of equality to
ensure ballot validity.

2.1 Current Helios Implementation

As mentioned in [33] Helios has 4 main components: an election builder, a vot-
ing booth, a ballot casting server and an audit server. From the perspective of
impelmenting ballot copying, we are mostly concerned with the inner workings
of the voting booth since we need to be able to extract data in order to capture
the encryption randomness and also inject it to allow the copied and blinded
ballot to be actually submitted. The ballot casting server concerns us only with
respect to the tests performed against incoming ballots, according to the Helios
specifications [33]. The workings of the other two components are not relevant.
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Voting Booth. The Helios voting booth is a web application that reads the
parameters of an election, presents the user with the questions he can vote on,
encrypts his choices and calculates the appropriate proofs to construct a valid
ballot and then allows the user to either audit or submit it. The randomness
used in the encryption is only revealed if the user chooses to audit his ballot in
which case he will need to create a new one before voting. This is implemented as
a weak form of coercion resistance, but is easily bypassed1 if the voter executes
a JavaScript command during the preparation of the ballot.

Ballot Casting Server. After the ballot is constructed and saved as a JSON
(JavaScript Object Notation) [18] object, the voting booth submits it to the
ballot casting server using the HTTP POST method. The ballot casting server
then checks the ballot for validity and compares it against already cast ballots
and rejects is if it is identical to one.

2.2 Additive Homomorphic ElGamal

The ElGamal [23] cryptosystem is a public-key encryption system based on the
Diffie–Hellman [22] key exchange protocol. ElGamal is also homomorphic and
can be used with threshold decryption, both desirable properties for e-voting.
Helios relies on both of these properties. The operations of ElGamal are as
follows:

– Key Generation: Choose a large prime2 p = bq + 1 such that q is also
prime and b ≥ 2. Choose an element g of Z∗

p with order q. Choose a secret
key x < q and let h = gx mod p. The public key is then (p, q, g, h) and the
private key (p, q, g, h, x).

– Encryption: Given a public key (p, q, g, h), encrypt a message m < q as
such: Choose a random blind 0 ≤ r < q. Let α = gr and β = m · hr. The
ciphertext c is then c = (α, β).

– Decryption: Given a private key (p, q, g, h, x) and a ciphertext c = (α, β),
the decrypted message is μ = α−x · β

Homomorphic Property. An important property of ElGamal is that it is
homomorphic: the product of two ciphertexts is a cipher text which corresponds
to the product of the messages in the original ciphertexts. Let two ciphertexts
c1, c2 be the encryptions of mi with blind ri for i = 1, 2. Then c1 · c2 = (α1 ·
α2, β1 · β2) = (gr1+r2 ,m1 · m2 · hr1+r2) i.e. c1 · c2 is the encryption of m1 · m2

with blind r1 + r2.
A special case of homomorphic operation is when c2 corresponds to the mes-

sage m2 = 1 in which case the resulting ciphertext is a re-encryption of m1 with
a different blind.

1 In fact, early versions of Helios included a “Coerce Me!” button which revealed the
encryption randomness without invalidating the ballot.

2 In the case of Helios b is fixed to 2.
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Votes. In the context of Helios, the homomorphic property is used in order to
calculate an encrypted sum of votes from individual encrypted ballots without
the need to decrypt them individualy. However, as described above, ElGamal is
multiplicatively homomorphic, whereas vote tallies are sums. In order to bridge
this gap, in Helios a variant of the encoding used in [17]. Cramer et al. encode
votes of “no” as 1 and votes of “yes” as g. In this way, the product of n votes vi
of which m are “yes” will be

∏n
i=1 vi = gm i.e. the log of the product will be the

sum of the votes i.e. the scheme is additively homomorphic. Most elections have
more options than “yes” and “no”, so Helios models them as a series of “yes-no”
questions about each option, with a limit on the number of “yes” answers equal
to the number of selections allowed in the original question. For example, given
a question with 3 choices, from which exactly one may be selected, a vote would
be of the form:

V = (α0, β0), (α1, β1), (α2, β2) (1)

= (gr0 , gm0 · hr0), (gr1 , gm1 · hr1), (gr2 , gm2 · hr2) (2)

In the above vote, ri represents the randomness used in the encryption and mi

the answers of the voter to each of the 3 options. We note that a vote of the
above form might be invalid, for example if mi > 1 for some i, or if every mi

is 1, even though the election parameters only allow the voter to choose one
option. A particularly insidious voter might even have m0 = −100, making his
vote cancel out 100 honest votes for the first option. Helios guards against this
by requiring the voter to provide a zero-knowledge proof of his ballot’s validity.
Note: Helios supports a threshold variant of ElGamal, but this is not relevant
to this work.

2.3 Proofs of Knowledge

As seen in the above example, a voter must provide a proof that the value of
his vote falls into the range permitted by the election parameters. As such, he
must prove that the individual vote for each option is either a “yes” or a “no”
and furthermore that the total number of “yes” votes is within the range of the
allowed number of selections. In more concrete terms, the voter is asked to prove
that each mi is either 0 or 1 (an individual proof in Helios terminology), and

that the sum
∑n−1

i=0 mi is inside the range of allowed selections as specified in
the election’s definition (a total proof ).

The proofs of validity used by Helios are offline disjunctive zero knowledge
proofs of equality between discrete logs. In the rest of this section, we will offer
a brief overview of the underlying concepts as well as their use in Helios.

Proofs of Knowledge. Zero knowledge proofs of knowledge [26] are a concept
related to zero knowledge interactive proofs [32], the difference being that in
proofs of knowledge the prover is supplied with an auxiliary input called a witness
which enables it to convince the verifier. An algorithm called a witness extractor
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can then output that witness if given oracle access to the prover. Intuitively,
in a proof of knowledge we want three things to hold: first, an honest prover
given a correct witness almost always convinces the verifier. Second, if a witness
extractor is allowed to “interrogate” a successful prover, he will in most cases
be able to extract the witness. Third, even if the verifier behaves in a dishonest
way, he learns nothing useful.

Computational Assumptions. The prover and verifier in our setting are
polynomially bounded. Furthermore, we assume the the Decisional Diffie Hell-
man assumption [6,22] holds. This is also a requirement for the semantic security
of the ElGamal scheme.

Definition 1 (Decisional Diffie Helman assumption). Let G be a cyclic
group and g a generator with prime order q. Then, given a, b, c ∈R Zq the fol-
lowing tuples cannot be distinguished by a polynomially bounded turing machine:
(ga, gb, gc),(ga, gb, gab). The bound is on |q| = ,log2 q-.

Disjunctive Proofs of Equality between Discrete Logarithms. To prove
that an encrypted individual vote (α, β) is valid one must prove that either the
corresponding plaintext is either g0 = 1, in which case logg α = logh β, or g

1 in
which case logg α = logh β/g. As the prover needs to prove the disjunction of
the two statements we have a disjunctive proof of knowledge.

Total proofs can be carried out in the same way, the difference being that
for individual proofs the range of exponents is always [0, 1] whereas for total
votes it ranges from the minimum number of selections to the maximum. For
total proofs the ciphertext used is the homomorphic product of the individual
ciphertexts.

Therefore, the main component of the proofs of knowledge used in Helios is a
protocol to prove equality between discrete logs [11] along with a construction
that enables the prover to prove the disjunction of many statements without
revealing which one is in fact true [16].

The Chaum-Pedersen protocol [11] for discrete log equality is essentially a
parallel version of the Schnorr protocol [40]. We note that the Chaum-Pedersen
protocol (as well as the underlying Schnorr protocol) is only provably zero knowl-
edge against adversaries who behave honestly. There is no known simulator for
dishonest adversaries [11].

Cramer et al. provide a construction for disjunctive proofs [16,27] where the
prover can prove one statement from a set and simulate proofs for the other
ones, without the verifier knowing which of the subproofs are simulated. In the
context of Helios, this allows the voter to indicate that the plaintext of his ballot
is one out of a number of allowed values without revealing which one.

We explain the details of the construction of Cramer et al. [16] as applied
to the Chaum-Pedersen protocol [11]. We take advantage of the fact that since
the Chaum-Pedersen protocol is honest-verifier zero knowledge, if the voter can
choose the challenge c, he can simulate the proofs as follows:
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Protocol 1. Simulated Chaum-Pedersen Protocol.

Step 1 Simulated Proof: Choose random challenge c and response s. Let the
commitments be a = gs/αc and b = hs/(β/gv).

Step 2 Partial Verification: Check that gs = a ·αc and that hs = b · (β/gv)c.

In order to force the voter to provide at least one honest proof, he is not given
complete choice of the challenges. The Verifier is allowed to specify the sum of
the challenges used in the subproofs. This allows the voter to simulate all but
one of the Chaum-Pedersen proofs and let the challenge of the real subproof be
as a balancing factor in the sum. Suppose the voter needs to prove that the value
v encoded by (α, β) = (gr, hrgv) is in [min,max]. He will simulate the proofs for
i ∈ [min,max] \ {v} and produce a real proof for i = v.

Protocol 2. Disjunctive Chaum-Pedersen Protocol.

Step 1 Prover (Voter): For i ∈ [min,max] \ {v}: Choose random challenge
ci and response si. Let the commitments be ai := gsi/αci and bi :=
hsi/(β/gi)ci . Choose commitment (av, bv) such that (av, bv) = (gw, hw)
for some w.

Step 2 Verifier (Helios): Choose T ∈R Zq.
Step 3 Prover (Voter): Let cv := T −

∑
i�=v ci and sv := rcv + w.

Step 4 Verifier (Helios): Check if gsi
?
= a · αci and that hsi

?
= b · (β/gi)ci for

i ∈ [min,max]. Check if T
?
=

∑max
i=min ci.

Non-Interactive Proofs. For practical reasons, Helios implements the above
protocol offline rather than online. This requires less communication with the
Helios server and does not require the Helios server to hold the state of proof
protocols in progress. This is done by way of the Fiat-Shamir heuristic [28]
which replaces the random challenge issued by the verifier with a hash of the
commitments. This also facilitates universal verifiability since the generation of
the challenge is beyond the control of the (potentially dishonest) Helios server.
The result of this modification is that the protocol can be performed entirely by
the voter with the final ballot submitted to Helios for verification.

The offline version of the protocol is zero knowledge in the random oracle
model. For zero knowledge proofs under the random oracle model, the hash
function used in the protocol is assumed to be an oracle under the control of
the simulator. As such, the simulator can choose the value returned by the hash
function on any input with the only limitation being consistency (i.e. after setting
H(x) = y, the simulator is not allowed to set H(x) = y′ �= y. The random oracle
model has been criticised as [31,9] have shown that it is possible to construct
protocols that are secure under the random oracle model but provably insecure
in general. Nonetheless, these results have not led to a vulnerability being found
in a currently used protocol.

For example, suppose we have an election with 3 options of which exactly one
may be selected (as in the vote example). We follow the notation of protocol 2



440 Y. Desmedt and P. Chaidos

in that ai, bi represent the commitments of a proof, si the solution and ci the
challenge. The individual proofs would then be of the form:

Pi = ((ai,0, bi,0, ai,1, bi,1), (ci,0, si,0, , ci,1, si,1)), for i ∈ {0, 1, 2} (3)

And the total proof would be of the form:

PΣ = ((aΣ,1, bΣ,1), (cΣ,1, sΣ,1))

To check if one of the above proofs is valid, Helios would set T := H(amin, bmin,
· · · , amax, bmax) and run the last step of protocol 2.

Note: w.l.o.g. and in the interest of readability we will limit ourselves to ballots
consisting of a single encrypted “yes”-“no” vote and it’s corresponding proof of
validity.

Blind Signatures and Diverted Proofs. Blind signatures [10,11], involve
signing a document through an intermediary (in our case, the copier) without
the original signer (the voter) being able to trace the end product. Blind sig-
natures have been suggested by Chaum [10] for use with anonymous electronic
cash, where banks sign “coins” proving their authenticity but are unable to
trace their use, and voting where authorities can supply signed blank ballots to
authenticated voters but are then unable to track them once filled.

Divertible proofs [37,19] are a similar notion to blind signatures, but in an on-
line setting. An intermediate party is introduced between the prover and verifier,
playing the role of the verifier against the prover and that of the prover against
the verifier. The intermediate is called a warden in some cases (for example, if
he is introduced to enforce to ensure honest behaviour) or a man in the middle
in others.

2.4 Related Work

Even though we do not regard our work as an actual attack against Helios,
previous attacks highlight some of the techniques used as well as some of the
assumptions in Helios’ specification that enable data extraction and injection.

A Ballot Replay Attack. Cortier & Smyth [15] attack a voter’s privacy by
means of a replay attack. In the base version of their attack, a ballot is recast
either verbatim or with minor differences in the representation of the signatures
by a number of parties under the control of the attackers. The existing checks
performed by the Hellios ballot casting server were somewhat lax. In some sce-
narios the additional votes for the original voter’s chosen party or candidate will
significantly bias the election result, thus violating privacy. The authors offer
the French legislative elections as an example of such a scenario. A more com-
plex version of their attack involves a permutation of the voter’s choices making
the malicious ballots slightly harder to detect. Our work is similar in that it
also involves effectively replaying a vote but different in that the original voter
consents to that. Also, the replayed vote cannot be detected as such.



Applying Divertibility to Blind Ballot Copying 441

An Attack against the Voter’s Web-Browser. Esteghari & Desmedt [24]
describe an attack which essentially installs a rootkit in the user’s web-browser
by exploiting a vulnerability in Adobe Reader. The rootkit then secretly changes
the user’s vote to a different one, and also hides any evidence of foul play. Helios,
operating under the assumption that the user’s browser is trustworthy, accepts
the changed vote instead of the intended one.

While our work also affects the voting booth running at the user’s browser,
an important difference is that participation from both parties is consensual and
not based on deception or exploits.

3 A Ballot-Blinding Protocol

We will split the description of our ballot-blinding protocol in two parts. We
will first describe how a copier can re-encrypt an encrypted vote (making it
indistinguishable to a random one assuming the DDH problem is hard) along
with the appropriate modifications to keep the corresponding proof valid.

Note that since the randomness used in the ElGamal encryption is required to
construct the real subproof it is impossible to simply copy and blind a cast ballot
without extra information. On the other hand, if a voter were to publish the
randomness used in his ballot to enable blinded copying he would be sacrificing
his privacy! For that reason, we will describe an online protocol between a willing
voter (who has already cast a ballot) and a copier. The protocol allows the copier
to produce a “new” proof of knowledge for the encrypted vote.

The copier can combine the two parts: first he obtains a new (indistinguish-
able) proof of validity of the voter’s encrypted vote and then he re-encrypts the
encrypted vote making it indistinguishable as well. The result is a ballot that is
equivalent to the original in that it contains the same vote but indistinguishable
from it. Moreover, it does not leak the original vote.

3.1 Vote Blinding

We describe a transformation that a copier can perform to an already cast ballot
that is based on re-encrypting the vote contained in the ballot. Because of the
re-encryption, the proof contained in the ballot must also be modified to stay
valid.

Given a vote (α, β) = (gr, hrgv), v ∈ 0, 1, a copier is able to re-encrypt it as
(α′, β′) = (gr+z, hr+zgv), v ∈ 0, 1. To do that, he does not need knowledge of r
as he can simply calculate (α′, β′) = (gzα, hzβ).

Lemma 1. If z is chosen to be uniformly random in Zq then (α′, β′) is indistin-
guishable from a random vote by adversaries who cannot solve the DDH problem,
regardless of them knowing r or v.

Proof. Since z is uniformly random in Zq, it follows that g
zα is uniformly random

in 〈g〉. Since α′ is gs for some s, β′/gv = hs and s, x = logg h are independently
chosen, then (h, gs, β′/gv) is a DDH problem instance which the adversary could
solve if he was able to distinguish (α′, β′) from a random encrypted vote. 
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Furthermore, if the copier has access to a valid proof for (α, β) he can transform
it to a valid proof for (α′, β′).

Lemma 2. If (V, P ) is a valid ballot, with V = (α, β) as in (1) and P =
((a0, b0, a1, b1), (c0, s0, c1, s1)) as in Protocol 2, then ((gzα, hzβ), (a0, b0, a1, b1),
(c0, s0 + c0z, c1, s1 + c1z)) is also a valid ballot and vice versa.

Proof. If ai = gsi/αci holds then ai = gsi+ciz/(gzα)ci also holds. Similarly, if
bi = hsi/(β/gi)ci holds then bi = hsi+ciz/(hzβ/gi)ci also holds. For the opposite
direction we note that re-applying the transformation for −z produces the original
ballot. 
	

The above transformation can be used as a variant of the attack described in
[15] since it provides another way of replaying ballots without copying them
verbatim. Nonetheless, the attack variant can be stopped in a similar way to the
one suggested by Cortier and Smyth. Since the commitments ai, bi and challenges
ci of the proof are unchanged, a future version of Helios could defend against the
attack by modifying the ballot casting server to reject votes which reuse past
commitment values.

It is clear from the above discussion that blinding the entire ballot is necessary.
Towards that, we describe a protocol that blinds the proofs of a ballot. The proof
blinding protocol requires two assumptions: First, that original voter cooperates
with the the copier and second, that the voter has access to the randomness used
in encrypting his ballot. Fortunately, the second assumption can be fulfilled in
the current Helios implementation.

3.2 Proof Blinding

Blinding the proof of a ballot is more involved: on one hand, creating a valid
proof requires access to the randomness used in the encryption but on the other,
revealing that witness would compromise a voter’s privacy. Our solution is based
on the concepts of divertible protocols [37,19] and blind signatures [10,11].

Suppose the voter has cast an encrypted vote (α, β) = (gr, hrgv), v ∈ 0, 1 with
an appropriate proof, and the copier is requesting a different proof in order to
copy it. Note that (α, β) is public but (r, v) is private to the voter. Since the hash
function H() is public, Helios does not take part in the protocol. The notation
used for the commitments is the same as in Protocol 2, but the roles of the
parties are different. The voter still takes the role of the prover, but the copier
takes the role of an intermediate verifier who ultimately submits the resulting
ballot to Helios.

Protocol 3. Proof Blinding Protocol

Step 1 Voter: Choose w ∈R Zq and let av := gw, bv := hw. Let λ := 1 − v
and choose cλ, sλ ∈R Zq and let aλ := gsλ/αcλ and bλ := hsλ/(β/gλ)cλ .
Send (a0, b0, a1, b1) as a commitment to the copier.
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Step 2 Copier: Choose Δ0, Δ1, k0, k1 ∈R Zq. Let Ai := aig
ki/αΔi , Bi :=

bih
ki/(β/gi)Δi for i = 0, 1. Let c := H(A0, B0, A1, B1) be the chal-

lenge that Helios would issue. Let C := c −Δ0 −Δ1, send C to voter
as a challenge.

Step 3 Voter: Let cv := C − cλ and let sv := w + rcv, send (c0, s0, c1, s1) to
copier as a reply.

Step 4 Copier: Check that C
?
= c0 + c1, ai

?
= gsi/αci and bi

?
= hsi/(β/gi)ci

for i = 0, 1. If yes, accept and let Ci := ci +Δi and Si := si + ki. Let
V := ((α, β), (A0, B0, A1, B1), (C0, S0, C1, S1)) and send V to Helios.
Otherwise, reject.

We will now examine Protocol 3 with regard to correctness, indistinguishability
and security.

Correctness. We will first prove that our protocol satisfies completeness and
(special) soundness.

Lemma 3. The proof blinding protocol is complete and furthermore if an honest
copier accepts then the resulting ballot V will be accepted by Helios.

Proof. Completeness holds trivially. Indeed, we have:

– C = c0 + c1 since the voter calculates cv := C − cλ in Step 3.
– For i = λ, we have aλ = gsλ/αcλ and bλ = hsλ/(β/gλ)cλ from Step 1.

– For i = v, we must check if av
?
= gsv/αcv=gw+rcv/αcv which holds since

av = gw (from Step 1) and αcv = grcv . Similarly: bv
?
= hsv/(β/gv)cv =

hw+rcv/(β/gv)cv holds since bv = hw and β/gv = hr.

For the second property, we need to show that C0 +C1 = H(A0, B0, A1, B1) and
that given that ai = gsi/αci and bi = hsi/(β/gi)ci hold (since the copier has
access to a valid vote) it also holds that: Ai = gSi/αCi and Bi = hSi/(β/gi)Ci .
This is straightforward by substituting the blinded variables Ai, Bi, Ci, Si with
their definitions. 
	
Lemma 4. Protocol 3 has the special soundness property.

Proof. Suppose a voter can (given the same commitments (a0, b0, a1, b1)) provide
answers to two different challenges C,C′. This means that for the two answers
(c0, s0, c1, s1) and (c′0, s

′
0, c

′
1, s

′
1), we must have ci �= c′i for at least one i ∈ {0, 1}.

We will now show that such a voter can calculate a witness for the vote’s validity
(i.e. the encryption randomness used in encrypting the vote).:

ai = gsi/αc
i and ai = gs

′
i/αc′i we have:

gsi/αci = gs
′
i/αc′i

gsi−s′i = αci−c′i thus:

logg α =
ci − c′i
si − s′i

.
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Indistinguishability

Lemma 5. Given the view of the original voter, the blinded proof of knowl-
edge ((A0, B0, A1, B1), (C0, S0, C1, S1)) is unconditionally indistinguishable from
a valid proof produced independently.

Proof. We observe that Ci = ci + Δi and Si = si + ki with Δi and ki being
uniformly random in Zq. Thus, the challenges and responses are independent of
the ones used in the original proof. For the commitments, we note that given
(C0, S0, C1, S1), the values of (A0, B0, A1, B1) are uniquely determined (because
for any valid proof: Ai = gSi/αCi and Bi = hSi/(β/gi)Ci), so if a voter is able to
distinguish (A0, B0, A1, B1), (C0, S0, C1, S1) from an independent proof he would
also be able to distinguish (C0, S0, C1, S1). 
	

Security. Our goal is to ensure that the blinded protocol does not leak the value
of the voter’s vote to one of the other parties. The proof of knowledge protocol
used by Helios is based on applying the construction of Cramer et al. [16] to the
Chaum-Pedersen protocol [11] for proving the equivalence of discrete logs.

Lemma 6. Under the random oracle model, the voter-copier interaction is zero-
knowledge for a copier who follows the protocol.

Proof. Under the random oracle model, and assuming that the DDH problem
is hard, we will describe a simulator for Voter-Copier interactions when the
voter is honest. We note that even an honest prover needs to simulate the proof
corresponding to i = λ. The main difference is that the simulator will simulate
both proofs and rely on its control of the hash function via the random oracle
model to match the challenge. The simulator proceeds as follows:

1. For i ∈ 0, 1 choose ci, si ∈R Zq and let ai := gsi/αci and bi := hsi/(β/gi)ci .
2. Choose Δ0, Δ1, k0, k1 ∈R Zq. Let Ai := aig

ki/αΔi , Bi := bih
ki/(β/gi)Δi

for i = 0, 1. Set H(A0, B0, A1, B1) := c0 + c1 + Δ0 + Δ1. And let c :=
H(A0, B0, A1, B1) Let C := c−Δ0 −Δ1

3. Ci := ci +Δi and Si := si + ki.

The communication transcript between the simulated voter and copier is then
((a0, b0, a1, b1), c, (c0, s0, c1, s1)) and the simulated output of the copier to He-
lios is ((α, β), (A0 , B0, A1, B1), (C0, S0, C1, S1)). Against adversaries who cannot
solve the DDH problem (and thus distinguish (ai, bi) = (gsi/αci , hsi/(β/gi)ci)
from (ai, bi) = (gw, hw)) the output of the simulator is indistinguishable to gen-
uine transcripts and outputs, since after the commitments are issued the simu-
lator follows the same steps as the ones taken by the copier. 
	

We can also use the above simulator to prove that the protocol is also zero-
knowledge with respect to the copier “interacting” with Helios. Since the Fiat-
Shamir heuristic [28] is used to replace the verifier’s challenge with a hash of the
the prover’s commitments, Helios is unable to deviate from honest behaviour.
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We also note that the simulator’s control of the output of the hash function is
explicitly allowed under the random oracle model (see [5, Sect. 5.1]).

The copier however has the option to ignore the protocol and issue arbitrary
challenges to the voter. On the other hand, achieving indistinguishability re-
quires that the copier keeps his coin rolls private. As such, it is conceivable that
a dishonest voter can craft challenges in a way that compromises the voter’s
privacy. Given any limited-size subset of the challenge space (the limit being
polynomial in the bit-length of q) we can achieve zero-knowledge even against
cheating copiers (we explore this option in the next section). As such, we follow
[11] in conjecturing that even in the unrestricted case, a cheating copier gains
no useful information. This conjecture is also supported by the fact that the
copier’s control is weakened compared to the Chaum-Pedersen protocol, since
he cannot control the individual challenged but only dictate their sum.

Note: The disjunctive proof construction in [16] can provide witness indistin-
guishability [27], but in the case of the Helios disjunctive proofs there is a unique
valid witness w = (r, v) for every encrypted vote (α, β) = (gr, hrgv). As such the
witness indistinguishability property is inconsequential.

3.3 A Combined Protocol for Blinded Copying

The vote blinding transformation of Sect. 3.1 and the proof blinding protocol
(Protocol 3) can each partially blind a ballot (the vote and the proof respec-
tively). They can be easily combined to completely blind a ballot as follows: The
copier executes the proof blinding protocol with the cooperation of the voter but
does not submit the resulting ballot V . Instead, he proceeds to apply the vote
blinding transformation to V , producing V ′ which he then submits to Helios.

Theorem 1. The combined ballot copying protocol is complete, sound and zero-
knowledge for honest-verifiers under the random oracle model. Furthermore, as-
suming the DDH assumption holds, the ballots produced are accepted by Helios
and indistinguishable from random valid ballots, even for the voter.

Proof. Completeness, soundness and honest-verifier zero-knowledge under the
random oracle model are satisfied by the proof copying protocol and are not im-
pacted by the transformation (Lemma 2). Indistinguishability holds because of
Lemmas 1 and 5. 
	

4 A Multi-round Variant with Short Challenges

Since blinding the offline protocol does not achieve zero-knowledge, we explore
a variant that can guarantee it. Furthermore, we avoid the use of the random
oracle model in order to achieve a stronger proof.

The main obstruction to achieving zero-knowledge lies with the use of the
Schnorr [40] protocol as the basis of the proof construction (since the Chaum-
Pedersen protocol is a parallel version of Schnorr’s). Our approach to guaran-
teeing the voter’s privacy with regard to a dishonest copier is to adapt ideas
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from [8] while keeping the rest of the proof construction. For this we reduce the
challenge space so that c < log q. Since the challenge space is now polynomial
in size compared to the security factor (the bit-size of q), the protocol can be
simulated thus making it zero-knowledge.

We first present the modified protocol used by a voter for submitting a vote
to Helios. It is repeated t times, and a dishonest voter cannot succeed with
probability greater that log q−t. Compared to the original, offline protocol the
only difference is the challenge generation: instead of using a hash function, a
(short) challenge is selected randomly.

We then divert the online protocol in order to achieve an equivalent result to
blinding. We follow the notation used in Protocol 2 for the proof commitments
and (1) for the vote.

Protocol 4. Online Ballot Verification.

Step 1. Voter: Choose w ∈R Zq and let av := gw, bv := hw. Let λ := 1 − v,
choose cλ, sλ ∈R Zq and let aλ := gsλ/αc

λ and bλ := hsλ/(β/gλ)cλ .
Send (a0, b0, a1, b1) as a commitment to Helios.

Step 2. Helios: Choose c ∈R Z�log q�, send c to the voter as a challenge.
Step 3. Voter: Let cv := c − cλ and let sv := w + rcv, send (c0, s0, c1, s1) to

copier as reply.

Step 4. Helios: Check if c
?
= c0 + c1, ai

?
= gsi/αci and bi

?
= hsi/(β/gi)ci for

i = 0, 1. If yes, accept, otherwise, reject.

Protocol 4 is complete, sound and zero-knowledge. Completeness is maintained
from the original Helios protocol as only the challenge generation is different.
Thus an honest voter will always be able to convince Helios. We will now prove
that the protocol satisfies the special soundness property and is zero-knowledge.

Lemma 7. Protocol 4 satisfies special soundness.

Proof. We repeat the argument of Lemma 4: suppose a (potentially dishonest)
voter can, given one set of commitments, answer two different challenges. Then
he would be able to calculate logg α. Thus no dishonest verifier who does not
know logg α has a better than 1/ log q chance to complete a round successfully.


	

Lemma 8. Protocol 4 is zero-knowledge under the DDH assumption.

Proof. We will describe a simulator for the online protocol.

1. For i ∈ 0, 1 choose ci, si ∈R Zq and let ai := gsi/αci and bi := hsi/(β/gi)ci .
Send the commitments to the Verifier.

2. If the Verifier replies with c = c0 + c1, output the transcript (a0, b0, a1, b1),
c, (c0, s0, c1, s1). Otherwise, reset the Verifier and return to Step 1.

Against verifiers who cannot solve the DDH problem, a set of simulated commit-
ments is indistinguishable to a set of random elements, so the verifier’s reply,
V (a0, b0, a1, b1) will be independent of c = c0 + c1. As such, the simulator has
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a 1/,log q- chance to guess the challenge correctly in one try and thus runs in
expected polynomial time. Again, under the DDH assumption the simulated tran-
scripts are indistinguishable from normal ones. 
	

We now present a way to divert the above protocol such that blinded ballot
copying can take place, while achieving zero-knowledge even against dishonest
copiers. As in the offline case, suppose the voter has cast an encrypted vote
(α, β) = (gr, hrgv), v ∈ 0, 1 with appropriate proof, and the copier is requesting a
different proof in order to copy it. We also assume that the copier has blinded the
vote by re-encrypting it as (α′, β′) = (gzα, hzβ) and has presented the blinded
rather than the original vote to Helios. Again, we follow the notation used in
Protocol 2 for the proof commitments.

Protocol 5. Diverted Ballot Verification.

Step 1. Voter: Choose w ∈R Zq and let av := gw, bv := hw. Let λ := 1 − v
and choose cλ, sλ ∈R Zq and let aλ := gsλ/αc

λ and bλ := hsλ/(β/gλ)cλ .
Send (a0, b0, a1, b1) as a commitment to the copier.

Step 2. Copier: Choose Δ0, Δ1, k0, k1 ∈R Zq. Let Ai := aig
k
i /α

Δi , Bi := bih
k
i

/(β/gi)Δi for i = 0, 1. Send (A0, B0, A1, B1) to Helios as a commitment.
Step 3. Helios: Choose c ∈R Z�log q�, send c to copier as a challenge.
Step 4. Copier: Let C := c−Δ0 −Δ1, send C to voter as a challenge.
Step 5. Voter: Let cv := C − cλ and let sv := w + rcv, send (c0, s0, c1, s1) to

copier as a reply.

Step 6. Copier: Check if C
?
= c0 + c1, ai

?
= gsi/αc

i and bi
?
= hsi/(β/gi)ci for

i = 0, 1. If yes, accept and let Ci := ci + Δi and Si := si + ki. Let
S′
i := Si + zCi Send (C0, S

′
0, C1, S

′
1) to Helios. Otherwise, reject.

Theorem 2. The diverted ballot verification protocol is a divertible interactive
zero knowledge proof of validity for helios ballots.

Proof. (sketch) First we prove that both interactions are zero-knowledge. Com-
pleteness transfers over from the offline blinded copying protocol since the only
difference from the offline protocol is the challenge generation and vote blind-
ing (point to Lemma for VB). Special soundness holds for both interactions (see
Lemma 7). Furthermore, the simulator of Lemma 8 can be used to prove that
both interactions are zero knowledge.

It is easy to see that neither the copier or Helios can calculate a witness directly
as that would solve the discrete logarithm problem.

Finally, indistinguishability transfers over from the offline version. 
	

As the diverted ballot verification protocol is provably zero-knowledge, the tran-
scripts cannot be used as signatures: they might be signatures for invalid ballots
produced by a simulator operated by a dishonest voter and a dishonest Helios.
As such, the universal verifiability property of Helios no longer holds. Such a
modification would thus require trust to be placed on the bulletin board admin-
istrator, something that diverges significantly from the original design of Helios
but is necessary if we want to achieve zero-knowledge and avoid using the random
oracle model.
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5 Conclusion and Further Work

We have described a protocol which enables voters to allow people who trust
them to copy their vote without revealing it in the process. This can be used as
an alternative to public endorsements. In settings where one person’s expertise
or judgement is well regarded our protocol offers the ability for others to trust
his judgement without forcing him to reveal his opinion –this can be especially
important in small, local elections where revealing one’s vote can lead to rivalries
(of course in a small or close election the tally [20] or even the result might reveal
information). We also include an online variant of the protocol which offers
greater security to the voter but requires a trusted server to accept ballots.

Blinded vote copying would also reduce the power of traditional voting blocs.
A voting bloc is a club or special interest group that coordinates its voting.
They achieve stronger [38] representation compared to individual voters by not
diffusing their votes. The trust requirements for blinded vote copying are more
relaxed than in a typical voting bloc since the “leader” does not need to make
his vote public. By making the creation of voting blocs easier we thus create a
more even voting field without needing to change the electoral system.

Since our main contribution is honest-verifier zero-knowledge a natural con-
tinuation would be implementing a trusted warden that facilitates the copying.

It would also be interesting to replace the original voter with a coalition of
voters, essentially providing a framework (thus avoiding the complexity of secure
multi-party computation) for holding a primary election amongst the members
of the coalition. This can lower the barrier for creating a voting bloc further
since there is no need for a single person to be singled out as the decision maker.

Another avenue for future research would be using a witness-hiding protocol
such as Schnorr-Okamoto [36] instead of Schnorr as a proof of knowledge for
discrete logs and integrating it with a homomorphic encryption scheme. The
result would then be witness-hiding (which is adequate for security since the
witness in our case includes the vote) rather than honest-verifier zero-knowledge.

In the context of internet voting, the issues of untrusted platforms and the
lack of a private voting booth (generalised under “physical assumptions”) have
been known and well described (see eg. [35,13]). We argue that the potential
for voter cooperation is a third characteristic, unique to internet voting. It is
therefore natural to state a more general open problem: What other differences
exist between e-booth and internet voting?
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Abstract. Most existing formal privacy definitions for voting protocols
are based on observational equivalence between two situations where two
voters swap their votes. These definitions are unsuitable for cases where
votes are weighted. In such a case swapping two votes can result in a
different outcome and both situations become trivially distinguishable.
We present a definition for privacy in voting protocols in the Applied
π-Calculus that addresses this problem. Using our model, we are also
able to define multi-voter coercion, i.e. situations where several voters
are attacked at the same time. Then we prove that under certain real-
istic assumptions a protocol secure against coercion of a single voter is
also secure against coercion of multiple voters. This applies for Receipt-
Freeness as well as Coercion-Resistance.

1 Introduction

Privacy is a key requirement in elections as voters can otherwise be blackmailed,
coerced or may be susceptible to vote-buying. Typically privacy is split into three
different properties:

– Vote-Privacy: The votes are kept private.
– Receipt-Freeness : A voter cannot construct a receipt which allows him to

prove to a third party that he voted for a certain candidate. This is to
prevent vote-buying.

– Coercion-Resistance: Even when a voter interacts with a coercer during the
entire voting process, the coercer cannot be sure whether the voter followed
his instructions or actually voted for another candidate.

The design of complex protocols such as voting protocols is known to be error-
prone. This is why formal verification is an ideal tool to ensure the correctness
and security of voting protocols. It has already been used to analyze properties
such as Verifiability, Privacy, Receipt-Freeness and Coercion-Resistance [1–12].

However, most existing symbolic definitions of Privacy are based on the idea
of swapping votes. If the votes are private, a case where Alice votes “yes” and
Bob votes “no” should be indistinguishable from a case where Alice votes “no”
and Bob votes “yes”. Yet this definition is unsuitable for some situations, for
example in companies where votes are weighted according to the proportion of
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shares held by each shareholder. Consider the following example: Alice owns 50%
of the stocks, and Bob and Carol each hold 25%. The cases where Alice and Bob
swap votes are now easily distinguishable if Carol votes “yes” all the time, as
the result of the vote is different: 75% vs. 50% vote for “yes”. Note that there
are still situations where privacy is ensured in the sense that different situations
give the same result. The last outcome (50% yes, 50% no) could - for example -
also be announced if Alice votes “yes” and Bob and Carol vote “no”. Protocols
supporting vote weights have been proposed, for example Eliasson and Zúquete
[13] developed a voting system supporting vote weights based on REVS [14],
which itself is based on the protocol by Fujioka et al. [15].

Our Contributions: To address this issue, we define a symbolic privacy notion in
the Applied π-Calculus [16] that takes weighted votes into account. Instead of
requiring two executions where voters swap votes to be bisimilar, we require two
executions to be bisimilar if they publish the same result, independent of the
mapping between voters and votes. We analyze the relationship of our notion to
the existing swap-based ones and give precise conditions for formally proving the
equivalence between them. Then, we generalize our notion to Receipt-Freeness
and Coercion-Resistance for weighted votes. We use a variant of the protocol
by Eliasson and Zúquete [13] as a case study for our definition, and provide a
partially automated proof using ProVerif [17].

In the cases of coercion most existing definitions only consider one attacked
voter. Our model also allows to define a case with multiple coerced voters, and
we analyze the relationship between this and the single-voter case. In particular,
we give a formal proof that single- and multi-voter coercion are equivalent for
a given protocol if it satisfies some modularity and de-composability properties.
Using two existing protocols, we show that theses properties are realistic.

Related Work: Previous research on formal verification of voting protocols con-
cerned privacy properties (privacy, receipt-freeness and coercion-resistance) [1–
8], election verifiability [9, 10], or both [11, 12].

In the symbolic model, privacy is usually defined as observational equivalence
of two cases where a pair of voters swap their votes [1–5, 8, 12]. The definitions
mainly differ in the way they model voting processes and deal with specifics of
protocols. Some of them can be verified automatically using standard tools (e.g.
ProVerif [17] and ProSwapper [18]). This swap-based approach was not designed
for weighted votes and, as explained above, may lead to unexpected results in
this case.

The other main approach roots in the computational model. In this case
the real-world protocol is compared to an ideal situation and the attacker’s
advantage is analyzed [7, 11]. Our symbolic definition is somewhat related to
this computational approach, as we also consider some information – the result
– to be leaked even in an ideal situation, and only forbid further leakage. Another
possibility is to consider the overall advantage of the attacker without comparing
it to an ideal situation [19]. This advantage is always non-negligible as in certain
situations the votes are always revealed, e.g. in the case of an unanimous vote.
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A third approach was proposed by Langer et al. [20]. The authors developed
verifiability and privacy notions based on (un-)linkability between a voter and
his vote. Their definitions have to be instantiated with a concrete formal process
and attacker model. To define unlinkability, they rely on indistinguishability of
runs where votes are swaped, with the same issues as described above.

Küsters and Truderung [6] were the first to explicitly consider multi-voter
coercion. In their abstract model, Single-Voter Coercion and Multi-Voter Coer-
cion turned out to be different in general. Subsequently they proposed a modi-
fied definition of Coercion-Resistance that implies both Single- and Multi-Voter
Coercion-Resistance. In our model Single- and Multi-Voter Coercion are equiva-
lent under certain assumptions on the protocol, hence we do not need to change
the initial definition. Additionally, the conditions allow us to precisely charac-
terize the difference between both notions.

Outline: In the next section, we present the Applied π-Calculus and recall the
privacy definitions given by Delaune et al. [2]. In Section 3, we introduce our pri-
vacy definition and show under which condition it is equivalent to the existing
ones. Then, in Section 4, we define Single- and Multi-Voter Receipt-Freeness,
analyze their relationship and prove their equivalence under certain assump-
tions. In Section 5 we define Single- and Multi-Voter Coercion-Resistance and
again prove their equivalence under the same hypotheses, before concluding in
Section 6.

2 Preliminaries

In this section we recall the Applied π-Calculus, introduce our model of voting
protocols and present existing privacy definitions.

2.1 Applied π-Calculus

The Applied π-Calculus [16] is a formal language to describe concurrent pro-
cesses. The calculus consists of names (which typically correspond to data or
channels), variables, and a signature Σ of function symbols which can be used to
build terms. Functions typically include encryption and decryption – for example
enc(message, key), dec(message, key) – hashing, signing etc. Terms are correct
(i.e. respecting arity and sorts) combinations of names and functions. We distin-
guish the type “channel” from other base types. To model equalities we use an
equational theory E which defines a relation =E. A classical example which de-
scribes the correctness of symmetric encryption is dec(enc(message, key), key)
=E message. Processes are constructed using the grammars detailed in Figure 1.

The substitution {M/x} replaces the variable x with term M . We denote by
fv(A), bv(A), fn(A), bn(A) the free variables, bound variables, free names or
bound names respectively. A process is closed if all variables are bound or defined
by an active substitution. The frame Φ(A) of an active process A is obtained by
replacing all plain processes in A by 0. This frame can be seen as a representation
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P , Q, R := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
if M = N then P conditional

else Q
in(u, x).P message input
out(u, x).P message output

(a) Plain process

A, B, C := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

(b) Extended process

Fig. 1. Grammars for plain and extended or active processes

of what is statically known to the exterior about a process. The domain dom(Φ) of
a frame Φ is the set of variables for which Φ defines a substitution. An evaluation
context C[ ] denotes an active process with a hole for an active process that is
not under replication, a conditional, an input or an output. In the rest of the
paper we use the following usual notions of equivalence and bisimilarity based
on the original semantics [16] given in our technical report [21].

Definition 1 (Equivalence in a Frame [16]). Two termsM and N are equal
in the frame φ, written (M = N)φ, if and only if φ ≡ νñ.σ, Mσ = Nσ, and
{ñ} ∩ (fn(M) ∪ fn(N)) = ∅ for some names ñ and some substitution σ.

Definition 2 (Static Equivalence (≈s) [16]). Two closed frames φ and ψ
are statically equivalent, written φ ≈s ψ, when dom(φ) = dom(ψ) and when for
all terms M and N we have (M = N)φ if and only if (M = N)ψ. Two extended
processes A and B are statically equivalent (A ≈s B) if their frames are statically
equivalent.

The intuition behind this definition is that two processes are statically equivalent
if the messages exchanged with the environment cannot be distinguished by an
attacker (i.e. all operations on both sides give the same results). This idea can
be extended to labeled bisimilarity.

Definition 3 (Labeled Bisimilarity (≈l) [16]). Labeled bisimilarity is the
largest symmetric relation R on closed active processes, such that A R B implies:

1. A ≈s B,
2. if A→ A′, then B →∗ B′ and A′ R B′ for some B′,
3. if A

α−→ A′ and fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅, then B →∗ α−→→∗ B′

and A′ R B′ for some B′.

In this case each interaction on one side can be simulated by the other side, and
the processes are statically equivalent at each step during the execution, thus an
attacker cannot distinguish both sides.

2.2 Modeling Voting Protocols

We model voting protocols in the Applied π-Calculus as follows.
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Definition 4 (Voting Protocol). A voting protocol is a tuple (V,A1, . . . , Am, ñ)
where V is the process that is executed by the voter, the Aj ’s are the processes
executed by the election authorities, and ñ is a set of private channels. We also
assume the existence of a particular public channel res that is only used to pub-
lish the result of the election.

Note that we have only one process for the voters. This means that different
voters will execute the same process, but with different variable values (e.g. the
keys, the vote etc.). To reason about privacy, we talk about instances of a voting
protocol, which we call voting processes.

Definition 5 (Voting Process). A voting process of a voting protocol (V , A1,
. . ., Am, ñ) is a closed process

νñ′.(V σid1σv1 | . . . |V σidnσvn |A1| . . . |Al),

where l ≤ m, ñ′ includes the secret channel names ñ, V σidiσvi are the processes
executed by the voters, σidi is a substitution assigning the identity to a process
(this determines for example the secret keys), σvi specifies the vote and Aj’s are
the election authorities which are required to be honest.

The restricted channel names model private channels. Note that we only model
the honest authorities as unspecified parties are subsumed by the attacker.

2.3 Existing Privacy Definitions

Before we can formally define privacy, we need the following two transformations.
The first one turns a process P into another process P ch that reveals all its inputs
and secret data on the channel ch.

Definition 6 (Process P ch [2]). Let P be a plain process and ch be a channel
name. P ch is defined as follows:

– 0ch =̂ 0,
– (P |Q)ch =̂ P ch|Qch,
– (νn.P )ch =̂ νn.out(ch, n).P ch if n is a name of base type, (νn.P )ch =̂ νn.P ch

otherwise,
– (in(u, x).P )ch =̂ in(u, x).out(ch, x).P ch if x is a variable of base type,

(in(u, x).P )ch =̂ in(u, x).P ch otherwise,
– (out(u,M).P )ch =̂ out(u,M).P ch,
– (!P )ch =̂ !P ch,
– (if M = N then P else Q)ch =̂ if M = N then P ch else Qch.

In the remainder we assume that ch /∈ fn(P )∪ bn(P ) before applying the trans-
formation. The second transformation does not only reveal the secret data, but
also takes orders from an outsider before sending a message or branching.

Definition 7 (Process P c1,c2 [2]). Let P be a plain process and c1, c2 be
channel names. P c1,c2 is defined as follows:
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– 0c1,c2 =̂ 0,
– (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2 ,
– (νn.P )c1,c2 =̂ νn.out(c1, n).P

c1,c2 if n is a name of base type, (νn.P )c1,c2 =̂
νn.P c1,c2 otherwise,

– (in(u, x).P )c1,c2 =̂ in(u, x).out(c1, x).P
c1,c2 if x is a variable of base type,

(in(u, x).P )c1,c2 =̂ in(u, x).P c1,c2 otherwise,
– (out(u,M).P )c1,c2 =̂ in(c2, x).out(u, x).P

c1,c2 where x is a fresh variable,
– (!P )c1,c2 =̂ !P c1,c2 ,
– (if M = N then P else Q)c1,c2 =̂ in(c2, x).if x = true then P c1,c2

else Qc1,c2 where x is a fresh variable and true is a constant.

To hide the output of a process, we use the following definition.

Definition 8 (Process A\out(ch,·) [2]). Let A be an extended process. We define
the process A\out(ch,·) as νch.(A|!in(ch, x)).
We now recall the privacy definitions given by Delaune et al. [2], which are the
bases for many other definitions [1, 3–5, 8, 12]. Their main idea for defining
privacy is simple: A protocol respects privacy if any two instances where two
voters swap votes are bisimilar.

Definition 9 (Swap-Privacy (SwP) [2]). A protocol satisfies Swap-Privacy
(SwP) if for any context S corresponding to a voting process with a hole for two
voters and for all votes σvA and σvB we have

S [V σidAσvA |V σidBσvB ] ≈l S [V σidAσvB |V σidBσvA ] .

In the literature S may sometimes contain corrupted or coerced voters (e.g. in
[8]), here we will suppose that it contains only honest voters and authorities to
be able to clearly distinguish single- and multi-voter coercion.

Defining Receipt-Freeness is a bit more complicated as the voter will execute
some counter strategy, i.e. a different process, to fake the receipt, but it can still
be expressed as a bisimilarity between two situations. In the first situation, the
targeted voter votes a and reveals his secret data. In the second situation, he
executes another process – the counter-strategy – which allows him to vote b
and fake the secret data in a way that both instances are bisimilar. A protocol
is receipt-free if such a process – a counter-strategy – exists.

Definition 10 (Swap-Receipt-Freeness (SwRF) [2]). A protocol satisfies
Swap-Receipt-Freeness (SwRF) if for any context S corresponding to a voting
process with a hole for two voters and for all votes σvA and σvB there exists a
process V ′ such that V ′\out(chc,·) ≈l V σidAσvB and

S
[
(V σidAσvA)

chc|V σidBσvB
]
≈l S [V ′|V σidBσvA ] .

One could define Coercion-Resistance in the same way, but in that case the at-
tacker could force the targeted voter to vote d (and not a) in the situation where
he complies with the instructions. This would make both situations trivially dis-
tinguishable by just looking at the result. To prevent this, Delaune et al. [2]
use a context C that is required to force the voter to vote a, but can otherwise
interact in any way with the voter.
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Definition 11 (Swap-Coercion-Resistance (SwCR) [2]). A protocol satis-
fies Swap-Coercion-Resistance (SwCR) if for any context S corresponding to a
voting process with a hole for two voters and for all votes σvA and σvB there exists
a process V ′ such that for any context C with C = νc1.νc2.( |P ) and ñ∩fn(C) =
∅, S [C [(V σidAσvA)

c1,c2 ] |V σidBσvB ] ≈l V P
′
A

[
(V σidAσvA)

chc|V σidBσvB
]
we have

C [V ′]
\out(chc,·) ≈l V σidAσvB and

S [C [(V σidAσvA)
c1,c2 ] |V σidBσvB ] ≈l S [C [V ′] |V σidBσvA ] .

Delaune et al. [2] showed that any protocol ensuring (SwCR) ensures (SwRF),
and any protocol ensuring (SwRF) ensures (SwP).

3 Defining Privacy

Our privacy definition is based on the observation that - as the result of the
vote is always published - some knowledge about the voter’s choices can always
be inferred from the outcome. The classical example is the case of a unanimous
vote where the contents of all votes are revealed just by the result. Yet - as
already discussed in the introduction - there can also be other cases where some
of the votes can be inferred from the result, in particular in the case of weighted
votes. If for example Alice holds 66% of the shares and Bob 34%, both votes
are always revealed when announcing the result: If one option gets 66% and the
other 34%, it is clear which one was chosen by Alice or Bob. However, if we have
a different distribution of the shares (e.g. 50%, 25% and 25%), some privacy
is still possible as there several situations with the same result. Thus our main
idea: If two instances of a protocol give the same result, an attacker should not
be able to distinguish them. Note that this includes the classic definition where
votes are swapped, if this give the same result.

3.1 Formal Definition

To express this formally, we need to define the result of an election. As defined
above, we suppose that the result is always published on a special channel res.
The following definition allows us to hide all channels except for a specified
channel c, which we can use for example to reason about the result on channel
res.

Definition 12 (P |c). Let P |c = νc̃h.P where c̃h are all channels except for c,
i.e. we hide all channels except for c.

Now we can formally define our privacy notion: If two instances of a protocol
give the same result, they should be bisimilar.

Definition 13 (Vote-Privacy (VP)). A voting protocol ensures Vote-Privacy
(VP) if for any two instances V PA = νñ.(V σid1σvA

1
| . . . | V σidnσvA

n
| A1 | . . .

| Al) and V PB = νñ.(V σid1σvB
1
| . . . | V σidnσvB

n
| A1 | . . . | Al) we have

V PA|res ≈l V PB |res ⇒ V PA ≈l V PB.
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A simple interpretation of this definition is that everything apart from the result
on channel res has to remain private. This obviously relies heavily on the no-
tion of “result” and the modeling of the protocol. Typically the result will only
contain only the sum of all votes, which corresponds to a simple and intuitive
understanding of privacy.

Some protocols may leak some additional information, for example the number
of ballots on the bulletin board. For instance in the protocol by Juels et al. [11]
voters can post fake ballots. In this case, the above definition of the result may
lead to a too restrictive privacy notion, since two situations with the same votes
but a different number of fakes are required to be bisimilar. To address this
issue, we can include the number of ballots in the result if we want to accept the
additional leakage. This gives very fine-grained control about the level of privacy
we want to model.

Note that if the link between a voter and his vote is also published as part
of the result on channel res, our definition of privacy may be true although this
probably does not correspond to the intuitive understanding of privacy. This
is however coherent within the model since everything apart from the result is
private; simply the result itself leaks too much information.

3.2 Link to Existing Definitions

To establish the relationship of our definition and the existing ones, we need
to formally characterize their difference. Intuitively the swap-based definition
assumes that swapping two votes will not change the result. This can be formal-
ized as follows: If two instances of the protocol with the same voters give the
same result, then the votes are a permutation of each other, and vice versa. This
precludes weighted votes, thus the name “Equality of Votes”.

Definition 14 (Equality of Votes (EQ)). A voting protocol respects Equality
of Votes (EQ) if for any V PA = νñ.(V σid1σvA

1
| . . . |V σidnσvA

n
|A1| . . . |Al) and

V PB = νñ.(V σid1σvB
1
| . . . |V σidnσvB

n
|A1| . . . |Al) we have

V PA|res ≈l V PB|res ⇔ ∃π : ∀i : σvB
i
= σvA

π(i)
,

where π is a permutation.

This allows us to formally prove that our definition is equivalent to the existing
ones if (EQ) holds.

Theorem 1 (Equivalence of Privacy Definitions). If a protocol respects
(EQ), then (VP) and (SwP) are equivalent.

The full formal proof can be found in our technical report [21]. Intuitively, be-
cause of (EQ), two instances of a protocol can only have the same result if the
votes are a permutation of each other. As any permutation can be written as a
sequence of simple permutations (swaps), (SwP) is enough to generate any possi-
ble permutation, which gives (VP). Conversely, the definition of (SwP) becomes
just a particular case of (VP).
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It is easy to see that this condition (EQ) is necessary: If a protocol uses
weighted votes (e.g. Alice 66%, Bob 34%), it may satisfy (VP), but not (SwP).

Similarly, consider the following example: In the official result announced on
channel res, a pre-selected candidate always wins - this could be the case if
the authorities are dishonest and want to manipulate the election outcome. If
however at the same time the ballots on the bulletin board allow to calculate
the result, such a protocol may ensure (SwP) – if the ballots cannot be linked to
the voters –, but not (VP) because two instances with a different outcome based
on the ballots will have the same “result” on res. Note that such a protocol
would contradict (EQ) because we have instances where the votes are not a
permutation of each other, but still give the same result.

3.3 Example: A Variant of FOO

Eliasson and Zúquete [13] propose an implementation of a voting system sup-
porting vote weights based on REVS [14], which itself is based on the protocol
by Fujioka et al. [15], often referred to as “FOO”.

Informal Description: The protocol by Fujioka et al. [15]. is split into three
phases. In the first phase, the voter obtains the administrator’s signature on a
commitment to his vote:

– Voter Vi chooses his vote vi and computes a commitment xi = ξ(vi, ki) for
a random key ki.

– He blinds the commitment using a blinding function χ, a random value ri
and obtains ei = χ(xi, ri).

– He signs ei and sends the signature si = σVi(ei) together with ei and his
identity to the administrator A.

– The administrator checks if Vi has the right to vote, has not yet voted, and
if the signature si is correct. If all tests succeed, he signs di = σA(ei) and
sends it back to Vi.

– Vi unblinds the signature and obtains yi = δ(di, ri). He checks the signature.

In the second phase, the actual voting takes place:

– Voter Vi sends (xi, yi) to the collector C through an anonymous channel.
– C checks the administrator’s signature and enters (xi, yi) into a list.

When all ballots are cast or when the deadline is over, the counting phase begins:

– The collector publishes the list of correct ballots.
– Vi verifies that his commitment appears on the list and sends ri together with

the commitment’s index l on the list to C using an anonymous channel.
– The collector C opens the l-th ballot using ri and publishes the vote.
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Adding Vote Weights: In [13] Eliasson and Zúquete discuss several possibil-
ities on how to implement weights in this protocol:

– including the weight in the vote (which requires trusting the voter for cor-
rectness or zero-knowledge proofs to verify the weight)

– using different keys when the vote is signed by the administrator, where each
key corresponds to a different weight

– using multiple ballots per voter, i.e. if for example voter A holds 70% and
voter B 30% of the shares, voter A sends 7 and voter B 3 ballots.

We implemented the latter variant in the Applied π-Calculus. Using a manual
proof (see [21] for details) we can show that

V PA|res ≈l V PB|res ⇒
n∑

i=1

vAi ∗ wi =

n∑
i=1

vBi ∗ wi. (1)

Using a python script available on our website [22] that generates all cases to
check based on the number of voters and the discrete weight distribution, we can
use Proverif to then establish (2) which gives that this variant ensures (VP).

n∑
i=1

vAi ∗ wi =

n∑
i=1

vBi ∗ wi ⇒ V PA ≈l V PB (2)

4 Receipt-Freeness

In this section we define receipt-freeness for weighted votes. We first consider
the case where only one voter is attacked, then we define multi-voter attacks.

4.1 Single-Voter Receipt-Freeness (SRF)

We combine the idea by Delaune et al. (Def. 10) with our definition of Privacy: If
two instances of a voting protocol give the same result, they should be bisimilar
even if one voter reveals his secret data in one case or fakes it in the other.

Definition 15 (Single-Voter Receipt Freeness (SRF)). A voting protocol
ensures Single-Voter Receipt Freeness (SRF) if for any voting processes V PA

= νñ.(V σid1σvA
1
| . . . | V σidnσvA

n
| A1 | . . . | Al), V PB = νñ.(V σid1σvB

1
| . . . |

V σidnσvB
n
| A1 | . . . | Al) and any number i ∈ {1, . . . , n} there exists a process

V ′
i such that we have V

′\out(chci,·)
i ≈l V σidiσvB

i
and

V PA|res ≈l V PB |res ⇒ V P ′
A

[
(V σidiσvA

i
)chci

]
≈l V P

′
B [V ′

i ] ,

where V P ′
A and V P ′

B are like V PA and V PB , but with holes for the voter V σidi .

As for (VP), our definition is equivalent to the existing one based on swapping
if the protocol ensures (EQ), which is the case if it does not use weighted votes.
Similarly to swap-based definitions, (SRF) is stronger than (VP). The proof is
analogous to the proof in the swap-based model (see [21] for details).
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4.2 Multi-voter Receipt-Freeness (MRF)

We now generalize the idea of Receipt-Freeness to the case where multiple voters
are attacked. Instead of only considering one attacked voter i, we consider a set
I of attacked voters. To be receipt-free, it should be possible for all attacked
voters to fake the receipt. Note that we assume that there is always at least one
honest voter, except for the case with only one voter.

Definition 16 (Multi-Voter Receipt Freeness (MRF)). A voting protocol
ensures Multi-Voter Receipt Freeness (MRF) if for any voting processes V PA

= νñ.(V σid1σvA
1
| . . . | V σidnσvA

n
| A1 | . . . | Al), V PB = νñ.(V σid1σvB

1
| . . . |

V σidnσvB
n
| A1 | . . . | Al) and any subset I ⊂ {1, . . . , n}, I �= {1, . . . , n} if n > 1,

then there exists processes V ′
i such that we have ∀i ∈ I : V ′\out(chc,·)

i ≈l V σidiσvB
i

and

V PA|res ≈l V PB|res ⇒ V P ′
A

[
|

i∈I

(V σidiσvA
i
)chci

]
≈l V P

′
B

[
|

i∈I

V ′
i

]
,

where V P ′
A and V P ′

B are like V PA and V PB , but with holes for all voters
V σidi , i ∈ I.

By choosing I = {i} we obtain that (MRF) implies (SRF). Under certain con-
ditions the converse is also true. To prove this, we define a “generalized voting
process” which is like a voting process, but some voters might be under attack.

Definition 17 (Generalized Voting Process). A Generalized Voting Pro-
cess is a voting process V P with variables for the voter’s processes that can ei-
ther be a “normal” voter or a voter communicating with the intruder, i.e. V P =

νñ.(V1| . . . |Vn|A1| . . . |Al) where Vi ≈l V σidiσvi or V
\out(chci,·)
i ≈l V σidiσvi .

The next definition captures the key properties required for our proof. It ex-
presses two modularity conditions of a voting protocol.

Definition 18 (Modularity (Mod)). A voting protocol is modular (Mod) if
it is composable and decomposable. A voting protocol is composable if for any
generalized voting processes V PA and V PB there exists a generalized voting pro-
cess V P such that V P ≈l V PA|V PB. A voting protocol is decomposable if any
generalized voting process V P = νñ.(V1| . . . |Vn|A1| . . . |Al) can be decomposed
into processes V Pi = νñi.(Vi|Ai

1| . . . |Ai
l) where

V P ≈l V P1| . . . |V Pn. (3)

Imagine a protocol where in order to escape coercion the voters can claim that a
certain ballot on the bulletin board is their ballot, but it was actually prepared by
some honest authority to allow the voters to create a fake receipt. If we suppose
that this ballot exists only once no matter how many voters are attacked, it would
be enough for a single voter to fake his receipt. However we cannot compose two
instances with one attacked voter each, as they would use the same fake ballot
which would be noticeable for the attacker. Hence the above definition also
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captures the fact that faking the receipt to escape coercion can be done by each
voter independently.

Another property we need for our proof is Correctness, i.e. the fact that if in
two instances the voters’ choices are the same, they give the same result1.

Definition 19 (Correctness (Cor)). A voting protocol is correct if for any
generalized voting processes V PA = νñA.(V1,A| . . . |Vn,A|A1| . . . |Al) and V PB =

νñB.(V1,B | . . . |Vn,B |A1| . . . |Al) with for any i and X ∈ {A,B}: V \out(chci,·)
i,X ≈l

V σidiσvi , we have
V PA|res ≈l V PB |res (4)

It is easy to see that Correctness is implied by Equality of Votes as the identity
is a permutation, hence any protocol ensuring (EQ) ensures (Cor) [21]. Putting
everything together, we are able to prove the equivalence of (SRF) and (MRF).

Theorem 2. If a protocol is modular, correct and ensures Single-Voter Receipt
Freeness, it also ensures Multi-Voter Receipt Freeness.

The full proof is given in our technical report [21]. The main idea is that we
can decompose an instance with multiple attacked voters into instances with at
most one attacked voter, where we can apply the single-voter assumption, and
recompose the result. Note that the assumptions (Mod), (EQ) are satisfied by
many well-known protocols (e.g. [15, 23, 24]), we illustrate this on an example.

Remark. We have to be careful when modeling protocols using a full PKI. If we
model the PKI inside the voting process, decomposing a protocol would result
in two instances using different keys, which will most probably be visible to an
attacker and the bisimilarity (3) will not hold. A possible solution could be to
externalize the PKI into a context K such that K[V P ] ≈l K[V P1|V P2], which
ensures that V P1 and V P2 use the same keys. This would allow us to obtain the
same result for protocols such as [25, 26].

4.3 Example: Protocol by Okamoto

The protocol by Okamoto [24] uses trapdoor commitments to achieve (SwRF),
but it is not (SwCR) [2].

Informal Description: The protocol is split in 3 phases. In the first phase the
voter obtains a signature on a commitment to his vote from the administrator:

– Each voter Vi chooses his vote vi and computes a trapdoor commitment
xi = ξ(vi, ki, tdi) for a random key ki and a trapdoor tdi.

– Vi blinds the commitment using a blinding function χ, a random value ri
and obtains ei = χ(xi, ri).

1 This does not entirely cover intuitive correctness as it will be fulfilled by protocols
always giving the same result independently from the votes, but it will fail for a
protocol announcing a random result.
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– Vi signs ei and sends the signature si = σVi(ei) together with ei and his
identity to the administrator A.

– The administrator checks if Vi has the right to vote, has not yet voted, and
if the signature si is correct. If all tests succeed, he signs di = σA(ei) and
sends it back to Vi.

– Vi checks the signature, unblinds di using δ and obtains yi = δ(di, ri).

In the second phase the actual voting takes place:

– Vi sends the signed trapdoor commitment yi to the collector C through an
anonymous channel.

– C checks the administrator’s signature.
– Vi sends (vi, ri, xi) to the timeliness member T through an untappable

anonymous channel.

When all ballots are cast or when the deadline is over, the counting phase begins:

– C publishes the list of correct ballots (xi, yi).
– T publishes a randomly shuffled list of votes vi and a zero-knowledge proof

that he knows a permutation π for which xπ(i) = ξ(vi, ri).

Analysis: The protocol is receipt-free because the trapdoor allows a voter to
open the commitment in any way to fake a receipt for any candidate as formally
shown by Delaune et al. [2]. Here we use a slightly modified version of their
model to show that it also respects (MRF)2, see technical report [21] for details.

It is also easy to see that the protocol ensures (EQ) as votes are not weighted
and the honest timeliness members will publish the correct result. We can also
find that it is modular by analyzing the structure of the voting processes. In the
case of n voters, we have the form

νchT.(V1| . . . |Vn |
i=1,...,n

processT),

where processT is the process executed by the timeliness member and chT is the
private channel between voters and the timeliness member. For k ∈ {1, . . . , n−1},
a possible decomposition would be

νchT.(V1| . . . |Vk |
i=1,...,k

processT)|νchT.(Vk+1| . . . |Vn |
i=k+1,...,n

processT),

which is obviously bisimilar. It is easy to see that this also works for composing
processes. This is because each instance contains the same private channel and
as many processT as voters. Thus the protocol is modular, and using Theorem 2
we have that the protocol by Okamoto ensures (MRF).

Note that this would also hold for a variant of the protocol with weighted
votes. Similarly to the first example we could implement this using multiple
ballots, and the resulting protocol ensures (SRF), (MRF), (Cor) and (Mod), but
neither (EQ) nor (SwRF).

2 Essentially we do not use the key distribution process as no keys are required to be
secret. We model them as free variables instead.
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5 Coercion-Resistance

After discussing Receipt-Freeness, we now define Coercion-Resistance. As before,
we start with Single-Voter Coercion-Resistance.

5.1 Single-Voter Coercion (SCR)

In this case, we combine (VP) with (SwCR): If two instances of a voting protocol
give the same result, they should be bisimilar even if one voter interacts with
the attacker in one case or only pretends to do so in the other case. The coercion
is modeled by the context C that interacts with the voter and tries to force him
to vote for a certain candidate.

Definition 20 (Single-Voter Coercion-Resistance (SCR)). A voting pro-
tocol ensures Single-Voter Coercion-Resistance (SCR) if for any voting processes
V PA = νñ.(V σid1σvA

1
| . . . | V σidnσvA

n
| A1 | . . . | Al), V PB = νñ.(V σid1σvB

1

| . . . | V σidnσvB
n

| A1 | . . . | Al) and any number i ∈ {1, . . . , n} there ex-
ists a process V ′

i such that for any context Ci with Ci = νc1.νc2.( |Pi) and

ñ ∩ fn(C) = ∅, V P ′
A

[
Ci

[
(V σidiσvA

i
)c1,c2

]]
≈l V P

′
A

[
(V σidiσvA

i
)chci

]
we have

Ci [V
′
i ]

\out(chc,·) ≈l V σidiσvB
i

and

V PA|res ≈l V PB |res ⇒ V P ′
A

[
Ci

[
(V σidiσvA

i
)c1,c2

]]
≈l V P

′
B [Ci [V

′
i ]] ,

where V P ′
A and V P ′

B are like V PA and V PB, but with a holes for the voter
V σidi .

As above, we can easily link this definition to the existing swap-based definition
using (EQ): If a protocol respects (EQ), (SCR) and (SwCR) are equivalent. The
proof given in [21] is similar to the (SRF) case.

5.2 Multi-voter Coercion (MCR)

We now discuss Multi-Voter Coercion-Resistance. To model the case where mul-
tiple voters are attacked, we consider the set I of attacked voters.

Definition 21 (Multi-Voter Coercion-Resistance (MCR)). A voting pro-
tocol ensures Multi-Voter Coercion-Resistance (MCR) if for any voting processes
V PA = νñ.(V σid1σvA

1
| . . . | V σidnσvA

n
| A1 | . . . | Al), V PB = νñ.(V σid1σvB

1

| . . . | V σidnσvB
n
| A1 | . . . | Al) and any subset I ⊂ {1, . . . , n}, I �= {1, . . . , n}

if n > 1, there exists processes V ′
i such that for any contexts Ci, i ∈ I with

Ci = νc1.νc2.( |Pi) and ñ ∩ fn(C) = ∅, V P ′
A

[
|

i∈I

Ci

[
(V σidiσvA

i
)c1,c2

]]
≈l

V P ′
A

[
|

i∈I

(V σidiσvA
i
)chci

]
we have ∀i ∈ I : Ci [V

′
i ]

\out(chc,·) ≈l V σidiσvB
i

and

V PA|res ≈l V PB|res ⇒ V P ′
A

[
|

i∈I

Ci

[
(V σidiσvA

i
)c1,c2

]]
≈l V P

′
B

[
|

i∈I

Ci [V
′
i ]

]
,
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where V P ′
A and V P ′

B are like V PA and V PB , but with holes for all voters
V σidi , i ∈ I.

As for (MRF), (MCR) implies (SCR), and (MCR) resp. (SCR) is stronger than
(MRF) resp. (SRF) (for the proofs, see the technical report [21]). We also have
equivalence between (SCR) and (MCR) under the same assumptions as in the
case of Receipt-Freeness using a similar proof.

5.3 Example: Bingo Voting

Bingo Voting was developed by Bohli et al. [23] to achieve coercion-resistance as
well as individual and universal verifiability by using a trusted random number
generator (RNG) and a voting booth.

Informal Description: We consider an election with k voters and l candidates.
The protocol is split into three phases: The pre-voting phase, the voting phase
and the post-voting phase. In the pre-voting phase, the voting machine generates
k random values ni,j for every candidate pj . It commits to the k · l pairs (ni,j , pj)
and publishes the shuffled commitments.

In the voting phase, the voter enters the voting booth and selects the candidate
he wants to vote for on the voting machine. The RNG generates a random
number r which is transmitted to the voting machine and displayed to the voter.
The voting machine chooses for each candidate a dummy vote except for the
voter’s choice. For this candidate the random value from the RNG is used and
the receipt (a list of all candidates and the corresponding dummy or real votes)
is created. Finally the voter checks that the number displayed on the RNG
corresponds to the entry of his candidate on the receipt.

In the post-voting phase the voting machine announces the result, publishes
all receipts and opens the commitments of all unused dummy votes. The ma-
chine also generates non-interactive zero-knowledge proofs that each unopened
commitment was actually used as a dummy vote in one of the receipts.

Analysis: The protocol satisfies (SwRF) as the receipt contains only random
numbers, and it is impossible for the attacker to know which entry corresponds to
the random value generated by the RNG [4]. It also ensures (SwCR) as voting
takes places inside a secured voting booth. This was formally proven in the
DKR-model [4], and we use the same model to show that it satisfies (MCR). As
before, it is easy to see that the protocol ensures Equality of Votes and hence
Correctness as votes are not weighted. By analyzing the structure of the voting
process, we can see that the protocol also is modular. In the case of n voters, we
have the following voting process

νprivChM1 . . . νprivChMn.νprivChRM1 . . . νprivChRMn.
νprivChR1 . . . νprivChRn.(V1| . . . |Vn|M1,...,n;l|R1| . . . |Rn)

where Ri are the trusted random number generators, M1,...,n;l is the voting
machine process for n voters from 1 to n and l candidates, and privChMi,



466 J. Dreier, P. Lafourcade, and Y. Lakhnech

SwCR

SwRF

SwP

SCR

SRF

VP

EQ

EQ

EQ

MCR

MRF

Cor, Mod

Cor, Mod

Fig. 2. Relations among the notions. A
C−→ B means that under the assumption C a

protocol ensuring A also ensures B.

privChRMi and privChRi are the private channels between the voter and the
voting machine, the RNG and the voting machine, and the RNG and the voter
respectively. For k ∈ {1, . . . , n− 1}, this can be rewritten as

νprivChM1 . . . νprivChMk.νprivChRM1 . . . νprivChRMk.
νprivChR1 . . . νprivChRk.(V1| . . . |Vk|M1,...,k;l|R1| . . . |Rk)|

νprivChMk+1 . . . νprivChMn.νprivChRMk+1 . . . νprivChRMn.
νprivChRk+1 . . . νprivChRn.(Vk+1| . . . |Vn|Mk+1,...,n;l|Rk+1| . . . |Rn)

as M1,...,n;l ≈l M1,...,k;l|Mk+1,...,n;l. This can be easily seen from the applied π-
code [21]. It is easy to see that this also works for composing processes. Hence
we have all necessary conditions and obtain that Bingo Voting ensures (MCR).

6 Conclusion

We presented an intuitive definition of privacy for voting protocols that gen-
eralizes to situations with weighted votes. We extended the definition to in-
clude Receipt-Freeness and Coercion-Resistance as well. We considered situa-
tions where only one voter is under attack, and others where multiple voters
are attacked. We were able to show that - under the assumptions that votes
are not weighted and correctly counted - the single voter case is equivalent to
(SwP), (SwRF), (SwCR) as defined by Delaune et al. [2]. Moreover, we proved
that the multi-voter case is equivalent to the single-voter case if the protocol is
correct (Cor) and respects a modularity condition (Mod). This condition allows
us to compose and decompose protocols, which expresses the fact the different
parts of the protocol are independent. Figure 2 summarizes our results. Finally,
we illustrated our work by analyzing two existing protocols. As future work, we
would like to translate these symbolic definitions to the computational setting.
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Abstract. Tor is a widely used anonymity network providing low-latency
communication capabilities. The anonymity provided by Tor heavily re-
lies on the hardness of linking a user’s entry and exit nodes. If an at-
tacker gains access to the topological information about the Tor network
instead of having to consider the network as a fully connected graph, this
anonymity may be reduced. In fact, we have found ways to probe the
connectivity of a Tor relay. We demonstrate how the resulting leakage of
the Tor network topology can be used in attacks which trace back a user
from an exit relay to a small set of potential entry nodes.

1 Introduction

Anonymity clearly was not a concern when the Internet Protocol was designed.
Hence it comes as no surprise that internet communications are traceable. To-
day, the consequences of linking your traffic profile to your persona vary: they
range from ISPs selling your aggregated web browsing history to marketers in
democratic countries to being imprisoned for criticizing the government online in
countries with repressive regimes. For many people, the first approach to hiding
their identity is a public proxy server. This however is no panacea: the owner
of the proxy can be forced to reveal any logs potentially stored – or even worse,
the server may turn out to be a honeypot of the organization the party is trying
to hide from. A better solution is to forward traffic through a chain of network
nodes, so-called relays.

In 1996, Goldschlag, Reed and Syverson [1] presented Onion Routing, a de-
sign limiting traffic analysis on low-latency communication that was inspired by
Chaum’s mix networks [2]. Tor is the refined successor of the original Onion
Routing Project. The Tor network is a low-latency anonymity network which at
the time this of writing comprised of 2500-3000 relays with an estimated number
of daily users (unique IPs) exceeding 400,000. In comparison to single-hop prox-
ies, forwarding TCP streams through multiple relays increases the anonymity of
the users significantly: each hop along the route only knows its successor and
predecessor. Tor tries hard to achieve low traffic latency to provide a good user
experience, thus sacrificing some anonymity for performance. To keep latency
low and network throughput high, Tor relays do not delay incoming messages
and do not use padding.
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One way to undermine the anonymity of a Tor user is to reveal the pair of
the corresponding entry and exit nodes; this is supposed to be hard. Once the
correspondence between the entry and exit nodes is known, the anonymity of the
observed connection is reduced to the case of two known sequentially connected
proxies, or to the case of a single proxy if the attacker controls the exit node.
Though this will not allow us to immediately determine the actual originator
of the connection, this is already a significant information leak because triplets
of guard nodes can serve as unique user identifiers within the Tor network, and
also because knowing the entry node tells the attacker where to target next.
Namely, other attacks may be launched to compromise the entry node, or the
entry node’s operator/ISP could be presented with legal demands to reveal the
network logs. Given that the exit node is known, the probability of correctly
guessing the entry node is 1

n , where n is the number of guards in the Tor network.
For an adversary with less visibility than a global passive adversary and a fully
connected network, increasing this probability is far from straightforward. Still
in reality, not all entry and exit nodes are connected via three hop paths (which
is default for Tor) at a given point of time. This observation can become the
basis of several novel attacks on Tor, as will be shown in the paper. The main
contributions of this paper are:

(i) We present two ways to reveal the connectivity of nodes in the Tor network:
one using canonical connections which are a part of the Tor specification; the
other is a more generic technique, namely a timing attack on the connection
establishment between two relays.

(ii) We present novel attacks which are based on the connectivity scanning ap-
proach. The first attack allows to identify the guard node which was used in
a circuit carrying a long-lived connection – such as an SSH session or a large
file download. The second attack, which we have chosen to call differential
scan attack, uses recurrent connections to reveal all guard nodes of a user.

(iii) We give some guidance on countermeasures that can be implemented to
make the Tor network more resilient to leakage of topology information.

The rest of the paper is organized as follows: in the next section, we summarize
aspects of the Tor specification which are relevant for the connectivity scanning
techniques and for the description of our attacks. Thereafter we give a short
overview of previous attacks on Tor. We describe our techniques for revealing
the connectivity of Tor relays in Section 3. In Section 4.1, we describe our attack
on long-lived streams. The differential scan attack is described in Section 4.2.
An analysis of our attacks is performed in Section 5. We discuss the potential
countermeasures in Section 6 and conclude in Section 7.

2 Background

Tor is a popular volunteer-based overlay network used to conceal user’s location
or behavior from adversaries conducting network surveillance or traffic analysis.
Using Tor makes it more difficult to trace Internet activity for TCP applications.
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To connect to a server through Tor, a client first chooses a path (i.e. a sequence
of Tor relays: guard, middle, and exit) which will then carry data back and
forth between the client and the server. To choose a path, the client obtains
the list of available Tor routers and their parameters from a document called
Network Consensus. Each Tor router in the list is uniquely identified by the SHA-
1 message digest of its RSA public key. To prevent sampled profiling attacks each
user has a fixed triplet of guard nodes which does not change for approximately
one month. Each time the user needs to choose a guard node, he chooses it
uniformly from this triplet.

After the sequence of relays is chosen, the client starts to build a circuit, one
hop at a time. First, the user sets up a TLS connection with the guard node and
uses COMMAND CREATE and COMMAND CREATED cells1 to negotiate a Diffie-Hellman
(DH) key. This creates a one-hop circuit. The client extends the circuit to the
middle node through the guard node: he sends a RELAY COMMAND EXTEND cell
to the guard in which he specifies the address, the digest of the middle router,
and the first step of DH key exchange encrypted by the middle node’s public
key. Once the guard node receives the cell, it establishes a TLS connection with
the middle node and sends it the encrypted portion of the DH handshake. The
middle node decrypts it and replies with the second step of DH exchange which
is forwarded to the client within a RELAY COMMAND EXTENDED cell. In this way
the second hop of the circuit is established.

If during the circuit construction process the middle node rejects the connec-
tion, the guard node sends a COMMAND DESTROY cell, specifying the error code,
so that the client is forced to choose another sequence of relay nodes and try to
construct a new circuit. If the circuit is extended successfully up to the middle
node, the rest of the circuit is established in the same way. After the circuit has
been built, the client can start transmitting and receiving data over this circuit.
All TCP connections of the user’s application are translated into Tor streams
which are multiplexed over the circuit. Using the initially chosen circuit for a
long time makes profiling attacks easier: the longer the duration of the circuit,
the more time the attacker has to reveal it. For this reason, circuits older than
10 minutes are not allowed to carry new streams (for new streams a new circuit
should be constructed.) After 10 minutes a circuit dies unless it carries a long-
lived stream. In the latter case, the lifetime of the circuit equals the lifetime of
the long-lived stream. In other words, a circuit is not destroyed until at least one
stream is attached to it. In a similar way, a TLS connection between two Tor
relays is not closed if it carries at least one circuit. A TLS connection without
circuits between two Tor routers lives for three minutes. There is one exception
to the rule. A circuit which has never carried a stream (a clean circuit2) lives for
1 hour.

When a pair of Tor routers or a Tor router and a client have several circuits
between them, they try to tunnel them over a single TLS connection. In Fig-
ure 1 communication between two Tor routers is shown. The routers use a single

1 Tor protocol messages are called “cells”.
2 Once a new stream is attached to the circuit, it is marked as “dirty”.
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TLS connection (which is also called Onion Routing connection) which carries a
number of circuits, two in this picture (which may belong to different end users).
Multiple streams of one user may be multiplexed over a single circuit.

Fig. 1. Circuits and streams multiplexing

2.1 Related Papers

Many different attacks on low-latency anonymity networks in general and on
the Tor network in particular are described in the literature. The most success-
ful attacks can be categorized into passive traffic analysis attacks, active traffic
analysis attacks, and attacks based on information leakage from specific applica-
tions. Passive traffic analysis attacks assume that an attacker passively observes
a number of connections in an anonymity network and tries to correlate these
connections either between themselves [3–8] or with a predefined traffic pattern
[9]. Active traffic analysis attacks assume that an attacker can inject traffic or de-
lay traffic passing through the Tor network, thus modifying traffic and/or timing
patterns of a targeted flow [10–13]. Application specific attacks use the fact that
applications may establish TCP connections directly (including connections to
malicious servers) ignoring Tor and may establish UDP connections which are
not supported by Tor [14]. Also, some applications may leak IP addresses in
protocol messages.

The attacks presented in this paper do not require monitoring nor sending sig-
nificant amounts of traffic (only a limited number of Tor protocol management
cells) which makes these attacks relatively cheap. They also do not require the
attacker to have the global view of the network needed by a number of passive
traffic analysis attacks. In addition, the attacks presented in this paper are or-
thogonal to the previous attacks and thus can be used to improve some existing
attacks making them more practical by reducing the traffic costs, or the number
of monitored nodes (for ex. Murdoch’s attack [10]). Finally, the attacks presented
here do not rely on the details of a particular user application or protocol.

3 Revealing Tor Connectivity Dynamics

Consider an attacker who wants to link the exit and the guard node of a circuit
and thus decrease the anonymity of the user. Given the Tor network connectiv-
ity information, she can determine possible 3-hop paths from the exit node to
the set of guard nodes and eliminate those which are impossible, thus already
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decreasing the claimed anonymity of Tor network to some extent. However, the
decrease of anonymity depends on the connectivity of the exit router as well as
on the connectivity of its adjacent routers. Even for low bandwidth routers3,
connectivity at a given point in time can be as high as 120-300. For routers
from the set of 10% fastest routers, the connectivity may be higher than 1500.
Thus, exploiting Tor topology at just one point in time may not be sufficient.
A much more efficient way would be to observe Tor connectivity changes over
time. Indeed, an application that requires a persistent connection, will force the
routers in the circuit to maintain a connection between them for the applica-
tion’s lifetime at least. An attacker who wants to trace such a communication
needs to observe the exit node for a while and eliminate routers which it looses
connections to. On the other hand, if user’s application drops a connection, an
attacker may observe a new defect in the topology and link this defect with
the user’s application (note that if the attacker controls the exit node, she can
cause the connection to drop.) In this way, we come to a simple but powerful
idea: observation of local Tor network connectivity dynamics gives us a way to
decrease the anonymity provided by Tor. More specifically, to trace long-lived
(or persistent) connections and to reveal short-lived connections.

3.1 Canonical Connectivity Scanning

We will now show how an attacker can scan a Tor relay to find out what TLS
connections are established with other relays. To explain how this works, we first
have to delve into details of the Tor specification. In order to prevent an attacker
from forcing a relay to open a new TLS connection for each extend request, a
Tor relay uses an existing connection (if any) corresponding to the fingerprint
specified in the extend request no matter what IP address was indicated. This
could potentially allow a malicious party to perform a man-in-the-middle at-
tack. For the two relays R1, R2, the attacker would send an extend request with
a forged IP address X to R1 before other circuits (and hence a connection) are
established between R1 and R2. If the machine at IP address X was then to
connect to R2 and forward all of the traffic it received from R1 to R2 and vice
versa, it could perform a byte-counting attack. To prevent this from happening,
Tor uses a countermeasure called “canonical connections”. Briefly, a connection
to a router is canonical if the destination IP address of this connection corre-
sponds to the one in the consensus. If a Tor relay gets an extend request with a
fingerprint, it should use an existing canonical connection corresponding to this
fingerprint.

We noticed that Canonical connections give an attacker a convenient way to
determine how routers in the Tor network are connected to each other. When
sending a RELAY EXTEND cell, the circuit originator specifies both the identity
fingerprint and the IP address of the router he wants to extend the circuit to.

3 Everywhere in the paper, when speaking of bandwidth we mean not the advertised
bandwidth but actual figures from the Consensus measured by Tor authorities and
used by the Tor client to choose routers for the circuits.
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Assume that the attacker wants to figure out whether a router A is connected
to a router B. In order to do this, the attacker forges a Tor RELAY EXTEND cell
with the fingerprint of router B and 127.0.0.1 with an unreachable port (port
1 for example) and sends it to router A. When the cell is received, the reaction
of router A depends on whether it has a connection to router B:

– If A has a canonical connection to B (it should be noted that if a connection
exists it is almost always canonical), router A ignores the IP address from the
forged RELAY EXTEND cell and uses the already established TLS connection,
extends the circuit and sends back RELAY EXTENDED cell.

– If A does not have a connection to B then it tries to make a new TLS
connection using the address from the received cell. Obviously, the connec-
tion attempt is refused which causes router A to send a DESTROY cell to the
attacker.

By inspecting the cell the attacker receives back from router A, she can determine
whether router A is connected to router B. Evidently, the attacker can probe
router A for connection with any router contained in the consensus4.

3.2 Connectivity Probing via Timing Attacks

We now consider a second, somewhat less powerful approach for determining
whether two relays are already connected. When a client extends a circuit from
relay R1 to relay R2, the time until he received the RELAY EXTENDED reply from
R2 depends on whether a TLS connection between R1 and R2 is already set up
or whether it needs to be established first. In the later case, both the additional
network and the cryptographic latency are considerable. A TLS connection setup
between Tor relays can cause huge delays, especially if version 2 or above of the
handshake protocol is used. This delay is caused by network latency and the
large number of protocol steps until the CREATE cell can be sent (see Figure 2
for details). If a TLS connection needs to be set up to create a circuit, a delay
on the order of 7.5 round-trip times is added to the circuit creation until the
CREATE cell is received by R1. Approximately 6.5 round trips are required for
the TLS connection setup alone, another round-trip for the v2 handshake. By
sending multiple RELAY EXTEND requests and comparing the time it takes for
the first one to arrive versus subsequent ones, we can determine whether a relay
is connected to another relay. This has been confirmed with experiments. The
disadvantage of this method is that network jitter as well as cell forwarding
delays by the relay scanned can add significant amounts of noise which makes
the method less reliable. Moreover, in contrast to the method described in the
previous subsection, this method will really establish TLS connections to all
routers that are scanned and not just prolong the lifetimes of the connections
that are already open.

4 By coincidence, this scanning technique can not only be used to scan the connectivity
of a Tor router, but also to scan for open ports on random IP addresses from a relay
that has an all-reject exit-policy.
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R1
TLS: ClientHello � R2

R1
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TCP: ACK � R2
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TCP: ACK � R2
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R1
� Tor: NETINFO

R2

R1
Tor: CREATE � R2

R1
� Tor: CREATED

R2

Fig. 2. Tor circuit setup. The last two steps are performed always. Steps marked with
dashed lines are performed only when there is no TLS-connection between R1 and R2.

4 Attacking Tor Using Connectivity Dynamics

4.1 Tracing Long-Lived Streams

Tor is used by many people to establish long-lived SSH sessions, download very
large files (sometimes using file-sharing applications, even though this is frowned
upon) and to communicate over instant messaging networks. The latter usage
of Tor is particularly important for countries with repressive regimes such as
China, Iran, or Syria: people are regularly sent to prison or worse for state-
ments critical of their government. The use-cases described above imply long-
lived TCP-streams which necessarily create long-lived TLS-connections between
Tor routers which are used to carry the stream. Thus, we show how an attacker
knowing the exit node of a long-lived TCP-stream can link it with the guard
node using our scanning techniques5.

One-Hop Attack. In this attack, we assume that the attacker controls one or
more fast exit routers which see a significant fraction of the traffic exiting the Tor
network, thus she gets access to pseudonyms of the users (ex. cookies, logins).
This is not an unrealistic scenario; some organizations have control over sizable
portions of the total exit traffic: according to the consensus current at the time

5 One important note is that in the current Tor protocol, the connections between two
routers which last more than 7 days are marked as ”bad” for new circuits and no new
circuits can be added to such connections. However persistent circuits inside these
connections are not closed and will continue running. We cannot see these persistent
OR connections using our probing techniques after 7 days have elapsed.
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of writing this paper, 7.2% of total exit capacity were provided by the Chaos
Computer Club, 5.9% by Torservers.net and 5.4% by Formless Networking LLC.
The attacker is curious to connect the pseudonyms with the guard triplets for
the users that pass through her Exit relays. Assume that one of the attackers’
nodes E (see Figure 3) is selected as the exit node of a circuit. By looking at
the traffic pattern, the attacker will be able to infer that the connection to the
exit node is likely to be of long-lived type. The attacker then starts the attack:

1. The attacker starts scanning the middle nodeM for connectivity using either
of the techniques described in the previous section. The set of connected
nodes necessarily includes the guard node G in question and makes up its
initial anonymity set.

2. Next, the attacker continues with the connectivity scanning of the middle
node for several hour or even days in hope that the majority of the nodes
of the initial anonymity set will disconnect (nodes with dash lines on Figure
3.)

3. The attack stops when the anonymity set of the guard node is considerably
reduced or when the user closes the long-lived TCP-stream.

Fig. 3. Long-lived connections attack Fig. 4. Differential scanning attack

When the attack is finished, the user’s guard node will be contained in the
resulting anonymity set (nodeG and another node with the solid line on Figure 3)
along with some number of other connections that can be considered as ”noise”.
The attacker may also infer extra information from the speed of the connection,
which will indicate whether the middle or the guard node are the bottleneck for
the traffic of the long-lived circuit; this helps her to further shrink the set of
candidates for the guard node since it allows to discard very active routers from
the list of candidate guard nodes.

Two-Hop Attack. This attack does not require the attacker to control any
relays in the Tor network and can be performed by a server (or an attacker
close to the server) who tries to reveal the guard nodes of pseudonymous users
connecting to the server. The attack starts from connectivity scanning of the
exit node (similar to one-hop attack) in order to reduce the anonymity set of
the middle node. After having narrowed down the set sufficiently, the candi-
date middle nodes are scanned resulting in the anonymity set of the guard node.
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The attack might be successful if either middle or guard nodes are low-bandwidth
which might be inferred from the connection latency by the attacker. We also
assume that exit node is medium or low-bandwidth. The difficulty in the two-hop
attack comes from the fact that many middle nodes reachable from the exit node
would come from a set of active routers with many connections. This will result
in hundreds of candidate guard nodes even after several days of scanning. This
effect happens due to ”immortal”connections formed between active routers,
which we will describe in Section 5. In spite of its simplicity, the described
attack is quite powerful since:

(i) it does not require control over any relays in the Tor network. The attacker
merely probes relays (probing could be also done from a distributed set of
addresses);

(ii) it is cheap in terms of bandwidth: in order to scan one router the aggregated
amount of traffic that needs to be sent and received is less than 5 MBytes
(for the current size of 3000 routers in Tor network);

(iii) it is fast: the average time of scanning one router is 20 seconds and scanning
of different routers can be easily parallelized.

Experimental Results. In order to estimate how efficient the attacks can be in
the wild, we used Python to implement a rudimentary Tor client which provides
basic functionality. The client can establish a TLS connection to an arbitrary
Tor router, complete Diffie-Hellman key establishment and send and receive Tor
relay cells. In other words, the client is able to create and extend arbitrary chosen
circuits. Using canonical connectivity scanning, our client is able to check a Tor
router for connectivity with 99% of other routers in the Tor network in less than
30 seconds.

In order to check the correctness of the proposed canonical connectivity scan-
ning, we scanned two routers under our control omicron and Layercake for five
days from February 11th until February 16th, 2012. During the experiment the
routers had bandwidth weights in the range [500 - 1500] for omicron and in
the range [15000-55000] for layercake which means that the later was in the
top 10% set of fastest and thus most frequently chosen routers. Both relays had
Guard flags and did not have Exit flags. Since the routers were operated by us,
we could gather the real time statistics directly from them using the Tor con-
trol port. We then compared the results from the canonical connectivity scan
and from the control port. Figure 5 shows the number of persistently connected
Tor routers over time, i.e. those routers which were connected to our routers at
the start of the experiment and never disconnected during the experiment. The
close match of the results as shown on Figure 5 demonstrates that canonical con-
nections scanning provides reliable results. The slight difference in the results
is explained by the difference of scanning frequency: for canonical connection
scanning, each sample cannot be taken faster than every three minutes (i.e. the
lifetime of an idle Tor TLS connection); the data from the routers control port
however was fetched every ten seconds. According to Figure 5, for the router
with bandwidth weight 1500 (omicron), the number of persistently connected
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routers decayed from 303 to 20 in just 12 hours. This matches with our predic-
tion from Section 5.1. It then took 4 days for another 18 routers to disconnect.
Our target connection was among the remaining ones. The decay rate of per-
sistent connections of the high-bandwidth router (layercake) looks similar: the
number of persistent connections drops sharply from 1116 to 300 in 12 hours and
then decays slowly. We tested canonical connection scanning against several Tor
routers not under our control. The result for one such router with bandwidth
weight in range [2040-2190] is shown on Figure 6. We observed a very similar
behaviour: a big chunk of connections drop quickly, and then it decays slowly.
After two days of scanning, we found 12 persistent connections.

Fig. 5. Decay rate of persistent connec-
tions: Canonical vs control port scan

Fig. 6. Persistent connections decay rate
for a random router

4.2 Differential Scan Attack

Attack Description. Consider user which periodically checks some Web server
or a web service that instructs the user’s browser to periodically re-establish
streams. Google Mail for instance builds a series of short-lived (around 2 minutes)
TCP sessions. Another example are news web sites with auto-refresh contents.
In this section, we describe an attack on such recurrent connections. The aim
of the attacker is to find at least one of the guard nodes of a pseudonymous
user (identified by a cookie or a login credential) that uses such a service for
several days. Note that this attack does not require a single long-lived circuit
or session. It just requires that a Tor client is connected to the Tor network for
non-negligible amount of time within the span of a month (i.e. as long as the
guards are still valid).

Similar to Section 4.1, in this attack, the attacker has control over a significant
fraction of the exit capacity of the Tor network. Assume that a user visits a Web
server S (see Figure 4) that causes recurrent connections to occur. Ten minutes
after the first connection, his initial circuit should expire and the user’s Tor client
will try to build a new circuit. Given a sufficient number of exit nodes controlled
by the attacker, the circuit will include one of the attacker’s exit nodes E. Once
the exit node receives incoming traffic destined to the web server it executes the
following sequence of steps:
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1. The exit node E observing the stream to the web server determines the
middle node M of the circuit that caused the stream to be established and
transmits it to the attacker.

2. The attacker probes the connectivity ofM and remembers the list of routers
connected to it (nodes connected to M both with dash and solid lines on
Figure 4).

3. E sends a DESTROY cell6 down the circuit which leads to the circuit ter-
mination. The circuit termination may lead to the connection termination
between the middle node and the user’s guard node with some probability
which can be estimated using expressions from Section 5.2.

4. The attacker waits for three minutes and starts the scan of M again.
5. The attacker computes the difference between the sets obtained via the first

and the second scans, i.e. he determines connections which were present in
the first list but absent in the second (node G and another node with dash
line.) We say that we have a differential with node G and M if G is in the
difference.

6. The attacker then repeats steps 1-3 each time one of her exit nodes is chosen
for the recurrent connection.

7. Once an attacker has performed the above steps often enough, and given
that the circuit closure event caused the connections closure frequently, she
can derive the user’s three guard nodes: the probability of having the guard
node in the difference should converge to 1/3.

This attack can be further enhanced by scanning the full network at regular and
frequent intervals. Then if the connection to the malicious Exit arrives shortly
after the full network scan, the attacker will have additional differential connec-
tivity information in order to filter the noise. Our experiments have shown that
the full network scan can be done in 3 minutes using 20 hosts (using Amazon
EC2 service, a day of full network scans with 3 minutes between scans costs
around 80 USD).

A similar but less stealthy approach can be used to track any users connec-
tion. Assume that a user connecting to a server chose one of the attacker’s exit
nodes. This allows the attacker to inject a small piece of code in each HTML
document requested by the user, which artificially creates recurrent connections.
Specifically the user can be redirected to an arbitrary address and port. Note
that in the current Tor network, aggregated exit bandwidth for different port is
different, thus by choosing the appropriate port range, the attacker can increase
the probability that her exit node is chosen: at the time of the experiment total
exit capacity was approximately 5 · 106 Kbytes/s, the bandwidth capacity of
scarce ports7 was about 1.2 · 106 Kbytes/s.

Experimental Results. We have implemented a proof of concept version of our
differential scanning technique and have tested it using sets of paths generated
by a modified version of the Tor client – this client does not create any circuits

6 If the attacker wants to be more stealthy she can just wait until the circuit expires.
7 There are several scarce ports still usable by Web browsers.
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but simply outputs randomly generated paths with user-specified constraints.
These paths are then used to build circuits through the control port of the Tor
daemon. After a circuit has been built, a scan is conducted, then the circuit
is torn down, the program waits for 200 seconds and scans again. To perform
experiments more quickly we have implemented this in a parallelized manner
on Amazon’s EC2 platform so that many (non-interfering) experiments can be
conducted in parallel. As a first experiment, we used only one guard node with
capacity of 36500 and allowed for middle nodes with capacity of 1600 or lower in
the consensus8. For 150 paths, 125 successful differential scans were performed.
The target guard node has appeared 58 times in the difference sets topping the
list of potential guards.

1. C37B234FAD013453B90375EB55864FEBC876104A: 58 (PPrivCom052) bw=36500
2. CA1CF70F4E6AF9172E6E743AC5F1E918FFE2B476: 35 (spfTOR3) bw=29800
3. 0B7ED44C67DBE50313F0B32BD335D093D0474CE8: 33 (bauruine2) bw=117000
4. 847B1F850344D7876491A54892F904934E4EB85D: 31 (tor26) bw=20
5. DB8C6D8E0D51A42BDDA81A9B8A735B41B2CF95D1: 30 (rainbowwarrior) bw=81300
6. 173B220F9F32F39086D5661274A47485EDA26131: 29 (TorExitProgressbar9) bw=650
7. 1603DFE9FC373ECDA39046FADB5A76B87A4BA36B: 27 (StickItToTheMan) bw=46800
8. 1F52D692FA2C21B23FAD4D711A7BF17BAE2673DF: 26 (alice) bw=7170
9. 47916CAB5878C810E7EF71A316D37FC823CC7F52: 26 (CCN) bw=53100

10. 95A0D58710EA9B61DAD3A01CAD3BE77DACA76BEF: 25 (OccupyMyPants) bw=30300

This shows that differential probing works in practice: there’s a drastic reduction
in the anonymity set of the guard nodes, even for high capacity guard nodes.
Below is the concrete data of one of the experiments in which we had chosen
guards of capacity 300, 412, and 501, constrained the capacity of the middle
nodes to 30,000 and scanned different middle nodes in 134 trials9:

1. A58E0F05C1939725D7247BA60BA3135DB88209BC: 43 (jefOlewkia), bw = 501
2. D3378ABA009078158DB59E8B36B8EBB88B309BA7: 40 (torn0t), bw = 412
3. 2629979FD21BF3B522E818B73F6F8D0B5D8A5CF0: 40 (tapir), bw = 300
4. A9C039A5FD02FCA06303DCFAABE25C5912C63B26: 29 (chaoscomputerclub5), bw = 173000
5. FA486415B86D28CD047D10F76768E4E88A182F71: 28 (ZhangPoland1), bw = 56400
6. 131B60B9AFE6AEA60042132D648798534ABEA07E: 28 (wagtail), bw = 24400
7. 4536ED68D9DB4B2FF532AD43A632AAF600B798CC: 27 (Unnamed), bw = 116
8. 1D8625690AB9729FB2040D8194EC0D6789A4D092: 25 (TOR1CINIPAC), bw = 43900
9. FC35DE87F6E4022693323275F6B8EE5F72FD21B5: 24 (Unzane), bw = 3160

10. CA1CF70F4E6AF9172E6E743AC5F1E918FFE2B476: 23 (spfTOR3), bw = 28700

Again, although we have some spurious low-bandwidth routers in the top ten,
these results show that the attack described above works well in practice. In real
life, the attacker will perform scans for any circuit which has been detected to
be established by a unique pseudonym of a user and for which the middle node
is below a certain threshold bandwidth.

We now try to estimate how many measurements the attacker should make
when low capacity guards are being used. There are 1,440 minutes in a day; this
means that if the attacker is unlucky (i.e. his exit is not selected and then she

8 See Section 5 for justification of the choice of the bandwidths. In brief: (1) the
product of bandwidths of the guard node and middle node should not exceed 300
million to avoid “immortal connections ; (2) the attack works best when either the
guard or the middle node are not high-bandwidth.

9 jefOlewkia was involved in 43 circuits, torn0t in 45 and tapir in 46 out of 134.
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needs to wait for 10 minutes until the circuit expires in order to get another
chance) there are 144 measurement chances per day. The fact that an attacker
controlling a fraction f of the exit bandwidth tears down circuits to which she
gets access, increases the number of measurement slots available to the attacker
by 1

1−f , which for f = 1/3 results in 144 f
1−f = 72 slots. If the upper bound

for the capacity of the middle node is set to 30000 then (according to Figure 9)
there is about 40% chance for a circuit to go through such middle node. This
reduces the amount of measurements to 29 per day. The attacker will continue
the attack until he obtains about 40 measurements, which means the attack will
run for about 1 day. Note that the attack is very successful if the bandwidth
of one of the user guard nodes is below 500. There is about 3% chance that a
user’s client has chosen a guard node with low capacity, i.e. Gmin < 500, into his
triplet of guard nodes. Thus this attack could affect more than 10,000 daily users
of the Tor network. If the attacker performs the attack for 7 days, it suffices for
her to control only 5% of the exit bandwidth.

5 Analysis of the Attacks

5.1 Long-Lived Connections

In Section 4.1, one could notice that after a relatively short period of scanning
time, when the number of connections drops to some value, the reduction rate
of the anonymity set of the guard node becomes negligible. This value can be
considered as a threshold for this attack which we try to estimate in this section.

We measured circuit duration distributions over a two high bandwidth routers
connection (layercake bw=35300, and bouazizi bw=69700 for 13 of Feb 2012,
see Figure 7) and a connection between a high bandwidth router and a non-high
bandwidth router (omicron bw=491 and for 13 of Feb 2012, and layercake).
Circuits with lifetime longer than 2 hours constitute less than 1.5% of the total
number of circuits. From this we can assume that the majority of long-lived
connections in Tor are not because of long-lived circuits but because the short-
lived circuit creation rate over this connection is high and there is always at least
one circuit inside this connection which prevents it from closing. Such immortal
connections form if the product of bandwidths of the two routers exceeds a
certain threshold as will be shown below.

Figure 8 shows the number of new circuits per ten seconds gathered during two
days on one of our active routers. We observed that: (1) circuits arrive according
to the non-homogeneous Poisson process; (2) assuming that client circuit arrival
rate is proportional to the guard router’s bandwidth, we estimate an average
circuit arrival rate R in the whole Tor network to be about 900 circuits per
second (not at peak times). In the expressions below one can also use the value
of circuit arrival rate for the specific time of the day instead of the average value;
(3) the average circuit duration time tavg is about 200 seconds which varies
only slightly for routers with different bandwidth weights. We now estimate the
probability that a pair of routers A and B is connected with almost immortal
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Fig. 7. Circuit duration distribution be-
tween two high-bandwidth routers

Fig. 8. Circuit arrival rate for an active
high bandwidth router

Fig. 9. Probability for a node to be cho-
sen as a guard and a middle node

Fig. 10. Connection duration distribu-
tion

connection. Note that a TLS-connection between Tor relays is closed only if no
circuits were carried over this connection for three minutes. In other words, for
a connection to stay open, the time between arrivals of two consecutive circuits
should not exceed the average circuit duration plus 3 minutes. Denote by Δt the
time of the attack. Then during this time, Δt · R · pa,b new circuits will arrive.
Here pa,b is the probability of routers A and B to form an edge in a new circuit:

pa,b = 2 · bwabwb

bwtotal

(
1

bwguards
+ 1

bwexit

)
, where bwguards is the total bandwidth of

guard nodes, bwexit is the total bandwidth of exit nodes, bwtotal is the total
bandwidth of the whole Tor network, bwa and bwb are bandwidths of routers A
and B respectively10. Taking into account that circuits arrive according to the
Poisson distribution, the probability to have an ”immortal connection“ can be
computed using the following expression:

10 This expression for pa,b is an approximation since it does not take into account
all peculiarities of the Tor path selection algorithm, in particular, the expression
ignores weights which are assigned to a relay based on its position in the circuit and
its flags. We compared our approximation with the precise calculation and found
that simpler approximation is sufficient for our purposes and makes the analysis
easier to understand.
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Pimmortal(A,B) = (1− e−R·(tavg+tidle)·pa,b)Δt·R·pa,b ,

where tidle= 180 seconds. A connection between A and B almost never closes if
Pimmortal(A,B) is close to 1. Using this expression we find that immortal con-
nections are formed between routers of bandwidth > 17, 500 (or routers with
product of bandwidths above 300 million). Given the bandwidth of a router,
an attacker can estimate the number of immortal connections that it has and
decide whether it is worthwhile to perform the attack. Figure 11 shows comple-
mentary cumulative bandwidth distribution of Tor relays along with the share
(i.e. the percentage of total number of Tor relays) of persistent connections for
each bandwidth11. For example, if an attacker decides to scan a Tor relay with
bandwidth weight of 5000, she can expect that this relay has about 1% of “im-
mortal” connections. Given 3000 Tor relays, this yields the anonymity set of 30
relays. If bw < 1300, the attack is expected to give the unique solution12. Note
that although only few routers have large percentage of immortal connections,
these routers are high-bandwidth and and are selected more frequently.

In order to give a first order approximation of how long we should wait un-
til a persistent connection is detectable among other “non-immortal” connec-
tions, we collected connection duration statistics from Tor routers operated by
us for 7 days. Figure 10 shows the connection duration distribution for two pairs
of routers: medium-to-medium bandwidth, medium-to-high bandwidth. In ten
hours, 99% of all non-immortal connections should disconnect for both cases.
Thus, we expect that if a persistent connection under observation has a dura-
tion of more then 10 hours, the probability of its successful identification depends
mostly on the number of immortal connections.

5.2 Differential Scanning Attack

In this section, we explore the limits of the differential scan attack. Assume that
an attacker tries to reveal a guard node g by observing circuits {c1, ..., ck} which
leads to scanning of a set of middle nodesM = {mc1 ,mc2 , ...,mck}. Let T denote
the set of all Tor relays and |T | = n. Then we define d :M ×T −→ {0, 1} in the
following way:

d(mci , r) =

{
1 if observed a differential between mci and r for circuit ci
0 otherwise.

The success of the attack depends on: (1) Signal =
∑k

i=1 d(mci , g), i.e. number

of differentials with guard node g , and (2) Noiserj =
∑k

i=1 d(mci , rj), number
of differentials with some other Tor relay rj , j = 1, ..., n. We then use signal-

to-noise ratio SNR = Signal
maxj{Noiserj }

as a measure of the success of the attack.

11 Note that bandwidth distribution can be approximated by the Pareto distribution
with minimal value xm = 350 and exponent α = 0.85.

12 For 11th of February 17:00, 2012, there were 2388 nodes out of 2897 with bandwidth
less than 1300. Their aggregated capacity was 371,159 out of 9,458,556 total capacity
of the whole Tor network.
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Fig. 11. Tor bandwidth distribution and
share of immortal connections

Fig. 12. Signal and Noise for differential
scan

We first estimate the Signal and Prob[d(mci , g) = 1]. Denote by t0 the time
when ci was destroyed. d(mci , g1) = 1 iff the connection which carried ci closes
3 minutes after ci is destroyed. This happens if no new circuit with duration t
arrives during [t0 − t; t0] and no circuits arrive during [t0; t0 + tidle]. Let f(t) be
the probability density distribution of the circuit duration. Then given that the
circuits arrive according Poisson distribution, we have:

Prob[d(mci , g1) = 1] = e−
∫ ∞
0

R·pa,b·t·f(t)dt · e−R·pa,b·tidle = e−R·pa,b·(tavg+tidle),

where R is the current circuit arrival rate of the whole Tor network, and pa,b is
the probability of router A and B to form an edge in a circuit (see Section 5.1).
To estimate the Noise and Prob[d(mci , r) = 1] for some Tor relay r �= g we use
the following approach: d(mci , r) = 1 if: (a) at the time of the first scan, there
is a connection between mci and r; (b) there is no connection at the time of the
second scan. Then we can derive (details are in the full paper):

Prob[d(m, r) = 1] =

(
1− e−λa,b·(tavg+tidle)

λa,b(tavg + tidle) + 1

)
· e−λa,b·(tavg+tidle),

where λa,b = R · pa,b.
To demonstrate how the above expressions work, we used the set of 125 middle

nodes from the experiment described in Section 4.2 with bandwidth weights
equal or less then 1600. Figure 12 shows: (a) the Signal of the guard node against
its bandwidth. (b) the Noise of a Tor relay against its bandwidth. As can be seen
from the figure, for low-bandwidth nodes the signal is close to its maximum value.
This happens since for this type of node, the probability that the connection
between it and a middle node carries just one circuit is very high. Low circuit
arrival rate of a low-bandwidth relay also implies the low value of noise since the
probability to have a connection between it and a middle node is low.

6 Discussion and Potential Countermeasures

In this paper, we have shown two ways to extract topology information of the
Tor network. One way to determine the real connectivity of Tor relays is to
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exploit a Tor countermeasure against man-in-the-middle attacks called canonical
connections. This method is cheap but can be eliminated in future versions of Tor
by changing the specification. A potential countermeasure would be to abolish
canonical connections. Of course this must be done while preserving the circuit
multiplexing feature. An obvious approach is to identify connections not only by
the fingerprint but by both the fingerprint and the IP address of the relay. This
prevents our attack, but needs to be weighed against a possibility to perform
denial-of-service by resource exhaustion against Tor relays.

A different approach for measuring relay connectivity is to use timing infor-
mation of the connection establishment as a side channel: circuit extension by
one hop takes much less time if the link on this hop already exists. This method
is less robust then the one exploiting canonical connections, but at the same time
the countermeasures are not straightforward; experiences in side-channel crypt-
analysis have shown that simple countermeasures like adding randomized delays
can often be defeated. At the same time, a fully connected graph for the Tor
network – i.e. having each relay connected to all the other relays at all times –
probably is too expensive from a performance standpoint. The balance to strike
here is to add sufficient noise to make timing attacks unreliable to attackers.

Finally we note that since our connectivity revealing techniques are orthogonal
to the existing attacks described in the literature, they can be used to improve
many of them substantially. Indeed, during the times when the number of Tor
routers was small, several attacks were available to adversaries. These attacks
allowed to link the exit and entry nodes of a user’s circuit. However, once the
number of Tor routers grew, those attacks became too expensive in terms of
required bandwidth and time. This is because for those attacks to be successful,
exhaustive probing of each link in the Tor network was required. Given a way
to determine the real connectivity of Tor network, these attacks can become
practical again since the amount of links to be probed is significantly reduced.

7 Conclusion

All prior research on Tor assumed opacity of the Tor network topology – meaning
that the attacker had to assume a fully connected graph. In practice, the real
degree of a node in this graph is substantially smaller than its maximum at any
given point in time. For the first time, we have shown methods to determine the
real connectivity of relays in the Tor network and the dynamics of the topology
of the whole Tor network. Based on this, we described several novel attacks that
use this information to deanonymize the entry points of the users into the Tor
network.

Acknowledgments. We would like to thank anonymous reviewers for numer-
ous useful comments.
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Introducing the gMix Open Source Framework

for Mix Implementations

Karl-Peter Fuchs, Dominik Herrmann, and Hannes Federrath

University of Hamburg, Computer Science Department, Germany

Abstract. In this paper we introduce the open source software frame-
work gMix which aims to simplify the implementation and evaluation of
mix-based systems. gMix is targeted at researchers who want to evaluate
new ideas and developers interested in building practical mix systems.
The framework consists of a generic architecture structured in logical
layers with a clear separation of concerns. Implementations of mix vari-
ants and supportive components are organized as plug-ins that can easily
be exchanged and extended. We provide reference implementations for
several well-known mix concepts.

1 Introduction

Mix networks are well-known privacy-enhancing technologies that provide
anonymous communication. The basic principle ofmixes was suggested by David
Chaum in 1981 [5]. Since then, a large number of concepts and strategies has
been proposed. Application areas include e-mail [5,6], voting [5,28,31], location-
based services [19] as well as low-latency communication (e. g., for TCP, HTTP
[2,16], DNS [18] and ISDN [29]). So far, the only practically deployed systems
are Mixmaster [6] and Mixminion [9] (anonymous transport of electronic mails)
and the general-purpose anonymization services Tor [16], JAP (JonDonym) [2]
and I2P.1 The source code of these systems has reached a rather high complexity
due to continuous security and performance optimizations, though: for instance,
Tor consists of more than 63,000 lines of ANSI-C code. Therefore, it becomes
increasingly difficult to understand these systems or to extend them with novel
proposals from the research community. Moreover, there is a large body of sci-
entific work without a publicly available or practically usable implementation,
e. g., [8,11,13,14,22,23,29,32,33,37].

This situation has three undesirable consequences. First of all, there are con-
siderable efforts involved in implementing a newly proposed scheme for evalua-
tion or production purposes, because most of the time researchers will have to
re-invent the wheel, i. e., find solutions for common challenges typically encoun-
tered in mix-based systems. Secondly, without an easily accessible implementa-
tion it is impossible to repeat and reproduce previous experiments. Thirdly, even
if implementations are available, it is still difficult to compare the results from

1 Downloads at sourceforge.net/projects/mixmaster, mixminion.net,
www.torproject.org, anon.inf.tu-dresden.de and www.i2p2.de.

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 487–504, 2012.
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one’s own experiments with previous work, because of different implementations,
runtime environments or missing details regarding the experimental setup. Re-
peatability, reproducibility and rigor in experimental research are critical for
quality research, though.

With the gMix project we want to improve the current situation. We believe
that the availability of a software framework can serve as an enabler here. In
fields like cryptography or machine learning, frameworks such as BouncyCastle
and Weka have greatly simplified access to a wide selection of implementations
and led to widespread adoption.2 To the best of our knowledge, in the domain
of privacy-enhancing technologies such a software framework does not exist so
far. The goals of the gMix project are as follows:

1. to provide a repository with compatible, adaptable mix implementations,

2. to simplify development of novel, practically usable mix-based systems and
3. to simplify evaluation of mix systems in a controlled and realistic setting.

Our Contribution. To address the aforementioned objectives we have designed
an open and generic architecture for existing and future mixing schemes and built
a Java framework with a plug-in mechanism. Our solution embraces the separa-
tion of concerns paradigm and allows a developer to build a concrete mix from
the existing implementations of individual software components with no or only
little changes to the code. We have already built reference implementations for
various existing mixing schemes to provide a working foundation. At the time of
this writing there are implementations for over ten output strategies, four recod-
ing schemes and several auxiliary components (cf. Sect. 5). Furthermore, gMix
includes a load generator and tools for recording results to simplify experimental
evaluation. All components use configuration files, which may improve repeata-
bility of experiments, if these files are published together with a paper. The gMix
project is hosted at https://www.informatik.uni-hamburg.de/SVS/gmix/.
Source code is released under GPLv3.

This paper is structured as follows: In Sect. 2 we start out with a high-level
overview of the framework. We proceed by discussing its layered architecture
(Sect. 3), the overall communication model within the architecture (Sect. 4), and
by providing an overview of the currently available implementations (Sect. 5).
Notes regarding plug-in compatibility are provided in Sect. 6. In Sect. 7 we
present experimental tools which are used in Sect. 8 for a performance evaluation.
We conclude the paper in Sect. 9.

2 Framework Overview

The fundamental design of the gMix Framework (generic mix framework) is in-
spired by the layer architecture of the TCP/IP Model. The main idea is to extend
the TCP/IP Model with mix-specific layers, while preserving simple, standard

2 Downloads at www.bouncycastle.org and www.cs.waikato.ac.nz/ml/weka

https://www.informatik.uni-hamburg.de/SVS/gmix/
www.bouncycastle.org
www.cs.waikato.ac.nz/ml/weka
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Fig. 1. Overview of the gMix architecture

access to anonymous channels through interfaces almost equal to those of nor-
mal TCP or UDP sockets. The concrete realization of the anonymous channels
(e. g., the output strategy and recoding scheme) is highly customizable. Layers
are implemented as plug-ins and can thus be easily exchanged or composed to
a specific mix via configuration files. Additional low-level components generally
needed for realizing a distributed system are provided as well.

The framework consists of components for clients, mix nodes and an Informa-
tion Service. The Information Service can be used for discovery, grouping mixes
into cascades and as a public board for information exchange. Clients and mixes
form an overlay network via normal TCP or UDP sockets (cf. Fig. 1). Client
and mix plug-ins can be run on a single host to allow peer-to-peer networks.

Anonymous channels can be established between clients and exit nodes (Mix
n in Fig. 1) and are routed via intermediate mixes through the overlay network
(Mix 1 in Fig. 1). For compatibility with standard software and normal Internet
services, proxy servers can be used as end points of the anonymous channels on
both clients and exit nodes. For end-to-end anonymity, public services (e. g., a
web server) may be run directly on mix nodes and privacy-preserving user appli-
cations, such as a web browser that suppresses identifying pieces of information
[20], can be implemented.

The framework can be configured to provide the socket types shown in Ta-
ble 1. We distinguish between Stream and Datagram Sockets. Stream Sockets
are almost equal to normal TCP sockets. They feature connect and disconnect
methods as well as Input and Output Streams with standard read, write and flush
methods. Datagram Sockets are more flexible. A developer can configure several
options. Choosing duplex = true, connection-based = false, reliable = false and
order-preserving = false would result in a UDP/IP-like socket. Choosing reliable
= true might be a good choice for e-mail mixes. Setting connection-based = true
and reliable = false would be favorable for anonymizing VoIP traffic. Connection-
based means that all messages sent through the socket will be tagged with the
same random identifier (Channel ID). The exit node will use this identifier to
map messages to the respective socket end point.
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Table 1. Socket types available in the gMix architecture. The sockets are used to
access the mixing layers from the end-to-end layers, i. e., they hide the anonymization
process from user applications.

StreamSocket DatagramSocket

options duplex
duplex, connection-based,
reliable, order-preserving

implicit properties
connection-based, reliable,

order-preserving
–

Layer 6: Application
                e.g. HTTP

Application
e.g. browser

LocalProxy
e.g. local SOCKS proxy

Layer 5: Application Tunnel
                e.g. SOCKS

AnonSocket
Datagram or StreamSocket

Layer 4: Transport
                reliable or unreliable,
                end-to-end

OutputStrategy
e.g. constant rate

Layer 3: Output Strategy
                change order, DT*,
                choose routes*

RecodingScheme
e.g. Sphinx

Layer 2: Recoding
                change outlook,
                bitwise unlinkability

CommunicationHandler
e.g. TCP or UDP

Layer 1: Network
                routing*, point-to-point 
                connections, topology

Java TCP/UDP SocketLayer 0: Network stack 
              and physical 
              connections

OS network stack

OutputStrategy
e.g. batch

RecodingScheme
e.g. Sphinx

Communication
Handler

Java TCP/UDP Socket
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e.g. SOCKS proxy

MixServerSocket
Datagram or StreamSocket

OutputStrategy
e.g. batch

RecodingScheme
e.g. Sphinx

Communication
Handler

Java TCP/UDP Socket
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process-to-process Internet Service
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Fig. 2. Abstraction layers of the gMix framework

3 Communication Model and Layered Architecture

The abstraction layers of the gMix architecture are shown in Fig. 2 for the case
of communication between a client and a server via two mixes.

Layer 0 represents the physical or logical connections between the nodes of
the anonymization network (i. e., hosts running the client and mix components
of the framework, anon nodes). In most cases, communication will be realized
via TCP or UDP sockets opened by the Java Virtual Machine the framework is
executed in. As the higher layers of our architecture do not require direct interac-
tion with Layer 0 sockets, various transport protocols (e. g., streaming protocols
like SCTP), Internet layer protocols (e. g., IPv6 or IPsec) and application layer
protocols (e. g., TLS or DTLS) qualify for implementation.

Instead of using protocol-specific addresses directly, every mix chooses a ran-
dom number (Global Identifier) during its initialization and publishes it via the
Information Service along with its actual address information that may vary
among plug-ins (e. g., IPv4 or IPv6 addresses and port numbers). Translating
between Global Identifiers and actual addresses is a Layer 1 task. Higher-order
layers use the Global Identifiers only.
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Layer 1 provides point-to-point connections between anon nodes. Its purpose
is to hide the details of the underlying (Layer 0 ) communication channels by
providing primitives to exchange messages between anon nodes (hop-to-hop).
Its functionality is closely related to the Internet Layer of the TCP/IP Model,
except that (end-to-end) source and destination addresses must be excluded for
anonymity reasons, of course. As a result, each mix will get to know only the
next hop of a message (addresses of further hops are hidden due to encryption).

Choosing the actual message routes is a Layer 3 task. Layer 1 will just forward
messages to the next hop and is thus the lowest layer of our overlay network. We
distinguish between two well-known [4,7,17] types of routing for mix messages:
free routes and fixed routes. With free routes, the client chooses a series of mixes
(e. g., from a list obtained from the Information Service) and adds their addresses
to the respective header fields of the layered encryption for each mix. With fixed
routes, mixes can be organized as cascades: All messages belonging to a fixed
route will travel along the same path. No address information is stored in the
mix messages. Layer 3 plug-ins may choose one of the fixed routes, but not
define their own. The Information Service can be used to establish and organize
cascades.

The general purpose of Layer 2 is to make it cryptographically difficult to
link messages entering and leaving mixes, i. e., to provide bitwise unlinkability
of mix messages and to pad them to equal length. This is typically realized by
recoding (i. e., encrypting or decrypting) messages. As some recoding schemes
are deterministic and are thus prone to replay attacks, while others are not, we
chose to make Layer 2 responsible for detecting replays of messages as well. If
a deterministic scheme is employed, a replay detection as used in JonDonym
[24] can be implemented here. The plug-ins are also responsible for publishing
and retrieving information needed for recoding messages (e. g., public keys or
initialization vectors) via the Information Service.

Layer 3 realizes another core function of a mix, the output strategy or flush-
ing algorithm. Its purpose is to hide the true sender of a message among other
senders, thus building an anonymity set. This is achieved by delaying and re-
ordering messages. In his initial work [5], Chaum suggested to collect (or batch)
messages until a certain threshold is reached, then putting out all messages to-
gether in lexicographic order. Since then, numerous output strategies have been
proposed (e. g., [3,5,6,11,13,14,23,29,32,33,36,37]). While these output strategies
are highly different in terms of delay and anonymity characteristics, from an ar-
chitectural point of view, they are fairly equal as already shown in [14]. As some
output strategies require clients to send in a specific fashion, not necessarily de-
pendent on the flow characteristics of the user traffic (e. g., at constant rate),
we chose to make Layer 3 responsible for initiating the creation and dropping of
dummy messages: dummy messages contain random data instead of normal
payload. They are put into the stream of normal messages to hamper traffic
analysis. While dummy messages may reduce the available bandwidth, they can
also reduce latency, e. g., if the output strategy requires a certain number of mes-
sages to flush. If all users send messages constantly, the sending of real messages
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becomes unobservable [8,29]. We discuss arising dependencies between Layer 2
and 3 in Sect. 6.1.

Layer 4 is the interface between the mixing layers (1–3) and the end-to-end
layers 5 and 6. It can be used to establish end-to-end anonymous channels be-
tween anon nodes with the socket primitives of Table 1. For free routes, a Global
Identifier can be specified as destination address. The aforementioned Channel
IDs are used to map different messages of a connection-based anonymous chan-
nel to the respective sockets. Different Layer 5 services running on a single node
are distinguished by service port numbers that work like normal port numbers
in the TCP/IP Model.

In Layer 5, application-level proxies (e. g., SOCKS, HTTP, DNS, FTP,
SMTP, or VoIP proxies) can be implemented to enable end-to-end communi-
cation with hosts not part of the overlay network. Layer 5 client plug-ins will
open a local proxy on the client (i. e., in the area of protection of the client) and
tunnel the application level connections (e. g., SOCKS connections established
by a web browser) through Layers 4 to 0 to an exit node running a distant
proxy (the corresponding Layer 5 mix plug-in). The distant proxy will forward
the data of the tunnelled connections to their respective destinations (e. g., nor-
mal web servers). A plug-in developer can choose whether an anonymous tunnel
shall be established for each application level connection or all connections shall
be multiplexed through a single anonymous tunnel.

With the socket interfaces of Layer 4 being very equal to normal sockets, we
expect easy adaptation of existing proxy software. Since Layer 5 is the first layer
not required to be written completely in Java, proxy services written in different
languages should be integrable by implementing an adapter class in Java.

Layer 6 is the layer closest to the user and equivalent to the application layer
of the TCP/IP Model. It refers to higher-level application protocols and end-to-
end connections between application programs. The concrete realization of these
programs and protocols is out of the scope of our model, though.

4 Inter-layer Communication

To support different implementations (i. e., plug-ins) of the abstraction layers,
standard interfaces between the framework and plug-ins are needed. As a result,
we had to choose a common model for communication between layers and define
a uniform internal message format. We considered two common architectural
designs: (1) using a single loop to iterate over all layers or (2) to use a thread-
based approach with asynchronous I/O between layers. We chose the
latter as this in our view

– simplifies the implementation of multiple threads on one layer to speed up
operation (e. g., for the recoding scheme),

– allows parallel operation on different layers (e. g., decrypting messages on
Layer 2 while new messages are received via Layer 1 ),

– allows to run several distinct instances on a single layer concurrently (e. g.,
communication handlers for client and mix connections on Layer 1 ) and
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static functions
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sockets for other mixes

Fig. 3. Inter-layer communication patterns and separation of plug-in and framework
concerns. Example of a simplex mix handling client connections.

– leads to more understandable implementations because of loose coupling and
a clear separation of concerns.

For process synchronization, we use blocking queues with a wait-notify mecha-
nism (cf. Fig. 3) between Layer 1 and Layer 2 (blocking conditions are empty
and full for getMessage and addMessage operations, respectively). The queues
are part of the framework, not the plug-ins. As a result, plug-in developers will
not have to implement synchronization mechanisms themselves, unless they de-
cide to have different threads (requiring shared resources) within their plug-ins.

For the internal message format, i. e., the Java objects exchanged between
layers, we chose a generic solution, defining only the general purpose of a field
rather than its actual content. As a result, individual contents and headers may
be defined by plug-in developers for each layer. While this allows for tailored
solutions, it also requires that plug-ins are developed pair-wise for clients and
mixes, unless another plug-in speaking the same protocol is already implemented
(we discuss dependencies between plug-ins in Sect. 6.1). In the remainder of this
section we will focus on the details of the internal message format and further
mechanisms included with the framework to keep state across multiple layers
and assure compatibility between (plug-ins of) different layers.

As illustrated in Fig. 3, the Java objects exchanged between layers contain
a byte array with the actual bit representation of the message to be eventually
transmitted via Layer 0. Each layer is allowed to add additional headers. End-
to-end headers (Layer 4 and above) can be added directly to the message field.
Headers that are required at each hop (i. e., in Layer 3 ) must be stored in the data
structure headers. Layer 2 implementations (recoding schemes) must indicate,
whether they are capable of adding additional header fields for each mix (cf.
Sect. 6.1). Currently, the only implementation requiring additional headers is
the stop-and-go output strategy [23].
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End-to-end destination addresses of messages are chosen on Layer 4 and
stored in the data structure route. In free route setups, Layer 3 may add the
addresses of further hops. The route information is stored in the layered encryp-
tion by the recoding scheme (Layer 2 ). Due to the encryption of the message on
Layer 2, the cleartext field nextHop is needed for routing purposes on Layer 1.
This field can also be re-set at each hop to allow for adaptive or random routing.

For keeping state, the component User Database is available. It stores a data
structure (user) for each connected client. For each message, a reference to the
respective user object is set on Layer 1, which allows for immediate access with-
out look-up delays on all layers. Plug-ins can attach individual objects to each
user. The Java generics mechanism is used to assure compile-time type safety.

Layers may offer static functions to adjacent layers. For example recoding
scheme plug-ins may offer an interface to create dummy messages for output
strategy plug-ins. Classes of general use for different plug-ins of the same layer
can be offered as static functions as well, e. g., a class for replay detection.

5 Status of Development and Available Implementations

Started in 2011, the gMix project is still under heavy development. While indi-
vidual implementations are quite basic, others have already reached practicable
quality. The framework can load individual plug-in combinations specified in a
config file. The Information Service can be used to organize mixes in cascades
via network (for real deployment) or on a single workstation (for testing, mea-
surement and teaching) without having to deal with individual IP addresses or
port numbers. A load generator can be used to evaluate components and test
implementations (cf. Sect. 7). A PKI is not included yet, but will be added soon.
Framework and plug-ins currently consist of more than 16,000 SLOC in total.
At present, the mix plug-ins listed in Table 2 are available.

On Layer 3, we have implemented the output strategies described in
[5,6,14,23,33] and [37]. On the client side (not included in Table 2), we offer
implementations to send at constant rate, send requests and receive replies al-
ternately and to send data immediately on request of Layer 4 (e. g., for data-
gram services). Another implementation mimics the general behavior of TCP/IP
sockets by waiting a configurable amount of time for packets to be filled before
forwarding them.

Currently we offer four Layer 2 implementations: Two plug-ins
(RSA AES Channel and RSA AES LossTolerantChannel) are supposed to
be used for low-latency mix systems and streaming data. Both use RSA (in
OAEP mode with configurable key size) to establish anonymous channels.
Data is sent in cells of configurable size, each layer encrypted with AES. The
RSA AES Channel scheme uses OFB and is order-preserving (cf. [38]). The
RSA AES LossTolerantChannel employs AES in CBC mode with explicit
initialization vectors (IV). With this mode and IVs prepended to each en-
cryption layer, each cell can be decrypted separately, i. e., lost cells can be
tolerated (the same mechanism is used in DTLS). We use HMAC-SHA256 for
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Table 2. Currently available plug-ins and their general capabilities (Duplex, Reliable,
Connection-Based and Order-Preserving, cf. Table 1 and Sect. 6.1). True, false and any
values should be seen as properties of our implementations, not as general properties
of the concepts as some may be implemented differently.

MIX PLUG-INS D R CB OP

Layer 3

BinomialPool [14,32], BasicBatch [5], BasicPool [6],
ThresholdPool [33], TimedBatch [33], CottrellPool [6],

ThresholdAndTimedBatch [33], ThresholdOrTimedBatch [33],
BatchWithTimeout [33], TimedDynamicPool [6],
CottrellRandomDelay [6], CottrellTimedPool [6]

any true false false

StopAndGo [23] any false false false
SynchronousBatch (simplified version of [29]), DLPA [37] any true true true
NoDelay (will forward data immediately as in [2,16]) any true any true

Layer 2

Sphinx [10] (SPHINX in Sect. 8) false true false false
RSA OAEP AES OFB (RSA-OFB in Sect. 8) false true false false

RSA AES Channel (SYM-CH in Sect. 8) any true true true
RSA AES LossTolerantChannel (LT-CH in Sect. 8) false true true false

Layer 1

Mix-Client TCP FCFS Sync. I/O, Mix-Client TCP
Round-robin Sync. I/O, Mix-Client TCP FCFS Async. I/O,

Mix-Mix TCP Multiplexed Sync. I/O
any true any true

Mix-Client UDP FCFS Async. I/O, Mix-Mix UDP Async. I/O false false any false

message integrity in both cases. The two remaining plug-ins are Sphinx and
RSA OAEP AES OFB. The very compact Sphinx scheme [10] is optimized for
services with typically short messages (e. g., electronic mail or micro-blogging).3

The RSA OAEP AES OFB plug-in is pretty close to the original suggestion of
David Chaum [5], except that we use a hybrid scheme with RSA in OAEP and
AES in OFB mode.

On Layer 1, we have implemented several mix plug-ins to handle client con-
nections via different protocols (TCP, UDP), with varying scheduling mechanism
(first-come first-served, round-robin) and with diverse I/O models (asynchronous
and synchronous I/O). For connections between mixes, a plug-in capable of
multiplexing messages of different clients through a single TCP connection is
available (Mix-Mix TCP Multiplexed Sync. I/O). Using UDP between mixes is
possible as well (Mix-Mix UDP Async. I/O).

6 Mix Composition and Compatibility

The layer concept of the gMix architecture provides a highly structured and in
our opinion easily comprehensible view of a mix. Nevertheless, it also introduces

3 Our implementation is a Java port of the Python implementation provided at
crysp.uwaterloo.ca/software/ using Curve25519 ECDH.

crysp.uwaterloo.ca/software/
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additional complexity, because the developer is faced with the decision to select
adequate implementations on each layer.

Currently, we require the developer to choose a reasonable plug-in composi-
tion, or use predefined configurations included with the framework. As we expect
the target audience of gMix to consist of researchers and developers familiar
with mix systems, we do not consider this to be an issue for now. Nevertheless,
simplifying the composition of plug-ins and investigating and documenting the
dependencies between different mix concepts is certainly a desirable goal.

In Sect. 6.1 we discuss some important dependencies and their implications
for plug-in development. Afterwards we present a rather basic, but extendable
matching mechanism for capabilities and requirements that we plan to include
in a future version of the framework in Sect. 6.2.

6.1 Dependencies and Implications for Plug-in Development

During plug-in development we found that most dependencies between imple-
mentations are closely related to the socket options of Layer 4 (cf. Table 1). Given
the strict interfaces between the framework layers and taking those dependencies
into account, many plug-ins of different layers are compatible without further
efforts. We will therefore illustrate these dependencies along with the basic ca-
pabilities of our current plug-ins first, before we discuss dummy traffic and
highlight design choices for plug-in development.

The capabilities of the current plug-ins for Layer 4 socket options are dis-
played in Table 2 (Duplex, Connection-Based, Reliable and Order-Preserving).
While true and false indicate whether a plug-in has a certain capability or
not, any means that a plug-in is adaptive, i. e., it can be configured to offer the
respective capability (for example, a Layer 1 plug-in using UDP can introduce
sequence numbers for packets in order to support order-preserving transfer).

The duplex capability specifies whether or not a plug-in distinguishes be-
tween request and reply messages. On Layer 1, duplex simply means that plug-ins
can receive as well as send messages. The Layer 2 plug-in Sphinx does not make
a difference between requests and replies, i. e., this protocol does not exhibit the
duplex property according to our definition. On Layer 3, plug-ins that collect
both requests and replies within a joint message pool (i. e., they are part of a
common anonymity set) are defined to be simplex. To support duplex sockets
on Layer 4, all lower-layer plug-ins must support duplex as well. If that is not
the case, two simplex sockets can be established on Layer 4 to offer end-to-end
duplex connections (and more secure simplex plug-ins like Sphinx can be used).

As stated before, the connection-based attribute is used to describe plug-ins
that allow the linking of packets that belong to the same anonymous channel.
For instance, the Layer 3 plug-in SynchronousBatch will collect a message for
each channel before output and must therefore know which messages belong to
which channel. The same applies for the Layer 2 plug-in RSA AES Channel, as
it is required to use the same cipher instance for each message of a channel.
To support connection-based Layer 2 and Layer 3 plug-ins, Layer 1 plug-ins
are required to tag individual packets of one connection with the same random
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identifier. The identifier must of course be changed from mix to mix and be
deactivated for non-connection-based sockets for security reasons.

The attribute order-preserving is only of relevance for connection-based
sockets. For instance, using the RSA AES Channel plug-in will require that
Layer 3 and Layer 1 plug-ins do not change the order of messages belonging to
one channel as ciphers on client and mixes must stay in sync.

Dummy Traffic. In addition to the dependencies discussed above and described
in Sect. 4 (concerning the routing mechanisms free and fixed routes), another
dependency arises when combining connection-based sockets with non-end-to-
end dummy traffic, i. e., when mixes are supposed to generate dummy messages
for a certain channel (as for example with the DLPA plug-in [37]). In case of
stateful recoding schemes (the decryption of subsequent messages depends on
the decryption results of previous messages), the recoding component of a mix
will not be able to generate an indistinguishable dummy for successive mixes
due to the state of the client cipher being secret.

End-to-end dummy traffic (Layer 4) does not introduce additional dependen-
cies, as Layer 2 plug-ins will have to add and remove padding for payloads smaller
than designated anyway. An end-to-end dummy message can be considered a nor-
mal mix message with a payload field containing padding only. Dummy traffic
introduced by mixes in case of stateless recoding schemes is straightforward as
well since mixes can use client-side plug-ins to generate messages, too.

Design Choices for Plug-in Development. Whether plug-ins are compati-
ble or not is not always an inherent property of the mix concept implemented,
but often a design choice of the developer. It is an important decision, whether to
strive for adaptivity (plug-ins will be more complex and difficult to understand
and modify) or simplicity (individual plug-ins will be less complex, but the num-
ber of plug-ins will increase and code redundancy across plug-ins may become
an issue). While the final choice will always be made by the implementer of a
plug-in, we suggest to strive for simple plug-ins. So far we chose to implement
adaptive plug-ins in two cases only: When a plug-in is expected to need a cer-
tain requirement for most use cases and making it adaptive basically means that
some part of its functionality can be turned off (e. g., a Layer 1 TCP connection
handler that can be configured to only read but not write data), or when making
a plug-in adaptive can be achieved by adding only a few lines of code.

6.2 Matching Mechanism for Capabilities and Requirements

To simplify the composition of compatible plug-ins to individual mixes and to
document the capabilities, requirements and dependencies of plug-ins, we plan to
include a rather simple but extendable matching mechanism in the future. The
basic idea of our proposal is inspired by the capability mechanism used in Weka,
a framework for machine learning algorithms. In our case, requirements arising
from rather general design choices (e. g., which topology shall be used or which
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Fig. 4. Modeling dependencies as global rules, requirements and capabilities

socket type shall be available on Layer 4) could be stored as a set of global rules,
i. e., requirements could be specified for each layer (cf. left side of Fig. 4: choosing
the free route topology would for example require a length-preserving recoding
scheme on Layer 2 that is able to include routing information within the message
headers). If developers specify the global capabilities (cf. right side of Fig. 4) of
their plug-ins, i. e., which of the requirements defined in the global rules they
fulfill, an automated matching is possible. As a result, invalid compositions can
be detected, or suitable plug-ins suggested. Adding further security or quality of
service attributes to plug-in descriptions might be an option as well.

As described before, plug-ins must be implemented pair-wise for clients and
mixes, as compatibility cannot be assumed. Nevertheless, some plug-ins may be
compatible. For those, we suggest a white list (parameter compatiblePlugIns in
Fig. 4): If a compatible plug-in is specified, the requirement to implement mix
or client counterparts can be relaxed. Requirements for classes of general use for
different plug-ins (the static functions described in Sect. 4) should be specified
by plug-in developers as well (parameters sameLayerRequirements and layerXre-
quirements for static functions required on the same or on another layer).

We believe that the matching mechanism outlined above can serve as a useful
tool for modeling and verifying dependencies and will help developers to get a
better understanding of design options for individual plug-ins.

7 Experimentation Tools

Evaluating mix systems in terms of performance is a challenging task. Common
methods includemanual mathematical analysis (e. g., based on queueing theory),
discrete-event network simulation (a simulation program is used to model the
behavior of network nodes and communication lines on a single workstation),
network emulation (a real local area network is used; traffic is routed through
an emulation workstation that alters packet flow according to the characteristics
of the network situation of interest) and evaluation in real world settings (like
the Internet) or within global research networks (e. g., PlanetLab).

While each evaluation method has advantages and drawbacks, in our view
network emulation fits best with our goal of evaluating existing and new mix
techniques in a controlled and realistic setting (cf. Sect. 1). It allows to use
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physical network nodes running a full mix implementation instead of relying on
simplified models of mix node behavior. An experimenter can specify various
network attributes (e. g., bandwidth, round-trip-time, jitter, packet loss, packet
duplication or packet reordering) and evaluate their influence on the overall
performance without the need to distribute network nodes across the Internet.

The need for empirical evaluation tools is increasingly recognized in the pri-
vacy community. Recently, two promising approaches have been suggested for
Tor: ExperimenTor [1] and Shadow [21]. Both of them address deployment and
automated testing. On the other hand, they are tightly integrated with Tor and
therefore difficult to extend or adapt to other applications and mixing concepts.
The main advantage of our framework in this respect is the high number of
different plug-ins available for comparison and the possibility of extension with
new proposals. Reproducibility of results is simplified as the source code of gMix
has been published and configuration files of individual experiments (containing
plug-in names, version numbers and parameters) can be released together with
a scientific publication (e. g., in the appendix or on a website).

To simplify testing we have included a load generator that automatically in-
stantiates several clients on a single workstation and makes them send messages
according to commonly used statistical models (e. g., according to a poisson pro-
cess or at a uniform rate). To support more realistic evaluations we plan to add
more advanced statistical traffic models as well as extend the load generator to
replay traffic according to log files recorded in real-world settings.

8 Performance Evaluation

Given the limited space and the high number of possible plug-in-combinations,
parameters and test scenarios, we have to focus on a small subset of evaluations
for this publication. The basic goal of this section is to assess the performance
of the framework and to demonstrate that Java and our architectural design of-
fer adequate performance to build practical mix systems rather than evaluating
the effects of different output or dummy policies. To this end, we focus on an
evaluation of the recoding scheme plug-ins (which introduce the highest compu-
tational cost of all mix components) and evaluate the influence of parallelization,
as the framework is optimized to take advantage of multi core systems. To de-
termine the throughput limits we performed several tests in a controlled lab
environment with 1Gbit/s Ethernet (Setup 1: Lab Environment). In a second
test scenario (Setup 2: Emulated Environment), we add a network emulator to
reproduce one of the findings of [30], i. e., the negative influence of packet loss
when messages of different users are multiplexed over a single TCP connection.
Configuration files used for the experiments can be downloaded from the project
website (https://www.informatik.uni-hamburg.de/SVS/gmix/).

8.1 Test Parameters

All experiments have been carried out using multiple, identically configured off-
the-shelf desktop machines (Intel i5-2400 3.1GHz quad core CPUs, 8 GB RAM).

https://www.informatik.uni-hamburg.de/SVS/gmix/
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The software environment consisted of CentOS 6 Linux running the OpenJDK
v1.6.0 22 64 bit ServerVM and Linux Kernel v2.6.32. The MTU value (maximum
transmission unit) within the network was 1500 bytes. Motivated by practical
anonymity systems, we use 128 bit AES keys (Tor and JonDonym) and 2048 bit
RSA keys. For Sphinx we use Dan Bernstein’s Curve25519 as suggested in [10].

8.2 Lab Environment

We start out by comparing the achievable throughput for all recoding schemes of
Table 2. The throughput refers to the payload only (excluding the overhead for
mix message headers). We deploy load generators on 4 workstations to simulate
a total of 32 clients that send mix packets at maximum rate to a single mix via
the Layer 1 plug-in Mix-Client TCP Round-robin Sync. I/O in simplex mode.

Figure 5 shows the throughput for various mix message lengths below the
MTU (1500 byte). Without cryptographic operations the mix achieves a through-
put of 116.1MB/s (NULL cipher). The two channel schemes SYM-CH and LT-
CH (cells sent through anonymous channels are encrypted symmetrically only)
allow for up to 93MB/s, the two schemes using a hybrid cryptosystem for each
message (SPHINX and RSA-OFB) for up to 22.3MB/s and 0.7MB/s, respec-
tively. Sphinx seems to be fast enough to saturate a 100Mbit/s communication
line despite its hybrid cryptosystem. As expected, the aggregated throughput
increases with the message size for all plug-ins, as the constant overhead per
message for headers and switching between ciphers becomes less relevant.

Message dwell times, i. e., the time messages are delayed in the mix (measured
on Layer 1 with 512 byte message size) are below 1.2ms (SYM-CH ), 0.7ms (LT-
CH ), 1.2ms (SPHINX ) and 44.7ms (RSA-OFB) for 95% of messages.

Figure 6 shows the speedup, i. e., to what extent the recoding scheme plug-ins
benefit from the availability of multiple CPU cores. For instance, for a message
length of 512 bytes the throughput for Sphinx increases from 2.1MB/s (which is
equivalent to a speedup of 1 for this scheme) to 4MB/s (which is 1.9×2.1 MB/s)
if two threads are used. The two schemes using a hybrid cryptosystem benefit
most from multi-threading and scale almost linearly. On the other hand the
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channel schemes profit less, as (depending on message size) two threads can be
enough to saturate the network.

We repeated our experiments using a single CPU core (with the Linux ker-
nel directive maxcpus=1 ) and found that the resulting throughput is still and
constantly well above 14MB/s (SYM-CH ), i. e., switching between Layer 1 and
Layer 2 threads (which is under control of the JVM) does not lead to fluctuating
throughput for communication links slower than 100 Mbit/s in our setup.

As a reference point for the perceived results, we measured throughput for a
Tor node (v0.2.2.35) in our test setting as well (using netio via tsocks). With
mix packets sized 512 byte (equal to Tor’s cell size), a maximum throughput of
46MB/s is possible with the SYM-CH plug-in (quad core), while we measured
37MB/s for the Tor node. The comparable performance is interesting as on the
one hand Tor is written in C, but on the other hand it does not support multi-
threading for message recoding. In this experiment our framework manages to
compensate for the slower performance of Java by a better utilization of the avail-
able hardware. In the end it achieves a similar throughput as an implementation
in C, at the cost of a higher number of instruction cycles (cf. the throughput of
only 14MB/s in case of maxcpus=1 ). We conclude that – despite the use of Java
and its generic architecture – our framework offers adequate crypto performance
for practical scenarios with up to 100 Mbit/s links. Real-world performance, i. e.,
when mixes are distributed over the Internet, cannot be deduced from these re-
sults, though, due to network congestion, differing bandwidth of anon nodes and
predefined routes once packets have been sent (source routing) [12].

8.3 Emulated Environment

In the following experiment, we use a cascade of two mixes and shape traffic
using the freely available network link emulator Netem [25]4 to show one of the
findings of [30]: the negative influence of packet loss when messages of different

4 A comparative study of network link emulators can be found in [27]. For even more
sophisticated evaluations, virtual network emulators (e. g., Emulab [39] or Modelnet
[35], like in [1]) can be employed.
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users are multiplexed over a single TCP connection. RTT between mixes was
set to 60ms. Bandwidth was limited to 100Mbit/s to assure crypto overhead is
not the limiting factor. The experimental setup is shown in Fig. 7.

We use the Mix-Mix TCP Multiplexed Sync. I/O plug-in between mixes and
configure the emulator to drop messages between the two mixes to show the
effect. For comparison, we provide results for the UDP Layer 1 plug-ins as well.
Figure 8 shows that even for low packet loss of 0.01%, TCP throughput is highly
unstable as the messages of all users are blocked by a dropped message of a single
user, i. e., the operating system TCP buffer will not forward any data (possibly
packets of other users) until the lost packet is retransmitted. While this effect
was already shown in [30], we want to stress that we were able to reproduce this
finding simply by combining existing plug-ins and without writing a single line
of code.

9 Conclusion

In this paper we proposed a generic architecture for mixes and our open source
implementation, the gMix framework. First and foremost, the gMix framework
aims to provide easy access to the central components of a mix, which are struc-
tured into distinct logical layers. Secondly, we strive for easily understandable
implementations to allow developers to build a fully functional mix from a set
of rather simple components (plug-ins). Thirdly, the gMix framework aims to
improve the process of the evaluation of mixes. At the moment, this objective is
addressed with a load generator. Tools for test automation will be included in the
future. Moreover, the consequent use of configuration files ensures repeatability
of experiments and reproducibility of results.

We see our work as a first step towards the standardization of mix systems
which can help lower the bar for research of mixes as well as their deployment in
practice. In the long run we hope that the availability of a comprehensive soft-
ware framework will serve as an enabler for mixes and will lead to the increased
dissemination of privacy-enhancing technologies in existing and new application
areas as well as to new proposals that can be integrated into deployed systems
like Tor or JonDonym.
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Abstract. We treat the problem of secure outsourcing of sequence com-
parisons by a client to remote servers, which given two strings λ and μ of
respective lengths n and m, consists of finding a minimum-cost sequence
of insertions, deletions, and substitutions (also called an edit script) that
transform λ into μ. In our setting a client owns λ and μ and outsources
the computation to two servers without revealing to them information
about either the input strings or the output sequence. Our solution is
non-interactive for the client (who only sends information about the in-
puts and receives the output) and the client’s work is linear in its in-
put/output. The servers’ performance is O(σmn) computation (which is
optimal) and communication, where σ is the alphabet size, and the solu-
tion is designed to work when the servers have only O(σ(m+n)) memory.
By utilizing garbled circuit evaluation in a novel way, we completely avoid
public-key cryptography, which makes our solution particularly efficient.

1 Introduction

Design and development of secure outsourcing techniques of various function-
alities to untrusted servers are getting growing attention in the research com-
munity. The rapid growth in availability of cloud services makes such services
attractive for clients with limited computing or storage resources who are un-
able to procure and maintain their own computing infrastructure. Security and
privacy considerations, however, stand on the way of harnessing the full benefits
of cloud computing and prevent clients from placing their sensitive data on the
cloud. This is the problem that secure outsourcing techniques aim to address.

This work develops efficient techniques for secure outsourcing of a specific
type of computation, namely sequence comparisons. Secure computation and
outsourcing of sequence comparisons, in particular for genomic sequences, has
been a subject of prior research. The results include [1–10], which securely im-
plement computation of the edit distance, finite automata evaluation, the Smith-
Waterman and other algorithms. Because individual DNA and protein sequences
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commonly used in such comparisons are highly sensitive and vulnerable to re-
identification even when anonymized, the need for techniques that allow such
sequences to be privately processed has been recognized and is reflected by the
list of available publications above. Furthermore, given the large lengths of such
sequences, it is not surprising that there is an increasing need for such computa-
tion to be outsourced by resource limited clients. These outsourcing techniques
should enable the desired computation without revealing any information about
the sequences to the parties performing the computation.

Techniques for securely computing the edit distance based on dynamic pro-
gramming have been studied in [1, 6, 9]. The work [2, 3] is the only one we are
aware of that treats the problem of secure outsourcing of the edit distance and
[3] is the only work that treats the computation of the edit script (defined as a
minimum-cost sequence of insertions, deletions, and substitutions that transform
one input string λ into the other input string μ). An edit script contains impor-
tant information about the types of differences that cannot always be deduced
from the edit distance alone. For that reason, we revisit the problem of secure
outsourcing of the edit distance and the corresponding edit script computation
and improve the performance of known results.

It is well known that computing the edit distance (or the edit script) of two
strings λ and μ of size n and m, respectively, requires O(mn) work. Because n
and m are often large in genomic computations, the need to reduce the memory
footprint of secure sequence comparisons was recognized in prior literature. This
applies to our setting of securely outsourcing a task to resourceful servers as
well, as the memory requirement of O(mn), or more generally O(σmn), where
σ is the alphabet size, will prevent them from processing strings longer than
a few thousand characters. The edit distance can be computed one row or one
column of the m × n matrix at a time, which uses only O(m + n) memory.
This is the approach taken in [3] based on homomorphic encryption, and the
publications that use garbled circuit evaluation [6, 9] also partition the circuit
into sub-circuits, so that the memory requirement of O(m+n) can be achieved.

The above partitioning approach does not work when the computation con-
sists of producing an edit script (rather than just the edit distance) while keeping
the memory requirement at O(m + n). Furthermore, the only known result for
securely computing an edit script with the linear memory requirement for the
servers carrying out the computation requires them to perform O(mnmin(m,n))
work with the same amount of communication [3]. We substantially improve the
performance of the existing secure edit script outsourcing techniques to require
the servers to perform only O(mn) work with the same O(m + n) memory re-
quirement for the servers. This also implies that when the servers have O(m+n)
memory, the round complexity of the solution improves from O((min(m,n)2)
in [3] to O(min(m,n)) in this work (we note that the number of rounds in this
work is primarily bounded by the ratio of the overall amount of communication
and the amount of available memory, while it is fixed at O((min(m,n)2) in [3]).

Besides the obvious complexity improvements, our solution has additional ad-
vantages. Similar to [3], we assume that a client outsources its computation to
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two non-colluding computation servers, but unlike [3], no homomorphic encryp-
tion is used. In fact, our solution completely avoids public-key cryptography by
utilizing garbled circuit techniques in a novel way. To the best of our knowledge,
this is the first time secure two-party computation or outsourcing techniques
are realized without reliance on any public-key operations (e.g., the solutions
in [6, 9] have to invoke Oblivious Transfer (OT) protocols). This gives us fast
general secure outsourcing techniques, which are of independent interest.

Our solution is non-interactive for the client, who only sends information
about its inputs to the servers and receives the computation outcome from which
it reconstructs the output. Its communication and computation is thus O(m+n).

Lastly, our solution works for any alphabet Σ of size σ, from which λ and μ are
drawn. Because σ may not be treated as constant, we include it in our analysis.
In particular, the servers’ space requirements are O(σ(m+n)), their computation
and communication are O(σmn), and the client’s work and communication are
O(σ(m + n)) (prior results have the same factor σ in their complexities).

As noted above, we make the same assumption of non-colluding servers as
the prior work that improve upon. A natural question that one might ask is
how viable such an assumption is. The practical viability of using non-colluding
servers has been well demonstrated, for instance, by the Sharemind system [11]
and the company that develops it, where three non-colluding servers are used
(we only use two). One possible instantiation of our solution would be to use two
servers, each from a different service provider. Collusion of both servers would
require corruption of both service providers, which is unlikely in practice.

2 Preliminaries

Problem Statement. We treat the problem of secure outsourcing of the edit
distance and the corresponding edit script computation by a client C for any
strings λ = λ1. . .λn and μ = μ1. . .μm over alphabet Σ = {1, . . ., σ} to two com-
putational servers S1 and S2. In its general form considered here, the sequence
comparisons problem requires quadratic work [12].

In our outsourcing context, C must perform only work linear in the size of
its inputs, with the super-linear work done by the remote servers. Furthermore,
the security requirement is such that neither S1 nor S2 learns anything about
the client’s inputs or output other than the lengths of the input strings and the
alphabet size (i.e., the servers learn only the problem size).

More formally, we assume that S1 and S2 do not collude and if they are semi-
honest, they follow the computation as prescribed but might attempt to learn
additional information from the messages that they observe. Security in this case
is guaranteed if both S1’s and S2’s views can be simulated by a simulator with
no access to either C’s inputs or output other than the parameters n, m, and σ
and such simulation is indistinguishable from the real protocol execution. This
is a standard definition that can be found, e.g., in [13].

Generic techniques for modifying the garbled circuit techniques to enable se-
curity against covert or fully malicious participants are known (see, e.g., [14–16]).
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Furthermore, the standard garbled circuit techniques, as used in this work, al-
ready offer protection against one party, namely, malicious circuit evaluator. The
specifics of our setting, however, enable us to design an effective mechanism for
detecting and eliminating malicious behavior at low cost. Because the techniques
we use are resilient to misbehavior of one of the parties, we can run the solution
twice, with the roles of S1 and S2 swapped on the second run. When the client
obtains two results that disagree, it will know that one of the servers did not
comply with its prescribed behavior. As in our protocols neither server learns
any outputs, creation and evaluation of an incorrect circuit does not pose secu-
rity risks to the client. This means that the cost of the solution in the malicious
model is twice the cost of the solution in the semi-honest model.

Review of Edit Distance via Dynamic Programming. We briefly review
the standard dynamic programming algorithm for the edit distance, using the
same notation and terminology as in [3]. Let M(i, j), for 0 ≤ i ≤ m and 0 ≤
j ≤ n, be the minimum cost of transforming the prefix of λ of length j into the
prefix of μ of length i, i.e., the cost of transforming λ1 . . . λj into μ1 . . . μi. Then

M(0, 0) = 0, M(0, j) =
∑j

k=1D(λk) for 1 ≤ j ≤ n and M(i, 0) =
∑i

k=1 I(μk)
for 1 ≤ i ≤ m. Furthermore, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n we have that

M(i, j) = min

⎧⎨⎩
M(i− 1, j − 1) + S(λj , μi)
M(i− 1, j) + I(μi)
M(i, j − 1) +D(λj)

where S(λj , μi) is the cost of substituting character λj with character μi, D(λj)
is the cost of deleting λj , and I(μi) is the cost of inserting μi. Hence M(i, j)
can be evaluated row-by-row or column-by-column in Θ(mn) time [17]. Observe
that, of all entries of the M -matrix, only three M(i− 1, j − 1), M(i− 1, j), and
M(i, j − 1) are involved in the computation of the final value of M(i, j).

Our solution works even when S : Σ × Σ → N, I : Σ → N, and D : Σ → N
are arbitrary functions that are implemented using table lookups.

Grid Graph View of the Problem. The interdependencies among the entries
of the M -matrix induce an (m+1)× (n+1) grid directed acyclic graph (DAG)
associated with the string editing problem. It is easy to see (and well-known)
that the string editing problem can be viewed as a shortest-path problem on a
grid DAG, which is implicitly described by the two input strings and the cost
tables (otherwise there is no hope of achieving the linear-space performance we
seek). We say that an �1×�2 grid DAG is a directed acyclic graph whose vertices
are the �1�2 points of an �1 × �2 grid, and such that the only edges from grid
point (i, j) are to grid points (i, j+1), (i+1, j), and (i+1, j+1). Figure 1 shows
an example of a grid DAG and our convention of drawing the points such that
point (i, j) is at the ith row from the top and the jth column from the left. Note
that the top-left point is (0, 0) and has no edge entering it (i.e., is a source), and
that the bottom-right point is (m,n) and has no edge leaving it (i.e., is a sink).

An (m+1)×(n+1) grid DAG G is associated with the string editing problem
in the natural way: The vertices of G are in one-to-one correspondence with the
entries of the M -matrix, and the cost of an edge from vertex (k, �) to (i, j) is
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Fig. 1. Example of a 2× 4 grid DAG

equal to D(λj) if k = i and � = j − 1, to I(μi) if k = i − 1 and � = j, and
to S(λj , μi) if k = i − 1 and � = j − 1. We restrict our attention to edit paths
which do no obviously inefficient moves (such as inserting then deleting the same
symbol) and thus only consider edit scripts that apply at most one edit operation
to a given symbol. Such edit scripts that transform λ into μ or vice versa are
in one-to-one correspondence to the weighted paths of G that originate at the
source (i.e., M(0, 0)) and end at the sink (i.e., M(m,n)).

Garbled Circuit Evaluation. Our solution uses techniques based on Yao’s
two-party garbled circuit evaluation originated in [18]. Garbled circuit evaluation
allows two parties to securely evaluate any function represented as a Boolean
circuit. The basic idea is that, given a circuit composed of gates, one party P1

creates a garbled circuit by assigning to each wire i two randomly chosen labels

or keys �
(i)
0 and �

(i)
1 , where �

(i)
b encodes bit b. P1 also encodes gate information

in a way that given keys corresponding to the input wires (encoding specific
inputs), the key corresponding to the output of the gate on those inputs can be
recovered. This is often achieved by representing each gate as a table of encrypted
values, where, e.g., for a binary gate g with input wires i, j and output wire k,

the table consists of four values of the form Enc
�
(i)
bi

,�
(j)
bj

(�
(k)
g(bi,bj)

).

The second party, P2, evaluates the circuit using keys corresponding to in-
puts of both P1 and P2 (without learning anything in the process). That is, P2

directly obtains keys corresponding to P1’s input bits from P1 and engages in
the OT protocol to obtain keys corresponding to P2’s input bits. Garbled circuit
evaluation consists of processing the gates in topological order, during which
one entry of each gate’s table is decrypted allowing P2 to learn the output wire’s
key. Security relies on the fact that P2 does not have a correspondence between
the labels it decrypts and the bits that they represent. At the end, the result of
the computation can be recovered by linking the output labels to the bits which
they encode (e.g., by having P1 send all output wire labels and their meaning
to P2). Recent literature [19–21] provides optimizations that significantly reduce
computation and communication overhead associated with garbled circuits.

Prior Results. Using the fact that computing a row of the matrix depends only
on entries from its current and previous rows, computing the edit distance (not
path) is done with S1 and S2 in [2, 3] using O(σ(m+n)) space and O(σmn) time
in O(min(m,n)) rounds. Similarly, securely computing the edit distance in the
two-party setting using garbled circuit evaluation is done in [6, 9] by partitioning
the overall computation into multiple sub-circuits or rounds to achieve the same
result. Computing the path itself took in [3] an extra factor of min(m,n) work
and rounds. One of our main goals is therefore removing that extra factor for
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the path (as opposed to the distance) computation. Our solution is also more
flexible in terms of its round complexity even for the distance computation. In
addition to asymptotic complexity savings, the fact that our solution does not use
expensive public-key operation makes it significantly more efficient (even for the
distance computation) than [2, 3] which made an extensive use of homomorphic
encryption. Furthermore, our technique for removing the need for public-key
operations is of independent interest for secure computation outsourcing.

Lastly, [9] that implements the idea of partitioning a circuit into sub-circuits
(which we use as well) and provides circuit optimizations for a special case
of edit distance computation is complementary to our work. Because a distance
protocol is used as a subroutine in our solution, some of these circuit optimization
techniques can be applied to and integrated in our solution.

3 Overview of the Solution

Before describing our solution in detail, we provide an intuition behind it. First,
notice that if the amount of available memory is O(mn), it is easy to compute the
edit script. That is, first compute all elements of the matrix M . Then, starting
fromM(m,n), follow the link to eitherM(i−1, j),M(i−1, j−1), orM(i, j−1)
that produced the current value of M(i, j) (breaking ties arbitrarily), until the
process terminates at M(0, 0). The produced path corresponds to the desired
edit script that the client would like to learn. This approach, however, does not
work if the amount of available memory is o(mn) because the value stored at
any given M(i, j) might be necessary for reconstructing the path.

To address this problem without increasing the cost of the overall computa-
tion beyond O(σmn), we can use a recursive solution, which works as follows: in
the first round, instead of computing all elements of M as described earlier, we
compute the elements in the “top half” of the matrix as before and also compute
the elements of the “bottom half” of the matrix in the reverse direction start-
ing from M(m,n) (see section 4 for detail). Then for each element M(m/2, j)
of the middle row we add the distances computed from the top and from the
bottom and determine the position of the element with the minimum sum. In
section 4 we denote this element by M(m/2, θ(m/2)). Because we know that
the computed element has to lie on a path that results in the minimum edit
distance, to determine other parts of this path, we can safely disregard all cells
from the top half that lie to the right of M(m/2, θ(m/2)) and all cells from the
bottom half that lie to the left of M(m/2, θ(m/2)). We then recursively apply
this algorithm to the remaining portions of the matrix (which together contain
only a half of the elements ofM) which allows us to reconstruct all points of the
path. While this approach doubles the amount of computation (i.e., the work is
≤ 2mn compared to the original mn), it is suitable for our situation when the
amount of available space is only linear in m and n.

Now notice that this solution works in a traditional setting, but in our case
revealing the position of the minimum element M(m/2, θ(m/2)) (which is nec-
essary for determining what parts of the matrix should be discarded for the next
round), leaks important information about the edit path to the computational
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servers and violates security requirements. Our solution is to recurse on sub-
problems of slightly larger size without revealing information about the value
of θ(m/2). In particular, we form two sub-problems of size 1/2 and 1/4 of the
original, where the 1/2 sub-problem consists of the top (resp. bottom) half and
the 1/4 sub-problem consists of the right bottom (resp. top left) quadrant when
θ(m/2) ≥ n/2 (resp. θ(m/2) < n/2). This ensures that the asymptotic com-
plexity of the solution does not change (the work is ≤ 4mn), while hiding infor-
mation about the path. This process, however, requires care because the strings
that form the sub-problems of fixed size must be padded based on the value
of θ(m/2). That is, we need to ensure that the way the strings are padded (as
a prefix or suffix of an existing string) should not affect the overall result. We
achieve this by extending the alphabet with a new character with carefully cho-
sen insertion, substitution, and deletion costs so as to take a certain path within
the matrix and not alter the edit distance.

The last remaining bit that we want the computational servers to prevent from
learning is whether the subtask of size 1/2 corresponds to the top or bottom
portion of the problem (which, once again, leaks information about the edit
path). This is achieved by always having the sub-tasks of different sizes in a
fixed order and obliviously assigning the correct portion of the grid to a sub-
task. This allows us to obtain a solution that can be safely outsourced to the
computational servers and meets their space requirements.

Having arrived at the oblivious algorithm for computing an edit script with
O(σ(m + n)) memory and O(mn) overall work, we now need to see how this
computation can be securely outsourced. Recall that our solution relies on gar-
bled circuit evaluation which we use in a new way. The first idea that we employ
is for the client to produce garbled circuit’s random labels corresponding to the
wires of its inputs only (two labels per input bit). The client sends the labels for
all wires to S1, who forms the rest of the circuit for the computation. The client
also sends to S2 one label per wire that corresponds to its input value. Once the
circuit is formed, S2 will be able to evaluate it using the labels. In this case, no
OT protocols (or any other public-key operations) are necessary.

Note that this approach is general and by itself would be sufficient to result
in a secure outsourcing solution for most types of functions with no public-key
cryptography involved at any point in the protocol. For our problem, however,
it does not lead to a non-interactive (for the client) solution because after the
first round of the computation, the servers will need to contact the client again
to obtain the labels for the next round of the computation (since they are not
allowed to know what input values or labels are to be reused in the consecutive
round). Because the depth of the recursion in our algorithm is O(log(min(m,n))),
the client has to participate in O(log(min(m,n))) interactions with the servers.
This forms our preliminary solution in section 5.

To eliminate the client’s involvement, we employ the second idea, which con-
sists of the servers using the output wire labels from the current round of the
computation as the input wire labels for the sub-problems in the next round.
This solution requires a great care to ensure that all input labels for the next
round are formed correctly and computed obliviously (inside a garbled circuit)
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and is described in section 6. We thus obtain our target result in which the solu-
tion is non-interactive for the client, the client’s work is O(σ(n+m)), the servers’
work is O(σmn), the entire computation can be carried out within O(σ(m+n))
space, and no public-key operations are used at any point.

4 Enabling the Computation to be Performed Obliviously

As a first step toward building our result, we design an algorithm that allows
the computation to be performed in O(σmn) time using O(σ(m + n)) space.
To be suitable for secure outsourcing, the algorithm must be oblivious or data-
independent (i.e., it always performs the same sequence of steps regardless of
the inputs). This will ensure that no information about the inputs is leaked
based on the algorithm itself. We therefore first describe a procedure for such
computation and later refine and instantiate it with secure building blocks to
obtain the overall solution with the desired performance.

To build our solution, we first need to extend the distance-computation to the
computation of an optimal edit path (i.e., a minimum-cost sequence of operations
on λ that turn it into μ). We adapt the approach of [3] that combines the distance
computation algorithm with a backward version of it which we review next.

The Backward Version of the Distance Computation. The algorithm
mentioned in section 2 is a distance rather than path algorithm. It computes
the length of a shortest path from vertex (0, 0) to any vertex (i, j) in the grid
graph G. We call this the forward algorithm and denote its M matrix as MF

where F is a mnemonic for “forward.” Let GR denote the reverse of G, i.e.,
the graph obtained from G by reversing the direction of every edge. Clearly,
in GR vertex (m,n) is the source and vertex (0, 0) is the sink, and every v-to-
w shortest path in GR corresponds to a similar shortest path in G but in the
backwards direction (i.e., w-to-v). We thus use MB to denote the matrix that
is to GR what matrix MF was to graph G (B is a mnemonic for “backward”).
ThenMB(i, j) denotes the length of a shortest path in GR from the source of GR

(vertex (m,n)) to vertex (i, j), which is equal to the length of a shortest path in
G from (i, j) to (m,n). The edit distance we seek is therefore MB(0, 0) (which
is the same as MF (m,n)). Defined in terms of the two input strings,MB(i, j) is
the edit distance from the suffix of λ of length n− j, to the suffix of μ of length
m− i. Therefore computing MB in an analogous manner to the computation of
MF involves filling in its entries by decreasing (rather than increasing) row and
column order. An algorithm for MB follows from any algorithm for MF , which
we thus assume and use in the subsequent description.

Note that MF (i, j) +MB(i, j) is the length of a shortest source-to-sink path
constrained to go through vertex (i, j) and hence might not be the shortest possi-
ble source-to-sink path. However, if the shortest source-to-sink path goes though
vertex (i, j), thenMF (i, j)+MB(i, j) is equal to the length of the shortest path.
We use MC to denote MF +MB (where C stands for “constrained”).

Oblivious Edit Path Computation. We can now describe our oblivious edit
path algorithm with the desired bounds. Similar to the structure of computation
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in [3], we find for each row i ofMC the column θ(i) of the minimum entry of that
row, with ties broken in favor of the rightmost such entry. Note that MC(i, θ(i))
is the edit distance MF (m,n). Computing the θ function provides an implicit
description of the edit path because:

– If θ(i+ 1) = θ(i) = j, then the edit path “leaves” row i through the vertical
edge from vertex (i, j) to vertex (i + 1, j). The cost of that edge is that of
inserting μi+1.

– If θ(i + 1) = θ(i) + δ, where δ > 0, then the client can “fill in” the portion
of the edit path from vertex (i, θ(i)) to vertex (i + 1, θ(i) + δ) in O(δ) time
(such a “thin” problem on a 2× δ subgrid is trivially solvable in O(δ) time).
The cumulative cost of all such “thin problem solutions” is O(n) because
the sum of all such δ’s is ≤ n.

Without loss of generality, let m ≤ n. For reasons that will become apparent,
similar to [3] we introduce a new symbol ε that does not occur in Σ and denote
Σε = Σ ∪ ε. We assign to ε an insertion cost of 0, a deletion cost of ∞, and an
∞ cost for any substitution in which it is involved. In practice, ∞ can be set to
be (m+ n) times the largest cost appearing in the cost tables for Σ (whether it
is insertion, deletion, or substitution).

Because given θ(0), . . . , θ(m), C can compute the edit path in linear additional
time, we give an algorithm for computing the θ function. It proceeds in logm
rounds, the kth of which consists of 2k−1 grid graphs (each described implicitly
by two substrings of μ and λ) of respective dimensions (m/2k−1) × n1, . . .,

(m/2k−1) × n2k−1 , where
∑2k−1

t=1 nt = (3/4)k−1n as explained below. The first
round proceeds as follows:

1. Run the forward edit distance algorithm to compute row m/2 of MF .
2. Run the backward edit distance algorithm to compute row m/2 of MB.
3. Compute θ(m/2) as the minimum of MC(m/2, j) across all 0 ≤ j ≤ n.

The two subproblems of round 2 could, if one were not concerned about informa-
tion leakage, be defined by the following two sub-grids: (i) the (m/2)×θ(m/2) one
that lies to the left and above vertex (m/2, θ(m/2)) and is described implicitly
by the strings μ1, . . . , μm/2 and λ1, . . . , λθ(m/2); and (ii) the m/2× (n− θ(m/2))
one that lies to the right and below vertex (m/2, θ(m/2)) and is described im-
plicitly by the strings μ(m/2)+1, . . . , μm and λθ(m/2)+1, . . . , λn. The area of those
two subgrids is half the original, but their size would leak the value θ(m/2) dur-
ing outsourced computation. We fix this by using, for round 2, subgrids whose
size does not depend on θ(m/2) and yet their combined area is 3/4 of the orig-
inal, as described below. In what follows, we assume without loss of generality
that θ(m/2) ≥ n/2. While in this description it appears that the fact that
θ(m/2) ≥ n/2 is leaked, in our actual protocol described later this information
is not revealed and the execution is fully oblivious.
– The first subgrid is of size (m/2)×n and is defined by the strings μ1, . . . , μm/2

and λ1, . . . , λθ(m/2), ε, . . . , ε. The appending of the n−θ(m/2) symbols of type
ε at the end of the second string hides θ(m/2) without changing the answer
because the edit path for that subproblem has to use the n − θ(m/2) hori-
zontal edges of 0 cost that link vertex (m/2, θ(m/2)) to the vertex (m/2, n).
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Table 1. Matrices for edit distance between strings AACG and AGAC

(a) MF

0 1 2 3 4

1 0 1 2 3

2 1 2 3 2

3 2 1 2 3

4 3 2 1 2

(b) MB

2 3 4 5 4

3 2 3 4 3

2 1 2 3 2

3 2 1 2 1

4 3 2 1 0

(c) MC

2 4 6 8 8

4 2 4 6 6

4 2 4 6 4

6 4 2 4 4

8 6 4 2 2

(d) θ

θ(0) = 0

θ(1) = 1

θ(2) = 1

θ(3) = 2

θ(4) = 4

x

x

x
θ(m/2)

m

n

θ(3m/4)

θ(m/4)

Fig. 2. Illustration of θ function computation

– The second subgrid is of size (m/2) × (n/2) and is defined by the strings
μ(m/2)+1, . . . , μm and ε, . . . , ε, λθ(m/2)+1, . . . , λn. The pre-pending of the
(n/2)−θ(m/2) ε symbols at the beginning of the second string hides θ(m/2)
without changing the answer because the edit path for that subproblem
has to use the (n/2) − θ(m/2) horizontal edges of 0 cost that link vertex
(m/2, n/2) to the vertex (m/2, θ(m/2)).

A pair of 3rd-round sub-problems is derived from each 2nd-round subgrid in
the same way as above, thus the third round consists of 4 subgrids whose total
(combined) number of columns is 9n/16 (namely, n/4, n/8, n/8, and n/16) and
the total number of rows is m (m/4 rows for each).

Because the total (combined) problem size decreases by a factor of 3/4 from
one round to the next, the overall work of the above algorithm is as claimed:
O(σmn). More precisely, the recurrence is T (m,n) = T (m2 , n)+T (

m
2 ,

n
2 )+ασmn,

and by easy induction it can be shown that T (m,n) ≤ 4ασmn. Space is linear
because each invocation of the edit-distance protocol uses linear space.

To clarify the above notions, we give a small example using strings AACG
and AGAC with insertion and deletion costs of 1, and substitution cost of 0 for
equal characters and 2 for non-equal characters. The 5×5 DAG for this example
is like the one in Figure 1. Table 1 provides matrices MF , MB, MC and the
values for θ. Notice that MB(0, 0) = MF (4, 4) = 2 is the edit distance between
these strings. Also, the shortest path goes through M(i, θ(i)) for any row i.

Figure 2 also demonstrates our algorithm for edit path computation, where at
each iteration a given (sub-)grid is partitioned into two subgrids of 1/2 and 1/4
of its original size and the remaining 1/4 is removed. In the figure, shaded areas
correspond to string padding with character ε. In the figure, because θ(m/2) <
n/2, the top subgrid has size 1/4 and the bottom subgrid has size 1/2. In the
second round, θ(m/4) > n/4 and therefore the top subgrid is further partitioned
into subgrids of size 1/8 and 1/16, resp.; also, θ(3m/4) > n/2 and therefore the
bottom grid is partitioned into subgrids of size 1/4 and 1/8, resp.
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5 Preliminary Protocol for Secure Edit Path Outsourcing

The above algorithm can be executed in the secure outsourcing setting using
the round complexity of O(logm) – or, more generally, O(log(min(m,n))) – if
the servers can afford O(σmn) space. If, however, the servers have only lin-
ear space O(σ(m + n)), their round complexity increases to O(min(m,n)) be-
cause the computation uses the total of O(σmn) space. This does not affect
the client’s round complexity, which in our preliminary solution described next
is O(log(min(m,n))). We subsequently improve it in section 6 to make it non-
interactive for the client at no extra (for the client) cost.

Having described the structure of the computation, we now proceed with the
description of the secure outsourcing protocol for the edit path. Recall that the
client’s work should be O(σ(m + n)), while the servers perform O(σmn) work.
The protocol consists of executing the same procedure for each sub-problem in
each round (starting with the problem of size m× n in round 1), at the end of
which the client learns the value of the θ function at a single point. That is, for
a subgrid defined by strings μ̂k+1, . . ., μ̂k+a and λ̂�+1, . . ., λ̂�+b, the client learns
θ(k+ a/2) and the servers learn nothing. Here μ̂i and λ̂j are from Σε since after
the first round each subgrid is formed by prepending or appending a number of
ε characters to portions of the original strings.

In this protocol the client performs O(σ(a+b)) work for a subgrid of size a×b,
and the servers perform O(σab) work. The client’s work is thus characterized by
recurrence T (m,n) = T (m2 , n) + T (m2 ,

n
2 ) + βσ(m+ n) and can be shown to be

≤ 4βσ(m+ n) using the total of O(logm) rounds. In what follows, we describe

a protocol for a subgrid defined by strings μ̂k+1, . . ., μ̂k+a and λ̂�+1, . . ., λ̂�+b, in
which the client learns the θ value and prepares two subgrids for the next round.

For the sake of the current description, suppose that S1 has access to μ̂k+1, . . . ,
μ̂k+a, but wants to keep the string private from S2, and S2 has access to λ̂�+1, . . .,
λ̂�+b, but likewise wants to keep its string private from S1. S1 and S2 can engage
in secure two-party computation, where S1 inputs each μ̂i and the corresponding
I(μ̂i), and S2 inputs each λ̂j , the correspondingD(λ̂j), and a vector S(λ̂j , ·) that
defines the cost of substituting λ̂j with every character in Σε. Then to be able to
proceed with each step of the dynamic programming problem, they compute each
M(i, j) as specified,where the computationproceeds in an obliviousway as follows:

1. for t = 1 to σ + 1 do

2. c = (μ̂i
?
= t);

3. st = c · S(λ̂j , t);
4. s =

∑σ+1
t=1 st;

5. M(i, j) = min(M(i− 1, j − 1) + s,M(i− 1, j) + I(μ̂i),M(i, j − 1) +D(λ̂j));

Here (x
?
= y) denotes an equality test that outputs a bit which is 1 iff x = y. The

procedure obliviously chooses the correct substitution cost from vector S(λ̂j , ·)
and uses it to compute M(i, j). The cost of computing M(i, j) is thus O(σ).

To take this to the outsourcing context in which neither S1 nor S2 have access
to the input strings or the output, we will now have the client C provide all of the
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inputs that S1 and S2 will use without learning any information about them (other
than the lengths m, n, and σ). In particular, one server, say S1, will be responsi-
ble for garbled circuit construction for a subgrid problem using oblivious execution
described above, while the second server, S2, will evaluate it on the client’s inputs
without knowing themeaning of the random labels that it handles. In a traditional
implementation, we would have S1 build a garbled circuit and send it to S2, after
which the client and S1 engage in OT so that the client learns the (random) la-
bels of the input wires corresponding to all of its inputs (namely, μ̂k+1, . . ., μ̂k+a,

λ̂�+1, . . ., λ̂�+b, I(μ̂i) for each k < i ≤ k + a, and D(λ̂j) and S(λ̂j , ·) for each
� < j ≤ � + b). The client then would send the labels it received from S1 to S2,
S2 would evaluate the garbled circuit on the client-supplied input wire labels and
send the labels corresponding to the output wires to C. S1 then would send to C
the meaning of all output wire labels and C learns the result. We, however, pro-
pose a more efficient solution in which the need for computationally-intensiveOTs
is entirely eliminated. In detail, we have the client generate all input wire labels
that it consequently sends to S1. S1 uses these labels to produce a garbled circuit
that it sends to S2. S1 also sends all output wires and their meaning to C. C then
sends the labels corresponding to its private input to S2, who evaluates the circuit
as before and sends the labels corresponding to the output to C.

Input: C has private strings μ̂k+1, . . ., μ̂k+a and λ̂�+1, . . ., λ̂�+b and the corre-
sponding insertion, deletion, and substitution costs, namely, I(μ̂i) for k < i ≤
k + a and D(λ̂j) and S(λ̂j , ·) for � < j ≤ �+ b. S1 and S2 contribute no input.

Output: C obtains θ(k + a/2) and new pairs of strings μ̂′k′+1, . . ., μ̂
′
k′+a/2,

λ̂′�′+1, . . ., λ̂
′
�′+b and μ̂′′k′′+1, . . ., μ̂

′′
k′′+a/2, λ̂

′′
�′′+1, . . ., λ̂

′′
�′′+b/2 that define subgrids

for the next round. S1 and S2 learn nothing.

Protocol 1
1. C generates a(sΣ+sC)+b(sΣ+sC+sC |Σε|) pairs of random labels (�

(t)
0 , �

(t)
1 ),

where sΣ = ,log(|Σε|)- = ,log(σ + 1)- is the size of binary representation
of an alphabet character, sC is the size of binary representation of costs1 in
tables I(·), D(·), and S(·, ·), and t ∈ [1, sΣ(a+ b) + sC(a+ 2b+ σb)].

2. C sends all (�
(t)
0 , �

(t)
1 ) to S1 who uses them as the input wire labels in con-

structing a garbled circuit.

3. C sends a single label �
(t)
bt

for each t to S2, where bt is 0 or 1 depending on
the corresponding bit of C’s input.

4. S1 sends the garbled circuit to S2 and all output wire labels to C, which we

denote by (�̂
(t)
0 , �̂

(t)
1 ) for t = [1, sb], where sb = ,log b- is the size of the binary

representation of the output θ(k + a/2) which takes on b possible values.
5. S2 evaluates the garbled circuit using the input labels received from C and

sends labels �̂
(t)
bt

that correspond to the computed output for t ∈ [1, sb] to C.

6. C recovers the meaning of the output (i.e., the bit bt) for each �̂
(t)
bt

using

previously received labels (�̂
(t)
0 , �̂

(t)
1 ). Let b′ denote the output θ(k + a/2).

1 For simplicity of presentation we use fixed length sC for costs in all tables, but this
does not need to be the case. Also, because ε character is not present in the original
strings, the values of sΣ and sC can be adjusted accordingly in the first round.
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7. C forms two new sub-problems based on the value of b′. If b′ ≥ b/2, C sets:
– μ̂′k′+1, . . ., μ̂

′
k′+a/2 = μ̂k+1, . . ., μ̂k+a/2,

– λ̂′�′+1, . . ., λ̂
′
�′+b = λ̂�+1, . . ., λ̂�+b′ , ε, . . .ε,

– μ̂′′k′′+1, . . ., μ̂
′′
k′′+a/2 = μ̂k+(a/2)+1, . . ., μ̂k+a,

– λ̂′′�′′+1, . . ., λ̂
′′
�′′+b/2 = ε, . . ., ε, λ̂�+b′+1, . . ., λ̂�+b.

Otherwise, C sets:
– μ̂′k′+1, . . ., μ̂

′
k′+a/2 = μ̂k+(a/2)+1, . . ., μ̂k+a,

– λ̂′�′+1, . . ., λ̂
′
�′+b = ε, . . ., ε, λ̂�+b′+1, . . ., λ̂�+b,

– μ̂′′k′′+1, . . ., μ̂
′′
k′′+a/2 = μ̂k+1, . . ., μ̂k+a/2,

– λ̂′′�′′+1, . . ., λ̂
′′
�′′+b/2 = λ̂�+1, . . ., λ̂�+b′ , ε, . . ., ε.

C, S1 and S2 can now engage in the next round of computation using two newly
determined subgrids. Note that the solution works even when the insertion,
deletion, and substitution cost tables are private and known only to C.

6 Reducing Client’s Involvement

While the solution above already significantly outperforms prior work, in this
section we further improve it by making the protocol non-interactive for the
client. Now the client initially sends data to S1 and S2 and at the end of the
computation receives the result from S1 and S2 and recovers the edit path.

Our idea in eliminating the client’s interaction such that no oblivious transfer for
garbled circuit evaluation has to be introduced consists of using output wires of a
garbled circuit as input wires for the garbled circuits used in the next round. To be
able to do so, the server needs to obliviously compute the input strings for the next
round of computation, the wires of which will then be reused in subsequent garbled
circuits. LetS1 andS2 compute θ(m/2) in the first roundof the computation,where
C provides inputs μ1, . . ., μm, λ1, . . ., λn, I(μi) for i = 1, . . .,m, and D(λj) and
S(λj , ·) for j = 1, . . ., n in themanner described above.After determining the value
of θ(m/2), S1 and S2 can proceed with obliviously computing strings μ′1, . . ., μ

′
m/2,

λ′1, . . ., λ
′
n and μ′′1 , . . ., μ

′′
m/2, λ

′′
1 , . . ., λ

′′
n/2 (with the corresponding insertion, dele-

tion, and substitution costs)whichwill become inputs for the next roundas follows:

1. c = (θ(m/2)
?
< n/2);

2. for i = 1 to m/2 do
3. μ′i = (1 − c)μi + cμ(m/2)+i;
4. μ′′i = cμi + (1− c)μ(m/2)+i;
5. for j = 1 to n do

6. cj = (θ(m/2)
?
≤ j); // can always set cn = 1

7. λ′j = (1− c⊕ cj)λj + (c⊕ cj)ε;
8. for j = 1 to n/2 do
9. λ′′j = c(cjε+ (1− cj)λj) + (1− c)(c(n/2)+jλ(n/2)+j + (1− c(n/2)+j)ε);
The computation of the μ′i’s and μ

′′
i ’s above is rather straightforward. To com-

pute λ′j ’s (for the larger 1/2 part), when c is set, the larger area corresponds to
the bottom rows and the beginning needs to be populated with ε characters. So
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we keep λj if cj is set and replace it with ε otherwise. When c is not set, the
larger area comes from the top rows and erasing happens at the end. In this case,
we keep λj if cj is not set and replace it with ε otherwise. The expression for λ′j
above corresponds to this logic in a more compact form. To compute λ′′j ’s (for
the 1/4 part), when c is set, the top left quadrant is used and padding happens
at the end. Thus, if cj is set, use ε, and use λj otherwise. When c is not set,
we are using the bottom right quadrant with padding in the beginning. So if
c(n/2)+j is set, use λ(n/2)+j and use ε otherwise.

Referring back to the example in Figure 2, the value of c determines whether
the size of the top or bottom subgrid should be reduced and the values of cj
determine what portions of the strings should be replaced with ε. As part of the
computation, the servers always process the 1/2-sized and 1/4-sized grids in the
same way, regardless of from what portion of the original grid they come. This
means that a subgrid processing purely depends on its size, while the origin
of a subgrid of any given size is protected (i.e., unlike this computation, the
positioning of subgrids in Figure 2 is not oblivious).

The above allows the servers to compute the strings themselves for the next
round of the computation, but we also want to ensure that they are able to
compute the rest of the input which consists of insertion, deletion, and substi-
tution costs. Here we demonstrate oblivious computation of such values on the
example of strings μ′1, . . ., μ

′
m/2, λ

′
1, . . ., λ

′
n. The costs for strings μ′′1 , . . ., μ

′′
m/2,

λ′′1 , . . ., λ
′′
n/2 can be computed analogously. From the privacy point of view, we

distinguish between two cases: (i) the insertion, deletion, and substitution cost
tables are public (i.e., known to the servers) and (ii) the cost tables are private
(i.e., known only to the client). Whether the cost tables are public or not will
affect how a garbled circuit is constructed, but the computation built into the
circuit must proceed obliviously regardless of that fact. In particular, when the
cost tables are public, their values will be input into circuits as constants (in
which case two inputs wires – one encoding a 0 and another encoding a 1 – can
be used to encode all constants), while when they are private, the client will
need to additionally produce input wires for all constant values that comprise
the cost tables and communicate their values to S1 and S2 in the same manner
as for all other private inputs. What follows describes oblivious computation of
I(μ′i), D(λ′j), and S(λ

′
j , ·) for the next round.

1. for i = 1 to m/2 do
2. I(μ′i) = 0;
3. for t = 1 to σ + 1 do

4. c = (μ′i
?
= t);

5. I(μ′i) = I(μ′i) + c · I(t);
6. for j = 1 to n do
7. D(λ′j) = 0; S(λ′j , ·) = 〈0, . . ., 0〉;
8. for t = 1 to σ + 1 do

9. c = (λ′j
?
= t);

10. D(λ′j) = D(λ′j) + c ·D(t);
11. S(λ′j , ·) = S(λ′j , ·) + c · S(t, ·);
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For compactness of presentation, we define operations on vectors S(λ′i, ·) and
S(t, ·) in a single step, but it should be understood that all addition, multiplica-
tion, and assignment operations in this case are performed element-wise.

The above allows S1 and S2 to produce all inputs for the next round of the
computation. Because the cost tables for insertion, deletion, and substitution are
needed for each subgrid computation, when their values are public, S1 will as
before encode the constants into each circuit it forms. When, on the other hand,
such values are private and should not be revealed to S1 or S2, S1 will use the
same wire labels for the constants as the ones provided by the client in the first
round, and S2 will also reuse the labels that it received from the client for these
constants in the first round of the computation. We note that while in general
reuse of garbled circuits or their parts is not safe from the privacy point of view,
in this case the servers can use the same wires in multiple circuits because the
labels (or inputs) on which S2 evaluates the circuits are always the same. This
means that the labels themselves do not change and do not allow S2 to learn
any information contained in the cost tables. All other labels in garbled circuits
are chosen anew and therefore S2 cannot deduce any information as a result of
gate evaluation. This allows us to obtain the overall protocol as follows:

Input: C has private strings μ1, . . ., μm and λ1, . . ., λn. The insertion, deletion,
and substitution cost tables can be C’s additional private input or known to all
parties. S1 and S2 do not contribute any input.

Output: C obtains the edit path. S1 and S2 learn nothing.

Protocol 2
1. C generates two random labels (�

(t)
0 , �

(t)
1 ) for each bit of its input μ1, . . ., μm,

λ1, . . ., λn, I(μi) for each i ∈ [1,m], D(λj) and S(λj , ·) for each j ∈ [1, n],
I(·), D(·), and S(·, ·) resulting in t ∈ [1, sΣ(m+n) + sC(m+n+3σ+ σ2))].

2. C sends all (�
(t)
0 , �

(t)
1 ) to S1, and it sends a single label �

(t)
bt

for each t to S2,
where bt is 0 or 1 depending on the corresponding bit of C’s input.

3. S1 uses the pairs of labels it received from C as the input wire labels in
constructing a garbled circuit that produces θ(m/2), strings μ′1, . . ., μ

′
m/2,

λ′1, . . ., λ
′
n and the corresponding I(μ′i), D(λ′j), and S(λ

′
j , ·), as well as strings

μ′′1 , . . ., μ
′′
m/2, λ

′′
1 , . . ., λ

′′
n/2 and the corresponding I(μ′′i ), D(λ′′j ), and S(λ

′′
j , ·).

Let the pairs of the output wire labels that correspond to θ(m/2) be

denoted by (�̂
(t)
0 , �̂

(t)
1 ), where t ∈ [1, ,log(n)-], the labels corresponding to

the output labels for the first sub-problem be denoted by (�
′(t)
0 , �

′(t)
1 ), where

t ∈ [1, sΣ(m/2+n)+sC(m/2+n+σn)], and the labels corresponding to the

output labels for the second sub-problem be denoted by (�
′′(t)
0 , �

′′(t)
1 ), where

t ∈ [1, sΣ(m+ n)/2 + sC(m+ n+ σn)/2].
4. S1 sends its garbled circuit to S2, which S2 evaluates using the input labels

received from C. S1 stores for later reference pairs of labels (�̂
(t)
0 , �̂

(t)
1 ) and

S2 stores the labels for the same wires �̂
(t)
bt

that it computed.
5. S1 and S2 now engage in the second round of the computation, where for

the first circuit S1 uses pairs (�
′(t)
0 , �

′(t)
1 ) as the input wire labels as well as

the pairs of the input wire labels from C that correspond to cost tables I(·),
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D(·), and S(·, ·). After the circuit is formed S1 sends it to S2 who uses the

labels �
′(t)
bt

it computed in the first round as well as the labels for the cost
tables supplied by C in the first round to evaluate this circuit.

6. S1 forms and S2 evaluates the second circuit of the second round and all
circuits in consecutive rounds analogously. As before, for each circuit they
store the labels of the output wires that correspond to evaluation of θ(·) on a
specific point (i.e., S1 stores a pair of labels for each ouput bit and S2 stores
a label per output bit that it obtained as a result of circuit evaluation).

7. When S1 and S2 reach the bottom of recursion, S1 sends pairs (�̂
(t)
0 , �̂

(t)
1 ) and

S2 sends values �̂
(t)
bt

from each circuit to C. C uses the labels to reconstruct
the values of the θ function on all evaluated points, from which it reconstructs
the edit path as described in section 4.

We obtain the final result in which the servers’ communication and computa-
tion is O(σmn) and the work is dominated by the same number of symmetric
key or hash function operations for garbled circuit generation and evaluation.
The solution works when the servers have only O(σ(m+ n)) space. The client’s
communication and computation is O(σ(m + n)), where work is dominated by
generation of the same number of random labels. The round complexity for the
client is O(1) and for the servers it can be expressed as a function of their space:
when the space is O(σmn), the round complexity is O(log(min(m,n))); when
the space is lower, the round complexity increases as below. Security analysis is
omitted due to space considerations and can be found in the full version.

Achieving Linear Space at the Servers. As previously mentioned, our so-
lution was designed to ensure that the servers can carry out the computation
using only O(σ(m + n)) space as m and n can be large. Because the circuit
size starts from O(σmn) (before it exponentially reduces in each round), S1 will
generate and send to S2 a part of the overall circuit before the next portion can
be produced. Similarly, S2 will receive and evaluate a part of a circuit at a time.
Because the entries of theM -matrix can be computed row by row (or column by
column), when the servers’ space is constrained, the part of the circuit generated
and evaluated in each round will follow the same structure of the computation
(i.e., a circuit corresponding to the computation of one or more rows is produced
and evaluated at a time). This causes the number of times S1 and S2 interact to
increase from the minimum O(logmin(m,n)). As the size of each circuit reduces
in consecutive rounds, S1 and S2 will be able to process a larger portion of a
circuit and then multiple circuits per interaction. Thus, the number of interac-
tions for the servers is O(min(m,n)) when they only have O(σ(m + n)) space
available. In other words, for servers with memory constraints of o(σmn), there
is a tradeoff between their space capacity and the number of interactions. This
obviously does not affect the client who only sends and later receives its data.

Performance. To gain insights into performance of our solution, we compute
the size of garbled circuits as a function of parameters m, n, and σ and approx-
imate the protocol’s runtime. For concreteness, we set the cost of insertion and
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Table 2. Servers’ combined computation and communication

Value of n = m Number of gates Computation Communication

250 50× 106 8.3 min 1.4 GB
500 221 × 106 36.6 min 6.2 GB
1000 966 × 106 161 min 27.0 GB

deletion to be 1, and the cost of substitution with a different character to be 2
and with the same character to be 0.

In the circuit, we want to use the smallest possible number of bits to rep-
resent values and store intermediate results. This in particular means that the
size of representation of input characters, substitution costs, and intermediate
matrix values will differ. Also, with the free XOR gates technique of [19], we can
implement equality testing of two �-bit values using � − 1 non-free gates (i.e.,
XOR the inputs and compute OR of the resulting bits), multiplication of an
�-bit value by a bit using � AND gates, addition of k �-bit values from which
at most one is non-zero (as on line 4 of matrix cell computation in section 5)
using k� OR gates, and regular addition and minimum as in [21]. All constants
are encoded using the total of two input wires. For an m×n matrix with σ = 4,
this gives us < (n − 1)(m − 1)(7 log(n +m) + 18) non-XOR gates for the first
round (without using ε) and < (n− 1)(m− 1)(25 log(n+m)+ 16) for all consec-
utive rounds. Thus, implementing the preliminary protocol in section 5 involves
< (n − 1)(m − 1)(82 log(n +m) + 64) non-XOR gates. O(log(n +m)) bits are
used to represent matrix elements M(i, j). Removing client’s involvement in the
protocol introduces additional ≈ 84m + 3n(54 log(n + m) + logn + 29) non-
XOR gates. We note that the number of gates in our edit distance computation
is larger than, e.g., in [9] for computing the Levenshtein’s distance due to the
generality of the edit distance problem we are solving. Some of the circuit op-
timizations from [9] can be applied to special cases of our problem to result in
smaller circuits and faster performance.

Table 2 provides estimated number of gates and runtime of our solution assum-
ing processing 100 non-free gates per msec (based on evaluation results in [9, 22])
on single-threaded commodity hardware. Communication is computed using 25%
savings per gate [20]. The client’s work is only to generate 9n+m pairs of short
random labels and communicate them to the servers (180n+ 20m bytes). This
is computed assuming that the costs of insertion and deletion are known and
fixed and the servers can add costs for ε to the circuits. We conclude that our
techniques can be applied even to problems of large size.
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Abstract. Motivated by the need to outsource file storage to untrusted
clouds while still permitting limited use of that data by third parties, we
present practical protocols by which a client (the third-party) can eval-
uate a deterministic finite automaton (DFA) on an encrypted file stored
at a server (the cloud), once authorized to do so by the file owner. Our
protocols provably protect the privacy of the DFA and the file contents
from a malicious server and the privacy of the file contents (except for the
result of the evaluation) from an honest-but-curious client (and, heuris-
tically, from a malicious client). We further present simple techniques to
detect client or server misbehavior.

1 Introduction

Outsourcing file storage to storage service providers (SSPs) and “clouds” can
provide significant savings to file owners in terms of management costs and
capital investments. However, because cloud storage can heighten the risk of
file disclosure, prudent file owners encrypt their cloud-resident files to protect
their confidentiality. This encryption introduces difficulties in managing access
to these files by partially trusted third parties, however. Third-party service
providers who are contracted to analyze files stored in the cloud generally can-
not do so if the files are encrypted. For example, periodically “scanning” files
to detect new malware, as is common today for PC platforms, cannot presently
be performed on encrypted files by a third party. Moreover, with some excep-
tions (see §2), third-party customers generally cannot search the files if they are
encrypted. Searches on genome datasets, pharmaceutical databases, document
corpora, or network logs are critical for research in various fields, but the privacy
constraints of these datasets may mandate their encryption, particularly when
stored in the cloud.

These difficulties are compounded when the third party views its queries on
the files to be sensitive, as well. New malware signatures may be sensitive since
releasing them enables attackers to design malware to evade them (e.g., [37]).
Customers of datasets in numerous domains (e.g., pharmaceutical research) may
view their research interests, and hence their queries, as private.

As a step toward resolving this tension among file protection, search access
by authorized third parties, and privacy for third-party queries, in this paper
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we introduce protocols by which a third-party (called the “client”) can perform
private searches on encrypted files (stored at the “server”), once it is authorized
to do so by the file owner. The type of searches that our protocols enable is
motivated by the scenarios above, which in many cases involve pattern matching
a file against one or more regular expressions. Multi-pattern string matching is
especially common in analysis of content for malware (e.g., [31,24]) and also is
commonplace in searches on genome data, for example. In fact, there are now
a number of available genome databases (e.g., [1,2]) and accompanying tools
for multi-pattern matching against them (e.g., [6]). With the goal of improving
privacy in such applications, we develop protocols to evaluate a deterministic
finite automaton (DFA) of the client’s choice on the plaintext of the encrypted
file and to return the final state to the client to indicate which, if any, of the
patterns encoded in the DFA were matched. We stress that while there is much
work on secure two-party computation including the specific case of private DFA
evaluation on a private file (see §2), few works have anticipated the possibility
that the file is available only in encrypted form. This setting will become more
common as data-storage outsourcing grows.

The security properties we prove for our protocols include privacy of the DFA
and file contents against arbitrary server adversaries, and privacy of the file (ex-
cept what is revealed by the evaluation result) against honest-but-curious client
adversaries. Though our proofs are limited to only honest-but-curious client ad-
versaries, we also provide heuristic justification for the security of our protocols
against arbitrary client adversaries. Our protocols appear to be extensible with
standard techniques to provably protect file privacy against arbitrary client ad-
versaries, but we stop short of doing so in light of the substantially greater cost
it would impose and our motivating scenarios involving third parties that the file
owner must authorize and so presumably trusts to some extent. We do, however,
discuss efficient heuristics to detect a misbehaving client or server that highlight
new opportunities in the cloud storage setting.

A central observation that facilitates our protocols is that a DFA transition
function can be encoded as a bivariate polynomial over the ring of an additively
homomorphic encryption scheme with which the file characters are encrypted.
In our protocols, the client, who has this polynomial as input, and the server,
who has the encrypted file as input, obliviously perform DFA state transitions
by jointly evaluating this polynomial. Neither party learns the current state at
any point of the protocol execution; instead, they share the current state at each
step, requiring that the polynomial be adapted in each round to accommodate
this sharing.

We believe our protocols will be efficient enough for many practical scenarios.
They support evaluation of any DFA over an alphabet Σ on any file consisting
of � symbols drawn from Σ, and require the file to be stored using �m cipher-
texts where m = |Σ|. Since m is a multiplicative factor in the storage cost,
our protocols are best suited to small alphabets Σ, e.g., bits (m = 2), bytes
(m = 256), alphanumeric characters (m = 36), or DNA nucleotides (m = 4 for
“A”, “C”, “G”, and “T”). Specifically, in §4, we present a protocol that leverages
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additively homomorphic encryption (e.g., [28]) and transmits O(κ�nm) bits, for κ
a security parameter, to evaluate a DFA of n states. In §5, we leverage additively
homomorphic encryption that also supports one homomorphic multiplication of
ciphertexts (e.g., [8]) to construct a protocol that transmits only O(κ�(n+m))
bits. Our techniques could also be utilized with fully homomorphic encryption to
produce a noninteractive protocol with a communication cost of O(nm) fully ho-
momorphic ciphertexts and, in particular, that is independent of the file length
�. Before describing our protocols, we discuss related work in §2 and clarify our
goals in §3.

2 Related Work

The functionality offered by our protocols could be implemented with general
“computing on encrypted data” [30] or two-party secure computation [36,18].
These techniques tend to yield less efficient protocols than one designed for a
specific purpose, and our case will be no exception. The former achieves compu-
tations non-interactively using fully homomorphic encryption, for which exist-
ing implementations [14,11,32,33] are much more costly than the techniques we
use [15]. The latter utilizes a “garbled circuit” construction that is of size linear
in the circuit representation of the function to be computed. Despite progress
on practical implementations of this technique [26,5,29], this limitation renders
it much more communication-intensive for the problem we consider.

Two-party private DFA evaluation, in which a server has a file and a client
has a DFA to evaluate on that file, has been a topic of recent focus. Troncoso-
Pastoriza et al. [34] presented the first such protocol, which they proved secure
in the honest-but-curious setting. Frikken [12] presented a protocol for the same
setting that improved on the round complexity and computational costs. Gen-
naro et al. [13] developed a protocol that they proved secure against arbitrary
adversaries, and Mohassel et al. [27] presented a protocol for arbitrary adver-
saries that significantly reduces the number of asymmetric operations. Our work
differs from these in that in our protocols, the file is available to the parties
only in ciphertext form. In this respect, the protocol of Blanton and Aliasgari [7]
is relevant; they proposed a protocol for an “outsourcing” model, in which the
DFA owner and file owner secret-share the DFA and file, respectively, between
two other hosts, who then interactively evaluate the DFA on the file without
reconstructing either one. While our protocol utilizes secret sharing, as well —
in our case, of the file owner’s file-decryption key — it shares much less data
and does not share the client’s DFA (or thus require two parties between which
to share it) at all.

By two-party sharing the file-decryption key and using this to compute on
encrypted data, our protocols are related to Choi et al.’s [9]. This work devel-
oped a protocol based on garbled circuits by which two parties can evaluate a
general function after a private decryption key has been shared between them.
This protocol can be used to solve the problem we propose, but inherits the
aforementioned limitations of garbled circuits.
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Two-party pattern-matching and search problems other than DFA evaluation
have also been studied, e.g., by Jha et al. [22], Hazay and Lindell [19], Katz and
Malka [23], and Hazay and Toft [20]. Again, these works input the plaintext file
to one party and so do not directly apply to our setting. Of particular note,
though, is a protocol due to Ishai and Paskin [21] to evaluate a branching pro-
gram (which can be used to encode a DFA) on encrypted data. Translated to
our context, their scheme enables a client holding a branching program P and
provided the ciphertext c1 for plaintext data σ ∈ Σ� to compute a ciphertext
c2 of P (σ). Conceivably if the data owner shared the decryption key between
the client and the server who provided c1 (as in our protocol), the client could
then recover P (σ) by jointly decrypting c2 with the server, without involvement
from the data owner. However, when this protocol is applied to DFAs, c1 could
be of length quadratic in � and, because c2 is encrypted in a nested fashion, its
joint decryption would seem to require � rounds of interaction, each round with
messages of length O(�).

Additional related work is discussed in our accompanying technical report [35].

3 Problem Description

A deterministic finite automaton M is a tuple 〈Q, Σ, δ, qinit〉 where Q is a set
of |Q| = n states ; Σ is a set (alphabet) of |Σ| = m symbols ; δ : Q × Σ → Q is
a transition function; and qinit is the initial state. (A DFA can also specify a set
F ⊆ Q of accepting states. We will discuss extensions of our protocols to this
case.)

Our goal is to enable a client holding a DFAM to interact with a server holding
the ciphertext of a file to evaluate M on the file plaintext. More specifically, the
client should output the final state to which the file plaintext drives the DFA; i.e.,
if the plaintext file is a sequence 〈σk〉k∈[�] where [�] denotes the set {0, 1, . . . , �−
1} and where each σk ∈ Σ, then the client should output δ(. . . δ(δ(qinit, σ0),
σ1), . . . , σ�−1). We also permit the client to learn the file length � and the server
to learn both � and the number of states n in the client’s DFA.1 The client should
learn nothing else about the file, however, and the server should learn nothing
else about the file or the client’s DFA.

Because the file exists in the system only in encrypted form, some private-key
information must be injected into the protocol to enable a DFA to be evaluated
on the file plaintext. Since (only) the data owner holds the private key, one
approach would be to involve the data owner in the protocol. However, in keeping
with the goals of cloud outsourcing, our protocols require the data owner only
to authorize the client to perform DFA evaluations with the server — but not
to participate in those evaluations herself. In our protocols, this authorization

1 Since exposing the final state reduces file entropy by log2 n bits, presumably the
server should learn n so as to monitor for excessive exposure or to charge for the
information learned by the client. Moreover, the client can arbitrarily inflate n by
adding unreachable states. As such, we consider disclosing n to the server to be
practically necessary but of little threat to the client.
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occurs by the data owner sharing the private file-decryption key between the
client and server. As a result, a client and server that collude could pool their
information to decrypt the file. Here we assume no such collusion, however, for
two reasons. First, we are primarily motivated by scenarios in which the client
represents a partially trusted service provider or customer, and so even if the
cloud server were to be compromised, we presume this party would not be the
cause. So, we prove security against only a client or server acting in isolation
and with primary attention to only an honest-but-curious client (though we
also heuristically justify the security of our protocol against an arbitrary client).
Second, even without sharing the file decryption key between the client and
server, the functionality offered by our protocol (i.e., evaluating a DFA on the file)
would enable a colluding client and server to evaluate arbitrary (and arbitrarily
many) DFAs on the file, eventually permitting its decryption anyway. The only
defense against collusion that we see would be to involve the data owner in the
protocol; again, we do not explore this possibility here.

Our protocols do not retrieve the file based on the DFA evaluation results,
e.g., in a way that hides from the server what file is being retrieved. However,
once the client learns the final state of the DFA evaluation, it can employ var-
ious techniques to retrieve the file privately (e.g., [17]). Moreover, some of our
motivating scenarios in §1, e.g., malware scans of cloud-resident files by a third
party, may not require file retrieval but only that matches be reported to the file
owner.

4 A Secure DFA Evaluation Protocol

In this section we present a protocol that meets the goals described in §3. We
give the construction in §4.1, and then we define and prove security against server
and client adversaries in §4.2 and §4.3, respectively.

4.1 Construction

Let “←” denote assignment and “s
$← S” denote the assignment to s of a

randomly chosen element of set S. Let κ denote a security parameter.

Encryption Scheme. Our scheme is built using an additively homomorphic

encryption scheme with plaintext space R where 〈R,+
R
, ·

R
〉 denotes a commuta-

tive ring. Specifically, an encryption scheme E includes algorithms Gen, Enc, and
Dec where: Gen is a randomized algorithm that on input 1κ outputs a public-
key/private-key pair (pk , sk) ← Gen(1κ); Enc is a randomized algorithm that
on input public key pk and plaintext m ∈ R (where R can be determined
as a function of pk ) produces a ciphertext c ← Encpk (m), where c ∈ Cpk

and Cpk is the ciphertext space determined by pk ; and Dec is a determinis-
tic algorithm that on input a private key sk and ciphertext c ∈ Cpk produces
a plaintext m ← Decsk (c) where m ∈ R. In addition, E supports an opera-
tion +pk on ciphertexts such that for any public-key/private-key pair (pk , sk),
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Decsk (Encpk (m1) +pk Encpk (m2)) = m1 +R
m2. Using +pk , it is possible to im-

plement ·pk for which Decsk (m2 ·pk Encpk (m1)) = m1 ·R m2.
We also require E to support two-party decryption. Specifically, we assume

there is an efficient randomized algorithm Share that on input a private key sk
outputs shares (sk1, sk2) ← Share(sk), and that there are efficient deterministic
algorithms Dec1 and Dec2 such that Decsk (c) = Dec2sk2

(c, Dec1sk1
(c)).

An example of an encryption scheme E that meets the above requirements is
due to Paillier [28] with modifications by Damg̊ard and Jurik [10]; we henceforth
refer to this scheme as “Pai”. In this scheme, the ring R is ZN where N = pp′

and p, p′ are primes, and the ciphertext space Cpk is Z∗
N2 .

We use pk

∑
to denote summation using +pk ; R

∑
to denote summation using

+
R
; and R

∏
to denote the product using ·

R
of a sequence. For any operation op,

we use top to denote the time required to perform op; e.g., tDec is the time to
perform a Dec operation.

Encoding δ in a Bivariate Polynomial over R. A second ingredient for

our protocol is a method for encoding a DFA 〈Q,Σ, δ, qinit〉, and specifically the
transition function δ, as a bivariate polynomial f(x, y) over R where x is the
variable representing a DFA state and y is the variable representing an input
symbol. That is, if we treat each state q ∈ Q and each σ ∈ Σ as distinct elements
of R, then we would like f(q, σ) = δ(q, σ). We can achieve this by choosing f to
be the interpolation polynomial

f(x, y) = R

∑
σ∈Σ

(fσ(x) ·R Λσ(y)) where Λσ(y) = R

∏
σ′∈Σ
σ′ �=σ

y −
R
σ′

σ −
R
σ′

(1)

is a Lagrange basis polynomial and fσ(q) = δ(q, σ) for each q ∈ Q. Note that
Λσ(σ) = 1 and Λσ(σ

′) = 0 for any σ′ ∈ Σ \ {σ}.
Calculating (1) requires taking multiplicative inverses in R. While not every

element of a ring has a multiplicative inverse in the ring, fortunately the ring
ZN used in Paillier encryption, for example, has negligibly few elements with no
inverses, and so there is little risk of encountering an element with no inverse. Us-
ing (1), we can calculate coefficients 〈λσj〉j∈[m] so that Λσ(y) = R

∑m−1
j=0 λσj ·R yj .

For our algorithm descriptions, we encapsulate this calculation in the procedure
〈λσj〉σ∈Σ,j∈[m] ← Lagrange(Σ).

Each fσ needed to compute f(x, y) can again be determined as a Lagrange

interpolating polynomial and then expressed as fσ(x) = R

∑n−1
i=0 aσi ·R xi. In our

pseudocode, we encapsulate this calculation as 〈aσi〉σ∈Σ,i∈[n] ← ToPoly(Q,Σ, δ).

Protocol Steps. Our protocol, denoted Π1(E), is shown in Fig. 1. Pseudocode

for the client is aligned on the left of the figure and labeled c101–c116; the server
pseudocode is on the right of the figure and labeled s101–s112; and messages
exchanged between them are aligned in the center and labeled m101–m106. The
client receives as input a public key pk under which the file (at the server) is
encrypted; a share sk1 of the private key sk corresponding to pk ; another public
key pk ′; and the DFA 〈Q,Σ, δ, qinit〉. The server receives as input the public
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key pk ; a share sk2 of the private key sk ; the alphabet Σ; and ciphertexts
ckj ← Encpk ((σk)

j) of the k-th file symbol σk, for each j ∈ [m] and for each
k ∈ [�] where � denotes the file length in symbols. We assume that sk1 and
sk2 were generated as (sk1, sk2) ← Share(sk ). Note that no information about
sk ′ (the private key corresponding to pk ′) is given to either party, and so pk ′

ciphertexts (ρ created in c107 and c115 and sent in m103 and m105, respectively)
are indecipherable and ignored in the protocol. These ciphertexts are included to
simplify the proof of privacy against client adversaries (§4.3) and can be elided
in practice. We do not discuss these values further in this section.

client(pk , sk1, pk
′, server(pk , sk2, Σ,

〈Q,Σ, δ, qinit〉) 〈ckj〉k∈[�],j∈[m])

c101. n ← |Q|,m ← |Σ| s101. m ← |Σ|
c102. π0 ← I s102. 〈λσj〉σ∈Σ,j∈[m]

c103. π1
$← Injs(Q → R) ← Lagrange(Σ)

c104. α ← Encpk (π1(qinit))

m101.
n �

m102.
��

c105. for k ← 0 . . . � − 1 s103. for k ← 0 . . . � − 1
c106. β ← Dec1sk1 (α)

c107. ρ ← Encpk′ (π1)

m103.
α,β,ρ �

s104. γ ← Dec2sk2(α, β)

c108. π0 ← π1 s105. for σ ∈ Σ

c109. π1
$← Injs(Q → R) s106. Ψσ ← pk

m−1∑
j=0

λσj ·pk ckj

c110. δ′ ← Blind(δ, π0, π1) s107. for i ∈ [n]

c111. 〈aσi〉σ∈Σ,i∈[n] s108. μσi ← γi ·pk Ψσ

← ToPoly(Q,Σ, δ′) s109. endfor
s110. endfor

m104.
〈μσi〉σ∈Σ,i∈[n]�

c112. α ← pk

∑
σ∈Σ

pk

n−1∑
i=0

aσi ·pk μσi

c113. endfor s111. endfor
c114. β ← Dec1sk1 (α)

c115. ρ ← Encpk′(π1)

m105.
α,β,ρ �

s112. γ∗ ← Dec2sk2(α, β)

m106.
γ∗

�
c116. return π−1

1 (γ∗)

Fig. 1. Protocol Π1(E), described in §4

The protocol is struc-
tured as matching for
loops executed by the
client (c105–c113) and server
(s103–s111). The client
begins the k-th loop it-
eration with an encryp-
tion α of the current DFA
state after being blinded
by a random injection
π1 : Q → R it chose
in the (k − 1)-th loop at
line c109 (or, if k = 0,
then in line c103), where
Injs(Q → R) denotes the
set of injections from Q
to R. The client uses its
share sk1 of sk to cre-
ate the “partial decryp-
tion” β of α (c106) and
sends α, β to the server
(m103). The server uses
its share sk2 to complete
the decryption of α to ob-
tain the blinded state γ
(s104). We stress that be-
cause γ is blinded by π1,
γ reveals no information
about the current DFA
state to the server. The
server then computes, for
each σ ∈ Σ (s105), a value Ψσ such that Λσ(σk) = Decsk (Ψσ) (s106) by utilizing
coefficients 〈λσj〉σ∈Σ,j∈[m] output from Lagrange (s102). The server then returns
(in m104) values 〈μσi〉σ∈Σ,i∈[n] created so that Decsk (μσi) = γi ·

R
Λσ(σk) (s108).

Meanwhile, the client selects a new random injection π1
$← Injs(Q → R)

(c109). The client then constructs a new DFA transition function δ′ reflecting
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the injection it chose in the last round (now denoted π0, see line c108) and the
new injection π1 it chose for this round. Specifically, it creates a new DFA state
transition function δ′ defined as δ′(q, σ) = π1(δ(π

−1
0 (q), σ)) for all σ ∈ Σ and

q ∈ π0(Q) where π0(Q) = {π0(q)}q∈Q; we denote this step as δ′ ← Blind(δ, π0, π1)
in line c110. That is, δ′ “undoes” the previous injection π0, applies δ, and then
applies the new injection π1. The client then interpolates a bivariate polynomial
f(x, y) such that f(q, σ) = δ′(q, σ) in line c111, using the algorithm described
previously. The client then uses these coefficients and 〈μσi〉σ∈Σ,i∈[n] sent from
the server (message m103) to assemble a ciphertext α of the new DFA state
under the injection π1 (c112).

After � loop iterations, the client interacts with the server once more to decrypt
the final state. It sends α and its partial decryption β to the server (m105), for
which the server completes the decryption (s112) and returns the result (m106).

Protocol Π1(E) can be modified to return only a binary indication of whether
the DFA’s final state is an accepting one, if the DFA specifies a set F of accepting
states. Specifically, the client can construct a polynomial f̂(x) that evaluates to
1 on states in F and 0 on other states. Then, rather than interacting with the
server to decrypt the final state, the client can interact with the server once to
evaluate f̂(x) on the (unknown) final state and again to decrypt this result. We
omit details here due to space limitations.

For brevity, Fig. 1 omits numerous checks that the client and server should
perform to confirm that the values each receives are well-formed. For example,
the client should confirm that μσi ∈ Cpk for each σ ∈ Σ and i ∈ [n], upon
receiving these in m104. The server should similarly confirm the well-formedness
of the values it receives.

An Alternative Using Fully Homomorphic Encryption. Our technique

of encoding the DFA transition function δ using a bivariate polynomial f(x, y)
over R could also be used with fully homomorphic encryption [14,11] to create a
noninteractive protocol. The client could encrypt each coefficient aσi of f under
the public key pk and send these ciphertexts to the server, enabling the server
to perform computations c112 by itself. At the end, the server could send a half
decrypted final state back to the client, who would complete the decryption to
obtain the result. This protocol achieves communication costs of O(nm), which
is independent of the file length. That said, existing fully homomorphic schemes
are far less efficient than additively homomorphic schemes, and so the resulting
protocol will be less communication-efficient than Π1(E) for many practical file
lengths and DFA sizes.

4.2 Security against Server Attacks

In this section we show that the server, by executing this protocol (even arbi-
trarily maliciously), gains no advantage in either determining the DFA the client
is evaluating or the plaintext of the file in its possession. That is, we show only
the privacy of the file and DFA inputs against server adversaries. In this section,
we are not concerned with showing that a client can detect server misbehavior,
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Experiment Expts-dfaΠ1(E)(S1, S2)

(pk, sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk′, sk ′) ← Gen(1κ)
(�, 〈σk〉k∈[�],M0,M1, φ) ← S1(pk , sk2)
if M0.Q �= M1.Q or M0.Σ �= M1.Σ

then return 0

b
$← {0, 1}

m ← |Mb.Σ|
for k ∈ [�], j ∈ [m]

ckj ← Encpk ((σk)
j)

b′ ← S
clientOr(pk,sk1,pk′,Mb)

2 (φ, 〈ckj〉k∈[�],j∈[m])
if b′ = b

then return 1
else return 0

(a) Experiment Expts-dfaΠ1(E)

Experiment Expts-fileΠ1(E)(S1, S2)

(pk, sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk′, sk ′) ← Gen(1κ)
(�, 〈σ0k〉k∈[�], 〈σ1k〉k∈[�],M, φ) ← S1(pk , sk2)

b
$← {0, 1}

m ← |M.Σ|
for k ∈ [�], j ∈ [m]

ckj ← Encpk ((σbk)
j)

b′ ← S
clientOr(pk,sk1,pk′,M)
2 (φ, 〈ckj〉k∈[�],j∈[m])

if b′ = b
then return 1
else return 0

(b) Experiment Expts-fileΠ1(E)

Fig. 2. Experiments for proving security of Π1(E) against server adversaries

a property often called correctness. Π1(E) could be augmented using standard
tools to enforce correctness, with an impact on performance; we do not explore
this here. Instead, in §6 we describe novel extensions to Π1(E) that could be
used to detect server misbehavior.

We formalize our claims against server compromise by defining two sepa-
rate server adversaries. The first server adversary S = (S1, S2) attacks the DFA
M = 〈Q, Σ, δ, qinit〉 held by the client, as described in experiment Expts-dfaΠ1(E) in
Fig. 2(a). S1 first generates a file 〈σk〉k∈[�] and two DFAs M0,M1. (Note that we
use, e.g., “M0.Q” and “M1.Q” to disambiguate their state sets.) S2 then receives
the ciphertexts 〈ckj〉k∈[�],j∈[m] of its file, information φ created for it by S1, and
oracle access to clientOr(pk , sk1, pk

′, Mb) for b chosen randomly.
clientOr responds to queries from S2 as follows, ignoring malformed queries.

The first query (say, consisting of simply “start”) causes clientOr to begin the
protocol; clientOr responds with a message of the form n (i.e., of the form of
m101). The second invocation by S2 must include a single integer � (i.e., of the
form of m102); clientOr responds with a message of the form α, β, ρ, i.e., three
values as in m103. The next � − 1 queries by S2 must contain nm elements
of Cpk , i.e., 〈μσi〉σ∈Σ,i∈[n] as in m104, to which clientOr responds with three
values as in message m103. The next query to clientOr again must contain nm
elements of Cpk as in m104, to which clientOr responds with three values as in
m105. The next (and last) query by S2 can consist simply of a value in R, as in
message m106.

Eventually S2 outputs a bit b′, and Expts-dfaΠ1(E)(S) = 1 only if b′ = b. We say

the advantage of S is Advs-dfa
Π1(E)(S) = 2 · P

(
Expts-dfaΠ1(E)(S) = 1

)
− 1 and define

Advs-dfa
Π1(E)(t, �, n,m) = maxS Advs-dfa

Π1(E)(S) where the maximum is taken over all
adversaries S taking time t and selecting a file of length � and DFAs containing
n states and an alphabet of m symbols.

We reduce DFA privacy against server attacks to the IND-CPA [4] security
of the encryption scheme. IND-CPA security is defined using the experiment
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in Fig. 3, in which an adversary U is provided a public key p̂k and access to

an oracle Encb̂
p̂k
(·, ·) that consistently encrypts either the first of its two inputs

(if b̂ = 0) or the second of those inputs (if b̂ = 1). Eventually U outputs a

guess b̂′ at b̂, and Exptind-cpaE (U) = 1 only if b̂′ = b̂. The IND-CPA advan-

tage of U is defined as Adv
ind-cpa
E (U) = 2 · P

(
Expt

ind-cpa
E (U) = 1

)
− 1. Then,

Advind-cpa
E (t, w) = maxU Advind-cpa

E (U) where the maximum is taken over all

adversaries U executing in time t and making w queries to Encb̂
p̂k
(·, ·).

Our theorem statements throughout this paper omit terms that are negligible
as a function of the security parameter κ. The following theorem is proved in
our accompanying technical report [35].

Theorem 1. Advs-dfa
Π1(E)(t, �, n,m) ≤ 2Adv

ind-cpa
E (t′, � + 1) for t′ = t + tGen +

tShare.

Experiment Exptind-cpaE (U)

(p̂k , ŝk) ← Gen(1κ)

b̂
$← {0, 1}

b̂′ ← U
Encb̂

p̂k
(·,·)

(p̂k)

if b̂′ = b̂
then return 1
else return 0

Fig. 3. Exptind-cpaE (U)

The second server adversary S = (S1, S2) attacks
the file ciphertexts 〈ckj〉k∈[�],j∈[m] as in experiment

Expts-fileΠ1(E) shown in Fig. 2(b). S1 produces two equal-
length plaintext files 〈σ0k〉k∈[�], 〈σ1k〉k∈[�] and a DFA
M. S2 receives the ciphertexts 〈ckj〉k∈[�],j∈[m] for file
〈σbk〉k∈[�] where b is chosen randomly. S2 is also given
oracle access to clientOr(pk , sk1, pk

′, M). Eventually
S2 outputs a bit b′, and Expts-fileΠ1(E)(S) = 1 iff b′ = b.

We say the advantage of S is Advs-file
Π1(E)(S) = 2 ·

P
(
Expts-fileΠ1(E)(S) = 1

)
− 1 and then Advs-file

Π1(E)(t, �, n,m) = maxS Advs-file
Π1(E)(S)

where the maximum is taken over all adversaries S = (S1, S2) taking time t and
producing (from S1) files of � symbols and a DFA of n states and alphabet of
size m. The following theorem is proved in our technical report [35].

Theorem 2. Advs-file
Π1(Pai)(t, �, n,m) ≤ 2Advind-cpa

Pai (t′, �+1) +Advind-cpa
Pai (t′, �m)

for t′ = t + tGen + tShare.

4.3 Security against Client Attacks

In this section we show security of Π1(E) against honest-but-curious client ad-
versaries and heuristically justify its security against malicious ones. (We also
introduce novel extensions to detect a misbehaving client in §6.) Since the client
has the DFA in its possession, privacy of the DFA against a client adversary
is not a concern. The proof of security against the client therefore is concerned
with the privacy of only the file. However, by the nature of what the protocol
computes for the client — i.e., the final state of a DFA match on the file —
the client can easily distinguish two files of its choosing simply by running the
protocol correctly using a DFA that distinguishes between the two files it chose.

For this reason, we adapt the notion of indistinguishability to apply only to
files that produce the same final state for the client’s DFA. So, in the experiment
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Exptc-fileΠ1(E) (Fig. 4) that we use to define file security against client adversaries,

the adversary C = (C1, C2) succeeds (i.e., Exptc-fileΠ1(E)(C) returns 1) only if the
two files 〈σ0k〉k∈[�] and 〈σ1k〉k∈[�] output by C1 both drive the DFA M, also
output by C1, to the same final state (denoted M(〈σ0k〉k∈[�]) =M(〈σ1k〉k∈[�])).

Experiment Exptc-fileΠ1(E)(C1, C2)

(pk , sk) ← Gen(1κ)
(sk1, sk2) ← Share(sk)
(pk ′, sk ′) ← Gen(1κ)
(�, 〈σ0k〉k∈[�], 〈σ1k〉k∈[�],M, φ)

← C1(pk , sk1, pk
′)

if M(〈σ0k〉k∈[�]) �= M(〈σ1k〉k∈[�])
then return 0

b
$← {0, 1}

m ← |M.Σ|
for k ∈ [�], j ∈ [m]

ckj ← Encpk ((σbk)
j)

b′ ← C
serverOr(pk,sk2,M.Σ,〈ckj〉k∈[�],j∈[m])

2 (φ)
if b′ = b

then return 1
else return 0

Fig. 4. Experiment Exptc-fileΠ1(E)

This caveat aside, the experiment
is straightforward: C1 receives public
key pk , private-key share sk1, and an-
other public key pk ′, and returns the
two �-symbol files (for � of its choos-
ing) 〈σ0k〉k∈[�] and 〈σ1k〉k∈[�] and a DFA
M. Depending on how b is then cho-
sen, one of these files is encrypted using
pk and then provided to the server, to
which C2 is given oracle access (denoted
serverOr(pk , sk2,M.Σ, 〈ckj〉k∈[�],j∈[m])).

Adversary C2 can invoke serverOr
first with a message containing an in-
teger n (i.e., with a message of the
form m101), to which serverOr returns
� (m102). C2 can then invoke serverOr
up to � + 1 times. The first � such invocations take the form α, β, ρ and cor-
respond to messages of the form m103. Each such invocation elicits a response
〈μσi〉σ∈Σ,i∈[n] (i.e., of the form m104). The last client invocation is of the form α,
β, ρ and corresponds to m105. This invocation elicits a response γ∗ (i.e., m106).
Malformed or extra queries are rejected by serverOr.

As discussed in §1, we show file privacy against honest-but-curious client adver-
saries C = (C1, C2), i.e., C2 invokes serverOr exactly as Π1(E) prescribes, using
DFA M output by C1. We define the advantage of C to be hbcAdvc-file

Π1(E)(C) =

2·P
(
Exptc-fileΠ1(E)(C) = 1

)
−1 and hbcAdvc-file

Π1(E)(t, �, n,m) = maxC Advc-file
Π1(E)(C)

where the maximum is taken over honest-but-curious client adversaries C run-
ning in total time t and producing files of length � and a DFA of n states over
an alphabet of m symbols. Our technical report [35] proves:

Theorem 3. hbcAdvc-file
Π1(Pai)(t, �, n,m) ≤ Adv

ind-cpa
Pai (t′, �m(1+n)) for t′ = t+

tGen + (�+ 1) · tDec .

We have found extending this result to fully malicious client adversaries to be
difficult for two reasons. First, Exptc-fileΠ1(E) does not make sense for a malicious
client, since C2 is not bound to use the DFA M output by C1. As such, C2 can
use a different DFA — in particular, one that enables it to distinguish between
the files output by C1. Second, even ignoring the final state γ∗ sent back to
the client, we have been unable to reduce the ability of the client adversary to
distinguish between two files on the basis of m104 messages to breaking the
IND-CPA security of E ; intuitively, the difficulty derives from the simulator’s
inability to decrypt α values provided by C2. (The ciphertext ρ enables the
simulator to “track” the plaintext of α in the honest-but-curious case — see the
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client(pk , sk1, pk
′, server(pk , sk2, Σ,

〈Q,Σ, δ, qinit〉) 〈ckj〉k∈[�],j∈[m])

c201. n ← |Q|,m ← |Σ| s201. m ← |Σ|
c202. π0 ← I s202. 〈λσj〉σ∈Σ,j∈[m]

c203. π1
$← Injs(Q → R) ← Lagrange(Σ)

c204. α ← Encpk (π1(qinit))

m201.
n �

m202.
��

c205. for k ← 0 . . . � − 1 s203. for k ← 0 . . . � − 1
c206. β ← Dec1sk1(α)

c207. ρ ← Encpk′ (π1)

m203.
α,β,ρ �

s204. γ ← Dec2sk2 (α, β)

c208. π0 ← π1 s205. for σ ∈ Σ

c209. π1
$← Injs(Q → R) s206. Ψσ ← pk

m−1∑
j=0

λσj ·pk ckj

c210. δ′ ← Blind(δ, π0, π1) s207. endfor

c211. 〈aσi〉σ∈Σ,i∈[n] s208. r
$← R

← ToPoly(Q,Σ, δ′) s209. γ ← γ +
R
r

s210. for i ∈ [n]
s211. νi ← Encpk (r

i)
s212. endfor

m204.
γ,〈Ψσ〉σ∈Σ,〈νi〉i∈[n]�

c212. for σ ∈ Σ, i ∈ [n]

c213. μσi ← γi ·pk Ψσ

c214. endfor
c215. 〈â′

σi〉σ∈Σ,i∈[n]

← Shift(〈νi〉i∈[n],
〈aσi〉σ∈Σ,i∈[n])

c216. α ← pk

∑
σ∈Σ

pk

n−1∑
i=0

â′
σi �pk μσi

c217. endfor s213. endfor
c218. β ← Dec1sk1(α)

c219. ρ ← Encpk′ (π1)

m205.
α,β,ρ �

s214. γ∗ ← Dec2sk2 (α, β)

m206.
γ∗

�
c220. return π−1

1 (γ∗)

Fig. 5. Protocol Π2(E), described in §5

proof of Theorem 3 in
our technical report [35]
— but ρ might con-
tain useless information
in the malicious case.)

Nevertheless, since
only ciphertexts for
which the client does
not hold the decryption
key are sent to the
client in those mes-
sages, we are confident
in conjecturing that
our protocol leaks no
information to even a
malicious client about
the file, beyond what it
gains from the protocol
output γ∗, assuming
E is IND-CPA secure.
Of course, the above
proof difficulties for a
malicious client could
be ameliorated by intro-
ducing zero-knowledge
proofs to the proto-
col to enforce correct
behavior, but with con-
siderable added expense
to the protocol. Instead,
in §6 we introduce
more novel (albeit still
heuristic) approaches
to detecting client (or
server) misbehavior in
our setting.

5 An Alternative Protocol

The second protocol we present has the same goals as Π1(E) but incurs less com-
munication costs. Specifically, whereas the communication cost ofΠ1(E) isO(κ�nm)
bits, the protocol we present in this section, calledΠ2(E), sends onlyO(κ�(n+m))
bits. Π2(E) accomplishes this in part by exploiting a cryptosystem that is addi-
tively homomorphic and that offers the ability to homomorphically “multiply”
ciphertexts once. That is, the cryptosystem supports a new operator 0pk that
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satisfies Decsk (Encpk (m1) 0pk Encpk (m2)) = m1 ·R m2, but the result of a 0pk

operation (or any other ciphertext resulting from +pk or ·pk operations in which
it is used) cannot be used in a 0pk operation. After we present our protocol, we
will discuss various options for instantiating this encryption scheme within it.

Protocol Π2(E) is shown in Fig. 5. Note that the input arguments to both
the client and the server are identical to those in Π1(E). The structure of the
protocol is also very similar to Π1(E), with the only differences being in how
the server performs each loop iteration (s204–s212) and how the client forms
the new encrypted DFA state α (c212–c216). We now summarize the primary
innovations represented by these differences.

After the k-th m203message, the server constructs an encryption Ψσ of Λσ(σk)
(s206). Rather than computing μσi ← γi·pkΨσ, however, the server sends 〈Ψσ〉σ∈Σ

to the client in m204. Each μσi is then built at the client, instead (c212–c214),
which is the main reason we get better communication efficiency.

Since each μσi is built at the client, the server must send γ in m204. To hide the
current DFA state from the client, the server blinds γ with a random r ∈ R (s208–
s209) before returning it. So, the client needs to accommodate r without knowing
it when performing the DFA state transition. The client cannot perform the poly-
nomial evaluation using the f(x, y) it constructed (c211) on the 〈μσi〉σ∈Σ,i∈[n] as in
Π1(E) since f(x, y) is designed for an input q ∈ π0(Q), not q+ r. To overcome this,
the client constructs a shifted polynomial f ′(x, y) such that f ′(q + r, σ) = f(q, σ)
for all q ∈ π0(Q), and so f ′(x, y) will correctly translate the blinded input to the
next DFA state. What is left to describe is how to construct f ′(x, y).

If we set f ′(x, y) = R

∑
σ∈Σ (f ′σ(x) ·R Λσ(y)) where f ′σ(x) = R

∑n−1
i=0 a

′
σi ·R xi,

then it suffices if f ′σ(x+R
r) = fσ(x) for all σ ∈ Σ. Note that

fσ(x−R
r) = R

n−1∑
i=0

aσi ·R (x −R
r)i = R

n−1∑
i=0

aσi ·R R

i∑
i′=0

(
i

i′

)
·
R
xi−i′ ·

R
(−

R
r)i

′
(2)

= R

n−1∑
i=0

(
R

n−1−i∑
i′=0

aσ(i+i′) ·R
(
i+ i′

i′

)
·
R
(−

R
r)i

′
)
·
R
xi

where (2) follows from the binomial theorem. Therefore, setting

a′σi ← R

n−1−i∑
i′=0

aσ(i+i′) ·R
(
i+ i′

i′

)
·
R
(−

R
1)i

′ ·
R
ri

′
(3)

ensures f ′σ(x+R
r) = fσ(x) and so f ′(x +

R
r, σ) = f(x, σ).

The client knows all the terms in (3) except ri
′
. That is exactly the reason

the server sends in m204 the ciphertext νi of r
i, for each i ∈ [n] (see s211). The

client can then calculate a ciphertext â′σi of the coefficient of xi in f ′σ by using
the additive homomorphic property of the encryption scheme:

â′σi ← pk

n−1−i∑
i′=0

(
aσ(i+i′) ·R

(
i+ i′

i′

)
·
R
(−

R
1)i

′
)
·pk νi′ (4)
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In our pseudocode, the calculations (4) are encapsulated within the operation
〈â′σi〉σ∈Σ,i∈[n] ← Shift(〈νi〉i∈[n], 〈aσi〉σ∈Σ,i∈[n]) on line c215.

After the client obtains 〈â′σi〉σ∈Σ,i∈[n] and 〈μσi〉σ∈Σ,i∈[n], it performs polyno-
mial evaluation at step c216 to assemble the ciphertext of the next DFA state
by taking advantage of the one multiplication homomorphism of the cryptosys-
tem. This is where the additional homomorphism helps to achieve much better
communication complexity.

The privacy of the file and DFA from server adversaries and the privacy of the
file from client adversaries can be proved for Π2(E) very similarly to how they
are proved for Π1(E). In fact, Theorems 1–3 hold for Π2(E) unchanged, once
instantiated with a suitable encryption scheme E . That said, certain choices of
E can require that the protocol be adapted, as discussed below.

Instantiating E. Protocol Π2(E) requires an additively homomorphic encryp-

tion scheme E that also supports the “one time” homomorphic multiplication
operator 0pk . Perhaps the most well-known such cryptosystem is due to Boneh,
Goh and Nissim [8], and moreover, this cryptosystem also supports two-party de-
cryption with a cost comparable to regular decryption [8]. The primary difficulty
in instantiating E with this cryptosystem, however, is that decryption — and
specifically in Π2(E), the operation Dec2sk2

— requires computing a discrete loga-
rithm in a large group, which is generally intractable. That said, if the ciphertext
is known to encode one of a small number of possible plaintexts, then Dec2sk2

can be adapted to test the ciphertext for each of these plaintexts efficiently. As
such, to adapt Π2(E) to employ this cryptosystem, we can augment messages
m203 and m205 with π1(Q) (listed in random order), for the injection π1 at the
time the message is sent. This would permit the server to perform Dec2sk2

(α, β) in
lines s204, s214 by testing for these n possible plaintexts. It does, however, have
the unfortunate side effect of enabling our proofs for the analogs of Theorems 1
and 2 for Π2(E) to go through only for honest-but-curious server adversaries.
Π2(E) instantiated in this way still appears to be secure even against malicious
server adversaries, though at this point we can claim this only heuristically.

Two other possibilities for instantiating E in Π2(E) are due to Gentry, Halevi
and Vaikuntanathan [16]2 and Lauter, Naehrig, and Vaikuntanathan [25]. The
primary challenge posed by these cryptosystems is that two-party decryption al-
gorithms for them have not been investigated. Each of these schemes is amenable
to sharing its private key securely, after which decryption can be performed using
generic two-party computation [36,3]. These instantiations retain Π2(E)’s prov-
able security against malicious server adversaries (i.e., the analogs of Theorems 1
and 2), but Π2(E) instantiated this way may be less cost-efficient than Π1(Pai)
for many values of n and m.3 Of course, customized two-party decryption algo-

2 Because we require the plaintext ring to be commutative, we would restrict the
plaintext space of the Gentry et al. cryptosystem to diagonal square matrices, versus
the arbitrary square matrices over which it is defined.

3 For example, for the Gentry et al. scheme, a “garbled” arithmetic circuit [3] for secure
two-party decryption using additively shared keys would be of size O(κ6 log5(n+m))
bits.
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rithms for these cryptosystems could restore the efficiency of Π2(E), suggesting
a useful open problem for the community.

6 Heuristics to Detect Misbehavior

In this section we describe simple extensions to our protocols to detect client or
servermisbehavior.The detection ability offered by these techniques is only heuris-
tic, but they provide a practical deterrent to misbehavior and, at least as impor-
tantly, highlight possibilities outside standard techniques (zero-knowledge proofs)
thatmight be brought to bear to detectmisbehavior in data outsourcing situations.

Detecting server Misbehavior. We showed in §4.2 that both the file privacy

and the client’s DFA privacy are protected against an arbitrarily malicious server.
That said, a malicious server could cause the protocol to return an incorrect
result by undetectably executing the protocol incorrectly. Here we describe a
defense that, while offering weak guarantees, gives insight into new opportunities
provided in the cloud outsourcing setting studied in this paper.

The central idea is that in addition to the authentic encrypted file, the data
owner also stores at the server (i) another “decoy” encrypted file of the same length
as the authentic file and (ii) the plaintext of the decoy file, digitally signed by the
data owner. However, the server is not told which one of the two encrypted files
is the decoy. When a client wants to evaluate a DFA M on the (authentic) file, it
executes two instances of the protocol in parallel with the server on each of the two
encrypted files, while also retrieving (and authenticating, by its digital signature)
the plaintext of the decoy file. If the client’s DFA when applied to the plaintext of
the decoy file evaluates to state q, then the client checks that at least one of the
two protocol executions results in q. If neither outcome is q, then it detects that
the server has behaved incorrectly. (Of course, if the client divulges when it has
detected the server misbehaving, then this might enable the server to infer which
of the encrypted files is the decoy, though the client could nevertheless report the
misbehavior to the data owner outside the view of the server.)

A malicious server could try to guess which file is the decoy and execute
the protocol faithfully on that file, while misbehaving on the other one to alter
the result. Obviously the chance it guesses correctly is 1

2 . A server could also
misbehave for both files, hoping that one of the protocol executions results in
the correct final state for the decoy file. The probability of succeeding in this
attack is a function of the decoy file and of the specific DFA that the client is
evaluating. To improve the probability of detecting a misbehaving server, the
client could also create more DFA queries to evaluate on both files. Moreover,
additional decoy files could be stored at the server to increase the chance that a
misbehaving server is detected.

Detecting client Misbehavior. A similar but slightly more involved technique
could be used to heuristically detect client misbehavior in our protocols. In this
technique, at the beginning of the protocol in which the client will use DFA
〈Q, Σ, δ, qinit〉, the server creates and sends to the client another DFA 〈Q, Σ′,
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δ′, qinit〉 where Σ′ ∩ Σ = ∅, i.e., another DFA with the same states and the
same initial state but a different (and nonoverlapping) alphabet. Note that to
create this DFA, the server need only know Q and qinit, which in the absence of δ
reveal nothing about the pattern for which the client is searching (aside from the
number n, which is conveyed to the server in the protocol already). The client
then executes the protocol using the combined DFA 〈Q, Σ ∪ Σ′, δ ∪ δ′, qinit〉.4
As above, the client runs two instances of the protocol in parallel: the server uses
the authentic file in one instance; in the other, it creates and uses another file of
the same length but consisting of characters in Σ′. After the protocol completes,
the client sends the final states back to the server, which checks to be sure that
the pair of final states include the result of applying 〈Q, Σ′, δ′, qinit〉 to the file it
created before telling the client which of the pair of states is the correct result.5

This technique for detecting client misbehavior relies on the inability of the
client to detect which of the two files consists of elements of Σ and which consists
of elements of Σ′— a property that we argued heuristically in §4.3 holds against
a malicious client. It also depends on the file and DFA created by the server; as
in the defense against server misbehavior above, this can be strengthened with
multiple DFAs and files.

7 Conclusion

With the growth of cloud storage, it is imperative to develop efficient techniques
for enabling the same sorts of third-party access to cloud-resident files that is
commonplace today for privately stored files — e.g., malware scans or searches
by authorized partners. Encryption of cloud-resident files, however, hinders these
sorts of third-party access.

In this paper, we have developed protocols for enabling DFA evaluation on
encrypted files by third parties authorized by the file owner. Our protocols prov-
ably protect the privacy of the DFA from an arbitrarily malicious server holding
the ciphertext file, as well as the privacy of the file from the server and from
an honest-but-curious client performing the DFA evaluation (and even from an
arbitrarily malicious client, heuristically). Our protocols employ additively ho-
momorphic cryptosystems or small extensions thereof, for which practical imple-
mentations exist. The costs of our protocols in terms of storage, communication
and computation suggest that they are practical for many domains, particularly
ones where files consist of symbols from a limited alphabet, and are more prac-
tical than protocols that would result from applying general private two-party
computation or fully homomorphic encryption to this problem.

4 Because doing so requires the server to hold ciphertexts 〈ckj〉k∈[�],j∈[|Σ|+|Σ′|]\[|Σ|],
the data owner must additionally provide these ciphertexts when it stores the file.

5 Divulging the final states to the server reveals minimal information about the pattern
for which the client was searching (assuming the elements of Q are encoded as random
elements of R), specifically whether the final state was qinit. Even this leakage can be
avoided by designing the DFA so it never returns to qinit.
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Abstract. Modular exponentiations have been considered the most ex-
pensive operation in discrete-logarithm based cryptographic protocols.
In this paper, we propose a new secure outsourcing algorithm for ex-
ponentiation modular a prime in the one-malicious model. Compared
with the state-of-the-art algorithm [33], the proposed algorithm is supe-
rior in both efficiency and checkability. We then utilize this algorithm
as a subroutine to achieve outsource-secure Cramer-Shoup encryptions
and Schnorr signatures. Besides, we propose the first outsource-secure
and efficient algorithm for simultaneous modular exponentiations. More-
over, we prove that both the algorithms can achieve the desired security
notions.

Keywords: Cloud computing, Outsource-secure algorithms, Modular
exponentiation.

1 Introduction

Cloud computing, the long-standing vision of computing as a utility, enables
convenient and on-demand network access to a centralized pool of configurable
computing resources. One of the most attractive benefits of the cloud comput-
ing is the so-called outsourcing paradigm, where the resource-constraint devices
can outsource their large computation workloads to the cloud servers in a pay-
per-use manner. As a result, the enterprises can avoid large capital outlays in
hardware/software deployment and maintenance.
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Despite the tremendous benefits, outsourcing computation also inevitably in-
volves in some new security concerns and challenges. Firstly, the cloud servers
are not (fully) trusted. Actually, it is impossible to find a trusted server for all
outsourcers in cloud paradigm. On the other hand, the computation tasks of-
ten contain some sensitive information that should not be exposed to the cloud
servers. Therefore, the first security challenge is the secrecy of the outsourcing
computation: the cloud servers should not learn anything about what it is actu-
ally computing (including the secret inputs and the outputs). We argue that the
encryption can only provide a partial solution to this problem since it is very
difficult to perform meaningful computations over the encrypted data. Secondly,
the semi-trusted cloud servers may return an invalid result. For example, the
servers might contain a software bug that will fail on a constant number of in-
vocation. Moreover, the servers might decrease the amount of the computation
due to financial incentives and then return a computationally indistinguishable
(invalid) result. Therefore, the second security challenge is the checkability of the
outsourcing computation: the outsourcer should have the ability to detect any
failures if the cloud servers misbehave. Trivially, the test procedure should never
be involved in some other complicated computations since the computationally
limited devices such as RFID tags or smartcard may be incapable to accomplish
the test. At the very least, it must be far more efficient than accomplishing the
computation task itself (recall the motivation for outsourcing computations).

The problem of secure outsourcing expensive computations has been well stud-
ied in the cryptography community. Chaum and Pedersen [17] firstly introduced
the idea of “wallets with observers” that allows a piece of hardware installed on
the client’s device to carry out some computations for each transaction. Golle and
Mironov [31] first introduced the concept of ringers to elegantly solve the prob-
lem of verifying computation completion for the “inversion of one-way function”
class of outsourcing computations. Hohenberger and Lysyanskaya [33] presented
the security model for outsourcing cryptographic computations, and proposed
the first outsource-secure algorithm for modular exponentiations.

Our Contribution. In this paper, we propose a new secure outsourcing algo-
rithm of modular exponentiation in the one-malicious model. To the best of our
knowledge, it seems that the proposed algorithm is the second one for expo-
nentiation modular a prime. Compared with the state-of-the-art algorithm [33],
the proposed algorithm is superior in both efficiency and checkability. Similar to
[33], we also utilize this algorithm as a subroutine to achieve outsource-secure
Cramer-Shoup encryptions and Schnorr signatures. Another main contribution
of this paper is the first outsource-secure and efficient algorithm for simultaneous
modular exponentiations, which efficiency is (surprisingly) comparable to that
of outsourcing only one modular exponentiation in [33].

1.1 Related Work

Abadi et al. [2] proved the impossibility of secure outsourcing an exponential
computation while locally doing only polynomial time work. Therefore, it is
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meaningful only to consider outsourcing expensive polynomial time computa-
tions. The theoretical computer science community has devoted considerable at-
tention to the problem of how to securely outsource different kinds of expensive
computations. Atallah et al. [3] presented a framework for secure outsourcing
of scientific computations such as matrix multiplications and quadrature. How-
ever, the solution used the disguise technique and thus allowed leakage of private
information. Atallah and Li [4] investigated the problem of computing the edit
distance between two sequences and presented an efficient protocol to securely
outsource sequence comparisons to two servers. Benjamin and Atallah [8] ad-
dressed the problem of secure outsourcing for widely applicable linear algebra
computations. However, the proposed protocols required the expensive opera-
tions of homomorphic encryptions. Atallah and Frikken [1] further studied this
problem and gave improved protocols based on the so-called weak secret hiding
assumption. Recently, Wang et al. [45] presented efficient mechanisms for secure
outsourcing of linear programming computations.

In the cryptographic community, there are also plenty of research work on the
securely outsourcing computations. In 1992, Chaum and Pedersen [17] firstly in-
troduced the notion of wallets with observers, a piece of secure hardware installed
on the client’s computer to perform some expensive computations. Hohenberger
and Lysyanskaya [33] proposed the first outsource-secure algorithm for modu-
lar exponentiations based on the two previous approaches of precomputation
[15,24,40,42] and server-aided computation [10,29,39,46].

Since the servers (or workers) are not trusted by the outsourcers, Golle and
Mironov [31] first introduced the concept of ringers to solve the trust problem
of verifying computation completion. The following researchers focused on the
other trust problem of retrieving payments [7,19,20,43]. Besides, Gennaro et al.
[27] first formalized the notion of verifiable computation to solve the problem of
verifiably outsourcing the computation of an arbitrary functions, which has at-
tracted the attention of plenty of researchers [11,13,14,28,30,34,35,38]. Gennaro
et al. [27] also proposed a protocol that allowed the outsourcer to efficiently verify
the outputs of the computations with a computationally sound, non-interactive
proof (instead of interactive ones). Benabbas et al. [12] presented the first prac-
tical verifiable computation scheme for high degree polynomial functions based
on the approach of [27]. In 2011, Green et al. [26] proposed new methods for effi-
ciently and securely outsourcing decryption of attribute-based encryption (ABE)
ciphertexts. Based on this work, Parno et al. [41] showed a construction of a
multi-function verifiable computation scheme.

1.2 Organization

The rest of the paper is organized as follows: Some security definitions for out-
sourcing computation are given in Section 2. The proposed new outsource-secure
modular exponentiations algorithm and its security analysis are given in Sec-
tion 3. The proposed outsource-secure Cramer-Shoup encryptions and Schnorr
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signatures are given in Section 4. The secure and efficient outsourcing algorithm
for simultaneous modular exponentiations is given in Section 5. Finally, conclu-
sions will be made in Section 6.

2 Definition of Security

Informally, we say that T securely outsources some work to U , and (T, U) is an
outsource-secure implementation of a cryptographic algorithm Alg if (1) T and
U implement Alg, i.e., Alg = TU and (2) suppose that T is given oracle access to
an adversary U ′ (instead of U) that records all of its computation over time and
tries to act maliciously, U ′ cannot learn anything interesting about the input and
output of TU ′

. In the following, we introduce the formal definitions for secure
outsourcing of a cryptographic algorithm [33].

Definition 1. (Algorithm with outsource-I/O) An algorithm Alg obeys the
outsource input/output specification if it takes five inputs, and produces three
outputs. The first three inputs are generated by an honest party, and are classified
by how much the adversary A = (E,U ′) knows about them, where E is the
adversarial environment that submits adversarially chosen inputs to Alg, and U ′

is the adversarial software operating in place of oracle U . The first input is call
the honest, secret input, which is unknown to both E and U ′; the second is called
the honest, protected input, which may be known by E, but is protected from U ′;
and the third is called the honest, unprotected input, which may be known by
both E and U . In addition, there are two adversarially-chosen inputs generated
by the environment E: the adversarial, protected input, which is known to E, but
protected from U ′; and the adversarial, unprotected input, which may be known
by E and U . Similarly, the first output called secret is unknown to both E and
U ′; the second is protected, which may be known to E, but not U ′; and the third
is unprotected, which may be known by both parties of A.

The following definition of outsource-security ensures that the malicious envi-
ronment E cannot gain any knowledge of the secret inputs and outputs of TU ,
even if T uses the malicious software U ′ written by E.

Definition 2. (Outsource-security) Let Alg be an algorithm with outsource
I/O. A pair of algorithms (T, U) is said to be an outsource-secure implementation
of Alg if:

1. Correctness: TU is a correct implementation of Alg.
2. Security: For all probabilistic polynomial-time adversaries A = (E,U ′), there

exist probabilistic expected polynomial-time simulators (S1, S2) such that the
following pairs of random variables are computationally indistinguishable.

– Pair One. EVIEWreal ∼ EVIEWideal:

• The view that the the adversarial environment E obtains by partici-
pating in the following real process:
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EVIEWi
real = {(istatei, xihs, xihp, xihu) ← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i) ← E(1k,EVIEWi−1
real, x

i
hp, x

i
hu);

(tstatei, ustatei, yis, y
i
p, y

i
u) ←

TU ′(ustatei−1)(tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au) :

(estatei, yip, y
i
u)}

EVIEWreal = EVIEWi
real if stop

i = TRUE.

The real process proceeds in rounds. In round i, the honest (secret, pro-
tected, and unprotected) inputs (xihs, x

i
hp, x

i
hu) are picked using an hon-

est, stateful process I to which the environment E does not have access.
Then E, based on its view from the last round, chooses (0) the value of
its estatei variable as a way of remembering what it did next time it is
invoked; (1) which previously generated honest inputs (xihs, x

i
hp, x

i
hu) to

give to TU ′
(note that E can specify the index ji of these inputs, but not

their values); (2) the adversarial, protected input xiap; (3) the adversar-

ial, unprotected input xiau; (4) the Boolean variable stopi that determines
whether round i is the last round in this process. Next, the algorithm TU ′

is run on the inputs (tstatei−1, xj
i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au), where tstatei−1

is T ’s previously saved state, and produces a new state tstatei for T , as
well as the secret yis, protected y

i
p and unprotected yiu outputs. The oracle

U ′ is given its previously saved state, ustatei−1, as input, and the current
state of U ′ is saved in the variable ustatei. The view of the real process
in round i consists of estatei, and the values yip and yiu. The overall view
of E in the real process is just its view in the last round (i.e., i for which
stopi = TRUE.).
• The ideal process:

EVIEWi
ideal = {(istatei, xihs, xihp, xihu) ← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i) ← E(1k,EVIEWi−1
ideal, x

i
hp, x

i
hu);

(astatei, yis, y
i
p, y

i
u) ← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei, Y i
p , Y

i
u, rep

i) ← S
U ′(ustatei−1)
1

(sstatei−1, · · · , xj
i

hp, x
ji

hu, x
i
ap, x

i
au, y

i
p, y

i
u);

(zip, z
i
u) = repi(Y i

p , Y
i
u) + (1− repi)(yip, y

i
u) :

(estatei, zip, z
i
u)}

EVIEWideal = EVIEWi
ideal if stop

i = TRUE.

The ideal process also proceeds in rounds. In the ideal process, we have a
stateful simulator S1 who, shielded from the secret input xihs, but given
the non-secret outputs that Alg produces when run all the inputs for round
i, decides to either output the values (yip, y

i
u) generated by Alg, or replace

them with some other values (Y i
p , Y

i
u). Note that this is captured by having

the indicator variable repi be a bit that determines whether yip will be

replaced with Y i
p . In doing so, it is allowed to query oracle U ′; moreover,

U ′ saves its state as in the real experiment.
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– Pair Two. UVIEWreal ∼ UVIEWideal:

• The view that the untrusted software U ′ obtains by participating in
the real process described in Pair One. UVIEWreal = ustatei if
stopi = TRUE.

• The ideal process:

UVIEWi
ideal = {(istatei, xihs, xihp, xihu) ← I(1k, istatei−1);

(estatei, ji, xiap, x
i
au, stop

i) ← E(1k, estatei−1, xihp, x
i
hu, y

i−1
p , yi−1

u );

(astatei, yis, y
i
p, y

i
u) ← Alg(astatei−1, xj

i

hs, x
ji

hp, x
ji

hu, x
i
ap, x

i
au);

(sstatei, ustatei) ← S
U ′(ustatei−1)
2 (sstatei−1, xj

i

hu, x
i
au) :

(ustatei)}
UVIEWideal = UVIEWi

ideal if stop
i = TRUE.

In the ideal process, we have a stateful simulator S2 who, equipped with
only the unprotected inputs (xihu, x

i
au), queries U ′. As before, U ′ may

maintain state.

Definition 3. (α-efficient, secure outsourcing) A pair of algorithms (T, U)
is said to be an α-efficient implementation of Alg if (1) TU is a correct imple-
mentation of Alg and (2) ∀ inputs x, the running time of T is no more than an
α-multiplicative factor of the running time of Alg.

Definition 4. (β-checkable, secure outsourcing) A pair of algorithms (T, U)
is said to be an β-checkable implementation of Alg if (1) TU is a correct imple-
mentation of Alg and (2) ∀ inputs x, if U ′ deviates from its advertised function-
ality during the execution of TU ′

(x), T will detect the error with probability no
less than β.

Definition 5. ((α, β)-outsource-security) A pair of algorithms (T, U) is said
to be an (α, β)-outsource-secure implementation of Alg if it is both α-efficient
and β-checkable.

3 New and Secure Outsourcing Algorithm of Modular
Exponentiations

3.1 Security Model

Hohenberger and Lysyanskaya [33] first presented the so-called two untrusted
program model for outsourcing exponentiations modulo a prime. In the two un-
trusted program model, the adversarial environment E writes the code for two
(potentially different) programs U ′ = (U ′

1, U
′
2). E then gives this software to T ,

advertising a functionality that U ′
1 and U ′

2 may or may not accurately compute,
and T installs this software in a manner such that all subsequent communica-
tion between any two of E, U ′

1 and U ′
2 must pass through T . The new adversary

attacking T is A = (E,U ′
1, U

′
2). Moreover, we assume that at most one of the pro-

grams U ′
1 and U ′

2 deviates from its advertised functionality on a non-negligible
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fraction of the inputs, while we cannot know which one and security means that
there is a simulator S for both. This is named as the one-malicious version of two
untrusted program model (i.e., “one-malicious model” for the simplicity). In the
real-world applications, it is equivalent to buy the two copies of the advertised
software from two different vendors and achieve the security as long as one of
them is honest.

In the security model [33], a subroutine named Rand is used in order to
speed up the computations. The inputs for Rand are a prime p, a base g ∈
Z∗
p, and possibly some other values, and the outputs for each invocation are

a random, independent pair of the form (b, gb mod p), where b ∈ Zq. There
are two approaches to implement this functionality. One is for a trusted server
to compute a table of random, independent pairs in advance and then load it
into the memory of T . For each invocation of Rand, T just retrieves a new pair
in the table (the table-lookup method).1 The other is to apply the well-known
preprocessing techniques. By far, the most promising preprocessing algorithm
is the EBPV generator [40], which is secure against adaptive adversaries and
runs in time O(log2 n) for an n-bit exponent. On input a sufficiently large subset
of truly random (k, gk) pairs, EBPV generator outputs a pair (l, gl) that is
statistically close to the uniform distribution. Therefore, we argue that T can
never control the output of the subroutine Rand, especially the value of l for
both of the approaches.

3.2 Outsourcing Algorithm

In this section, we propose a new secure outsourcing algorithm Exp for expo-
nentiation modulo a prime in the one-malicious model. In Exp, T outsources its
modular exponentiation computations to U1 and U2 by invoking the subroutine
Rand. A requirement for Exp is that the adversary A cannot know any useful
information about the inputs and outputs of Exp. Similar to [33], Ui(x, y) → yx

also denotes that Ui takes as inputs (x, y) and outputs yx mod p, where i = 1, 2.
Let p, q be two large primes and q|p−1. The input ofExp is a ∈ Z∗

q , and u ∈ Z∗
p

such that uq = 1 mod p (for an arbitrary base u and an arbitrary power a). The
output of Exp is ua mod p. Note that a may be secret or (honest/adversarial)
protected and u may be (honest/adversarial) protected. Both of a and u are
computationally blinded to U1 and U2.

To implement this functionality using U1 and U2, T firstly runs Rand twice
to create two blinding pairs (α, gα) and (β, gβ). We denote v = gα mod p and
μ = gβ mod p.

Our trick is a more efficient solution to logically split u and a into random
looking pieces that can be computed by U1 and U2. The first logical divisions
are

ua = (vw)a = gaαwa = gβgγwa,

where w = u/v and γ = aα− β.
1 In most applications, the pair cannot be reused. For example, reusing such a pair in
Schnorr signature will result in the secret key exposure of the signer.
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The second logical divisions are

ua = gβgγwa = gβgγwk+l = gβgγwkwl,

where l = a− k.
Next, T runs Rand to obtain three pairs (t1, g

t1), (t2, g
t2), and (t3, g

t3).

T queries U1 in random order as
U1(t2/t1, g

t1) → gt2 ;
U1(γ/t3, g

t3) → gγ ;
U1(l, w) → wl.

Similarly, T queries U2 in random order as
U2(t2/t1, g

t1) → gt2 ;
U2(γ/t3, g

t3) → gγ ;
U2(k, w) → wk.

Finally, T checks that both U1 and U2 produce the correct outputs, i.e.,
gt2 = U1(t2/t1, g

t1) = U2(t2/t1, g
t1) and U1(γ/t3, g

t3) = U2(γ/t3, g
t3). If not,

T outputs “error”; otherwise, T can compute ua = μgγwkwl.

Remark 1. In the one-malicious model, the equation U1(γ/t3, g
t3) = U2(γ/t3, g

t3)
implies both U1 and U2 produce the correct gγ . Therefore, the partial computa-
tion result gγ also plays the role of a test query. This is slightly different from
the technique in [33] while it indeed improves the efficiency and checkability of
the computations.

Remark 2. Trivially, the proposed algorithmExp can be extend to the outsource-
secure scalar multiplications on elliptic curves, i.e., aU for any a ∈ Z∗

q .

3.3 Security Analysis

Theorem 1. In the one-malicious model, the algorithms (T, (U1, U2)) are an
outsource-secure implementation of Exp, where the input (a, u) may be honest,
secret; or honest, protected; or adversarial, protected.

Proof. The proof is similar to [33]. The correctness is trivial and we only focus
on security. Let A = (E,U ′

1, U
′
2) be a PPT adversary that interacts with a PPT

algorithm T in the one-malicious model.
Firstly, we prove Pair One EVIEWreal ∼ EVIEWideal:
If the input (a, u) is anything other than honest, secret, then the simulator S1

behaves the same way as in the real execution. If (a, u) is an honest, secret input,
then the simulator S1 behaves as follows: On receiving the input on round i, S1

ignores it and instead makes three random queries of the form (αj , βj) to both
U ′
1 and U ′

2. S1 randomly tests two outputs (i.e., β
αj

j ) from each program. If an

error is detected, S1 saves all states and outputs Y i
p=“error”, Y i

u=∅, repi=1 (i.e.,

the output for ideal process is (estatei, “error”,∅)). If no error is detected, S1

checks the remaining two outputs. If all checks pass, S1 outputs Y i
p=∅, Y i

u=∅,

repi=0 (i.e., the output for ideal process is (estatei, yip, y
i
u)); otherwise, S1 se-

lects a random element r and outputs Y i
p=r, Y

i
u=∅, repi=1 (i.e., the output for
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ideal process is (estatei, r,∅)). In either case, S1 saves the appropriate states.
The input distributions to (U ′

1, U
′
2) in the real and ideal experiments are com-

putationally indistinguishable. In the ideal experiment, the inputs are chosen
uniformly at random. In the real experiment, each part of all three queries that
T makes to any one program is independently re-randomized and thus computa-
tionally indistinguishable from random. If (U ′

1, U
′
2) behave honest in the round

i, then EVIEWi
real ∼ EVIEWi

ideal (this is because T (U ′
1,U

′
2) perfectly executes

Exp in the real experiment and S1 simulates with the same outputs in the ideal
experiment, i.e., repi=0). If one of (U ′

1, U
′
2) is dishonest in the round i, then it

will be detected by both T and S1 with probability 2
3 , resulting in an output of

“error”; otherwise, the output of Exp is corrupted (with probability 1
3 ). In the

real experiment, the three outputs generated by (U ′
1, U

′
2) are multiplied together

along with a random value. In the ideal experiment, S1 also simulates with a
random value r. Thus, EVIEWi

real ∼ EVIEWi
ideal even when one of (U ′

1, U
′
2) is

dishonest. By the hybrid argument, we conclude that EVIEWreal ∼ EVIEWideal.
Secondly, we prove Pair Two UVIEWreal ∼ UVIEWideal:
The simulator S2 always behaves as follows: On receiving the input on round

i, S2 ignores it and instead makes three random queries of the form (αj , βj) to
both U ′

1 and U ′
2. Then S2 saves its states and the states of (U ′

1, U
′
2). E can easily

distinguish between these real and ideal experiments (note that the output in
the ideal experiment is never corrupted). However, E cannot communicate this
information to (U ′

1, U
′
2). This is because in the round i of the real experiment, T

always re-randomizes its inputs to (U ′
1, U

′
2). In the ideal experiment, S2 always

generates random, independent queries for (U ′
1, U

′
2). Thus, for each round i we

have UVIEWi
real ∼ UVIEWi

ideal. By the hybrid argument, we conclude that
UVIEWreal ∼ UVIEWideal. 
	

Theorem 2. In the one-malicious model, the algorithms (T, (U1, U2)) are an

(O( log
2 n
n ), 23 )-outsource-secure implementation of Exp.

Proof. The proposed algorithm Exp makes 5 calls to Rand plus 7 modular mul-
tiplication (MM) and 3 modular inverse (MInv) in order to compute ua mod p
(we omit other operations such as modular additions). Also, Exp takes O(log2 n)
or O(1) MM using the EBPV generator or table-lookup method, respectively,
where n is the bit of the a. On the other hand, it takes roughly 1.5n MM to
compute ua mod p by the square-and-multiply method. Thus, the algorithms

(T, (U1, U2)) are an O( log
2 n
n )-efficient implementation of Exp.

On the other hand, U1 (resp. U2) cannot distinguish the two test queries from
all of the three queries that T makes. If U1 (resp. U2) fails during any execution
of Exp, it will be detected with probability 2

3 . 
	

3.4 Comparison

We compare the proposed algorithm with Hohenberger-Lysyanskaya’s algorithm
in [33]. We denote by MM a modular multiplication, by MInv a modular inverse,
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and by RandInvoke an invocation of the subroutine Rand. We omit other opera-
tions such as modular additions in both algorithms. Table 1 presents the compar-
ison of the efficiency and the checkability between Hohenberger-Lysyanskaya’s
algorithm and our proposed algorithm Exp.

Table 1. Comparison of the two algorithms

Algorithm [33] Algorithm Exp

MM 9 7

MInv 5 3

Invoke(Rand) 6 5

Invoke(U1) 4 3

Invoke(U2) 4 3

Checkability 1
2

2
3

Compared with Hohenberger-Lysyanskaya’s algorithm, the proposed algo-
rithm Exp is superior in both efficiency and checkability. More precisely, Exp
requires only 7 MM, 3 MInv, 5 invocation of Rand, and 3 invocation of U1 and
U2 for each modular exponentiation. Note that the modular exponentiation is
the most basic operation in discrete-logarithm based cryptographic protocols,
and millions of such computations may be outsourced to the server every day.
Thus, our proposed algorithm can save huge of computational resources for both
the outsourcer T and the servers U1 and U2.

4 Secure Outsourcing Algorithms for Encryption and
Signatures

In this section, we propose two secure outsourcing algorithms for Cramer-Shoup
encryption scheme [18] and Schnorr signature scheme [42].

4.1 Outsource-Secure Cramer-Shoup Encryptions

The proposed outsource-secure Cramer-Shoup encryption scheme consists of the
following efficient algorithms:

– System Parameters Generation: Let G be an abelian group of a large
prime order q. Let g be a generator of G. Define a cryptographic secure hash
function H : G3 → Zq. The system parameters are SP = {G, q, g,H}.

– Key Generation: On input 1l, run the key generation algorithm to obtain
the secret/public key pair (SK,PK), here SK = (w, x, y, z) ∈R Z∗

q × Z3
q ,

PK = (W,X, Y, Z) = (gw, gx, gy, gz).
– Encryption: On input the public key PK and a message m ∈ G, the

outsourcer T runs the subroutine Rand and generates the ciphertext C as
follows:
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1. T runs Rand to obtain a pair (k, r = gk mod p).
2. T firstly runs Exp to obtain Exp(k,W ) → s, Exp(k, Z) → t and then

computes e = mt, and h = H(r, s, e).
3. T runs Exp to obtain Exp(k,X) → α, Exp(kh, Y ) → β and then

computes γ = αβ.
4. T outputs the ciphertext C = (r, s, e, γ).

– Decryption: On input the verification key y, the message m, and the sig-
nature σ = (e, s), the outsourcer T runs the subroutine Exp and verifies the
signature σ as follows:
1. T computes h = H(r, s, e).
2. T runs Exp to obtain Exp(w, r) → ψ1 and Exp(x + yh, r) → ψ2.
3. If and only if s = ψ1 and γ = ψ2, T runs Exp to obtain Exp(z, r) → t

computes m = et−1.
4. T outputs m.

Remark 3. We present a secure outsourcing algorithm for Cramer-Shoup en-
cryption scheme CS1b. Compared with [33], we do not use a new subroutine
Rand′ that produces a triple (b, gb mod p, g′b mod p), while our algorithm re-
quires one more invocation of Exp (only) for encryption. Trivially, we could
present outsouce-secure Cramer-Shoup encryption scheme CS1a (running either
Rand or Rand′).

4.2 Outsource-Secure Schnorr Signatures

The proposed outsource-secure Schnorr signature scheme consists of the follow-
ing efficient algorithms:

– System Parameters Generation: Let p and q be two large primes that
satisfy q|p − 1. Let g be an element in Z∗

p such that gq = 1 mod p. De-
fine a cryptographic secure hash function H : {0, 1}∗ → Zp. The system
parameters are SP = {p, q, g,H}.

– Key Generation: On input 1l, run the key generation algorithm to obtain
the signing/verification key pair (x, y), here y = g−x mod p.

– Signature Generation: On input the singing key x and a message m, the
outsourcer T runs the subroutine Rand and generates the signature σ as
follows:
1. T runs Rand to obtain a pair (k, r = gk mod p).
2. T computes e = H(m||r) and s = k + xe mod q.
3. T outputs the signature σ = (e, s).

– Signature Verification: On input the verification key y, the message m,
and the signature σ = (e, s), the outsourcer T runs the subroutine Exp and
verifies the signature σ as follows:
1. T runs Exp to obtain Exp(s, g) → ψ1 and Exp(e, y) → ψ2.
2. T computes r′ = ψ1ψ2 mod p and e′ = H(m||r′).
3. T outputs 1 if and only if e′ = e.

Remark 4. The proposed outsource-secure Schnorr signature scheme is basically
same as that in [33]. Note that the subroutine Exp is only used for the signature
verification.
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5 Outsource-Secure Algorithm of Simultaneous Modular
Exponentiations

In this section, we focus on simultaneous modular exponentiations ua1u
b
2 mod p,

which play an important role in many cryptographic primitives such as chameleon
hashing [5,6,21,22,36,44] and trapdoor commitment [9,16,23,25,32]. Trivially, a
simultaneous modular exponentiation can be carried out by invoking 2 modular
exponentiations. This requires roughly 3n MM, where n is the bit of a and b.
However, the computation cost is only 1.75n MM (i.e., roughly 1.17 modular
exponentiation) if we use the Algorithm 14.88 of [37].

In the following, we propose an efficient outsource-secure algorithm of simul-
taneous modular exponentiations SExp in the one-malicious model.

Let p, q be two large primes and q|p−1. Given two arbitrary bases u1, u2 ∈ Z∗
p

and two arbitrary powers a, b ∈ Z∗
q such that the order of u1 and u2 is q. The

output of SExp is ua1u
b
2 mod p.

Similarly, T firstly runs Rand twice to create two blinding pairs (α, gα) and
(β, gβ). We denote v = gα mod p and μ = gβ mod p.

The first logical divisions are

ua1u
b
2 = (vw1)

a(vw2)
b = gβgγwa

1w
b
2,

where w1 = u1/v, w2 = u2/v, and γ = (a+ b)α− β.
The second logical divisions are

ua1u
b
2 = gβgγwa

1w
b
2 = gβgγwk

1w
l
1w

t
2w

s
2,

where l = a− k and s = b− t.
Next, T runs Rand to obtain three pairs (t1, g

t1), (t2, g
t2), and (t3, g

t3).

T queries U1 in random order as
U1(t2/t1, g

t1) → gt2 ;
U1(γ/t3, g

t3) → gγ ;
U1(k, w1) → wk

1 ;
U1(t, w2) → wt

2.

Similarly, T queries U2 in random order as
U2(t2/t1, g

t1) → gt2 ;
U2(γ/t3, g

t3) → gγ ;
U2(l, w1) → wl

1;
U2(s, w2) → ws

2.

Finally, T checks that both U1 and U2 produce the correct outputs, i.e., gt2 =
U1(t2/t1, g

t1) = U2(t2/t1, g
t1) and U1(γ/t3, g

t3) = U2(γ/t3, g
t3). If not, T out-

puts “error”; otherwise, T can compute ua1u
b
2 = μgγwk

1w
l
1w

t
2w

s
2.

Note that SExp requires only 10 MM, 4 MInv, 5 invocation of Rand, and 4
invocation of U1 and U2 for each modular exponentiation. Therefore, the com-
putation cost of SExp is much less than that of double running Exp. Moreover,
it is even comparable to that of outsourcing one modular exponentiation [33].
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Table 2. Efficiency comparison for two algorithms

Algorithm [33] Algorithm SExp

MM 9 10

MInv 5 4

Invoke(Rand) 6 5

Invoke(U1) 4 4

Invoke(U2) 4 4

Checkability 1
2

1
2

Table 2 presents the comparison of the efficiency and the checkability between
Hohenberger-Lysyanskaya’s Exp algorithm and our proposed algorithm SExp.

Similar to theorem 3.2, we can easily prove the following theorem:

Theorem 3. In the one-malicious model, the algorithms (T, (U1, U2)) are an

(O( log
2 n
n ), 12 )-outsource-secure implementation of SExp.

6 Conclusions

In this paper, we propose two outsource-secure and efficient algorithms for mod-
ular exponentiations and simultaneous modular exponentiations, which are the
most basic and expensive operations in many discrete-logarithm cryptosystems.
Compared with the algorithm [33], the proposed algorithm is superior in both
efficiency and checkability.

The security model of our outsourcing algorithms requires the outsourcer to
interact with two non-colluding cloud servers (the same as [33]). Therefore, an
interesting open problem is whether there is an efficient algorithm for secure
outsourcing modular exponentiation using only one untrusted cloud sever.
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Abstract. Symbolic encryption, in the style of Dolev-Yao models, is
ubiquitous in formal security models. In its common use, encryption on
a whole message is specified as a single monolithic block. From a crypto-
graphic perspective, however, this may require a resource-intensive cryp-
tographic algorithm, namely an authenticated encryption scheme that
is secure under chosen ciphertext attack. Therefore, many reasonable
encryption schemes, such as AES in the CBC or CFB mode1, are not
among the implementation options.

In this paper, we report new attacks on CBC and CFB based imple-
mentations of the well-known Needham-Schroeder and Denning-Sacco
protocols. To avoid such problems, we advocate the use of refined no-
tions of symbolic encryption that have natural correspondence to stan-
dard cryptographic encryption schemes.

Keywords: Encryption, Assumptions, Implementation.

1 Introduction

A private-key encryption scheme enables two honest parties that share a key
to privately communicate over a network, in such a way that a dishonest man-
in-middle, the adversary, is unable to gain any non-trivial information about
the communication. The requirements of cryptographic encryption may include
left-right indistinguishability (IND) and non-malleability (NM), which can be
characterized in different attack settings [2].

Over the years, many abstractions of cryptographic encryption have been pro-
posed. The most popular abstraction is the Dolev-Yao model [3]. In this sym-
bolic model, two types of simplifications are introduced. Firstly, binary strings
and functions are replaced by symbolic terms and derivation rules. In particular,
this results in idealized encryption functions—either an adversary can decrypt
a symbolic ciphertext (e.g., if he can derive the key) or the adversary gets ab-
solutely no information about the plaintext. The second simplification is related
to the capabilities of an adversary, namely the adversary is modelled as a non-
deterministic strategy that is limited to selecting its actions from a small set of

1 i.e., cipher block chaining (CBC) and cipher feedback mode of encryption (CFB) [1].

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 557–572, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



558 N. Ahmed, C.D. Jensen, and E. Zenner

(pre-defined) logic rules. The security models that use these two abstractions are
commonly referred to as symbolic/formal security models.

A symbolic model is simpler than its cryptographic counterpart, and therefore
one can avoid relatively complicated and long proofs of traditional cryptography.
More importantly, computers can do the tedious job of proving (and similarly
verifying) the proofs of security.

Unfortunately, any security assurance in a symbolic model does not automat-
ically translate to the underlying computational cryptography and, therefore,
to its hardware/software implementation. In any implementation of symbolic
encryption, a system designer has to make certain security critical decisions, re-
lated to, e.g., mode of encryption, block alignment, and message authentication
code. Many attacks targeting the implementation of encryption are known [4, 5].

One approach to address such issues is to always rely on the most stringent
interpretation of encryption [2], i.e., an encryption scheme that is private and
non-malleable against an adversary that has adaptive access to encryption and
decryption oracles. Such strong requirements, however, often implies a resource-
intensive implementation.

We note that encryption or decryption oracles are not present in many pro-
tocols. Moreover, the security of a protocol does not always depend on non-
malleability or privacy of the encryption. Therefore, in our view, one should use
symbolic encryption in such a way that it closely mimics an actual cryptographic
encryption scheme. In this way, not only one can avoid many implementation
related ambiguities but also a level of safe optimization can be achieved, e.g., if
a protocol is secure with ECB based encryption.
Our contributions in this paper are summarized in the following.

We present new attacks on the CBC and CFB based implementations of the
Needham-Schroeder symmetric-key (NSSK) protocol [6], without exploiting the
previously known vulnerability [7]. These attacks also work with the seven-round
version of the NSSK protocol [8], which is an improved version of the original
NSSK protocol after the flaw [7] was discovered. Further, we report new attacks
on CBC and CFB based implementations of the Denning-Sacco symmetric-key
(DSSK) protocol [7], which is another improved version of the NSSK protocol,
and which does not suffer any attacks to the best of our knowledge.

It is worth mentioning that the CBC mode is semantically secure in traditional
CPA (chosen plaintext attack) model [9], and the CFB mode is secure against an
even more powerful adversary who has an access to block-wise online encryption
oracle [10]. Our attacks, although are CPAs, are against the protocol security
and not against the CBC/CFB security, which indicates that these protocols
entail more stringent requirements on encryption, such as non-malleability.

Further, we advocate a few refined ways of using symbolic encryption that
have natural correspondence to standard cryptographic constructions. The re-
fined notions require different implementation resources and, therefore, a level
of safe optimization can be achieved while still relying on symbolic encryption.

The rest of the paper is arranged as follows. In Sect. 2, we briefly examine the
prior art. Next, in Sect. 3 and Sect. 4, we present the new attacks. In Sect. 5,
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we list down a few symbolic encryption schemes and show that these schemes
provide different levels of security in a symbolic model. In Sect. 7, we discuss
our contribution in a broader perspective, and in Sect. 8 we conclude our work.
In the paper, exclusive-or (⊕) is abbreviated as Xor and a distinction should be
observed between symbolic encryption [11, 12] and cryptographic encryption [2,
13].

2 Related Work

Meadows [14] presents an extensive survey of the works that rely on symbolic
encryption. We here do not discuss formal security analysis as such and only
focus on the implementation perspective of symbolic encryption.

Moore [15] was probably the first to highlight the security problems that may
occur in implementing symbolic encryption. Boyd [16] describes a few possible
attacks on the NSSK protocol based on some strong assumptions such as the
use of a stream cipher for encryption, however, the presentation does not come
close to that of ours. Mao and Boyd [17] discuss some general vulnerabilities that
may occur when using cipher-block-chaining mode for implementing encryption.
Bellovin [4] reported vulnerabilities in the earlier versions of IPsec by exploiting
CBC-mode encryption.

Stubblebine et al. [18] investigates modes of encryption for discovering known
pairs and chosen texts, using the NRL Protocol Analyzer. Our attack makes use
of chosen texts, in which a party can be used as an encryption oracle; this is
then exploited by an adversary who obtains the ciphertext against a plaintext. In
the same line of work, Kremer and Ryan [19] model ECB and CBC mode using
Blanchet’s protocol verifier. Interestingly, they use the NSSK protocol as a case
study but stop after indicating the existence of chosen texts in the protocol.
Nevertheless, the existence of chosen texts is quite common in cryptographic
protocols and often does not lead to insecure encryption.

An interesting case is that of encryption-only-mode of IPsec, for which Pa-
terson and Yau [5] exploited CBC mode of encryption. Their attacks work if
an implementation does not follow the standard strictly. Later, Degabriele and
Paterson [20] published another attack that works only if an implementation
strictly follows the standard.

Chevalier et al. [21] extend the Dolev-Yao intruder with the capability to
exploit Xor operator, as used in CBC, and they show that the protocol insecurity
problem is NP-complete. Küsters and Truderung developed a verification method
that can reduce the protocol models that are Xor-linear to Xor free models,
which then can be analysed using existing tools [22]; however, the CBC based
NSSK protocol is not Xor-linear due to the nested encryption.

In our view, the multiplicity error of DSSK protocol [23] is not a valid attack
because it does not violate the claimed goals [7], namely neither confidentiality of
the session key nor the entity authentication of participants is violated. Similarly,
a reported type flaw [24] is based on a somewhat dubious assumption: if {T } ≡
{T, {B,KAB, T }SA}. Even if this assumption holds, the session key remains
confidential and there is no violation of authentication.
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In a slightly bigger picture, an impressive amount of research has been done
for establishing a theoretically sound link between symbolic cryptography and
complexity-theoretic cryptography [25–27]. In the line of universal composabil-
ity, Ran Canetti and Herzog [28] show that the Dolev-Yao model can be layered
on top of the traditional universal composability framework. Currently, this ap-
proach is limited to so-called simple protocols: the protocols that use only those
cryptographic schemes that have some standard symbolic counterparts.

Another related line of work is on the security of online ciphers started by Bel-
lare et al. [29]. In an online cipher, encryption of a plaintext block only depends
on the current block and the previous blocks of the plaintext. Note that the
requirements of a cipher are more stringent than an encryption scheme, because
one is not allowed to use random initializing vectors (iv) in the construction
of a cipher. Without a random iv, CBC and CFB modes are the candidates of
online cipher, for which Fouque et al. [10] show that the CFB mode is provably
secure and the CBC mode is not secure. The CBC mode is provably secure with
a randomly chosen iv [9].

The attacks presented in this paper are based on the actual construction of
CBC and CFB modes (using random IVs), but we still use symbolic abstraction
to model the underlying cipher. We believe this level of abstraction is a good
compromise between computational cryptography (where a cipher is modelled
as a pseudorandom permutation) and symbolic cryptography (where the whole
encryption scheme is modelled as a perfect cipher). At this abstraction level,
which probably has not been explored in the prior art, we present a few symbolic
encryption schemes.

3 NSSK Protocol

The NSSK protocol [6] is a key establishment protocol, based on symmetric
encryption and the notion of a trusted third-party (TTP). In this paper, we
assume that when a session expires then the session key is safely discarded,
because this assumption prohibits the previously known flaw [7] resulting in a
“secure” NSSK protocol. The protocol narrations are listed in the following.

(1) A −→ S : A,B,NA

(2) S −→ A : {NA, B,KAB, {KAB, A}SB}SA

(3) A −→ B : {KAB, A}SB

(4) B −→ A : {NB}AB

(5) A −→ B : {NB − 1}AB

Here A and B represent the initiator and responder roles that parties can take
during an execution of the protocol; S is the role of a trusted third-party (TTP).
It is assumed that S knows the identities of all legitimate entities (principals),
and shares a long-term secret key with each of them, namely, S shares KSA

and KSB with A and B respectively. The term KAB denotes a session key. The
notation {. . . }AB stands for a ciphertext computed using a key KAB.
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The first message is a request from A to the TTP that A wishes to establish
a key with B, by sending its identity, the identity of the peer entity and a
nonce. On receiving the request the TTP generates a random session key KAB.
The TTP replies with a message encrypted with A’s long-term key, KSA. This
message includes a session key KAB, and another encrypted message containing
the same session key but encrypted with B’s long term key, which A sends to B
in the next step.

When B receives the message, it decrypts it using KSB, then verifies that
it contains B’s identity, and if successful, then B considers KAB as a valid
session key. To verify the freshness of the session key, B sends a nonce, NB, to A
encrypted using the session key. On receiving the message in Step 4, A decrypts
it and sends NB − 1 to B encrypted using the same session key. This completes
the protocol. If both parties terminate without generating any error then A and
B assume that KAB is a valid session key for the subsequent communication.

As per the standard cryptographic assumption, the initializing vectors (iv)
in CBC and CFB modes are public values. We assume that the attacker is an
insider, i.e., I is a legitimate network entity and shared KSI with the TTP. An
attacker I in the role of A is denoted by I(A).

For the simplicity of exposition, we assume that each term of the proto-
col is encoded in a separate block, e.g., the implementation of {N1, N2}AB

using CBC mode of encryption results in the following ciphertext: iv, c1 =
{N1 ⊕ iv}AB, {N2 ⊕ c1}AB. If blocks are not encoded with this perfect align-
ment then less efficient versions of the reported attacks may exist that require
more computation and communication on the part of the adversary2. Neverthe-
less, the cryptographic security guarantees [9, 10] are valid independent of the
block alignments in a plaintext.

In the following we describe the attacks against CBC and CFB based imple-
mentations. These attacks are also applicable on the seven-round version of the
NSSK protocol [8], which does not suffer from the old-session-key attack [7].

NSSK with CBC Mode of Encryption

The attack is shown in Fig. 1, which consists of three setup phases followed by the
main attack phase. The superscripts in iva, ivb and ivc are labels used to easily
distinguish between initialization vectors in Setup-(a), Setup-(b) and Setup-(c)
respectively; a subscript, such as ‘1’ in iv1, is used to distinguish different values
of initialization vectors. The notation ‘=’ is used to introduce intermediate terms
to simplify the description of the attack.

In Setup-(a), I obtains the term {iva2 ⊕K1}SB, which he sends as a nonce in
Setup-(b) to obtain cb1. In Setup-(c), I obtains the term cc1 by sending K1 as a
nonce; K1 can be computed by I in Setup-(a).

2 For instance, in an attack on IPsec [5] that is based on address rewriting, the first
phase of the attack succeeds with a probability of 2−17, due to a specific block
alignment of IPsec. This means that an attacker may have to repeat the first phase
217 times in order to succeed.
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Messages
Setup-(a)

(1) I −→ S : I, B,NI
(2) S −→ I : iva

1 , iv
a
2 , c

a
1 = {iva

1 ⊕ NI}SI , ca2 = {ca1 ⊕ B}SI , ca3 = {ca2 ⊕ K1}SI , ca4 =
{ca3 ⊕ {iva

2 ⊕ K1}SB}SI , ca5 = {ca4 ⊕ {{iva
2 ⊕ K1}SB ⊕ I}SB}SI

Setup-(b)
(1) I(A) −→ S : A,B, {iva

2 ⊕ K1}SB

(2) S −→ I(A) : ivb
1, iv

b
2, c

b
1 = {ivb

1 ⊕{iva
2 ⊕K1}SB}SA, cb2 = {cb1 ⊕B}SA, cb3 = {cb2 ⊕K2}SA,

cb4 = {cb3 ⊕ {ivb
2 ⊕ K2}SB}SA, cb5 = {cb4 ⊕ {{ivb

2 ⊕ K2}SB ⊕ A}SB}SA

Setup-(c)
(1) I(A) −→ S : A,B,K1

(2) S −→ A : ivc
1, iv

c
2, c

c
1 = {ivc

1 ⊕ K1}SA, cc2 = {cc1 ⊕ B}SA, cc3 = {cc2 ⊕ K3}SA, cc4 =
{cc3 ⊕ {ivc

2 ⊕ K3}SB}SA, cc5 = {cc4 ⊕ {{ivc
2 ⊕ K3}SB ⊕ A}SB}SA

Attack
(1) A −→ S : A,B,NA

(2a) S −→ I(A) : iv1, iv2, c1 = {iv1 ⊕ NA}SA, c2 = {c1 ⊕ B}SA, c3 = {c2 ⊕ K4}SA, c4 =
{c3 ⊕ {iv2 ⊕ K4}SB}SA, c5 = {c4 ⊕ {{iv2 ⊕ K4}SB ⊕ A}SB}SA

(2b) I(S) −→ A : iv1, iv2, c1 = {iv1 ⊕ NA}SA, c2 = {c1 ⊕ B}SA, cc1 = {ivc
1 ⊕ K1}SA, cb1 =

{ivb
1 ⊕ {iva

2 ⊕ K1}SB}SA, cb1 = {ivb
1 ⊕ {iva

2 ⊕ K1}SB}SA

(3a) A −→ I(B) : cc1 ⊕ ivb
1 ⊕ {iva

2 ⊕ K1}SB , cb1 ⊕ ivb
1 ⊕ {iva

2 ⊕ K1}SB

(3b) I(A′ = c6 ⊕ iva
2 ⊕ K1) −→ B : iva

2 , c6 = {iva
2 ⊕ K1}SB , {iva

2 ⊕ K1}SB

(4a) B −→ I(A′) : {NB}K1
(4b) I(B) −→ A : {NB}c2⊕ivc

1
⊕K1

(5a) A −→ I(B) : {NB − 1}c2⊕ivc
1
⊕K1

(5b) I(A′) −→ B : {NB − 1}K1

Fig. 1. Attack on CBC-version of NSSK Protocol

Messages
Attack

(1) A −→ S : A,B,NA

(2a) S −→ I(A) : iv1, iv2, c1 = {iv1}SA ⊕ NA, c2 = {c1}SA ⊕ B, c3 = {c2}SA ⊕ K4, c4 =
{c3}SA ⊕ {iv2}SB ⊕ K4, c5 = {c4}SA ⊕ {{iv2}SB ⊕ K4}SB ⊕ A

(2b) I(S) −→ A : iv1, iv2, c1 = {iv1}SA ⊕ NA, c2 = {c1}SA ⊕ B,R1, c2 = {c1}SA ⊕ B,R2

(3) A −→ I(B) : iv2, {R1}SA ⊕ c2, {c2}SA ⊕ R2

(4) I(B) −→ A : iv4, {iv4}K′
1
⊕ NI , where K′

1 = {c2}SA ⊕ R1

(5) A −→ I(B) : iv5, {iv5}K′
1
⊕ (NI − 1)

Fig. 2. Attack on CFB-version of NSSK Protocol

In the main phase of the attack, I replays the two terms, cb1 and cc1, in place
of c3 and c4 in the step (2b). This completes the attack on A, i.e., I can know
impersonate as B to A with a known session key c2 ⊕ ivc1 ⊕K1.

The attack can be further extended to B if c6⊕iva2⊕K1 represents some valid
identity. If this is the case then, in the step (3b), I replays iva2 , {iva2 ⊕K1}SB,
which he obtains in Setup-(a). In this way B believes in K1 as a new session
key shared with a party whose identity is c6 ⊕ iva2 ⊕ K1. At this stage, I has
successfully deceived both A and B into accepting the session keys that he knows.
There are two different session keys, namely, A’s session key is c2⊕ ivc1⊕K1 and
B’s session key is K1. Now, I can play a man-in-middle role in any subsequent
communication.
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NSSK with CFB Mode of Encryption

In the attack on CFB version of the protocol, I is able to impersonate as B
to A. In the step (2a), an adversary I intercepts the server’s reply to A. The
adversary replaces the terms c3, c4, and c5 of the step (2a) with R1, c2, and R2

and sends the resultant message to A in the step (2b); here R1 and R2 are any
adversary’s generated values.

When A receives the message in the step (2b), it decrypts R1 to obtain a
session key, which results in the value K ′

1 = {c2}SA ⊕ R1. Although the term
{c2}SA is not known to I at this stage, I can obtain {c2}SA in the step 3, in
which the term {c2}SA ⊕R2 occurs in its second half. As R2 is known to I, the
session key K ′

1 can be derived.

4 DSSK Protocol

Denning and Sacco [7] improves the NSSK protocol using time-stamps. The
modified protocol is as follows:

(1) A −→ S : A,B
(2) S −→ A : {B,KAB, T, {A,KAB, T }SB}SA

(3) A −→ B : {A,KAB, T }SB

The protocols works essentially in the same way as the NSSK protocol. The new
term T represents a time-stamp, and it is assumed that the local clocks of all
network parties are loosely synchronized.

DSSK with CBC Mode of Encryption

This attack is listed in Fig 3, in which the adversary succeeds in impersonating
B to A, i.e, at the end of the attack I in the role of B has a shared key with A.
In the setup phase, I sends a request to S for establishing a connection with A,
and as a result, I receives the terms c̄a5 and c̄a6 , which are later used in the main
phase of the attack.

In the main phase of the attack, I intercepts the reply from S and replace c2
and c3 with c̄a5 and c̄a6 respectively. Consequently, the last three messages will
decrypt to some random data when A later sends them to B, however, I can
pretend to be B. The session key for A and I(B) is K1 ⊕ c̄a4 ⊕ c1. Clearly, this
term is computable by I because K1, c̄

a
4 and c1 are known to I.

The term c̄a6 is decrypted to T1. The Setup phase of the attack needs to
be in real-time (in a loose sense) so that the difference between T1 and T2 is
tolerable. As per the authors of the protocol, the definition of real-time is quite
relaxed, namely a delay up to 1t1 +1t2 is tolerable, where 1t1 is the interval
representing normal time-shift between A’s local clock and the server clock, and
1t2 is the expected network delay. This value is typically equal to a few seconds
for most of the networks, such as the Internet.
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Messages
Setup

(1) I −→ S : I, A
(2) S −→ I : iva

1 , iv
a
2 , c

a
1 = {A ⊕ iva

1 }SI , ca2 = {K1 ⊕ ca1}SI , ca3 = {T1 ⊕ ca2}SI , ca4 = {(c̄a4 =
{I ⊕ iva

2 }SA) ⊕ ca3}SI , ca5 = {(c̄a5 = {K1 ⊕ c̄a4}SA) ⊕ ca4}SI , ca6 = {(c̄a6 = {T1 ⊕ c̄a5}SA) ⊕
ca5}SI
Attack

(1) A −→ S : A,B
(2a) S −→ I(A) : iv1, iv2, c1 = {B ⊕ iv1}SA, c2 = {K2 ⊕ c1}SA, c3 = {T2 ⊕ c2}SA, c4 =

{{A⊕ iv2}SB ⊕ c3}SA, c5 = {{K2 ⊕ {A⊕ iv2}SB}SB ⊕ c4}SA, c6 = {{T2 ⊕ {K2 ⊕ {A ⊕
iv2}SB}SB}SB ⊕ c5}SA

(2b) I(S) −→ A : iv1, iv2, c1 = {B ⊕ iv1}SA, c̄a5 , c̄
a
6 , c4, c5, c6

(3) A −→ I(B) : random data

Fig. 3. Attack on CBC-version of DSSK Protocol

Messages
Setup

(1) I −→ S : I, A
(2) S −→ I : iva

1 , iv
a
2 , c

a
1 = {iva

1 }SI ⊕A, ca2 = {ca1}SI ⊕K1, c
a
3 = {ca2}SI ⊕T1, c

a
4 = {ca3}SI ⊕

(c̄a4 = {iva
2 }SA⊕I), ca5 = {ca4}SI⊕(c̄a5 = {c̄a4}SA⊕K1), c

a
6 = {ca5}SI⊕(c̄a6 = {c̄a5}SA⊕T1)

Attack
(1) A −→ S : A,B
(2a) S −→ I(A) : iv1, iv2, c1 = {iv1}SA ⊕ B, c2 = {c1}SA ⊕ K2, c3 = {c2}SA ⊕ T2, c4 =

{c3}SA⊕{iv2}SB⊕A, c5 = {c4}SA⊕{{iv2}SB⊕A}SB ⊕K2, c6 = {c5}SA⊕{{{iv2}SB ⊕
A}SB ⊕ K2}SB ⊕ T2

(2b) I(S) −→ A : iv1, iv2, c1 = {iv1}SA ⊕ B, c̄a5 , c̄
a
6 , c1, R1, R2

(3) A −→ I(B) : iv2, {c̄a6}SA ⊕ c1, {c1}SA ⊕ R1, {R1}SA ⊕ R2

Fig. 4. Attack on CFB-version of DSSK Protocol

DSSK with CFB Mode of Encryption

This attack is similar to the attack on the CBC version. The adversary I obtains
the terms c̄a5 and c̄a6 in the setup phase. In the main phase, I intercepts the reply
from the server in the step (2a) and replaces the terms c2, c3, c4, c5, and c6 with
c̄a5 , c̄

a
6 , c1, R1, and R2 respectively; here, R1 and R2 are any values known to I.

When A receives the modified message in the step (2b), the session key is
computed to be {c1}SA⊕ c̄a5 . The term {c1}SA is not known to I; that is why c4
and c5 of the step (2a) were replaced by c1 and R1. The decryption of c1 and R1

results in {c̄a6}SA ⊕ c1 and {c1}SA ⊕ R1, which A sends supposedly to B in the
step (3). In this way, I can derive the term {c1}SA. The decryption of c̄a6 results
in T1, which is a valid time-stamp based on the same arguments presented for
the CBC version.

5 Private-Key Symbolic Encryption Schemes

The reported attacks cannot be produced in a security model in which encryp-
tion is specified as one monolithic ciphertext, which hides the structure of a
ciphertext. On the other hand, a ciphertext resulting from a block-cipher based
encryption scheme always has a semantic structure.

We propose that symbolic encryption should be specified using the abstraction
of a block-cipher, because the output of a block cipher can be safely assumed as
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a monolithic ciphertext. Further, a block cipher is the most natural abstraction
of actual implementation and can be instantiated, e.g., with an appropriate
algorithm from Advance Encryption Standard (AES).

In a formal security model that supports the Xor operator, it is quite straight
forward to specify commonly used cryptographic encryption schemes, such as
CBC and CFB. In our proposal, however, we do not assume that the support
for the Xor operator is available. The motivation of this exclusion is contempo-
rary and based on the observation that properly incorporating the Xor operator
in formal security models is a long-standing open problem [21, 22]. The Xor
operator is not supported by most of the verification tools, e.g., OFMC [11],
LySa [12], and Spi-calculus [30]. On the other hand, the proposed Xor-free en-
cryption schemes can be seamlessly used in existing formal security models.

Our assumptions are as follows. We consider a block-cipher as a family of
pseudo random permutations (PRP) [31]. We consider three types of adver-
saries that are computationally bounded in a sense that their attacks strate-
gies terminate in a polynomial time. The three types are passive adversary,
CPA-adversary (i.e, an adversary who can access an encryption oracle), and
CPA/CCA-adversary (i.e., an adversary who can access both encryption and
decryption oracles.)

A few notations used in the following sections are as follows. An overline on
a variable name, such as M1, indicates that the variable is on binary strings.
We use the the notation Us to represent the uniform distribution on strings of
size s. The notation Us is used to represent a random variable on the uniform

distribution: Us ← Us. The concatenation of random variables U
1

s, . . . , U
n

s is just
another random variable Uns, where Uns ← Uns. The notation dist[.] represents

the probability distribution of its argument, e.g., dist[U
1

s] is Us.
In the following, we define a minimal symbolic encryption system.

Definition 1 (Symbolic Encryption System). On the set of all base terms
V, with a security parameter s = log2(|V|), we define a private-key symbolic
encryption system as follows.

– M ::= M, M | V | {M}K | {C}−1
K

– V ::= x ∈ V
– K ::= M (Syntactic sugar to indicate that the term K is being used as a key)
– C ::= {M}K (Syntactic sugar to indicate that the term is a ciphertext)
– Cancellation Rule : M = {{M}K}−1

K = {{M}−1
K }K

– Encryption Rule : Given K and M , {M}K can be derived.
– Decryption Rule : Given K and C, {C}−1

K can be derived.

Here M, K, C and V are the formal expression; while M , K and C are the corre-
sponding meta-variables.

To define the semantics of the symbolic encryption system, we use the notion of
variadic ciphers [32], which can take binary strings of different lengths as inputs.
The reason for employing a variadic cipher is based on the fact that M in Def. 1
consists of a variable number of base terms. To model the arbitrary size of a key
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(K in Def. 1), we extend the notion of a variadic cipher to an idealized variadic
cipher (IVC), namely a family of functions that contains an infinite number of
variadic functions. We represent the i-th idealized variadic cipher as Πi(.).

The notion of an IVC can be compared to a traditional cipher, which is mod-
elled as a family containing a fixed number of PRPs (pseudo random permuta-
tions) and all of the PRPs are of the same size, e.g., AES with 256 bit key is a
family containing 2256 PRPs of size 128 bit. Note, however, that the use of IVCs
is just for a simpler exposition. Later, we define our symbolic schemes in such a
way that only the restricted forms of IVCs occur that can be instantiated with
traditional ciphers.

Definition 2 (Cryptographic Semantics). The cryptographic semantics of
the symbolic encryption system in Def. 1 are as follows.

– V
def
= V ∈ {0, 1}s (Each base term is encoded as a bit string of a fixed length

s, such that s = log2(|V|))
– M1,M2

def
=M1,M2 (Concatenation of two bit strings)

– {M}K
def
= {M}K = ΠK(M),

where ΠK(M) is the Kth cipher in a family of IVCs.

– {C}−1
K

def
= {C}−1

K , such that C = ΠK({C}−1
K ).

Definition 3 (Security). We define the following three security properties,
assuming that K is not known to the adversary.

WP-security (Weak Privacy Against Passive Attack)
def
= It is infeasible for

a passive adversary I to compute C for a known M , s.t., C = {M}K. Further,
it is also infeasible for I to compute M for a known C, s.t., M = {C}−1

K .

NM-security (Non-malleability Against CPA/CCA)
def
= It is infeasible for a

CPA/CCA-adversary to compute C′ for a known C, s.t., a pre-specified relation

R(M,M
′
) holds3, where M = {C}−1

K and M ′ = {C′}−1
K .

IND-security (Indistinguishability Against CPA)
def
= It is infeasible for a

CPA-adversary to distinguish between the probability distributions dist[{M}K ]
and Ul, for all values of M , where l = |{M}K |. 4

Clearly, WP-security is implied by IND-security, because if an adversary can
recover the plaintext from a ciphertext then he can always distinguish between
the ciphertext and a random bit string. In our proofs, we also use the fact that if
an encryption function is deterministic then it cannot be IND-secure [13]. Note
that IND-security and NM-security are not comparable in our model, because we
use the abstraction of a cipher, which is a deterministic encryption algorithm for
a fixed key. As shown by Katz and Yung [2], for probabilistic encryption, there
are well-defined relations between NM-security and IND-security under different
attack models.

3 E.g., M = M1,M2 and M
′
= M2,M1

4 Equivalently, I can only succeeds in the indistinguishability experiment (IND-P2-
C0) [2] with a negligible probability.
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Claim 1 (Soundness of Symbolic Encryption System). The symbolic en-
cryption function {M}K is WP,NM-secure if a CPA/CCA-adversary cannot
derive K.

Proof (Sketch). As per the semantics, {M}K is a PRP corresponding toΠK(M).
For a secretK, mapping fromM to ΠK(M) is secret, which implies weak privacy
for a polynomial-time adversary. The mapping from an input to the output is
random, which implies non-malleability. The formal proof is trivial (but tedious)
and is left out. 
	
In the following, we introduce four symbolic encryption schemes. The direct
implementations of these schemes, as per the semantics, assume the existence of
one of the two ciphers corresponding to the key size s and 2s, e.g., AES-128 and
AES-256.

Definition 4 (Symbolic Encryption Schemes). Let M and K be the two
variable of symbolic encryption system with semantics M and K, such that
|M | ≤ sc and |K| = s, for a constant c. Let M1, . . . ,MN be the parsing of M ,
such that |Mi| = s, for 1 ≤ i ≤ N . ECB symbolic encryption (ECB-SE), bulk
symbolic encryption (BLK-SE), randomized symbolic encryption (RND-SE), and
randomized-bulk symbolic encryption (RNB-SE), are defined by the ECB-rule,
BLK-rule, RND-rule, and RNB-rule respectively.

ECB-rule:
{M}K

{M1}K , ..., {Mi}K , ..., {MN}K

BLK-rule:
{M}K

{M1, ...,Mi, ...,MN}K

RND-rule:
{M}K

V1, {M1}K,V1 , ..., Vi, {Mi}K,Vi , ..., VN , {MN}K,VN

RNB-rule:
{M}K

V1, {M1, ...,Mi, ...,MN}K,V1

In the above definition, sc stands for a polynomial in s; without a polynomial
length restriction, none of the existing cryptographic encryption schemes is se-
cure. In the above rules, the base terms V1, ..., VN appear as free variables, there-
fore these variables are assumed to be instantiated with unique values in each
instance of a protocol. Also note that, e.g., the key used to create ciphertext
{M1, ...,Mi, ...,MN}K,V1 is K,V1, which semantically corresponds to the con-
catenation of K and V1. The main motivation for the above division is their
correspondence to some of the existing cryptographic schemes, as described in
the following sections.

6 Security Analysis

In the following, we analyse these schemes for the security properties in Def. 3.

Claim 2. The ECB-SE is WP-secure, but it is neither NM-secure nor IND-
secure.
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Proof. Each encrypted term {Mi}K in the ECB scheme is a PRP and is WP,NM-
secure (Claim 1). From WP,NM-security of the terms, we derive the security
properties of the whole scheme.

It is clear that the WP-security of the scheme can be reduced to the WP-
security of its terms, because if a passive adversary can recover the plaintext
M1, . . . ,MN then he can invert a PRP on N different values. The same obser-
vation holds for deriving ciphertexts from plaintexts.

The scheme is not IND-secure because it is a deterministic function [13].
The ECB scheme is not NM-secure due to a simple attack. In the attack, an
adversary permutes the individual encrypted terms. For example, given a ci-
phertext {M1}K , {M2}K , the adversary can produce another valid ciphertext
{M2}K , {M1}K that has a related plaintext to the plaintext of the first cipher-
text. This completes the proof. 
	

Claim 3. The output distribution of RND-SE is UNs.

Proof. The size of each i-th term in a ciphertext of RND-SE is |{Mi}K,Vi | = s,
as per Def. 4. Therefore, the number of plausible ciphertexts for the i-th term
is 2s. In each term, Vi is used as part of the key. Being Vi a free variable,
each application of RND-rule uses a new value. With a secret K, there are 2s

equally probable values for the key K,V i, in every application of the RNB-rule.
Consequently, the output of ΠK,V i

(M) is evenly distributed on 2s plausible

ciphertexts for a known value of M .
Therefore, we have U i

s = {Mi}K,Vi where dist[U i
s] = Us, for 1 ≤ i ≤ N . The

distribution of complete ciphertext is dist[U1
s , . . . , U

N
s ] = UNs. 
	

Claim 4. The RND-SE is WP,IND-secure, but it is not NM-secure.

Proof. The RND-SE is clearly not NM-secure, because the same permutation
attack of Claim 2 also works for the RND-SE. Since WP-security is implied
by IND-security, we only need to prove that RND-SE is IND-secure. For IND-
security, a CPA-adversary cannot distinguish between a ciphertext corresponding
to the adversary’s plaintext and a random string UNs, where UNs ← UNs. From
Claim 3, the output distribution of RND-SE is UNs, which is same as that of the
random bit string. Hence, RND-SE is WP,IND-secure but is not NM-secure. 
	

Claim 5. The BLK-SE is WP,NM-secure, but it is not IND-secure.

Proof. This scheme represents one variadic PRP and is therefore WP,NM-secure
(Claim 1). The scheme is deterministic, therefore it cannot be IND-secure [13].


	

Claim 6. The scheme RNB-SE is WP,IND,NM-secure.

The ciphertext of the scheme is also a single variadic PRP and is therefore
WP,NM-secure. To show that it is IND-secure, similar to Claim 4, the proba-
bility distribution of a ciphertext corresponding to a known plaintext must be
computationally indistinguishable from a random bit string for a CPA-adversary.
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The size of the ciphertext in RNB-SE is Ns, therefore the domain correspond-
ing to plausible ciphertexts is of size 2Ns. Since the term V is assigned a new
value on each application of RNB-rule, there are 2s uniformly distributed values
for the key K,V . Consequently, there are 2s uniformly distributed values for the
ciphertext.

To violate IND-security, a CPA-adversary is required to distinguish between
the following two distributions: the uniform distribution on 2s strings each of size
Ns (corresponding to the ciphertext); and the uniform distribution UNs (corre-
sponding to a random string.) The most efficient known technique to distinguish
between two uniform distributions is to compare the number of collisions in the
lists of values drawn from the respective distributions.

From the birthday problem, we know that in a list of q ciphertexts computed
from the same plaintext, an upper bound on the probability of any collision is
0.5q(q − 1)2−s, and for random strings drawn from UNs a lower bound on the
probability of any collision is 0.3q(q−1)2−Ns. Although the maximum difference
between the probabilities of collisions, namely 0.5q(q− 1)2−s− 0.3q(q− 1)2−Ns,
is relatively large, but the difference is only noticeable if an adversary is able to
generate at least one collision.

Since 0.5q(q − 1)2−s > 0.3q(q − 1)2−Ns and 0.5q(q − 1)2−s is negligible in s
assuming q is polynomial in s, the probability of occurrence of a collision is neg-
ligible. For a polynomial-time adversary, q must be a polynomial in s. Therefore,
we conclude that adversary cannot distinguish between the two distributions.
Hence, RNB-SE is IND,NM,WP-secure. 
	

The results presented in this section are listed in Table 1. In all of the encryp-
tion schemes in Def. 4 the key size is fixed: it is s for ECB-SE and BLK-SE,
and it is 2s for RND-SE and RNB-SE. Further, for ECB-SE and RND-SE, the
block size is also fixed. This means that ECB-SE and RND-SE can be imple-
mented with traditional block ciphers, and BLK-SE and RNB-SE schemes can
be implemented with variadic ciphers [32]. Besides such semantic-oriented imple-
mentations, other cryptographic algorithms can be chosen for an implementation
using the security properties (Claim 2-6) of each scheme.

We know that a cryptographic message authentication code (MAC) can be
used to provide the non-malleability of a plaintext under encrypt-then-MAC
method (i.e., MAC of ciphertext) [33]. Further note that CBC/CFB mode of
encryption provide IND-security under CPA [9, 10].

Therefore, e.g., ECB-SE can be implemented using AES in ECB mode of
encryption; RND-SE can be implemented using AES in CBCmode of encryption;
BLK-SE can be implemented using AES in ECB mode along with a message
authentication code (MAC); and RNB-SE can be implemented using AES in
CBC mode along with a MAC. It is certainly possible (perhaps after extending
the system of Def. 1) to define symbolic schemes that correspond to other forms
of cryptographic encryption, such as the counter mode of encryption.
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7 Discussion

In practice, it is nonetheless dangerous to assume that a system developer will
actually discover and use the correct cryptographic scheme that meets the secu-
rity requirements of a particular use of symbolic encryption. System developers
often use an implementation instance that seems appropriate, e.g., in this paper,
the CBC implementations of encryption in NSSK and DSKK protocols indeed
guarantee privacy in a strong sense [13]; however, non-malleability of the cipher-
texts, an implicit assumption, is also required for the security of these protocols.

One may always choose to employ a strong encryption scheme meeting the
requirements of RNB-SE however, the cost associated with such an overly cau-
tious approach cannot be ignored in practice. For example, if the symbolic model
of a protocol that uses ECB-SE is secure then this means that the protocol can
be implemented in a relatively efficient manner: a random number generator
is not required; the algorithm for message authentication code (MAC, used to
guarantee non-malleability) is not required; and communication bandwidth is
reduced because we do not need to transmit initialization vectors and MAC
codes. Moreover, parallelisation of the encryption process is straight forward.

In many applications, such optimizations can make a huge difference, e.g., for
a hypervisor which has to process millions of requests per second, and a sensor
node in which memory, computational power and energy are scarce resources.
Many symbolic protocols remain secure when encryption requirements are met
by a weaker symbolic encryption scheme, such as ECB-SE and CBC mode of
encryption; in this way a level of safe optimization can be achieved.

It is important to remember that safely instantiating a symbolic encryption
scheme with a cryptographic encryption scheme does not mean that the resul-
tant protocol will be secure, because there are many attacks that do not rely on
encryption, e.g., Lowe’s attack [34] on public-key version of Needham-Schroeder
protocol relies on the assumption of a corrupt insider, Denning-Sacco’s attack [7]
relies on the availability of a compromised old session key. Moreover, there are
many security vulnerabilities that are outside the realm of (mathematical) cryp-
tography, e.g., buffer-overflow.

Table 1. Summary of Results

Scheme WP IND NM Instantiation Examples

ECB-SE
√ × × AES-128 in ECB mode of encryption

BLK-SE
√ × √

(1) AES-128 in ECB mode of encryption with SHA-256
as MAC (2) Variadic cipher

RND-SE
√ √ × (1,2) AES-128 in CBC/CFB mode of encryption

RNB-SE
√ √ √

(1,2) AES-128 in CBC/CFB mode of encryption with
SHA-256 as MAC (3) Variadic cipher with a randomized
key
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8 Conclusion

In this paper, we reported new attacks on reasonable implementations of well-
known protocols. It appears that there is no inherent limitation in symbolic mod-
els which may have prevented detecting these attacks. We notice that encryption
on multiple terms is traditionally specified as one big monolithic encrypted block,
which, however, is not a good way of specifying it for practice-oriented security
analysis. We presented four refined ways in which encryption can be specified
in a symbolic model. The proposed specifications not only help to avoid many
implementation vulnerabilities similar to the reported attacks, but they also pro-
vide a degree of safe optimization. We hope that our work will bring symbolic
encryption closer to the secure implementation of encryption.
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Abstract. We address the question of automatically proving security
theorems in the universally composable (UC) model for ideal and real
functionalities composed of if-then-else programs with uniform random
number generation and data objects from the additive group of F2m . We
prove that for this restricted yet powerful language framework, there is
an effective procedure to decide if a real functionality realizes an ideal
functionality, and this procedure is in computational time independent
of m, which is essentially the security parameter.

To this end, we consider multivariate pseudo-linear functions, which
are functions computed by branching programs over data objects from
the additive group of F2m . The conditionals in such programs are built
from equality constraints over linear expressions, closed under negation
and conjunction.

Let f1, f2, ..., fk be k pseudo-linear functions in n variables, and let
f be another pseudo-linear function in the same n variables. We show
that if f is a function of the given k functions, then it must be a pseudo-
linear function of the given k functions. This generalizes the straightfor-
ward claim for just linear functions. Proceeding further, we generalize the
theorem to randomized pseudo-linear functions. We also prove a more
general theorem where the k functions can in addition take further argu-
ments, and prove that if f can be represented as an iterated composition
of these k functions, then it can be represented as a probabilistic pseudo-
linear iterated composition of these functions. Additionally, we allow f
itself to be a randomized function, i.e. we give a procedure for deciding
if f is a probabilistic sub-exponential (in m) time iterated function of
the given k randomized functions. The decision procedure runs in com-
putational time independent of m.

1 Introduction

Security primitives and protocols are deceptively concise. While they may have
a short description, a very specialized level of expertise is required for developing
these protocols and reasoning as to why they meet a specific security goal. In the
last few decades, the field of cryptography has come a long way in understanding
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fundamental principles and laying down the framework of specifying security
goals and proof methods on a firm formal footing.

Concomitant to the maturity of this field, a substantial research community
has grown around attempting to consolidate and automate these reasoning prin-
ciples so that that the manual need to provide tedious and cumbersome proofs is
removed. Importantly, automation provides greater assurance since all possible
corner cases are also considered, eliminating subtle errors.

Related Work. Majority of previous work in formal methods [1–4] has focused on
abstracting some of the fundamental primitives of cryptography, viz., encryption,
signatures, hashes and so on, as part of the language of specifying the protocols.
Though some of these methodologies have even led to automation of the verifica-
tion procedure [5], all these systems have only been proven sound, and there has
been very limited work on completeness of these logics (cf. [6]). Another draw-
back has been the coarseness of specification required by these lines of work.
The work by [7] is a promising approach to reason about fine-grained primitives
by leveraging axiomatization of bounded arithmetic [8], but because of its still
rather general number-theoretic approach, it may still be incomplete (see [9]).
Similarly, newer works like CertiCrypt [10] and EasyCrypt [11] show sequence of
human-generated games to be indistinguishable by employing general purpose
theorem-provers, which clearly do not possess a completeness property. Impor-
tant works [12, 13] have also tried to leverage the UC paradigm (also see [14] for
decision procedures for equality of probabilistic terms), but still the simulators in
these works have to be human-generated. In particular, these approaches focus
on proving indistinguishability of games/processes, but if there is a simulator
required to act as a wrapper around the ideal functionality, then the simulator
is built by humans.

Our Contributions. In this paper, we take a purely algebraic approach to the
problem and focus on using the UC paradigm to build an appropriate specifica-
tion and definition language which is fairly general and yet complete (and even
efficiently decidable; specifically with complexity independent of the security pa-
rameter). In particular, we seek an automated procedure which finds a simulator
if it exists and returns failure if the protocol is not simulatable in the ideal world.
To start with, in this work we focus on specification and definition languages
which are general enough to capture a rich class of high level protocols that use
cryptographic primitives as ideal functionalities.

In the UC framework [15], which builds on the ideal process emulation para-
digm of [16], the specification of the target (multi-party) protocol is given by
an ideal functionality which is handed all the inputs, and which computes the
respective outputs all the while interacting with an adversary in a specified way.
Thus, the specification language is just the language in which the ideal func-
tionality can be defined. The actual protocol is a set of definitions, one for each
of the parties for their internal computation and interaction with other parties
and/or the adversary. Thus the definition language is a language in which the
code of each party in the real protocol can be defined. A protocol is (informally)
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considered secure if for every adversary in the real protocol, there is an adversary
interacting with the ideal functionality, such that it is impossible to efficiently
distinguish between the two1. Most such proofs of security are obtained by a
black box simulation paradigm, i.e. by obtaining a Simulator that simulates the
“view” of the real world adversary, while accessing the latter only in a black-
box manner. In such a black box paradigm (which in the case of UC security
is known to be sufficient (see [15] Sec. 4.3.2)), the question of security of the
real protocol boils down to deciding if the view of the adversary (and/or the
Environment) in the real protocol can be efficiently simulated by accessing the
ideal functionality’s interface.

For our base language, both the specification language and the definition lan-
guage are just if-then-else or branching programs involving data objects from
the additive group of fields of characteristic two. The conditionals are built from
equality constraints of linear expressions, closed under negation and conjunction.
The multivariate functions computed by such programs are called pseudo-linear
functions, because they are piece-wise linear over different linear subspaces. Be-
fore we define these functions more formally, we state the completeness theorem
for such pseudo-linear functions, which allows us to claim efficient decidability
of simulatability.

While for linear multivariate functions a completeness theorem which states
that if a linear function f of n variables is a function of k other linear functions
(in the same n variables), then f must be a linear function of the k linear
functions, is well known and rather easy to prove, a similar completeness result
for pseudo-linear functions is novel and not so easy to prove.

Thus, one of the main results of this paper is a theorem which states that if
a pseudo-linear multivariate function f of n variables is a function of k pseudo-
linear functions f1, f1, ..., fk (in the same n variables), then f must be a pseudo-
linear function (say, g) of f1, f2, ..., fk. Note that it is given that f itself is a
pseudo-linear function in the original n variables. Thus in this context, if a sim-
ulator must simulate a real-world pseudo-linear function f using pseudo-linear
ideal functionality subroutines, then we can restrict the search for simulators to
the space of pseudo-linear functions. Since the size of this space is independent
of the security parameter2, this search can be efficient.

Proceeding further, we include random number generation as an additional
primitive in both the specification and the definition language, and extend the
procedures to decide if a probabilistic poly time simulator exists for the given
set of randomized ideal functionalities and randomized target function. To this
end, we first establish that any randomized pseudo-linear function is statisti-
cally equivalent to a randomized pseudo-linear function that generates a single

1 Technically, in the UC framework, the distinguisher is just the Environment, which
also gets to control and see the inputs and outputs of the honest parties and can
control the Adversary as well.

2 This space can be of size exponential or more in the size of the function descriptions,
but since the functions in cryptographic applications tend to be simple and small,
we focus on the security parameter as the real complexity parameter.
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random number. We call the later class of functions, Simplified Randomized
Pseudo-Linear (SRPL) functions.

To model the fact that a simulator can iteratively compose various calls
to the different functions in the ideal functionality, we prove a more general
theorem involving arbitrary iterations of k randomized pseudo-linear functions
f1(z,y), f2(z,y), ..., fk(z,y), where y are arguments which the simulator can
supply. We construct iterated compositions of these functions and establish that
they are bounded in number. The completeness theorem in this setting shows
that if there is no simulator which is an iterated composition of these functions,
then all probabilistic poly-time simulators are distinguishable from the target
function on more than a certain non-negligible fraction of the probability space
for any input. This is a much harder theorem to prove because (i) the compo-
sitions are distributions rather than fixed quantities and (ii) we are ruling out
all simulators which are “close enough” to the target function rather than being
exactly same.

For cryptographic applications, this means that an algorithmic search for a
simulator in proving that a protocol in this language realizes an ideal function-
ality (also in this language) is independent of the security parameter, as the
bounds in the completeness theorem are independent of the field size (the se-
curity parameter is usually related to the field size). Since the program sizes
in cryptographic protocols are usually small, this can lead to efficient theorem
proving.

Open Problems and Scope. We note here that if the real protocol is given in the
hybrid model, i.e. by making calls to some other ideal functionalities (to avoid
confusion, we will call them hybrid functionalities), our decision procedure still
works as long as these hybrid functionalities are also in the same language. To
address the situation that the adversary, which may have access to these hybrid
functionalities, may call these functionalities an indefinite number of times, we
do need to prove a (meta-) theorem which essentially says that it suffices to
prove simulatability for adversaries restricted to making a constant number of
calls to each of these hybrid functionalities. Such theorems may be easy to prove
on a protocol basis, but there is also scope for general theorems based on the
structure of these functionalities. This also implies that hybrid functionalities
(e.g. Random Oracle or public key encryption (PKE)) that can have indefinitely
many table entries, need only be in-lined in the target function with the tables
restricted to constant number of entries. Additionally, some hybrid functional-
ities (e.g. PKE) may require function symbols in their specification – in case
of PKE these are the encryption and decryption functions e and d. However,
because these function symbols are uninterpreted, i.e. have no constraints on
them, an easy extension of our theorems handles such function symbols.

In the future, similar extension to realization of ideal functionalities (i.e. in-
stead of just hybrid functionalities) which support simple tables and uninter-
preted functions can be envisioned. Since, most such functionalities, e.g. PKE,
are realized using specific algebraic structures, this would require appropriate
axiomatization of their underlying operations and computational assumptions
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(see e.g. [17]). While most cryptographic functionalities which support tables
with the size of the entries fixed and with operations limited to keyword search
(e.g. PKE, Random Oracle, Ideal Cipher etc.) lead to, or are expected to lead to
decidable simulatability, if we allow arbitrary sized entries in tables, and further
allow some non-trivial operations on the entries, the question of simulatability
becomes undecidable [18]. Finally, we remark that our completeness results re-
quire sufficiently large fields (as a function of the number of variables in the
functionalities), but given that most UC proofs only seek proofs of simulatabil-
ity which do not depend on the security parameters, our completeness theorem
covers all such UC proofs.

While the decision procedures in this work can be exponential or even double-
exponential time in the program sizes, the exact complexity of these problems
remains open. Further, for cryptographic protocols one does not expect the worst
case exponential blowup in state-space (space of pseudo-linear functions) and
further work is required in this direction. Finally, there is a tantalizing possibility
of extending our work to synthesis (human-assisted or otherwise) of real protocols
given an ideal functionality as specification.

The inability to handle arbitrary sequence of adversary calls in the real world
limits the applicability of our current results to practical cryptographic proto-
cols. However, we believe that our results open up a new and exciting line of
research in this area with promising directions to explore. We believe this is the
first work that seeks complete decision procedures for the problem of statistical
simulatability.

Organization. The next section formally defines pseudo-linear functions, and
proves a basis, an interpolation theorem and the Completeness theorem for
pseudo-linear functions. Section 3 extends the set of primitives to include ran-
dom number generation and proves a completeness theorem for deciding simu-
latability. Section 4 considers iterated composition of randomized pseudo-linear
functions and proves a completeness theorem. Section 5 relates the results in
this paper to proof automation in the UC model. Finally, Section 6 concludes
with a discussion on work in progress and open problems.

Due to space constraints, most of the proofs are deferred to the full version
of the paper [18].

2 Pseudo-Linear Functions

In this section we introduce and formally define pseudo-linear functions. We
begin with examples of how pseudo-linear polynomials relate to branching pro-
grams with bit-wise exclusive-or operations (which is just addition in fields of
characteristic two). So, consider a finite field Fq, where q = 2m. We adopt
the convention that l∗(x) denote linear polynomials over the components of
x which are elements of F2m . To start with, an equality constraint of the form
l1(x) = l2(x) can then be written as

1 + (l1(x) + l2(x))
q−1
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which evaluates to 1 if l1(x) = l2(x), and evaluates to zero otherwise. Similarly,
l1(x) = 0 and l2(x) = 0 can be written as

(1 + l1(x)
q−1) · (1 + l2(x)

q−1)

As a final example, an expression “if (l1(x) = 0 and l2(x) = 0) then l3(x) else
l4(x)” can be written as

(1 + l1(x)
q−1) · (1 + l2(x)

q−1) · (l3(x) + l4(x)) + l4(x)

Formally, a pseudo-linear multivariate polynomial defined over sub-field F2 is
then a polynomial which is a sum of guarded linear-terms; a guarded linear-term
is a polynomial which is the product of a linear (over F2) polynomial3 and zero
or more linear-guards; a linear-guard is a linear (over F2) polynomial raised to
the power (q−1). Since, in this paper we will only be dealing with pseudo-linear
polynomials defined over F2, from now on we will implicitly assume that. A
pseudo-linear polynomial in n variables and defined over F2, however does yield
a function from (Fq)

n to Fq, which we call a pseudo-linear function. Thus,
even though the polynomial is defined over F2, the underlying field will be Fq,
and hence the algebra of the polynomials is modulo (xqi = xi) (for i ranging from
1 to n). They are also further restricted by the fact that all expressions in the
guards are linear instead of affine, but we can also introduce constant additive
terms from Fq [18].

We observe that pseudo-linear polynomials are closed under pseudo-linear
transformations, i.e. given a pseudo-linear polynomial, raising it to the power (q−
1), and multiplying it by another pseudo-linear polynomial yields just another
pseudo-linear polynomial. More importantly, the branching programs mentioned
in the introduction compute exactly the pseudo-linear functions. We make this
connection more formal in Section 5.

2.1 A Basis for Pseudo-linear Functions

Let X denote a set of n variables {x1, x2, · · · , xn} from Fq. Let L stand for the
set of all linear expessions, including zero, over elements of X . We define the set
of elementary pseudo-linear (epselin) polynomials to be all polynomials of
the form ∏

l∈J

(1 + l(x)q−1) ·
∏

l∈L\J

l(x)q−1 · p(x)

where p(x) is in L, and J is any subset of L which is closed under addition, i.e. J
is a subspace of L. We also include the zero polynomial amongst the elementary
pseudo-linear polynomials. Note that if L\J included a linearly-dependent term
of J , then the above polynomial reduces to zero in Fq.

Related to the earlier definition of a linear-guard, we will refer to expressions
of the form ∏

l∈J

(1 + l(x)q−1) ·
∏

l∈L\J

l(x)q−1

3 Which is just a sum of variables for a field of characteristic 2.
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as just guards. We will mainly be focusing on guards corresponding to J which
are linear subspaces.

For the next definition, we will require that the n variables be ordered by their
indices. Thus x1 is considered to be of lesser index than x2, and so on. This also
induces a lexicographic ordering on all equal-sized subsets of the n variables X .
An elementary pseudo-linear polynomial with the above notation will be called
a reduced elementary pseudo-linear (repselin) polynomial if it satisfies
the following:

1. Let r be the rank of J (r ≤ min(n, |J |)).
2. Let R be the lexicographically greatest set of r variables occuring in J which

can be expressed in terms of smaller indexed variables (or just zero) when
the elements of J are set to zero. This for example, can be accomplished
by considering a row-echelon normal form of J . As a simple instance, if
J = {x1+x2, x2+x3, x3+x1}, then R = {x2, x3}, since setting the elements
of J to 0 will imply x3 = x2 = x1.

3. None of the variables in R occur in p(x).

To justify this definition, we note that if an elementary pseudo-linear polynomial
is not reduced, then it is equivalent to a reduced one. One implication of the
above definition is that if p(x) is non-zero then it itself cannot be in J . Recall,
J is closed under addition, by definition of epselin-polynomials. Let r be the
rank of J . Let J̄ be the r sized subset of J which forms a basis of J , and which
define the variables R by the row-echelon normal form of J . Thus, all l(x) in J
must have at least one variable from R. Thus, p(x) cannot be in J .

Finally, we define a repselin-polynomial to be a basic pseudo-linear poly-
nomial if the linear term p(x) is just a variable from X . Note that since the basic
polynomial is repselin, from item (3) above it follows that this variable is not
from R.

Lemma 1. Every pseudo-linear polynomial can be expressed as a sum of basic
pseudo-linear polynomials.

We will now show that the basic pseudo-linear polynomials actually form a basis
for pseudo-linear polynomials. Before that we need some more notation. Let
Q(X) be the set of all basic pseudo-linear polynomials in variables X . Further,
let G(X) be the set of all guards which form a part of these polynomials Q(X).
Let |G(X)| = t. The guards can then be named w.l.o.g. g1, g2, ...,gt. Recall, for
each guard gi, there is associated a subset of variables X , namely R, that do not
occur in any linear terms p(x). We refer to all linear combinations of X\R as
Pi(X), including the linear term zero. Let |P i(X)| = si + 1. Note that (si + 1)
is two to the power of the size of the subset of variables associated with gi. The
linear terms in Pi(X) can be named pji (x), j ranging from 0 to si (not to be
confused with exponent). W.l.o.g., zero will always be p0i (x).

Thus, any pseudo-linear function φ(x) can be represented as a sum (over F2)
of polynomials from Q(X), i.e.,

φ(x) =
∑
i∈T

gi(x) · pj(φ,i)i (x)
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where T is a subset of [1..t], and each p
j(φ,i)
i (x) ∈ Pi(X). In fact, we do not

even need to take a subset T of [1..t]; all zero terms just imply that j(φ, i) = 0,
by our notation above that p0i (x) is always taken to be zero. Thus the above
representation of φ(x) is totally defined by the map j(φ, ·).

While we state and prove the following theorem only for large fields, as only
for such fields do the basic pseudo-linear polynomials form a basis, a slightly
more complicated characterization can be given for smaller fields.

Lemma 2 (Basis). For fields of size q > 2n, the basic pseudo-linear polynomi-
als in n variables form a basis for pseudo-linear polynomials in n variables.

Detailed proofs can be found in the full version of the paper [18].

Lemma 3 (Homomorphism). For any pseudo-linear functions φ1(x) and
φ2(x), and for all i ∈ [1..t],

p
j(φ1+φ2,i)
i = p

j(φ1,i)
i + p

j(φ2,i)
i

Proof. Follows from the fact that the basic pseudo-linear polynomials form a
basis for pseudo-linear polynomials.

2.2 Interpolation Property and the Completeness Theorem

Before we prove the main theorem, we need a few more definitions and related
lemmas. Let f1, f2, ..., fk be k pseudo-linear functions in n variables X , over a
field Fq (q = 2m). Collectively, we will refer to these polynomials as F . For any
pseudo-linear polynomial f(x) inX , let its representation in terms of the basis be
given by j(f, ·). Since each of the polynomials from F , i.e. f1(x), f2(x), ...., fk(x)
is pseudo-linear, it can be represented by j(fs, ·) (s ∈ [1..k]). Further, each linear
combination of F is represented similarly.

We say that two guards ga(x) and gb(x) are F -equivalent if for every linear
combination φ of functions from F , it is the case that j(φ, a) = 0 iff j(φ, b) = 0.
In this case, we write a ∼=F b, which is an equivalence relation.

Lemma 4. If a and b are F -equivalent then if for some subset S ⊆ [1..k], the

linear combination
∑

s∈S p
j(fs,a)
a is identically zero , then so is

∑
s∈S p

j(fs,b)
b .

The lemma follows by Lemma 3. Thus, if k′ is the rank of p
j(fs,a)
a (s ∈ [1..k]),

then it is also the rank of p
j(fs,b)
b . In fact, we can take the exact same k′ indices

from (s ∈ [1..k]), w.l.o.g. [1..k′], to represent the basis for the k linear expressions,
for both a and b.

Let L(F ) denote the set of all linear combinations of functions in F . For any
pseudo-linear function f(x), and any set F of pseudo-linear functions in X , we
say that f(x) has the F -interpolatable property if it satisfies the following two
conditions:

(i) ∀i ∈ [1..t] : ∃φ� ∈ L(F ) : j(f, i) = j(φ�, i) , and
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(ii) For every a, b ∈ [1..t] such that a and b are F -equivalent, w.l.o.g. by Lemma 4,

let the first k′ functions out of (k functions) p
j(fs,a)
a (out of p

j(fs,b)
b ), represent

their basis (resp. for b). Then, if the φ� in (i) is given by
∑
casp

j(fs,a)
a and∑

cbsp
j(fs,b)
b , respectively for a and b, then for all s ∈ [1..k′], cas = cbs.

Lemma 5. If f is a pseudo-linear function in X, and f satisfies the F - interpol-
atable property for some set F of pseudo-linear polynomials in X, then f is a
pseudo-linear function of F .

While the main completeness theorem below is stated for only large finite fields,
it holds for all finite fields of characteristic two.

Theorem 1. Let f1, f2, ..., fk be k pseudo-linear functions in n variables X,
over a field Fq (q = 2m), such that q > 2n. Collectively, we will refer to these
polynomials as F . Let f be another pseudo-linear function in X. Then, if f is a
function of F , then f is a pseudo-linear function of F .

3 Randomized Pseudo-linear Functions

In this section we consider randomized pseudo-linear functions, or distributions
over pseudo-linear families of pseudo-linear functions. A pseudo-linear family
of pseudo-linear functions is given by a pseudo-linear function f ′ in variables
x and r, where the variables r parametrize the family. Given such an f ′, a
randomized pseudo-linear function f (in x) is given by choosing r uniformly
and randomly. The simulation question then becomes whether one can generate
the target function distribution by sampling the input function distributions.

When we regard the r as formal variables, we can apply Lemma 2 to deduce
that f ′ is expressible in terms of the basic pseudo-linear polynomials in (x, r).
In particular,

f ′(x, r) =
∑
i∈T

gi(x, r) · pj(f
′,i)

i (x, r)

where T is the set of indices of all the guards over (x, r).
Consider a guard gi in just the space of the input variables x, with associated

set J , i.e. gi =
∏

l∈L\J l(x)
q−1 ·

∏
l∈J (1 + l(x)q−1). Consider the set of super-

guards Ii which extend J to L ∪ L(r) and each super-guard I ∈ Ii corresponds
to a different subspace Jr ⊆ L(r) added to the subspace J (and then taking
closure). Thus, we get a set of guards gI (I ∈ Ii) corresponding to each guard gi.
From now on, when clear from context, we will refer to the randomized function
as f(x, r), to signify the random variables over which the distribution is defined.

We now show that given any randomized pseudo-linear function f(x, r), there
is a randomized pseudo-linear function in just one random variable r̂, such that
it is statistically indistinguishable from f . The new randomized pseudo-linear
function f̂ in just one random variable r̂ and the same input variable set x, is
defined in the following way:
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– The function f̂ will have the same p as f for guards involving only x. For
guards involving r̂, p will be set to zero.

– For each guard gi (with associated J), consider its extension super-guard
I0 ∈ Ii corresponding to Jr = {0}, In this case, JI0 is just J . Suppose

p
j(f,I0)
I0

(x, r) = l1(x)+ l2(r). If l2 is not identically 0, then set p
j(f̂ ,i)
i (x) = r̂,

otherwise set p
j(f̂ ,i)
i (x) = l1(x).

Lemma 6. Let log q > 2(ρ+χ), where ρ is the number of random variables and
χ is the number of input variables in f . The distribution f(x) is statistically

indistinguishable from f̂(x) with advantage < 1/
√
q.

We will refer to the functions of the form of f̂ as Simplified Randomized Pseudo-
Linear functions (SRPL). These are functions which can be expressed with
guards from x only and just one random variable. Lemma 6 indicates that we
can just focus on SRPL functions since any randomized pseudo-linear function
is statistically close to an SRPL function.

Lemma 7 (Homomorphism). For any SRPL functions φ1(x) and φ2(x), and
for all i ∈ [1..t],

p
j(φ1+φ2,i)
i = p

j(φ1,i)
i + p

j(φ2,i)
i

with the rule that r̂ + · is re-written as r̂.

Proof. Follows from the fact that for a fixed x, exactly one of the guards evalu-
ates to 1 and the rest evaluate to 0. Also, adding a uniformly distributed random
number to any quantity yields a uniformly distributed random number.

Theorem 2. Let f1, f2, ..., fk be k SRPL functions in n variables X, over a field
Fq (q = 2m), such that q > 2n. Collectively, we will refer to these polynomials
as F . Let f be another SRPL function in X. Then if there exists a probabilistic
poly-time (in lg q) algorithm SF which makes oracle calls to F , such that the
distribution f(X) is statistically indistinguishable from the distribution SF (X),
then f is an SRPL function of the set of functions F .

4 Completeness Theorem for Randomized Simulators
and Iterated Composition of SRPL Functions

In this section, we consider SRPL functions which can take arguments, modeling
oracles which are SRPL functions of secret values and arguments. Thus, for
instance it may be required to find if there exists a randomized simulator which
given access to functionalities which are SRPL functions of secret parameters
X and arguments supplied by simulator/adversary, can compute a given SRPL
function.

This generalizes the problem from the previous sections, where the simulator
could not pass any arguments to the given functions. For simplicity, we will deal
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here with functions which only take a single argument, and thus all the functions
can be written as fi(x, y), each SRPL in x and y.

So, given a collection of k SRPL functions F (X, y), we now define an iter-
ated composition of F . Let Fq be the underlying field as before. An iterated
composition σ of F is a length t sequence of pairs (t an arbitrary number), the
first component of the s-th (s ∈ [1..t]) pair of σ being a function φs from F , and
the second component an arbitrary randomized function γs of s − 1 arguments
(over Fq).

Given an iterated composition σ of F , one can associate a function fσ of
X with it as follows by induction. For σ of length one, fσ is just φ1(x, γ1()),
recalling that φ1 ∈ F . For σ of length t,

fσ(x) = φt(x, γt(f
σ|1(x), fσ|2(x), ..., fσ|t−1(x)))

where σ|j is the prefix of σ of length j.
Since, SRPL functions in n variables over Fq are just polynomials in n vari-

ables, there is a finite bound on t, after which no iterated composition of F
can produce a new SRPL function of the n variables. The collection of all func-
tions that can be obtained by iterated composition of F will be referred to as
terms(F ). The expression termsT (F ) will stand for the collection of functions
obtained by iterated compositions of F of length less than T . In particular we
will be interested in T which is bounded by polynomials in log q and/or n, the
number of variables in X .

Recall the functions in F now have an additional argument y. As before,
L(G), for any set of functions G will denote the set of all linear combinations
(over F2) of functions from G. Below we define the class Ii(F ) of SRPL functions
in X , for i an arbitrary natural number. In fact, since the inductive definition
will sometimes use functions in both X and y, we will just define this class as
SRPL functions in X and y, though for different y, they would evaluate to the
same value. In other words, for an arbitrary guard ga(x), which corresponds to
a subset J ⊆ L(X) (J is closed under addition), there are many super-guards
when viewed as a function of X and y, namely with subsets J ′ ⊆ L(X, y) (J ′

closed under addition) such that J ⊆ J ′ and (L(X)\J) ⊆ (L(X, y)\J ′). Thus,
for all these super-guards, a SRPL function φ(X) will have the same j(φ, ·) value
(see Section 2).

However, and more importantly, with y set to some linear expression l(x) ∈
Pa(X) (including zero), exactly one of these (super-)guards has the property
that J ′

y|l(x) = J (Note the subscript y|l(x) means l(x) is substituted for every

occurrence of y in J ′). This particular J ′ is given by

J ′ = L(J, {y + l(x)})

In this case we say that this super-guard of gs is consistent with y + l(x) = 0.
The super-guard corresponding to J ′ = J will be called the degenerate super-
guard of ga(x).

Now we define the SRPL function which is the composition of fs and h, i.e.
fs ◦ h, where fs is a SRPL function in X and y, and h is a SRPL function in X ,
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by defining its components in the basis for SRPL functions. For any guard gi(x)
(of functions in X), let gI(x, y) be the unique (super-) guard, mentioned in the

previous paragraph, which is consistent with y set to p
j(h,i)
i (note the map j here

is for guards corresponding to X , and in general it will be clear from context
whether we are referring to map j for guards corresponding to X or X, y). Then,
define

p
j(fs◦h,I)
I (x, y) = p

j(fs,I)
I (x, p

j(h,i)
i (x, y))

Further, for all I ′ which are super-guards of i, we set p
j(fs◦h,I′)
I′ to be the same

value (as fs ◦ h is only a function of X). Note that since each p is just a linear
function, this implies that each component of fs ◦ h is a linear function of X
(and hence X, y). In particular, (fs ◦ h)(x) = fs(x, h(x)).

Define Compose(F (X, y), H(X)), where F (X, y) are a set of SRPL functions
in X, y and H(X) is a set of SRPL functions in X , to be the set of all functions
fs ◦ h, where fs ∈ F (X, y) and h ∈ H(X).

For each SRPL function fs of X and y, we also need to define a SRPL func-
tion (in X called degenerate(fs), which for each guard ga(x), defines the cor-
responding p function using its degenerate super-guard. Thus,

pj(degenerate(fs),a)a (x) = p
j(fs,I)
I (x, 0),

where I is the degenerate super-guard of ga.
Now, we are ready to define the iterated SRPL functions. Define

I0(F ) = L(Compose(F, degenerate(F )))

Ii+1(F ) = L(Ii(F ) ∪ Compose(F, Ii(F ))), for i ≥ 0.

Since, these functions are just polynomials over finite fields (in fact defined over
F2), the above iteration reaches a fixed-point at an i bounded by a function
only of n. We will denote the fixed-point by just I(F ). Now, we generalize the
definitions of F -equivalence and F -interpolatable from Section 2.2. Two guards
ga(x) and gb(x) are said to be F ∗-equivalent if for every φ(x) in I(F ), it is the
case that j(φ, a) = 0 iff j(φ, b) = 0 and j(φ, a) = $ iff j(φ, b) = $, where j(φ, ·) =
$ indicates the special index for the single random variable. The definition of
F ∗-interpolatable property is same as the F -interpolatable property except
that L(F ) is replaced by I(F ) and the random variable is accounted for.

Lemma 8. If f is an SRPL function of n variables X over a field Fq, and f
satisfies the F ∗-interpolatable property, for some set F of SRPL polynomials
in X, y, then there exists a probabilistic poly-time (in lg q) algorithm SF , such
that the distribution f(X) is statistically indistinguishable from the distribution
SF (X), with error at most 2n/q.

Theorem 3. Let f1, f2, ..., fk be k SRPL functions in n variables X and an
additional variable y, over a field Fq such that q > 24n. Collectively, we will
refer to these polynomials as F (X, y). Let T be a positive integer less than 2n(<
q1/4). Let f be another SRPL function in X. Then if there exists a probabilistic
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poly-time (in lg q) algorithm StermsT (F (X,y)), such that the distribution f(X) is
statistically indistinguishable from the distribution StermsT (F (X,y))(X), then f is
F ∗-interpolatable.

5 Proof Automation in the Universally Composable
Model

A proof of security in the Universally Composable (UC) model boils down to
the following: as input, we are given two sets of algorithms: one called an Ideal
Functionality which is a set of algorithms F = {F1, F2, · · · }, and another Real
Protocol which is a set of algorithms P = {P1, P2, · · · }. We say that P realizes F
if it is possible to construct an algorithm S, called ideal world adversary (usually
built as a simulator), that invokes the functions in F , such that the following
holds: For any PPT algorithm A, there exists a PPT algorithm S, such that for
any PPT environment Z, the execution of A with calls to P is indistinguishable
from the execution of S with calls to F .

We now formally describe the language L$,⊕,if in Table 1 which corresponds
to the branching programs over data objects from fields of characteristic two as
mentioned in the introduction.

Table 1. Grammar for the Language L$,⊕,if

(expressions) AE ::= x1 | x2 | · · · variables

XE ::= AE | AE ⊕ XE bitwise xor expression

BE ::= true | (XE == XE) | BE ∧ BE | ¬BE boolean expression

(assignments) a ::= x ← $ assign new random no.

x := XE assign xor expression

(program) π ::= a; single action

πa; sequence of actions

if BE then π else π conditional

Definition 1 (L$,⊕,if). An Ideal Functionality F and a real protocol P are in
the language L$,⊕,if if

– F is a set of programs {f1(x,y), f2(x,y), · · · }.
– P is a single program {f(x)}.

such that f1(x,y), f2(x,y), · · · and f(x) are all described as L$,⊕,if programs,
as defined in Table 1.

The semantics of this language is that x is a set of inputs passed by the environ-
ment at the outset of execution and y is a set of parameters that the simulator
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is allowed to pass to the functionalities. All the parameters and random num-
bers are represented as lg q-bit strings, corresponding to elements in Fq. The
programs in F can be called in any order and an arbitrary number of times,
whereas P is called only once. This means that the real world adversary A does
not send any message to the protocol - however, the environment Z initializes
the arguments x as per its choice. At the end, the protocol sends a value f(x)
to the adversary A. The challenge for the simulator S is to generate a statis-
tically indistinguishable value using the functions in the ideal functionality F .
It can call these functions in any order and an arbitrary number of times with
arguments of its choice. It doesn’t know the values x, but observes the results
of the ideal functionality calls. The simulatability question is then whether a
probabilistic poly-time simulator exists which can produce an acceptable result
for any choice of the environment supplied arguments.

The following lemma connects the language L$,⊕,if to our results in the pre-
vious sections.

Lemma 9. All the variables in an L$,⊕,if program f(z) are randomized pseudo-
linear in z.

We now proceed to the main theorem.

Theorem 4 (Completeness of L$,⊕,if). There is a decision procedure, which
given an Ideal Functionality F and a Real Protocol P described in the language
L$,⊕,if, decides if P realizes F in the Universally Composable model.

Proof (Theorem 4). By Lemma 9, all the functions in P and F compute ran-
domized pseudo-linear functions in the inputs. By Lemma 6, with negligible
error, we can assume that these are given as SRPL functions. Observe that a
simulator employing T calls to the ideal functionality computes over values in
termsT (F (X, y)).

Now, by Theorem 3, if f is simulatable using termsT (F (X, y)), with T < q1/4,
then f is F ∗-interpolatable. F ∗-interpolatability can be decided by computing
I(F ), which can be computed in time independent of lg q. Further, by Lemma 8,
if f is F ∗-interpolatable, then there exists a probabilistic polynomial time (in
lg q) simulator.

6 Work in Progress and Open Problems

Consider an extension of the language L$,⊕,if , where we add a fixed number of
variables to the Ideal world that are persistent across subroutine calls. Let us
call this language L$,⊕,if,state. We describe the key ideas for developing a decision
procedure for L$,⊕,if,state, which is a work in progress.

We first construct stateful iterated compositions of L$,⊕,if,state subroutines. We
construct a tree where each node is such a composition and its subtrees denote
further compositions extending its own computation. The key observation is that
there is only a finite number of such nodes which are distinct modulo renaming of
uniformly random quantities. In other words, the nodes fall into a finite number
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of equivalence classes modulo permutation of uniformly random quantities and
hence represent the same randomized algorithm. An important property of these
equivalence classes is that two members of a class lead to subtrees which are
equivalent as sets.

This leads to the conclusion that there is a finite set of stateful iterated com-
positions. A considerably harder theorem is to prove completeness: if there is a
probabilistic poly-time simulator, then there is a simulator which is a stateful
iterated composition of the subroutines. Based on our work so far this result
seems plausible, and we pose a formal proof of such to be an open problem.

Key Ideas for Encryption and Signatures. The UC formulation of the
encryption and signature primitives makes them expressible in very abstract
terms. We leverage the fact that standard notions of security of these primitives
have been shown to be equivalent to the UC formulation. Specifically, we express
protocols in the hybrid model, where the concrete operations for encryptions
and signatures are replaced by their ideal counterpart. The proofs of security
translate due to the Composition Theorem supported by the UC framework.
Signatures. The UC formulation of signatures can be found in [15]. In addi-
tion to the operations in L$,⊕,if , we need function variables (viz., s and v) and
storage (for the records). For a single session of a protocol, the honest protocol
participants only do a bounded number of signatures. However, the adversary
may make an unbounded number of calls to the verification function - but this
does not create any requirement for more storage. Hence the language L$,⊕,if,state

suffices for the storage part.
As regards the function variables s, v, v′, observe that they do not have to sat-

isfy any equation. Hence they can be treated as uninterpreted function symbols.
For example s(m) can be represented as the tuple 〈“s”,m〉, where “s” is a con-
stant string. To support these entities, we only need to define tuples, constants
and equality of tuples.

Public-Key Encryption. The UC formulation of PKE can be found in [15]. The
discussion on signatures carries over to PKE. In addition, we need to distinguish
the ciphertexts being output on separate invocations of the Encryption sub-
routine. This can be done by tagging the ciphertexts with a uniformly random
quantity generated at each invocation: [r ← $; c := 〈e′,0, r〉 ; ].

However, in contrast to the signature functionality, the adversary can induce a
requirement for unbounded storage by calling the Encryption subroutine multi-
ple times. The language L$,⊕,if,state is only able to support a bounded number of
such calls - hence we only have a conditional security proof. While for individual
protocols it can be rather simple to prove that it suffices to show realizability
for an adversary which makes only a bounded (or even single) number of calls to
the hybrid encryption functionality, it is an interesting open problem to prove a
structural meta-theorem which establishes the sufficiency of a bounded number
of calls for a general class of protocols.
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6.1 Password-Based Key Exchange

Password-based key exchange is an important security problem which has been
studied extensively in cryptographic research [19], and which brings out the
power of the UC framework particularly well. Canetti et al [20] proposed an Ideal
Functionality for password-based key exchange. (See [20] for a formal description
of this ideal functionality FpwKE).

Consider two parties Pi and Pj that wish to come up with a common cryp-
tographically strong key based on the fact that they share the same password.
The idea is to capture the fact that modulo the adversary outright guessing the
password exactly during an active session between the parties, it has no control
(or information) on the key being generated. It is allowed to interrupt sessions by
tampering with the messages being exchanged, but doing so only results in the
parties ending up with different uniformly randomly distributed keys. If, how-
ever, the session is not interrupted, the parties end up with the same key which
is distributed uniformly and randomly and is not controlled by the adversary.

We describe a protocol ΠICpwKE in the ideal cipher model (Figure 1), which
is a candidate to realize FpwKE. In the ideal cipher model, the results of two de-
cryptions are the same if the key is identical. Otherwise, the results are uniformly
and independently random. The protocol is symmetric from the perspective of
both the participants - so we describe the actions of just one party Pi. Both
parties get a password from the environment E . Party Pi generates a random
number r1, encrypts it and sends the ciphertext c1 to the peer. When it receives
a response c′2, it first checks whether its own message was reflected. If so, it
outputs a random key to the environment. Otherwise, it decrypts the response
using its password pw1 and xors the plaintext with r1. The resulting quantity is
output as its key to the environment.

Party Pi Adv Party Pj

E E
↓ pw1 ↓ pw2

r1 ← $ r2 ← $
c1 ← encpw1(r1) c2 ← encpw2(r2)

c1−−→ c2←−−
c′2←−−

c′1−−→
if (c′2 == c1) then sk1 ← $ if (c′1 == c2) then sk2 ← $
else else

d1 ← decpw1(c
′
2) d2 ← decpw2(c

′
1)

sk1 ← r1 ⊕ d1 sk2 ← r2 ⊕ d2

↓ sk1 ↓ sk2

E E

Fig. 1. Protocol for Password-based Key Exchange using Ideal Cipher



Decision Procedures for Simulatability 589

Consider the following ideal functionality for the ideal cipher primitive. The
functionality takes two arguments: a key and a plaintext. It has a table where
each entry is a triplet (key, plaintext, ciphertext). The table is initially empty.
It supports two subroutines: encrypt(key, plaintext) and decrypt(key, cipher-
text). The encrypt subroutine, given input (key, plaintext), generates a ran-
dom number r, stores (key, plaintext, r) in the table and outputs r. The de-
crypt subroutine, given input (key, ciphertext), looks up if there is an entry
(key, p, ciphertext) in the table. If so, it outputs p. Otherwise, it generates a
random number r, stores (key, r, ciphertext) in the table and outputs r.

Now consider the real-world scenario where the adversary intercepts the first
message c1 and changes it to c′1 before transmitting to Pj . The adversary’s action
may involve querying the ideal cipher in the hybrid model. More importantly,
if the password is weak, the adversary maybe able to guess the password, and
hence a proper simulation would require the simulator to extract this password
guess from the call to the ideal cipher, and use that in the TestPwd subroutine
of FpwKE.

We now describe how an extension of our decision procedure might automat-
ically figure out such a simulator, as the languages for the real protocol (in the
ideal cipher hybrid model) and for the ideal functionality FpwKE are covered by
the language L$,⊕,if,state. First, however we need a theorem which states that
it suffices to consider an adversary which makes only a single call to the hy-
brid ideal cipher functionality. It is plausible that such meta-theorems can be
proven as general structural theorems and that is an interesting open problem.
We can then in-line a single ideal cipher call in a serialization of the protocol
(the variables input by the adversary can be named, say kk and rr). Observe
that the following operations are sufficient to describe the ideal cipher func-
tionality: equality testing, conditional branches, random number generation and
table storage and lookups. When we consider a constant number of calls to the
ideal cipher, the table operations reduce to assignment statements and equal-
ity testing. The ideal functionality FpwKE is clearly supported by the language
L$,⊕,if,state. Finally, notice that the variables c′1 and c′2 are also available to the
simulator. Thus the decision problem is whether the serialization of the protocol
(with a single inlined ideal cipher call) can be obtained as a randomized iterated
composition of FpwKE, where the simulator also has access to variables kk, rr,
c′1 and c′2.
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Abstract. Bisimulation-based information flow properties were intro-
duced by Focardi and Gorrieri [1] as a way of specifying security prop-
erties for transition system models. These properties were shown to be
decidable for finite-state systems. In this paper, we study the problem
of verifying these properties for some well-known classes of infinite state
systems. We show that all the properties are undecidable for each of
these classes of systems.

Keywords: model-checking, pushdown system, petri net, process alge-
bra, bisimulation, information flow.

1 Introduction

Information flow properties are a way of specifying security properties of systems,
dating back to the work of Goguen and Meseguer [2] in the eighties. In this
framework, a system is modelled as having high-level (or confidential) events
as well as low-level (or public) events, and a typical property requires that the
high-level events should not influence the outcome of low-level events. In other
words, the sequence of low-level events observed from a system execution, should
not reveal “too much” information about the high-level events that may have
taken place during the execution.

There is a great variety of information flow properties proposed in the liter-
ature and can be broadly classified into the following categories. The original
formulation of non-interference by Goguen and Meseguer was state-based in the
sense that it spoke about the state of the system after a sequence of events: the
state reached by the system after executing a sequence of low and high-level
events, must be the same (from the low-level observer’s point of view) as the
state reached after executing only the low-level events in the sequence. As non-
interference is often too strong a requirement (for example a typical password
checking program is interfering), many relaxations to non-interference have been
proposed in the literature. Some information flow properties are trace-based in
that they specify information flow security as a property of the set of traces or
executions produced by the system and its variants. For example, the strong non-
deterministic non-interference (SNNI) property [1] states that the set of traces
after hiding high-level events (replacing them with ε-transitions) should be the
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same as the set of traces with high-level events deleted. This corresponds to
non-inference of the occurrence of high-level events, as every low-level observa-
tion of a trace is itself a possible trace in the system. Finally there are prop-
erties based on the structure of the system model. For example, the property
Bisimulation-based Strong Non-deterministic Non-interference (BSNNI) is the
same as SNNI except that the check is on bisimulation equivalence rather than
trace equivalence. These properties are termed bisimulation based information
flow properties and are studied by Focardi and Gorrieri in [1].

We motivate bisimulation-based information flow properties with an example
adapted from Focardi and Gorrieri [1]. Consider the component of an access-
control system implementing the no read up policy as described by the state
transition system in Fig. 1. The transition lRl represents a low user requesting
to read a low object. Similarly lRh, hRl and hRh represent low reading high,
high reading low and high reading high requests respectively. The acc grantl and
acc granth transitions grant the read access request originating from low and
high users respectively. The acc denyl transition denies the read access request
from a low user on a high object. Here the events lRl, lRh, acc grantl and
acc denyl are low events and hRl, hRh and acc granth are high events. The
attacker observes only the low-level events in any execution of the system. We
want the semantic property of non-inference: the attacker should not be able
to infer the occurrence or non-occurrence of high-level events in any system
execution.

0

1

2

3

lRl

acc grantl

hRh, hRl

acc granth

lRh

acc denyl

Fig. 1. Implementation of no read up without high interrupts

It is easy to see that the system satisfies the property of non-inference. This
system satisfies both SNNI and BSNNI.

Consider a slight modification of the example with high-level interrupts as
shown in Fig. 2. High-level interrupts h stop1, h stop2, h stop3 and h stop4 when
fired halts the system by taking it to a trap-state. This system satisfies SNNI
but not non-inference. A low user can never conclude that a high-level interrupt
has been executed; however when he asks to read a low object and if he sees
acc grantl then he knows that the h stop1 event did not happen. This subtle
information flow can be exploited in order to construct an information channel
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0

1

2

3

4

lRl

acc grantl

hRh, hRl

acc granth

lRh

acc denyl

h stop3

h stop2

h stop1

h stop4

Fig. 2. Implementation of no read up with high interrupts

from high level to low level. In order to detect these kind of flows, bisimulation-
based information flow properties are used. As we show in Section 2, the system
in Fig. 2 does not satisfy BSNNI.

In general bisimulation-based equivalence is a finer equivalence than trace-
based equivalence and detects possible high level deadlocks that can compro-
mise the security of the system [1]. The problem of checking bisimulation-based
properties has been shown to be decidable for finite-state systems and has been
implemented in a tool called CoSec [3,4].

The problem of model-checking most of the known trace-based information
flow properties is shown to be decidable [5]. However the problem of model-
checking these trace-based properties for pushdown systems is shown to be un-
decidable [6].

A natural question that arises is whether the bisimulation-based properties
continue to be decidable for well-known classes of infinite state systems like
pushdown systems, Petri nets and process algebras [7]. We show in this paper
that the problem of checking any of these bisimulation properties is undecidable
for each of these classes of systems. To show these, we adapt the proofs by

– Srba [8] showing the undecidability of checking weak bisimilarity for push-
down systems.

– Jancar [9] showing the undecidability of checking strong bisimilarity for Petri
nets.

– Srba [10] showing the undecidability of checking weak bisimilarity for process
algebras.

We note that the problem of checking bisimulation-based properties appears to
be weaker than the problem of checking bisimilarity for given classes of sys-
tems, in the sense that the former reduces to the latter in the case when the
class is closed under the hiding and deletion of transitions. However, our re-
sults nonetheless show that the problem of checking these bisimulation-based
properties continues to be undecidable for the classes mentioned above.



594 D. D’Souza and K.R. Raghavendra

2 Bisimulation Relations and Games

We begin by defining the basic system model of labelled transition systems.
For binary relations R and S, we denote relational composition and reflexive
transitive closure by R ·S and R∗ respectively. For an alphabet Σ, we use Σ∗ to
denote the set of all finite words on Σ. The concatenation of two words u and v
will be denoted by u · v or simply uv.

A labelled transition system (LTS) M is a tuple (Q, Σ, →, s0) where Q is
a set of states, Σ is a set of labels, →⊆ Q × (Σ ∪ {ε}) × Q is a set of labelled

transitions and s0 ∈ Q is the initial state. We sometimes write s
a→ t instead

of (s, a, t) ∈→. For q ∈ Q, we write Mq to denote the LTS (Q,Σ,→, q). For
c ∈ Σ ∪ {ε}, we define

c→= {(s, t) | s c→ t}. The weak transition relation (⇒)
induced by M is defined as follows. Let c ∈ Σ ∪ {ε}:

c⇒=

{
ε→
∗
· c→ · ε→

∗
if c ∈ Σ

ε→
∗

if c = ε.

The language generated by M , denoted by L(M), is the set {a1a2 · · · an ∈
Σ∗ | ∃s1, s2, . . . , sn, s

a1⇒ s1
a2⇒ · · · an⇒ sn }.

Let M1 = (Q1, Σ,→1, s1) and M2 = (Q2, Σ,→2, s2) be two LTS’s. A relation
R ⊆ Q1×Q2 is a weak bisimulation betweenM1 andM2 if and only if whenever
(s, t) ∈ R and s

c→1 s
′ with c ∈ Σ ∪ {ε} then there exists t′ ∈ Q2 such that

t
c⇒2 t

′ and (s′, t′) ∈ R and conversely, whenever t
c→2 t

′ with c ∈ Σ ∪ {ε} then

there exists s′ ∈ Q1 such that s
c⇒1 s

′ and (s′, t′) ∈ R. For p1 ∈ Q1, p2 ∈ Q2, we
write p1 ≈ p2 if and only if there exists a weak bisimulation containing (p1, p2).
M1 is said to be weakly bisimilar toM2, writtenM1 ≈M2, if and only if s1 ≈ s2.
It is easy to see that the union Rmax of all weak bisimulations between M1 and
M2 is also a weak bisimulation. Two states p and q of an LTS M are said to
be weakly bisimilar, written p ≈ q, if and only if there is a weak bisimulation
between two copies of M containing (p, q).

Weak bisimilarity has an elegant characterisation in terms of bisimulation
games. Though the results in the section are folklore in the literature, the details
are not readily availabile in our experience. Hence we include the proofs of these
results.

Definition 1. Let p1 and p2 be two states in LTS M1 and M2 respectively.
A bisimulation game starting from p1 and p2 is a game between two players:
an attacker and a defender. The game is played in rounds. In each round the
players change the current states q1 and q2 (initially p1 and p2) according to the
following rule.

1. The attacker chooses an i ∈ {1, 2}, c ∈ Σ∪{ε} and q′i ∈ Qi such that qi
c→i q

′
i.

2. The defender responds by choosing a q′3−i ∈ Q3−i such that q3−i
c⇒3−i q

′
3−i.

3. The states q′1 and q′2 become the current states.

Let K = ({1, 2} × Σ × Q1 × Q2) · (Q1 × Q2). A finite play is a string in the
language (Q1 × Q2) · K∗. An infinite play is a string in (Q1 × Q2) · Kω. The
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positions 1+2i, i ≥ 0, in a play, are the positions of the attacker (where it is his
turn to make a move). A valid move by the attacker extends this string with an
element from ({1, 2}×Σ×Q1×Q2) representing his selection of the component
and the transition. The positions 2i, i ≥ 0, in a play, are the positions of the
defender. A valid move by the defender extends this string with an element from
(Q1 ×Q2) representing his selection of the transition obeying the above rule. A
play is valid if and only if it is formed by the alternate sequence of valid moves
from the attacker and the defender. Let the set of valid plays be denoted by Plays.
Let PlaysA and PlaysD denote the set of valid plays ending with the attacker’s
position and the defender’s position respectively. Then Plays = PlaysA�PlaysD .
A partial map associating valid moves to plays in PlaysP , is a strategy for the
player P . A play α is according to a strategy π of a player P if and only if at
every position of the player P in α, the move prescribed by π is taken. A strategy
π is valid for a player P if and only if for every play in PlaysP according to π,
π is defined. A valid strategy for the defender is also a winning strategy for her.
A valid strategy fπ for the attacker is winning if and only if there is no infinite
play according to π.

The following result is well known [11,12]. See also [13] for a detailed proof.

Lemma 1. Let M1 and M2 be two LTS’s with countable number of states. Let
p and q be states in M1 and M2 respectively. Then

1. p ≈ q iff the defender has a winning strategy starting from p and q.
2. p �≈ q iff the attacker has a winning strategy starting from p and q. 
	

3 Bisimulation-Based Information Flow Properties

We recall different bisimulation-based information flow properties defined in the
literature.

Let M = (Q,Σ,→, s) be an LTS and X ⊆ Σ. Then M \ X denotes the
LTS obtained from M by deleting all transitions labelled by elements in X .
M/X denotes the LTS obtained from M by replacing all transitions labelled by
elements in X with ε (silencing).

Let the set of events Σ (or synonymously actions) be partitioned into inputs
(I) and outputs (O). Let Σ again be partitioned into high (H) and low (L)
events. Each event a in Σ has a complementary action which we denote by
ā in Σ. We assume the sets H and L are closed under complementation i.e,
H̄ = {ā | a ∈ H} = H and L̄ = {ā | a ∈ L} = L. Let EH denote the set of all
systems whose language over Σ is a subset of H∗.

Given M1 = (Q1, Σ,→1, s1), M2 = (Q2, Σ,→2, s2), the composition of M1

and M2 denoted by M1|M2 is defined to be (Q1 × Q2, Σ,→, (s1, s2)) where

(p, q)
c→ (p′, q′) if p

c→1 p
′ or q

c→2 q
′ and (p, q)

ε→ (p′, q′) if p
a→1 p

′ and q
ā→2 q

′.
The bisimulation-based information flow properties [1] are variants of the

trace-based non-deterministic non-interference (NNI), a natural generalization
of non-interference [2] to non-deterministic systems. The basic idea is that an
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LTS satisfies NNI when nothing about the execution of high input events leaks
to the observation of a low-user. More precisely, an LTS M satisfies NNI if and
only if L((M \ (H ∩ I))/H) = L(M/H). The following defintions are taken from
[1]. In the definition below we fix an LTS M = (Q,Σ,→, s) over Σ partitioned
into I,O and H, L.

Definition 2. a. Bisimulation-based Non-deterministic Noninterfer-
ence (BNNI). M satisfies BNNI iff M/H ≈ (M \ (I ∩ H))/H.

b. Bisimulation-based Strong Non-deterministic Non-interference
(BSNNI). M satisfies BSNNI iff M/H ≈M \ H.

c. Bisimulation-based Non Deducibility on Compositions (BNDC).
M satisfies BNDC iff ∀M ′ ∈ EH, M/H ≈ (M |M ′) \ H.

d. Strong BNNI (SBNNI). M satisfies SBNNI iff for all reachable states q
in M , Mq satisfies BNNI.

e. Strong BSNNI (SBSNNI). M satisfies SBSNNI iff for all reachable
states q in M , Mq satisfies BSNNI.

f. Strong BNDC (SBNDC). M satisfies SBNDC iff for all reachable states

q, r and for all h ∈ H, such that q
h→ r in M , Mq \ H ≈Mr \ H.

There are other bisimulation-based properties proposed in [14] – persistent BNDC
and dynamic BNDC. They are both shown to be equivalent to SBSNNI [14].
Hence we focus on the properties listed in Definition 2.

Consider the example LTS M in Fig. 2. We show that M does not satisfy
BSNNI by describing the winning strategy for the attacker in the bisimulation
game on M \ H and M/H. The attacker chooses the transition 0

ε→ 2 in M/H.
There are no ε-transitions from state 0 in M \ H. Hence the defender is forced

to stay at state 0. The attacker chooses the transition 2
ε→ 4 in M/H. Again

the defender is forced to stay at state 0. Now the attacker chooses the transition

0
lRl→ 1 in M \ H. The defender is required to make a coresponding move from

state 4 in M/H on lRl. As there is no such move, the attacker wins. Thus the
attacker has a winning strategy and hence M \ H �≈ M/H. Thus M does not
satisfy BSNNI.

4 Model-Checking Pushdown Systems

We now consider the problem of model-checking pushdown systems for
bisimulation-based information flow properties. We first define some required
notions.

Definition 3. A pushdown system (PDS) is of the form P = (Q,Σ, Γ,→
, s0, S), where Q is a finite set of control states, Σ is a finite input alphabet,
Γ is a finite stack alphabet, →⊆ ((Q× (Σ ∪ {ε})× Γ )× (Q× Γ ∗)) is the transi-
tion relation, s0 ∈ Q is the starting state, and S ∈ Γ is the initial stack symbol.
If ((p, a, A), (q, B1B2 · · ·Bk)) ∈→, this means that whenever the machine is in
state p with A on top of the stack, it can do an a-labelled transition to pop A off
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the stack, push B1B2 · · ·Bk onto the stack (such that B1 becomes the new top
of the stack symbol), and enter state q. If ((p, ε, A), (q, B1B2 · · ·Bk)) ∈→, this
means that whenever the machine is in state p with A on top of the stack, it
can do an ε-labelled transition to pop A off the stack, push B1B2 · · ·Bk onto the
stack and enter state q.

A PDS P = (Q,Σ, Γ,−→, s0, S) induces an LTS MP = (Q × Γ ∗, Σ,→, (s0, S)).
The configurations of P form the states of MP . A configuration of P describes
the current state and the current stack contents. Given a configuration (p,Aβ)
for some A ∈ Γ and β ∈ Γ ∗, the next configuration relation→ on any c ∈ Σ∪{ε}
gives (q, γβ) if ((p, c, A), (q, γ)) ∈−→. This is written (p,Aβ)

c→ (q, γβ). We will
write a configuration of the form (p, α) as simply pα in the sequel.

The problem of model checking a bisimulation-based information flow prop-
erty θ for PDS’s is – given a PDS P , does MP satisfy θ? We show that this
problem is undecidable for each of the properties in Definition 2.

Srba in [8] shows that the problem of checking weak bisimilarity between two
pushdown systems is undecidable. The idea is to reduce the halting problem of
Minsky machines with two counters to the problem of checking weak bisimilarity
between two pushdown systems.

Definition 4. A Minsky machine R with two counters c1 and c2 is a finite se-
quence R = (L1 : I1, L2 : I2, . . . , Ln−1 : In−1, Ln : halt), where n ≥ 1, L1, . . . , Ln

are pairwise different labels, and I1, . . . , In−1 are instructions of the following
two types– increment: cr := cr + 1; goto Lj, test and decrement: if cr = 0
then goto Lj else cr := cr − 1; goto Lk, where 1 ≤ r ≤ 2 and 1 ≤ j, k ≤ n.
A configuration of a Minsky machine R is a triple (Li, v1, v2) where Li is the
instruction label (1 ≤ i ≤ n), and v1, v2 are nonnegative integers representing
the values of counters c1 and c2 respectively. The transition relation on configu-
rations is defined in a natural way.

The problem of deciding whether a Minsky machine R halts with an initial
counter values set ot zero is undecidable [15].

Given a Minsky machine R with two counters c1, c2, Srba constructs a push-
down system PR on a stack alphabet {C1, C2, S} and two configurations of PR:
p1S and p′1S such that R halts if and only if p1S ≈ p′1S. The proof idea is as
follows. A configuration of R, (Li, v1, v2), is represented by a pair of processes
piγS and p′iγ

′S where γ, γ′ ∈ {C1, C2}∗ such that the number of occurrences of
C1 and C2 in γ (and also in γ′) is equal to v1 and v2 respectively. The instruction
of the type Li : cr := cr + 1; goto Lj, where 1 ≤ j ≤ n and 1 ≤ r ≤ 2, is simu-

lated by piX
a→ pjCrX and p′iX

a→ p′jCrX . To simulate a test and decrement
instruction, say Li : if cr = 0 then goto Lj else cr := cr − 1; goto Lk, where
1 ≤ j, k ≤ n and 1 ≤ r ≤ 2, consider the bisimulation game at (piγS, p

′
iγ

′S).
The attacker forces the defender to rearrange the stack contents at γ and γ′ such
that Cr’s are brought on top. Then Cr is popped if there is one at both γ and

γ′. The crucial transition distinguishing pn and p′n is: pnX
halt→ pnX . When R

halts, the attacker’s aim is to reach pn by faithfully simulating R’s halting com-
putation. Then he chooses halt transition for which the defender cannot match.
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Hence the attacker wins and p1S �≈ p′1S. When R diverges, the defender forces
the attacker to correctly simulate the moves of R. The attacker never reaches
pn, hence inducing an infinite game. Thus the defender wins and p1S ≈ p′1S.
The reader is referred to [8] for the detailed proof.

Theorem 1 ([8]). R halts iff p1S �≈ p′1S in MPR . 
	

From Srba’s construction, we observe that:

1. p1S has no ε-transitions
2. if there is a winning strategy for the attacker from (p1S, p

′
1S) then there is

one from (p1S, p
′
1S) beginning with a transition from p1S.

In general, let P be a PDS and p1α, p2β its configurations satisfying the condi-
tions:

1. p1α has no ε-transitions
2. if there is a winning strategy for the attacker from (p1α, p2β) then there is

one from (p1α, p1β) beginning with a transition from p1α.

Then we call the problem of checking whether p1α ≈ p2β the restricted PDS
bisimulation problem. It follows then from the construction in [8] that:

Theorem 2. The restricted PDS bisimulation problem is undecidable. 
	

We now reduce the restricted PDS bisimulation problem to the problem of check-
ing each of the bisimulation-based information flow properties for PDS’s. Let
the PDS P = (Q,Σ, Γ,−→, s0, S) and its configurations p1α, p2β be an in-
stance of the restricted PDS bisimulation problem. We construct P ′ from P
such that P ′ = (Q∪{s}, Σ∪{k, k̄}, Γ,−→′, s, S) such that s �∈ Q and −→′=−→
∪ {((s, k, S), (p1, α)), ((s, ε, S), (p2, β))} where k, k̄ are the only high (and input)
events. That is H = I = {k, k̄}. Informally, the induced LTSMP ′ of P ′ has a new

start state sS with a high-event k edge – sS
k→ p1α and an ε-edge – sS

ε→ p2β.
The initial part of the induced LTS MP ′ is shown in Fig. 3. We fix the PDS
P , its configurations p1α, p2β and the PDS P ′ constructed from P as described
above for the rest of the section.

Lemma 2. The configurations p1α and p2β are weakly bisimilar i.e., p1α ≈ p2β
in MP iff MP ′ satisfies BSNNI.

Proof. (⇐:) Suppose p1α �≈ p2β in MP . Then we have a winning strategy π for
the attacker from p1α and p2β inMP beginning with a move from p1α. We claim
that the attacker has a winning strategy in the game starting at sS (of MP ′ \H)
and sS (of MP ′/H). We now describe that strategy. The attacker chooses sS of
MP ′/H and takes the edge ε to p1α (Fig. 4). The defender now has to make a
move from sS of MP ′ \ H (Fig. 5) and has many choices.
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sS

p1α p2β

k ε

Fig. 3. MP ′

sS

p1α p2β

ε ε

Fig. 4. MP ′/H

sS

p1α p2β

ε

Fig. 5. MP ′ \ H

– Defender makes an ε-move to p2β. The attacker plays π and wins.
– Defender stays at sS. The attacker makes the first move according to
π. From the definition of the restricted PDS bisimulation problem, the first
move of π is a non-ε edge from p1α, say p1α

a→ r, for some state r inMP ′/H.
The defender is forced to respond with the same non-ε move from p2β, say
sS

ε→ p2β
a⇒ r′ for some state r′ in MP ′ \ H. Now the attacker can play

according to π and win, since π also serves as the winning strategy for the
attacker from (r, r′).

– Defender takes sS
ε→ p2β

ε⇒ q. Note that the non-ε responses enabled at
q are also enabled at p2β. Hence the attacker can play according to π and
win.

Thus the attacker has a winning strategy and hence sS (of MP ′ \H) and sS (of
MP ′/H) are not weakly bisimilar. Thus MP ′ does not satisfy BSNNI.

(⇒:) Suppose p1α ≈ p2β in MP . Then we have a winning strategy π for the
defender from p1α and p2β in MP . We now describe the winning strategy for
the defender from sS (of MP ′ \ H) and sS (of MP ′/H). There are three cases:

– Attacker chooses the transition sS
ε→ p1α in MP ′/H. The defender

chooses sS
ε→ p2β of MP ′ \ H and thereafter plays π to win.

– Attacker chooses the transition sS
ε→ p2β in MP ′/H. The defender

chooses sS
ε→ p2β of MP ′ \H and imitates the attacker from here on. Either

the attacker gets stuck or goes on to play the infinite bisimulation game. In
both cases, the defender wins.

– Attacker chooses sS
ε→ p2β in MP ′ \ H. The defender chooses sS

ε→ p2β
of MP ′/H and and imitates the attacker from here on. Either the attacker
gets stuck or goes on to play the infinite bisimulation game. In both cases,
the defender wins.

Thus the defender has a winning strategy and hence MP ′ \ H ≈ MP ′/H. Thus
MP ′ satisfies BSNNI. 
	

Lemma 3. MP ′ satisfies BSNNI iff MP ′ satisfies BNNI.

Proof. As H = I = {k, k̄}, we have H ∩ I = H. Hence MP ′ \ (H ∩ I) = MP ′ \ H.
Hence MP ′ satisfies BNNI iff MP ′ satisfies BSNNI. 
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We now consider the problem of checking BNDC for pushdown systems. Let
M = (QM ,H,→M ,m0) be any LTS in EH. We define an equivalence relation ≡
on the states of (MP ′ |M) \H as (qγ,m) ≡ (q′γ′,m′) if and only if qγ = q′γ′. For
every state (qγ,m) of (MP ′ |M) \H, let [qγ] = {(q′γ′,m′) | (q′γ′,m′) ≡ (qγ,m)}
denote its equivalence class. LetN = (QN , Σ,→N , [sS]) denote the quotient LTS

((MP ′ |M) \ H)/ ≡, where QN = {[qγ] | qγ is a state in MP ′}, [qγ] c→N [q′γ′],

c ∈ Σ ∪ {ε}, if and only if there exist states m,m′ in M such that (qγ,m)
c→

(q′γ′,m′) in (MP ′ |M)\H. Let N ′ be the LTS same as N with all the ε self loops

deleted. The Fig. 6 shows a part of the LTS N ′. The transition [sS]
ε→N [p1α]

is represented using dotted arrow indicating that the transition may or may not
be present. This transition is present if and only if there is a transition of the

form m0
k̄⇒M m for some state m. We note that M can have only transitions

with labels k, k̄ or ε. Thus the ε-transitions from M and the ε-transitions due to
synchronization betweenM andMP ′ on k, k̄, are the only possible contributions
from M to N .

[sS]

[p1α] [p2β]

ε ε

Fig. 6. N ′

Let R and S be two LTS’s. Let Rε be any LTS constructed from R by adding
ε self loops arbitrarily. Then it is easy to see that:

Lemma 4. R ≈ S iff Rε ≈ S.

Lemma 5. (MP ′ |M) \ H ≈ N ′.

Proof. We construct the winning strategy for the defender. The strategy is es-
sentially to mimic the moves of the attacker. The defender chooses to main-
tain the game at same positions (with respect to MP ′). That is, at any point
the attacker starts from ((qγ,m) and [qγ]) where qγ and m are states of MP ′

and M respectively. Consider the case when the attacker chooses the transition
[sS]

ε→N [p1α] inN
′. We observe that this happens only whenM has a transition

of the form m0
k̄⇒M m for some state m. The defender chooses the transition

(sS,m0)
ε⇒ (p1α,m) in (MP ′ |M) \ H, leaving the attacker to play from [p1α] of

N ′ and (p1α,m) of (MP ′ |M) \H. All the other cases are easy to see. Eventually
either the attacker gets stuck or goes on to play the infinite bisimulation game.
In both cases, the defender wins. Hence (MP ′ |M) \ H ≈ N ′. for the attacker’s
initial choices. 
	

Lemma 6. The configurations p1α and p2β are weakly bisimilar i.e., p1α ≈ p2β
in MP iff MP ′ satisfies BNDC.
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Proof. (⇐:) Suppose p1α �≈ p2β inMP . From Lemma 2, we know thatMP ′ does
not satisfy BSNNI. That is,MP ′ \H �≈MP ′/H. Consider the LTSM = ({m}, H,
∅, m). We note thatM ∈ EH. It is easy to see thatMP ′ |M is isomorphic toMP ′ .
This implies that (MP ′ |M) \ H �≈MP ′/H. Hence MP ′ does not satisfy BNDC.

(⇒:) Suppose p1α ≈ p2β in MP . Then we have a winning strategy π for the
defender from p1α and p2β in MP . Let M = (QM ,H,→M ,m) be any LTS in
EH. From Lemma 5, we know that (MP ′ |M) \H ≈ N ′. It is easy to see that the
subtrees of [p1α] and [p2β] in N

′ are isomorphic to the subtrees of p1α and p2β
in MP ′ respectively. We now show that N ′ ≈ MP ′/H. We construct a winning
strategy for the defender. Consider the different cases for the attacker’s choices.

– Attacker chooses the transition [sS]
ε→N [p2β] in N ′. The defender

chooses sS
ε→ p2β of MP ′/H. The defender imitates the attacker choices

(with respect to the states fromMP ′) from here on. Either the attacker gets
stuck or goes on to play the infinite bisimulation game. In both cases, the
defender wins.

– Attacker chooses the transition [sS]
ε→N [p1α] in N ′. The defender

chooses sS
ε→ p1α from MP ′/H. The defender imitates the attacker choices

(with respect to the states of MP ′) from here on. Either the attacker gets
stuck or goes on to play the infinite bisimulation game. In both cases, the
defender wins.

– Attacker chooses the transition sS
ε→ p2β in MP ′/H. The defender

chooses [sS]
ε→ [p2β]. The defender imitates the attacker choices (with re-

spect to the states of MP ′) from here on. Either the attacker gets stuck or
goes on to play the infinite bisimulation game. In both cases, the defender
wins.

– Attacker chooses the transition sS
ε→ p1α in MP ′/H. Note that there

may not be a transition of the form [sS]
ε→N [p1α] as shown in Fig. 6. The

defender chooses [sS]
ε→ [p2β]. The defender plays π from here on and wins.

Hence the defender has a winning strategy and thusN ′ ≈MP ′/H. From Lemma 5
and the transitive property of≈, we have (MP ′ |M)\H ≈MP ′/H for anyM ∈ EH .
Thus MP ′ satisfies BNDC. 
	

It follows from Lemmas 2, 3 and 6 that the problem of checking BNNI, BSNNI
and BNDC for pushdown systems is undecidable. Now we consider the properties
SBNNI, SBSNNI and SBNDC.

Lemma 7. The configurations p1α and p2β are weakly bisimilar i.e., p1α ≈ p2β
in MP iff MP ′ satisfies SBSNNI.

Proof. (⇐:) Suppose p1α �≈ p2β in MP . Then from Lemma 2, MP ′ does not
satisfy BSNNI. Hence MP ′ does not satisfy SBSNNI.

(⇒:) Suppose MP ′ does not satisfy SBSNNI. Then there exists some state m
in MP ′ such that m of MP ′ \H and m of MP ′/H are not weakly bisimilar. Then
there exists a winning strategy π for the attacker from m of MP ′/H and m of

MP ′ \H. Note that there are no H-edges in MP ′ except for sS
k→ p1α. Hence for
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all states m other than sS, m of MP ′/H and m of MP ′ \H are weakly bisimilar.
This implies that sS ofMP ′/H and sS ofMP ′ \H are not weakly bisimilar. Then
MP ′ does not satisfy BSNNI. From Lemma 2, we have p1α �≈ p2β in MP . 
	

Lemma 8. MP ′ satisfies SBSNNI iff MP ′ satisfies SBNNI.

Proof. From Lemma 3, MP ′ satisfies BSNNI if and only if MP ′ satisfies BNNI.
Hence MP ′ satisfies SBSNNI if and only if MP ′ satisfies SBNNI. 
	

Lemma 9. The configurations p1α and p2β are weakly bisimilar i.e., p1α ≈ p2β
in MP iff MP ′ satisfies SBNDC.

Proof. (⇐:) Suppose p1α �≈ p2β in MP . Then there is a winning strategy π for
the attacker from p1α and p2β in MP begining with p1α. We show that the
strategy π serves as the winning strategy for the attacker from sS and p1α of
MP ′ \H as well. From the definition of the restricted PDS bisimulation problem,
the attacker chooses a non-ε transition from p1α in π as the first move, say
p1α

a→ q for some a ∈ Σ and q ∈ Q × Γ ∗. The defender is forced to choose
sS

ε→ p2β
a⇒ q′ for some q′ ∈ Q× Γ ∗. For any choice of q′ from the defender, π

serves as the winning strategy for the attacker from sS and p1α of MP ′ \ H as
well. Thus sS of MP ′ \ H and p1α of MP ′ \ H are not weakly bisimilar. Hence
MP ′ does not satisfy SBNDC.

(⇒:) Suppose p1α ≈ p2β. Then there is a winning strategy π for the defender
from p1α and p2β inMP . We now describe the winning strategy for the defender
from sS and p1α ofMP ′\H. Consider the different cases for the attacker’s choices.

– Attacker chooses sS
ε→ p2β. The defender stays at p1α itself. From the

next round, the defender plays according to π and wins.
– Atacker chooses some transition from p1α. The defender chooses the

transition from p2β according to π after sS
ε→ p2β.

Thus defender has a winning strategy and hence sS ≈ p1α in MP ′ \ H. Hence
MP ′ satisfies SBNDC. 
	

Finally from Lemmas 2, 3, 6, 7, 8 and 9 we have:

Theorem 3. The problem of model-checking pushdown systems for any of the
bisimulation-based properties - BNNI, BSNNI, BNDC, SBNNI, SBSNNI and
SBNDC is undecidable. 
	

5 Model Checking Petri Nets

We study the problem of model checking each of the bisimulation-based infor-
mation flow properties in Definition 2 for Petri nets. We begin by defining a
Petri net. Let N denote the set of nonnegative integers.
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Definition 5. A Petri net (PN) is a tuple N = (P, T,Σ, F, L,M0), where P
and T are finite disjoint sets of places and transitions respectively, Σ is a finite
set of actions, F : (P × T ) ∪ (T × P ) �→ N is a flow function, L : T �→ Σ ∪ {ε}
is a labelling and M0 is an initial marking (a marking is a function M : P �→ N
that gives the number of tokens for each place).

A PN N = (P, T,Σ, F, L,M0) naturally induces an LTS MN = (Q,Σ,→,M0)
where Q is the set of markings and → is the set of transitions. A transition t is

enabled at a marking M , denoted by M
t→, if M(p) ≥ F (p, t), for every p ∈ P . A

transition t enabled at a marking M may fire yiedling the marking M ′, denoted

by M
t→ M ′, where M ′(p) = M(p) − F (p, t) + F (t, p), for all p ∈ P . For any

c ∈ Σ ∪ {ε}, by M c→M ′ we mean that M
t→M ′ for some t with L(t) = c.

The problem of model checking a bisimulation-based information flow property
θ for PN’s is – given a PN N , does MN satisfy θ? We show that this problem is
undecidable for each of the properties in Definition 2.

Jancar [9] shows that the problem of checking strong bisimilarity for PN’s is
undecidable by a reduction from the halting problem of Minsky machines. Given
a Minsky machine R with two counters c1 and c2 (cf. Definition 4), he constructs
PN’s N1 = (P1, T1, F1, L1,M1) and N2 = (P2, T2, F2, L2,M2) such that R halts
if and only ifM1 �≈M2. For every instruction label Li, 1 ≤ i ≤ n, of R, the places
s1i and s2i are created in N1 and N2 respectively. The places c11, c

1
2 and c21, c

2
2 are

created corresponding to the counters c1 and c2 of R in N1 and N2 respectively.
The PN’s N1 and N2 simulate the moves of R. At s1n the transition t1F is enabled
only when s1n has at least one token. The transition t2F is not enabled even when
s2n has tokens. So, when R halts, the attacker simulates R’s halting computation
in N1 forcing the defender to simulate R’s moves in N2. The attacker reaches
the marking with s1n having at least one token. He wins by making a t1F move for
which the defender does not have a matching response. Hence the attacker wins
and M1 �≈M2. When R diverges, the defender forces the attacker to simulate R
moves either in N1 or N2. This induces an infinite game and the defender wins.
Thus M1 ≈M2.

As in the case of Srba’s pushdown system construction, here also we observe
that if there is a winning strategy for the attacker from (M1,M2), there is one
beginning with M1. There are no ε-transitions in N1 and N2. Hence in general,
let M1 and M2 be markings in N1 and N2 respectively such that M1 does not
have any ε-transitions and if there is a winning strategy for the attacker from
(M1,M2), then there is one beginning with M1. Then we call the problem of
checking whether M1 ≈ M2, the restricted PN bisimulation problem. It follows
then from Jancar’s construction that:

Theorem 4. The restricted PN bisimulation problem is undecidable. 
	

We reduce the restricted PN bisimulation problem to the problem of checking
each of the bisimulation-based information flow properties for PN’s. Let the PN’s
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N1 = (P1, T1, F1, L1,M1) and N2 = (P2, T2, F2, L2,M2) be an instance of the
restricted PN bisimulation problem. We assume that the sets P1, P2 and T1, T2
are disjoint. We construct a PN N from N1 and N2 such that N = (P1∪P2∪{s},
T1 ∪ T2 ∪ {tk, tε}, Σ ∪ {k, k̄}, F , L, M) where k, k̄ are the only high (and input)
events. That is H = I = {k, k̄}. The initial markingM has one token at s and no
tokens at all other places i.e., M(s) = 1 and M(p) = 0, p �= s. The components
F and L are described in Fig. 7.

F (x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

F1(x, y) if both x and y are in N1

F2(x, y) if both x and y are in N2

1 if (x, y) = (s, tk)
1 if (x, y) = (s, tε)
M1(y) if x = tk and y in N1

M2(y) if x = tε and y in N2

L(t) =

⎧⎪⎪⎨
⎪⎪⎩

L1(t) if t ∈ T1

L2(t) if t ∈ T2

k if t = tk
ε if t = tε

Fig. 7. Description of PN N

1 s

ktk ε tε

0

p1

0

p2

0

q1

0

q2

N1 N2

· · · · · ·

· · · · · ·

1 1

M1(p1) M1(p2) M2(q1) M2(q2)

Fig. 8. Constructed Petri net N

The PN N is shown in Fig. 8. Informally, the induced LTS MN of N has

the initial marking M with a high-event k edge – M
k→ M ′ where M ′(s) = 0,

M ′(p) =M1(p) when p ∈ P1,M
′(p) = 0 when p ∈ P2, and an ε-edge –M

ε→M ′′

where M ′′(s) = 0, M ′′(p) = 0 when p ∈ P1, M
′′(p) = M2(p) when p ∈ P2. The

initial part of the induced LTS MN is shown in Fig. 9. We fix the PN’s N1, N2,
its markings M1,M2 respectively and the PN N constructed from N1, N2 as
described above for the rest of the section.

Lemma 10. The markings M1 and M2 are weakly bisimilar i.e., M1 ≈ M2 iff
MN satisfies BSNNI.
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M

M ′ M ′′

k ε

Fig. 9. MN

M

M ′ M ′′

ε ε

Fig. 10. MN/H

M

M ′ M ′′

ε

Fig. 11. MN \ H

Proof. From Definition 2, we need to show that M1 ≈ M2 if and only if M of
MN/H (cf. Fig. 10) and M of MN \ H (cf. Fig. 11) are weakly bisimilar. It is
easy to prove this from the arguments similar to the arguments in the proof of
Lemma 2. 
	

Likewise from the similar arguments as in Section 4, we have:

Theorem 5. The problem of model-checking Petri nets for any of the bisimulation-
based properties - BNNI, BSNNI, BNDC, SBNNI, SBSNNI and SBNDC is un-
decidable. 
	

6 Model Checking Process Algebras

We now study the problem of model checking each of the bisimulation-based
information flow properties in Definition 2 for process algebras. We begin by
defining a process algebra.

Definition 6. Let Const be a set of process constants. The class of process
expressions over Const is given by E ::= ε | X | E.E | E‖E where ‘ε’ is the
empty process, X ranges over Const, ‘.’ is the operator of sequential composition,
and ‖ stands for parallel composition.

A process algebra (PA) N is a tuple (P,Σ,Δ) where P is the initial process

expression, Σ is an alphabet and Δ is a finite set of rules of the form X
c−→ E

where X ∈ Const, c ∈ Σ ∪ {ε} and E is a process expression.
A PA N = (P,Σ,Δ) determines an LTS MN = (Q,Σ,→, P ) where the states

in Q are process expressions and the transition → is the least relation satisfying
the following rules. Let c ∈ Σ ∪ {ε}.

(X
c→ E) ∈ Δ
X

c→ E

E
c→ E′

E.F
c→ E′.F

E
c→ E′

E‖F c→ E′‖F
F

c→ F ′

E‖F c→ E‖F ′

The problem of model checking a bisimulation-based information flow property
θ for PA’s is – given a PA N , does MN satisfy θ? We show that this problem is
undecidable for each of the properties in Definition 2.
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Srba [10] has shown that the problem of checking weak bisimilarity for pro-
cess algebras is undecidable by a reduction from Post’s correspondence problem.
The Post’s correspondence problem (PCP) is defined as – given a nonempty
alphabet Σ and two lists A = [u1, u2, . . . , un] and B = [v1, v2 . . . , vn] where
n > 0 and uk, vk ∈ Σ+ for all k, 1 ≤ k ≤ n, the question is to decide whether
the (A,B)-instance has a solution, i.e., whether there is an integer m ≥ 1 and
a sequence of indices i1, i2, . . . , im ∈ {1, 2, . . . , n} such that ui1ui2 · · ·uim =
vi1vi2 · · · vim . According to the classical result due to Post, this problem is
undecidable [16].

Given a (A,B)-instance of PCP, Srba constructs a PA N and two process
expressions X‖C and X ′‖C such that (A,B)-instance has a solution if and only
ifX‖C ≈ X ′‖C. As in the case of Srba’s pushdown system construction, here also
we observe that if there is a winning strategy for the attacker from (X‖C,X ′‖C),
there is one beginning with X‖C. There are no ε-transitions at X‖C. Hence in
general, let E and F be two process expressions of a PA N such that E does not
have any ε-transitions and if there is a winning strategy for the attacker from
(E,F ), then there is one beginning with E. Then we call the problem of checking
whether E ≈ F , the restricted PA bisimulation problem. It follows then from
Srba’s construction that:

Theorem 6. The restricted PA bisimulation problem is undecidable. 
	

We reduce the restricted PA bisimulation problem to the problem of checking
each of the bisimulation-based information flow properties for PA’s. Let the PA
N = (P,Σ,Δ) and its process expressions E,F be an instance of the restricted
PA bisimulation problem. Then we construct N ′ from N such that N ′ = (S,Σ∪
{k, k̄}, Δ ∪ {S k→ E, S

ε→ F}) where S �∈ Consts of N , k, k̄ are the only high
(and input) events. That is H = I = {k, k̄}.

From the similar arguments as in Section 4 and using the construction of N ′

as described above, we have:

Theorem 7. The problem of model-checking process algebras for any of the
bisimulation-based properties - BNNI, BSNNI, BNDC, SBNNI, SBSNNI and
SBNDC is undecidable. 
	

7 Conclusions

We have shown that model-checking bisimulation-based information flow prop-
erties, proposed in the literature, for some well-known classes of infinite state
systems is undecidable.

The problem of checking when two deterministic pushdown systems are weakly
bisimilar has been shown to be decidable in [17]. This does not imply directly
the decidability of checking bisimulation-based properties for deterministic
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pushdown systems. This is because the hiding operation may make the system
non-deterministic.

Basic process algebras (BPAs) and Basic parallel processes (BPPs) are sub-
classes of pushdown systems. The decision problem of checking two BPAs or two
BPPs for weak bisimilarity is still open. However it is decidable to check whether
two totally normed BPAs or two totally normed BPPs are weakly bisimilar [18].
It will be interesting to explore the model-checking problem for these classes.

Acknowledgements. We thank Jiri Srba, Colin Stirling and Faron Moller for
insightful email discussions.
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Abstract. Identity-based traitor tracing (IBTT) scheme can be utilized
to identify a private (decryption) key of any identity that is illegally used
in an identity-based broadcast encryption scheme. In PKC’07, Abdalla
et al. proposed the first IBTT construction with short private key. In
CCS’08, Boneh and Naor proposed a public-key traitor tracing, which
can be extended to IBTT with short ciphertext. With a further ex-
ploration, in this paper, we propose the first IBTT with short private
key and short ciphertext. Private key and ciphertext are both order of
O(l1+ l2), where l1 is the bit length of codeword of fingerprint codes and
l2 is the bit length of group element. To present our IBTT scheme, we in-
troduce a new primitive called identity-based set encryption (IBSE), and
then describe our IBTT scheme from IBSE and fingerprint codes based
on the Boneh-Naor paradigm. Our IBSE scheme is provably secure in
the random oracle model under the variant of q-BDHE assumption.

Keywords: Traitor tracing, identity-based, private key, ciphertext.

1 Introduction

1.1 Traitor Tracing

The concept of traitor tracing was introduced by Chor, Fiat, and Naor in [13].
One of the applicable scenarios of traitor tracing is to provide copyright pro-
tection in a Pay-TV setting. A copyrighted TV program is encrypted using a
secure encryption scheme, where only legitimate subscribers are assigned with a
decryption key for decrypting the program. An obvious problem in this scenario
is that a Pay-TV subscriber could sell its decryption key to non-subscribers so
that they can receive the program illegally and can even produce pirate decoders.
Traitor tracing was proposed to identify the traitors who violate the copyright
restrictions. A traitor tracing scheme comprises an encryption key, a tracing key
and n decryption keys, where n is the number of users. Each legitimate user
(subscriber) is given a unique decryption key, and any of the decryption keys
can decrypt the encrypted item. More importantly, the tracing key can trace
at least one decryption key used to create pirate decoders. A traitor tracing is

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 609–626, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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said to be t-collusion resistant if the tracing is still successful against t colluded
users (traitors).

The concept of identity-based traitor tracing (IBTT) was introduced by
Abdalla et al. [2]. IBTT provides the tracing capability for identity-based en-
cryption, where the private key of each identity is possessed by a group user.
The ID-based traitor tracing exhibits broader applications. To motivate this,
let us consider a more complex Pay-TV scheme. Subscribers could subscribe to
multiple channels, which are sold separately. Hence, if each channel requires a
distinct encryption key, many keys will be required. There is also an implication
of key expiry. If a decryption key is expired, the entire scheme must be reset
and re-encryptions are required. The non-ID-based schemes are inapplicable to
this scenario, while the IBTT scheme is desirable. In an IBTT scheme, the en-
cryption key can be the channel name along with an expiry date. The Pay-TV
dealer only needs to manage the master secret key of the IBTT scheme and can
easily handle the key management and revocation.

1.2 State of the Art

IBTT constructions are built from identity-based encryptions and fingerprint
codes. The first approach proposed by Abdalla et al. [2] is based on the identity-
based encryption with wildcards (WIBE) [1] and fingerprint codes. This IBTT
construction provides a short private key, consisting of one codeword and three
group elements. The ciphertext has to be sufficiently long and it consists of O(l1)
number of group elements, where l1 is the bit length of codeword. The second
approach introduced by Boneh and Naor [8] enables IBTT construction from
any IBE and fingerprint codes. This generic construction is short in ciphertext
consisting of one index and two constant-size ciphertexts of IBE. The private key
has to be sufficiently long and consists of one l1-bit codeword and O(l1) number
of private keys of IBE.

The existing IBTT schemes can only offer either a short private key or a short
ciphertext, but not both. Since long private key increases the hardware cost of
secure storage and long ciphertext requires a big bandwidth in communication,
our goal is to achieve both short private key and short ciphertext. In this paper,
we propose an IBTT scheme based on a new encryption primitive and fingerprint
codes. Our IBTT construction captures both features of short private key and
short ciphertext. The comparison is given in Table 1.

Table 1. Comparison of identity-based traitor tracing. Here, l1 denotes the bit length
of codeword and l2 denotes the bit length of group element.

IBTT Schemes Private Key Size Ciphertext Size

[2] O(l1 + l2) O(l1l2)

[8] O(l1l2) O(l1 + l2)

Ours O(l1 + l2) O(l1 + l2)
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1.3 Our Contributions

We propose the first IBTT with short private key and short ciphertext. Intu-
itively, our IBTT scheme can be outlined as follows. Let n be the number bound
of users for each identity, t be the collusion bound, and l1 be the correspond-
ing codeword length of fingerprint codes [30,10]. Our t-collusion resistant IBTT
scheme generates both private key and ciphertext of size O(l1 + l2), where l2
denotes the length of group element. Precisely, our private key consists of one
codeword and two group elements; our ciphertext is composed of one index and
two constant-size ciphertexts. Our IBTT scheme utilizes the fingerprint codes
and it gives the black-box tracing capability [23]. It provides the same properties
as other code-based traitor tracing schemes, where it is applicable for stateless
pirate decoders and the tracing key is secret.

We construct our IBTT from fingerprint codes and a new cryptographic primi-
tive: identity-based set encryption (IBSE). Roughly speaking, in an IBSE scheme,
an aggregated private key of identities ID = {ID1, ID2, · · · , IDL} can decrypt
all ciphertexts for any identity ID ∈ ID as long as the encryption for identity ID
takes input an additional identity set SID satisfying ID ⊆ SID. For example, let
ID = {ID1, ID2} and SID = {ID1, ID2, ID3, ID4}. If a message is encrypted us-
ing ID1 (or ID2) and SID, the private key of ID enables to decrypt the message.
Our generic IBTT construction shows that the private key of IBTT is composed
of one codeword of fingerprint codes and two private keys of IBSE. The cipher-
text of IBTT consists of an index and two ciphertexts of IBSE. Therefore, the
private key size and the ciphertext size of IBTT are heavily dependent on its
original IBSE scheme. In the remainder of this paper, we focus on constructing a
secure IBSE scheme with a short private key and a short ciphertext, where both
sizes are constant independent of the cardinality of ID and SID. The proposed
IBSE scheme in this paper is provably secure in random oracles based on the
variant of q-BDHE assumption [5,7].

1.4 Related Work

Since its seminal introduction in [13], many schemes in developing traitor trac-
ing have been produced. A summary of traitor tracing categories can be found
in [9,8,3]. Notably, Kiayias and Yung [23] and other researchers (e.g. [12,15,8,3]
introduced a black-box tracing scheme, where the tracing procedure is only al-
lowed to have black-box access to pirate decoders. Naor and Pinkas [24] and
others (e.g. [11,17]) proposed a trace-and-revoke scheme, where decryption keys
in pirate decoders can be traced and then revoked without affecting any other
legitimate decoders. Pfitzmann [25] and other researchers [22,12] achieved pub-
lic traceability in which the tracing key can be public. Kiayias and Yung [21]
and others [26,29] explored stateful pirate decoders, which can keep the state
between decryptions.

Since the seminal work of fingerprint codes introduced by Boneh and-
Shaw [10], many code-based traitor tracing schemes have been proposed
[23,27,26,29,15,8,3]. These schemes exhibit black-box tracing capability, and the
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schemes in [8,3] even offer constant-size ciphertext. The main drawback of code-
based traitor tracing schemes is the large private key size, which is significantly
dependent on the length of codewords. The imperfect decoders further increase
the private key length. We refer the readers to [8,3] for further discussions.

Traitor tracing schemes associated with short ciphertext have been studied
in [23,15,9,8,3]. Some of them [23,15] achieved a constant rate for long messages
but not a constant size. Boneh, Sahai and Waters [9] proposed a scheme with a
ciphertext size O(

√
n) and a constant-size private key, where n is the number of

users. Using fingerprint codes, it is able to achieve constant-size ciphertext [8,3],
but the private-key size is large. To the best of our knowledge, there exists no
traitor tracing schemes where both ciphertext and private key are short or have
a constant size.

Identity-based traitor tracing was first introduced by Abdalla et al. [2]. They
managed to achieve a short private key from the IBE scheme with wildcards
[1,31], where the private key is composed of one codeword and three group
elements. However, the ciphertext is not constant and composed of O(l1) number
of group elements for an l1-bit codeword.

It seems not hard to construct identity-based traitor tracing schemes with
short ciphertext by extending the code-based traitor tracing scheme [8,3,4] into
code-based identity-based traitor tracing using an identity-based encryption.
This type of construction, however, is not more efficient than code-based public
key traitor tracing in terms of private-key size, which requires O(l1) number of
group elements for an l1-bit codeword.

A potential approach for reducing the private-key size of code-based IBTT
could be by building the traitor tracing scheme from another variant of identity-
based encryption scheme. For example, we can replace an IBE scheme with
a multi-identity and a single-key decryption scheme (MISKD) [19,20], where
many private keys of distinct identities can be aggregated into a single one.
This single private key decrypts all ciphertexts for any identity mapped to this
key. Unfortunately, the current MISKD schemes are accompanied with a linear-
size ciphertext, which is determined by the aggregated number of private keys.
It is a tradeoff between utilizing IBE scheme and MISKD scheme for IBTT
construction. The IBE-based IBTT gives a long private key, while the MISKD-
based IBTT gives a long ciphertext. We will present a detailed comparison of
IBE, MISKD and our IBSE schemes in later sections.

2 Identity-Based Set Encryption and Identity-Based
Traitor Tracing

In Appendix A, we review the definition of fingerprint codes [30,10] and identity-
based traitor tracing (IBTT) [2]. Instead of directly proposing our IBTT, we
first define the new primitive of identity-based set encryption (IBSE) and give a
generic construction of IBTT from IBSE and fingerprint codes. Then in the rest
of this paper we propose a concrete IBSE that enables the IBTT construction
with short private key and short ciphertext.
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2.1 Definition of Identity-Based Set Encryption

In identity-based set encryption (IBSE), messages are encrypted to a single re-
cipient identity. This is the common feature among the encryption notions of
IBE, MISKD [19,20] and our IBSE. In comparison with IBE, IBSE produces
three differences as follows.

– The key generation algorithm of IBSE enables to compute a single private
key for multi-identity ID = {ID1, ID2, · · · , IDL}. Normally, this private key
dID is shorter in length than the sum of all separated private keys from a
traditional IBE.

– The encryption algorithm of IBSE requires the recipient’s identity ID along
with an identity set SID, if the private key of recipient is dID for multi-identity
ID including ID. The encryption algorithm allows to pick any identity set
SID satisfying ID ⊆ SID.

– The decryption algorithm of IBSE requires the private key dID of ID along
with the recipient’s identity ID, the multi-identity ID and the identity set
SID. Decryption on a ciphertext for ID requires ID ∈ ID and ID ⊆ SID.

In comparison with MISKD, IBSE requires an identity set SID satisfying ID ⊆
SID in both encryption and decryption. IBSE can be seemed as a variant of
MISKD by setting SID as the universe. We compare IBSE to IBE and MISKD
in Table 2.

Table 2. Comparison of IBE, MISKD and IBSE

Schemes Key Generation Encryption Decryption Decryption Condition

IBE ID ID dID –

MISKD ID ID dID, ID, ID ID ∈ ID
IBSE ID ID,SID dID, ID, ID, SID ID ∈ ID & ID ⊆ SID

An IBSE scheme consists of four algorithms as follows.

SetupS(N, λ). The setup algorithm takes as input N , the cardinality of identity
set (i.e., |SID| = N), and a security parameter λ, and returns a master public
key MPK and a master secret key MSK.

KGenS(ID,MSK). The key generation algorithm takes as input identities ID =
{ID1, ID2, · · · , IDL} with L ≤ N and the master secret keyMSK, and returns
a private key dID for {ID1, ID2, · · · , IDL}.
EncS(ID, SID,M,MPK). The encryption algorithm takes as input an identity
ID, the identity set SID containing N distinct identities (including ID) and the
message M , and returns a ciphertext C ← EncS(ID, SID,M,MPK).

DecS(C, dID, ID, ID, SID). The decryption algorithm takes as input the cipher-
text C, the private key dID, identity ID, identities ID and the identity set SID.
The algorithm returns a message M or ⊥.
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The correctness requires that for all (MPK,MSK), ID, ID, SID, and dID if
ID ∈ ID and ID ⊆ SID, we have

DecS
(
EncS(ID, SID,M,MPK), dID, ID, ID, SID

)
=M.

Security. The full security notion for IBSE scheme is similar to the IND-ID-CCA
notion for IBE scheme. We name it IND-ID-Set-CCA, which is secure against
chosen-ciphertext attack. It is stated as follows:

Setup. The challenger runs the SetupS(N, λ) algorithm to generate
(MPK,MSK) and gives the adversary MPK.

Phase 1. The adversary makes private key queries and decryption queries.

– For a private key query on ID (|ID| ≤ N) from the adversary, the challenger
runs the KGenS(ID, MSK) algorithm, and returns the private key dID to
the adversary.

– For a decryption query on (ID, SID, ID, C) from the adversary, the challenger
runs the KGenS(ID, MSK) algorithm to compute dID, runs the decryption
algorithm DecS(C, dID, ID, ID, SID), and returns the decryption result to
the adversary.

Challenge. The adversary outputs (ID∗, SID∗ ,M0,M1) to be challenged, where
ID∗ ∈ SID∗ . This challenge identity must be different from other identities for
private key query. The challenger responds by flipping a coin c ∈ {0, 1}, running
the EncS(ID

∗, SID∗ ,Mc) algorithm, and returning the challenge ciphertext C∗

to the adversary.

Phase 2. The adversary can make further private key queries and decryption
queries in this phase, except a private key query on any ID satisfying ID∗ ∈ ID
and all decryption queries on C∗ for ID∗.
Guess. The adversary returns a guess c′ ∈ {0, 1} and wins the game if c′ = c.

Remark 1. In this security model, the adversary submits both ID∗ and S∗ID for
challenge. Let ID be the identities queried in the security model. There are two
different definitions on ID with regard to (ID∗, SID∗).

– ID∗ cannot be one of identities in ID.
– ID∗ can be one of identities in ID, but ID � S∗ID.

We adopt the first definition for our IBSE scheme. Notice that the second defini-
tion is more stronger but it does not fit for those schemes with dynamic key aggre-
gation. For example, let dID1

be the private key of ID1 = {ID1, ID2, ID3, ID4},
and dID2 be the private key of ID2 = {ID1, ID2}. If the private key dID3 of
ID3 = {ID3, ID4} is computable from dID1

and dID2
, it is easy to verify the

stronger definition does not work when ID∗ = ID3, SID∗ = ID3, and the pri-
vate key query on ID1 is allowed.

We let the number of private key query be q1 and let the number of decryption
query be q2. We define the advantage of the adversary in the above game as
AdvS =

∣∣Pr[c′ = c]− 1
2

∣∣.
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Definition 1. An IBSE scheme is (T, q1, q2, ε)-secure against IND-ID-Set-CCA
attacks if for all T -polynomial time adversaries who make q1 private key queries
at most and q2 decryption queries at most, we have ε = AdvS is a negligible
function of λ.

Definition 2. An IBSE scheme is (T, q1, 0, ε)-secure against IND-ID-Set-CPA
attacks if for all T -polynomial time adversaries who make q1 private key queries
at most and 0 decryption queries at most, we have ε = AdvS is a negligible
function of λ. In this case, we write (T, q1, ε) the shorthand of (T, q1, 0, ε).

2.2 Generic Construction of IBTT

Let (SetupS,KGenS,EncS,DecS) be an identity-based set encryption scheme and
(GenFC,TraFC) be a fingerprint code. Our identity-based traitor tracing scheme
is described as follows:

SetupT (λ). Let l1 = l1(λ) be the length of codeword in the fingerprint codes.
The setup algorithm of IBTT scheme sets N = l1, and runs the SetupS algorithm
two times to generate two key pairs (MPKS0 ,MSKS0) and (MPKS1,MSKS1).
The master public key MPK and the master secret key MSK are

MPK =
(
MPKS0,MPKS1

)
, MSK =

(
MSKS0,MSKS1

)
.

KGenT (ID,MSK). The algorithm works as follows:

– Run the GenFC algorithm to generate (ΓID, tkID) for ID, where ΓID =
{w(1), w(2), · · · , w(n)} and tkID is the tracing key. We require that the GenFC

algorithm always computes the same (ΓID, tkID) for ID. This can be accom-
plished, for example, using a pseudo-random function.

– Let IDID,i,0 and IDID,i,1 be two identity sets defined as

IDID,i,0 =
{
ID|k|0 : k = 1, 2, · · · , l1, s.t. w(i)

k = 0
}

IDID,i,1 =
{
ID|k|1 : k = 1, 2, · · · , l1, s.t. w(i)

k = 1
}
.

Compute the private keys

dIDID,i,0
← KGenS

(
IDID,i,0,MSKS0

)
, dIDID,i,1

← KGenS
(
IDID,i,1,MSKS1

)
.

The private key of ID for the ith user is dID,i = (w(i), dIDID,i,0
, dIDID,i,1

).

EncT (ID,M,MPK). The algorithm works as follows:

– Let SID,0 and SID,1 be two identity sets defined as

SID,0 =
{
ID|k|0 : k = 1, 2, · · · , l1

}
, SID,1 =

{
ID|k|1 : k = 1, 2, · · · , l1

}
.

– Choose j ∈ {1, 2, · · · , l1} at random and compute

CID,0 ← EncS
(
ID|j|0, SID,0, M, MPKS0

)
CID,1 ← EncS

(
ID|j|1, SID,1, M, MPKS1

)
.
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The ciphertext is C =
(
j, CID,0, CID,1

)
.

DecT (C, dID,i). For the ith user with the private key dID,i, if w
(i)
j = 0, compute

IDID,i,0 and SID,0 from ID and w(i), and output

DecS
(
CID,0, dIDID,i,0

, ID|j|0, IDID,i,0, SID,0

)
.

Otherwise, compute IDID,i,1 and SID,1 from ID and w(i), and output

DecS
(
CID,1, dIDID,i,1

, ID|j|1, IDID,i,1, SID,1

)
.

TraceT (PDID, ID,MSK). The tracing algorithm works as follows:

– For j = 1, 2, · · · , l1, randomly choose a messageMj �= 0 and does as follows:

• Compute the ciphertexts

CID,0 ← EncS
(
ID|j|0, SID,0,Mj,MPKS0

)
C′

ID,1 ← EncS
(
ID|j|1, SID,1, 0 ,MPKS1

)
.

• Send Cj = (j, CID,0, C
′
ID,1) to the pirate decryption box PDID.

• Let the return from PDID be M ′
j. Define the bit wj = 0 if M ′

j =Mj or
wj = 1 otherwise.

Output the l1-bit codeword w
∗ = w1w2 · · ·wl1 .

– Compute the tracing key tkID for ID from GenFC . Run the TraFC(w
∗, tkID)

algorithm to output the set of traitors TID ⊆ {1, 2, · · · , n}.

Our IBTT scheme above is extended from the Boneh-Naor public-key traitor
tracing scheme [8]. We do not change their paradigm, but replace the public-key
encryption scheme with the IBSE scheme. The following theorem shows that our
IBTT scheme is t-collusion resistant. Due to the page limit, we defer the proof
in the full version of this paper.

Theorem 1. Given an identity-based set encryption scheme (SetupS,KGenS,EncS,
DecS), which is IND-ID-Set-CPA secure and fingerprint codes (GenFC,TraFC), which
is t-collusion resistant, our IBTT scheme is a t-collusion resistant identity-based
traitor tracing scheme.

Particularly, using the notation of appendix A, for all t > 0, n > t, and all
polynomial time adversaries attacking IBTT, there exist polynomial time adver-
saries attacking IBSE such that

AdvsT ≤ (2l1) · AdvS , AdvcT ≤ l1 · AdvS + AdvFC +
l1
|M| ,

where l1 denotes the bit length of codeword and M denotes the message space.



Identity-Based Traitor Tracing with Short Private Key and Short Ciphertext 617

2.3 Comparison of IBTT Constructions

We give an IBTT construction from IBSE scheme in subsection 2.2 by following
the Boneh-Naor paradigm. Notice that the IBSE scheme used to construct the
IBTT scheme can be replaced with IBE scheme (e.g. [6,31,18]) or MISKD scheme
(e.g.[19,20]). The difference is the representation of private key and ciphertext.
In our generic IBTT scheme, each private key is associated with one codeword

w(i) and l1 distinct identities {ID|k|w(i)
k : k = 1, 2, · · · , l1}. And each cipher-

text is composed of one index j and two ciphertexts of its original encryption
scheme. If the encryption scheme is the MISKD or IBSE, according to our above
construction, the private keys associated with l1 identities can be aggregated
into two private keys. Otherwise, it will produce l1 private keys using the IBE
scheme.

Let KX be the private key and CX be the ciphertext of X encryption scheme.
Let X→ IBTT be the IBTT construction from X encryption scheme. We give a
summary of private key length and ciphertext length in Table 3.

Table 3. Comparison of IBTT constructions

Constructions Private Key Size Ciphertext Size
IBE→ IBTT |w|+l1 · |KIBE | |j|+ 2 · |CIBE |

MISKD→ IBTT |w|+2 · |KMISKD| |j|+ 2 · |CMISKD|
IBSE→ IBTT |w|+2 · |KIBSE| |j|+ 2 · |CIBSE |

The table exhibits that only MISKD→ IBTT or IBSE→ IBTT could capture
both short private key and short ciphertext. However, the ciphertext of current
MISKD schemes [19,20] has a linear size, and we cannot achieve IBTT scheme
with short private key and short ciphertext from the existing MISKD schemes.
The remaining candidate is IBSE→ IBTT. In the next section, we show how to
construct an IBSE scheme with short private key and short ciphertext, where
both size are constant independent of ID and SID. It will enable an IBTT con-
struction with short private key and short ciphertext.

3 IBSE with Short Private key and Short Ciphertext

3.1 Definitions

Let GB be a generator of bilinear groups. Taking as input a security parameter λ,
it outputs bilinear groups (g, p,G,GT , e). Here, G,GT are two (multiplicative)
cyclic groups of prime order p, g is a generator of G and e : G×G → GT is the
bilinear map. The bilinear map e is a map with the following three properties:

– For all u, v ∈ G, a, b ∈ Zp, e(u
a, vb) = e(u, v)ab.

– e(g, g) is a generator of GT .
– It is efficient to compute the bilinear map e.
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The security of our scheme is based on the variant of q-bilinear Diffie-Hellman
exponent assumption (q-BDHE), which has been used in [5,7,18]. We modify the
BDHE assumption by using one group generator instead of two. The modified
q-BDHE assumption is defined as follows, which can be justified in the generic
group model by the result proved in [5].

Modified q-Bilinear Diffie-Hellman Exponent Problem:

Input: g, g(a), g(a
2), · · · , g(aq), g(a

2q+2), g(a
2q+3), · · · , g(a3q+1) ∈ G2q+1.

Output: e(g, g)(a
2q+1).

Definition 3. The (T, q, ε)-BDHE assumption holds in G if for all T -polynomial
time adversaries, the advantage of solving the modified q-BDHE problem is ε at
most, which is a negligible function of λ.

3.2 Our Construction

In our IBSE construction, the private key structure for an individual identity
is similar to the identity-based broadcast encryption in [28], and the encryption
structure is modified from the identity-based broadcast encryption in [14] to
achieve constant-size ciphertext. Our IBSE scheme is IND-ID-Set-CPA secure in
the random oracles under the modified q-BDHE assumption. We can naturally
extend it to CCA security using the technique due to Fujisaki-Okamoto [16] in
the random oracle model.

SetupS(N, λ). The setup algorithm takes as input N and a security parameter
λ. It first generates the bilinear groups (g, p,G,GT , e) by running GB(λ). The
algorithm randomly chooses h ∈ G and α ∈ Zp. It picks two collision-resistant
hash functions at random H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}lm. Here,
lm denotes the length of messages to be encrypted. The algorithm computes
h1 = hα and gi = g(α

i) for i = 1, 2, · · · , N . The master secret key MSK is α
and the master public key MPK is

MPK =
(
h, h1, g, g1, g2, · · · , gN , p,G,GT , e,H1, H2

)
.

KGenS(ID,MSK). The key generation algorithm takes as input identities ID =
{ID1, ID2, · · · , IDL} with L ≤ N and the master secret key α. It computes the
private key dID as

dID = h
1

α−H1(ID1)+
1

α−H1(ID2)+···+ 1
α−H1(IDL) ∈ G.

EncS(ID, SID,M,MPK). The encryption algorithm takes as input an identity
ID, an identity set SID = {ID′

1, ID
′
2, · · · , ID′

N} (ID ∈ SID), a message M ∈
{0, 1}lm and the master public key MPK. Let

(α− SID) =

N∏
i=1

(
α−H1(ID

′
i)
)
.
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The algorithm picks a random r ∈ Zp and outputs the ciphertext C = (c1, c2, c3)
∈ G2 × {0, 1}lm as

c1 =
(
g(α−SID)

)r
, c2 =

(
hα−H1(ID)

)r
, c3 = H2

(
e
(
g

(α−SID)

α−H1(ID) , h
)r )

⊕M.

DecS(C, dID, ID, ID, SID). The decryption algorithm takes as input the cipher-
text C, the private key dID, the identity ID, the identities ID and the identity
set SID. If ID ∈ ID and ID ⊆ SID, we let the polynomial function f(x) be

f(x) =
(
x− SID

)
·
( L∑

i=1

1

x−H1(IDi)

)
=

(x− SID)

x−H1(ID)
+

(
x−H1(ID)

)
·
(N−2∑

i=0

fix
i
)
,

where fi is the coefficient of xi. The algorithm computes the message M by

c3 ⊕H2

(
e(c1, dID) · e

(
c2,

N−2∏
i=1

gfii · gf0
)−1)

.

3.3 Correctness

In the encryption algorithm, (α− SID) and (α−SID)
α−H1(ID) are two polynomial func-

tions in α, g(α−SID) and g
(α−SID )

α−H1(ID) can be computed from the coefficients of
polynomial functions and r, g, g1, g2, · · · , gN .

In the decryption algorithm, we have

e(c1, dID) = e
((
g(α−SID)

)r

, h
∑L

i=1
1

α−H1(IDi)

)
= e

(
gf(α), h

)r
e
(
c2,

N−2∏
i=1

gfii · gf0
)−1

= e

((
hα−H1(ID)

)r

, g
∑N−2

i=0 fiα
i

)−1

= e

(
g−

(
α−H1(ID)

)
·
(∑N−2

i=0 fiα
i
)
, h

)r

e(c1, dID) · e
(
c2,

N−2∏
i=1

gfii · gf0
)−1

= e
(
g

(α−SID)

α−H1(ID) , h
)r

.

3.4 Comparison of IBE, MISKD and IBSE

We provide the comparison of IBE, MISKD and IBSE in Table 4 under the
assumption that a user has to manage L distinct identities. The IBE scheme
(e.g. [6,31,18]) has a very simple structure in encryption and decryption, but it
cannot aggregate private keys into a short one. The MISKD scheme (e.g. [19,20])
enables private key aggregation into a single one but the ciphertext size is not
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constant. In comparison with the MISKD, IBSE is able to aggregate private keys
without expanding ciphertext size for decryption. Our IBSE scheme is short in
both private key and ciphertext.

We realize the short private key and short ciphertext, at the price of complex
encryption and decryption. An identity set SID such that ID ⊆ SID must be
known by the encryptor and the decryptor; otherwise, a ciphertext cannot be
decrypted using the aggregated private key dID. However, this provides a negli-
gible implication on our IBTT construction since SID is computable from ID.
Other applications using the IBSE primitive should be carefully checked.

Table 4. Comparison of IBE, MISKD and IBSE with L identities

Schemes Private Key Size Ciphertext Size

IBE O(L) O(1)
MISKD O(1) O(L)
IBSE O(1) O(1)

3.5 Security Proof

Theorem 2. Suppose the hash functions H1, H2 are two random oracles. Let
qH1 and qH2 be the query number to the oracles H1 and H2 respectively. Let
q = {qH1 , N}max . Assuming the modified q-BDHE assumption is (T ′, ε′)-hard,
our IBSE scheme is (T, q1, ε)-secure under IND-ID-Set-CPA attacks.

T = T ′ −O(qH1 te), q1 ≤ qH1 , ε = qH1qH2ε
′,

where te denotes the average time of an exponentiation in G.

Proof. Suppose there exists an adversary who can break the IBSE scheme with
advantage (t, q1, ε). We construct an algorithm B that solves the modified q-
BDHE assumption with advantage (t′, ε′) at least. The algorithm B is given(

g, g(a), g(a
2), · · · , g(a

q), g(a
2q+2), g(a

2q+3), · · · , g(a
3q+1)

)
,

and the aim of B is to output e(g, g)(a
2q+1) ∈ GT . The algorithm B interacts

with the adversary A as below.

Setup. The algorithm B randomly chooses {I1, I2, · · · , IqH1
, b} from Zp, and

picks a random i∗ ∈ {1, 2, · · · , qH1}. Let F (x) ∈ Zp[x] be a (qH1 − 1)-degree
polynomial function as

F (x) = b

qH1∏
i=1,i�=i∗

(x− Ii) = FqH1 -1x
qH1 -1 + · · ·+ F2x

2 + F1x+ F0.

It sets gi = g(a
i) for all i = 1, 2, · · · , N and computes h = gF (a), h1 = gaF (a) from

the challenge input and F (x). The algorithm B forwardsMPK = (h, h1, g, g1, g2,
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· · · , gN , p,G,GT , e) except the two hash functions to the adversary and sets
H1, H2 as random oracles.

Hash Queries. At any time, the adversary can query H1, H2.

– For an identity query on ID to the random oracle H1, the algorithm B
maintains a list LH1 and responds as follows. If there has been already a
tuple (ID, I) in the list LH1 , the algorithm responds with H1(ID) = I.
Otherwise, let ID be the ith distinct query to H1. The algorithm B responds
by returning H1(ID) = Ii to the adversary, and adding (ID, Ii) to LH1 .

– For a random query onR to the random oracleH2, the algorithm Bmaintains
a list LH2 and responds as follows. If R is not in the list, the algorithm
responds by randomly choosing a different Y ∈ Zp, returning H2(R) = Y to
the adversary, and adding (R, Y ) to LH2 . Otherwise, there has been already
a tuple (R, Y ) in the list and the algorithm responds with H2(R) = Y .

Phase 1. For a key query on ID = {ID1, ID2, · · · , IDL} from the adversary,
the challenger responds as follows.

– Let the response for IDi in the list LH1 be (IDi, Ii) for all i = 1, 2, · · · , L. If
Ii = Ii∗ holds for any i ∈ {1, 2, · · · , L}, the algorithm aborts the simulation.

– When Ii �= Ii∗ holds for all i = 1, 2, · · · , L, we have that H1(ID1), H1(ID2),
· · · , H1(IDL) are all the roots of F (x). Then, we deduce that

FID(x) = F (x) ·
( 1

x−H1(ID1)
+

1

x−H1(ID2)
+ · · ·+ 1

x−H1(IDL)

)
is a (qH1 − 2)-degree at most polynomial function. B can compute

dID = h
1

α−H1(ID1)
+ 1

α−H1(ID2)
+···+ 1

α−H1(IDL)

= g
F (α)·

(
1

α−H1(ID1)
+ 1

α−H1(ID2)
+···+ 1

α−H1(IDL)

)
= gFID(a)

from FID(x) and g, g
(a), · · · , g(aq), and dID is a valid private key of ID.

Challenge. The adversary outputs (ID∗, SID∗ ,M0,M1) to be challenged. If the
tuple (ID∗, I∗) in the list LH1 satisfies I∗ �= Ii∗ , abort; otherwise, the algorithm

randomly chooses c∗3 ∈ {0, 1}lm. Since ID∗ ∈ SID∗ , we let F ′(x) = (x−SID∗ )
x−I∗ be

an (N−1)-degree polynomial function. The algorithm randomly chooses r′ ∈ Zp

and computes the challenge ciphertext (c1, c2, c3) by

c1 = gr
′
(
a2q+2−I∗2q+2

)
F ′(a), c2 = gr

′
(
a2q+2−I∗2q+2

)
F (a), c3 = c′3,

where both c1 and c2 are computable from F ′(x), F (x) and the challenge input.

Let the randomness r be r = r′ · a2q+2−I∗2q+2

a−I∗ , which is also universally random
in Zp. We have

gr
′
(
a2q+2−I∗2q+2

)
F ′(a) = g

r′·

(
a2q+2−I∗2q+2

)(
a−I∗

) ·
(
a−SID∗

)
=

(
g(α−SID∗ )

)r

,

gr
′
(
a2q+2−I∗2q+2

)
F (a) = g

r′
(
a2q+2−I∗2q+2

)(
a−I∗

) ·F (a)(a−I∗)

=
(
hα−H1(ID

∗)
)r

,
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and the challenge ciphertext is equivalent to((
g(α−SID∗ )

)r

,
(
hα−H1(ID

∗)
)r

, c∗3

)
.

According to our setting, there must exist a hash query on e
(
g

(α−SID∗ )

α−H1(ID∗) , h
)r

to

H2 in order to decrypt the message in the challenge ciphertext.

M = H2

(
e
(
g

(α−SID∗ )

α−H1(ID∗) , h
)r

)
⊕ c∗3.

Guess. The adversary returns a guess c′ ∈ {0, 1} of c. Let F ′′(x) be the (2q +
N + qH1 − 1)-degree polynomial function

F ′′(x) = r′ · x
2q+2 − I∗2q+2

x− I∗ · F ′(x) · F (x),

and F ′′
i be the coefficient of xi in F ′′(x). We have that

e
(
g

(α−SID∗ )

α−H1(ID∗) , h
)r

= e(g, g)F
′′(a).

It is easy to verify that F ′′
2q+1 is equal to r′F ′(I∗)F (I∗) which is nonzero, and

that e(g, g)F
′′
i ·ai

for all i �= 2q+1 are computable from the challenge input. The
algorithm B picks a random tuple (R, Y ) from the list LH2 and computes

(
R ·

2q+N+qH1−1∏
i=1,i�=2q+1

e(g, g)−F ′′
i ·ai

) 1
r′F ′(I∗)F (I∗)

= e(g, g)a
2q+1

as the solution to the q-BDHE assumption.
We have completed the simulation proof of our IBSE scheme. To complete the

proof, it remains to analyze the probability of successful simulation. We define
the three types of events Ai, A

∗, As:

– Ai is the event that the algorithm B can generate the ith private key query
on IDi. Let

(
IDi, Ii

)
be the response for IDi in the list LH1 . This indicates

that Ii �= Ii∗ holds for IDi.
– A∗ is the event that the algorithm B does not abort in the challenge phase.

Let
(
ID∗, I∗

)
be the response for ID∗ in the list LH1 . This indicates I

∗ = Ii∗ .
– As is the event that what the algorithm B randomly picks from the list

LH2 is equal to e
(
g

(α−SID∗ )

α−H1(ID∗) , h
)r

. Let qH2 be the number of queries to the

random oracle H2. If the adversary ever made a query on e
(
g

(α−SID∗ )

α−H1(ID∗) , h
)r

to the random oracle, the probability of choosing a correct Ri is 1/qH2 .

According to the definition of security model, the adversary cannot query the
private key of the challenge identity. With 1/qH1 probability, the simulation
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does not abort till the guess phase. Therefore, if the adversary can break the
IBSE scheme, the probability of successfully reducing the attack to solving the
modified q-BDHE assumption is Pr

[∧q1
i=1 Ai

∧
A∗ ∧As

]
= 1

qH1qH2
. Hence, if the

adversary can break the scheme with probability ε, we can reduce the proof to
solve the modified q-BDHE assumption with probability ε/(qH1qH2).

The time complexity of our simulation is mainly dominated by the private key
generation, where each private key computation takes O(qH1 ) exponentiations.
The above analysis yields the theorem and we complete the proof. �

4 IBTT with Short Private Key and Short Ciphertext

In Section 2, we gave a generic IBTT construction from IBSE and fingerprint
codes. In Section 3, we presented our IBSE scheme with short private key and
short ciphertext. Putting our concrete IBSE scheme into the generic IBTT con-
struction, we yield an identity-based traitor tracing with short private key and
short ciphertext.

The private key of our IBTT scheme is dID,i =
(
w(i), dIDID,i,0 , dIDID,i,1

)
,

where w(i) is the l-bit length of codeword, and dIDID,i,0
, dIDID,i,1

are private keys
of an IBSE scheme. We have dIDID,i,0

, dIDID,i,1
∈ G from our IBSE scheme, and

therefore our private key is short and composed of one codeword and two group
elements.

The ciphertext of our IBTT scheme is denoted by C =
(
j, CID,0, CID,1

)
,

where j is the index from [1, l1], and CID,0, CID,1 are ciphertexts of an IBSE
scheme. We have CID,0, CID,1 ∈ G2 × {0, 1}lm from our IBSE scheme, and
therefore our ciphertext is short composed of one index, four group elements and
two encrypted messages. The hybrid encryption technique will further reduce the
two encrypted long messages into two encrypted short-random keys and one long
message encrypted with the short-random key.

Computational Efficiency. We note that our IBTT scheme gives a tradeoff
in private key size and computational efficiency. Our encryption/decryption re-
quires to perform linear number of exponentiations, while the generic construc-
tion [8] only fulfils constant-number exponentiations for the same task. This
tradeoff seems hard to be solved especially for decryption. This is because the
decryption on a ciphertext for an identity with a private key of multi-identity
must produce redundancy. It requires additional computations to remove them
for decryption. Nevertheless, it is still interesting to explore more efficient IBTT
schemes with short private key and short ciphertext.

Imperfect Decoders. The above traitor tracing assumes that the adversary
produces a perfect pirate decoder that is able to decrypt all well-formed cipher-
texts. Boneh and Naor also considered imperfect pirate decoders in their work.
The countermeasure is by utilizing a powerful fingerprint code, which has to in-
crease the length of codewords. Fortunately, we are able to use their fingerprint
codes to construct our IBTT scheme against imperfect decoders. As the private
key of IBSE is constant, the private key of our IBTT scheme only increases the
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length of codeword. The private key is still short. We observe that another so-
lution for imperfect decoders is given in [3]. It requires a shorter codeword but
a longer ciphertext compared to [8]. We refer the reader to [3] for the detail.

5 Conclusion

We introduced the first identity-based traitor tracing with short private key and
short ciphertext. The private key consists of one codeword and two group ele-
ments; the ciphertext is composed of one index and two constant-size ciphertexts.
It saves both secure storage and bandwidth for IBTT applications. We also in-
troduced the new primitive of identity-based set encryption for multi-identity
scenarios. Our proposed IBSE scheme is short in both private key and cipher-
text, and is provably secure in the random oracles under the modified q-BSDH
assumption.
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A Fingerprint Codes and Identity-Based Traitor Tracing

The fingerprint codes [8] are defined as follows with two algorithms.

– Let w ∈ {0, 1}l1 be an l1-bit codeword. We write w = w1w2 · · ·wl1 and
assume wi is the ith bit of w.

– Let W = {w(1), w(2), · · · , w(t)} be a set containing t codewords in {0, 1}l1.
We say that a codeword w = w1w2 · · ·wl1 is feasible for the set W, if for all
i = 1, 2, · · · , l1 there exists a j ∈ {1, 2 · · · , t} such that the ith bit of w(j),

denoted by w
(j)
i , is equal to wi.

– Let F (W) be a feasible set of W, if it includes all codewords feasible for W.

GenFC(n, t, λ). On input the number of codewords n, the collusion bound t and
a security parameter λ, the generation algorithm outputs a set Γ containing n
codewords {w(1), w(2), · · · , w(n)} in {0, 1}l1 with length l1 = l1(n, t, λ) and a
tracing key tk.

TraFC(w
∗, tk). On input a codeword w∗ ∈ {0, 1}l1 and the tracing key tk, the

tracing algorithm outputs a subset of {1, 2, · · · , n}. Informally, let W be a subset
of Γ , if w∗ ∈ F (W), we have that the output is a subset of W.

An IBTT scheme consists of the following five algorithms.

SetupT (λ). The setup algorithm takes as input a security parameter λ and
returns a key pair (MPK,MSK), where MPK denotes master public key and
MSK denotes master secret key.

KGenT (ID, n, t,MSK). The key generation algorithm takes as input an iden-
tity ID, the number bound of users n, the collusion bound of traitors t, and the
master secret keyMSK. The algorithm returns n private keys {dID,1, dID,2, · · · ,
dID,n}, where dID,i is given to the ith user.

EncT (ID,M,MPK). The encryption algorithm takes as input an identity ID, a
messageM and the master public keyMPK and returns a ciphertext C denoted
by C = EncT (ID,M,MPK).

DecT (C, dID,i). The decryption algorithm takes as input the ciphertext C and
a private key dID,i and outputs DecT (C, dID,i) ∈ {M,⊥}.
TraceT (PDID, ID,MSK). The tracing algorithm takes as input PDID, a pirate
decryption box for ID, the identity ID and the master secret key MSK and
returns a set of traitors T ⊆ {1, 2, · · · , n}.

http://eprint.iacr.org/2006/383.pdf
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Abstract. We introduce the concept of identity-based encryption (IBE)
with master key-dependent chosen-plaintext (mKDM-sID-CPA) security.
These are IBE schemes that remain secure even after the adversary sees
encryptions, under some initially selected identities, of functions of the
master secret keys. We then show that the Canetti, Halevi and Katz
(Eurocrypt 2004) transformation delivers chosen-ciphertext secure key-
dependent encryption (KDM-CCA) schemes when applied to mKDM-
sID-CPA secure IBE schemes. Previously only one generic construction
of KDM-CCA secure public key schemes was known, due to Camenisch,
Chandran and Shoup (Eurocrypt 2009), and it required non-interactive
zero knowledge proofs (NIZKs). Thus we show that NIZKs are not in-
trinsic to KDM-CCA public key encryption. As a proof of concept, we
are able to instantiate our new concept under the Rank assumption on
pairing groups and for affine functions of the secret keys. The scheme is
inspired by the work by Boneh, Halevi, Hamburg and Ostrovsky (Crypto
2008). Our instantiation is only able to provide security against single
encryption queries, or alternatively, against a bounded number of en-
cryption queries. Secondly, we show that a special parameters setting
of our main scheme provides master-key leakage-resilient identity-based
encryption against chosen-plaintext attacks. This recently proposed se-
curity notion aims at taking into account security against side-channel
attacks that only decrease the entropy of the master-key up to a certain
threshold. Thirdly, we give new and better reductions between the Rank
problem (previously named as Matrix-DDH or Matrix d-Linear problem)
and the Decisional Linear problem.

1 Introduction

Master-Key Dependent Encryption. Until recently public key encryption
(PKE) schemes were only required to provide confidentiality against adversaries
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that see encryptions of plaintexts that depend solely on public information. That
is, it was assumed (and even advocated) that an encryption scheme would never
be used to encrypt its own decryption key. This requirement is certainly rea-
sonable for many applications, but it has been challenged both by practical and
foundational reasons [1,2]. The paradigmatic case is the scenario of circular en-
cryptions, where for n ≥ 2 public/secret key pairs (pk1, sk1), . . . , (pkn, skn), the
adversary is given the ciphertexts Encpk1(sk2), Encpk2(sk3), . . . , Encpkn(sk1),
and still semantic security shall hold. Thus, a dedicated stronger security no-
tion called key-dependent message security has emerged in the last few years [3].
Roughly speaking, it is required that semantic security holds even if the adver-
sary sees encryptions of plaintexts that depend on the decryption keys. Such a
scenario arises in systems that require hard-disk encryption, in computational
soundness results in the area of formal methods, or in specific cryptographic
protocols for anonymous credentials or fully homomorphic encryption. For the
motivation, applications and history of key-dependent message security we refer
to the excellent survey by Malkin, Teranishi and Yung [4].

The first breakthrough was due to Boneh, Halevi, Hamburg and Ostrovsky
(BHHO) [5], who proposed a public key encryption scheme with indistinguisha-
bility against key-dependent chosen-plaintext attacks (KDM-CPA) in the stan-
dard model under the Decisional Diffie-Hellman assumption for affine functions
of the secret key. Shortly after Applebaum, Cash, Peikert, and Sahai [6] proposed
an efficient KDM-CPA secure scheme for affine functions under the Learning Par-
ity with Noise assumption. Brakerski and Goldwasser [7] extended the BHHO
scheme to a suite of KDM-CPA schemes secure under subgroup indistinguisha-
bility assumptions.

Camenisch, Chandran and Shoup [8] proposed a generic construction of
chosen-ciphertext secure key-dependent encryption (KDM-CCA) schemes in the
public key setting, that requires in particular a KDM-CPA secure scheme and
specialized non-interactive zero knowledge proofs (NIZKs). By applying their
transformation to (a variation of) the BHHO scheme, they obtained a KDM-
CCA secure scheme under the Decision Linear assumption on pairing groups.

Master-Key Leakage-Resilient Identity-Based Encryption. Side channel
attacks are often effective in recovering the secret key of cryptosystems that are
provably secure otherwise [9,10]. On the other hand, it is desirable to extend the
traditional provable security methodology to also include side channel attacks.
This area of contemporary cryptography is usually referred to as leakage-resilient
cryptography and it has been an increasingly active arena in recent years. Current
security models assume an upper bound on the type or amount of information
about the secret key that an adversary might learn from side-channel data. Here
we allow the adversary to mount master-key leakage attacks, by allowing it to
obtain the result of efficiently computable functions of the master-key. These
functions might be asked adaptively, subject to the restriction that after all the
queries the master-key has enough entropy left and that no master-key leakage
queries are allowed after the adversary receives the challenge ciphertext. For
the definitions of master-key leakage resilience we refer the reader to [11]. We
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stress that in our case the adversary mounts a selective-identity chosen-plaintext
attack with master-key leakage, that we denote as mIND-sID-LCPA. Let λ be
the bit-length sum of the outputs obtained by the adversary via master-key
leakage queries. λ is called the leakage parameter and it is assumed that λ < L,
where L is the master-key length. The relative leakage (or leakage ratio) of the
system is defined as λ/L.

Our Contribution. We initiate here the study of identity-based encryption
(IBE) schemes secure against key dependent messages. This has a double inter-
est, since IBE is relevant by itself [12] and by its numerous applications [13].
In IBE there are two types of secret keys, on the one hand a master secret key
SKi corresponding to the master public key PKi; on the other hand the secret
keys sk[id] belonging to individual users id. This gives rise to two levels of key-
dependent message security, depending on whether the adversary is allowed to
ask for encryptions of functions of the master-keys or the user-keys. We choose
here to deal only with master key-dependent messages (mKDM security). The
first reason is that this allows us to update mKDM-sID-CPA to KDM-CCA.
Secondly, in some cases master-key dependent security implies a restricted form
of user-key dependent security “for free” (see Section 4.2 for the case of our
scheme).

Informally, we say that an IBE scheme has master key-dependent indistin-
guishability against selective-identity and chosen plaintext attacks (mKDM-sID-
CPA security for short) if no adversary is able to distinguish between encryptions
of a particular message m and encryptions of some functions of a set of master
secret keys, under a certain set of identities chosen by the adversary ahead of
time. We are able to give an instantiation of a mKDM-sID-CPA secure IBE in
the standard model, under the Rank assumption over bilinear groups. The Rank
assumption states that it is difficult to distinguish whether an n× n matrix has
rank r1 or r2, where 2 ≤ r1 < r2 ≤ n. As an additional contribution, which may
be of independent interest, we give a new reduction between the Rank problem
and the Decisional Linear problem. Our new reduction improves that of [14]
from a linear to a logarithmic factor and can be used to improve the reduction
from the Rank assumption to the Decisional Diffie-Hellman problem given in [5]
in a similar fashion.

We also show that a slight modification of the new mKDM-sID-CPA secure
IBE scheme maintains its security properties in the presence of leakage of parts
of the master secret key. This implies, in particular, new chosen ciphertext se-
cure public key encryption secure in the presence of leakage [14] which compare
favourably with previous related work.

One of the most well-known applications of IBE in the theory of cryptogra-
phy is the CHK generic construction of chosen-ciphertext secure public key en-
cryption out of chosen-plaintext secure identity-based encryption. We show that
the same transformation can be applied to the KDM setting, resulting in KDM-
CCA secure public key encryption out of mKDM-sID-CPA secure identity-based
encryption. Thus we show a practical generic construction for key-dependent
chosen-ciphertext security that dispenses with the need of NIZKs from [8].
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Plugging our concrete IBE scheme into the Canetti-Halevi-Katz transformation
gives rise to a KDM-CCA secure encryption scheme under the Decisional Linear
assumption. One drawback of our chosen-ciphertext secure schemes is that the
public key size depends on the number of encryption queries per public key (but
importantly ciphertext-size does not); in other words, we were only able to prove
security against a bounded number of encryption queries per public key.

Concurrent and Independent Related Work. Concurrent work by Alperin-
Sheriff and Peikert [15] deals with the related notion of user key-dependent mes-
sage security. We stress that their IBE construction has a drawback similar to
ours: therein, the size of the master public key, the user secret keys and the
ciphertext depend on the parameter n, which is the maximum number of user
secret keys involved in an encryption query. Also concurrently to this work,
Hofheinz [16] has proposed a PKE scheme with KDM-CCA security in the stan-
dard model with compact ciphertexts. His construction is direct and does not
use key-dependent IBE.

Organization. In Section 2 we recall previous KDM security notions for public
key encryption. In Section 3 we define master key-dependent indistinguisha-
bility against selective-identity and chosen-plaintext attacks for identity-based
encryption. We show then that the celebrated CHK transformation from
passively-secure IBE to chosen-ciphertext PKE also holds in the KDM setting.
Section 4 contains an instantiation of identity-based encryption with master
key-dependent security in the standard model under the Decisional Linear as-
sumption. Although we refer to the full version of this work [17] for the complete
security proof, we include in this Section 4 a key part of it which may be of in-
dependent interest: a new and better relation between the Decisional Linear
problem and the Rank problem. In Section 5 we discuss the leakage-resilience
properties of (a slight variation of) our new IBE scheme. We end in Section 6
by outlining future research directions.

2 Preliminaries: KDM Secure Public Key Encryption

A public key encryption scheme Π supporting ciphertexts consists of four prob-
abilistic polynomial algorithms, Π = (Π.Stp, Π.KG, Π.Enc, Π.Dec). The setup
protocol Π.Stp takes as input a security parameter λ and outputs some public
information pms, including plaintext space M and secret key space S. The se-
curity parameter λ is included in the string pms, which is implicitly an input
to the remaining algorithms. The key generation protocol Π.KGpms on input the
empty string ε outputs a pair of secret and public keys, (sk, pk), where the se-
cret key sk belongs to the set S of possible secret keys. The encryption protocol
takes as input a public key pk and a message m ∈ M and outputs a ciphertext
C = Π.Encpms(pk,m). Finally, the decryption protocol takes as input secret key
sk and a ciphertext C, and outputs m̃ = Π.Decpms(sk, C), where m̃ ∈ M∪{⊥}.
The correctness property requires that Π.Decpms(sk,Π.Encpms(pk,m)) = m, for
any message m ∈ M and parameters pms generated by Π.Stp and any pair
(sk, pk) generated by Π.KGpms.
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Informally, security with respect to key dependent messages under chosen
plaintext attacks (KDM-CPA) requires that an adversary is not able to distin-
guish between encryptions of a particular message m and encryptions of some
functions (chosen by the adversary from a specific set of functions F) of a set
of secret keys. In the case of security with respect to key dependent messages
under chosen ciphertext attacks (KDM-CCA), the adversary is given additional
access to a decryption oracle that he can query for ciphertexts of his choice, as
long as these ciphertexts are different to those the adversary has to distinghish.

For concrete security concerns, in the following definitions two integer param-
eters n, qe ≥ 1 are given as input to the security game, representing respectively
the number of users in the system and the maximum number of encryption
queries per user allowed to the adversary. To formalize this notion, we follow the
definitions in [8,4]. Let n, qe ≥ 1 be integers and let F = {f : Sn → M} be a
finite set of efficiently computable functions. KDM-CPA security of a public key
encryption scheme Π is defined with respect to the set of functions F through
the following two experiments between a challenger and an adversary AΠ . Let
m ∈M be a fixed message.

Experiment ExpKDM-CCAb,Π
AΠ

(λ, n, qe) is defined as follows, for b = 0, 1.

1. Initialization. The challenger runs pms ← Π.Stp(λ) and then runs n times
(ski, pki) ← Π.KGpms to produce n pairs (sk1, pk1), . . . , (skn, pkn). The pub-
lic keys (pk1, . . . , pkn) and pms are sent to AΠ . A list Lquer is initially set to
empty.

2. Queries. The adversary AΠ can adaptively make two types of queries to
the challenger.
(a) Encryption queries. For each 1 ≤ i ≤ n the adversary AΠ can

make up to qe encryption queries of the form (i, f) with f ∈ F . The
challenger computes m = f(sk1, . . . , skn) ∈ M, and then sets C =
Π.Encpms(pki,m) in Experiment b = 0, and sets C = Π.Encpms(pki,m)
in Experiment b = 1. The resulting ciphertext C is sent to AΠ and the
tuple (i, C) is added to the list Lquer.

(b) Decryption queries. AΠ can make a decryption query of the form
(i, C), as long as (i, C) /∈ Lquer. The challenger sends back to AΠ the
output Π.Decpms(ski, C).

3. Final guess. The adversary AΠ outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that AΠ outputs b′ = 1 in Experiment
ExpKDM-CCAb,Π

AΠ
(λ, n, qe). For any adversary AΠ as above let

AdvKDM-CCAΠ
AΠ

(λ, n, qe) = |Pr[Ω0]− Pr[Ω1]|

For any t, n, qe we define the advantage function of the scheme Π for key-
dependent message security against chosen-ciphertext attacks (KDM-CCA) as

AdvKDM-CCA(Π,λ, n, qe; t) = maxAΠ

{
AdvKDM-CCAΠ

AΠ
(λ, n, qe)

}
,

where the maximum is over adversaries AΠ with time-complexity t and making
no more than qe encryption queries for each 1 ≤ i ≤ n.
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Definition 1. A public key encryption scheme Π is polynomially-secure against
key dependent chosen-ciphertext attacks with respect to the set of functions F
if AdvKDM-CCA(Π,λ, n, qe; t) is negligible in λ for all polynomial values of
t, n, qe.

We refer to security against single encryption queries when qe = 1, which
means that the adversary can make several encryption queries but each one
for a different public key. In this work we consider F to be the set of affine
functions. This contains as particular cases constant functions (which lead to
the notion of IND-CCA security in the multi-user setting [18]) and projections
fi(sk1, . . . , skn) = ski, for 1 ≤ i ≤ n. An encryption scheme which is KDM-
CCA-secure with respect to a set of functions containing projections achieves
clique security, which in particular captures circular security.

3 From mKDM-sID-CPA Secure IBE to KDM-CCA
Secure PKE

In this section we recall the Canetti-Halevi-Katz transformation [19] and show
that it can be used to build IND-CCA encryption with key-dependent message
security.

One-Time Signatures. We start by recalling the syntactic definition and se-
curity properties of one-time signatures. A (one-time) signature scheme Θ =
(Θ.Stp, Θ.KG, Θ.Sign, Θ.Vfy) consists of four probabilistic polynomial time
algorithms. pmsΘ ← Θ.Stp(1λ) is the setup protocol, which produces some com-
mon public parameters (that will be an implicit input for the rest of proto-
cols) for a given security parameter. (skΘ, vkΘ) ← Θ.KG() is the key generation
protocol, which outputs a secret signing key skΘ and a public verification key
vkΘ. The signing protocol θ ← Θ.Sign(skΘ,m) takes as input the signing key
and a message m, and outputs a signature θ. Finally, the verification protocol
{1, 0} ← Θ.Vfy(vkΘ,m, θ) takes as input the verification key, a message and a
signature, and outputs 1 if the signature is valid, or 0 otherwise.

Regarding security, we consider an adversary FΘ in the multi-user setting,

with N users. FΘ first receives N verification keys {vk(i)Θ }1≤i≤N obtained from
running Θ.Stp(1λ) → pmsΘ once and then running N times the protocol

Θ.KG() → (sk
(i)
Θ , vk

(i)
Θ ), for i = 1, . . . , N . The adversary can make at most

one signature query of the form (i,mi), for each i = 1, . . . , N , for messages mi

of his choice, obtaining as answer valid signatures Θ.Sign(sk
(i)
Θ ,mi) → θi. Fi-

nally FΘ outputs a tuple (i�,m�, θ�). We say that the adversary FΘ succeeds if

Θ.Vfy(vk
(i�)
Θ ,m�, θ�) → 1 and (m�, θ�) �= (mi� , θi�).

We denote FΘ’s success probability in the above game as AdvOTSΘ
FΘ

(λ,N).

The signature scheme Θ is one-time strongly unforgeable if AdvOTSΘ
FΘ

(λ,N)
is a negligible function of the security parameter λ ∈ N, for any polynomial-time
attacker FΘ against Θ and any polynomial value of N .

mKDM-sID-CPA Identity-Based Encryption. An identity-based encryp-
tion scheme Γ consists of five probabilistic polynomial algorithms,
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Γ = (Γ .Stp, Γ .Mkg, Γ .Ukg, Γ .Enc, Γ .Dec). The setup protocol, Γ .Stp takes as
input a security parameter λ and outputs some system-wide parameters ibp to
be shared by all the master authorities in the system. In particular, ibp includes
the description of the sets of admissible identities, plaintexts and ciphertexts,
I, M, C respectively. The string ibp is an implicit input to the remaining algo-
rithms. Γ .Mkgibp on input the empty string outputs (PK, SK), where PK is the
master public key and SK is the master secret key. The user’s key generation
protocol, Γ .Ukgibp, on input the master secret key SK and an identity id, out-
puts the user’s decryption key sk[id]. The encryption algorithm Γ .Encibp takes
as input PK, an admissible identity id and a plaintext m and outputs a cipher-
text c = Γ .Encibp(PK, id,m). Finally, the decryption protocol takes as input a
decryption key sk[id] and an admissible ciphertext c and outputs m̃, where m̃
is an admissible plaintext or the reject symbol ⊥. The correctness property re-
quires that Γ .Decibp(Γ .Ukg(SK, id), Γ .Encibp(PK, id,m)) = m, for any identity
id ∈ I, message m ∈ M, parameters ibp generated by Γ .Stp(1k) and any pair
(PK, SK) generated by Γ .Mkgibp().

Informally, we say that an IBE scheme has master key-dependent indistin-
guishability against selective-identity and chosen plaintext attacks (mKDM-
sID-CPA security, for short) if no adversary is able to distinguish between
encryptions of a particular message m and encryptions of some functions (chosen
by the adversary from a specific set of functions F) of a set of master secret keys.

We formalize next this notion. Let n, qe ≥ 1 be integers and let F = {f :
T n → M} be a finite set of efficiently computable functions, where T is the set
of master secret keys and M the set of admissible plaintexts. mKDM-sID-CPA
security is defined with respect to the set of functions F through the following
two experiments between a challenger and an adversary AΓ . Let m ∈ M be a
fixed message.

Experiment ExpKDM-sID-CPAb,Γ
AΓ

(λ, n, qe) is defined as follows, for b = 0, 1.

1. Setup. The challenger runs ibp ← Γ .Stp(λ). The adversary AΓ on input ibp
outputs a tuple I� of n · qe identities I� = (id11, . . . , id

qe
1 , . . . , id

1
n, . . . , id

qe
n ).

2. Initialization. The challenger runs n times Γ .Mkgibp to obtain n pairs
(PK1, SK1), . . . , (PKn, SKn). The master public keys (PK1, . . . , PKn) are
sent to AΓ .

3. Queries. The adversary AΓ can adaptively make two types of queries to
the challenger:

(a) Encryption Queries. For every index i such that 1 ≤ i ≤ n, a
counter j is kept, with initial value j = 1. AΓ can make encryp-
tion queries of the form (i, f), where f ∈ F . The challenger computes
m = f(SK1, . . . , SKn) ∈ M, and then sets c = Γ .Encibp(PKi, id

j
i ,m)

when b = 0, and sets c = Γ .Encibp(PKi, id
j
i ,m) if b = 1, where j is the

current counter value. After the ciphertext c is sent to AΓ , the counter
is updated as j ← j + 1. AΓ can make up to qe encryption queries per
index i.
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(b) Private key Queries. AΓ can make users’ private key queries of the
form (i, id), where 1 ≤ i ≤ n and id �= idji for all j ∈ {1, . . . , qe}. The
challenger computes ski[id] = Γ .Ukgibp(SKi, id) and gives it back to AΓ .

4. Final guess. The adversary AΓ outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that AΓ outputs b′ = 1 in the above experiment.
For any adversary AΓ let Adv-mKDM-sID-CPAΓ

AΓ
(λ, n, qe) = |Pr[Ω0] −

Pr[Ω1]|. For any t, n, qe we define Adv-mKDM-sID-CPA(Γ, λ, n, qe; t) as the

quantity maxAΓ

{
Adv-mKDM-sID-CPAΓ

AΓ
(λ, n, qe)

}
, where the maximum

is taken over adversaries AΓ with time-complexity t.

Definition 2. An identity-based encryption scheme Γ is secure against selective-
identity and master key-dependent chosen plaintext attacks (mKDM-sID-CPA)
with respect to the set of functions F if Adv-mKDM-sID-CPA(Γ, λ, n, qe; t)
is negligible in λ for polynomial values of n, t, qe.

Canetti-Halevi-Katz Transformation in the KDM Setting. Let Γ =
(Γ .Stp, Γ .Mkg, Γ .Ukg, Γ .Enc, Γ .Dec) be an IBE scheme and let Θ = (Θ.KG,
Θ.Sign, Θ.Vfy) be a one-time signature scheme. We use the well-known Canetti-
Halevi-Katz transformation [19] to construct from these two primitives a public-
key encryption scheme Π = (Π.Stp, Π.KG, Π.Enc, Π.Dec), as follows:

Π.Stp(1λ): run ibp ← Γ .Stp(1λ) and pmsΘ ← Θ.Stp(1λ). We assume that veri-
fication keys output by Θ lie in the identities space of Γ . Define the output of
the setup protocol as pms = (ibp, pmsΘ).

Π.KGpms(): parse pms = (ibp, pmsΘ), run (PK, SK) ← Γ .Mkgibp() and define
the secret key as sk = SK and the public key as pk = PK.

Π.Encpms(pk,m): to encrypt a plaintext m ∈ M for a receiver with public key
pk, parse pms = (ibp, pmsΘ) and proceed as follows. Run (skΘ, vkΘ) ← Θ.KG()
and set id = vkΘ; run c← Γ .Encibp(pk, id,m); run θ ← Θ.Sign(skΘ, c). The final
ciphertext output by the algorithm is C = (vkΘ, c, θ).

Π.Decpms(sk, C): parse pms = (ibp, Θ) and C = (vkΘ, c, θ). First of all, run
Θ.Vfy(vkΘ, c, θ). If the output bit is 0, then stop and output ⊥. Otherwise, set
id = vkΘ and run sk[id] ← Γ .Ukgibp(sk, id) and output the result of running
Γ .Decibp(sk[id], c).

Theorem 1. If Γ enjoys mKDM-sID-CPA security with respect to a set of func-
tions F and the signature scheme Θ is one-time strongly unforgeable, then the
constructed public-key encryption scheme Π enjoys KDM-CCA security with
respect to the same set of functions F .

The proof of this theorem, which is similar to that in [19], can be found in [17].

4 A New mKDM-sID-CPA Secure IBE Scheme for qe = 1

In this section we propose an identity-based encryption scheme enjoying mKDM-
sID-CPA security for qe = 1. The new scheme upgrades the KDM-CPA tech-
niques in [5] to the IBE setting.
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4.1 Bilinear Pairings, Matrices and Hardness Assumptions

Let G be a group of prime order q admitting a bilinear pairing. That is, let GT be
a multiplicative group of prime order q and let e(·, ·) : G ×G → GT an efficiently
computable bilinear map. We will denote as gT = e(g, g) the generator of GT

induced by g a given generator of G. Note that, due to the bilinear properties of
the pairing, for any two integers a, b ∈ Zq we have gabT = e(ga, gb) = e(ga, g)b =
e(gb, g)a.

These operations extend to vectors and matrices in a natural way. Let Z�1×�2
q

denote the set of all �1 × �2 matrices and Z�1×�2;r
q the matrices with rank r. In

the special case of invertible matrices we will write GL�(Zq) = Z�×�;�
q . Let G�1×�2

and GT
�1×�2 denote the set of all �1 × �2 matrices over G and GT respectively.

Therefore, for any two matrices A ∈ Z�1×�2
q and B ∈ Z�2×�3

q , we have gAB =

(gA)B ∈ G�1×�3 . Again, we can naturally extend these definitions to matrices
and bilinear pairings: if A ∈ Z�1×�2

q and B ∈ Z�2×�3
q , then e(gA, gB) = gAB

T .

Furthermore, if C ∈ Z�3×�4
q , then it holds gABC

T = e(gAB, gC) = e(gA, gBC) ∈
GT

�1×�4 .
The security of our scheme will be reduced to the hardness of the Decisional

Linear (DLin) problem [20]. The DLin problem consists in distinguishing between

the distributions (g, gx, gy, gz, gt, g(x
−1z+y−1t)) ∈ G6 and (g, gx, gy, gz, gt, gu) ∈

G6, where g is a generator of G and x, y, z, t, u ∈R Zq are chosen independently
and at random. The problem is formally defined through the following two exper-
iments between a challenger and a solver ADLin. Experiment ExpDLinb

ADLin
(G)

is defined as follows, for b = 0, 1.

1. The challenger chooses a generator g of G and random x, y, z, t, u ∈R Zq

independently and uniformly distributed.
In Experiment b = 0, the challenger sends (g, gx, gy, gz, gt, g(x

−1z+y−1t)) ∈ G6

to ADLin.
In Experiment b = 1, it sends (g, gx, gy, gz, gt, gu) ∈ G6 to ADLin.

2. The solver ADLin outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that ADLin outputs b′ = 1 in Experiment
ExpDLinb

ADLin
(G). Let AdvDLinADLin

(G) = |Pr[Ω0] − Pr[Ω1]|. We can then
define AdvDLin(G; t) = maxADLin

{AdvDLinADLin
(G)}, where the maximum

is taken over adversaries ADLin running in time at most t.

Definition 3. The Decisional Linear assumption in G states thatAdvDLin(G; t)
is negligible in λ = log |G| for any value of t that is polynomial in λ.

4.2 A mKDM-sID-CPA Secure Scheme

Let us consider the IBE scheme Γ = (Γ .Stp, Γ .Mkg, Γ .Ukg, Γ .Enc, Γ .Dec) de-
fined as follows:

Γ .Stp(1λ): a pairing group (G,GT , e(·, ·)) of prime order q, where q is λ-bits long,
and generators g ∈ G, gT = e(g, g) ∈ GT are chosen. A second security parameter
� > 4λ is also considered. Therefore, we define ibp = (λ, �, q,G, g,GT , gT , e(·, ·)).
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Γ .Mkgibp(): firstly, take S ∈R Z2×�;2
q , S̃ ∈R Z�×2;2

q and a binary vector x ∈R

{0, 1}�×1, and compute gyT = g−Sx
T ∈ G2×1

T . Then define the matrices Fid and

F̃id for id ∈ Zq as Fid = STid ∈ Z2×�
q and F̃id = TidS̃ ∈ Z�×2

q , where Tid =

T0+idT1 ∈ Z�×�
q is a random (matrix) polynomial of degree 1, with T0 ∈R Z�×�

q

and T1 ∈ GL�(Zq). Note that it holds FidS̃ = SF̃id for any id ∈ Zq. The public

and master secret keys are then PK = (gS, gS̃, gST0 , gST1 , gT0S̃, gT1S̃, g−Sx
T )

and SK = gxT ∈ G�×1
T .

Γ .Ukgibp(SK, id): for an identity id ∈ Zq the secret key sk[id] = (gd1 , gd2) ∈
G�×1 × G�×1 is generated as gd1 = gx · gF̃idt and gd2 = gS̃t, where t ∈R Z2×1

q

and gx is computed component-wise from SK = gxT (remember x is a binary
vector). The user can verify the validity of sk[id] by checking the equation g−Sx

T ·
e(gS, gd1) = e(gFid , gd2).

Γ .Encibp(PK, id,m): to encrypt a message m ∈ GT for an identity id and mas-
ter public key PK, a row vector r ∈R Z1×2

q is chosen and the ciphertext

(gc1 , gc2 , c) ∈ G1×� × G1×� × GT is computed as gc1 = grS, gc2 = grFid and

c = g−rSx
T ·m. The ciphertext fulfils the equation e(gc1 , gF̃id) = e(gc2 , gS̃).

Γ .Decibp(sk[id], C): let (gc1 , gc2 , c) be a ciphertext for an identity id. The user
who owns sk[id] = (gd1 , gd2) recovers m = c · e(gc1 , gd1)/e(gc2 , gd2).

A Simpler but Insecure Scheme. Notice that an extension of the Boneh
et al. KDM-CPA scheme [5] à la Boneh and Boyen [21] leads to an insecure
scheme, in the following sense. Let us consider the case where user-keys would
have been of the form sk[id] = (gd1 , gd2) with gd1 = gxF t

id and gd2 = gt, where
t ∈R Z�

q and Fid ∈ G is defined as Fid = T0T
id
1 for T0, T1 ∈R G (ciphertexts

would be changed accordingly). In such a case, an adversary that obtains a
single user-key sk[id] can compute e(gd1 , g) = gxT · e(Fid, g

t) on the one hand,
and e(Fid, g

d2) = e(Fid, g
t) on the other hand. The adversary thus recovers gxT ,

which leads to the recovery of master secret key, since x ∈ {0, 1}�. For this
reason we are forced to “hide” t even more, by multiplying it with the matrix
S̃ ∈ GL�(Zq). This makes scheme description and security proofs more intricate,
for example because some care must be taken regarding the invertibility and the
probability distribution of such matrices S̃ ∈ GL�(Zq), when master public keys
are rerandomized.

Affine Functions. Let us define the set of affine functions F = {f : T n →
GT }, where T is the set of master secret keys. Let SK1, . . . , SKn ∈ G�

T be n
secret keys generated by Γ .Ukgibp(). Following the notation in [5], for every n�-

vector u = (ui) over Zq, every n�-vector s ∈ Gn�
T and every scalar H ∈ GT , let

fu,H(s) =
∏

i=1,...,n� g
ui

T · si+H ∈ GT . Then, F = {fu,H : Gn�
T → G}u∈Zn�

q ,H∈GT
.

Additionally, since the algorithm Γ0.Ukgibp(SK, id) can be seen as an affine

function from G� to G2�, we obtain uKDM-sID-CPA security [15] with respect
to the set of affine functions from G2n� to GT . Alas, this is is only a restricted
form of uKDM-sID-CPA security, since in particular we can not encrypt the j-th
selection function (sk[id1], . . . , sk[idn]) �→ sk[idj ], as sk[idj ] ∈ G2�.
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4.3 mKDM-sID-CPA Security of Γ and KDM-CCA Secure Public
Key Encryption

The scheme Γ is mKDM-sID-CPA secure with respect to the set of affine func-
tions F and for qe = 1 encryption queries per master public key, assuming the
hardness of the Decisional Linear problem in the group G. The proof of the fol-
lowing theorem, which is technically quite involved, can be found in [17]. In the
latter reference it is also discussed how to extend this scheme to another IBE
scheme that allows a predefined number of encryption queries qe >> 1, with the
downside that the master public key has length linear in qe. A similar problem is
encountered in the uKDM-sID-CPA IBE scheme from [15], where the efficiency
of the scheme depends linearly in n, the number of participants involved in the
security game.

Theorem 2. Adv-mKDM-sID-CPA(Γ, λ, �, n, 1; t) ≤
2(3n+ 4)2−λ + 8 (,1.71 log2 �-+ 1)AdvDLin(G; t′).

Note that in our case the loss factor in the reduction is constant with respect to
the number n of master keys. The factor only grows logarithmically on the secu-
rity parameter �. When the CHK transformation is applied to our IBE scheme
together with Mohassel’s one-time signature scheme [22], the resulting public
key scheme achieves KDM-CCA security for qe = 1, with a reduction loss factor
that does not depend on n.

Although the result stated in Theorem 2 relates the KDM security of our
scheme with the hardness of the Decisional Linear problem, the actual proof
relates the security of the scheme with the hardness of a different problem, the
Rank problem. The final result is obtained by applying a new and better relation
between the Rank problem and the Decisional Linear problem, which may be of
independent interest. The details are given in the following section.

4.4 The Rank Problem

We consider an assumption related to matrices. Given a (multiplicative) cyclic
group G of prime order q, the Rank(G, �1, �2, r, s) problem informally consists
of distinguishing if a given matrix in Z�1×�2

q has rank r or has rank s for
given integers r �= s, when the matrix is hidden in the exponent of a gener-
ator g of G. The problem is formally defined through the following two experi-
ments between a challenger and a distinguisher ARank. For b = 0, 1, experiment
ExpRankb

ARank
(G, �1, �2, r, s) is defined as follows.

1. In Experiment b = 0, the challenger chooses M ∈R Z�1×�2;r
q and sends gM

to ARank.
In Experiment b = 1, it chooses M ∈R Z�1×�2;s

q and sends gM to ARank.
2. The solver ARank outputs a bit b′ ∈ {0, 1}.

Let us denote as Ωb the event that ARank outputs b′ = 1 in Experiment
ExpRankb

ARank
(G, �1, �2, r, s). For any such adversary ARank let

AdvRankARank
(G, �1, �2, r, s) = |Pr[Ω0]− Pr[Ω1]|
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We can then define

AdvRank(G, �1, �2, r, s; t) = max
ARank

{AdvRankARank
(G, �1, �2, r, s)} ,

where the maximum is taken over adversaries ARank running in time at most t.

Definition 4. The Rank(G, �1, �2, r, s) assumption in a group G states that
AdvRank(G, �1, �2, r, s; t) is negligible in λ = log |G| for any value of t that
is polynomial in λ.

The Rank assumption appeared in recent papers under the names Matrix-DDH
[5] and Matrix d-Linear [14]. Therein, it was already proved that the Rank
problem is harder than the Decisional Linear problem. However, the reduction
given in the next proposition substantially improves the reductions previously
given. Namely, the loss factor is no longer linear but logarithmic in the rank.

Proposition 1. For any �1, �2, r, s such that 2 ≤ s < r ≤ min(�1, �2) we have

AdvRank(G, �1, �2, r, s; t) ≤
⌈
log(3r)−log(3s−2)

log 3−log 2

⌉
AdvDLin(G; t′)

≤ ,1.71(log2 r − log2(s− 1))-AdvDLin(G; t′),

where t′ = t+O(�1�2(�1 + �2)), taking the cost of an exponentiation in G as one
time unit.

Before proving the proposition, we note that the Rank(G, �1, �2, r, s) problem is
random self-reducible, because given M0 ∈ Z�1×�2;k

q , for random L ∈R GL�1(Zq)

and R ∈R GL�2(Zq) the product LM0R is uniformly distributed in Z�1×�2;k
q .

For the actual proof of Proposition 1, we use the following result.

Lemma 1. Any distinguisher for Rank(G, �1, �2, k − δ, k), �1, �2 ≥ 3, k ≥ 3,
1 ≤ δ ≤

⌊
k
3

⌋
can be converted into a distinguisher for the Decisional Linear

(DLin) problem, with the same advantage and running essentially within the
same time.

Proof. We will use the notation A⊕B for block matrix concatenation:

A⊕B =

(
A 0
0 B

)
In addition, we will denote I� and 0�1×�2 for the neutral element in
GL�(Zq) and the null matrix in Z�1×�2

q , respectively. Given the DLin instance
(g, gx, gy, gz, gt, gu) the DLin distinguisher builds the �1 × �2 matrix

M =

⎛⎝x 0 1
0 y t
z 1 u

⎞⎠⊕ · · · ⊕

⎛⎝x 0 1
0 y t
z 1 u

⎞⎠
︸ ︷︷ ︸

δ times

⊕Ik−3δ ⊕ 0(�1−k)×(�2−k)

and submits the randomized matrix gLMR to the Rank(G, �1, �2, k − δ, k) dis-
tinguisher, where L ∈R GL�1(Zq) and R ∈R GL�2(Zq). Notice that if u =
x−1z+ y−1t mod q then the resulting matrix is a random matrix in G�1×�2;k−δ.
Otherwise, it is a random matrix in G�1×�2;k. 
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We can now apply a hybrid argument to prove Proposition 1. Let us consider
the sequence of integers {ri} defined by the recurrence r0 = s and ri+1 =

⌊
3ri
2

⌋
,

and let k be the smallest index such that rk ≥ r. Then define a sequence of
random matrices {Mi}, where Mi ∈R Z�1×�2;ri

q for i = 0, . . . , k− 1, and Mk ∈R

Z�1×�2;r
q . For any distinguisher ARank with running time upper bounded by t,

let pi = Pr[1 ← ARank(g
Mi)]. By Lemma 1, we have that for i = 0, . . . , k − 2

|pi+1 − pi| = AdvRankARank
(G, �1, �2, ri+1, ri) ≤ AdvDLin(G; t′),

|pk − pk−1| = AdvRankARank
(G, �1, �2, r, rk−1) ≤ AdvDLin(G; t′)

Therefore, AdvRankARank
(G, �1, �2, r, s) = |pk − p0| ≤

|p1 − p0|+ . . .+ |pk − pk−1| ≤ k ·AdvDLin(G; t′).
On the other hand, since

⌊
3x
2

⌋
≥ 3x−1

2 then rk ≥
(
3
2

)k (
s− 2

3

)
, which implies

that k ≤ log(3r)−log(3s−2)
log 3−log 2 . 
	

In [17] we prove this same relation between the Rank problem and another
computational problem, the Decisional 3-Party Diffie-Hellman (D3DH) problem
[23,24,25]. As a consequence, the mKDM-CPA security of our scheme may rely on
either the Decisional Linear assumption or the Decisional 3-Party Diffie-Hellman
assumption.

5 Leakage-Resilient Identity-Based Encryption and
Applications

The Boneh et al. KDM-CPA secure PKE scheme [5] was shown to be resilient
against a leakage of up to L(1 − o(1)) bits of the secret key under a suitable
parameters selection by Naor and Segev [14]. Similar results have been proven
for other extensions of Boneh et al. scheme, notably in [6,7]. We show that this is
also the case for our scheme by slightly changing the parameters. More precisely,
an improved parameters setting of our mKDM-sID-CPA scheme provides master-
key leakage resilience in the relative leakage model [11], with leakage ratio 1 −
o(1), under the Decisional Linear assumption. Such a property is particularly
useful, since IBE schemes that are secure against master-key leakage resilient
and selective-identity chosen-plaintext attacks imply chosen ciphertext secure
public key encryption secure in the presence of leakage [14].

Some Technical Tools. To give an intuition on why our scheme is leakage-
resilient we need to recall some technical tools.

Definition 5 (Min-entropy). The min-entropy of a random variable X is de-
fined as H∞(X) = − log(maxx Pr[X = x]).

Intuitively, the min-entropy of a random variable measures the difficulty of any
adversary, even unbounded, to predict the value of the variable. The notion that
measures how hard is predicting X given knowledge of another random variable
Y is that of average min-entropy.
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Definition 6 (Average min-entropy). The average min-entropy of X given
Y is defined as H∞(X |Y ) = − log (Ey←Y [maxx Pr[X = x|Y = y]]).

Definition 7 (Statistical distance). The statistical distance between two ran-
dom variables X,Y over a finite set Ω is defined as

D(X,Y ) =
1

2

∑
ω∈Ω

|Pr[X = ω]− Pr[Y = ω]|

Lemma 2 ([26] adapted). Let A,B be random variables such that H∞(A|B) ≥
h. Let H = {Hv : Z�

q → Zq}v∈Z�
q
be the family of universal hash functions

x �→ vx. Let V be the uniform distribution in Z�
q. If log q ≤ h − 2t holds, then

D
(
(HV (A), V, B), (UZq , V, B)

)
≤ 2−t.

For the definitions of master-key leakage resilience we refer the reader to [11].
For our current exposition it suffices to say that we are considering an standard
IND-sID-CPA adversary which is allowed to decrease the min-entropy of the
master-key by a given number of bits before the challenge ciphertext is known.
We refer to our leakage security notion as IND-sID-LCPA (where L stands for
leakage attacks).

Scheme and Master-Leakage Resilience. The modified IBE scheme Γ ′ =
(Stp,Mkg,Ukg,Enc,Dec) is obtained by only changing the set from which the
master secret key SK is chosen. Instead of choosing x ∈R Z�

2 in Γ.Mkg from
Section 4.2, the scheme Γ ′ chooses x ∈R Z�

q.
Note that the average min-entropy of the master secret key x given the public

key and λ bits of leakage is h = � log q − 2 log q − λ. Let us set � = 3 + λ+2t
log q .

Then Lemma 2 guarantees that g−vx
T ∈ GT is 1

2t -statistically close to the uniform
distribution in GT . This turns out to be enough for proving mIND-sID-LCPA
security, since in the simulation the legitimate ciphertext (grS, grFid , g−rSx

T ·mβ)
is replaced by the illegitimate ciphertext (gv, gvTid , g−vx

T ·mβ) with v ∈R Z�
q, and

the adversary can not tell the difference thanks to the Decision Linear assump-
tion. Finally, the adversary will not be able to tell the difference (information-
theoretically) between an encryption of m0 or m1 because thanks to Lemma 2
g−vx
T ∈ GT is statistically close to uniform.
We briefly comment on efficiency. For instance, for � = 6 our IBE scheme

offers master-key leakage-resilience against 1
2 − o(1) leakage ratio. In this case

the ciphertext consists of 12 elements in G and 1 element in GT . By using the
CHK transformation we obtain chosen-ciphertext leakage security under DLIN
with leakage ratio 1

2 − o(1) and ciphertext consisting of 18 elements in G and 1
element in GT . This compares favourably with existing schemes in the relative-
leakage model.

Let us point out that via the IBE-to-signatures transformation, where mes-
sages to be signed play the role of identities, existentially unforgeable signature
schemes can be obtained. Thus we only need to provide a full-identity secure
variant of our master-leakage resilient scheme to obtain existentially unforgeable
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signature schemes secure against 1−o(1) leakage-ratio under the Decisional Lin-
ear assumption. One possibility is to use a random oracle H to construct the
elements FH(m) and F̃H(m). Alternatively, we can use a matrix-based analogue
of Waters’ hash function [27] to implement H(m); in this way, and at the cost
of increasing the size of the public key of the signer, we obtain existentially un-
forgeable signature schemes secure against 1−o(1) leakage-ratio in the standard
model under the Decisional Linear assumption.

6 Open Problems

Given the current state of the art ([15] and this work), the most prominent open
problem is to build mKDM-sID-CPA secure IBE schemes for qe, n ≥ 1 where the
master public key and ciphertext sizes do not depend on the number of challenge
queries qe nor on the number of users n. Another interesting research direction
is to build efficient mKDM-sID-CPA secure IBE schemes from lattices, which
would lead to the first lattice-based KDM-CCA secure public key encryption
schemes.
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Abstract. We initiate the study of unique group signature such that
signatures of the same message by the same user will always have a
large common component (i.e., unique identifier). It enables an efficient
detection algorithm, revealing the identities of illegal users, which is fun-
damentally different from previous primitives. We present a number of
unique group signature schemes (without random oracles) under a va-
riety of security models that extend the standard security models of
ordinary group signatures. Our work is a beneficial step towards miti-
gating the well-known group signature paradox, and it also has many
other interesting applications and efficiency implications.

Keywords: Anonymity, anonymous authentication, detection algorithm,
group signature, unique signature, verifiable random function.

1 Introduction

Group signatures, introduced by Chaum and van Heyst [11], are very useful
tools in applications where the signer’s privacy should be protected and in case
of abuse some authorities can identify the misbehaving user. However, a well-
known group signature “paradox” is that it is difficult for the group manager
to identify a “misbehaving” user since all of signatures are anonymous. The
group manager obviously cannot afford to open all of group signatures signed,
for this is inefficient, and more importantly, it would compromise the privacy
of every signer. Typically, the group manager identifies possible misbehaving
users by observing whether some surprising documents are signed, or a huge
amount of documents are signed within a short period, or some other “rules”
are broken. These empirical test methods only provide the group manager with
rough estimation about what signatures are suspicious. Trying to open and reveal
the identities of suspicious signatures has a risk of jeopardizing legal users, while
the illegal users may still be well-hidden.

Let us consider the motivating example of group signature due to Chaum and
van Heyst [11]: “A company has several computers, each connected to the local
network. Each department of that company has its own printer (also connected
to the network) and only persons of that department are allowed to use their
department’s printer. Before printing, therefore, the printer must be convinced
that the user is working in that department. At the same time, the company
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wants privacy: the user’s name may not be revealed. If, however, someone dis-
covers at the end of the day that a printer has been used too often, the director
must be able to discover who misused that printer, to send him a bill.”

The above opening policy, in practice, is problematic: it is not fair to reveal
all identities of the persons who use the printer that is “used too much”, since
the identities of legal users might as well be revealed. It does not even make
sense to say what is “used too much”, as a dedicated adversary might use the
same printer every day such that the times of uses are always slightly below the
daily threshold, while the others would not dare to use the printer.

In this case, the rule that this company would like to enforce is to limit the
number of times within some period that group members can use the service.
If anyone who accessed the service beyond the allowed quota then its identity
should be revealed by the group authority. At the same time, it is equally desir-
able for this company to detect other malicious printing any time—for instance,
one printing process that uses up all the paper—which is prohibitive. In other
words, once a user signs a message more than a predetermined value then it shall
be almost always (efficiently) detected, but the group manager can always open
signatures any time in case of other misbehavior.

We define unique group signature as a first step towards mitigating this para-
dox. We may say that a group signature scheme is “unique” if it is computa-
tionally infeasible for a signer to produce two different group signatures of the
same message, such that both will pass the verification procedure (by analogy
with the well-studied notion of uniqueness for ordinary signature schemes). We
adopt a less stringent but more general definition such that if a signer produces
two different group signatures of the same message, then both signatures will
always have a large common component (hereinafter unique identifier) which is
otherwise highly unlikely to occur. Ideally, if one user indeed signs two different
signatures on one message then there should be an (efficient) detection algorithm
that can reveal the identity of this user. With carefully defined other security
notions, this primitive (still called unique group signature) serves as a perfect
solution of dealing with the above problem.

A closely related question was first asked by Damg̊ard, Dupont, and Peder-
sen [12] in their paper on unclonable group identification scheme. An unclonable
group identification scheme enables a user to authenticate to a server with com-
plete anonymity provided that no other users try to use the first user’s secret
key to authenticate to the server within the same time period (“cloning attack”),
while allowing the user’s identity to be traced if they do misbehave in this way.
They point out the inadequacy of existing group signature schemes for this pur-
pose: “. . .This achieves anonymity but does not protect against cloning.” Indeed,
“This. . .is actually false for known schemes, since these are probabilistic and pro-
duce randomly varying signature even if the message is fixed.” Our unique group
signature can be deemed as important progress on this interesting open question,
and it also has many applications beyond unclonable group identification.

Informally speaking, unique group signatures (suitably defined) are adequate
for unclonable group identification. For example, the user might send
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identification requests that include a signed message of the form “service name ||
date” where || denotes concatenation. The server accepts if the signature is valid,
and if it doesn’t have the same large common component as another identifica-
tion request received earlier in the day. For this application (and many others),
we further need a non-colliding property for a unique group signature. A unique
group signature is non-colliding if two different signers almost never produce the
same unique identifier of the same message.

In another application, the user might send authentication requests that in-
clude a signed message of the form “service name || date || j”, where j is any
integer between 1 and the (daily) authentication bound k. The server accepts if
the signature is valid, and if it doesn’t have the same large common component
as another authentication request from earlier in the day. This yields a variant of
periodic k-times anonymous authentication scheme [23,22,24,8]. Of course, many
variations are possible by varying the space of messages to be signed.

Notice that for both of these applications, the server can choose whether or
not to ask the group manager to reveal the identities of misbehaving users. For
minor misbehavior (such as an attempt to authenticate to a service a few more
times than the allowed bound, which might be due to innocent human or software
or network error) the extra attempts could be detected and ignored. This lets
the service provider reserve the relatively harsh penalty of anonymity revocation
for more significant (sustained and persistent) misbehavior.

Also note that the deterministic and uniqueness property of our unique sig-
nature can lead to very fast processing of data. For example, a service provider
carrying out a “first come, first kept” policy on a stream of � requests would need
only O(� log �) operations (via appropriate tree structures), or O(�) expected op-
erations (via hash tables). This is particularly useful when there are many users
to be processed.

Though it can also deal with some applications that k-times anonymous au-
thentication and more generalized e-token system [8] can, our primitive (even
in this respect) is in essence a different one with distinct features and benefits
(further discussion and comparison coming shortly).

Two models. This paper studies both the static group signature setting due
to Bellare, Micciancio, and Warinschi (BMW) [4] and the dynamic group sig-
nature setting due to Bellare, Shi, and Zhang (BSZ) [5]. Intuitively, the static
setting has a single authority (called the group manager), which the dynamic
setting splits into two: an issuer for enrolling members, and an opener for tracing
identities. One might feel that studying static setting is not quite necessary as
one could focus on the more involved and generalized dynamic group signature
setting. First, this does not make sense syntactically, since a dynamic group
model is not simply an extension of a static group model. Static group signa-
ture models realistic scenarios that the group manager takes full control of the
group user generation, and the secret signing key is distributed to each member,
preferably, without interaction. (Otherwise, the members have to be supported
by a trusted PKI, which usually is not the case in such a setting.) Instead, in
the dynamic group setting, PKI support and interactive Join/Issue between the
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group issuer and group users are both inevitable. Second, this does not make
sense technically, as we shall see, asking for non-interaction raises a few subtle
issues in the static setting, making constructing an efficient scheme equally dif-
ficult. Third, we believe that static group signature is still conceptually more
simple and starting from such a non-trivial point will make our presentation
much clearer. Last, constructionally, our results for static unique group signa-
ture are both general and more efficient, while for the dynamic group setting
our results are only semi-modular and a little less efficient.

How to model unique group signature? We offer the “strongest” achiev-
able definitions of security for both settings, but here we only highlight the case
of dynamic model. On the one hand, the security requirements of dynamic unique
group signatures are all simple and clear. Three of them (i.e., CCA-anonymity,
traceability, and non-frameability) are based on previous security definitions of
ordinary group signatures, while the uniqueness requirement is a quite natural
and intuitive one. This is good, whether for understanding the definitions, or
for designing the constructions. The uniqueness security notion formalizes the
intuition that one signer can only sign one message once. Jumping ahead, we
argue that defining uniqueness in the group signature setting raises subtle issues
that must be carefully treated.

On the other hand, they are in fact very carefully defined on the whole. Recall
that our goal is to present a group signature system where each group member
can only sign any message once, equipped with an (efficient) detection algorithm
such that the identities of ones who disobey such a rule can be revealed and
should otherwise be never leaked. All definitions of security are designed to this
end. A few seemingly reasonable variants of definitions turn out to be inadequate.

The detection algorithm of our dynamic CCA-anonymous unique group signa-
ture is as simple as one could imagine: if the detection authority (i.e., the opener)
ever found two different valid group signatures on the same message with the
same unique identifier, then it runs the opening algorithm Open to extract their
identities i and j (possibly i equals j), and adds them (it) to the misbehaving
user set. However, all of these on detection algorithm have to be formally de-
fined, otherwise it leaves one without any notion for what it means to have a
good detection algorithm. Also note that our defined security properties do not
even involve any properties of detection algorithms. Instead, we show that once
the group system satisfies the four basic security requirements, it gives rise to a
good (complete and sound) detection algorithm.

Constructions. In this paper, we present both the general constructions and
efficient instantiations for both static and dynamic group models without re-
lying on random oracles. In the static setting, our general scheme follows the
BMW two-level signature construction but uses a verifiable random function
(VRF) [21] as the second-level signature. We also give a simpler construction
for a unique group signature that is secure in a relaxed yet reasonable model.
They together lead to our final efficient instantiation using Groth-Sahai proof
system [19]. All of our constructions (either general or specific) are constant-size,
and the instantiation is as efficient as the-state-of-the-art. Our construction for
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the unique group signatures in the dynamic setting is semi-modular, and can be
instantiated efficiently. The construction can even admit efficient concurrent-join
which allows many entities concurrently engage in the Join/Issue protocol with
the issuer. In building the schemes, we identify new and useful techniques that
we believe can be used in other privacy-preserving primitives. We highlight two
of them. The first one is a PRF with NIZK proof that can degenerate into a
unique signature. In many signature-related primitives, one not only need prove
a deterministic function in a zero-knowledge sense but also prove knowledge of
input to the function. There are many existing techniques, but ours gives the
constructions that can be more efficient and rely on weaker assumptions. The
other technique is what we call “double-chaining certification”, which is used to
achieve our unique group signature in the dynamic setting. In essence, this al-
lows us to separate the unique identifier generation process from tracing process,
thereby resulting in efficient and intuitive constructions.

Applications and Comparison between other primitives. Our primi-
tive is designed to mitigate the group signature paradox and also motivated
by other privacy-preserving constructions, such as k-times anonymous authen-
tication, unclonable group identification protocol, and more generalized e-token
systems (periodic k-times anonymous authentication) [8]. The latter primitives
are closely related to group signatures, but do not have an opening authority
that can always de-anonymize signed messages.

On the other hand, our primitive can be as well used in applications where
(periodic) k-times anonymous authentication is needed as illustrated earlier.
Indeed, one can simply use a range proof to extend unique group signature
to handle cases for k > 1, or one can easily achieve constant-size scheme by
registering k public keys for one user at a time. (Note one of our instantiations
supports efficient concurrent-join.) However, our primitive, in this respect, has
distinct features.

First, the detection algorithms for other primitives are made public, meaning
that if the a user signs more than the authentication bound k then its identity can
be publicly known. This can be both good and bad : if an honest user accidentally
signs slightly more than what is required because of hardware breakdown or clock
desynchronization, then the public identity disclosure might not be the most
reasonable choice. In fact, we are not aware of any implementations with such
stringent mechanisms in real applications. Our unique group signature in the
dynamic group setting supports in essence a different identity disclosure strategy
where the detection authority (other than the group provider) is responsible to
detect and reveal disobeyers by the detection algorithm Det. Anyone including
the group provider and group members can find publicly misbehaving signatures
and report to the detection authority. In our setting, this algorithm is even
coupled with a detection proving algorithm DetProve that ensures the detection
authority to behave correctly with a proof that the revealed identities are ones
of the disobeyers. The opener reserves the right to open persistent misbehaving
users to the public, or contact and warn them privately, or send the identity
and the corresponding proof into court as it sees fit. As far as we are concerned,
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two flavors of revelation are both interesting and should be used depending on
specific applications.

Second, it was argued in [23], for their applications only, of course, that it is
preferable that the users (who honestly follow the protocol specification) should
enjoy anonymity even from the group provider. For the traditional group signa-
ture schemes, this requirement is not satisfied. But in the dynamic group model,
the group provider might be a distinct entity from the opener who acts as the
detection authority. Indeed, the reliance on some other party is inevitable if we
do not want to enforce public identity discovery.

Third, in the context of k-times anonymous authentication, to the best of our
knowledge, all previous constructions (e.g., [8,22,24,23]) uses an idea originally
from e-cash system. The detection algorithm of our primitive is fundamentally
different from those. It turns out, perhaps somewhat counter-intuitive, that mod-
eling and achieving “right” detection without using public discovery is actually
more challenging.

Last, as mentioned earlier, our primitives can be used in a more efficient
way such that no detection algorithm is involved. Namely, the deterministic and
unique property of our unique signature lead to very fast processing of data. We
are not aware of other primitives admitting such efficient detection.

2 Preliminaries

Notations. If x is a string then |x| denotes its length. The empty string is

denoted ε. If S is a set then |S| denotes its size and s $← S denotes the operation
of selecting an element s of S uniformly at random. ∅ denotes the empty set,
while Ø denotes a vector of empty sets. If n is an integer [n] denotes the set

{1, 2, · · · , n}. If A is a randomized algorithm then we write z
$←A(x, y, · · · ) to

indicate the operation that runs A on inputs x, y, · · · and a uniformly selected r
from an appropriately required domain and outputs z. A function ε(λ): N →
R is negligible if, for any positive number d, there exists some constant λ0 ∈
N such that ε(λ) < (1/λ)d for any λ > λ0. For definitions of primitives and
cryptographic assumptions, please refer the full version [15, Section 2].

3 Unique Group Signature Models

In this section we present models of unique group signatures in the static setting
(following BMW [4]) and in the dynamic setting (following BSZ [5]).

3.1 Static Setting Model

Following [4], a static group signature scheme SGS consists of four algorithms
(GK,GS,GV,Open). There is only one group authority which we call the group
manager. The group key generation algorithm GK takes as input the security
parameter λ to form a fixed-size group with n members where n may be related
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to λ, returning a tuple (gpk, gmsk, gsk), where gpk is the group public key,
gmsk is the group manager secret key, and gsk is an n-vector of secret signing
keys with gsk[i] for each user i. The secret keys are usually distributed to mem-
bers without interaction. The group signing algorithm GS takes as input gsk[i]
and a message m to return a signature σ under gsk[i]. The group verification
algorithm GV takes as input the group public key gpk, a message m, and a sig-
nature σ for m to return a single bit b. We say that σ is a valid signature of m if
GV(gpk,m, σ) = 1. The opening algorithm Open takes the group public key gpk,
group manager secret key gmsk, a message m, and a signature σ to return an
identity i or ⊥ (indicating failure). Basic correctness property is required: for all

security parameter λ and integer n, all (gpk, gmsk, gsk)
$← GK(1λ), all i ∈ [n],

and all message m ∈ {0, 1}∗, it holds that GV(gpk,m,GS(gsk[i],m)) = 1 and
Open(gpk, gmsk,m,GS(gsk[i],m)) = i.

For our purposes, we consider static unique group signatures where the signa-
tures should have the form of (m,σ) = (m, τ, ψ) where τ is the unique identifier
for the message m and some group member i, and ψ is the rest of the signature.
(One can view the unique identifier as a special tag.) We define for static unique
group signature three security requirements: uniqueness, anonymity, and trace-
ability. The uniqueness requirement formalizes the intuition that one user can
only sign one message once, while the last two requirements are adapted from
ones for the regular static group signatures with the restraints of being unique.

Uniqueness. Unlike defining uniqueness for a stand-alone signature (i.e., unique
signature), it is “tricky” to do so in the context of group signature that involves
multiple users. Intuitively, any single group member should not generate more
than one valid signatures for any message m. However, it is not quite adequate,
for, an adversary may (adaptively) corrupt multiple group members to gain an
additional advantage. (In the full version [15, Appendix B], we give a separa-
tion result, showing that there exist schemes satisfying a weakened uniqueness
definition where the adversary can only corrupt one user but not the standard
uniqueness that we define shortly.) We thus give adversary access to a user secret
oracle, USK(·), which, when queried with an identity i ∈ [n], answers with the
secret signing key gsk[i] for user i. In the static group signature setting, once
the secret key of a user is revealed then it is said to be corrupted. Let CU denote
a set of corrupted users. Since the group has a fixed-size n, a set of uncorrupted
(i.e., honest) users is [n]/CU. The adversary is also given access to a user signing
oracle, GS(·, ·), which when queried with an identity i of a user and a mes-
sage m, returns GS(gsk[i],m). Note that we do not require that adversary only
ask uncorrupted users for this oracle. Let GS denote a set of message-signature
pairs queried via the GS(·, ·) oracle. We write GSm to denote a set of users with
which adversary calls GS(·,m). We write GSM where M is a set of the messages
queried to denote a vector of sets with GSm for each m ∈ M. For maximal se-
curity, we also provide adversary with the secret of the group manager gmsk.
Formally, given a static signature scheme SGS of a fixed-size n, we associate to
an adversary A the following experiment:
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Experiment Expunique
SGS,n(A)

(gpk, gmsk, gsk)
$←SGS.Gen(1λ); CU ← ∅; GS← ∅

(m,σ1, · · · , σ|CU|+1)
$←AUSK(·),GS(·,·)(gpk, gmsk)

for i← 1 to |CU|+ 1 do

if GV(gpk,m, σi) = 0 or (m,σi) ∈ GS then return 0

for i, j ← 1 to |CU|+ 1 do

if i �= j and τi = τj then return 0

return 1

where, above, each σi is of the form (τi, ψi). We define the advantage of A in
the above experiment as

Advunique
SGS,n(A) = Pr[Expunique

SGS,n(A) = 1].

In the above experiment, adversary is expected to output exactly |CU|+1 new and
valid signatures which have distinct unique identifiers w.r.t. the same message.

A caveat. We first emphasize that the above notion is the one that we shall
use in this paper. However, we do point out some “inadequacies” by considering
the following scenario: it is entirely possible that some of keys correspond to one
same unique identifier (i.e., they “collide”), while some other keys might generate
more unique identifiers than required. To put it differently, it might be the case
that a set of users of size k who do not collude ought to create k − 1 unique
identifiers as two of them collide, but when they collude they can create k unique
identifiers. This does not contract our uniqueness security, but such a collusion
clearly makes them sign messages beyond their own.

Non-colliding property. In light of this (and as required by some appli-
cations mentioned in the introduction), we impose a restriction on our static
unique group signature. We say that a group signature is non-colliding if any of
two different (honest) signers (who follow the scheme specification) almost never
produce the same unique identifier of the same message. More formally, for all

security parameter λ and integer n, all (gpk, gmsk, gsk)
$← GK(1λ), all i, j ∈ [n]

and i �= j, and all message m ∈ {0, 1}∗, it holds that
Pr[(τi, ψi)

$← GS(gsk[i],m); (τj , ψj)
$← GS(gsk[j],m) : τi = τj ] ≤ ε(λ).

Above, the probability is taken over the coins of the group key generation algo-
rithm and group signing algorithm.

The above requirement can resolve the “issue” above. Indeed, if the above-
mentioned circumstance happens then an adversary who corrupted a set of group
members can always “honestly” generate signatures again and pick “enough”
signatures with different unique identifiers to attack the uniqueness property. It
also makes our primitive justifiable in a few applications—only via this property
one can safely achieve the functionality of restricted anonymous authentication
(as mentioned in the introduction). Jumping ahead, we claim that the non-
colliding property is needed as well in justifying the security of the detection
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algorithm of unique group signature. We refer to the full version [15] for further
discussion on definitional choices and issues on uniqueness.

Anonymity. Due to the uniqueness property, we cannot achieve the strongest
anonymity definition of security as defined in BMW [4]. (The group signature
signed by each member i is a partly deterministic function of the gpk, gsk[i], and
the message m. If the adversary is given all of the secret keys gsk then it can at-
tack the full-anonymity game simply by re-computing.) Thus a slightly weaker yet
still very strong anonymity security notion is used: the adversary can adaptively
corrupt the users of the group; for uncorrupted users, adversary is given a signing
oracle; in the challenge stage, adversary is not allowed to submit challenge queries
with identities of corrupted users, and not allowed to submit challenge queries
with at least one of the identities and the message being the same as ones queried
before. We write Open(·, ·) to denote the opening oracle, which when queried with
a message m and a candidate signature σ, answers with Open(gpk, gmsk,m, σ).
Specifically, given a static group signature scheme SGS of a fixed-size n, we asso-
ciate to an adversary A the following experiment:

Experiment Expanon
SGS,n(A)

(gpk, gmsk, gsk)
$←SGS.Gen(1λ); CU ← ∅; GSM ← Ø

(i0, i1,m, s)
$←AUSK(·),GS(·,·),Open(·,·)(find, gpk)

b
$← {0, 1}; σ $← GS(gsk[ib],m)

b′
$←AUSK(·),GS(·,·),Open(·,·)(guess, σ, s)

if b′ �= b then return 0
return 1

where it is mandated that for each d ∈ {0, 1} we have id /∈ CU and id /∈ GSm, and
in the guess phase the adversary A did not query Open(·, ·) with m and σ. We
define the advantage of A in the above experiment as

Advanon
SGS,n(A) = Pr[Expanon

SGS,n(A) = 1]− 1/2.

We use the term “CPA-anonymity” to denote the following weakening of the
security definition for anonymity [7]: The adversary is never given access to the
opening oracle.

Traceability. The traceability security definition is the same as one in BMW [4].
We recall it by considering the experiment that associated to an adversary A:

Experiment Exptrace
SGS,n(A)

(gpk, gmsk, gsk)
$←SGS.Gen(1λ); CU ← ∅; GSM ← Ø

(m,σ)
$←AUSK(·),GS(·,·)(gpk, gmsk)

if GV(gpk,m, σ) = 0 then return 0
if Open(m,σ) = ⊥ then return 1
if Open(m,σ) = i and i /∈ CU and i /∈ GSm then return 1
return 0

The advantage of A in the above experiment is defined as

Advtrace
SGS,n(A) = Pr[Exptrace

SGS,n(A) = 1].
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3.2 Dynamic Setting Model

In the dynamic group setting, there are two more features: it allows one to
add members to the group; the authority is separated into the opener and the
issuer. An issuer is responsible to enroll members, while an opener traces the
identities of signatures signed by the users enrolled. A dynamic group signature
scheme DGS consists of six algorithms (GK, Join/Issue,GS,GV,Open, Judge). We
consider dynamic unique group signatures having the form of (m, τ, ψ) where τ
is the unique identifier. A secure unique group signature in the dynamic setting
should satisfy correctness and non-colliding property and four security notions:
uniqueness, anonymity, traceability and non-frameability. Overall, the definitions
in dynamic setting are more involved and refer the full version [15] for details.

3.3 Detection Algorithms

We show how our security definitions in both settings imply efficient detection
algorithms that can find who do not follow the algorithm specification and dis-
obey the rule that one group member can only sign any message once. Here we
only focus on the more involved dynamic setting, and one can easily get similar
(but weak) results for the static group setting.

The detection algorithm Det takes as input two different group signatures σ1
and σ2 for the same messagem and outputs⊥ or I or (b, i, j, θ) for b ∈ {0, 1}. The
algorithm returns ⊥ if at least for one of σ1 and σ2 it holds that GV(gpk,m, σt) =
0 (t ∈ {0, 1}). If b = I then the detection algorithm is claiming that at least
one of the two signatures was not generated by the group members registered
in the reg . (Note that group issuer can always generate group signatures on his
own by adding dummy users.) In this case, it might have an additional output μ
that is a proof that at least one of the signatures was generated by the group
issuer. If b = 0 then it is claiming that two signatures were generated by two
different signers—a rule that the system would like to enforce. In this case, it
does not need a proof of the claim. (But one could ask a proof if desired.) In
case b = 1, it is claiming that two signatures were generated by rule disobeyers i
and j, where i, j ≥ 1, i could be equal to j, and θ is a proof of this claim that is
verified by the DetProve algorithm.

The detection proving algorithm DetProve takes as input the group public key
gpk, two valid signatures σ1 and σ2 of m, and a vector (b, i, j, θ) output from Det
(m,σ1, σ2) where b = 1, i, j ≥ 1, and θ is a non-empty string to output a single
bit d indicating whether θ is a correct proof that both of i and j disobey the rule.

The detection algorithm should satisfy completeness and soundness properties
described below.

Completeness. The set LU of legal users (who follow the rule that one signer
can only sign one message once) will almost never be wrongly detected by the
detection algorithm.

Soundness. If Det(m,σ1, σ2) = (1, i, j, θ) and DetProve(gpk,m, σ1, σ2, Det
(m, σ1, σ2)) = 1 then both i and j are illegal users (who did not follow the
specification of the protocol or the rule).
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Alg Det(m,σ1 = (τ1, ψ1), σ2 = (τ2, ψ2))
if GV(m,σ1) = 0 or GV(m,σ1) = 0 then

return ⊥
(i, ωi) ← Open(m,σ1)
(j, ωj) ← Open(m,σ2)
if i = 0 or j = 0 then

return (I, μ)
if τ1 = τ2 then

return (1, i, j, (ωi, ωj))
return (0, ε)

Alg DetProve(m,σ1, σ2)
if Det(m,σ1, σ2) �= (1, i, j, (ωi, ωj)) then

return 0
if Judge(gpk, (i, ωi),m, σ1, reg) = 1 and

Judge(gpk, (j, ωj),m, σ2, reg) = 1 then
return 1

return 0

Fig. 1. Det and DetProve algorithms

Our dynamic CCA-anonymous unique group signature immediately has an ef-
ficient complete and sound detection algorithm Det coupled with a detection
proving algorithm DetProve, as illustrated in Figure 1. We justify the detection
algorithm by providing the following theorem (with proof in the full version [15,
Appendix C.1]). We also refer to [15] for further discussion and applications.

Theorem 1. Given a dynamic unique group signature DGS, if it is correct and
non-colliding, and satisfies CCA-anonymity, uniqueness, traceability, and non-
frameability requirements, then the Det algorithm given in Figure 1 is complete
and sound.

4 Unique Group Signature Construction – Static Setting

In this section, we first present general constructions for CCA-anonymous unique
group signature and for its meaningful relaxations in the static setting. They
together motivate efficient instantiations by using Groth-Sahai proof system.

A general CCA-anonymous unique group signature. Our construction
basically follows the general two-level signature constructions of [4]. The differ-
ence is that we replace the second-level signature with a verifiable random func-
tion, where its public key is signed by the certification key of group manager. We
give our general construction using a first-level signature scheme that provides
security against random message attacks.1 Define a verifiable random function
VRF = (Gen,Eva,Prove,Ver) with input domain X and output range Y. Let
DS = (Gen, Sig,Vrf) be a signature scheme. Let E = (Gen,Enc,Dec) be a pub-
lic key encryption scheme. Let (P1, V1) be a NIZK proof system for a language
L1 := {(m, vk, ek, τ, C)|∃(r, vk′, ν′, cert)[Vrf(vk, vk′, cert) = 1,Ver(vk′,m, τ, ν′) =
1, andC = Enc(ek, r, (vk′, ν′, cert))]}where we write Enc(ek, r,M) for the encryp-
tion of a messageM under the public key ek using the randomness r. We define
a group signature scheme SGS1 in Figure 2. We have the following theorem:

1 Informally, a signature is unforgeable against random message attack [14] if it cannot
forge a signature on a new message having access to a special oracle that returns
signatures on randomly chosen messages.
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Alg GK(1λ)

R
$←{0, 1}p(λ)

(vk, sk)
$←DS .Gen(1λ)

(ek, dk)
$←E .Gen(1λ)

gpk ← (R, ek, vk)
for i ← 1 to n do

(ski, vki)
$←VRF .Gen(1λ)

certi
$← Sig(sk, vki)

gsk[i] ← (ski, vki, certi, gpk)
reg[i] ← vki

gmsk ← (dk, reg)
return (gpk, gmsk,gsk)

Alg GS(gsk[i],m)

τ ← Eva(ski,m); ν
$← Prove(ski,m)

C ← Enc(ek, r, (vki, ν, certi))

π
$← P1(R, (m, vk, ek, τ, C), (r, vki, ν, certi))

σ ← (τ, C, π)
return (m,σ)

Alg GV(gpk,m, σ)
return V1(R, (m, vk, ek, τ, C), π)

Alg Open(gpk, gmsk,m,σ)
if V1(R, (m, vk, ek, τ, C, π)) = 0 return ⊥
(vk′, ν′, cert) ← Dec(dk,C)
if vk′ = reg[i] then return i

Fig. 2. Static unique group signature (a general construction). We write reg to denote
reg[1] · · · reg[n]. R is the common reference string for the underlying NIZK proof sys-
tem (P1, V1). SGS1 is a CCA-anonymous unique group signature, if DS is unforgeable
under random message attacks, E is CCA-secure, and VRF is a verifiable random func-
tion, and (P1, V1) is a simulation-sound NIZK proof system. SGS1 is CPA-anonymous,
if E is semantically secure and (P1, V1) is a regular NIZK proof system.

Theorem 2. If VRF is a verifiable random function, DS is a secure signa-
ture against random message attack, scheme, and the underlying NIZK proof
system (P1, V1) is sound, zero-knowledge, and one-time simulation-sound then
the construction SGS1 in Figure 2 is a secure CCA-anonymous unique group
signature in the static setting.

Relaxations and Separations. The above construction is general but does
not seem to immediately give rise to efficient instantiations. This is due, first, to
the fact current simulation-sound NIZK proof systems are not efficient enough.
This is further due to the fact that the VRF proof ν may be incompatible with
the efficient proof systems. In light of this, we consider two meaningful relax-
ations of CCA-anonymous unique group signature. The first natural relaxation
is to consider CPA-anonymous unique group signature where the anonymity ad-
versary is never given the opening oracle. This immediately helps avoid using
simulation-sound property of NIZK proof system and chosen ciphertext security
for the underlying encryption scheme. Namely, we have a group signature the
same as illustrated in Figure 2 except that we only use a regular NIZK proof
system and a semantic-secure encryption.

Theorem 3. If VRF is a verifiable random function, DS is a secure signa-
ture against random message attack, E is a CPA-secure encryption scheme, and
the underlying NIZK proof system (P1, V1) is sound and zero-knowledge, then
the construction SGS1 in Figure 2 is a secure CPA-anonymous unique group
signature in the static setting.

The other meaningful relaxation is that we no longer give the uniqueness and
traceability adversaries the group manager secret key gmsk. This relaxation
makes sense as an external adversary usually does not obtain the opening key
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Alg GK(1λ)

R
$←{0, 1}p(λ)

(vk, sk)
$←DS .Gen(1λ)

(ek, dk)
$←E .Gen(1λ)

gpk ← (R, ek, vk, F )
for i ← 1 to n do

si
$←S

certi
$← Sig(sk, si)

gsk[i] ← (si, certi, gpk)
reg[i] ← si

gmsk ← (dk, reg)
return (gpk, gmsk,gsk)

Alg GS(gsk[i],m)
τ ← Fsi(m)
C ← Enc(ek, r, (si, certi))

π
$← P2(R, (m, vk, ek, τ, C), (r, si, certi))

σ ← (τ, C, π)
return (m,σ)

Alg GV(gpk,m, σ)
return V2(R, (m, vk, ek, τ, C), π)

Alg Open(gpk, gmsk,m,σ)
if V2(R, (m, vk, ek, τ, C, π)) = 0 return ⊥
(s′, cert) ← Dec(dk,C)
if s′ = reg[i] then return i

Fig. 3. Static unique group signature SGS2, with relaxed uniqueness and traceability
notions, where the adversaries are not given the group manager secret key gmsk

of group manager unless it corrupts the group manager which looks less likely.
We find that if we restrict the adversary in such a way then we can simply use
PRF instead of VRF such that the second problem can be solved.

Define a PRF family F : S × X → Y where S is the key space, X is the
message space, and Y is the range. We write Fs(·) to denote a PRF for ev-
ery s ∈ S. Let DS and E be a digital signature and a public key encryp-
tion scheme respectively. Let (P2, V2) be a NIZK proof system for a language
L2 := {(m, vk, ek, τ, C)|∃(r, s, cert)[τ = Fs(m),Vrf(vk, s, cert) = 1, and C =
Enc(ek, r, (s, cert))]}. We define a unique group signature scheme SGS2 as illus-
trated in Figure 3. The following theorem establishes its security.

Theorem 4. If F is a PRF, DS is a secure signature against random message
attack, E is a CCA2 secure encryption scheme, and the underlying NIZK proof sys-
tem (P2, V2) is sound,zero-knowledge, and one-time simulation-sound then the con-
struction SGS2 given in Figure 3 is a CCA-anonymous unique group signature with
relaxed uniqueness and traceability where the adversaries are not given gmsk.

One can verify that SGS1 (i.e., the CPA-anonymous construction) may be not
CCA-anonymous, and SGS2 may be not secure in the sense of standard unique-
ness and traceability. Thus, they give natural separations results for these defi-
nitions of security. See [15, Appendix B] for proofs and discussion.

Efficient Instantiations. The above concerns do not rule out ad hoc con-
structions in the strongest model. It turns out that we can provide efficient
constructions using the Groth-Sahai proof system. The encryption scheme can
be replaced with a Groth-Sahai extractable commitment scheme. Given a bilin-
ear group (q,G1,G2,GT , e, g, h), a commitment to x ∈ G (either G1 or G2) with
randomness rx is denoted Com(x, rx), and an extraction algorithm Extr takes as
input the extraction key xk and a commitment C to return a group element.

The key component is a PRF that supports efficient NIZK proof that can
degenerate into a unique signature scheme where they share the same tag. In
general, the former helps achieve the anonymity security, where the tag has to
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Alg GK(1λ)

(crs, xk)
$← Groth-Sahai.Gen(1λ)

(vk, sk)
$←DS .Gen(1λ)

gpk ← (crs, vk)
for i ← 1 to n do

si
$← Zq

certi
$← Sig(sk, hsi)

gsk[i] ← (si, certi, gpk)
reg[i] ← hsi

gmsk ← (xk, reg)
return (gpk, gmsk,gsk)

Alg GS(gsk[i],m)

τ ← g1/(si+m)

Cs
$← Com(hsi)

θ
$← Sig(sk, hsi)

return (m, τ,Cs, Cθ, π1, π2)

Alg GV(gpk,m, σ)
return V3((m,τ, Cs), π1) ∧ V4(Cs, Cθ, vk), π2)

Alg Open(gpk, gmsk,m,σ)
if GV(gpk,m, σ) = 0 return ⊥
S′ ← Extr(xk,Cs)
if S′ = reg[i] then return i

Fig. 4. Efficient CPA-anonymous unique group signatures. Let V3 and V4 be the corre-
sponding verification algorithms for the languages L3 and L4. The common reference
string crs contains the bilinear map parameter (q,G1,G2,GT , e, g, h) besides the Groth-
Sahai proof parameter.

be random, while the latter is used to prove the uniqueness and traceability
security, where the tag only needs to be unique and unpredictable.

Specifically, we make use of a variant of the PRF with NIZK proof proposed by
Belenkiy et al. [3]. We define a language L3 := {(m, τ, Cs)|∃(s, rs)[τ = Fs(m) and
Cs = Com(hs, rs)]}, where Fs(·) := g1/(s+·). The corresponding NIZK proof π1 is
of the form (Cτ , πτ , C

′
s, πs, π

′), where Cτ is a commitment to τ and πτ is a NIZK
proof for that Cτ is a commitment to τ , C′

s is a commitment to hs, πs is a NIZK
proof that Cs and C′

s are commitments to the same value, and π′ is a witness-
indistinguishable proof that Cτ is a commitment to τ̄ , C′

s is a commitment to S
such that e(τ̄ , Shm) = e(g, h). The above proof system is a NIZK proof system
for L3 if DDHI assumption [9,3] holds and Groth-Sahai proof system is secure. As
shown above, if we directly let group manager sign each secret key s ∈ Zq (and
add each s to reg which is part of gmsk) and run a corresponding NIZKPoK
then we can get a CPA-anonymous unique group signature yet with relaxed
uniqueness and traceability security. Still, this appears hard to find an efficient
instantiation in the framework of Groth-Sahai proof system, since the secret s
is a scalar rather a group element.

Note that we cannot as well expose the value hs in the above PRF with
NIZK proof system, because neither the above system would be zero-knowledge
nor we are able to prove its security based on DDHI assumption. We can,
however, degenerate the above PRF with NIZK proof to get a unique signa-
ture scheme, where one can view hs as the public key and g1/(s+m) as the
signature of m.Then, the manager can sign each hs instead of s, and add hs

to reg. Fortunately, we can show that uniqueness property and standard unforge-
ability security (rather than pseudorandomness) suffice to give the security of
uniqueness and traceability. This prevents us from using rather strong assump-
tions such as SDDHI assumption [8] in bilinear groups. In fact, one can prove
security of the unforgeability under DHI assumption [13] (with less tight reduc-
tion) or SDHI assumption that we formalize where the adversary is only asked
to output a new message-signature pair (see the full version [15, Section 2.2]).
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It remains to be shown how to choose the first-level signature. Recall that
Groth-Sahai commitment, given the extraction trapdoor, can only extract group
elements. The first solution is to use the F -unforgeable signature by Belenkiy et
al. [2]. They proposed two F -unforgeable signature schemes, one of which has
a simple structure, yet using an interactive assumption (i.e., interactive Hidden
SDH assumption). We can build our scheme on this signature, while the security
can be proven using a weaker and more natural non-interactive q-type assump-
tion. The other is to employ a structure-preserving signature [1] that is only
needed secure in the weak random message attack (e.g., one from [17]) to sign hs

directly. To be as general as possible, we let DS = (Gen, Sig,Vrf) be the first-
level signature that can sign at least one group element and π2 is a corresponding
Groth-Sahai NIZK proof for the language L4 := {(Cs, Cθ, vk)|∃(S, rs, θ, rθ)[Cs =
Com(S, rs), and Cθ = Com(θ, rθ), and Vrf(vk, S, θ) = 1}.The construction is il-
lustrated in Figure 4 and we have the following theorem.

Theorem 5. The construction in Figure 4 is a CPA-anonymous unique group
signature if DDHI and DHI (or SDHI) assumptions hold and Groth-Sahai proof
system is secure, and the DS is structure-preserving and unforgeable under ran-
dom message attack (or F -unforgeable under random message attack).

5 Unique Group Signature – Dynamic Setting

Similar to the construction of Section 4, the starting point for a CPA-anonymous
unique group signature scheme in the dynamic setting is a two-level certification
protocol (with the first-level signature DS1 and second-level signature DS2): the
issuer signs the verification key of users, and the users can then sign their own
messages. This process should be achieved in a zero-knowledge sense.

To make the signature unique, one can consider using a PRF F instead of a
signature scheme at the second level. Moreover, an interactive protocol is used
to get a signature of the secret PRF key si of user i under vk, without letting
the issuer know the secret. To sign a message m, it computes τ := Fsi(m),
which we would like to use as the unique identifier. It then gets a NIZK proof of
knowledge π that there exists a certification chain (si, certi) such that τ = Fsi(m)
and DS1.Vrf(vk, si, certi) = 1. The group signature is now (m, τ, π).

It is important that the issuer should not learn the PRF keys that it signs,
or the issuer may now attack the CPA-anonymity by simply checking which of
the PRF keys could have produced a given unique identifier. In general, we can
resort to two-party secure computation. More efficiently, in order for the user i
to get certi without letting the issuer know si (or gsi , for our construction),
they can run a “signing on a committed value” protocol to get a certification of
the secret, and user later makes a proof of knowledge of the signature. (They
are known as “CL-signatures” [10], and signatures with non-interactive proofs of
knowledge are termed as P -signatures [2]). However, this above process does not
make the tracing and judging algorithm available. To solve this, we introduce
a second chaining of two-level certification; namely, two new signature schemes
DS ′

1 and DS ′
2 are selected. This time, we use Groth-Sahai commitments such
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Alg GK(1λ)

(vk, sk)
$←DS1.Gen(1

λ)

(vk′, sk′) $←DS ′
1Gen(1

λ)

(crs, xk), (crs′, xk′) $← Groth-Sahai.Gen(1λ)

(X1, X2, Y1, Y2)
$←T E .Gen(crs, 1λ)

ek ← (X1, X2, Y1, Y2)
gpk ← (crs, crs′, vk, vk′, ek, F )
ik ← (sk, sk′); ok ← xk
return (gpk, ik, ok)

Alg Join/Issue (user i, issuer)
(user i : gpk, si, vk

′
isk

′
i)

� (issuer : gpk, ik)
gsk[i] ← (gpk, si, certi, sk

′
i, vk

′
i, cert

′
i)

reg[i] ← vk′
i

Alg GS(gsk[i],m)

(vko, sko)
$←OT .Gen(1λ)

τ ← Fsi(m); φ
$←DS ′

2.Sig(sk
′
i, vko)

π′
1

$← P ′
1(crs

′, (gpk,m, τ ), (si, certi))

π′
2

$← P ′
2(crs, (gpk, vko), (sk

′
i, vk

′
i, φ, cert

′
i))

C
$←T E .Enc(ek, vko, φ)

π′
3

$← P ′
3(crs, (gpk,C, π

′
2))

φo
$←OT .Sig(sko, (vko,m,C, π′

1, π
′
2, π

′
3))

σ ← (vko, τ, C, π
′
1, π

′
2, π

′
3, φo)

return (m,σ)

Alg GV(gpk,m, σ)
if OT .Vrf(vko,(vko,m,C,π′

1,π
′
2,π

′
3),φo)=1

and V ′
1 (crs

′, (gpk,m, τ ), π′
1) = 1

and V ′
2 (crs, (gpk, vko), π

′
2) = 1

and V ′
3 (crs, (gpk,C, π

′
2), π

′
3) = 1 then

return 1

Alg Open(ok, gpk, (m,σ))
(vk∗, σ∗, cert∗) ← Extr(xk, π′

2)
ω ← (vk∗, σ∗, cert∗)
if vk∗ = reg[i] then return (i, ω)
return (0, ω)

Alg Judge(gpk, (m,σ), (i, ω))
if GV(gpk,m, σ) = 1
and vk∗ = reg[i]
and DS ′

1.Vrf(vk
′, vk∗, cert∗) = 1

and DS ′
2.Vrf(vk

∗, vko, σ∗) = 1 then
return 1

Fig. 5. CCA-anonymous unique group signature—Dynamic Setting

that the witnesses can be extracted using the trapdoor given to the opener.
Moreover, we can also use this chain to combine the technique of Groth [18] to
achieve CCA anonymity. We call this technique “double-chaining certification”.

Our algorithm. The CCA-anonymous unique group signature is illustrated
in Figure 5. We define a PRF family F : S × X → Y with key space S. Let
DS1, DS ′

1, and DS ′
2 be three signature schemes, all of which are secure un-

der adaptive chosen message attacks. Issuer runs (vk, sk)
$←DS1.Gen(1

λ) and

(vk′,sk′)
$←DS ′

1.Gen(1
λ), where (vk,sk) is used to certify PRF keys, and (vk′,sk′)

is used for double-chaining certification. Correspondingly, we use two Groth-
Sahai proof systems with the same security parameter but with independently
generated common reference strings (crs, xk) and (crs′, xk′)—the former for the
double-chaining certification and the latter for certifying the PRF protocol and
proving the knowledge of the corresponding signature. Let OT be a strong one-
time signature scheme secure against weak chosen message attacks. Let T E be
Kiltz’s selective-tag weakly CCA-secure encryption scheme [20], with the public
key compatible with Groth-Sahai proof system setup. (The secret keys of Kiltz’s
encryption and xk′ can be safely discarded.) We write Enc(ek, t,M) for the
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encryption of a message M under the public key ek and a tag t. User i and the
issuer run an interactive Join/Issue protocol. This includes two steps. First, user i
randomly picks its PRF key si; the user and issuer run a protocol on signing on
committed value si, and finally the user gets a signature certi on si such that

DS1.Vrf(vk, si, certi) = 1. Second, user i runs (vk′i, sk
′
i)

$←DS ′
2.Gen(1

λ), sends
vk′i to the issuers, and obtains a cert′i such that DS ′

1.Vrf(vk
′, vk′i, cert

′
i) = 1. After

the Join/Issue procedure, user will get its secret key (si, certi, sk
′
i, vk

′
i, cert

′
i), while

the issuer puts vk′i to reg[i]. We now specify the three NIZK proof systems in a
general NIZK framework. (P ′

1, V
′
1) is a NIZK proof system for a language L′

1 :=
{(gpk,m, τ)|∃(s, cert)[τ = Fs(m) and DS1.Vrf(vk, s, cert) = 1]. (P ′

2, V
′
2) is a

NIZK proof system for a language L′
2 := {(gpk, vko)|∃(vk′, φ′, cert′)[DS ′

1.Vrf(vk
′,

vk′, cert′) = 1 and DS ′
2.Vrf(vk

′, vko, φ
′) = 1]. (P ′

3, V
′
3) is a NIZK proof system

that the plaintext of C and second-level signature in π′3 are the same (see [18]).
All of the primitives used in the above construction can be efficiently in-

stantiated using Groth-Sahai proofs. In particular, the first chaining (including
the signing on committed value protocol and L′

1) can be achieved by combin-
ing the PRF with NIZK proof [3] and the P -signatures [2] (that relies on F -
unforgeability). Clearly, we can use the technique in Section 4 (PRF with NIZK
that can degenerate into unique signature) to improve the security as well as
achieve extractability. L′

2 can be instantiated using any structure-preserving sig-
nature combining any signature whose public keys are group elements. (Please
refer the full version [15] for more efficient instantiation with concurrent-join.)

Theorem 6. The construction illustrated in Figure 5 is a secure unique group
signature (CCA-anonymous, dynamic setting).

Acknowledgments. The authors would like to thank Sherman Chow and
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Abstract. In this paper, we present the relationship between privacy
definitions for Radio Frequency Identification (RFID) authentication pro-
tocols. The security model is necessary for ensuring security or privacy,
but many researchers present different privacy concepts for RFID au-
thentication and the technical relationship among them is unclear. We
reconsider the zero-knowledge based privacy proposed by Deng et al.
at ESORICS 2010 and show that this privacy is equivalent to indistin-
guishability based privacy proposed by Juels and Weis. We also provide
the implication and separation between these privacy definitions and the
simulation based privacy proposed by Paise and Vaudenay at AsiaCCS
2008 based on the public verifiability of the communication message.

1 Introduction

Radio Frequency Identification (RFID) technology enables the reader to identify
objects. RFID systems consist of a reader and many tags. The reader commu-
nicates with the tags over the wireless (insecure) channel and checks the iden-
tity. RFID is expected to replace barcodes and is now used in many industries
(manufacturing, transportation, logistics, etc.). However, the existing low-cost
tags only contain the identity with no protection and respond with their iden-
tity directly when the reader provides electric power. Many cryptographers have
studied the RFID authentication protocol to overcome the privacy problem. This
privacy-preserving RFID authentication protocol improves the reliability of the
machine-to-machine network system and also ensures the secure transaction.

In cryptography, the security/privacy of each scheme or protocol is evaluated
by the security model. There are several security models for RFID authentication
protocols [6,5,9,10,12,15,14,18]. All of which define three components: correct-
ness, security and privacy. The correctness and security definitions are almost
the same in these models. Correctness ensures that the reader accepts the tag
if the reader and tag correctly communicate with each other. Security requires
that if a malicious adversary impersonates a valid tag and interferes the com-
munication, the reader rejects the session. However, the privacy notion is not
commonly defined and the relationship between them is unclear. In this paper,
we concentrate on the privacy definitions for the RFID authentication protocol
and investigate the relationship.

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 661–678, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Our Contributions. Our contributions are twofold:

1. We show that the indistinguishability based privacy definition (IND-privacy)
proposed by Juels and Weis [12] and zero-knowledge based privacy definition
(ZK-privacy) proposed by Deng et al. [9] are equivalent. Though Deng et al.
proved that zero-knowledge based privacy is stronger than indistinguisha-
bility based privacy, we show that their argument is inadequate and these
privacy definitions are proven to be equivalent.

2. We investigate the relationship between indistinguishability based privacy
and simulation based privacy (SIM-privacy) proposed by Paise and Vaude-
nay [18]. There are many existing RFID authentication protocols that are
secure in one of the two security models or its slight variants [11,17], but no
one investigates whether there exists a technical difference between [12] and
[18], except the trivial separation followed by the corruption timing. These
privacy definitions are formalized in a different style and it is hard to present
the difference directly. Hence, we consider a variant of the zero-knowledge
based privacy proposed in [9] in order to reduce the gap between them (this
variant is polynomially equivalent to the Juels-Weis security model). We then
compare the resulting privacy definition with [18]. We introduce a notion of
public and secret verifiability to the RFID authentication. Roughly speak-
ing, the public verifiability holds if anyone can check the authenticity of an
entity from the communication message (note that the tag must be secret
verifiable from correctness and privacy). Our result is that there is a techni-
cal gap between IND-privacy and SIM-privacy if the communication message
is publicly verifiable. Otherwise, we prove that these privacy definitions are
equivalent (if the restriction for the tag corruption is equivalent).

Related Work. The privacy definition for RFID authentication is roughly
divided into the following: indistinguishability [4,12,11], simulatability [21,18],
zero-knowledge [9], unpredictability [10,15] and universal composability [6,5,14]
(see [8] for more information). The unpredictability based privacy model [10,15]
requires that, at least, the tag’s response to the reader is indistinguishable from
the random string. Ma et al. [15] showed that (1) the unpredictability based pri-
vacy model requires strictly stronger privacy than the indistinguishability based
privacy model [12], and (2) the existence of an RFID authentication protocol
that satisfies the unpredictability based privacy model equals the existence of a
pseudo-random function. This function is used in many lightweight RFID au-
thentication protocols, but we consider unpredictability based privacy too strong
to satisfy privacy. For example, if both the reader and tag can perform IND-
CCA2 secure public key encryption and all communication is encrypted by each
party’s public key, then the communication reveals none of the secret informa-
tion. However, the ciphertext usually consists of group elements and is easily
distinguishable from random string.

The universal composability based privacy model [6,5,14] requires a simulator
to simulate any actions of the malicious adversary and no external environment
should be able to distinguish whether it interacts with the adversary or the
simulator. The authors did not describe the relationship between their model
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and the other privacy model, but Paise and Vaudenay demonstrated the RFID
authentication protocol depicted in [6] does not have the narrow-forward privacy
present in the Paise-Vaudenay privacy model [18].

2 Existing RFID Security Models

We review security models proposed by Juels-Weis [12], Deng-Li-Yung-Zhao [9]
and Paise-Vaudenay [18], respectively. We use the following notations in this
paper. We denote by T the total set of tags in the RFID authentication pro-
tocol that is managed by the reader R. The reader runs the Setup algorithm
and obtains (pk, sk). The public parameter pk is published and secret key sk is
kept as a secret. If the RFID authentication protocol is based on symmetric key
cryptography, each tag shares several secret keys with the reader (sk contains
the set of these secret keys). In the authentication phase, the reader and the
tag communicate with each other via wireless communication. We consider an
active adversary A that can interfere/insert/delete/modify the communication
message and its direction. The RFID authentication protocol requires correct-
ness, security and privacy. Roughly speaking, correctness defines that the reader
always outputs “accept” if the communication is not modified by the adversary.
Security requires that the reader rejects the session if the adversary interferes and
modifies the outgoing message. In the following, we concentrate on the privacy
definition in the security model and call privacy model.

2.1 Juels-Weis Privacy Model

Juels and Weis proposed a privacy model for RFID authentication protocols
based on indistinguishability [12]. We show a slight variant of the privacy
model modified by Deng et al. [9]. Based on the IND-CPA definition for pub-
lic/symmetric key encryption, this model evaluates the probability that an ad-
versary correctly distinguishes the identity of the tag when he interacts with the
reader and tags. The privacy game between an adversary A := (A1,A2) and
challenger is defined as follows:

Setup. The challenger runs the Setup algorithm and obtains (pk, sk) to setup
the reader R and set of tags T . The adversary obtains public parameter pk
and (R, T ).

Phase 1. The adversary A1 can issue oracle queries O := {Launch, SendReader,
SendTag,Result,Corrupt} and interact with the reader and tags:

Launch(1k) — Launch the reader to initiate the session.
SendReader(m) — Send arbitrary message m to the reader.
SendTag(t,m) — Send arbitrary message m to the tag t ∈ T .
Result(sid) — Output whether the reader accepts the session sid (sid is

uniquely determined by the communication message).
Corrupt(t) — Output the secret key of the tag t.
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Challenge.The adversaryA1 sends two tags t
∗
0 and t

∗
1 (t

∗
0 �= t∗1) to the challenger

and outputs state information st1. st1 contains all information obtained by A1

including internal coin tosses of A1. Then the challenger flips a coin b
U← {0, 1}

and sets T ′ := T \ {t∗0, t∗1}.
Phase 2. The adversaryA2 obtains st1 and interacts with the readerR and tags

(t∗b , T ′) with the oracle queries. However, when the adversary interacts with
the challenge tag t∗b , we consider special algorithm I. I relays the message
between A and t∗b so that the adversary communicates with t∗b anonymously.

Guess. The adversary A2 outputs a guess b′.

We say that the adversary wins the game if b′ = b holds and (t∗0, t
∗
1) is not

corrupted. The advantage of the adversary in the above game is defined as
AdvIND

Π,A(k) := |2 · Pr[b′ = b] − 1|. The following experiment also evaluates this
advantage.

ExpIND-b
Π,A (k)

(pk, sk)
R← Setup(1k);

(t∗0, t
∗
1, st1)

R← AO
1 (pk,R, T );

b
U← {0, 1}, T ′ := T \ {t∗0, t∗1};

b′
R← AO

2 (R, T ′, I(t∗b ), st1):
Output b′

We have AdvIND
Π,A(k) = |Pr[ExpIND-0

Π,A (k) → 1]− Pr[ExpIND-1
Π,A (k) → 1]|.

Definition 1. An RFID authentication protocol Π satisfies the privacy in the
Juels-Wies security model if for any probabilistic polynomial time (PPT) adver-
sary A, AdvIND

Π,A(k) is negligible.

2.2 Deng-Li-Yung-Zhao Privacy Model

The privacy model proposed by Deng et al. is based on a zero-knowledge for-
mulation [9]. The intuition behind this model is that when the communication
message does not reveal any tag’s identity or secret key, the messages should be
simulated even if an algorithm cannot interact with the tag.

We consider two experiments ExpZK-0A,D (k) and ExpZK-1S,D (k). In the former , the
adversary A interacts with the reader and tags. A outputs an arbitrary subset

of tags C ⊆ T and the challenger uniformly chooses a challenge tag t∗
U← C

at random. The adversary can then interact with R, tags T ′ := T \ C and
the challenge tag t∗ anonymously. When the adversary sends message m to I,
this algorithm passes m to t∗ and responds with the output from t∗. Finally the
adversary outputs its view and a distinguisher outputs a bit b with the view. The
latter experiment is the same as the former except that the simulator S cannot
interact with the challenge tag. We note that the adversary and simulator cannot
issue any corrupt queries to the tags in C in the experiment. These experiments
are depicted as follows:
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ExpZK-0Π,A,D(k)

(pk, sk)
R← Setup(1k);

(C, st1) R← AO
1 (pk,R, T );

t∗
U← C, T ′ := T \ C;

viewA
R← AO

2 (R, T ′, I(t∗), st1);
b

R← D(C, t∗, viewA):
Output b

ExpZK-1Π,S,D(k)

(pk, sk)
R← Setup(1k);

(C, st1) R← SO
1 (pk,R, T );

t∗
U← C, T ′ := T \ C;

viewS
R← SO

2 (R, T ′, st1);

b
R← D(C, t∗, viewS):

Output b

The advantage of the adversary in this model is defined by AdvZKΠ,A,S,D(k) =

|Pr[ExpZK-0Π,A,D(k) → 1]− Pr[ExpZK-1Π,S,D(k) → 1]|.

Definition 2. An RFID authentication protocol Π satisfies the privacy in the
Deng et al. security model if for any PPT adversary A, there exists a PPT
algorithm S, for any PPT distinguisher D, AdvZKΠ,A,S,D(k) is negligible.

2.3 Paise-Vaudenay Privacy Model

Vaudenay [21] proposed a simulation based privacy model for two-pass RFID
authentication protocols. Paise and Vaudenay [18] extended this to satisfy reader
authentication. The intuition behind these privacy models is that if the protocol
messages are completely simulated by a third party, the privacy of the RFID
tag is preserved since the adversary obtains no private information. The privacy
game of their model is slightly similar to the Deng et al. privacy model, but the
game flow is not explicitly defined. Instead, the adversary can additionally issue
the following queries:

CreateTag(ID,s) — Register a free tag to the reader. If the tag is legitimate
(s = 1), the reader assigns the secret key for this tag and updates the database.

DrawTag(C, Dist) — According to the distribution Dist and the arbitrary sets of
tags C ⊆ T , the oracle responds with drawn tags V := {vtag1, . . .}. The oracle
keeps a list list that maps the drawn tags to the real identity.

Free(vtag) — Change the drawn tag vtag to the free tag.

In their model, the challenger assigns a temporal identity to each drawn tag.
The adversary can issue the SendTag query to the drawn tags only, and free tags
do not execute the communication to the reader.

Paise and Vaudenay classifies the adversary’s capacity into 2× 4 categories.

1. Result query for the reader:
(a) Wide — Adversary can issue the result query.
(b) Narrow — Adversary cannot issue the result query.

2. Corrupt query for the tag:
(a) Strong — No restriction for the corrupt query.
(b) Destructive — If the adversary issues the corrupt query to a drawn tag,

the tag is destroyed and unusable.
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(c) Forward — After the corrupt query, the adversary cannot issue any other
queries in the experiment.

(d) Weak — The adversary cannot issue the corrupt query.

For example, wide-strong privacy is defined as follows. Consider the two sets of
the oracle queries O1 := {CreateTag,DrawTag,Free,Corrupt} and O2 := {Launch,
SendReader, SendTag,Result}. The wide-strong privacy game in this model is
defined by the following experiments:

ExpSIM-0Π,A (k)

(pk, sk)
R← Setup(1k);

b
R← AO1,O2(pk,R):

Output b

ExpSIM-1Π,A,S(k)

(pk, sk)
R← Setup(1k);

b
R← AO1,S(pk)(pk):

Output b

In the SIM-0 experiment, adversary A can create tags and interact with the
reader and tags through O2 query. On the contrary, the SIM-1 experiment re-
quires that simulator S responds to the adversary’s oracle queries which cor-
respond to O2 query. S can learn any information A obtains with O1 query.
The advantage of the adversary is defined by AdvSIMΠ,A,S(k) := |Pr[ExpSIM-0Π,A (k) →
1]−Pr[ExpSIM-1Π,A,S(k) → 1]|. Of course, we can formalize the other types of adver-
sary in the same fashion.

Definition 3. An RFID authentication protocol Π satisfies the (wide/ narrow)-
(strong/destructive/forward/weak) privacy in the Paise- Vaudenay security
model if for any PPT adversary A, there exists a PPT algorithm S, AdvSIMΠ,A,S(k)
is negligible.

In this paper, we slightly modify the restriction on the DrawTag query and
assume that the adversary can only input legitimate tags for this query1.

3 Equivalence between IND and ZK Privacy

The previous section described the three privacy models. Deng et al. [9] showed
that their ZK-privacy is stronger than IND-privacy; that is, there exist two
examples of the RFID authentication protocols that are secure in the Juels-Weis
privacy model but insecure in the zero-knowledge based privacy model. However,
we will show that these privacy models are proven to be equivalent. To justify our
result, we first review their examples and point out the flaw of their argument.

The former example is constructed by a digital signature scheme. In the setup
phase, a reader generates signing/verification key pair (skSIG, vkSIG) and sends

the signature of the tag’s identity σi
R← Sign(skSIG, ti) as a secret key. To authen-

ticate the tag, the reader outputs a request message and the tag responds with

1 Otherwise, the wide-destructive privacy implies the existence of the simulator that
can predict the coin tosses of the adversary [21]. To avoid such an unusual situation,
Ng et al. formalized another approach s.t. the adversary does not issue oracle queries
where the result is predetermined [16].
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σi itself. Deng et al. argued that “If the system has only one tag, it is clear to
satisfy the IND-privacy but the simulator cannot simulate the signature at Phase
2 in the ZK-privacy”. But we note that this implication does not make sense. As
we explicitly describe in Section 2.1, IND-privacy assumes that the adversary
must output two different tags (which is also implicitly assumed in the IND-
CPA security for public key encryption). Thus their instantiation is inadequate
in considering the IND-privacy. If we consider there are more than two tags in
the system, it is clear that the adversary against IND-privacy can distinguish
the message since the output of the tag’s message is deterministically defined.

The building block of the latter example is the public key encryption scheme
(Gen,Enc,Dec) and an RFID authentication protocol Π that holds IND-privacy.
Following [9], we assume that when the reader sends a to the tag, it responds
with b to the reader in Π . They described the following RFID authentication
protocol Π ′. In the setup phase, a reader generates a public/secret key pair

(pkPKE, skPKE)
R← Gen(1k) and sends skPKE to the tags (we remark that all

tags in this protocol shares this unique secret key) as a secret key for Π ′.
When the reader authenticates the tag, it generates a and sends encrypted

message c
R← Enc(pkPKE, a). If the tag receives the message, it decrypts as

a := Dec(skPKE, c), generates b with Π and responds a‖b to the reader. Deng et
al. said that Π ′ satisfies IND-privacy and does not satisfy ZK-privacy since no
simulator can output the decryption of the ciphertext. However, we found that
this argument is also wrong and Π ′ still holds ZK-privacy. Since the communica-
tion message is indistinguishable, simulator S1 can internally run zero-knowledge
adversary (A1,A2). It is easy to see that S1 simulates all communication mes-

sage for A1. When A1 outputs (C, st1), S1 uniformly chooses t∗1
U← C and runs

A2 with input (pk,R, T \ C, I(t∗1), st1). Note that t∗1 may not be identical to
the challenge tag, but IND-privacy ensures that no adversary can distinguish
whether it interacts with the challenge tag or t∗1. If A2 sends a message to the
challenge tag, S1 simply sends it to t∗1 and responds with its message. When A2

outputs viewA, then S1 sets st′1 := viewA and outputs (C, st′1). Finally, S2 out-
puts st′1 as its view regardless of the choice of challenge tag. Since the simulator
can continue Phase 1 until the adversary outputs the view (Phase 1 and 2 for
the adversary), these outputs are indistinguishable for any distinguisher D. Of
course, if we try to simulate the response of the SendTag query issued by A2 with
S2, it is difficult to construct such a simulator since S2 must break the security
for public key encryption. The key point here is that IND-privacy allows S1 to
simulate the whole behavior of the ZK-privacy adversary (A1,A2).

We now show that IND-privacy is equivalent to ZK-privacy.

Theorem 1. The indistinguishability based privacy model is equivalent to the
zero-knowledge based privacy model.

Lemma 1. If an RFID authentication protocol Π holds IND-privacy, it implies
ZK-privacy.
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Proof. We prove the above lemma via the following sequence of games. We grad-
ually change the ZK-0 experiment to ZK-1 experiment which is bounded by IND-
privacy. Especially, we show that if for any IND-privacy adversary B, AdvIND

Π,B(k)
is negligible, then for any ZK-privacy adversary A, there exists a simulator S,
for any distinguisher D, AdvZKΠ,A,S,D(k) is negligible.

For each game, Pr[Tj ] denotes the probability that the distinguisher outputs
1 in Game j.

Game 0: Game 0 is the same as the original ZK-privacy game between a chal-

lenger and AD Without loss of generality, we assume that t∗0
U← C is chosen as

the challenge tag. It is clear that Pr[T0] = Pr[ExpZK-0Π,A,D(k) → 1].

Game 1: We modify Game 1 by changing the challenge tag. In addition to

t∗0, we select t∗1
U← C and the adversary (anonymously) interacts with t∗1 instead

of t∗0.

Game 2: Game 2 is the original ZK-privacy game between a challenger and
S under the condition that S runs A as in Fig. 1. Note that the challenge tag is
chosen as Game 0 and the input to the distinguisher is t∗0.

SO
1 (pk,R, T ) S2(R, T ′, st′1)

(C, st1) R← AO
1 (pk,R, T ); viewS := viewA:

t∗1
U← C, T ′ := T \ C; Output viewS

viewA
R← AO

2 (R, T ′, I(t∗1), st1);
st′1 := viewA:
Output (C, st′1)

Fig. 1. Simulation in Game 2

We evaluate the gaps between pairs of advantages with the following claims.

Claim. There exists a PPT algorithm B such that

|Pr[T1]− Pr[T0]| ≤ AdvIND
Π,B(k).

Proof. If (A,D) distinguishes Game 0 and Game 1 with non-negligible proba-
bility, we construct an algorithm B := (B1,B2) that can break the IND-privacy.
B internally runs (A,D) in the IND-privacy game as follows:

BO
1 (pk,R, T )

(C, st1) R← AO
1 (pk,R, T );

t∗0, t
∗
1

U← C, T ′ := T \ C;
st′1 := (T ′, t∗0, st1):
Output (t∗0, t

∗
1, st

′
1)

BO
2 (pk, I(t∗b), st′1)
viewA

R← AO
2 (R, T ′, I(t∗b), st1);

b′
R← D(C, t∗0, viewA):

Output b′
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When the adversary A1 outputs C, B1 chooses two tags (t∗0, t
∗
1) in C and sends

it to the challenger. Since the challenger chooses a coin b
U← {0, 1} and B2

can access I(t∗b), the SendTag query that A2 issues to the challenge tag can be
completely simulated. If the flipped coin is b = 0, the output distribution is the
same as Game 0. Otherwise, this simulation is equivalent to Game 1. Therefore,
we obtain

|Pr[T1]− Pr[T0]| ≤
∣∣∣AdvIND-1

Π,B (k)− AdvIND-0
Π,B (k)

∣∣∣
= AdvIND

Π,B(k).

Claim. We have Pr[T2] = Pr[T1].

Proof. We show that the output distribution of A in Game 1 is equivalent to
that of S in Game 2. Recall that S2 cannot interact with the challenge tag in the
original ZK-privacy experiment. Nevertheless, the previous claim shows that the
anonymous interaction betweenA2 and t

∗
0 can be changed by another tag t∗1. This

means that even if S1 chooses another tag t∗1 ∈ C and replaces the anonymous
interaction by I(t∗1), A2 cannot distinguish between the games. Therefore S1

can simulate (A1,A2) as in Fig.1 and obtain the view of the adversary viewA.
Any oracle queries made by (A1,A2) can be simulated correctly since S1 can
send the same query to O. Thus A2’s output in Game 1 is equivalent to S2’s
output in Game 2 and it is (information theoretically) indistinguishable for any
distinguisher D. Therefore we have Pr[T2] = Pr[T1].

It is clear that Pr[T2] = Pr[ExpZK-1Π,S,D(k) → 1] and finally we have

AdvZKΠ,A,S,D(k) = |ExpZK-0Π,A,D(k)− ExpZK-1Π,S,D(k)|
= |Pr[T2]− Pr[T0]|
≤ AdvIND

Π,B(k).

Remark. If the zero-knowledge adversary sets C as only one tag, then we can
directly transform Game 0 to Game 2. The strategy of the simulator is the
same as in Fig. 1. The simulator issues the SendTag query in Phase 1 until the
zero-knowledge adversary finishes the experiment.

Lemma 2. If an RFID authentication protocol Π holds ZK-privacy, it implies
IND-privacy.

Remark that this lemma has been provided by Deng et al. [9], but their proof is
informal. So we give the rigorous security proof based on the game transforma-
tion technique.

Proof. Again, we prove the above lemma via the following sequence of games.
We show that if for any ZK adversary B, there exists a simulator S, for any
distinguisher D, AdvZKΠ,B,S,D(k) is negligible, then for any IND adversary A,

AdvIND
Π,A(k) is negligible. For each game, Pr[Tj ] denotes the probability that the

experiment outputs 1 in Game j.
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Game 0: Game 0 is the same as the original IND-0 privacy game between
a challenger and A := (A1,A2)D We consider A1 outputs two tags (t∗0, t

∗
1)

and t∗0 is chosen as the challenge tag in this game. It is clear that Pr[T0] =
Pr[ExpIND-0

Π,A (k) → 1].

Game 1: We modify Game 1 by changing the challenge tag from t∗0 to t∗1.
It is clear that Pr[T1] = Pr[ExpIND-1

Π,A (k) → 1].

Using A = (A1,A2), we construct the following ZK-privacy adversary B :=
(B1,B2) and distinguisher D.

BO
1 (pk,R, T )

(t∗0, t
∗
1, st1)

R←AO
1 (pk,R, T );

C := {t∗0, t∗1};
st′1 := (st1, t

∗
0, t

∗
1):

Output (C, st′1)

BO
2 (R, T ′, I(t∗), st′1)

b′ R← AO
2 (R, T ′, I(t∗), st1);

viewB := tb′ :
Output viewB

D(C, t∗, viewB)
t∗ = viewB ⇐⇒ b := 1;
t∗ �= viewB ⇐⇒ b := 0:
Output b

The adversary B1 sets two tags (t∗0, t
∗
1) as C and one of the two tags can be

accessed by B2. If t
∗
0 is chosen from C, it is equivalent to Game 0 with respect

to A and we obtain

Pr[ExpIND-0
Π,A (k) → 0] = 1− Pr[T0] = Pr[ExpZK-0Π,B,D(k) → 1 | C → t∗0].

Otherwise, it can be viewed as Game 1 and

Pr[ExpIND-1
Π,A (k) → 1] = Pr[T1] = Pr[ExpZK-0Π,B,D(k) → 1 | C → t∗1].

Of course, the challenger uniformly selects the challenge tag and Pr[C → t∗0] =
Pr[C → t∗1] = 1/2. Thus we obtain

Pr[ExpZK-0Π,B,D(k) → 1] =
1

2
+

1

2
· (Pr[T1]− Pr[T0]).

Recall that we have assumed that Π is ZK-privacy. Thus, for any adversary B,
there exists an algorithm S such that for any distinguisher D, |Pr[ExpZK-0Π,B,D(k) →
1]−Pr[ExpZK-1Π,S,D(k) → 1]| is negligible. However, S has no information about the

flipped coin in the experiment and we have Pr[ExpZK-1Π,S,D(k) → 1] = 1/2. Finally,
we obtain

AdvIND
Π,A(k) = |Pr[T1]− Pr[T0]|

= |2 · Pr[ExpZK-0Π,B,D(k) → 1]− 1|
= 2 · AdvZKΠ,B,S,D(k).


	

4 Relation between SIM and IND Privacy

4.1 Constraint for Corrupt Query

We revisit the privacy relation between SIM-privacy and IND-privacy. Many
researchers have informally analyzed these models and several papers conclude
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that SIM-privacy is stronger than IND-privacy since a wide-strong adversary
can corrupt all tags in the experiment (recall that in the IND-privacy, the ad-
versary must output uncorrupted tags for the challenge phase). However, there
are four wide adversaries for SIM-privacy and it is meaningful to consider the
other privacy notions. Vaudenay recently showed that the IND-privacy game
can be written by the wide-destructive SIM-privacy game [22]. Of course, the
condition for the corrupt query in the IND-privacy game is different from that
in the SIM-privacy game and we can say that wide-forward SIM-privacy does
not imply IND-privacy in the sense of adaptive corruption2. However, whether
IND-privacy implies wide-weak SIM-privacy is unclear. We can also consider two
variants for IND-privacy:

1. Strong IND-privacy — Challenge tags can be corrupted in Phase 1, and
2. Weak IND-privacy — The adversary is prohibited to issue the corrupt query.

Then Strong/weak IND-privacy is comparable to wide-strong/wide-weak SIM-
privacy. The actual procedure of the IND experiment is of course different from
that of the SIM experiment, but the restriction for the corrupt query in strong
(resp. weak) IND-privacy is the same as for wide-strong (resp. wide-weak) SIM-
privacy. One can also define these variants for ZK-privacy that are equivalent to
the strong/weak IND-privacy, respectively.

One may think that the adaptive registration of the tag is allowed in SIM-
privacy through the SetupTag query, but it is not a technical point since we can
easily add this query to IND-privacy and ZK-privacy.

4.2 Anonymous Communication with Many Tags in ZK-Privacy

We modify ZK-privacy to minimize the difference between ZK-privacy and SIM-
privacy. For simplicity, we consider weak ZK-privacy in the following.

First, we consider a slight variant of weak ZK-privacy such that the adver-
sary can anonymously access any tags in C in Phase 2. This is done by a slight
modification for the intermediate algorithm I. When the adversary outputs C,
the challenger randomizes and indexes each tag in C. The challenger keeps the
list {(i, IDj)}i,j where i ∈ {1, . . . , |C|} and IDj ∈ C which is initially empty.
When the adversary issues the SendTag query to I with input (i,m), the chal-
lenger checks the list. If the list does not contain index i, the new identity ID
in C is uniformly chosen and the tuple (i, ID) is inserted into the list. The mes-
sage is sent to the corresponding identity and its response is returned to the
adversary. This is a quite natural extension for ZK-privacy but we note that
this modification partially interpolates the DrawTag query in SIM-privacy to al-
low anonymous access. We call the modified privacy as ZK′-privacy. Consider
that O′ := (Launch, SendReader, SendTag,Result). Then weak ZK′-privacy is de-
scribed as follows:
2 If an RFID authentication protocol specifies that the secret key of each tag is initially
correlated and always updated, the adversary can obtain the challenge tag’s secret
key in Phase 1 of the IND-privacy game. However, this protocol can hold wide-
forward SIM-privacy due to the key update algorithm.
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ExpZK
′-0

Π,A,D(k)

(pk, sk)
R← Setup(1k);

(C, st1) R← AO′
1 (pk,R, T );

T ′ := T \ C;
viewA

R← AO′
2 (R, T ′, I(C), st1);

b
R← D(C, {i, IDj}i,j , viewA):

Output b

ExpZK
′-1

Π,S,D(k)

(pk, sk)
R← Setup(1k);

(C, st1) R← SO′
1 (pk,R, T );

T ′ := T \ C;
viewS

R← SO′
2 (R, T ′, st1);

b
R← D(C, {i, IDj}i,j , viewS):

Output b

In this privacy model, the advantage of the adversary is defined by

AdvZK
′

Π,A,S,D(k) =

∣∣∣∣∣Pr[ExpZK
′-0

Π,A,D(k) → 1]−
Pr[ExpZK

′-1
Π,S,D(k) → 1]

∣∣∣∣∣ .
Definition 4. An RFID authentication protocol Π satisfies the ZK′-privacy if
for any PPT adversary A, there exists a PPT algorithm S, for any PPT distin-

guisher D, AdvZK′
Π,A,S,D(k) is negligible.

Theorem 2. ZK′-privacy is an equivalent privacy notion to ZK-privacy.

Proof. It is clear that ZK′-privacy implies ZK-privacy. We prove that if an RFID
authentication protocol Π satisfies ZK-privacy,Π is also ZK′-privacy. This proof
follows from the standard hybrid argument. Assume that the adversary against
ZK′-privacy issues the SendTag query at most qs. Based on the ZK′-0 experiment,
we change the output from the SendTag query in Phase 2. The response is
simulated by S for ZK-privacy until j-th invocation and executed by the real
tag after j-th invocation. When the adversary issues j-th SendTag query, the

challenger flips a coin b
U← {0, 1}. If b = 1, the challenger activates the real

tag, and otherwise it runs the simulator to output the response. The difference
between b = 1 and b = 0 is clearly bounded by AdvZKΠ,A,S,D(k). For 1 ≤ j ≤ qs,
we can apply the same argument and finally we obtain an experiment that

is identical to the ZK′-1 experiment. Therefore we have AdvZK
′

Π,A,S,D(k) ≤ qs ·
AdvZKΠ,A,S,D(k). 
	
Now, recall the simulation strategy in Lemma 1. The simulator S chooses an
arbitrary tag to simulate the anonymous access for the adversary if the RFID
authentication holds IND-privacy. ZK′-privacy implies that the simulator can
simulate the message between the reader and all tags in C without any commu-
nication with these tags. Even when particular tags are chosen by a distribution
(i.e. DrawTag query in SIM-privacy), the tag’s behavior is indistinguishable from
another tag and simulated by the simulator. Therefore, if the RFID authenti-
cation protocol satisfies ZK′-privacy (= IND-privacy), any specific information
that corresponds to the tag’s identity is not revealed.

4.3 Verifiability in the RFID Authentication Protocols

From the above argument, we can say that the only technical differences be-
tween ZK′-privacy and SIM-privacy are: (a) the simulator has the opportunity
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to interact with the tag, and (b) the simulator can obtain reader’s output or
not3. We explicitly wrote that the simulator takes as input R and can issue the
SendReader and Result queries in ZK′-privacy. On the other hand, SIM-privacy
requires that the simulator must simulate the SendReader and Result queries
along with the SendTag query. Thus the simulator against SIM-privacy must
generate all reader’s output which is indistinguishable from the real execution.
Whether the output is simulatable or not depends on the protocol, so we define
the verifiability to classify the protocol:

– Public verifiability: a third party who does not participate in the communi-
cation can check the validity of the message with the public parameter

– Secret verifiability: only the party who participates in the communication
can check the validity of the message.

In the RFID authentication protocol, any message from the tag must satisfy
the secret verifiability. In addition, the reader’s output must satisfy at least the
secret verifiability if the protocol provides reader authentication. However, we
can consider the public verifiability of the reader/tag since any anonymity is not
required for the reader and the tag may produce additional message which is
not related to its identity. In the following, we provide the relationship among
the privacy definitions based on the verifiability of the message.

4.4 Separation in the Presence of Public Verifiability

Theorem 3. Strong ZK′-privacy does not imply wide-weak SIM-privacy if an
RFID authentication protocol provides public verifiability of the communication
message.

Proof. Let Π be an RFID authentication protocol that satisfies strong ZK′-
privacy. For simplicity, we assume that (m1,m2,m3, . . .) is the communication
message exchanged by the reader and a tag in this protocol. We describe three
examples to clarify the essence of the public verifiability.

First Example Π ′
1:

Let (KeyGen, Sign,Verify) be a digital signature algorithm. The reader runs
Π to obtain (pk, sk) and shares secret keys with each tag in some cases. Run
KeyGen algorithm and obtain signing/verification key pair (skSIG, vkSIG). The
reader publishes pk′ := (pk, vkSIG) and sends skSIG to all tags in Π ′

1. The
authentication is executed as follows:

1. The reader obtains m1 from Π and sends it to the tag.
2. When the tag receives the message, it generates m2 with Π and signs

the message as σ
R← Sign(skSIG,m2). Then the tag responds (m2, σ) to

the reader.

3 Though the SIM-privacy allows the adversary to activate an illegitimate tag which
is not registered to the database of the reader, we can also consider such a tag in
the IND/ZK-privacy when the adversary activates a tag t �∈ T .
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3. Upon receiving m2, the reader generates m3 and sends it to the reader.
The output message from the tag is publicly verifiable since anyone can check
Verify(vkSIG,m2, σ) = 1 holds or not. However, all tags share the secret key
skSIG and no information about the identity is revealed from this signature.

Second Example Π ′
2:

Let (KeyGen, Sign,Verify) be a digital signature algorithm. The reader run
Π to obtain (pk, sk) and shares secret keys with each tag in some cases. Run
KeyGen algorithm and obtain signing/verification key pair (skSIG, vkSIG). The
reader publishes pk′ := (pk, vkSIG) and holds skSIG as its own secret key of
the reader in Π ′

2. The authentication is executed as follows:
1. The reader obtains m1 from Π and sends it to the tag.
2. When the tag receives the message, it generatesm2 with Π and responds
m2 to the reader.

3. Upon receiving m2, the reader generates m3 and signs the message as

σ
R← Sign(skSIG,m3). Then the reader responds (m3, σ) to the tag.

It is easy to see that the output message from the reader is publicly verifiable
because anyone can check Verify(vkSIG,m3, σ) = 1 holds or not.

Third Example Π ′
3:

Let f : X → Y be a one-way function. The reader runs Π to obtain (pk, sk)

and shares secret keys with each tag in some cases. Choose x
U← X and

compute y := f(x). The reader publishes pk′ := (pk, f, y) and holds x as
a special secret key of the reader in Π ′

3. The authentication is executed as
follows:
1. The reader obtains m1 from Π and sends it to the tag.
2. When the tag receives the message, it generatesm2 with Π and responds
m′

2 := 1‖m2 to the reader.
3. When the reader receives the message m′

2, it is parsed as b‖m2. If b = 1,
the reader generates m3 and sends it to the tag (this is the same as
the honest execution of Π). If b = 0, the reader outputs x as the third
message.

It is clear that the above RFID authentication protocols satisfy strong ZK′-
privacy. The simulator against ZK′-privacy can issue the SendReader query to
obtain reader’s signature and internal secret x, respectively. The output from the
tag in Π ′

1 can be simulated based on the proof strategy for Lemma 1. The other
messages are trivially simulated by the assumption that Π is strong ZK′-privacy.

In contrast, we can show that these protocols do not satisfy wide-weak SIM-
privacy. The SIM adversaryA can obtain the actual message from the party with
the SendReader and SendTag query, so we consider the adversary who outputs
1 iff the signature verification holds in Π ′

1 and Π ′
2. On the other hand, the

simulator in SIM-privacy cannot output any valid signature to the adversary. If
it happens, we can build a forger against the signature algorithm .

In the case ofΠ ′
3, the SIM adversaryA launches the reader and sends 0‖m2 to

the reader to obtain x. A sets b := 1 iff y = f(x) and terminates the experiment
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by outputting b. It is obvious that Pr[ExpSIM-0Π′
3,A (k) → 1] = 1. However, it is

infeasible for any simulator to output x′ such that y = f(x′) from the assumption
that f is a one-way function. Therefore we have Pr[ExpSIM-1Π′

3,A,S(k) → 1] ≤ ε for a

negligible fraction ε. Thus we have AdvSIMΠ′
3,A,S(k) is not negligible. 
	

The third example is originally described in Pass, Shelat and Vaikuntanathan
to show the gap between their variants of non-malleability definition for public
key encryption [19]. We think that it is interesting to show the gap between
IND-privacy and SIM-privacy based on the same idea. The main feature of the
public verifiability is that the adversary can decide whether the communication
message is generated by the actual reader/tag in the protocol.

4.5 Relationship in the Absence of Public Verifiability

We now consider that there is no public verifiability on the communication mes-
sage. To provide the secret verifiability of the tag, we can think the following
two classes:

A1. The consistency of the message (from the tag) is verifiable with the secret
key of the tag.

A2. The consistency of the message (from the tag) is not verifiable with the
secret key of the tag.

Many previous RFID authentication protocols based on the symmetric key prim-
itives are classified inA1. Though, if we add another mechanism like a physically
unclonable function, the anonymity of the tag can be ensured after the corrup-
tion of the tag [20,13].

Note that we assume the restriction for the corrupt query is the same (unfor-
tunately, we cannot provide any equivalence from the original ZK/IND-privacy
[12]) 4 .

Theorem 4. Assume that an RFID authentication protocol Π satisfies secu-
rity and the communication message in the protocol is not publicly verifiable.
Then weak ZK′-privacy is equivalent to wide-weak SIM-privacy. Moreover, if
the protocol is classified in A1, strong ZK′-privacy is equivalent to wide-strong
SIM-privacy.

Proof. It is easy to show wide-strong/wide-weak SIM-privacy implies
strong/weak ZK′-privacy (see Section 4.3). For simplicity, we prove that weak
ZK′-privacy implies wide-weak SIM-privacy. That is, if for any ZK′ adversary
A1, there exists S1, for any D, the protocol Π is weak ZK′-privacy, then we show
that for any SIM adversary A2, there exists S2 such that Π is also wide-weak
SIM-privacy.

Consider that A1 internally runs A2 and relays all oracle queries issued by
A2 to the challenger. Since we now assume weak ZK′-privacy, the response to

4 Recall that we assume that the adversary cannot convert any illegitimate tags to
the virtual tag. Hence the wide-strong SIM-privacy is achievable (see [16,11]).
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the SendTag query is surely simulated by S1. Therefore S2 can run S1 and send
the output to A2 which is indistinguishable from any adversary. The remaining
task for S2 is simulating the SendReader query and Result query. We recall that
the output from the reader is not publicly verifiable in this setting and the
adversary cannot check the validity of the message. Therefore S2 can choose
arbitrary message which the distribution is identical to the protocol specification
and respond it to A2 as the output of the SendReader query. The simulation for
the Result query is as follows. If the communication message between the reader
and tag is not modified, S2 consider that the reader accepts the session. S2

can consider the remaining sessions are rejected from the reader. Whenever A2

modifies the communication, these sessions are always rejected by the actual
reader until A2 obtains the secret key of the tag. Otherwise, this contradicts to
the fact that the RFID authentication protocol holds security. Remark that in
case of the simulation between strong ZK′-privacy and wide-strong SIM-privacy,
S2 can also obtain the tag’s secret key along with A2. Therefore S2 can correctly
simulate the behavior of the corrupted tag and check the validity of the message
sent from the adversary, since we now concentrate on the case A1.

From the above argument, S2 can simulate SendTag, SendReader and Result
queries whose outputs are indistinguishable from the real interaction. Therefore
we can conclude that strong/weak ZK′-privacy is equivalent to wide-strong/wide-
weak SIM-privacy, respectively. 
	

Theorem 5. Assume that the communication message of an RFID authenti-
cation protocol Π is not publicly verifiable and the protocol is classified in A2.
Then the strong ZK′-privacy does not imply the wide-strong SIM-privacy.

Proof. Contrary to Theorem 4, we cannot provide the equivalence when we con-
sider the case A2. We consider the following adversary to show the gap between
them.

1. Activate the reader with the Launch query.
2. Obtain the secret key of the tag t with the Corrupt query.
3. Generate a valid message m1 using the secret key of the tag and a ran-

dom message m0 which the distribution is same as the protocol specification
whenever the reader waits for the tag’s response.

4. Choose a random coin c
U← {0, 1} and send mc to the reader with the

SendReader query.
5. Obtain the authentication result c′ of the session with the Result query after

the session is finished and output 1 iff c′ = c holds.

In the strong ZK′-0 and wide-strong SIM-1 experiments, the adversary always
outputs 1. Since the simulator in the strong ZK′-1 experiment can issue the same
query as the adversary, Π holds the strong ZK′-privacy. On the other hand, the
simulator in the wide-strong SIM-1 experiment cannot issue the Result query.
This simulator must guess the authentication result for the adversary, but it is
impossible since we now assume that the validity of the message mc cannot be
checked by the tag’s secret key. Therefore Π does not satisfy the wide-strong
SIM-privacy. 
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Fig. 2. A implies B if and only if there is a path from A to B, and the hatched
arrows represent separations. Our result is represented by the solid arrow, and the
dashed arrows represent results from prior works. The number on an arrow refers to
the theorem in this paper. Recall that the relationship between ZK-privacy and SIM-
privacy depends on the public verifiability of the reader and how to verify the tag’s
message.

We summarize the relationship the privacy notions in Figure 2.

5 Conclusion

We analyzed the three privacy models for RFID authentication protocols. Con-
trary to the discussion in Deng et al. [9], we showed that IND-privacy is equiv-
alent to ZK-privacy. We also provided a polynomially equivalent variant of
ZK-privacy to consider the relation between IND-privacy and SIM-privacy. De-
pending on the existence of reader’s public verifiability, we showed the separa-
tion/equivalence between these privacy definitions.
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Abstract. Anonymous authentication schemes allow users to act freely
without being tracked. The users may not want to trust a third party in
ensuring their privacy, yet a service provider (SP) should have the au-
thority to blacklist a misbehaving user. They are seemingly contradicting
requirements. PEREA was the most efficient solution to this problem.
However, there are a few drawbacks which make it vulnerable and not
practical enough. In this paper, we propose PE(AR)2, which not only
fixes PEREA’s vulnerability, but also significantly improves its compu-
tation efficiency. Apart from revoking repeated misbehaving users, our
system also rewards anonymous users via a built-in reputation system.
Our scheme does not require the SP to timely review all previously au-
thenticated sessions, and does not have the dependency on the blacklist
size for user-side computation (c.f. EPID/BLAC(R)). Our benchmark
on PE(AR)2 shows that an SP can handle over 160 requests/second – a
460-fold efficiency improvement over PEREA, when the credentials store
1000 single-use tickets.

1 Introduction

It is common nowadays that user identification and authentication are required
to perform actions on web applications in the Internet. Some of these applications
depend much on users contributing contents or forming a user community to
encourage interactions from each other. While most of these web applications
require users to register with a self generated login identifier, the true identities
of users could actually be revealed by skilled data miners from user-provided
information, behavior of consecutive sessions, etc. Privacy concern on the use of
these web applications is becoming a more prevailing issue.

Take Wikipedia, a collaboration based encyclopedia website, as an example;
anyone could become an editor by contributing contents, or moderating any
existing contents. This editing model removes the entry barrier for using the
service, thus encourages a lot of content submissions. However, the identities of
users who submit contents are traceable, which creates a lot of privacy concerns.
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When a user identity is linked to specific document content, reviewers or readers
of the document could become biased because they may think that this particular
user could be representing a particular organization or community, especially
for government organizations or political parties. Another example is Internet
discussion forums. Users of common interests on certain topics often express
their views on these forums, and other users could further comment on the same
threads. In contrast to any verbal conversation which is more transient in nature,
users could become much more liable to what they put on the forum. In some
cases, lawsuits are resulted. Traceable identities would make users be less liberal
in expressing ideas or viewpoints in the worry of censorship.

One trivial solution to the above problem is to allow anonymous users to
perform actions without authentications. However this solution creates another
problem: misbehaving users could not be stopped. Referencing the Internet dis-
cussion forum example again, a misbehaving user could damage the forum by
spamming, advertising, or reprimanding threads created by other users. Black-
listing users would not be possible if all users are perfectly anonymous. A forum
moderator could only keep removing destructive contents manually.

Anonymous Authentication without Trusted Third Party. Anonymous
credential schemes enable anonymous authentications among a set of registered
users. These schemes may reduce the number of misbehaving users because the
system owner can control who can be registered, and possibly revoke a user’s
membership when misbehavior is detected. To enable revocation, an intuitive
idea is to introduce a trusted third party (TTP) who owns the trapdoor that
can reveal the true identity of any user. There are systems based on group
signatures (e.g., [1]) or accumulators (e.g., [2]) which use TTP-based revocation.

To enhance users’ privacy, or to reduce the trust they need to put, BLAC
[3] and EPID [4] eliminate the use of TTP in revocation. A user is required to
prove in zero-knowledge that the credential is not listed in the blacklist, and the
blacklist can also be constructed from the past authentication transcript without
any trapdoor information. However, as the zero-knowledge proof needs to be
performed on each of the L entries in the blacklist, the computation complexity
for authentication is O(L). These schemes become impractical in practice since
the blacklist will keep growing and there is no way to reduce its size, except
resetting the system and updating all users’ credentials.

To make the authentication process more efficient, PEREA [5] is proposed. In
PEREA, a user’s credential stores K single-use tickets using a dynamical uni-
versal accumulator. After each authentication, the service provider (SP) will
certify a new queue of tickets (the used ticket is dequeued and a new one
is enqueued in a sliding window manner). Tickets are randomly generated by
users which also serve as the identifiers of authenticated sessions. Each au-
thentication spends one ticket, and will then be evaluated (according to cer-
tain criteria external to PEREA). If the need of blacklisting arises, the SP will
put the corresponding ticket on the blacklist. Revocation check is enforced by
a zero-knowledge proof-of-knowledge (ZKPoK) about the possession of a sig-
nature on the queued element, and a non-membership proof for each of the
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queued tickets with respect to the SP side accumulator (storing blacklisted ses-
sions’ tickets). While the blacklist size is still O(L), the computation overhead
on an authentication step is O(K) since it only needs O(1) time to check each
of the K tickets is not in the blacklist using the proof systems provided with
the accumulator. Higher efficiency may be obtained by optimizing the param-
eter K which also governs the time window that the SP must catch any user
misbehavior.

Problems with PEREA. The above design appeared to make a significant step
towards practical TTP-free revocation in anonymous authentication. However,
we observe that this design also has its problems for a practical deployment.

Recall that the SP needs to review authenticated sessions in a timely manner
based on the choice of K. Otherwise, a user can quickly get authenticated for
K times, get an entirely new queue of tickets, and will not be denied from the
service even if all those K sessions are later reviewed as problematic, i.e., the
users would be able to “clean” all unreviewed sessions from their queues before
they have been published by the SP as revoked sessions. This could only be
done by limiting the rate a user can use the service (i.e., a user could only
be authenticated for K requests in a predefined period, within that period the
blacklisted tickets must be determined). Even if the time window for rate-limiting
is synchronized across all users, this still creates a few undesirable properties.

First, if there is no misbehavior whatsoever, the SP might not care much if
a user “overuses” the service. Indeed, in applications such as Internet forums,
high activity is what an SP wants to see. On the other hand, the SP is now in a
stressed situation that all sessions conducted in the predefined period must be
reviewed properly, or otherwise a session with misbehavior could not be revoked.
Moreover, as blacklisted tickets are required to be published timely, the blacklist
accumulator becomes volatile. Consequently, the witness for the non-membership
proof for the users’ tickets queue also requires updates (even if the tickets queue
remains unchanged), which causes user-side overhead. Most importantly, observe
that the requirement of rate-limiting means we need another kind of protocol
(e.g., [6]) which is able to profile the behavior of the same user over a period
of time. It is not clear how rate-limiting can be tightly coupled with PEREA,
without reducing anonymity, not to say the additional overhead for such feature.

In terms of performance of deployment, recall that the computational over-
head for authentication is dependent on the ticket queue size K. For the SP
to achieve practical performance in authentication phase, it was suggested to
use K = 10 for completing computation under 0.1 seconds using typical hard-
ware. This imposes a very strict requirement for the SP to evaluate each session.
Another issue related to realization of an accumulator-based design is that, the
proof of non-membership protocol associated with the accumulator is not as “se-
cure” as assumed in PEREA. A recent research [7] has broken the security of the
proof of non-membership protocol used [8], which in turns breaks the security
of PEREA.

Reputation and Naughtiness. Reputation system is widely used in many
online services. (A survey of trust and reputation systems can be found in [9].)
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The user reputation is an aggregate (e.g., sum) of the rating of all previously
conducted sessions. It can be used as a way to profile a user, and then used
for rewarding or punishment upon user’s future authentications. For example,
in Yahoo! Knowledge+1, each user is associated with a score, which is an aggre-
gate sum of all individual score gained from the contributed answers. An answer
submitted by a user with high score may implicate that the user has been suc-
cessfully helping many others and hence is considered to be more trustworthy.

PEREA requires the SP to reject authentication once a user has been put
on the blacklist. This may be reasonable for applications that only requires an
“all or nothing” authentication, but real world applications usually require login
session to be associated with different privilege levels such that the SP can
provide different access rights to the user. An example could be an abusive user
who keeps posting defamation messages to a forum should have the message
posting suspended, but still has access right to the forum. Such operation is not
possible in the basic setting of PEREA.

In view of this shortcoming, the basic PEREA is extended [5] to revoke users
based on “naughtiness”, a severity measure of misconducts for a user’s K most
recently conducted sessions. However, it is not useful in a reputation system
since it can only capture the most recent K sessions.

Recently, Au, Kapadia and Susilo [10] proposed BLACR that extended BLAC
to support reputation. The basic BLACR subjects to the same inefficiency as
BLAC. Their BLACR-Express tries to decouple the blacklist in the past from the
performance of authentication, by asking the SP to issue some “express passes”
to privileged users. However, the management of these passes costs extra burden
on the SP, especially when applied to numerous users in the system.

Our Contribution. We propose PE(AR)2, which preserves the same anony-
mous authentication functionalities as PEREA, but with a few improvements.
Our PE(AR)2 also has a built-in reputation system. Each user can obtain “scores”
from the past sessions. Users can also prove (in zero-knowledge) that their scores
are higher than a certain threshold. The SP can then provide some privilege ser-
vices accordingly.

PE(AR)2 has a few advantages. Firstly, it does not require rate-limiting as in
PEREA for avoiding any malicious user to shift tickets which will be potentially
blacklisted out of the queue. Another advantage is that we no longer require the
SP to publish the blacklist in a timely manner for the accuracy of revocation.
The SP can then have higher flexibility and better resource scheduling on man-
aging blacklist. Otherwise, the SP might potentially blacklist more sessions than
needed, and unblacklist some of them afterwards. say when an “innocent” (and
unhappy) user filed a dispute case. As the changes in the blacklist is less volatile,
this also helps to achieve better computation efficiency in the user side.

We also remodel the structure of how authentication and blacklisting are done
in PEREA to have further improvement in terms of efficiency. In particular,
the complexity of SP-side for verifying an authentication in PE(AR)2 does not
depend on the ticket queue size K anymore; and for user side, the dependency

1 http://hk.knowledge.yahoo.com

http://hk.knowledge.yahoo.com
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on K is changed from O(K) exponentiations to O(K) divisions, which are much
cheaper. We further benchmark the performance of our implementation and
show our design is indeed practical and feasible in real world use case.

Regarding reputation, we introduce a score redemption algorithm, such that
users are allowed to remove tickets and reclaim the scores associated with the
reviewed sessions, thus keeping the ticket queue in a practically small size and
making the scores reclaimed aggregatable.

2 Formal Definitions

An anonymous authentication scheme with reputation and revocation, executed
between a user U and a service provider S, consists of the following algorithms:

– KeyGen(1�) → (mpk,msk): KeyGen is the key generation algorithm for the
service provider S that outputs the key pair.

– Reg(U(mpk),S(msk)) → {U(cred),S()}: Reg is the registration protocol that
outputs a credential cred to the user, which includes a list of tickets T not
known by S.

– Auth(U(mpk, cred, sbase),S(msk)) → {U(cred),S(t, sbase)}: Auth is the au-
thentication protocol that gives a ticket (session identifier) t ∈ T to the
SP, where T is in cred. If the ticket t is not used before, the used tickets in
T are not in the blacklist B, and the score s in cred is larger than sbase, then
the user is authenticated. The SP stores (t, 0,⊥) in the ticket score list L,
and the user refreshes his credential.

– Revoke(t) → {U(t),S(t)}: Revoke is the procedure for the SP to put a ticket
t on the blacklist, which revokes the credential where t is originated.

– Rate(t, s): S receives score s from the reviewers for the ticket t, updates (t,
s, Pf) to the list L, where Pf is a proof of validity of the rating.

– Redeem(U(mpk, cred,Ls),S(msk)) → {U(cred),S()}: Redeem is the algorithm
that allows U to update the score in the credential according to the ticket
list Ls. U proves that some of his tickets in cred are in Ls ⊆ L \ B. Finally
U obtains an updated credential with new score snew, the summation of the
scores in L for all tickets in Ls, with new tickets refilled, and with the tickets
in Ls removed from the credential.

An anonymous authentication scheme with reputation and revocation should
provide the properties Misauthentication Resistance, Revocability, Anonymity,
Unlinkability, Backward Untraceability and Identity-Escrow Freeness as defined
in PEREA [5], as well as the following properties:

– Reputation. (Completeness:) An honest user who has not been revoked
should be able to be authenticated by an honest SP if his score is larger
than sbase; and (Soundness:) No registered user can authenticate with an
honest SP for a score sbase if his score is less than or equal to sbase.

– Rating Unforgeability. The rating is only performed by the honest SP.
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Their formal definitions will be given via two main notions to be defined later.
In a reputation system, the unlinkability is guaranteed when the ticket is not

redeemed. Some anonymity may be lost during the redeem protocol under some
extreme cases. For example, if tickets A and B both have score 100 while the
other 5 tickets in the system have score 1. If one redeems his tickets for a total
score 200, then we conclude that tickets A and B are used by the same user.
This situation would be more noticeable when the user community is small or
the distribution of scores are uneven. This kind of unlinkability lost cannot be
completely eliminated from reputation system. However, as the number of users
and scored tickets gets large, then such issue becomes less likely to occur.

Security Models. We formally define the security notions as games played
between the adversary A and the challenger C. A can arbitrarily and adaptively
query various oracles, which together share a private state stn that contains
counters n, and sets UP , UA, UB, which are initialized to 0 and ∅, respectively.
Here we define a number of oracles, modeling an adversary’s attacking power.

Our P-Reg, A-Reg, B-Reg, CorruptU, P-Auth, A-Auth, B-Auth, Add-to-BL,
Remove-From-BL Oracles are almost the same as the oracles in PEREA [5]. The
meanings of P, A and B in various Reg and Auth oracles are similar to those to
be described in three different kinds of Redeem oracles. Below we will highlight
the differences between our model and the existing model [5].

– Our private state stn stores three tuples, including the user counter n and
the credential as in [5], and also the refresh counter a which is used to
differentiate past and present credentials. We use credn,a to represent each
credential.

– In A-Reg (resp. A-Auth) Oracle, A sends all the randomness he wants to use
in the Reg (resp. Auth) protocol. The oracle runs it using A’s randomness
for the corrupt user. It is because the challenger has to know the credentials
of the corrupt users to prevent A from winning trivially using them.

– In CorruptU Oracle, it also takes the refresh counter a as an extra input, in
order to simulate the corruption of past credentials for backward security.

The following oracles are newly introduced in our model:

– Rate Oracle: allows A to assign scores for tickets. On input a ticket t and a
score s, the oracles updates (t, s,Pf) to the list L.

– P-Redeem Oracle (resp. B-Redeem Oracle; A-Redeem Oracle): allows A to
eavesdrop a redemption run between an honest user and an honest SP (resp.
an honest user and a corrupt SP; or a corrupt user and an honest SP).
The oracle description is similar to the P-Auth Oracle (resp. B-Auth Oracle;
A-Auth Oracle), except that we replace the Auth protocol with the Redeem
protocol; and the state stn finally stores the refreshed credential with the
new score sscore (the summation of scores of tickets in Ls).

– A-Redeem Oracle: allows a corrupt user to redeem with an honest SP. On
input i such that i ∈ UA, the oracle searches for 〈i, credi,a, a〉 from stn with
the largest a, plays the role of the SP and interacts with A in the Redeem
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protocol. A sends all the randomness he wants to use and the oracles runs
the Redeem protocol using them for the corrupt user i. If the redeem is
successful, the oracles appends 〈i, credi,a+1, a+ 1〉 to stn, where credi,a+1 is
the refreshed credential with score sscore (the summation of scores of tickets
in Ls). The oracle returns (πa, a, credi,a+1) to A, where πa is the resulting
protocol transcript.

We are now ready to introduce two security games to capture the properties of
anonymous authentication 2.

Accountability. We capture the misauthentication resistance, revocability and
reputation properties. In this game, the adversary is allowed to act as unreg-
istered users, revoked users, and registered users without sufficient score. No
coalition of these users can authenticate with the honest SP. The security game
between the challenger C and the adversary A is defined as follows.

1. (Setup.) C runs (mpk,msk) ← KeyGen(1�) and gives mpk to A.
2. (Query.) A can issue queries to all the oracles except those start with B-.
3. (End game.) A runs Auth with C and C obtains a ticket t∗ and s∗base.

Denote a∗ as the largest number such that the ticket t∗ is in credn∗,a∗ , for
〈n∗, credn∗,a∗ , a∗〉 stored in stn. A wins the game if one of the following holds:

– Case 1: (unregistered user) a∗ cannot be found since t∗ is not in any credn,a.
– Case 2: (honest-looking user) n∗ /∈ UA; and t

∗ is not stored in L.
– Case 3: (malicious registered user): One of the following holds:

1. (A reuses old tickets) t∗ is stored in L, or
2. (A does not have enough score) sscore (the score of credn∗,a∗) ≤ s∗base, or
3. (A is blacklisted) ∃t̂ ∈ credn∗,a∗ such that ticket t̂ is in the blacklist.

The advantage of A is the probability that A wins the game.

Definition 1. An anonymous authentication scheme is accountable if there is
no PPT adversary A has a non-negligible advantage in the above game.

The accountability model captures the misauthentication resistance since the
adversary can pretend to be an honest user (by setting n∗ ∈ Up ∪ UB in case
2) or try to authenticate as an unregistered user (by case 1). The model also
captures the revocability and reputation, since in case 3 the challenge user is
either blacklisted, is reusing old tickets or trying to authenticate with low score.

Privacy. We capture the anonymity, unlinkability and backward untraceability
properties in the game below, where the adversary could act as a corrupted SP.

1. (Setup.) C runs (mpk,msk) ← KeyGen(1�) and gives (mpk,msk) to A.
2. (Query 1.) A is allowed to issue queries to all the oracles except those start

with P- and A-.

2 Completeness is easy to define. Rating unforgeability can be easily captured by the
standard unforgeability of the Rate protocol. We omit them due to space limit.
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3. (Challenge.) A picks i0 and i1 in UB and sends them to C. Denote the score
of i0 (resp. i1) in stn as s0 (resp. s1). C randomly picks a bit b ∈ {0, 1}.
After that, A can ask C to run B-Auth Oracle twice with sbase > s0, s1, and
without specifying the input. C answers the query assuming the input is ib
and i1−b respectively. Denote the ticket used as t∗0 and t∗1 respectively.

4. (Query 2.) A is allowed to issue queries to all the oracles except CorruptU
Oracle with input i0 or i1 and oracles start with P- and A-. A is allowed to
query the B-Redeem Oracle if t∗0 and t∗1 are not involved. Redeeming t∗0 and
t∗1 by the B-Redeem Oracle is allowed if and only if all tickets to be redeemed
by ib and i1−b have the same total scores and the same number of tickets.

5. (End game.) A outputs a guess bit b′. A wins if b = b′.

The advantage of A is the probability that A wins the game minus 1/2.

Definition 2. An anonymous authentication scheme is private if there is no
PPT adversary A has a non-negligible advantage in the above game.

The privacy model captures anonymity since the adversary tries to distinguish
between two honest users from the challenge authentication instance. It cap-
tures unlinkability since the adversary can ask the challenge users to run many
instances of Auth with him before and after the challenge phase. It captures
backward untraceability since the adversary is allowed to put the tickets of the
challenge users on the blacklist, without affecting the other two properties.

3 Building Blocks

We state the notations and constructions of some fundamental cryptographic
building blocks used.

Zero-Knowledge Proof-of-Knowledge (ZKPoK). For a language L with
witness relation RL, a proof system is a triplet of algorithms (K, P, V):

– K: on input 1�, outputs a common reference string crs.
– P: on input crs, x and its witness w, outputs a proof π if (x,w) ∈ RL.
– V: on input crs, x and its proof π, outputs 1 for accept and 0 for reject.

We use the standard notation (due to Camenisch and Stadler) PK{(α, ρ) : z =
gαhρ}, to denote a proof of knowledge of (α, ρ) where z = gαhρ is satisfied.

CL Signature. CL signature [11] is a secure signature scheme which allows
signing on (commitments of) a vector of message and proving the possession
of valid signatures in zero-knowledge. The algorithm KeyGenCL(1

�) outputs a
public key pkCL = (N, g, h) where N is a safe prime product, g, h ∈ QRN ; and
a secret key skCL = φ(N). For a vector of messages (α0, . . . , αk), the signature
on the commitment of (α0, . . . , αk) is denoted as σ ← SignCL({αi}0...k, skCL).
The verification algorithm is denoted as 1/0 ← VerifyCL({αi}0...k, σ, pkCL) for
valid/invalid signature. More details likes its construction can be found in [11].
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Dynamically Universal Accumulator (DUA). DUA [8] is a suite of algo-
rithms/protocols which allows an accumulation of a set of values into a single
accumulator, and the proof of knowledge of a non-membership or membership
witness of any value, with respect to an accumulator. We summarize the scheme
in [8] as follows. In PE(AR)2, the tickets are the values to be accumulated.

DUA.Setup. On input the security parameter 1�, it picks a safe prime product
N and gAcc ∈R QRN . It compute the public/private key pair pkAcc = (N, gAcc),
skAcc = φ(N), and sets the initial accumulator value c = gAcc.

DUA.Accumulating tickets. Denote Accumulate(c, {ti}0...L) as the algorithm to
accumulate a list of tickets {ti}0...L to the accumulator value c. It computes
ĉ = cΠ0�i�Lti . S updates c = ĉ. Note that decumlating tickets can be done

similarly by computing ĉ = cΠ0�i�Lt
−1
i mod φ(N) using skAcc.

DUA.Non-membership witness generation.3 Denote Computenmw(x, {ti}0...L, skAcc)
as the following algorithm to generate a non-membership witness w, where x is
the ticket to be witnessed, {ti}0...L is the list of accumulated tickets.

1. Compute the accumulated ticket product u =
∏L

i=0ti.
2. Compute u′ = u mod φ(N).
3. Since x is not a factor of u, gcd(x, u′) = 1. By Euclidean algorithm, find a

and b such that au′ + bx = 1 mod φ(N).
4. Output the witness w in the form of (a, d) = (a, g−b

Acc).

The accumulator c = g
Π0�i�Lti
Acc has the witness w = (a, d) which can be validated

by checking if ca = dxgAcc mod N . Denote this check by Verifynmw(c, x, w, pkAcc).
It outputs 1 if the witness is valid, or 0 otherwise.

DUA.Non-membership witness update. Denote Updatenmw(w, c, x, {ti}L+1...M) as
the following algorithm to update the non-membership witness w = (a, d), where
c is the original accumulator value, x is the ticket to be witnessed, and tickets
tL + 1, . . . , tM are the newly accumulated tickets which are absent in c.

1. Compute the new accumulated ticket product û =
∏M

i=L+1ti.

2. Compute the new accumulator value ĉ = cû mod N .
3. Since x is not a factor of û, by Euclidean algorithm, find a0 and r0 such that
â0û+ r0x = 1. Compute â = â0a mod x.

4. Find r such that âû = a+ rx. Output the updated witness ŵ in the form of
(â, d̂) = (â, dcr mod N).

The updated witness ŵ = (â, d̂) is valid if ĉâ = d̂xgAcc mod N holds.

DUA.Non-membership witness proof-of-knowledge. Setting pkAcc = (N, gAcc, g, h),
on a hidden ticket x, a random value r and witness (a, d), a prover runs the
ZKPoK with S: PKnmw{(x, r, a, d) : commx = gxhr ∧ ca = dxgAcc} to prove the

3 Note that this version of DUA is vulnerable to an attack described in [7]. Our
instantiation is described in Section 4.1.
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condition gcd(x, u) = 1, where u is the product of all ticket accumulated, is
satisfied. Instantiation of such could be found in [8, § 5].

Intractability Assumption. Both CL signature and DUA rely on the strong
RSA assumption, which is, on input of an RSA modulus N and an element
u ∈ Z∗

N , it is computationally hard to find a pair (v, e) such that ve = u mod N
where e > 1.

4 A New Scheme: PE(AR)2

In this section, we propose a new anonymous authentication scheme that set-
tles the pitfall and vulnerability of PEREA. We name it as PE(AR)2, denoting
Privacy-Enhanced Anonymous Authentication with Reputation and Revocation.

4.1 Our Scheme as Improvement to PEREA

Fixing Vulnerability of Dynamic Universal Accumulator (DUA). As
stated in [7], the non-membership witness generation algorithm executed by an
SP [8] suffers from an attack of extraction of multiple of φ(N), which is the
secret key. The attack is successful because the original scheme [8] makes use
of u′ = u mod φ(N) in order to efficiently generate a witness w = (a, d) that
satisfies au′ + bx = 1 mod φ(N) and d = g−b

Acc mod N .
Yet, the use of φ(N) to generate witness is not necessary. As stated in the

original DUA scheme, users (including SP) can use a less efficient method,
without using of φ(N), to obtain the witness. It can still be generated from
au + bx = 1 and d = g−b

Acc mod N directly. As the computation complexity for
the non-membership witness generation is O(l2), where l is the length of the
larger number in u and x, the introduced overhead is negligible as compared
with other heavy operations such as large number exponentiations.

Here is the fixed version of the DUA non-membership witness generation,
which takes the public key pkAcc instead of the private key skAcc.

Computenmw(x, {ti}0...L, pkAcc):

1. Compute the accumulated ticket product u =
∏L

i=0ti.
2. Find a and b such that au+ bx = 1 by Euclidean algorithm.

(Since x is not a factor of u, gcd(x, u) = 1.)
3. Output the witness w in the form of (a, d) = (a, g−b

Acc).

Improving Efficiency and Practicability. PEREA relies on a queue based
structure of size K in the user side, which mandates the user to generate (or
update) K witnesses in every authentication request. Thus the computation
overhead is proportional to K times the overhead of DUA witness generation.

PE(AR)2 removes the need of the queue, and use the product value of all
tickets in all witness generations. Since the accumulator is in the form of V =
gXAcc where X =

∏
xi and xi’s are prime numbers, we can combine the non-

membership witness verification of K tickets {t1, . . . , tK} to one single non-
membership witness verification of a combined value T =

∏
ti.
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Notice that now the non-membership witness verification will fail if any of
the tickets among these K tickets are accumulated in the accumulator, since
the underlying accumulator’s non-membership proof [8] ensures the fact that
gcd(X,T ) �= 1 for the case. This gives another efficiency improvement to PE(AR)2,
as blacklist verification could be done in one operation only, except the cost of
multiplying a maximum of K tickets together which can be pre-computed. As
a result, the computation complexity shifts from K rounds of non-membership
proof to a zero-knowledge proof requiring exponentiation of size O(K ·�t), where
�t is the size of one ticket.

We further remove the requirement that tickets are added and deleted from
the user side storage for every authenticated session. Tickets can only be added
in the score redemption protocol after the scores associated with some tickets are
redeemed (and of course, some new tickets are initially added in the registration
protocol). Users can only delete tickets that have been reviewed in the score
redemption protocol. Thus the choice of K no longer has impact to the ticket
review time of the SP in our new scheme.

Reputation System. Our reputation mechanism associates a score with the
credential. For each past session, there is an external mechanism which assigns
score to it. The SP can then authenticate this score. The user can redeem scores
from multiple sessions together at any desired time. After validity check, the SP
refreshes the user’s credential with the new score. The user can later authenticate
to the SP and possibly access some special services from the SP when the score
is above a certain threshold.

Recall that in PEREA, the SP needs to review each authentication in a timely-
manner, and the naughtiness assigned to a credential can only be reflected from
its K-most recent authentications. It seems that PE(AR)2 may run into the
same problem of requiring the SP to assign score to each session as quickly
as possible, since the user can only delete tickets from the credential for those
having the associated past sessions reviewed. It might be possible for a user to
have all K tickets in the credential pending to be reviewed, and thus can no
longer be authenticated for one more session. However, an importance difference
between PE(AR)2 and PEREA is that not only K affordable by our system is
much higher than that of PEREA (which will be demonstrated experimentally in
Section 5), but it is just a recommended size instead of a hard limit. A very active
user can always store more than K pending tickets in the credential. True, this
credential may stand out in the system since the size of ZKPoK must be larger,
but the compromise in privacy is minimal since every other attributes (like the
linkage of this credential with the past sessions) are hidden. On the other hand,
one may consider it as a feature providing some sort of soft rate-limiting.

4.2 Construction

First we establish some notations and convention.
Given a security parameter �, let �N , �t, �s, �e,K be the system parameters.

The former four are security parameters.
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1. The first one is for the RSA modulus. A typical setting could be (�N , �) =
(1024, 160).

2. The parameter �t determines the ticket length, which is also the length of a
session identifier. User can pick tickets randomly from a set of �t-bits prime
numbers, denoted as Π�t . When �t = 166, there are at least 2160 tickets in
this set4. For a reasonably large number of tickets randomly picked from
Π�t , probability of having two of them collide is approximately 2−80, due to
the birthday paradox.

3. K represents the number of tickets that should be generated during regis-
tration, and a typical value could be K = 1000.

4. Finally, �s and �e determine the domain sizes for the components in the CL
signature scheme. For its security we require �s = �N + �t + �, �e > �t + 2.

We use the notation PK with different subscripts to refer to different ZKPoK.
Their instantiations are standard and will be described in the full version of
this paper. In particular, we use the ZK proof of CL signatures [11] during
authentication, and the reputation system is realized by the sum of committed
values [5].

KeyGen: The service provider S generates the keys as follows:

1. S chooses an �N -bit safe-prime product N = pq as a special RSA modulus,
where p and q are random safe primes.

2. S chooses g, h, gAcc, gCL ∈ QRN , the set of quadratic residue modulo N .
3. S sets pkCL = (N, g, h, gCL) and skCL = φ(N), pkAcc = (N, g, h, gAcc) and

skAcc = φ(N), i.e., gAcc and gCL are the exponentiation base used in accumu-
lator and CL-signature respectively.

4. S maintains and publishes a list L containing pairs of ticket (or session
identifier) and score.

5. S maintains a public blacklist B, and the corresponding accumulator value
c, initialized to gAcc.

6. S runs K(1�) for the ZKPoK protocols PK1, PK2 and PK3 (which will be
defined below). Denote all the common reference strings generated as crs.

7. Finally S sets msk = φ(N) and mpk = (crs, N, g, h, gAcc, gCL, t̂, c).

In practice, S may split the public lists L and B into smaller lists for different
time periods so users could store and download the smaller set of lists. We omit
such construction for simplicity.

Reg: Assuming a user U and a service provider S has established a pre-
authenticated channel via other means, U obtains a credential from S as
follows:

1. U sets ticket t0 = t̂ and picks K tickets ti ∈R Π�t \ B where 0 < i ≤ K.

2. U sets T =
∏K

i=0 ti, and prepares its commitment.

4 This follows from a result of Dusart [12]: the number of distinct primes less than x
is larger than x

lnx
(1 + 0.992

lnx
) for all x > 598.
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3. U prepares t1’s commitment.
4. U computes w = Computenmw(T,B, pkAcc) and its commitment.
5. U sets the initial score s = 0, and prepares its commitment.
6. U sends S the ZKPoK:

PK1{(t0, t1, T, w, s) : t0t1|T ∧ 1 = Verifynmw(c, T, w, pkAcc) ∧ t0 = t̂ ∧ s = 0}.

It proves that 1) t0 and t1 are stored in T , 2) w is a non-membership witness
that no ticket in T is in the blacklist accumulator value c, and 3) the initial
score s is 0.

7. If S accepts the ZKPoK, he runs σ ← SignCL((T, t1, s), skCL) with U , by
signing on the commitments of T , t1 and s. As a result, U obtains σ from S.

8. U sets T = {t0, . . . , tK}, the auxiliary information J = ({gT/ti : ti ∈
T}, T, gT , gTAcc), and stores the credential cred0 = (0, σ, w, c, s,T,B, J).

We will then use the notation ccred and Bcred to denote the accumulator values
stored by U with the credential, which are the current accumulator value and the
current blacklist at the time of ticket generation, and may not be as up-to-date
as the public values maintained by S.
Auth: On the i-th round of authentication, where 1 ≤ i < K, the user U is

in possession of credi−1 = (i − 1, σ, w, ccred, s,T,Bcred, J). U authenticates
anonymously with S and obtains a new credential as follows:

1. U obtains the current blacklist B and the corresponding accumulator c via
a public channel.

2. U updates credi−1 with an updated witness w′ = Updatenmw(w, ccred, T, {t̂j}),
where t̂j ∈ B \ Bcred.

3. U sends S the ZKPoK:

PK2{(ti, ti+1, T, σ, w
′, s) : s > sbase ∧ ti+1|T

∧ 1 = Verifynmw(c, T, w
′, pkAcc) ∧ 1 = VerifyCL((T, ti, s), σ, pkCL)}.

It proves that 1) U ’s score s is high enough when S expects a base score
sbase, 2) ti+1 is stored in T , 3) w′ is a non-membership witness that none of
the (previous) sessions in T is in the blacklist accumulator value c, and 4)
the tuple (T, ti, s) is signed by S in the previous session.

4. If S accepts the ZKPoK, U opens the commitment of ti to S.
5. S aborts if ti has been stored on L, the list of used tickets, as an old ticket

cannot be reused again.
6. Otherwise, S authenticates U , appends (ti, 0,⊥) to L, and executes σ′ ←

SignCL((T, ti+1, s), skCL) with U .
7. U obtains σ′ and stores credentials credi = (i, σ′, w′, c, s,T,B, J).

Revoke: S can revoke a previously authenticated session based on the behavior
observed for that session. To revoke a session t ∈ L, S adds t to B and
accumulates it by setting c← ct. S publishes B and c via a public channel5.
The corresponding (t, ·, ·) entry should then be removed from L.

5 Multiple tickets can be revoked at once by setting c ← cT̂ , where T̂ is the product
of the tickets to be revoked.
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Rate: S can rate a previously authenticated session based on the behavior ob-
served. To rate a session t ∈ L with a score s, S computes σt ← SignCL((t, s),
skCL) and updates (t, 0,⊥) to (t, s, σt) in the list L.

Redeem: After the i-th round of authentication, U attempts to use credi =
(i, σ, w, ccred, s,T,Bcred, J) to exchange for a new credential with the updated
score s′ due to a list of redeemable tickets Told. The protocol runs as follows:

1. U retrieves the scores of the tickets that he wants to redeem and the associ-
ated signatures: S = {(tj, sj , σj) ∈ L : tj ∈ Told ∧ σj �= ⊥}.

2. U removes tj from Told for every j such that (tj , sj ,⊥) ∈ L.
3. U forms Tnew by picking n random new tickets from Π�t , where n is the size

of Told.
4. U sets Told =

∏
t′j where t′j ∈ Told and Tnew =

∏
t̂j where t̂j ∈ Tnew.

5. U sends S the ZKPoK: (where ti+1 ∈ T and T ∈ J)

PK3{(ti+1, T, Told, Tnew, σ, s, s
′, S) : Told|T ∧ s′ = s+

∑
(·,sj ,·)∈S

sj

∧
(tj ,sj ,σj)∈S

1 = VerifyCL((tj , sj), σj , pkCL) ∧ 1 = VerifyCL((T, ti+1, s), σ, pkAcc)}.

It proves that 1) the tickets to be redeemed Told are stored in T , 2) s′ is the
summation of the old score and the new scores to be redeemed, 3) the score
sj of each ticket tj is signed by S, and 4) the tuple (T, ti+1, s) is signed by
S in the previous session.

6. If S accepts the ZKPoK, U opens ti from its commitment.
7. U computes w′ = Computenmw(T · Tnew/Told,B, pkAcc).
8. S runs σ′ ← SignCL((T · Tnew/Told, ti, s′), skCL) with U .
9. U obtains σ′ from S, recalculates auxiliary information J′ using the new tick-

ets, and stores credential cred′i+1 = (i+1, σ′, w′, c, s′, {T\Told ∪Tnew},B, J′).

Theorem 1. Our scheme is accountable and private if PK1, PK2, PK3 are
ZKPoK, the underlying CL signature scheme and the accumulator system are
secure.

The proof is given in the full version of the paper.

5 Discussions

5.1 Complexity Analysis

Here we present a computation analysis on PE(AR)2, PEREA [5] and BLACR-
Express [10] based on the number of expensive operations, in terms of K (size
of user ticket queue), δL (number of tickets added to blacklist after the last
time when a user retrieved the updated credential) and δR (number of tickets to
redeem). We also included the Redeem protocol for PE(AR)2 in the comparison
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Table 1. Performance analysis in authentication phase

Scheme
Communication Computation

Downlink Uplink♠ User Service Provider

PE(AR)2

Auth O(δL) O(K) 1Eu♥+ 14Em 14Em

Redeem O(δL + δR) O(K + δR) 1Eu♣+ (6 + 6δR)Em (6 + 6δR)Em

PEREA O(δL) O(K) [(K + 1)δL + 5K (4K + 2
⌈

K+1
3

⌉
+ 3)Em

[5] +2
⌈

K+1
3

⌉
+

⌈
K−1

3

⌉
+ 3]Em

BLACR [10] O(δL) O(δL) (30δL + 81)E1
♦ (12δL + 26)E1 + (2δL + 6)E2

(Express) + (5δL + 7)ET + (δL + 4)P + (5δL + 18)ET + (δL + 3)P
♠

For PE(AR)2, O(K)-size is due to the product of K tickets, which should be smaller than the
O(K) non-membership proof required in PEREA.

♥
Let h1 = min(δL,K). The Euclidean algorithm here require O(h1) division operations. The
performance can be further improved as shown in [13].

♣
Let h2 = min(L,K). The Euclidean algorithm here is running O(h2) division operations.

♦
For simplicity, we assume the fraction of tickets that belong to the user is close to zero when
there are a lots of tickets in the system, and � = m = 1 for BLACR-Express.

since it is expected that a user would execute Redeem for once afterK invocations
of Auth. In the worst case, users could run Redeem after every single instance of
Auth.

Table 1 outlines the analysis on computation and communication. Denote
Em as the multi-based modular exponentiation that 3 exponentiations could be
done simultaneously, Eu as the extended Euclidean algorithm, E1, E2, ET as
the exponentiation of the pairing group G1,G2,GT respectively, and P as the
pairing operation. Only BLACR uses E1, E2, ET and P.

Notice that the main bottleneck of these schemes are on the SP side, PE(AR)2

has time complexities of O(1) and O(δR) in Auth and Redeem phase respectively.
For PEREA and BLACR-Express, authentication requires O(K) and O(δL) wit-
ness verification on SP side respectively. On user side, PE(AR)2 has time com-
plexities of O(1) and O(δR) multi-base exponentiation Em in Auth and Redeem
phase respectively. PEREA and BLACR-Express run in O(KδL) and O(δL)
respectively on the user side6. We remark that PE(AR)2 uses Eu, with time
complexity dominated by the division operation, and the number of division in-
volved is related to L,K, and δL. However, the division operation is much more
efficient than exponentiation (Em, E1, E2, ET ) and pairing P.

5.2 Empirical Result

We benchmarked the time required for authentication on PEREA and BLACR-
Express, and both authentication and redemption for PE(AR)2, for different K,
on both SP and user side. We obtained the benchmark from a 2.4GHz Intel Core
i5 box with 4GB memory. The result is visualized in Figure 1. We marked the
y-axis in logarithmic scale so as to capture the benchmark of different magnitude.

6 Here we use the BLACR-Express data without pre-computation. It was claimed that
the dependence of δL for Em and P can be removed without details [10], hence we
cannot perform benchmark on them here.
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Fig. 1. Benchmark for time taken in service provider and user side

The benchmarks are obtained from averaging the result with repetitive exper-
iments. For PEREA, our benchmark aligns with the result in [5]. The SP takes
around 20ms for authentication when K = 5, and client takes around 50ms. As
K increases to 1000, the SP takes 2758ms and client takes around 10672ms. For
BLACR-Express with δL = 2% of L, SP authentication takes around 2228 ms
when L = 200 and 2281ms when L = 1000. On the other hand, client authen-
tication takes around 4775ms when L = 200 and 16539ms when L = 1000. For
PE(AR)2, the SP takes 6ms and 10ms for Auth and Redeem respectively when
K = 5, 6ms and 177ms when K = 1000. Client takes 15ms and 28ms for Auth
and Redeem respectively when K = 5, 176ms and 47236ms when K = 1000.

Recall the fact that the bottleneck of the scheme should be on the SP side, in
particular on authentication part. We look at the traffic statistics of 2channel,
one of the most popular internet forum in Japan. They have an average of
2.5 million posts made every day7, which is about 1736 posts per minute. Our
PE(AR)2 on the SP side can handle 10000 posts per minute8, and hence can
handle real traffic for popular internet forums.

5.3 Practical Considerations

Reducing the computation of the Service Provider. Authentication should
be made efficient for the SP, since the SP may need to handle multiple user
authentication requests simultaneously in real time. PE(AR)2 relaxed the SP
computation time requirement as compared with PEREA, such that only one
signature verification and witness verification is required. This improvement is
done by condensing the witnesses of multiple tickets into one single witness, and
the actual computation is shifted from Auth phase to Redeem phase.

7 http://stats.2ch.net/suzume.cgi?yes, in Japanese
8 BLACR-Express (with pre-computation) is setup to support authentications at the
rate of about 25 authentications/minute for active users and about 1 authentica-
tion/minute for inactive users [10], based on the traffic of Wikipedia. It is much less
than the requirements for popular internet forums.

http://stats.2ch.net/suzume.cgi?yes
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Pre-computation of Auxiliary Information. As the value to be proved
changes from a single ticket to a product of ticket, the proof size can be larger.
We thus suggest the use of auxiliary information gathered from Reg and Redeem
phase. With terms like gT , gTAcc and gT/ti precomputed and stored as auxiliary
information in J, the zero-knowledge proof (PK2) in the Auth phase can be
computed efficiently. For example, CL signature verification requires the com-
putation of gT , non-membership verification requires the computation of (zd)

T

where zd = dgρ, with a random ρ and d = g−b
Acc. Thus (zd)

T = (gT )ρ(gTAcc)
−b and

can be computed efficiently given the auxiliary information J.

Relaxing Mandatory Timely Blacklist Publishing. PE(AR)2 does not
require the SP to publish timely on the tickets that should be blacklisted, as
a user could only shift a ticket out of the queue after it is rated. Thus an SP
have a higher flexibility in resource management regarding when to review the
authenticated sessions, mark them as blacklisted, or give a score rating.

Rate-Limiting Considerations. Our scheme does not require rate-limiting
facility. The term rate-limiting refers to the ability to stop abuser from overusing
the service over a period of time. In PEREA, rate-limiting is mandatory as an
adversary could generate a lot of authentication sessions to shift any potential
blacklist session out of the ticket queue before the SP would blacklist them.
However, rate-limiting is not provided in the scope of PEREA and could only
be integrated using other cryptographic techniques (e.g., see [14]). Our scheme
does not have such weakness as the removal of any ticket is checked by the
SP in Redeem phase. Our scheme could actually be modified to provide a less-
efficient construction for rate-limiting by default as follows. Recall that in Reg
and Redeem protocols, a user may attempt to generate more than K number of
tickets in the ticket queue. We could modify our construction to have the user to
provide zero knowledge proof on the number of tickets generated. Then, a user
could no longer authenticate once all the tickets in the queue are used up, and
must wait until the SP to participate in Redeem phase.

Types of Scores. Our current construction only considers positive scores to
provide rewards for good behavior. It is suitable for a lot of popular Internet
sites that use positive scores only, like Facebook (Like) and Google Plus (+1).

Nevertheless, we can extend it to support negative scores like BLACR [10].
For the security model, we need to give a new model which prevents an adversary
from not redeeming the negative scores. For the construction, we have to remove
the unlinkability of the ticket redeemed in the Redeem protocol, by removing S
from the PK3. Therefore, the SP can check whether a ticket is redeemed or not.
If a ticket with a negative score is not redeemed after a long period of time, the
SP can simply add it to the blacklist. Hence, its owner is forced to ask the SP
to un-blacklist it by redeeming it, before any further authentication.

6 Conclusion

We presented PE(AR)2, which preserves the same anonymous authentication
functionalities as PEREA, but fixes its vulnerability and incorporates reputation
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system. PE(AR)2 also eliminated the complexity dependence on the ticket queue
size for the SP. The improvement is significant for an active system with many
sessions and gives more flexibility to the SP for tickets review. Furthermore,
PE(AR)2 avoids the reliance of additional anonymous rate-limiting protocol,
which was critical to the operation of PEREA for prevent user from bypassing
the misbehavior detection. We believe that PE(AR)2 is more practical for real
world use. We presented the construction of our design. We give a brief analysis
of the complexity and benchmarks, justifying that PE(AR)2 is efficient for real-
world deployment.
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Abstract. With more than 300 million cards sold, HID iClass is one
of the most popular contactless smart cards on the market. It is widely
used for access control, secure login and payment systems. The card uses
64-bit keys to provide authenticity and integrity. The cipher and key
diversification algorithms are proprietary and little information about
them is publicly available. In this paper we have reverse engineered all
security mechanisms in the card including cipher, authentication proto-
col and key diversification algorithms, which we publish in full detail.
Furthermore, we have found six critical weaknesses that we exploit in
two attacks, one against iClass Standard and one against iClass Elite
(a.k.a., iClass High Security). In order to recover a secret card key, the
first attack requires one authentication attempt with a legitimate reader
and 222 queries to a card. This attack has a computational complexity
of 240 MAC computations. The whole attack can be executed within
a day on ordinary hardware. Remarkably, the second attack which is
against iClass Elite is significantly faster. It directly recovers the master
key from only 15 authentication attempts with a legitimate reader. The
computational complexity of this attack is lower than 225 MAC compu-
tations, which means that it can be fully executed within 5 seconds on
an ordinary laptop.

1 Introduction

iClass is an ISO/IEC 15693 [1] compatible contactless smart card manufactured
by HID Global. It was introduced in the market back in 2002 as a secure replace-
ment of the HID Prox card which did not have any cryptographic capabilities.
According to the manufacturer, more than 300 million iClass cards have been
sold. These cards are widely used in access control of secured buildings such
as The Bank of America Merrill Lynch, the International Airport of Mexico
City and the United States Navy base of Pearl Harbor [2] among many others1.
Other applications include secure user authentication such as in the naviGO
system included in Dell’s Latitude and Precision laptops; e-payment like in the

1 http://hidglobal.com/mediacenter.php?cat2=2

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 697–715, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://hidglobal.com/mediacenter.php?cat2=2


698 F.D. Garcia et al.

FreedomPay and SmartCentric systems; and billing of electric vehicle charging
such as in the Liberty PlugIns system. iClass has also been incorporated into
the new BlackBerry phones which support Near Field Communication (NFC).

iClass uses a proprietary cipher to provide data integrity and mutual authen-
tication between card and reader. The cipher uses a 64-bit diversified key which
is derived from a 56-bit master key and the serial number of the card. This key
diversification algorithm is built into all iClass readers. The technology used in
the card is covered by US Patent 6058481 and EP 0890157. The precise descrip-
tion of both the cipher and the key diversification algorithms are kept secret by
the manufacturer following the principles of security by obscurity. Remarkably,
all iClass Standard cards worldwide share the same master key for the iClass
application. This master key is stored in the EEPROM memory of every iClass
reader. It is possible though to let HID generate and manage a custom key for
your system if you are willing to pay a higher price. The iClass Elite Program
(a.k.a., High Security) uses an additional key diversification algorithm and a
custom master key per system which according to HID provides “the highest
level of security” [3].

Over the last few years, much attention has been paid to the (in)security of
the cryptographic mechanisms used in contactless smart cards [4–7]. Experience
has shown that the secrecy of proprietary ciphers does not contribute to its
cryptographic strength. Most notably the Mifare Classic, which has widespread
application in public transport ticketing and access control systems, has been
thoroughly broken in the last few years [4, 8–11]. Other prominent examples
include KeeLoq [12,13] and Hitag2 [7,14,15] used in car keys and CryptoRF [5,
16, 17] used in access control and payment systems. HID proposes iClass as a
migration option for systems using Mifare Classic, boosting that iClass provides
“improved security, performance and data integrity”2. For almost one decade
after its introduction to the market, the details of the security mechanisms of
iClass remained unknown.

Our Contribution. In this paper we have fully reverse engineered iClass’s pro-
prietary cipher and authentication protocol which we publish in full detail. This
task is not trivial since it was first necessary to bypass the read protection mech-
anisms of the microcontroller used in the readers in order to retrieve its firmware.
Furthermore we have found serious vulnerabilities in the cipher that enable an at-
tacker to recover the secret key from the card by just wirelessly communicating
with it. The potential impact of this attack is vast since other vulnerabilities in the
key diversification algorithmallowan adversary to use this secret key to recover the
master key, provided that he has mild computational power. Additionally, we have
reverse engineered the iClass Elite key diversification algorithmwhich we describe
in full detail. We show that this algorithm has even more serious vulnerabilities
than the standard key diversification algorithm, allowing an attacker to directly
recover the master key by simply communicating with a legitimate iClass reader.
Concretely, we propose two attacks: one against iClass Standard and one against
iClass Elite. Both attacks allow an adversary to recover the master key.

2 http://www.hidglobal.com/pr.php?id=393

http://www.hidglobal.com/pr.php?id=393
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• The first attack exploits a total of four weaknesses in the cipher, key di-
versification algorithm and implementation. In order to execute this attack
the adversary first needs to eavesdrop one legitimate authentication session
between card and reader. Then it runs 219 key updates and 222 authentica-
tion attempts with the card. This takes less than six hours to accomplish
when using a Proxmark III as a reader and recovers 24 bits of the card key.
Finally, off-line, the attacker needs to search for the remaining 40 bits of the
key. Having recovered the card key, the adversary gains full control over the
card. Furthermore, computing the master key from the card key is as hard
as breaking single DES [18].

• The second attack concerning iClass Elite exploits two weaknesses in the key
diversification algorithm and recovers the master key directly. In order to run
this attack the adversary only needs to run 15 authentication attempts with
a legitimate reader. Afterwards, off-line, the adversary needs to compute
only 225 DES encryptions in order to recover the master key. This attack,
from beginning to end runs within 5 seconds on ordinary hardware.

We have executed both attacks in practice and verified these claims and at-
tack times. For eavesdropping and card emulation we used a Proxmark III (see
http://www.proxmark.org) which costs approximately 200 USD.

Related Work. Recently, Meriac proposed a procedure to read out the EEP-
ROM of a PIC microcontroller, like the ones used in iClass readers [19]. The
reverse engineering process described here builds upon this work. Garcia, de
Koning Gans and Verdult in [18] have reverse engineered the key diversification
algorithm of iClass and showed that it is possible to recover a master key when
the adversary has full control (i.e., can execute arbitrary commands) over a le-
gitimate iClass reader. They also showed that inverting the key diversification
function in iClass is as hard as a chosen plaintext attack on single DES. During
the course of our research Kim, Jung, Lee, Jung and Han have made a techni-
cal report [20] available online describing independent reverse engineering of the
cipher used in iClass. Their research takes a very different, hardware oriented
approach. They recovered most of the cipher by slicing the chip and analyzing
the circuits with a microscope. Our approach, however, is radically different as
our reverse engineering is based on the disassembly of the reader’s firmware and
the study of the communication behavior of tags and readers. Furthermore, the
description of the cipher by Kim et al. is not correct. Concretely, their key byte
selection function in the cipher is different from the one used in iClass which
results in incompatible keys. Kim et al. have proposed two key recovery attacks.
The first one is theoretical, in the sense that it assumes that an attacker has
access to a MAC oracle over messages of arbitrary length. This assumption is
unrealistic since neither the card nor the reader provide access to such a pow-
erful oracle. Their second attack requires full control over a legitimate reader
in order to issue arbitrary commands. Besides this assumption, it requires 242

online authentication queries which, in practice, would take more than 710 years
to gather. Our attacks, however, are practical in the sense that they can be

http://www.proxmark.org
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executed within a day and require only wireless communication with a genuine
iClass card/reader.

Overview. This paper is organized as follows. Section 2 starts with a descrip-
tion of the iClass architecture, the functionality of the card, the cryptographic
algorithms. Section 2.6 describes four weakness in the cipher, key diversification
algorithm and implementation of iClass. All these weaknesses are exploited in
Section 2.7 were we propose a key recovery attack against iClass. Section 3 stud-
ies iClass Elite. We first describe its key diversification algorithm and then we
describe two weaknesses which are later exploited in Section 3.3 to mount an
attack that recovers the master key. Finally, Section 4 gives concluding remarks.

2 iClass

An HID iClass card is in fact a pre-configured and re-branded PicoPass card
produced by Inside Secure3. HID configures and finalizes the cards so that the
configuration settings can no longer be modified. This section describes in detail
the functionality and security mechanisms of iClass and it also describes the
reverse engineering process. Let us first introduce notation.

Notation 2.1 Throughout this paper ε denotes the empty bitstring. ⊕ denotes
exclusive or. 
 denotes addition modulo 256. Given two bitstrings x and y, xy
denotes their concatenation. Sometimes we write this concatenation explicitly
with x · y to improve readability. x denotes the bitwise complement of x. 0n

denotes a bitstring of n zero-bits. Furthermore, given a bitstring x ∈ (Fk
2)

l, we
denote with x[i] the i-th element y ∈ Fk

2 of x. We write yi to denote the i-th bit
of y. For example, given the bitstring x = 0x010203 ∈ (F8

2)
3 and y := x[2] then

y = 0x03 and y6 = 1.

Remark 1 (Byte representation). Throughout this paper, bytes are represented
with their most significant bit on the left. However, the least significant bit is
transmitted first over the air (compliant with ISO/IEC 15693). This is the same
order in which the bits are input to the cryptographic functions. In other words,
0x0a0b0c is transmitted and processed as input 0x50d030.

2.1 Reverse Engineering iClass

In order to reverse engineer the cipher and the key diversification algorithms,
we have first recovered the firmware from an iClass reader. For this we used a
technique introduced in [19] and later used in [18]. Next we will briefly describe
this technique.

iClass readers, as many other embedded devices, rely on the popular PIC mi-
crocontroller to perform their computations. These microcontrollers are very ver-
satile and can be flashed with a custom firmware. The (program) memory of the

3 http://www.insidesecure.com/eng/Products/Secure-Solutions/
PicoPass

http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass
http://www.insidesecure.com/eng/Products/Secure-Solutions/PicoPass
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microcontroller is divided into a number of blocks, each of them having access
control bits determining whether this block is readable/writable. Even when the
PIC is configured to be non-writable, it is always possible to reset the access con-
trol bits by erasing the memory of the chip. At first glance this feature does not
seem very helpful to our reverse engineering goals since it erases the data on the
memory. Conveniently enough, even when the most common programming envi-
ronments do not allow it, the microcontroller supports erasure of a single block.
After patching the PIC programmer software to support this feature, it is possible
to perform the following attack to recover the firmware:

• Buy two iClass RW400 (6121AKN0000) readers.
• Erase block 0 on one of the readers. This resets the access control bits on
block 0 to readable, writable.

• Write a small dumper program on block 0 that reads blocks 1, . . . , n and
outputs the data via one of the microcontroller’s output pins.

• Use the serial port of a computer to record the data. This procedure recovers
blocks 1, . . . , n.

• Proceed similarly with the other reader, but erasing blocks 1, . . . , n. This in
fact fills each block with NOP operations.

• At the end of block n write a dumper program for block 0.
• At some point the program will jump to an empty block and then reach
dumper program that outputs the missing block 0.

Once we had recovered the firmware, it was possible to use IDA Pro and MPLAB
to reverse engineer the algorithms.

2.2 Functionality

iClass cards come in two versions called 2KS and 16KS with respectively 256 and
4096 bytes of memory. The memory of the card is divided into blocks of eight
bytes as shown in Figure 2.1. Memory blocks 0, 1, 2 and 5 are publicly readable.
They contain the card identifier id, configuration bits, the card challenge cC
and issuer information. Block 3 and 4 contain two diversified cryptographic keys
k1 and k2 which are derived from two different master keys K1 and K2. These
master keys are referred to in the documentation as debit key and credit key. The
card only stores the diversified keys k1 and k2. The remaining memory blocks
are divided into two areas, so-called applications. The size of these applications
is defined by the configuration block.

The first application of an iClass card is the HID application which stores
the card identifier, PIN code, password and other information used in access
control systems. Read and write access to the HID application requires a valid
mutual authentication using the cipher to prove knowledge of k1. The master key
of the HID application is a global key known to all iClass Standard compatible
readers. The globally used key K1 is kept secret by HID Global and is not shared
with any customer or industrial partner. Recovery of this key undermines the
security of all systems using iClass Standard. Two methods have been proposed
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Block Content Denoted by

0 Card serial number Identifier id
1 Configuration
2 e-Purse Card challenge cC
3 Key for application 1 Diversified debit key k1
4 Key for application 2 Diversified credit key k2
5 Application issuer area

6. . . 18 Application 1 HID application
19. . .n Application 2 User defined memory

publicly readable

write-only after authentication

read-write after authentication

Fig. 2.1. Memory layout of an iClass card

[18,19] to recover this key. To circumvent the obvious limitations of having only
a global master key, iClass Elite uses a different key diversification algorithm
that allows having custom master keys. The details regarding iClass Elite can
be found in Section 3. The second global master key K2 is used in both iClass
Standard and Elite systems and it is available to any developer who signs a
non-disclosure agreement with HID global. It is possible to extract this key from
publicly available software binaries [18]. In addition, the document [21] contains
this master key and is available online. This key K2 can be used by developers
to protect the second application, although in practice, K2 is hardly ever used
or modified.

The card provides basic memory operations like read and write which have
some non-standard behavior and therefore we describe them in detail.

• The read command takes as input an application number a and a memory
block number n and returns the memory content of this block. This command
has the side effect of selecting the corresponding key (k1 for application 1
or k2 for application 2) in the cipher and then it feeds the content of block
n into the internal state of the cipher. Cryptographic keys are not readable.
When the block number n corresponds to the address where a cryptographic
key is stored, then read returns a bitstring of 64 ones.

• The write command takes as input a block number n, an eight-byte payload
p and a MAC of the payload MAC(k, n · p). When successful, it writes p in
memory and it returns a copy of p for verification purposes. This command
has the side effect of resetting the internal state of the cipher. In addition,
when the block number n corresponds to the address where a cryptographic
key k is stored, the payload is XORed to the previous value instead of over-
writing it, i.e., it assigns k := k ⊕ p.

Therefore, in order to update a key k to k′, the reader must issue a write
command with k⊕ k′ as payload. In this way the card will store k⊕ k⊕ k′ = k′

as the new key. On the one hand, this particular key update procedure has the
special feature that in case an adversary eavesdrops a key update he is unable
to learn the newly assigned key, provided that he does not know k. On the other
hand this introduces a new weakness which we describe in Section 2.6.2.

Before being able to execute read or write commands on the protected mem-
ory of a card, the reader needs to get access to the corresponding application
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by running a successful authentication protocol described in Section 2.3. Cryp-
tographic keys k1 and k2 can be seen as part of application 1 and 2, respectively.
This means that in order to modify a key e.g., k1, the reader first needs to run a
successful authentication with k1.

2.3 Authentication Protocol

This section describes the authentication protocol between an iClass card and
reader. This protocol is depicted in Figure 2.2 and an example trace is shown in
Figure 2.3. First, during the anti-collision protocol, the reader learns the iden-
tity of the card id. Then, the reader chooses an application and issues a read
command on the card challenge cC . This cC is called ‘e-purse’ in the iClass doc-
umentation [22] and it is a special memory block in the sense that it is intended
to provide freshness. In the next step, the reader issues an authenticate com-
mand. This command sends to the card a reader nonce nR and a MAC of the
card challenge cC concatenated with nR. Finally, the card answers with a MAC

of cC , nR followed by 32 zero bits. For more details on the MAC function see
Section 2.4. After a successful authentication on cC the reader is granted read
and write access within the selected application.

id, cC←−−−−−−−−−−−−−−−−−−
nR,MAC(k, cC · nR)−−−−−−−−−−−−−−−−−−→
MAC(k, cC · nR · 032)

←−−−−−−−−−−−−−−−−−−

Fig. 2.2. Authentication protocol

Origin Message Description

Reader 0C 00 73 33 Read identifier

Tag 47 47 6C 00 F7 FF 12 E0 Card serial number id

Reader 0C 01 FA 22 Read configuration

Tag 12 FF FF FF E9 1F FF 3C iClass 16KS configuration

Reader 88 02 Read cC and select k1

Tag FE FF FF FF FF FF FF FF Card challenge cC
Reader 05 00 00 00 00 1D 49 C9 DA Authenticate with nR = 0,MAC(k1, cC · nR)

Tag 5A A2 AF 92 Response MAC(k1, cC · nR · 032)
Reader 87 02 FD FF FF FF FF FF FF FF CF 3B D4 6A Write on block 02, cC − 1,MAC(k1,02 · cC − 1)

Tag FF FF FF FF FD FF FF FF Update succesful

Fig. 2.3. Authenticate and decrement card challenge cC using diversified key k1 =
0xE033CA419AEE43F9

Remark 2. Since the card lacks a pseudo-random generator, the reader should
decrement cC after a successful authentication in order to provide freshness for
the next authentication, see Figure 2.3. Note that this is not enforced by the
card.
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2.4 The Cipher

This section describes the cipher used in iClass. This cipher is interesting from
an academic and didactic perspective as it combines two important techniques in
the design of stream ciphers from the 80s and beginning of the 90s, i.e., Fibonacci
generators and Linear Feedback Shift Registers (LFSRs).

The internal state of the cipher consists of four registers. Two of them, which
we call left (l) and right (r) are part of the Fibonacci generator. The other two
registers constitute linear feedback shift registers top (t) and bottom (b).

Definition 1 (Cipher state). A cipher state of iClass s is an element of F40
2

consisting of the following four components: 1. the left register l = (l0 . . . l7) ∈
F8
2; 2. the right register r = (r0 . . . r7) ∈ F8

2; 3. the top register t = (t0 . . . t15) ∈
F16
2 . 4. the bottom register b = (b0 . . . b7) ∈ F8

2.

The cipher has an input bit which is used (among others) during authentication
to shift in the card challenge cC and the reader nonce nR. With every clock
tick a cipher state s evolves to a successor state s′. Both LFSRs shift to the
right and the Fibonacci generator iterates using one byte of the key (chosen
by the select(·) function) and the bottom LFSR as input. During this iteration
each of these components is updated, receiving additional input from the other
components of the cipher. With each iteration the cipher produces one output
bit. The following sequence of definitions describe the cipher in detail; see also
Figure 2.4.

k[0]

k[1]

k[2]

k[3]

k[4]

k[5]

k[6]

k[7]

����

����
M
U
X

select(·)

0 1 2 3 4 5 6 7
��






⊕�� ��
��

��

��

��

0 1 2 3 4 5 6 7

��

0 1 2 3 4 5 6 7
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��

⊕ ��

⊕
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��

�� output

input

��

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

��

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
��

l r

b

t

Fig. 2.4. The iClass cipher. Solid lines represent byte operations while dotted lines
represent bit operations.

Definition 2. The feedback function for the top register T : F16
2 → F2 is de-

fined as T (x0x1 . . . . . . x15) = x0 ⊕ x1 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x14 ⊕ x15. Sim-
ilarly, the feedback function for the bottom register B : F8

2 → F2 is defined as
B(x0x1 . . . x7) = x1 ⊕ x2 ⊕ x3 ⊕ x7.
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Definition 3 (Selection function). The selection function select : F2 × F2 ×
F8
2 → F3

2 is defined as select(x, y, r) = z0z1z2 where

z0 = (r0 ∧ r2)⊕ (r1 ∧ r3)⊕ (r2 ∨ r4)
z1 = (r0 ∨ r2)⊕ (r5 ∨ r7)⊕ r1 ⊕ r6 ⊕ x⊕ y
z2 = (r3 ∧ r5)⊕ (r4 ∧ r6)⊕ r7 ⊕ x

Definition 4 (Successor state). Let s = 〈l, r, t, b〉 be a cipher state, k ∈ (F8
2)

8

be a key and y ∈ F2 be the input bit. Then, the successor cipher state s′ =
〈l′, r′, t′, b′〉 is defined as

t′ := (T (t)⊕ r0 ⊕ r4)t0 . . . t14 l′ := (k[select(T (t),y,r)] ⊕ b′)
 l 
 r

b′ := (B(b)⊕ r7)b0 . . . b6 r′ := (k[select(T (t),y,r)] ⊕ b′)
 l

We define the successor function suc which takes a key k ∈ (F8
2)

8, a state s and
an input y ∈ F2 and outputs the successor state s′. We overload the function suc
to multiple bit input x ∈ Fn

2 which we define as

suc(k, s, ε) = s

suc(k, s, x0 . . . xn) = suc(k, suc(k, s, x0 . . . xn−1), xn)

Definition 5 (Output). Define the function output which takes an internal
state s =< l, r, t, b > and returns the bit r5. We also define the function output
on multiple bits input which takes a key k, a state s and an input x ∈ Fn

2 as

output(k, s, ε) = ε

output(k, s, x0 . . . xn) = output(s) · output(k, s′, x1 . . . xn)
where s′ = suc(k, s, x0).

Definition 6 (Initial state). Define the function init which takes as input a
key k ∈ (F8

2)
8 and outputs the initial cipher state s =< l, r, t, b > where

t := 0xE012 l := (k[0] ⊕ 0x4C)
 0xEC

b := 0x4C r := (k[0] ⊕ 0x4C)
 0x21

Definition 7. Define the function MAC : (F8
2)

8 × Fn
2 → F32

2 as

MAC(k,m) = output(k, suc(k, init(k),m), 032)

2.5 Key Diversification

This section describes in detail the built-in key diversification algorithm of iClass.
Besides the obvious purpose of deriving a card key from a master key, this
algorithm intends to circumvent weaknesses in the cipher by preventing the
usage of certain ‘weak’ keys. In order to compute a diversified key, the iClass
reader first encrypts the card identity id with the master key K, using single
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DES. The resulting ciphertext is then input to a function called hash0 which
outputs the diversified key k.

k = hash0(DESenc(id,K))

Here the DES encryption of id with master key K outputs a cryptogram c of 64
bits. These 64 bits are divided as c = 〈x, y, z[0], . . . , z[7]〉 ∈ F8

2×F8
2× (F6

2)
8 which

is used as input to the hash0 function. This function introduces some obfuscation
by performing a number of permutations, complement and modulo operations,
see Figure 2.5. Besides that, it checks for and removes patterns like similar key
bytes, which could produce a strong bias in the cipher. Finally, the output of
hash0 is the diversified card key k = k[0], . . . , k[7] ∈ (F8

2)
8.

k[1] k[2] k[3] k[7]k[4] k[6]k[5]k[0]

x y z[7] z[6] z[5] z[4] z[3] z[2] z[1] z[0]

{ { { { { { { {
Fig. 2.5. Schematic representation of the function hash0

Remark 3. The DES implementation used in iClass is non-compliant with the
NIST standard [23] in the way of representing keys. According to the standard, a
DES key is of the form 〈k0 . . . k6p0, k7 . . . k13p1, . . . , k47 . . . k55p7〉 where k0 . . . k55
are the actual key bits and p0 . . . p7 are parity bits. Instead, in iClass a DES key
is of the form 〈k0 . . . k55p0 . . . p7〉.

The following sequence of definitions describe the function hash0 in detail. This
function is included here for the sake of completeness. The details over this
construction are not necessary to understand the attacks presented in Section 2.7
and Section 3.3.

Definition 8. Let the function check : (F6
2)

8 → (F6
2)

8 be defined as

check(z[0] . . . z[7]) = ck(3, 2, z[0] . . . z[3]) · ck(3, 2, z[4] . . . z[7])

where ck : N× N× (F6
2)

4 → (F6
2)

4 is defined as

ck(1,−1, z[0] . . . z[3]) = z[0] . . . z[3]

ck(i,−1, z[0] . . . z[3]) = ck(i− 1, i− 2, z[0] . . . z[3])

ck(i, j, z[0] . . . z[3]) =

{
ck(i, j − 1, z[0] . . . z[i] ← j . . . z[3]), z[i] = z[j];

ck(i, j − 1, z[0] . . . z[3]), otherwise.



Dismantling iClass and iClass Elite 707

Definition 9. Define the function permute : Fn
2 × (F6

2)
8 × N× N → (F6

2)
8 as

permute(ε, z, l, r) = ε

permute(p0 . . . pn, z, l, r) =

{
(z[l] + 1) · permute(p0 . . . pn−1, z, l+ 1, r), pn = 1;

z[r] · permute(p0 . . . pn−1, z, l, r+ 1), otherwise.

Definition 10. Define the bitstring π ∈ (F8
2)

35 in hexadecimal notation as

π =0x0F171B1D1E272B2D2E333539363A3C474B
4D4E535556595A5C636566696A6C71727478

Each byte in this sequence is a permutation of the bitstring 00001111. Note
that this list contains only the half of all possible permutations. The other half
can be computed by taking the bit complement of each element in the list.

Finally, the definition of hash0 is as follows.

Definition 11. Let the function hash0 : F8
2 × F8

2 × (F6
2)

8 → (F8
2)

8 be defined as
hash0(x, y, z[0] . . . z[7]) = k[0] . . . k[7] where

z′[i] = (z[i] mod (63− i)) + i i = 0 . . . 3

z′[i+4] = (z[i+4] mod (64− i)) + i i = 0 . . . 3

ẑ = check(z′)

p =

{
π[x mod 35], x0 = 1;

π[x mod 35], otherwise.

z̃ = permute(p, ẑ, 0, 4)

k[i] =

{
yi · z̃[i] · pi + 1, yi = 1;

yi · z̃[i] · pi, otherwise.
i = 0 . . . 7

2.6 Weaknesses

This section describes weaknesses in the design and implementation of iClass
that are later exploited in Section 2.7 to mount a key recovery attack.

2.6.1 Weak Keys
The cipher has a clear weakness when the three rightmost bits of each key byte
are the same. Let us elaborate on that.

Proposition 1. Let β be a bitstring of length three. Then, for all keys k ∈ F64
2

of the form k = α[0]β . . . α[7]β with α[i] ∈ F5
2 the cipher outputs a constant Cβ.
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β Cβ = MAC(k, cC · nR)
000 BF 5D 67 7F
001 10 ED 6F 11
010 53 35 42 0F
011 AB 47 4D A0
100 F6 CF 43 36
101 59 7F 4B 58
110 1A A7 66 46
111 E2 D5 69 E9

Fig. 2.6. Corresponding MAC for
each value of β

This is due to the fact that only the three
rightmost bits of register r define the output
of the cipher and only the rightmost bit of r
influences register b. But these, in turn, are
only influenced by the three rightmost bits
of the key bytes. This means that the 5 left-
most bits of r and the 5 leftmost bits of each
key byte affect only the key byte selection,
but for the key under consideration this does
not affect the output. The same holds for cC
and nR as they are just input to the select(·)
function. Figure 2.6 shows the corresponding
MAC value for each possible β. The manu-
facturer seems to be aware of this feature of the cipher since the function hash0,
used in key diversification, prevents such a key from being used. Although, this
weakness combined with the weakness described in Section 2.6.2 and 2.6.3 result
in a vulnerability exploited in Section 2.7.

2.6.2 XOR Key Update Weakness
In order to update a card key, the iClass reader does not simply send the new key to
the card in the clear but instead it sends the XOR of the old and the new key (See
Section 2.2). This simple mechanism prevents an attacker from eavesdropping the
new key during key update. Although, this key update mechanism introduces a
new weakness, namely, it makes it possible to make partial modifications to the
existing key. A key update should be an atomic operation. Otherwise, it allows an
adversary to split the search space in a time-memory trade-off. Moreover, in case
the cipher has some weak keys like the ones described in Section 2.6.1, it allows
an adversary to force the usage of one of these keys.

2.6.3 Privilege Escalation Weakness
Several privilege escalation attacks have been described in the literature [24, 25].
The privilege escalation weakness in iClass also concerns the management of ac-
cess rights over an application within the card. After a successful authentication
for application 1 has been executed, the reader is granted read and write access
to this application. Then, it is possible to execute a read command for a block
within application 2 without loosing the previously acquired access rights. More
precisely, when a read command is issued for a block n within application 2, with
n �= cC , this returns a sequence of 64 ones which indicates that permission is de-
nied to read this block. Surprisingly, this read attempt on application 2 does not
affect the previously acquired access rights on application 1. This read command
though, has the side effect of loading the key k2 into the internal state of the ci-
pher. In particular, from this moment on the card accepts write commands on
application 1 that have a valid MAC computed using key k2.
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2.6.4 Weak Key Diversification on iClass
The key diversification algorithm of iClass was reverse engineered by Garcia et
al. in [18]. This algorithm uses a combination of single DES and a proprietary
function called hash0 , described in Section 2.5. Furthermore, the authors show
that the function hash0 is not one-way nor collision resistant. In fact, it is possible
to compute the inverse function hash0−1 having a modest amount (on average
4) of candidate pre-images. They also show that once a card key is known,
recovering an iClass master key is not harder than a chosen plaintext attack on
single DES. After careful inspection of the function hash0 it becomes clear that
this function attempts to fix the weak key weakness presented in Section 2.6.1.
The function hash0 makes sure that, when looking at the last bit of each key
byte, exactly four of them are zeros (and the other four of them are ones). Due
to this restriction there are only 8!

(4!)2 = 70 possibilities for the last bits of each

key byte, instead of 28 = 256, reducing the entropy of the key by 1.87 bits.

2.7 Key Recovery Attack on iClass

This section shows how the weaknesses described in Section 2.6 can be exploited.
Concretely, we propose an attack that allows an adversary to recover a card key
by wirelessly communicating with a card and a reader. Once the card key has
been recovered, the weak key diversification weakness described in Section 2.6.4
can be exploited in order to recover the master key. Next, we describe the attack
on the card key in detail.

In order to recover a target card key k1 from application 1, an attacker A
proceeds as follows. First, A eavesdrops a legitimate authentication trace on
the e-purse with key k1, while making sure that the e-purse is not updated. If
the reader attempts to update the e-purse, this can be prevented by playing
as man-in-the-middle or by simply jamming the e-purse update message. Next,
the adversary replays this authentication trace to the card. At this point the
adversary gains read and write access to application 1. Although, in order to
actually be able to write, the adversary still needs to send a valid MAC with k1
of the payload. To circumvent this problem, the adversary proceeds as described
in Section 2.6.3, exploiting the privilege escalation weakness. At this point the
adversary still has read and write access to application 1 but he is now able to
issue write commands using MACs generated with the known key k2 to write
on application 1. In particular, A is now able to modify k1 at will. Exploiting
the XOR key update weakness described in Section 2.6.2, the adversary modifies
the card key k1 into a weak key by setting the three rightmost bits of each key
byte the same. Concretely, the adversary runs 23×7 = 221 key updates on the
card with Δ = 05δ[0] . . . 0

5δ[6]0
8 ∈ F64

2 and δ[i] = abc ∈ F3
2 for all possible bits a, b

and c. One of these key updates will produce a weak key, i.e., a key of the form
k = α[0]β . . . α[7]β with α[i] ∈ F5

2. Exploiting the weak key weakness described in
Section 2.6.1, after each key update A runs 8 authentication attempts, one for
each possible value of β, using the MAC values shown in Figure 2.6. Note that a
failed authentication will not affect the previously acquired access rights. As soon
as an authentication attempt succeeds the card responds with aMAC value that
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univocally determines β as stated in Proposition 1. Knowing β the adversary is
able to recover the three rightmost bits of k1[i] by computing β⊕δ[i] for i = 0 . . . 6.
Furthermore, the three rightmost bits of k[7] are equal to β⊕000 = β. In this way,
the attacker recovers 3× 8 = 24 bits of k1 and only has to search the remaining
40 bits of the key, using the legitimate trace eavesdropped in the beginning.

This attack can be further optimized. The restriction on the last bit of each
byte imposed by hash0 , described at the end of Section 2.6.4, reduces the number
of required key updates from 221 to almost 219. Therefore, it reduces the total
number of authentication attempts to 219 × 8 = 222. Once the attacker has
recovered the card key k1, as we already mention in Section 2.6.4, recovering the
master key is just as hard as breaking single DES.

3 iClass Elite

HID introduces iClass Elite (a.k.a. High Security) as the solution for “those who
want a boost in security” [26]. iClass Elite aims to solve the obvious limitations
of having just one single world-wide master key for all iClass systems. Instead,
iClass Elite allows customers to have a personalized master key for their own
system. To this purpose, HID has modified the key diversification algorithm,
described in Section 2.5 by adding an extra step to it. This modification only
affects the way in which readers compute the corresponding card key but does
not change anything on the cards themselves. Section 3.1 describes this key
diversification algorithm in detail. Then Section 3.2 describes two weaknesses
that are later exploited in Section 3.3.

3.1 Key Diversification on iClass Elite

This section describes the key diversification algorithm of iClass Elite. We first
need to introduce a number of auxiliary functions and then we explain this
algorithm in detail.

Definition 12 (Auxiliary functions). Let us define the bit-rotate left function
rl : F8

2 → F8
2 as rl(x0 . . . x7) = x1 . . . x7x0. Similarly, define the bit-rotate right

function rr : F8
2 → F8

2 as rr(x0 . . . x7) = x7x0 . . . x6. Furthermore, define the
nibble-swap function swap : F8

2 → F8
2 as swap(x0 . . . x7) = x4 . . . x7x0 . . . x3.

Definition 13. Let the function hash1 : (F8
2)

8 → (F8
2)

8 be defined as
hash1(id[0] . . . id[7]) = k[0] . . . k[7] where

k[i] = k′[i] mod 128, i = 0 . . . 7

k′[0] = id[0] ⊕ · · · ⊕ id[7] k′[4] = rr(id[4] 
 k′[2]) + 1

k′[1] = id[0] 
 . . .
 id[7] k′[5] = rl(id[5] 
 k′[3]) + 1

k′[2] = rr(swap(id[2] 
 k′[1])) k′[6] = rr(id[6] 
 (k′[4] ⊕ 0x3C))

k′[3] = rl(swap(id[3] 
 k′[0])) k′[7] = rl(id[7] 
 (k′[5] ⊕ 0xC3))
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Definition 14. Define the rotate key function rk : (F8
2)

8 × N → (F8
2)

8 as

rk(x[0] . . . x[7], 0) = x[0] . . . x[7]

rk(x[0] . . . x[7], n+ 1) = rk(rl(x[0]) . . . rl(x[7]), n)

Definition 15. Let the function hash2 : (F8
2)

8 → (F64
2 )16 be defined as

hash2(k[0] . . . k[7]) = y[0]z[0] . . . y[7]z[7] where

z[0] = DESenc(Kcus,Kcus); z[i] = DESdec(rk(Kcus, i), z[i−1]) i = 1 . . . 7

y[0] = DESdec(z[0],Kcus); y[i] = DESenc(rk(Kcus, i), y[i−1]) i = 1 . . . 7

Next we introduce the selected key. This key is used as input to the standard
iClass key diversification algorithm. It is computed by taking a selection of bytes
from hash2(Kcus). This selection is determined by each byte of hash1(id) seen
as a byte offset within the bitstring hash2(Kcus).

Definition 16. Let h ∈ (F8
2)

128. Let ksel ∈ (F8
2)

8 be the selected key defined as

h := hash2(Kcus); ksel[i] := h[hash1(id)[i]] i = 0 . . . 7

The last step to compute the diversified card key is just like in iClass (see
Section 2.5) k := hash0(DESenc(k

sel, id)).

3.2 Weaknesses in iClass Elite

This section describes two weaknesses in the key diversification algorithm of
iClass Elite. These weaknesses are exploited in Section 3.3 to mount an attack
against iClass Elite that recovers the custom master key.

3.2.1 Redundant Key Diversification on iClass Elite
Assume that an adversary somehow learns the first 16 bytes of hash2(Kcus),
i.e., y[0] and z[0]. Then he can simply recover the master custom key Kcus by
computing

Kcus = DESenc(z[0], y[0]) .

Furthermore, the adversary is able to verify that he has the correct Kcus by
checking whether z[0] = DESenc(Kcus,Kcus).

3.2.2 Weak Key-byte selection on iClass Elite
Yet another weakness within the key diversification algorithm of iClass Elite has
to do with the way in which bytes from hash2(Kcus) are selected in order to
construct the key ksel.

As described in Section 3.1, the selection of key bytes from hash2(Kcus) is
determined by hash1(id). This means that only the card’s identity determines
which bytes of hash2(Kcus) are used for ksel. This constitutes a serious weakness
since no secret is used in the selection of key bytes at all. Especially considering
that, for some card identities, the same bytes of hash2(Kcus) are chosen multiple
times by hash1(id). In particular, this implies that some card keys have signifi-
cantly lower entropy than others. What is even more worrying, an adversary can
compute by himself which card identities have this feature.
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3.3 Key Recovery Attack on iClass Elite

In order to recover a master key Kcus, an attacker proceeds as follows. First,
exploiting the weakness described in Section 3.2.2, the adversary builds a list
of chosen card identities like shown in Figure 3.1. This table shows a list of
15 card identities and their corresponding key-byte selection indices hash1(id).

card identity id hash1(id)
000B0FFFF7FF12E0 0101000045014545
00040E08F7FF12E0 7802000045014545
00090D05F7FF12E0 7B03000045014545
000A0C06F7FF12E0 7A04000045014545
000F0B03F7FF12E0 7D05000045014545
00080A0CF7FF12E0 7406000045014545
000D0909F7FF12E0 7707000045014545
000E080AF7FF12E0 7608000045014545
00030717F7FF12E0 6909000045014545
003C06E0F7FF12E0 200A000045014545
0001051DF7FF12E0 630B000045014545
0002041EF7FF12E0 620C000045014545
0007031BF7FF12E0 650D000045014545
00000224F7FF12E0 5C0E000045014545
00050121F7FF12E0 5F0F000045014545

Fig. 3.1. Chosen card identities

These card identities are malicious.
They are chosen such that the re-
sulting key ksel has very low en-
tropy (in fact, it is possible to find
several tables with similar charac-
teristics). For the first card iden-
tity in the table, the resulting key
ksel is build out of only three
different bytes from hash2(Kcus),
namely 0x00, 0x01 and 0x45.
Therefore, this key has as little
as 24 bits of entropy (instead of
56). Next, the adversary will initi-
ate an authentication protocol run
with a legitimate reader, pretend-
ing to be a card with identity id =
0x000B0FFFF7FF12E0 as in the
table. Following the authentication
protocol, the reader will return a message containing a nonce nR and a MAC

with k. The adversary will repeat this procedure for each card identity in the
table, storing a tuple < id, nC , nR,MAC > for each entry. Afterwards, off-line,
the adversary tries all 224 possibilities for bytes 0x00, 0x01 and 0x45 for the
first key identity. For each try, he computes the resulting k and recomputes
the authentication run until he finds a MAC equal to the one he got from the
reader. Then he has recovered bytes 0x00, 0x01 and 0x45 from hash2(Kcus).
The adversary proceeds similarly for the remaining card identities from the ta-
ble. Although, this time he already knows bytes 0x00, 0x01 and 0x45 and
therefore only two bytes per identity need to be explored. This lowers the com-
plexity to 216 for each of the remaining entries in the table. The bytes that need
to be explored at each step are highlighted with boldface in the table. At this
point the adversary has recovered the first 16 bytes of hash2(Kcus). Finally, ex-
ploiting the weakness described in Section 3.2.1, the adversary is able to recover
the custom master key Kcus with a total computational complexity of 225 DES

encryptions.

4 Conclusions

In this paper we have shown that the security of several building blocks of iClass
is unsatisfactory. We have found many vulnerabilities in the cryptography and
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the implementation of iClass that result in two key recovery attacks. Our first at-
tack requires one eavesdropped authentication trace with a genuine reader (which
takes about 10ms). Next, the adversary needs 222 authentication attempts with
a card, which in practice takes approximately six hours. To conclude the attack,
the adversary needs only 240 off-line MAC computations to recover the card key.
The whole attack can be executed within a day. For the attack against iClass
Elite, an adversary only needs 15 authentication attempts with a genuine reader
to recover the custom master key. The computational complexity of this attack
is negligible, i.e., 225 DES encryptions. This attack can be executed from begin-
ning to end in less than five seconds. We have successfully executed both attacks
in practice and verified the claimed attack times.

This paper reinforces the point that has been made many times: security by
obscurity often covers up negligent designs. The built-in key diversification and
especially the function hash0 is advertised as a security feature but in fact it is
a patch to circumvent weaknesses in the cipher. The cipher is a basic building
block for any secure protocol. Experience shows that once a weakness in a cipher
has been found, it is extremely difficult to patch it in a satisfactory manner. Us-
ing a well known and community reviewed cipher is a better alternative. The
technique described in [27] could be considered as a palliating countermeasure
for our first attack. More is not always better: the key diversification algorithm of
iClass Elite requires fifteen DES operations more than iClass Standard while it
achieves inferior security. Instead, it would have been more secure and efficient to
use 3DES than computing 16 single DES operations in an ad hoc manner. NIST
have proposed a statistical test suite [28] that can be used to measure the cryp-
tographic strength of a cipher. Although, many weaknesses arise from mistakes
in the implementation. Best practice in the development and implementation of
security products should incorporate some form of formal verification to prevent
that, see for instance [29]. Furthermore, systematic and automated model check-
ing techniques proposed in [30] can help to detect and avoid implementation
weaknesses like the privilege escalation in iClass. Alternatively, formalizing the
whole design in a theorem prover [31, 32] may reveal additional weaknesses. In
line with the principles of responsible disclosure, we have notified the manufac-
turer HID Global and informed them of our findings back in November 2011.
Our collaboration and communication with HID Global is ‘open and produc-
tive’. HID has established a Product Security Reporting Center to encourage
and improve this type of communication.

Acknowledgments. The authors would like to thank Bart Jacobs for his firm
support.
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Abstract. Passwords are still the preferred method of user authentica-
tion for a large number of applications. In order to derive cryptographic
keys from (human-entered) passwords, key-derivation functions are used.
One of the most well-known key-derivation functions is the standardized
PBKDF2 (RFC2898), which is used in TrueCrypt, CCMP of WPA2, and
many more. In this work, we evaluate the security of PBKDF2 against
password guessing attacks using state-of-the-art parallel computing
architectures, with the goal to find parameters for the PBKDF2 that
protect against today’s attacks. In particular we developed fast imple-
mentations of the PBKDF2 on FPGA-clusters and GPU-clusters. These
two families of platforms both have a better price-performance ratio than
PC-clusters and pose, thus, a great threat when running large scale guess-
ing attacks. To the best of our knowledge, we demonstrate the fastest
attacks against PBKDF2, and show that we can guess more than 65%
of typical passwords in about one week.

1 Introduction

Password-based user authentication is the most widely used form of user au-
thentication, and it will be in the foreseeable future. Alternative technologies
such as security-tokens and biometric identification exist but have a number of
drawbacks that prevent their wide-spread use outside of specific realms: Secu-
rity tokens, for example, need to be managed, which is a complicated task for
Internet-wide services with millions of users, they can be lost, and there needs
to be some standardized interface to connect them to every possible computing
device (including desktop computers, mobile phones, tablet PCs, and others).
Biometric identification systems require extra hardware to read the biometrics,
false-rejects cause user annoyance, and many biometrics are no secret (e.g., we
leave fingerprints on many surfaces we touch). Passwords, on the other hand,
are highly portable, easy to understand by users, and relatively easy to manage
for the administrators. Still, there are a number of problems with passwords.
Arguably the central theme is the trade-off between choosing a strong password
versus one that is human-rememberable. Various studies and recommendations
have been published presenting the imminent threat of insufficiently strong pass-
words chosen for security systems by humans (see, e.g., [1–3]).
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Passwords are usually not stored in clear in computer systems but the hash
of the password is stored instead. Consequently, guessing attacks are the most
efficient method of attacking passwords, and studies indicate that a substantial
number of passwords can be guessed with moderately fast hardware [4]. One
measure to mitigate guessing attacks on passwords is to increase the time re-
quired to compute the key derivation function from the human-entered password.
The most common approach nowadays is to run the password through a large
number of hash function evaluations.

With the release of PKCS #5 v2.0 and RFC 2898 [5], a standard for pass-
word key derivation schemes based on a pseudo-random function (PRF) with
variable output key size has been established. The specified Password-Based
Key Derivation Function #2 (PBKDF2) has been widely employed in many
security-related systems, such as TrueCrypt [6], OpenDocument Encryption of
OpenOffice [7], and CCMP of WPA2 [8], to name only a few. The PRF typically
involves an HMAC construction based on a cryptographic hash function that can
be freely chosen by the designer. Besides the password, the PBKDF2 requires
a salt S, a parameter for the desired output key length kLen, and an iteration
counter value c that specifies the number of repeated invocations of the PRF.
While security aspects of salt and key length are quite well understood [9], it re-
mains an open question how large c should be for practical use – especially with
respect to adversaries who have access to very powerful computing resources,
which have become more widely available in recent years. In particular, an im-
pressive number of parallel computations, and thus password guessing attacks,
can be performed with (clusters of) the latest many-core CPUs, highly thread-
optimized graphics cards (GPUs), or modern Field-Programmable Gate Arrays
(FPGAs). These latest platforms need to be considered when fixing c in practical
systems. Note that recent security applications specify c typically to be in the
range of 103 to 104 iterations (e. g., TrueCrypt performs between 1000 and 4000
iterations depending on the hash function applied). Referring to Paragraph 4.2
of RFC 2898, a minimum iteration count of 1000 is recommended in the original
release of the standard. We argue that this number should be regularly updated
to reflect the performance gains of the most recent high-performance computing
platforms. In this work, more than 10 years after the initial release of RFC 2898,
we will re-evaluate the security margin provided by PBKDF2 with respect to
the password cracking performance of modern computing hardware.

Contribution: In this work we analyze the choice of security parameters for
PBKDF2 for real-world systems against state-of-the-art attacks. More precisely,
we consider different attack implementations on PBKDF2 using a range of dif-
ferent cluster systems employing recent CPU, GPU, and FPGA devices. As a
practical case study, we take the recent security parameters used by TrueCrypt
to implement attacks on PBKDF2. We compare the performance of our imple-
mentations to identify the most promising computing platform for the attack.
To the best of our knowledge, we demonstrate the fastest known attack against
PBKDF2. We combine these results with password guessing attacks based on
Markov models [2, 10] to show that we can guess more than 65% of typical
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passwords in about one week. Finally, we derive recommendations how parame-
ters for PBKDF2 should be chosen adequately.

Outline: In Section 2 we introduce some background on password-based key
derivation, the PBKDF2 standard, and the state-of-the-art platforms for crack-
ing passwords, followed by an introduction to password security and efficient
password guessing in Section 3. In Section 4 we describe the relevant program-
ming techniques of modern GPUs and our GPU implementation of PBKDF2.
Likewise, in Section 5 we describe the FPGA cluster RIVYERA, and our imple-
mentation on this cluster. We compare the performance of the two implementa-
tions in Section 6, and discuss the implications of these results in Section 7.

2 Background and Related Work

With many keyboard-enabled computing systems, passwords are still state-of-
the-art for user authentication. The standardized PBKDF2 maps passwords to
secret keys that can be used for cryptographic operations. We review the basic
operation of PBKDF2 and relevant previous work in the following.

2.1 Password-Based Key Derivation

The Password-Based Key Derivation Function #2 (PBKDF2) takes a user-
defined PRF and requires four inputs to generate the output key kout with

kout = PBKDF2PRF(Pwd, S, c, kLen),

where Pwd is the password, S the salt, c the iteration counter, and kLen the
desired key output length. By variation of the number of performed iterations c,
it is possible to adjust the time needed for computation and thus, by selecting
an adequately high number, key strengthening can be achieved rendering pass-
word related brute-force attacks less effective. In practice, common values for
the applications mentioned above range between the recommended minimum of
1000 [5, 4.2] and 4000 iterations.

Figure 1 shows a simplified block diagram of the PBKDF2 scheme (specifically
when using the SHA-512). An HMAC algorithm is repeatedly chained such that
the outputs of all HMAC runs are added to the derived key. If the desired output
key length is larger than the output of the hash function, the scheme is iterated
multiple times, each time with a different counter value CNT. Depending on
the input and output length two cases need to be distinguished: If the input
length of the hash function is smaller than a padded hash-value, then the HMAC
requires at least 6 executions of the compression function. Otherwise, an HMAC
value can be computed by means of four executions of the compression function
(e. g., RipeMD-160 and SHA-512).

As the password in each chain of the HMAC computations is the same, the
outputs of the leftmost compression functions corresponding to the hashing of
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Fig. 1. SHA-512 based PBKDF2 scheme

the password xor 0x36..36 or 0x5C..5C, will not change. Thus they can be com-
puted exactly once per password and then be reused for all subsequent HMAC
computations using the same password. Furthermore, the salt value will never
change during our brute-force attack, so the hash value corresponding to the
hashed salt can be reused when performing the HMAC chain for different counter
values. These two measures reduce the required number of computations for a
password evaluation to one half and one third for an HMAC with 4 and 6 invo-
cations of the compression function, respectively.

In our evaluation, we have targeted TrueCrypt [6], a free open-source disc
encryption software, where the password and salt sizes are fixed to 512 bits. For
consistency, we consider TrueCrypt starting with Version 5.0 (released February
5, 2008). Since then, TrueCrypt uses AES-256, Serpent, and Twofish in XTS
mode as block ciphers and generates the keys using either RIPEMD-160, SHA-
512, or Whirlpool as supported hash functions. The number of HMAC iterations
they require are 2000, 1000, and 1000, respectively and the corresponding number
of hash runs are 4003, 2002, and 4002. The variation in the number of hash
executions is due to the input block sizes of each hash function. TrueCrypt
supports combinations of the block cipher algorithms. In the best case, when
only one encryption algorithm is used, 512 key bits are required, and 1536 key
bits in the worst case.

2.2 Processing Platforms for Password Cracking

Implementing password cracking on general purpose CPUs is straightforward,
however, due to the versatility of their architecture, CPUs usually do not achieve
an optimal cost-performance ratio for a specific application. As an example, there
exist a number of cracking tools for TrueCrypt compiled for x86 CPUs, but few
tools are available that go beyond re-using TrueCrypt-code, most notably True-
Crack [11], which reports 15 passwords/sec on an Intel Core-i7 920, 2.67GHz. In
the last years, other processing platforms have shown to exceed the performance
(and cost-performance ratio) of conventional CPUs, for specific applications.

Modern graphics cards (GPUs) have recently evolved into computation
platforms for universal computations. GPUs combine a large number of
parallel processor cores (as of today up to 512 atomic cores and more)
which allow highly parallel applications using programming models such as
OpenCL or CUDA. Their usefulness for password cracking was demonstrated in
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particular by the Lightning Hash Cracker developed by ElcomSoft, which
achieves, for simple MD5-hashed password lists, a throughput rate of up to
680 million passwords per second using an NVIDIA 9800GTX2 [12]. Further
work [13, 14] reports similarly impressive numbers with about 230 million SHA-
1 (pure) hash operations per second on an NVIDIA 260GTX GPU. TrueCrack
reports 330 passwords/sec on an NVIDIA GeForce GTX470, a press release [15]
reports 2500 passwords/sec for Passware Kit 10.1, and a presentation [16] states
that ElcomSoft software cracks 52400 passwords/sec on a Tesla S1070 with 4
GPUs for WPA-PSK, which essentially is PBKDF2 using only SHA-1.

Another way to tackle the large number of computations for password cracking
efficiently is the deployment of special-purpose hardware. Moving applications
into hardware usually provides significant savings in terms of costs and provides
a boost in performance at the same time, since operations can be specifically
tailored for the target application and potentially be highly parallelized. While
Application Specific Integrated Circuits (ASIC) are expensive to develop due to
their high non-recurring engineering costs, reconfigurable Field-Programmable
Gate Arrays, or FPGAs, have been intensively studied by the crypto engineer-
ing community over the last 15 years. With today’s powerful FPGA devices
providing a configurable fabric consisting of millions of gate equivalences, it has
become possible to create very fast implementations for specific computational
problems. Given that password guessing is amenable to special-purpose hard-
ware architectures and highly parallelizable, FPGAs are a promising platform
for password cracking.

A third cost-effective platform for processing parallel applications is Sony’s
PlayStation 3 (PS3). Bevand [17], for example, presented a Unix crypt password
cracker based on the IBM Cell Broadband Engine. However, the Cell proces-
sor is slightly outdated when comparing it to recent GPU and FPGA devices.
Therefore, we do not expect the Cell processors to achieve a competitive cost-
performance ratio, and we don’t expect the PowerXCell 8i to become available
at comparable prices in subsidized commodity game consoles. Thus, we did not
include the Cell processor in our comparison.

3 Password Security

Accepted best practice mandates not to store the password pwd on the server
in plain, but store the hash h := H(pwd) of the password instead. In an offline
attack on passwords, an attacker is given access to the value h and tries to
recover the password pwd . (As opposed to online guessing attacks, where the
attacker is only given access to a login prompt or similar.)

User-generated passwords usually have a rich structure, e.g., many are simple
compositions of words from (English) language and numbers or special charac-
ters. Consequently, guessing attacks, where the attacker guesses a possible pass-
word, hashes it, and compares the hash to the stored value, are usually quite
efficient. This has been realized early, and password guessing has been deployed
for a long time (see, e.g, [1, 18–20]).
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In a dictionary attack, the attacker has a list of words that are likely to appear
in passwords. He computes the hashes of all these words and compares them with
the stored hash. He can use additional mangling rules, e.g., appending special
characters and numbers. Tools such as John the Ripper implement dictionary
attacks and come with large dictionaries of common passwords, often grouped
for different languages to better meet a specific site’s needs. More recent work by
Weir et al. [3] can be seen as generalization of this idea. Here, patterns that con-
stitute extended mangling rules are extracted from real-world passwords using
probabilistic grammars (context-free grammars with probabilities associated to
production rules). These structures are then used to generate passwords, based
on these structures and a dictionary as before.

3.1 Attacks Based on Markov Models

Another efficient way to guess passwords, first proposed in [2], is based on Markov
models. These base on the observation that in human-generated passwords (as
well as natural language), adjacent letters are not independently chosen, but
follow certain regularities (e. g., the 2-gram th is much more likely than tm, in
other words, the letter following a t is more likely an h than an m). In an n-gram
Markov model, one models the probability of the next character in a string based
on a prefix of length n − 1. Hence, for a given string c1, . . . , cm, we can write
P (c1, . . . , cm) = P (c1, . . . , cn−1) ·

∏m
i=n P (ci|ci−n+1, . . . , ci−1).

In the training phase, the attacker learns the conditional probabilities from
lists of leaked plaintext passwords (e. g., the RockYou password list), from avail-
able password dictionaries, or from plain English text. In the attack phase, the
attacker generates passwords that are likely according to the Markov model. Ad-
ditionally, one filters for certain patterns that typically occur for passwords; one
defines finite automata for these patterns, and the algorithm ensures that only
passwords that are accepted by one of the automata are tested. (An example for
such a pattern is that in alpha-numeric passwords, the numerals are very likely
at the end of the password (e. g., password1).

We use an implementation of Markov-based password guessers from [10] to
feed our implementation with passwords. This algorithm additionally enumerates
passwords in (approximately) decreasing order of likelihood, which substantially
speeds up the guessing of frequent passwords, and does not use the hand-crafted
patterns from [2]. We train the algorithm with the RockYou dataset, a dataset
of 32 Million passwords that was leaked in an SQL injection attack in 2009 in
clear. This dataset is publicly available and regularly used for password research.
In this work we publish no information about specific passwords from the list,
so we do not see ethical problems in using this list.

3.2 Further Related Work

Using precomputations, rainbow-tables can be used to speed up the guessing
step [21, 22]. An implementation of rainbow-tables in hardware is studied in [23].
A problem closely related to password guessing is that of estimating the strength
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of a password, which is of central importance for the operator of a site to ensure
a certain level of security. In the beginning, password cracking was used to find
weak passwords [24]. Since then, much more refined methods have been devel-
oped. Later, one used so-called pro-active password checkers to exclude weak
passwords [1, 25–28]. However, most pro-active password checkers use relatively
simple rule-sets to determine password strength, which have been shown to be
a rather bad indicator of real-world password strength [29–31]. More recently,
Schechter et al. [32] classified password strength by counting the number of
times a certain password is present in the password database, and Markov mod-
els have been shown to be a very good predictor of password strength and can
be implemented in a secure way [31].

4 GPU-Based Attack

Next, we describe our implementation on GPUs as well as the required technical
background on GPU programming.

4.1 Introduction to GPU Programming

Within the last decade, the roles of GPUs changed from mere graphic processors
to general purpose processing units. Today, there are programming interfaces
from all major graphic processor manufacturers, providing easy access to the
processors of the graphic hardware, e.g., CUDA [33] developed by NVIDIA or
Stream [34] for AMD GPUs. For heterogeneous processor platforms, supporting
both CPUs and GPUs, OpenCL [35] has established combining the computa-
tional power of recent computer systems. In this section we will focus on NVIDIA
GPU devices using the CUDA programming interface.

CUDA Terminology and Code Execution Basics: GPUs execute code in so called
kernels, which are functions that are executed by many threads in parallel.
Each thread is member of a block of threads. All threads within a block have
access to the same shared memory, which is a kind of user-managed cache
area, and can thus interact with each other. Furthermore, threads within a
block can be synchronized with each other. Blocks define up to 3 dimensions to
index individual threads by x, y, and z coordinates within the kernel code. The
dimension of the blocks are provided as a parameter when calling a kernel from
host (i.e. CPU) code. The blocks themselves are organized within a grid. During
execution, blocks are assigned to Streaming Multiprocessors (SMs). An SM then
schedules its pending blocks in chunks of 32 threads (a warp) to its hardware,
where each thread within a warp executes the same instruction. When threads
are scheduled for high-latency memory instructions, the scheduler will execute
additional warps while waiting for the memory access to finish. This mechanism
of latency hiding is one of the main reasons for the superior performance of
GPUs: Whenever there are enough independent instructions on an SM that do
not depend on previous results the hardware can completely hide the latency of



Evaluation of Standardized Password-Based Key Derivation 723

memory accesses, by meanwhile using the idle computing cores to process the
instructions of other warps.

NVIDIA’S Tesla C2070 GPU: For our experiments, we use a machine equipped
with four Tesla C2070 GPUs by NVIDIA [36]. A single Tesla C2070 GPU consists
of 14 SMs. Each SM has its own set of 32 computing cores, i. e., the architecture
provides 448 cores within a single GPU. It provides a high memory bandwidth
of 144 GB/s and a low computational overhead to initiate and manage parallel
computations. The cores are running at 1.15GHz and can reach a single-precision
floating point performance (Peak) of up to 1.03 TFLOPS (NVIDIA [36]). (For
comparison: Intel’s recent Core i7 980 CPUs running at 3.6GHz are listed at
86 GFLOPS (Intel [37]). We refer to NVIDIA’S website [33] for more detailed
information about CUDA and the Tesla GPUs.

4.2 Implementing the KDF

In the following we describe the implementation aspects of our GPU implemen-
tation of the PBKDF2 scheme, following the specification of the PBKDF2 as
employed by TrueCrypt. To implement the PBKDF2, we decided to aim at an
implementation that avoids high-latency accesses to the main memory of the
GPU by using only fast registers and shared memory. The other major strategy
was to avoid redundant computation as detailed in Section 2.1. In the follow-
ing we provide an overview of the algorithm specific aspects of the three hash
functions RipeMD-160, SHA-512, and Whirlpool.

RipeMD-160: The state of the RipeMD hash function has a size of 320 bit, which
is divided into a left and a right part, each consisting of five 32 bit values. Both
parts can be processed independently. For this reason, we decided to let two
threads team up to process the hashing of one key candidate. Here one thread
processes the left part of the RipeMD algorithm and the other one the right
part. The state, the intermediate keys, and the two hashes of the passwords are
kept in registers. Shared memory is used to synchronize each thread pair and
to provide input values (i. e., previous hash and message) to the compression
function. The algorithm has been manually unrolled replacing all known inputs
by constants residing within the kernel code. The kernel uses an overall of 40
registers and 5376 bytes of shared memory (64 passwords * (16 registers for
inputs + 5 registers for outputs) * 4 bytes per 32 bit value) and runs with 128
threads per block. This allows 6 blocks in parallel per SM and an equivalent of
5376 passwords that can be processed in parallel on each GPU.

SHA-512: The state of SHA-512 consists of eight 64 bit values. Compared to
the RipeMD-160 state, this complicates the computation of the compression
function in two ways: On the one hand, the GPU hardware is a native 32
bit architecture (with some 64 bit extensions), slowing down most computa-
tions. On the other hand, many registers and a lot of shared memory is needed to
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store the state, the two hash values of the password, and the intermediate keys.
For this reason our SHA-512 implementation uses only 64 threads per block and
compiles to 63 registers per thread and 4096 bytes of shared memory per block.
Here 63 registers per thread are the upper bound the hardware can handle. This
results in a spill of used variables into the slow device memory. Nevertheless, as
the number of spilled variables is small, the device memory should be able to
permanently keep them within the still reasonably fast devices memory cache.
This kernel again allows 5376 passwords to be processed in parallel.

Whirlpool: The state of Whirlpool has the same size as for SHA-512, which again
leads to high register pressure. We implemented the Whirlpool hash function
with a table lookup implementation using eight 256×32 bit lookup tables stored
in shared memory. We employ 128 threads per block, each using the maximum
of 63 registers. The shared memory usage of each block is 16384 bytes per block
and only 4 blocks will run in parallel on each SM. Each block processes 128
passwords, such that we achieve 7168 passwords that are processed in parallel.

4.3 Wrapper Implementation

We use a host system powered by two Intel Xeon X5660 six-core CPUs at 2.8GHz
with enabled Hyperthreading and AES-NI instruction support. It is equipped
with four Tesla C2070 GPUs connected by full PCIe 2.0 16x lanes. We use
CUDA Version 4.1 and the CUDA developer driver 286.19 for Windows 7 (x64).
The host system generates the passwords in a single threat, writing them to
a memory buffer. We schedule passwords in chunks of 21504 passwords, i.e,
14 · 6 · 4 = 336 blocks for RipeMD-160 and SHA-512 and 14 · 6 · 2 = 168 blocks
for Whirlpool. This number of blocks has been selected to be a small multiple of
the maximum number of concurrent blocks on the GPU for all implemented ker-
nels. This way the GPU hardware should always be fully occupied with respect
to the number of scheduled blocks for maximum performance. The derived key
material is copied back to the host memory to test for the correct decryption of
the TrueCrypt header. As the host system is idle during the GPU computations,
the password verification (which is much less computationally expensive) can
be hidden within the kernel execution time of the GPU computations. For our
experiments the implementation on the host system re-uses large parts of the
cryptographic primitives from the original TrueCrypt implementation sources.
To overlap memory copies between host and GPU with computations, we em-
ployed four streams per GPU. Furthermore each stream alternately uses four
sets of password and result buffers. This way the GPU can process the next
password chunk without having to wait for the host to finish checking the lat-
est generated key material. The implementation is capable of generating both
1536 bits and 512 bits of key material for a password and an HMAC candidate
function, according to the worst case in the TrueCrypt specification.
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Fig. 2. The RIVYERA cluster architecture

5 FPGA-Based Attack

FPGAs combine the performance of a gate-level hardware implementation with
flexibility, simple development, and reconfigurability of a software-based ap-
proach. Furthermore, FPGA implementations are truly parallel in nature. Each
independent processing task is assigned to a dedicated section of the chip, and
can function autonomously. This has made them an ideal choice for cryptana-
lytic applications, where several instances of the algorithm under test has to be
evaluated in parallel with different parameters.

5.1 RIVYERA – An FPGA-Based Cluster System

The RIVYERA FPGA cluster [38], with its 128 Spartan-3 XC3S5000 FPGAs
and an optional 32MB memory per FPGA, is a powerful and cost-optimized
cryptanalytical machine. All FPGAs are connected with two opposite directed,
systolic ring networks that directly interface with the Intel Core i7 based PC
(which is integrated in the same housing) via a PCI Express communication
controller, as shown in Figure 2.

In our FPGA-based attack on TrueCrypt, we implemented the PBKDF2
scheme on the RIVYERA cluster, balancing the different parts of the algorithm
in terms of area and speed. In accordance with the goal of the PBKDF2 algo-
rithm to derive a key using a hash function and perform encryption/decryption
afterwards, sufficient key material has to be generated by running the hash func-
tion n times. An optimal strategy is to connect several copies of a hash function
in a pipelined design in order to get the highest possible throughput. However,
the high number of iterations n (1000 to 4000) makes this approach impossible.

The three hash functions used by TrueCrypt need a different amount of clock
cycles to complete processing and also have different critical paths, resulting in
different processing times. Partitioning parts of an FPGA between these three
hash functions would result in a slower and more complex design. Therefore, we
chose to implement individual systems for each hash function used and distribute
them among multiple FPGAs. This also adds flexibility to implement higher
percentage of a favored algorithm, e. g., in case the used algorithm is known or
has a higher probability.
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Fig. 3. Top-Level view of the FPGA Design

5.2 Implementing the KDF

Password-based Key Derivation Function #2 relies on repeated executions of a
hash function in HMAC construction, where the result of each HMAC is accu-
mulated starting with an initial all-zero key, until the final key is derived at the
end of all HMAC runs.

We designed three independent single iteration cores, one for each of the three
target hash functions, optimized for time-area product. The other important
parameter is the number of key bits that can be generated by each PBKDF
module. It is equal to the predefined message digest size of the incorporated
hash function, which is 512 bits for both SHA-512 and Whirlpool, but only 160-
bits for RipeMD-160. This means that while three instances of either SHA-512 or
Whirlpool cores are sufficient to supply the worst case of 1536-bits key (required
for Twofish, AES, and Serpent combination), the same can be accomplish with
ten instances of the RipeMD-160-based PBKDF core, making it the most critical
part of the whole design.

Implementing for FPGAs, the predefined topology of resources is the most
limiting and hence the most important factor. It is imperative to come up with a
balanced design that uses both registers and block RAMs to the highest possible
ratio while losing minimum cycles for additional RAM access. For this purpose,
the initial values, constants and hash results are stored in the block RAMs, while
registers are utilized for storage of internal iteration variables within each hash
function in all our hash cores. As mentioned above, we have developed three
different FPGA designs – each targeting one hash function as shown in Figure 3
– and distributed them among the 128 FPGAs on the RIVYERA cluster.

The design uses a 64-to-32 bit input FIFO to split the data from the RIVY-
ERA bus to the local bus architecture and switch between the system clock do-
main and the computation clock domain. All PBKDF2 units are initialized using
the salt from the TrueCrypt header and the passwords are distributed among
free units. After receiving a password, each unit immediately starts processing.
As soon as a unit finishes its execution, its result is written into a dedicated
memory, where the optional cipher blocks can access it and perform the on-chip
test phase. An additional 64-bit register stores all information on the current
FPGA operations, which the host application can access at any time. Since the
additional area taken by the on-chip test is not suitable for all hash functions,
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the option to read the derived keys read back to the host PC for offline key tests
is also supported in order to save resources for more on-chip key derivation units.

The password list, generated by a password derivation program, is transmitted
by a host program (running on the Core i7 in the RIVYERA) to the FPGAs
using the PCI Express architecture. Each of the three PBKDF units implements
the scheme in Figure 1 with minor differences. The basic idea is to first hash
the password XORed with IPAD and then with OPAD and store the two results
as they will be repeatedly used during further iterations as initial values of
the hash function. The next step is to hash the combination of SALT and key
number (which is between 1-3 for SHA-512 and Whirlpool, and between 1-10
for RipeMD-160) in order to obtain the input value for the next run of the
hash core. In all the following runs, the output of the previous run is the input
data, and one of the two stored password hash results (in alternating order)
is the initial value. The output of every second hash run (chaining variable) is
accumulated (starting with all zero value) to get the final derived key. In the
following paragraphs, we present the specific details for each different algorithm.

RipeMD-160: The RipeMD-160 based PBKDF core uses a 512-bit input message
and hashes it by mixing with a 160-bit chaining variable which is updated in 80
rounds. At the end of all rounds, the chaining variable is added to the previous
hash value. The internal round function is similar to that of SHA-1. However,
the RipeMD round function has two parallel paths, whose results are stored
in two 160-bit parallel registers, while the final hash result is stored in block
RAMs. At the end of each round, the previous hash result, read from the RAM
in 32-bit words, is added to the corresponding word of the update value from
the current hash run, and then written back to the RAM. While this causes
additional cycles, it saves more than 160-bit of registers and 128-bit of adders,
resulting in further time-area product optimization. The total cycle count for
each hash run is 95 cycles, in comparison to the ideal case of 80 cycles.

The RipeMD-160 core is run twice for the SALT and key number due to its
512-bits input block size. Since the total number of key iterations is defined as
2000 for RipeMD-160, this results in a total of (5+ 1999 · 2) · 95 = 380285 cycles
for key derivation per core, each of which occupies 1032 slices (461 FF, 1764
LUTs) on a Xilinx Spartan-3 FPGA.

SHA-512: Each SHA-512 PBKDF core operates on 1024-bit message blocks
and generates a 512-bit message digest. The intermediate hash values and the
internal chaining variables are processed on a 32-bit datapath, which is not only
compatible with the existing 32-bit block RAMs, but also minimizes delay paths.
The only drawback is the number of cycles per hashing, which is 200 instead of
the ideal case of 80. However, this time-area product optimization is well justified
with increase in frequency and reduction in area.

Each SHA-512 based key derivation requires 1000 PBKDF iterations, which
correspond to a total number of (4 + 999 · 2) · 200 = 400400 cycles for key
derivation per SHA-512 PBKDF core, each of which occupies 1001 slices (897
FFs, 1500 LUTs) on a Xilinx Spartan-3 FPGA.
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Table 1. Implementation Results of PBKDF2 on 4 Tesla C2070 GPUs

RIPEMD RIPEMDHash RIPEMD SHA-512 Whirlpool
SHA-512

RIPEMD SHA-512 Whirlpool
SHA-512

Whirlpool Whirlpool

Derived Key 512 bits 1536 bits
Length

Passwords/sec 72786 105351 50686 23366 29330 35246 16980 8268

Passwords/sec 51661 54874 36103 19627 27591 29892 12153 6858(demo tool)

Whirlpool: The structure of Whirlpool [39] significantly differs from the struc-
tures of the other two cores. It not only generates a 512-bit message digest,
but also processes 512-bit message blocks. The internal structure of Whirlpool
resembles a block cipher with two identical datapaths in parallel; one as key
expansion module, the other as message processing module. The internal struc-
tures of each path are identical. However, the key expansion module uses hash
input to generate round keys, while the message processing module uses message
inputs together with round keys to generate the next state of the hash.

Whirlpool hashing needs to be executed four times during each iteration due
to the equal input and output sizes. However, only 10 iterations allow a word-
serial implementation, where the message and the hash (key) are processed in
64-bit chunks, considerably reducing the overall area. The total number of cycles
per round becomes 9 and the total number of rounds becomes 11 (including the
initial whitening), which results in 99 cycles per round. With a total number of
(6+999 ·4) ·99 = 396198 cycles for key derivation, each Whirlpool PBKDF core
occupies 6013 slices (1131 FFs, 10878 LUTs) on a Xilinx Spartan-3 FPGA.

6 Results

In the following we present performance numbers for our experiments.

6.1 Performance Numbers

GPU Implementation: Table 1 gives the performance results for each hash al-
gorithm for the worst case (i. e., 1526 bit of key material) and the fastest case
(i. e., 512 bit of key material) of TrueCrypt’s password derivation. The latter case
corresponds, e. g., to AES-256 in XTS mode, while the first one corresponds to
a cascade of all three TrueCrypt ciphers. These numbers clearly show that the
implementations scale linearly: The performance boost for the smaller key sizes
corresponds to the difference in the number of blocks that need to be hashed to
derive the desired output lengths, i. e., 4 vs. 10 rounds for RipeMD and 1 vs. 3
rounds for SHA-512 and Whirlpool.

When deriving 1536 bit of key material per password for each of the three hash
algorithms RipeMD-160, Whirlpool, and SHA-512, our fastest implementation
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Table 2. Implementation results and performance numbers of PBKDF2 on the RIVY-
ERA cluster (Place & Route) without on-chip verification. Please note that the current
version is not optimized for speed and uses the lowest clock frequency valid for all
designs.

Hash RIPE-MD SHA-512 Whirlpool
Clock cycles per PBKDF2 380,285 400,400 396,198

Derived Key Length 1536 bit 512 bit 1536 bit 512 bit 1536 bit 512 bit

PBKDF2 Units 4 9 11 32 3 15
Hash Cores per PBKDF2 10 4 3 1 3 1
FPGA Resources (Slices) 29753 28227 31773 31943 18370 29528
FPGA Resources (%) 89% 84% 95% 95% 55% 88%

Passwords per sec per FPGA 368 828 957 2784 265 1325
Passwords per sec 47 104 105 984 122 496 356 352 33 920 169 600

using a hardcoded salt was able to derive the key material at 8,268 passwords
per second, i. e., about 714 million passwords per day and 21.4 billion passwords
per month. Using only the TrueCrypt default settings of RipeMD-160 and AES-
256 in XTS mode, i. e., 512 bit of key material are generated, the performance
boosts to 72,786 passwords per second, 6.29 billion passwords per day and 188
billion passwords per month.

Our fully implemented TrueCrypt cracker tool consists of the password gener-
ator, the PBKDF2 and the decryption of the header data to verify the material.
We observe a maximum speed limit of around 55,000 passwords per second,
which is the speed of the used password generator. This limitation can be lev-
eled by further optimizations. For the sake of completeness, we also provide the
performance figures of the full tool. We want to mention that our numbers, as all
specific implementations, can only provide a lower bound: implementations using
other GPU architectures or further optimized code may improve the results.

FPGA Implementation: In case of the FPGA based key password search, we use
different FPGA configurations for the best case (single block cipher) and the
worst case (cascade of all three block ciphers).

Figure 2 shows the place and route results. With respect to a single instance,
the RIPE-MD design can derive 368 passwords per second for 1536 bit output and
up to 828 for 512 bit output on a single FPGA, respectively. This scales to 47,104
and 105,984 passwords per second on RIVYERA, taking only this hash algorithm
into account. The SHA-2 implementation is faster and computes 957 and 2,784
passwords per second per FPGA, respectively, and a throughput of 122,496 and
356,352 for the 512 and 1536 bit case on RIVYERA, correspondingly.

Even though the current Whirlpool implementation does not utilize the com-
plete FPGA logic optimally due to the PBKDF2 block size, it is more than
50% faster than the RIPE-MD scheme for 512 bit. In order to test all three
hash functions for TrueCrypt, we utilize the full RIVYERA sequentially, as the
reprogramming time is negligible. The bottleneck on FPGAs is the host-based
password generation and the throughput drops a bit due to offline verification.
Hence, with the remaining logic on the FPGA, we built an on-chip verification
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Fig. 4. Fraction of passwords guessed correctly (y-axis) vs. total number of guesses
(x-axis)

as the amount of clock cycles necessary to perform a key derivation is large com-
pared to the number of cycles required to compute the ciphers. Hence, all cores
of the host CPU can now produce passwords to minimize this bottleneck.

Comparing a single GPU and FPGA device, it turns out that GPUs are
significantly better in hashing than FPGAs (e.g., 18,000 vs. 828 RIPE-MD pass-
words per second). We attribute this result to the high clock frequency and the
underlying 32-bit micro-architecture of GPUs that finally provides the distinct
advantage with 32-bit-based hash functions. It is difficult to compare the indi-
vidual device costs, since both platforms cannot be used as a stand-alone device
without significant overhead. However, in case we relate the overall financial
system costs of our GPU system and the RIVYERA cluster, we yield a scaling
factor of 3.3 in favor for the GPU cluster.

6.2 Search Space and Success Rate of an Attack

In order to determine the actual influence of the number of guessed passwords
from the last section, we determine the percentage of passwords one can break
(on average) with that number of guesses. To this end, we use an implemen-
tation of a Markov model based password guesser from [10] (see Section 3 for
more details). As training set used to derive the Markov model we used a ran-
dom selection of 90% of the RockYou password list, the test set consists of the
remaining 10% of the RockYou list (still more than 3 million passwords).

Figure 4 shows the fraction of passwords guessed correctly (y-axis) for a cer-
tain number of guesses made (x-axis). These results were obtained by running
the password generator independently of the hashing engine. The reason is that,
in order to incorporate the hashing engine, we would need to generate True-
Crypt containers for each password in the test set, which is prohibitively time-
consuming. From the numbers in the previous section we can estimate that, in
the absolutely worst case, we can guess more than 65% of the passwords from
the RockYou list in a week and more than 67% in a month.
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7 Conclusions and Recommendations

Carefully chosen passwords are essential to protect systems using passwords (for
recommendations on choosing good passwords, see, e. g., Appendix A of NIST SP
800-63). But even though PBKDF2 was specifically designed to prevent simple
brute-force attacks, we showed that parallel hardware platforms are capable to
comb through a significant amount of passwords per second (356,352 passwords
per second for SHA-2/512 bit case). Our results indicate that GPU clusters have
a better cost/performance ratio than FPGAs, mainly due to the low prices of
the wide-spread use of GPUs.

The main parameter of PBKDF2 specifying the level of protection is the it-
eration counter c. Due to the progress in technology (outlined by Moore’s law),
we do not consider it sufficient for a secure system to run a constant (minimum)
amount of 1000 hash iterations in the lifetime of an application or a system, as
defined by RFC 2898 for PBKDF2. We therefore recommend to replace this con-
stant iteration count c with a dynamic variable that is stored in each respective
application instance and which is adjusted over time according to technological
scaling effects. The iteration count c should be lower-bounded by the compu-
tational resources of the least-capable target platform of the application. Note,
however, that even recent “low-end” processing device (e.g., smart phones) often
provide powerful ARM processors with 1GHz or more so that running 4000-
10000 hash iterations is certainly feasible even on these devices.1 Note that an
update of this dynamic iteration count is simple and can take place frequently
right after unlocking the application instance with the correct password.

Finally, we like to point out the structural limits of password-based key deriva-
tion. Even if we assume a much stronger key derivation function than PBKDF2
being available2 so that much less passwords can be searched per second, we
still achieve with our approach a significant coverage of the password space due
to limited selection criteria of human-chosen passwords (see Fig. 4). Although
certainly no real news, we need to emphasize the importance of choosing strong
passwords, possibly combined with additional security credentials such as cryp-
tographic hardware tokens or biometrics.
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Abstract. We show that it is possible to achieve perfect forward secrecy
in two-message key exchange (KE) protocols that satisfy even stronger se-
curity properties than provided by the extended Canetti-Krawczyk (eCK)
security model. In particular, we consider perfect forward secrecy in the
presence of adversaries that can reveal the long-term secret keys of the
actor of a session and reveal ephemeral secret keys.

We propose two new game-based security models for KE protocols.
First, we formalize a slightly stronger variant of the eCK security model
that we call eCKw. Second, we integrate perfect forward secrecy into
eCKw, which gives rise to the even stronger eCK-PFS model. We propose
a security-strengthening transformation (i. e., a compiler) between our
new models. Given a two-message Diffie-Hellman type protocol secure in
eCKw, our transformation yields a two-message protocol that is secure
in eCK-PFS. As an example, we show how our transformation can be
applied to the NAXOS protocol.
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1 Introduction

The majority of recently developed key exchange protocols have been proven
secure with respect to game-based security models for key exchange protocols [1,
2, 7, 13, 15]. The first such security model was introduced by Bellare and Rog-
away [2]. In this model, the adversary is modeled as a probabilistic polynomial-
time Turing machine that interacts with the protocol participants through
queries. The queries specify the capabilities of the adversary. For instance, he
can send messages to parties and reveal certain session-keys. The definition of
security in the Bellare-Rogaway model requires that (a) two parties who com-
plete matching sessions (i. e., the intended communication partners) compute
the same session-key and that (b) the adversary does not learn the session-
key with more than negligible probability. Building on this work, Canetti and
Krawczyk [7] developed a more complex security model that gives the adversary
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additional powers such as access to a session-state query that reveals the internal
state of a session. LaMacchia et al. [15] adapted the Canetti-Krawczyk model to
capture resilience to key compromise impersonation (KCI) attacks and resilience
to the leakage of various combinations of long-term and ephemeral secret keys in
a single security model. This model is known as the extended Canetti-Krawczyk
(eCK) security model.

One important property of KE protocols that is not guaranteed by the eCK
security model is perfect forward secrecy (PFS). This property holds if an adver-
sary cannot learn the session-keys of past sessions, even if he learns the long-term
secret keys of all the parties [18]. The designers of the eCK model argued that
this property cannot be achieved by two-message KE protocols, based on [13]. In
particular, in [13, p. 15], Krawczyk sketched a generic PFS attack, for which he
claimed that it breaks the security of any implicitly authenticated two-message
KE protocol. In the attack, the adversary actively interferes with the communi-
cation between the parties by injecting self-constructed messages. This enables
him to compute the used session-key if he later learns the long-term secret keys of
the parties. To prove a slightly weaker notion of forward secrecy for the HMQV
protocol, Krawczyk introduced the notion of weak perfect forward secrecy (weak-
PFS) [13]. When the long-term keys are compromised, weak perfect forward
secrecy guarantees secrecy of previously established session-keys, but only for
sessions in which the adversary did not actively interfere. Krawczyk’s comments
seem to have led to the incorrect belief that the best that can be achieved for
two-message KE protocols is weak perfect forward secrecy [5, 9, 13, 15]. As a
result, even though the eCK security model [15] guarantees only weak perfect
forward secrecy, it is currently described in the literature as the strongest possi-
ble security model for two-message KE protocols [8, 15, 17].

Contributions. Our first contribution is to push forward the theoretical limits of
key exchange security notions. This contribution has two parts. First, we gener-
alize the eCK security model [15] based on the observation that a restriction on
the adversary in the eCK model, whose purpose it is to prevent Krawczyk’s PFS
attack, is stronger than needed. To weaken this restriction (while still preventing
the attack) we introduce the concept of origin-session, which relaxes the notion
of matching session. The resulting model, which we call eCKw, specifies a slightly
stronger variant of weak perfect forward secrecy than the eCK model. We then
integrate perfect forward secrecy into the eCKw model, which gives rise to the
eCK-PFS model. The eCK-PFS model is strictly stronger than eCKw, and also
provides more guarantees than independently considering eCK/eCKw security
and PFS. In particular, security in eCK-PFS implies perfect forward secrecy in
the presence of a fully active attacker who can even learn the actor’s long-term se-
cret key before the start of the attacked session, or who can learn session-specific
ephemeral secret keys (i. e. random coins generated on a per-session basis).

Our second contribution is a generic security-strengthening transformation
(a so-called compiler) that contributes towards the modular design approach
of KE protocols. Given a two-message Diffie-Hellman (DH) type KE protocol
that is secure in eCKw, our transformation yields a two-message protocol that is
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secure in the eCK-PFS model. We show that NAXOS [15], the first key exchange
protocol proven secure in the eCK model, is also secure in eCKw and use our
transformation to construct a protocol that is secure in eCK-PFS. Thus, we
demonstrate that it is possible for two-message KE protocols to achieve PFS,
even under actor compromise (i. e. disclosure of the long-term secret keys of the
actor of a session) and leakage of ephemeral secret keys.

Related Work. The majority of related works claim that perfect forward secrecy
cannot be achieved in a two-message KE protocol [5,9,13–15]. There are two no-
table exceptions. First, the two-message modified-Okamoto-Tanaka (mOT) pro-
tocol by Gennaro et al. [11] provides perfect forward secrecy in the identity-based
setting. Additionally, they sketch variants of the protocol for the PKI-based set-
ting. As noted by the authors [11], the mOT protocol and its variants are not
resilient against loss of ephemeral keys, and they are therefore insecure in eCK-
like models. Second, in [6], Boyd and Gonzalez suggest a transformation C based
on adding MACs on the message exchange of a key-exchange protocol that sat-
isfies weak perfect forward secrecy, to achieve perfect forward secrecy. However,
the MAC transformation does not ensure security in eCK-PFS, because it does
not guarantee perfect forward secrecy under actor compromise and leakage of
ephemeral secret keys. In Section 4 we show that, e. g., C(NAXOS) [6] is inse-
cure in eCK-PFS. The eCK variant for protocols with more than two messages,
defined in [14], guarantees perfect forward secrecy. However, this eCK variant
cannot be met by any of the protocols from the class we are considering here
because it uses the concept of matching session instead of origin-session.

Organization. In Section 2 we recall some standard definitions used in this paper.
In Section 3 we motivate and define our security notions eCKw and eCK-PFS. In
Section 4 we provide a transformation that turns any two-message Diffie-Hellman
type KE protocol secure in eCKw into a two-message KE protocol secure in eCK-
PFS. We show how this transformation can be applied to the NAXOS protocol
in Section 5. Finally, we conclude in Section 6.

2 Preliminaries

Let G = 〈g〉 be a finite cyclic group of large prime order p with generator g.

Definition 1 (GAP-CDH Assumption [19]). The GAP-CDH assumption
in G states that, given gu and gv, for u, v chosen uniformly at random from
Zp, it is computationally infeasible to compute guv with the help of a decisional
Diffie-Hellman (DDH) oracle (that, for any three elements gu, gv, gw ∈ G, replies
whether or not w = uv mod p).

Definition 2 (Signature Scheme [12]). A signature scheme Σ is a tuple of
three polynomial-time algorithms (Gen, Sign,Vrfy) satisfying the following:

1. The probabilistic key-generation algorithm Gen takes as input a security
parameter 1k and outputs a secret/public key pair (sk, pk).
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2. The (possibly probabilistic) signing algorithm Sign takes as input a secret key
sk and a message m ∈ {0, 1}∗. It outputs a signature σ := Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key pk,
a message m, and a signature σ. It outputs a bit b, with b = 1 meaning valid
and b = 0 meaning invalid. We write b = Vrfypk(m,σ).

Definition 3 (SUF-CMA [4]). A signature scheme Σ = (Gen, Sign,Vrfy) is
strongly existentially unforgeable under an adaptive chosen-message attack if for
all probabilistic polynomial-time adversaries A, there exists a negligible function
negl such that AdvSigA (k) ≤ negl(k), where AdvSigA (k) denotes the probability of
successfully forging a valid signature σ on a message m and (m,σ) is not among
the pairs (mi, σi) (i = 1, ..., q) generated during the query phase to a signature
oracle OSign returning a signature for any message mi of the adversary’s choice.

3 Key Exchange Security Notions

We propose two new eCK-like security models for the analysis of key-exchange
protocols. The first model called eCKw captures a slightly stronger form of weak-
PFS than the eCK model. The second model called eCK-PFS integrates PFS
directly into eCKw.

3.1 Motivation for the New Models

eCKw: Strengthening Weak-PFS. As stated in the introduction, the eCK
model captures weak perfect forward secrecy but not perfect forward secrecy,
based on Krawczyk’s generic PFS attack [13]. We briefly recall the attack. Con-
sider a two-message protocol in which the agents exchange ephemeral public
Diffie-Hellman keys, i. e., gx and gy, where x and y are chosen at random from
Zp (for some large prime p). The adversary, impersonating party Â, generates

a random value x (∈ Zp) and sends gx to a responder session at party B̂. B̂
responds by sending gy and computes the session key. The adversary chooses
B̂’s session as the test-session, i. e. the session under attack, and reveals Â’s
long-term secret key after B̂’s session ends. Now the adversary can simply follow
all protocol steps that an honest party Â would have performed using x and
Â’s long-term secret key. In particular, the adversary can compute the same
session-key as the test-session, violating PFS.

Krawczyk’s attack works directly for all two-message KE protocols that ex-
change DH keys of the form gz, where z does not involve the sender’s long-term
secret key, such as HMQV [13]. Additionally, the attack also works on protocols
like NAXOS [15], where z is a hash of the sender’s long-term secret key and a
random value. The adversary can just replace this value by an arbitrary value.

To still prove some form of forward secrecy for such protocols, Krawczyk
introduced the notion of weak-PFS. In weak-PFS, the adversary is not allowed to
actively interfere with the messages exchanged by the test-session. This prevents
the attack because the adversary is no longer allowed to insert his own DH
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exponential. Similarly, in the eCK model, this restriction on interfering with the
test-session is modeled by checking if a matching session exists [15, p. 5]. If this
is the case, then the adversary must have been passive and he is allowed to reveal
the long-term secret keys of the actor and the intended communication partner
of a session. If there is no matching session, the adversary is not allowed to reveal
the long-term secret key of the intended communication partner.

We observe that Krawczyk’s attack only depends on the adversary injecting
or modifying the message received by the test-session; he does not need to ac-
tively interfere with the message sent by the test-session. However, eCK models
passivity of the adversary in the test-session by checking whether a matching ses-
sion for the test-session exists, which also prevents the adversary from modifying
(or deleting) the message sent by the test-session. In this sense, the restriction
on the adversary in eCK is sufficient but not necessary for the prevention of
Krawczyk’s attack. We therefore relax the notion of matching sessions and in-
troduce the concept of origin-session. This allows us to capture the adversary’s
capability of revealing the long-term secret key of the intended communication
partner (i. e. the peer) of the test-session s in case an origin-session s′ for s exists
even though no session matching to s exists. Thus, in contrast to the eCK model,
the adversary may reveal the long-term key of the peer of the test-session s in
case an origin-session s′ for session s exists and

– actively interfere with the message sent by the test-session (e. g. by modifying
it or injecting his own message), or

– replay a message from another session to the test-session (as in [6]), or
– leave session s′ incomplete (in case session s′ is in the initiator role).

We call our strengthened variant of the eCK model the eCKw model.

eCK-PFS: Integrating PFS into eCKw. We extend the eCKw model by
integrating perfect forward secrecy which yields the strictly stronger eCK-PFS
model. Perfect forward secrecy is reflected in eCK-PFS by allowing the adversary
to reveal the long-term secret keys of all the protocol participants after the end
of the test-session. These keys can be revealed irrespective of the existence of an
origin-session (or a matching session). This attack scenario is neither captured
in eCKw (nor in eCK or [6]) if the origin-session (matching session) does not
exist for the test-session.

3.2 Defining eCKw and eCK-PFS

Terminology. Let P =
{
P̂1, P̂2, ..., P̂N

}
be a finite set of N parties’ identi-

ties. Each party can execute multiple instances of a KE protocol, called ses-
sions, concurrently. We denote session i at party P̂ as the tuple (P̂ , i) ∈ P ×
N. We associate to each session s ∈ P × N a quintuple of variables Ts =
(sactor , speer , srole , ssent , srecv) ∈ P2 × {I,R} × ({0, 1}∗ ∪ {−})2. The variables
sactor , speer denote the identities of the actor and intended peer of session s, srole
denotes the role that the session is executing (either initiator or responder), and
ssent , srecv denote the concatenation of timely ordered messages as sent/received
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by sactor during session s, where ”−” denotes a special symbol not in {0, 1}∗ that
represents the empty sequence. The values of the variables speer and srole are set
upon activation of session s and the values of the variables ssent and srecv are
defined by the protocol execution steps. A session can only be activated once.

The notion of matching sessions specifies when two sessions are supposed to
be intended communication partners. Here we formalize the matching sessions
definition from the eCK model [15] which is based on matching conversations.

Definition 4 (matching sessions). Two completed sessions s and s′ are said
to be matching if

sactor = s′peer ∧ speer = s′actor ∧ ssent = s′recv ∧ srecv = s′sent ∧ srole �= s′role .

To relate a message received (and accepted) by some session to the session it
originates from (if the latter exists), we introduce the concept of origin-session.
If an origin-session s′ for some session s exists, then the messages received by
session s have not been modified or injected (as in Krawczyk’s PFS attack [13])
by the adversary.

Definition 5 (origin-session). We say that a (possibly incomplete) session s′

is an origin-session for a completed session s when s′sent = srecv .

Note that, if two completed sessions s, s′ are matching, then s and s′ are origin-
sessions for each other. However, if session s is an origin-session for some session
s′, then it might not necessarily be a matching session for s′ (e. g. in case the
roles of the sessions are identical). Thus, a session being a matching session for
some session is a stronger requirement than a session being an origin-session for
some session.

Adversarial capabilities. Similar to the eCK model [15], we model the adver-
sary as a probabilistic polynomial-time (PPT) Turing machine that controls all
communications between parties through the following queries:

1. send(s, v). This query models the adversary sending message v to session
s. The adversary is given the response generated by the session according
to the protocol. The variables ssent and srecv are updated accordingly (by
concatenation). Abusing notation, we allow the adversary to activate an
initiator session with peer Q̂, via a send(s, Q̂) query and a responder session
by sending a messagem to session s on behalf of Q̂, via a send(s, Q̂,m) query.
In these cases, speer is set to Q̂ and srole is set to I and R, respectively. The
adversary is given the session’s response according to the protocol and the
variables ssent , srecv are initialized accordingly.

2. corrupt(P̂ ). This query reveals the long-term keys of party P̂ .
3. ephemeral-key(s). This query reveals the ephemeral secret keys (i. e., the

random coins) of session s.
4. session-key(s). This query returns the session key for a completed session s

(i. e. a session that has accepted/computed a session-key).
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5. test-session(s). To respond to this query, a random bit b is chosen. If b = 0,
then the session-key established in session s is returned. Otherwise, a random
key is returned according to the probability distribution of keys generated
by the protocol. This query can only be issued to a completed session.

Notions of Freshness. An adversary that can perform the above queries can
simply reveal the session key of all sessions, breaking any protocol. The intuition
underlying Bellare-Rogaway style KE models is to put minimal restrictions on
the adversary with respect to performing these queries, such that there still exist
protocols that are secure in the presence of such an adversary. The restrictions on
the queries made by the adversary are formalized by the notion of fresh sessions.

Definition 6 (Fresh session in eCKw). A completed session s in security
experiment W is said to be fresh in eCKw if all of the following conditions hold:

1. W does not include the query session-key(s),
2. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
3. W does not include both corrupt(sactor ) and ephemeral-key(s),
4. for all sessions s′ such that s′ is an origin-session for session s, W does not

include both corrupt(speer) and ephemeral-key(s′), and
5. if there exists no origin-session for session s, then W does not include a

corrupt(speer) query.

Definition 7 (Fresh session in eCK-PFS). A completed session s in exper-
iment W is said to be fresh in eCK-PFS if all of the following conditions hold:

1. W does not include the query session-key(s),
2. for all sessions s∗ such that s∗ matches s, W does not include session-key(s∗),
3. W does not include both corrupt(sactor ) and ephemeral-key(s),
4. for all sessions s′ such that s′ is an origin-session for session s, W does not

include both corrupt(speer) and ephemeral-key(s′), and
5. if there exists no origin-session for session s, then W does not include a

corrupt(speer) query before the completion of session s.

Security Experiment W in model M . Security of a key-exchange protocol Π is
defined via a security experiment W (or attack game) played by an adversary
E, modeled as a PPT algorithm, against a challenger. Before the experiment
starts, each party P̂ runs a key-generation algorithm that takes as input a secu-
rity parameter 1k and outputs valid static secret/public key pair(s). The public
key(s) of each party are distributed in an authenticated way to all other parties.
The adversary E is given access to all public data. The setting of the security
experiment W can be described in four successive stages, as follows:

1. The adversary E can perform send, corrupt, ephemeral-key, and session-key
queries.

2. At some point in the experiment, E issues a test-session query to a completed
session that is fresh in model M by the time the query is issued. The chal-
lenger chooses a random bit b and provides E with either the real session-key
of the test-session (for b = 0) or a random key from the key space (for b = 1).
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3. The adversary may continue with send, corrupt, ephemeral-key and session-key
queries, without rendering the test-session un-fresh in model M .

4. Finally, E outputs a bit b′ as his guess for b.

The adversary E wins the security experiment W if he correctly guesses the bit
b chosen by the challenger during the test-session query (i. e. if b = b′ where b′

denotes E’s guess). Success of E in the experiment is expressed in terms of E’s
advantage in distinguishing whether he received the real or a random session-key
in response to the test-session query. The advantage of adversary E in the above
security experiment against a key exchange protocol Π for security parameter k
is defined as AdvΠE (k) = |2P (b = b′)− 1|.

Definition 8. A key exchange protocol Π is said to be secure in model M ∈
{eCKw,eCK-PFS} if, for all PPT adversaries E, it holds that

– if two parties successfully complete matching sessions, then they compute the
same session key, and

– E has no more than a negligible advantage in winning security experiment
W in model M , that is, there exists a negligible function negl in the security
parameter k such that AdvΠE (k) ≤ negl(k).

Comparison between eCKw and eCK-PFS. The eCK-PFS model is strictly
stronger than eCKw because it captures more attack scenarios. The eCK-PFS
model allows the adversary to corrupt all parties after the test-session is com-
pleted (regardless of whether an origin-session exists for the test-session), cap-
turing perfect forward secrecy. In contrast, in case there is no origin-session for
the test-session, the adversary is not allowed to reveal the long-term secret key
of the peer of the test-session in the eCKw model. As an example, NAXOS is
provably secure in eCKw, as we show in Section 5, but insecure in eCK-PFS due
to the PFS attack described in Subsection 3.1.

4 A Transformation from eCKw to eCK-PFS

We define a class of two-message Diffie-Hellman type key exchange protocols
(similar to the class of KE protocols in [6]). Then, we present a security-
strengthening transformation (compiler) that can be applied to any such pro-
tocol. Finally we show that this transformation turns any KE protocol secure in
eCKw into a KE protocol secure in eCK-PFS.

Let k be a security parameter and let G be a finite cyclic group of prime order
p with generator g, where p = O(2k). Let Ω be static publicly known data such
as parties’ identities, their long-term public keys or publicly known functions and
parameters. Let S be a set of constants from which random values are chosen
(e. g. S = Zp or S = {0, 1}k). We denote by x ∈R S that x is chosen uniformly at
random from the set S. In the generic two-message DH type protocol, illustrated
in Figure 1, party Â’s long-term secret key is a ∈R Zp and Â’s long-term public
key is A = ga. The session-specific ephemeral secret key of the session at party
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Â: (a,A)

rÂ, X = gfI(r
Â
,a,Ω)

K
Â

= FI(fI (r
Â

, a, Ω), a, Y,Ω)

X−−−−−−−−−−−−−−−−→
Y←−−−−−−−−−−−−−−−−

B̂: (b,B)

rB̂ , Y = gfR(r
B̂
,b,Ω)

K
B̂

= FR(fR(r
B̂

, b, Ω), b, X,Ω)

Fig. 1. A generic two-message DH type protocol

Â is denoted by rÂ ∈R S and the corresponding ephemeral public key is denoted

by X . Similarly, party B̂’s long-term secret/public key pair is (b, B) and the
ephemeral secret/public key pair of the session at B̂ is denoted by (rB̂, Y ). The
public functions fI , fR : {0, 1}∗ → Zp depend on the ephemeral secret key and
may depend on the long-term secret key or on public information. The public
functions FI , FR : {0, 1}∗ → {0, 1}k depend on the Diffie-Hellman exponent the
long-term secret key, the received Diffie-Hellman exponential and other public
information. We assume that the public keys of all parties are known to all other
participants in the protocol.

Protocol description. The generic two-message DH type protocol, depicted in
Figure 1, proceeds as follows:

1. Upon activation of session s = (Â, i) ∈ P ×N with peer B̂, Â (the initiator)
performs the steps:

– Choose an ephemeral secret key rÂ ∈R S and compute X = gfI(rÂ,a,Ω).
– Send X (and possibly other public data, e. g. identities of peer and actor

of the session) to B̂.
– Initialize Ts to (Â, B̂, I,m,−), where m denotes the message sent by

session s.

2. Upon activation of session s′ = (B̂, j) ∈ P×N with message X (and possibly
other data) on behalf of Â, party B̂ (the responder) performs the steps:

– Check that X ∈ G.
– Choose an ephemeral secret key rB̂ ∈R S and compute Y = gfR(rB̂,b,Ω).
– Compute KB̂ = FR(fR(rB̂, b, Ω), b,X,Ω).

– Send Y (and possibly other public data) to Â.
– Set Ts′ to (B̂, Â,R,m′, n′), wherem′ denotes the message sent by session
s′ and n′ the message received by session s′, and complete the session by
accepting KB̂ as the session-key.

3. Upon receiving message Y (with possibly other data) in session s , party Â
performs the steps:

– Check that Y ∈ G.
– Compute KÂ = FI(fI(rÂ, a, Ω), a, Y,Ω).

– Update Ts to (Â, B̂, I,m, n) and complete the session by accepting KÂ

as the session-key.
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The above description also applies to protocols with additional checks, which we
omit for clarity. We assume that whenever a check in a session fails, all session-
specific data is erased from memory and the session is aborted, i. e., it terminates
without establishing a session-key.

Definition 9 (Protocol Class DH-2). We define DH-2 as the class of all
two-message key-exchange protocols that follow the description of a generic DH
type protocol and meet the following validity requirement:

– in the presence of an eavesdropping adversary, two parties Â and B̂ can
complete matching sessions (in the sense of Definition 4), in which case
they hold the same session-key.

The validity requirement requires that if the messages of two parties Â and B̂
are faithfully relayed to each other, then both parties end up with a shared
session-key (see also [1–3]). Note that, e. g., the KE protocols NAXOS [15],
NAXOS+ [17], NETS [16] and CMQV [21] belong to the class DH-2.

Protocol transformation. We now show how to transform any protocol Π ∈
DH-2 into a two-message protocol SIG(Π), shown in Figure 2, by applying
the signature transformation SIG. Party Â has two independent valid long-term
secret/public key pairs, one pair (a,A) from protocol Π and one pair (skÂ, pkÂ)
for use in a digital signature schemeΣ with security parameter k. Similarly, party
B̂’s long-term secret/public key pairs are (b, B) and (skB̂ , pkB̂). The transformed
protocol SIG(Π) in Figure 2 proceeds as protocolΠ except that each party needs
to additionally sign a message using its secret signature key and check that the
received signature on a message is valid with respect to the long-term public key
of its peer. The fields between square brackets within the signature are optional.

Security analysis. We show in Theorem 1 below that the SIG transformation is
a security-strengthening transformation from the eCKw model to the stronger
model eCK-PFS provided that the digital signature scheme is strongly existen-
tially unforgeable under an adaptive chosen-message attack (SUF-CMA) as well
as deterministic. For certain randomized signature schemes, an efficient adver-
sary can compute the secret (signature) key given the corresponding public key,
a signature on any message using the secret key, and the random coins involved
in the signature generation learned through an ephemeral-key query (as noted
in [15]).

Â: (a,A), (skÂ, pkÂ)

rÂ, X = gfI(r
Â
,a,Ω)

K
Â

= FI(fI (r
Â

, a, Ω), a, Y,Ω)

X,σ
Â
=Signsk

Â
(X[,B̂])

−−−−−−−−−−−−−−−−−−→
Y,σ

B̂
=Signsk

B̂
(Y [,X,Â])

←−−−−−−−−−−−−−−−−−−−−

B̂: (b,B), (skB̂, pkB̂)

rB̂ , Y = gfR(r
B̂
,b,Ω)

K
B̂

= FR(fR(r
B̂

, b, Ω), b, X,Ω)

Fig. 2. A transformed generic protocol SIG(Π)
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The following lemma is used in the proof of Theorem 1.

Lemma 1 (Difference Lemma [20]). Let A,B, F be events defined on some
probability space. Suppose that event A ∧ F c occurs if and only if event B ∧ F c

occurs. Then |P (A)− P (B)| ≤ P (F ).

Theorem 1. Let Π ∈ DH-2 be a protocol secure in the eCKw model. Under
the assumption that the signature scheme is deterministic and SUF-CMA, the
protocol SIG(Π) is a secure key-exchange protocol in the eCK-PFS model.

Proof. It is straightforward to verify the first condition of Definition 8, i. e., that
matching sessions of protocol SIG(Π) compute the same key (since matching
sessions of protocol Π compute the same key). We show next that the second
condition of Definition 8 holds, i. e., the adversary has no more than a negligible
advantage in distinguishing the session key from a random key. We present a
security proof structured as a sequence of games, a proof technique introduced
in [20]. Let Si denote the event that the adversary correctly guesses the bit
chosen by the challenger to answer the test-session query in Game i and let
αi = |2P (Si) − 1| denote the advantage of the adversary in Game i. Let N, qs
be upper bounds on the number of parties and activated sessions, respectively.

Game 0. This game reflects the security experiment W in model eCK-PFS, as
defined in Subsection 3.2, played by a PPT adversary E against the protocol
SIG(Π).

Game 1. [Transition based on a small failure event] Let CollSIG(Π) be the small
failure event that a collision for protocol SIG(Π) occurs (e.g. in ephemeral secret
keys). As soon as event CollSIG(Π) occurs, the attack game stops.

Analysis of Game 1. Game 0 is identical to Game 1 up to the point in
the experiment where event CollSIG(Π) occurs for the first time. The Difference
Lemma yields that |P (S0)− P (S1)| ≤ P (CollSIG(Π)). Hence,

α0 = |2P (S0)− 1| = 2|P (S0)− P (S1) + P (S1)− 1/2|
≤ 2(|P (S0)− P (S1)|+ |P (S1)− 1/2|)
≤ 2P (CollSIG(Π)) + α1.

Game 2. [Transition based on a large failure event (see [5, 10])] Before the
adversaryE starts the attack game, the challenger chooses a random valuem ∈R

{1, 2, ..., qs}. The m-th session activated by E, denoted by s∗, is the session on
which the challenger wants the adversary to be tested. Let T be the event that
the test-session is not session s∗. If event T occurs, then the attack game halts
and the adversary outputs a random bit.
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Analysis of Game 2. Event T is non-negligible, the environment can efficiently
detect it and T is independent of the output in Game 1 (i. e. P (S1|T ) = P (S1)).
If T does not occur, then the attacker E will output the same bit in Game 2 as
it did in Game 1 (so that P (S2|T c) = P (S1|T c) = P (S1)). If event T occurs in
Game 2, then the attack game halts and the adversary E outputs a random bit
(so that P (S2|T ) = 1/2). We have,

P (S2) = P (S2|T )P (T ) + P (S2|T c)P (T c) =
1

2
P (T ) + P (S1)P (T

c)

= P (T c)(P (S1)−
1

2
) +

1

2
.

Hence we get, α2 = |2P (S2)− 1| = P (T c)|2P (S1)− 1| = 1
qs
α1.

Suppose w. l. o. g. that s∗role = I and that protocol Π does not include op-
tional public information in the sent messages. Let F be a forgery event with
respect to the long-term public key pkP̂ of party P̂ , that is, adversary E issues
a send(s∗, V, σ) query to session s∗ being incomplete such that

– σ is a valid signature on message m = (V, [W, s∗actor ]) with respect to the
public key of P̂ , where W is the Diffie-Hellman exponential contained in
message s∗sent , and

– (V, σ) has never been output by party P̂ in response to a send query.

Game 3. [Transition based on a small failure event] This game is the same
as the previous one except that when a forgery event F with respect to the
long-term public key of some party P̂ ∈ P occurs, the experiment halts and E
outputs a random bit.

Analysis of Game 3. The analysis of Game 3 proceeds in several steps.
Consider first the following two cases.

1. If E issues a corrupt(P̂ ) query before the completion of session s∗, then
this query would render session s∗ un-fresh. This would have caused Game
2 to abort since session s∗ would not be the test-session. Recall that the
test-session query can only be issued to a session that is fresh by the time
the query is issued. Hence this case can be excluded.

2. If E does not issue a corrupt(P̂ ) query before the completion of session s∗,
then he can only impersonate party P̂ to session s∗ by forging a signature
on a message with respect to the long-term public key of P̂ .

Claim. We have |P (S2)− P (S3)| ≤ P (F ).

Proof. If event F does not occur, then Game 2 and 3 proceed identically (i. e.
S2 ∧F c ⇔ S3∧F c). The Difference Lemma yields that |P (S2)−P (S3)| ≤ P (F ).

Claim. If the deterministic signature scheme is SUF-CMA, then P (F ) is neg-

ligible. More precisely, P (F ) ≤ NAdvSign
M (k), where AdvSign

M (k) denotes the
probability of a successful forgery.
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Proof. Consider the following algorithmM using adversaryE as a subroutine.M
is given a public signature key pk and access to the corresponding signature oracle
OSign . It selects at random one of the N parties and sets its public key to pk. We
denote this party by P̂ and its signature key pair by (skP̂ , pkP̂ ). Further, the algo-

rithmM chooses signature key pairs (ski, pki) for all parties P̂i ∈ P with P̂i �= P̂
and stores the associated secret keys. It also chooses key pairs (ci, Ci) for all par-
ties P̂i ∈ P as needed for protocol Π and stores the associated secret keys.

ALGORITHM M :

1. Run E on input 1k and the public keys for all of the N parties.
2. If E issues a send(z, Q̂) query to activate session z with peer Q̂ ∈ P , then

answer it as follows.
– If zactor �= P̂ , then choose x ∈R Zp to get X = gx, compute the signature

σ on message m = (X [, Q̂]) on behalf of zactor and return the message
(X, σ) to E.

– If zactor = P̂ , then choose x ∈R Zp to get X = gx and query the

signature oracle on message m = (X [, Q̂]) which returns the signature σ
on message m. Store the pair (m,σ) in a table L, initially empty, and
return the message (X, σ) to E.

3. If E issues a send(z, Q̂,m) query to activate session z, then answer it as
follows. First check whether messagem is of the form (X, σ) for some X ∈ G
and σ a valid signature on message (X [, zactor ]) with respect to the public
key of Q̂. If the checks succeed, then:
– If zactor �= P̂ , then choose y ∈R Zp to get Y = gy, compute the signature

σ on message m = (Y [, X, Q̂]) on behalf of zactor and return the message
(Y, σ) to E.

– If zactor = P̂ , then choose y ∈R Zp to get Y = gx and query the signature

oracle on message m = (Y [, X, Q̂]) which returns the signature σ on
message m. Store the pair (m,σ) in table L (initially empty) and return
the message (Y, σ) to E.

If one of the checks does not succeed, then abort session z.
4. If E issues a send(z,m) query to session z in role I, then check whether

message m is of the form (Y, σ) for some Y ∈ G and σ a valid signature on
message (Y [, X, zactor ]) with respect to the public key of zpeer (whereW ∈ G
is contained in message s∗sent ). If the check fails, then abort session z.

5. If E makes a send(s∗, V, σ) query, where σ is a valid signature with respect
to the public key pkP̂ of party P̂ on message m = (V [,W, s∗actor ]) (where
W ∈ G is contained in s∗sent ), before the completion of the test-session s∗

and (m,σ) /∈ L, then stop E and output (m,σ) as a forgery.
6. The queries session-key, ephemeral-key are answered in the appropriate way

since M has chosen the ephemeral secret keys for all the sessions and the
long-term secret keys for use in protocol Π for all the parties.

7. The queries corrupt(P̂i), where P̂i ∈ P and P̂i �= P̂ , are answered in the
appropriate way since M knows the secret key pairs of the parties P̂i �= P̂ .

8. If E issues the query test-session(s∗), then abort with failure.
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Under event F , algorithm M is successful as described in Step 5 and the abor-
tion as in Step 8 does not occur. The probability that E succeeds in forging
a signature with respect to the public key of P̂ is bounded above by the prob-
ability that M outputs a forgery multiplied by the number of parties, that is,
P (F ) ≤ NAdvSign

M (k).

Claim. Let Adv
SIG(Π),Game 3,O
E (k) := |2P (S3|O)−1|, where O denotes the event

that there is an origin-session for the test-session. It holds that Adv
SIG(Π),Game 3
E

(k) = max(0, Adv
SIG(Π),Game 3,O
E (k)).

Proof. Note that |2P (S3|F ) − 1| = |2 1
2 − 1| = 0 (since, when event F occurs in

Game 3, E outputs a random bit) and that if event F does not occur, then there
exists an origin-session for the test-session.

We next establish an upper bound for Adv
SIG(Π),Game 3,O
E (k) in terms of the

security of protocol Π .

Claim. Assume that in Game 3 there exists a unique1 origin-session s for the
test-session s∗ with sactor = s∗peer . If there is an efficient adversaryE in eCK-PFS
succeeding in Game 3 against protocol SIG(Π) with non-negligible advantage,
then we can construct an efficient adversary E′ in eCKw succeeding in Game 3
against protocol Π with non-negligible advantage using adversary E as a sub-

routine. Moreover, it holds that Adv
SIG(Π),Game 3,O
E (k) ≤ AdvΠ,Game 3,O

E′ (k).

Proof. Fix an efficient adversary E in eCK-PFS succeeding in Game 3 against
protocol SIG(Π) with non-negligible advantage. Let us construct an adversary
E′ in eCKw succeeding in Game 3 against protocol Π with non-negligible ad-
vantage using adversary E as a subroutine.

ALGORITHM E′: E′ chooses secret/public signature key pairs for all the parties
and stores the associated secret signature keys. It is given all public knowledge,
such as public (non-signature) keys for all the parties.

1. Run E against SIG(Π) on input 1k and the public key pairs for all of the N
parties.

2. When E issues a corrupt(P̂ ) query to some party P̂ , E′ issues that query
to party P̂ and returns the answer to that query together with the secret
signature key of P̂ (that E′ has chosen) to E.

3. When E issues an ephemeral-key or a session-key query to some session z, E′

issues that query to session z and returns the answer to E.
4. send queries are answered in the following way.

– If E issues a send(z, Q̂) query to activate session z with peer Q̂, then E′

issues the same query to session z. The response is a message W (∈ G).
Since E′ knows the secret signature key of zactor , it can sign the message

1 No collision in the ephemeral secret keys occurs for SIG(Π) (where Π ∈ DH-2) since
otherwise Game 1 would have caused the game to abort.
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m = (W [, Q̂]) on its behalf and then return the message (W,σ) to E,
where σ denotes the signature on m with respect to the public key of
zactor .

– If E issues a send(z, Q̂,m) query to activate session z, where message m
is of the form (W,σ), then E′ first checks whether W ∈ G and second
whether σ is a valid signature on message (W [, zactor ]) with respect to the
public key of Q̂. If the checks succeed, then E′ issues the query send(z,W )
to session z. The response is a message V ∈ G. Since E′ knows the secret
signature key of zactor , it can sign the message m = (V [,W, Q̂]) on its
behalf and then return the message (V, σ) to E, where σ denotes the
signature on m with respect to the public key of zactor .

– If E issues a send(z,m) query, where message m is of the form (V, σ),
then E′ first checks whether V ∈ G and second whether σ is a valid
signature on message (V [,W, zactor ]) with respect to the public key of
zpeer , where W is the Diffie-Hellman exponential contained in zsent . If
the checks succeed, then E′ issues the query send(z, V ) to session z.

If one of the checks fails, then session z is aborted (i. e. E′ aborts session z).
5. In case E issues the test-session query to session s∗, E′ issues the test-session

query to session s∗ and returns the answer to E.
6. At the end of E’s execution (after it has output its guess b′), output b′ as well.

Thus, it holds that Adv
SIG(Π),Game 3,O
E (k) ≤ AdvΠ,Game 3,O

E′ (k).
Finally,

Adv
SIG(Π)
E (k) ≤ 2P (CollSIG(Π)) + 2qsNAdv

Sign
M (k) + qsAdv

SIG(Π),Game 3,O
E (k)

≤ 2P (CollSIG(Π)) + 2qsNAdv
Sign
M (k) + qsAdv

Π,Game 3,O
E′ (k)

Since by assumption protocol Π is secure in eCKw, there is a negligible function
g such that AdvΠ,Game 3,O

E′ (k) ≤ g(k) which completes the proof. 
	

Remark 1. Let Mw and M-PFS be the security models obtained from eCKw

and eCK-PFS (respectively) by removing the ephemeral-key query and related
restrictions in the freshness definitions. Then it can be shown in a similar way
as above that for any KE protocol Π ∈ DH-2 secure in Mw, the transformed
protocol SIG(Π) is secure in M-PFS using either a deterministic or a randomized
SUF-CMA signature scheme.

Remark 2. In contrast to the SIG transformation, the MAC transformation C
suggested in [6] applied to any protocol π ∈ DH-2 does not yield a two-message
key-exchange protocol secure in eCK-PFS since the transformed protocol is vul-
nerable to an attack that combines revealing the long-term secret keys of the
actor of the test-session with revealing the long-term secret keys of the peer of
the test-session after its completion. More precisely, an attacker can impersonate
the peer of the test-session by first revealing the long-term secret keys of the ac-
tor (which allows him to create valid MACs on messages of his choice) and after
the completion of the test-session revealing the long-term secret keys of the peer.
For example, this attack shows that C(NAXOS) [6] is insecure in eCK-PFS.
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5 NAXOS Revisited

The NAXOS protocol [15], shown in Figure 3, provides an example of a protocol

belonging to the class DH-2, where H1 : {0, 1}∗ → Zp and H2 : {0, 1}∗ → {0, 1}k

denote two hash functions and rÂ, rB̂ ∈R {0, 1}k. In analogy to Figure 1, note that
fI(rÂ, a, Ω) = H1(rÂ, a), fR(rB̂ , b, Ω) = H1(rB̂, b), FI(fI(rÂ, a, Ω), a, Y,Ω) =

H2(Y
a, BH1(rÂ,a), Y H1(rÂ,a), Â, B̂), and FR(fR(rB̂ , b, Ω), b,X,Ω) = H2(A

H1(rB̂ ,b),

Xb, XH1(rB̂ ,b), Â, B̂).

Â: (a,A)

rÂ, X = gH1(rÂ,a)

K
Â

= H2(Y a,B
H1(r

Â
,a)

, Y
H1(r

Â
,a)

, Â, B̂)

X−−−−−−−−→
Y←−−−−−−−−

B̂: (b,B)

rB̂, Y = gH1(rB̂ ,b)

K
B̂

= H2(A
H1(r

B̂
,b)

, Xb,X
H1(r

B̂
,b)

, Â, B̂)

Fig. 3. NAXOS protocol [15]

The following proposition states that the NAXOS protocol is secure in eCKw.

Proposition 1. Under the GAP-CDH assumption in the cyclic group G of
prime order p, NAXOS is secure in the eCKw model, when H1 and H2 are
modeled as independent random oracles.

In contrast to the proof of NAXOS in the eCK model [15], the proof of Proposi-
tion 1 distinguishes between the cases whether or not an origin-session (instead
of a matching session) exists for the test-session.

Proof (Sketch). Similar to [15, 21], we analyze the following three events:

1. DL ∧K
2. TO ∧DLc ∧K, and
3. (TO)

c ∧DLc ∧K, where

TO denotes the event that there exists an origin-session for the test-session, DL
denotes the event where there exists a party Ĉ such that the adversaryM , dur-
ing its execution, queries H1 with (∗, c) before issuing a corrupt(Ĉ) query and K
denotes the event thatM wins the security experiment against NAXOS by query-
ing H2 with (σ1, σ2, σ3, Â, B̂), where σ1 = CDH(Y,A), σ2 = CDH(B,X), σ3 =
CDH(X,Y ) given that the test-session is s∗ with Ts∗ = (Â, B̂, I, X, Y ). 
	
Applying the SIG transformation on the NAXOS protocol yields the protocol
SIG(NAXOS), depicted in Figure 4. Combining Proposition 1 with Theorem 1,
we obtain the following result.

Corollary 1. Under the GAP-CDH assumption in the cyclic group G of prime
order p, using a deterministic SUF-CMA signature scheme, the SIG(NAXOS)
protocol is secure in the eCK-PFS model, when H1, H2 are modeled as indepen-
dent random oracles.
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Fig. 4. SIG(NAXOS) protocol

6 Conclusions

We provided two new eCK-like security notions, namely eCKw and eCK-PFS.
The eCKw model slightly strengthens eCK by a more precise modeling of weak-
PFS. The stronger eCK-PFS notion guarantees PFS, even in the presence of
eCK-like adversaries. Proving security in eCK-PFS provides strictly more guar-
antees than separately proving eCKw-security and PFS. Existing two-message
KE protocols such as CMQV [21], NAXOS [15], or C(NAXOS) [6] fail to achieve
security in eCK-PFS. We specified a security-strengthening transformation that
transforms any two-message DH type KE protocol secure in eCKw into a two-
message protocol secure in eCK-PFS. As future work, we would like to specify
further transformations on KE protocols that are based on the newly developed
security models in this work. It remains an open question whether there exist
more efficient transformations that yield two-message KE protocols secure in
eCK-PFS.
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Abstract. We describe several attacks against the PKCS#1 v1.5 key
transport mechanism of XML Encryption. Our attacks allow to recover
the secret key used to encrypt transmitted payload data within a few
minutes or several hours, depending on the considered scenario.

The attacks exploit differences in error messages and in the timing
behavior of XML frameworks. We show how to attack seemingly invul-
nerable implementations, by exploiting additional properties of the XML
Encryption standard that lead to new side-channels. An interesting nov-
elty of one of our attacks is that it combines a weakness of a public-key
scheme (transporting an ephemeral session key) with a different weak-
ness of a symmetric encryption scheme (which transports the payload
data, encrypted with the session key).

Recently the XML Encryption standard was updated, in response to
an attack presented at CCS 2011. The attacks described in this paper
work even against the updated version of XML Encryption. Our work
shows once more that legacy cryptosystems have to be used with extreme
care, and should be avoided wherever possible, since they may lead to
practical attacks.

1 Introduction

In 1998Bleichenbacher [3] published a chosen-ciphertext attack on the RSA-based
PKCS#1 v1.5 encryption scheme specified in RFC 2313 [15]. This attack exploits
the availability of an “oracle” that allows to test whether a given ciphertext is
PKCS#1 v1.5 conformant. Due to its high relevance, Bleichenbacher’s algorithm
was well noticed. For instance, it enabled practical attacks on popular implemen-
tations of the SSL protocol [17]. These implementations were fixed immediately
using a workaround patch, which until today seems to be sufficient to provide se-
curity in the context of SSL/TLS. Nonetheless, Bleichenbacher’s attack sheds se-
rious doubt on the security of PKCS#1 v1.5, in particular in scenarios where an
adversary may issue chosen-ciphertexts to a server and observe the response.
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In spite of these negative results, in 2002, four years after publication of the
Bleichenbacher attack, the W3C consortium published the XML Encryption
standard [6], in which PKCS#1 v1.5 encryption is specified as a mandatory
key transport mechanism. This standard is implemented in XML frameworks
of major commercial and open-source organizations like Apache, redhat, IBM,
Microsoft, and SAP and employed world-wide in a large number of major web-
based and cloud-based applications, ranging from business communications, e-
commerce, and financial services over healthcare applications to governmental
and military infrastructures.

The decision to use PKCS#1 v1.5 despite the known criticisms on its security
may be partly due to the fact that the ad hoc countermeasures against Bleichen-
bacher’s attack employed in SSL seem to work well – at least for protocols of the
SSL family. However, one must not ignore that SSL and XML Encryption are
fundamentally different protocols, running in different settings, using a different
combination of cryptographic primitives, and providing different side-channels.
Does the use of PKCS#1 v1.5 make XML Encryption vulnerable to attacks?

Contributions. We describe different attacks on the key transport mechanism
of XML Encryption which is based on PKCS#1 v1.5. Our goal is to turn a
given Web Service into a “Bleichenbacher oracle” that allows us to mount the
Bleichenbacher attack [3].

We show that it is possible to conduct practical attacks even against Web
Services implementations that seem not vulnerable (e.g. since they implement
the classical countermeasure against Bleichenbacher’s attack, which we describe
below). To this end, we exploit two properties of the XML Encryption standard:

1. The attacker can choose the ciphertext size. The basic idea is that a larger
ciphertext increases the running time of the decryption process. We will show
that this allows the attacker to perform very powerful timing attacks, which
work even in networks where such attacks can usually not be executed in
practice, e.g., in networks with a substantial amount of jitter.

2. A weak mode-of-operation. XML Encryption allows the usage of block ci-
phers in the cipher-block chaining (CBC) mode-of-operation. CBC exhibits
a weakness [27] that allows an adversary to make modifications to the en-
crypted plaintext, by XORing arbitrary bit strings to the plaintext. We show
that it is possible to use this weakness as an alternative way to determine
whether a PKCS#1 v1.5 ciphertext is “valid” or not.
Besides CBCmode, the updated version of the XML Encryption specification
allows to use the GCM mode of operation. This mode was introduced to
prevent the attacks from [11]. Interestingly, the CBC-attack we describe in
this paper allows to decrypt GCM ciphertexts, too — if the receiving Web
Service is able to decrypt CBC ciphertexts, which is mandatory for any
standard-compliant implementation. This is due to the fact that we use the
PKCS#1 v1.5 weakness in combination with the CBC weakness only to
decrypt the session key. After we have obtained this session key, we can
decrypt an arbitrary ciphertext, regardless of whether it is encrypted using
CBC, GCM, or any other mode-of-operation.
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A classical countermeasure against Bleichenbacher’s attack is to let the de-
cryption algorithm return a random key, if decryption fails. Then the sys-
tem proceeds with this random key. We stress that the CBC-based attack
described in this paper can not be prevented by this countermeasure.

In the full version [10] we also show that it is possible to execute Bleichen-
bacher’s attack in a straightforward way against some widely-used Web Services
implementations, such as redhat’s JBossWS [12]. This is noteworthy, given that
Bleichenbacher’s attack has received much attention in the computer security
community.

We verify our attacks by experimental analyses. Apache Axis2 [26] was used
to test the timing-based and CBC-based attacks. The timing-based attack takes
200 minutes on the localhost and less than one week when performed over the
Internet. The CBC-based attack takes less than five days. We compare these
two attacks and give two realistic scenarios where each attack performs especially
well. These attacks are applicable to other systems as well, as we describe below.
We stress that all figures are derived using “good” ciphertexts, a property that
we describe more precisely in Section 5, and which holds for (heuristically) one
out of 80 ciphertexts (see Section 5). We also note that the recent improvements
to Bleichenbacher’s algorithm by Bardou et al. [1] apply in our case as well.

In general chosen-ciphertext attacks can be avoided by ensuring the integrity
of the ciphertext. One would therefore expect our attack can easily be thwarted
by using XML Signature [7] to ensure integrity. (Note that XML Signature speci-
fies not only classical public-key signatures, but also “secret-key signatures”, i.e.,
message authentication codes.) However, this is not true, since chosen-ciphertext
attacks on XML Encryption can be applied even if either public-key or secret-key
XML Signatures over the ciphertext are used, see [11,24] for a detailed description.

Further Applications. In close cooperation with SAP AG, Germany, we
furthermore verified that all attacks worked also against the implementation of
XML Encryption in Version 7.03 of the SAP ABAP stack. SAP is currently in
the process of fixing this issue.

Beyond XML Encryption, the recent JSON Web Encryption (JWE) specifi-
cation [13] prescribes PKCS#1 v1.5 as a mandatory cipher. This specification
is under developement and at the time of writing there existed only one im-
plementation following this specification.1 We verified that this implementation
was vulnerable to two versions of the Bleichenbacher’s attack: the direct attack
based on error messages and the timing-based attack.

Related work. At CCS 2011 [11] an attack on XML Encryption was described
which allows to extract the plaintext contained in a given ciphertext. This attack
breaks the symmetric encryption scheme of XML Encryption (AES-CBC or
3DES-CBC) by submitting modified ciphertexts to a Web Service and observing
its response. The attack requires on average 14 · � chosen-ciphertext queries,
where � is the byte-length of the recovered plaintext. Even though this is very

1 Nimbus-JWT: https://bitbucket.org/nimbusds/nimbus-jwt

https://bitbucket.org/nimbusds/nimbus-jwt
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efficient, the complexity grows linearly with the size of the plaintext, thus may
become infeasible if the attacker has to decrypt long plaintexts. The W3C has
responded to the attack of [11] by updating the XML Encryption standard. Now
it recommends the GCMmode instead of CBC, which prevents chosen-ciphertext
attacks against the symmetric cipher.

Let us compare the attack of [11] to our work. For efficiency reasons, a typical
XML Encryption ciphertext consists of two components. The first component is
a public key encryption ckey of an ephemeral session key under the public key of
the receiver. The second component is a symmetric encryption cdata of the actual
plaintext data (see Section 3 for a detailed description). Jager and Somorovsky’s
attack directly decrypts the cdata component of the ciphertext to obtain the
plaintext. In contrast, the attacks presented in this paper break the public-key
encryption part ckey , to recover the ephemeral key first. The ephemeral key can
then be used to decrypt cdata with the symmetric decryption algorithm. This
novel approach has two interesting features. First, it is independent of the sym-
metric cipher, so it can also be used to attack XML Encryption ciphertexts that,
according to the updated specification, are generated in GCM mode. Second, the
attack complexity is independent of the size of cdata, and thus becomes more effi-
cient than [11] for large cdata. Finally, it allows to recover the session key instead
of only the plaintext, which may in certain scenarios be more serious.

Bleichenbacher’s attack [3] on PKCS#1 v1.5 [15] has been published at
CRYPTO 1998. This attack has been applied by Klima et al. to popular real-
world implementations of the SSL protocol by incorporating an additional side-
channel which was a version number check over PKCS#1 plaintext [17]. In [1]
Bardou et al. describe several ways to improve the efficiency of Bleichenbacher’s
attack. At Crypto 2001 Manger [18] has presented an attack on Version 2.0 of
PKCS#1 (RSA-OAEP) [16] which is very similar to Bleichenbacher’s attack, and
applicable to the current Version 2.1 [14] as well. Bauer et al. [2] have shown that
PKCS#1 v1.5 is insecure in two non-standard (but realistic) settings, namely
broadcast encryption and IND-CPA security in presence of a plaintext validity
checking oracle. Smart [23] shows how to apply a Bleichenbacher-style attack
to break RSA-based PIN encryption, if a certain side-channel oracle is given.
Very recently, Degabriele et al. [4] gave another Bleichenbacher-style attack that
allows to forge signatures in an EMV transaction. Both these attacks are rather
theoretical, since it is unlikely that the required oracle is given in practice.

In [20] it was noted that valid (symmetric-cipher) padding may lead to a side-
channel that allows to mount Bleichenbacher’s attack, but without additionally
exploiting the plaintext-malleability of the symmetric cipher or giving any con-
crete application. In contrast, we obtain an oracle which is able to determine
wether a given ciphertext is PKCS#1 v1.5-conformant with probability 1 in at
most 256 steps, and show that this attack is practically relevant.

Generally, we give a truly practical attack which is directly applicable to a
vast number of real-world systems. This shows that using legacy cryptosystems
is extremely dangerous, and makes a very strong case for replacing them.
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Responsible disclosure. In June 2011 we disclosed our attack to the W3C
XML Encryption working group, several developers of well-known Web Ser-
vices frameworks, and a governmental CERT. All acknowledged the validity
of the attack. The W3C XML Encryption working group added a remark to
the updated standard [5, Section 6.1.2] which addresses our attack and recom-
mends to use PKCS#1 v2.1 (aka. RSA-OAEP) instead. However, PKCS#1 v1.5
is still contained in the standard, and mandatory for any standard-compliant
implementation.

We have also informed the developers of the JWE implementation and the
whole JOSE (JSON Object Signing and Encryption) working group about the
possible threats.2 They acknowledged our attack and are reconsidering exclusion
of PKCS#1 v1.5 from the standard.

2 Bleichenbacher’s Attack

When referring to PKCS#1 in the sequel, then we mean version 1.5, unless
specified otherwise. Bleichenbacher’s attack [3] on version 1.5 of the PKCS#1
encryption standard [15] exploits properties of the encoding of messages. It re-
quires an attacker who has gained access to an encrypted message and who
can send chosen ciphertexts to an “oracle” to determine whether a ciphertext is
PKCS#1-conformant. Such an oracle may in practice be given for instance by a
server responding with appropriate error messages. We let (N, e) be an RSA [22]
public key, with corresponding secret key d. We denote with � the byte-length
of N , thus, we have 28(�−1) < N < 28�.

PKCS#1 v1.5 Padding and Encryption. The basic idea of PKCS#1 v1.5 is to
take a message k (a bit string), concatenate this message with a random padding
string PS, and then apply the RSA encryption function m �→ me mod N .

Let us describe the padding in more detail. In the following, let a||b denote
the concatenation of two bit strings a and b. Suppose a message k of byte-length
|k| ≤ �− 11 is given. This string is encrypted as follows.

1. Choose a random padding string PS of length � − 3 − |k|, such that PS
contains no 00-byte. Note that the byte length of PS is at least |PS| ≥ 8.

2. Set m := 00||02||PS||00||k. Interpret m as an integer such that 0 < m < N .

3. Compute the ciphertext as c = me mod N .

The decryption algorithm computes m′ = cd mod N and interprets integer
m′ as a bit string. It tests whether m′ has the correct format, i.e., m′ =
00||02||PS||00||k. If true, it returns k, otherwise it rejects the ciphertext.

In this paper we say that a ciphertext c ∈ ZN is valid (PKCS#1 conformant),
if the m = cd mod N has the format m = 00||02||PS||00||k. Note that this
implies in particular that 2B ≤ (cd mod N) < 3B, where B = 28(�−2).

2 See http://www.mail-archive.com/jose@ietf.org/msg00157

http://www.mail-archive.com/jose@ietf.org/msg00157
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A Ciphertext-Validity Oracle. The only necessary prerequisite to execute Ble-
ichenbacher’s attack is that an oracle O is given which tells whether a given
ciphertext is valid (PKCS#1 conformant) w.r.t. the target public key (N, e).
This oracle takes as input a ciphertext c and responds as follows.

O(c) =

{
1 if c is PKCS#1 conformant w.r.t. (N, e),

0 otherwise.

Such an oracle may be given in many practical scenarios, for instance by a
web server responding with appropriate error messages. We will show how to
construct such an oracle based on properties of XML Encryption.

Bleichenbacher’s Algorithm. In this section we sketch the idea of Bleichen-
bacher’s algorithm, which uses the PKCS#1 validity oracle to invert the RSA
encryption function m �→ me mod N . We give only a high-level description of
the attack, and refer to the original paper [3] for details.

Suppose c = me mod N is given. We assume that c is PKCS#1 conformant.
Thus, m = cd mod N lies in the interval [2B, 3B). Bleichenbacher’s algorithm
proceeds as follows. It chooses a small integer s (see [3] for details on how s is
chosen), computes

c′ = (c · se) mod N = (ms)e mod N,

and queries the oracle with c′. If O(c′) = 1, then the algorithm learns that
2B ≤ ms− rN < 3B, for some r, which is equivalent to

2B + rN

s
≤ m <

3B + rN

s
.

Thus, m must lie in the interval m ∈ [,(2B + rN)/s- , &(3B + rN)/s'). By it-
eratively choosing new s, the adversary reduces the possible solutions m, until
only one is left.

For a 1024-bit modulus and a random ciphertext, the analysis in [3] shows that
the attack requires about one million oracle queries to recover a plaintext, plus
a small amount of additional computations. Therefore, Bleichenbacher’s attack
became also known as the “Million Question Attack”. The most time-consuming
step of the algorithm is to find the first value s such that O((c · se) mod N) = 1.

We note that very recently Bardou et al. described improvements to Ble-
ichenbacher’s algorithm by Bardou et al. [1], which are applicable in our case
as well.

3 Web Services

This section summarizes the fundamentals of XML, XML Security, and Web
Services, which are relevant to our paper. The reader familiar with these concepts
can safely skip this section.
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XML and Web Services. Web Services is a W3C standard [9] developed to sup-
port interoperable interactions over networks between different software applica-
tions. Thereby, the communicating applications use SOAP messages [8]. SOAP
messages are XML-based messages generally consisting of header and body. The
header element includes message-specific data (e.g. timestamp, user information,
or security data). The body element contains function invocation and response
data, which are mainly addressed to the business logic processors.

As the XML documents often contain data whose confidentiality and integrity
must be protected, the W3C consortium developed standards describing the
XML syntax for applying cryptographic primitives to XML data. These are
specified in the XML Encryption [6] and XML Signature [7] standards.

XML Encryption. In order to encrypt XML data, in most scenarios hybrid en-
cryption is used, i.e. encryption proceeds in two steps.

1. The encryptor chooses a session key k. This key is encrypted using a public-
key encryption scheme.

2. The actual payload data is then encrypted with a symmetric cipher.

The XML Encryption standard [6] specifies two public-key encryption schemes,
namely PKCS#1 in Versions 1.5 and 2.0. Both are mandatory. Furthermore,
the updated version of the standard allows to choose between three symmetric
ciphers, namely AES-CBC, AES-GCM, and 3DES-CBC.

cdata

ckey

Fig. 1. Example of a SOAP message with encrypted data

Figure 1 gives an example of a SOAP message containing such a hybrid
ciphertext. This message consists of the following parts:

1. The EncryptedKey part (ckey). The CipherValue element contains the en-
crypted session key.

2. The EncryptedData part (cdata). The CipherValue element contains the
payload data, encrypted using the key encapsulated in ckey . The symmetric
cipher is specified in the EncryptionMethod element.
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Decryption processing and parsing. AWeb Service processes such an XML
document as follows. It parses the document to locate ckey and cdata. It decrypts
ckey to obtain the session key k. Then it uses k to decrypt cdata to obtain the
payload data. Finally, the payload data is parsed as an XML document.

Padding in CBC. XML Encryption prescribes usage of block ciphers, namely
AES or 3DES. Therefore the payload data being encrypted needs to be padded
to achieve a length which is a multiple of the cipher’s block-size bs of the applied
block cipher. XML Encryption specifies the following padding scheme:

1. Compute the smallest integer p > 0 such that |data|+p is an integer multiple
of bs.

2. Append (p− 1) random bytes to data.
3. Append one more byte to data, whose integer value equals p.

Let us give an example. Suppose a block-size of bs = 8 and payload data con-
sisting of |data| = 5 bytes, e.g.

data = 0x0101010101.

Then we have p = 8− 5 = 3. Thus, the padded payload data would be equal to

data = 0x0101010101????03,

where the ?? are arbitrary random bytes.

Cipher Block Chaining. Cipher-block chaining (CBC) [19] is the most pop-
ular block cipher mode-of-operation in practice. The XML Encryption standard
allows to choose between CBC and GCM mode, both are mandatory. For our
application it suffices to describe CBC, but we stress again that both attacks
that we present in this paper apply to ciphertexts generated in GCM mode as
well.

Suppose a byte string data, whose length is an integer multiple d · bs of the
block-size of the block cipher (Enc,Dec). Let us write data = (data(1), . . . , data(d))
to denote individual chunks of data of size bs. These chunks are processed as
follows.

– An initialization vector iv ∈ {0, 1}8·bs is chosen at random. The first cipher-
text block is computed as

x := data(1) ⊕ iv, C(1) := Enc(k, x). (1)

– The subsequent ciphertext blocks C(2), . . . , C(d) are computed as

x := data(i) ⊕ C(i−1), C(i) := Enc(k, x) (2)

for i = 2, . . . , d.
– The resulting ciphertext is C = (iv, C(1), . . . , C(d)).
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Web Services Frameworks. The rising popularity of Web Services in the recent
years led to an emergence of many Web Services frameworks [12,25,26]. A very
popular example is the widely-used Apache Axis2 framework.We will execute the
bulk of our experimental analyses on Axis2, therefore we describe this framework
in more detail.

Apache Axis2 is a Java-based open source framework for deploying Web Ser-
vices servers and clients. The framework includes several modules implementing
various Web Service specifications, such as Apache Rampart. This module en-
ables to utilize XML Encryption. When receiving a SOAP message containing
encrypted data, Axis2 locates ckey and cdata in the XML document structure.
In order to decrypt ckey , Axis2 performs the PKCS#1-validity checks described
in Section 2. In addition, Axis2 tests whether the resulting session key k has a
length equal to 16, 24, or 32 bytes. If this fails, then the SOAP error message
security processing failed is returned. Otherwise, key k is used to decrypt
cdata, which yields the payload data data. Finally, data is parsed as an XML mes-
sage. If this parsing fails, a security processing failed SOAP error message
(i.e., the same error message that is returned if decryption of k fails) is returned.
Otherwise, it is forwarded to the next module in the processing chain or to the
business application

Now, assume we are given a ciphertext (ckey , cdata), and we modify the key
encapsulation part ckey (this is necessary to mount Bleichenbacher’s attack).
Then we obtain a modified ciphertext (c′key , cdata). If we send this ciphertext
to the Web Service, then we will receive a security processing failed error
message, since either processing of c′key or parsing of the payload data contained
in cdata will fail (except for a negligibly small probability). Thus, we are not
able to distinguish whether c′key is a valid or an invalid ciphertext. This seems
to thwart Bleichenbacher’s attack on the first sigh. However, in the next section,
we will describe techniques for exploiting side-channels allowing us to determine
the validity of c′key .

Remark 1. Though we analyze mainly Apache Axis2, and thus strictly speaking
all our experimental results are only valid for Axis2, we stress that the attacks
described below are in principle applicable to other frameworks as well (e.g. for
SAP). Moreover, as we describe in the full version [10] in detail, it turns out that
exploiting certain additional framework-specific side-channels may even lead to
dramatically more efficient attacks.

4 Attacks

Imagine an attacker who intercepts a message transferred to the Web Service
server and whose goal is to decrypt cdata. In order to gain the session key k
needed for data decryption, the attacker can apply the Bleichenbacher’s attack
on ckey . In this section, we describe two ways to obtain a side-channel that allows
to determine whether a given ciphertext is valid (PKCS#1 conformant), even
though the server does not respond with error messages allowing to distinguish
valid from invalid ciphertexts. Thus, we turn a seamingly secure Web Service
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server into an oracle O responding with 1, if the decrypted k is valid, or 0
otherwise. Note that the stateless SOAP message exchange allows us to send an
arbitrary amount of requests.

Basic Ideas. Let us first sketch our ideas on a high level. The first idea is to ex-
ploit the fact that the server decrypts and parses the payload data if and only if
ckey is valid. Recall that in principle it is not possible to mount Bleichenbacher’s
attack, since we need to modify ckey in a way that decrypting and parsing cdata
fails, and thus we receive the same security processing failed error message
in both cases. However, since cdata decryption is executed if and only if ckey is
valid, the time between sending the ciphertext and receiving the error message
depends on the validity of ckey . Therefore, we can create a Bleichenbacher oracle
by measuring this response time. In practice, this does not always form a prac-
tically useful side-channel, since timing measurements in real networks contain
jitter introduced by network latency or server workload.

However, here it comes in handy, that the attacker can set cdata to any bit
string whose length is an multiple of the block-size of the block cipher. Thus,
by increasing the length of cdata, the attacker can also increase the timing gap
between a valid and an invalid ckey . The challenge is to keep cdata as small as
possible (to keep the attack efficient), but as large as necessary (to get distin-
guishable timing results).

In certain scenarios, the timing approach may become inefficient, for instance
if the server workload is extremely unbalanced, or the network connection is not
reliable. Therefore we describe a second idea, which exploits a weakness of the
CBC mode. Consider a ciphertext encrypting a single (padded) payload data
block data(1). Recall that such a ciphertext consists of an iv and a ciphertext
block C(1) := Enc(k, x), where x := data(1) ⊕ iv. Thus, by flipping bits in iv, we
can implicitly flip bits in the plaintext data(1). In particular, we can modify the
last byte of data(1), which contains the number of padding bytes. The crucial
observation is now, that there exists one modified iv′ such that the last byte
of data(1)

′
= x ⊕ iv′ equals the block-length of the block cipher. In this case,

(iv′, C(1)) corresponds to an encryption of the empty string, and XML parsing
of the empty string does not fail. We use this property to distinguish a valid
from an invalid ckey .

In the following sections, we describe how to use these ideas to construct an
oracle O telling whether a given ckey is valid. This oracle can then be used to
mount Bleichenbacher’s attack.

Timing Attack. In this section, we describe a timing oracle Ot that determines
if a given ckey is valid. Our observation is that the analyzed Web Service only
then decrypts cdata if ckey is valid. Furthermore, parsing of the clear text does not
start until cdata was fully decrypted, i.e. filling cdata with random data will yield
a parsing error after the decryption has completed, except for some negligible
probability. Another observation is that a larger cdata leads to measurably longer
decryption times as depicted in Figure 2. This combination makes our attack
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Fig. 2. Timing difference of valid ckey and invalid ckey in relation to the size of cdata,
which was decrypted using AES-CBC

well suited for timing attacks across noisy networks, because the attacker can
increase the timing differences by changing the size of cdata. Note that the actual
content of cdata is irrelevant, only the size is important for the timing delay. In
our experiments we enforced Axis2 to decrypt cdata using AES-CBC. Note that
3DES-CBC would bring even larger timing differences because the decryption
process in 3DES is less efficient than AES, which would make our attack easier.

By nature, the timing measurements in an adaptive chosen ciphertext attack
need to be evaluated during the attack because subsequent requests depend
on the answer of the timing oracle of the previous request. We propose a new
algorithm which allows this. The algorithm exploits the facts that valid keys
have a longer processing time than invalid keys and that any noise in the form
of random delays that occur in networks and busy systems is strictly additive.
Intuitively, the algorithm determines the minimum response time tmin for valid
keys. Any measured response time t < tmin must be from an invalid key. We call
a key a candidate for a valid key if the associated response time is above tmin .
To make sure that this candidate is not actually an invalid key with the random
noise pushing it above the timing boundary, we repeat the timing measurement
with this key i times, resulting in a set of measurements Tckey

= 〈t1, t2, . . . , ti〉.
If any of the repeated measurements is below the boundary, the key is marked as
invalid. Note that the attacker can freely choose the size of the timing differences
of valid and invalid keys by adjusting the size l of cdata. Equation 3 formally
defines the timing oracle.

Ot(ckey , l) =

{
1 if min(Tckey

) ≥ tmin,
0 if ∃t ∈ Tckey

: t < tmin,
(3)

The algorithm is split into two phases: First, there is a calibration phase, where
the particular timing conditions of the system are determined. The result of this
phase is tmin, which is fed to the timing oracle in the second phase.

Calibration Phase. The oracle can determine if a given ckey is valid by measuring
the response time of a request that uses this particular key. Thus, the oracle must
be calibrated so that it can distinguish the response time of a valid ckey from
an invalid ckey . For this, we perform i requests with a valid ckey and record the
set of timings Tvalid = 〈t1, t2, . . . , ti〉. Note that the attacker already has one
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def is_valid(c_key, n):

do n times:

start = now()

request(c_key, l)

end = now()

t = end - start

if t < t_min:

return 0 // "invalid"

return 1 // "valid"

Fig. 3. Pseudo code sketching the validation routine of candidates of valid keys

valid ckey from the message he listened in to. Let tmin = min(Tvalid)− ε where
ε accounts for the fact that min(Tvalid) is only an approximation for the actual
minimum response time t′min of valid keys, because t′min ≤ tmin.

We assume at this stage that the response times for valid and invalid keys
remain stable during the attack phase, i.e. tmin remains the lower boundary for
response times with valid keys for the duration of the attack. If this assump-
tion does not apply for a given system, the attacker can regularly repeat the
calibration phase to address fluctuations of tmin.

Attack Phase. Now that Ot is calibrated, the attacker can apply the Bleichen-
bacher algorithm. Figure 3 describes the procedure of Ot. The Bleichenbacher
algorithm calls Ot and passes ckey as a parameter. The oracle copies ckey in a
SOAP message, sends it to the server and measures the response time t. The or-
acle answers with 0 if t < tmin. It repeats the measurement n times if t ≥ tmin to
confirm that ckey is indeed valid.3 The oracle answers with 1 if all measurements
resulted in greater response times than tmin.

Exploiting a Weakness of CBC. In this section we describe another attack
on ckey , which is based on the properties of the CBC mode of operation. As
described in the previous sections, Axis2 processes XML Encryption as follows.
It first decrypts ckey . Afterwards, it uses the decrypted session key k to decrypt
cdata. If an error during the decryption occurs, Axis2 returns an error message
that reads security processing failed. There are several possible causes for
this error:

– ckey decryption: the decrypted ckey was invalid
– cdata decryption: the decrypted data from ckey was valid, but the cdata de-

cryption or padding processing failed.
– data parsing: cdata was correctly decrypted and padded, but it contained non-

printable characters (e.g. NULL or vertical tab) or a badly placed special
character (< or &).

So from this error message, the attacker only then knows that ckey is valid if all
steps including parsing completed successfully. Therefore, the attacker must find

3 We used n = 100 in our measurements.
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a way to construct well-formed data that will be parsed successfully. To construct
well-formed data, we create cdata consisting of two randomly generated 16 bytes
long blocks cdata = (iv , C(1)). Then we submit the ciphertext (ckey , cdata) to
the Web Service, claiming that cdata is generated in CBC mode. The latter
is possible by simply adjusting the metadata of an XML document containing
encrypted parts. The decryption module first decrypts the C(1) block resulting
in: x = Deck(C

(1)). The result of decryption x is afterwards XORed with the
initialization vector iv , so that the plaintext block becomes data(1) = iv⊕x. The
last byte of data(1) is taken as a padding byte and the padding is applied. Again,
if the padding byte is not valid or the unpadded bytes result in non-printable
characters, an error is returned.

To overcome this problem one can iterate over all the byte values in the last
byte of the initialization vector iv and construct 256 different iv’ values. As
flipping a bit in iv implicitly changes the corresponding bit in the data(1) block,
one can iteratively modify the value of the last byte in data(1)

′
. Thereby exactly

one pair (iv ′, C(1)) results in a valid padding byte 0x10, which pads the whole
plaintext block. As this special plaintext is empty (0 bytes in length), parsing
always succeeds. In this case, the message is passed to the next module in the
Axis2 processing chain. Note that errors in other modules result in different error
messages.

We can use these observations for constructing an oracle which returns 1 or 0,
depending on the validity of the given ckey . For each tested ckey , the CBC-oracle
Ocbc needs to send at most 256 requests with different iv′ values, As shown in
Equation 4, if Axis2 responds with a security processing failed error for a
given ckey and all possible values of iv , then Ocbc returns that ckey was invalid.

Ocbc(ckey) =

{
1 if ∃iv16 ∈ {0, 1, . . . , 255} : Dec(ckey , iv) = ”no error”
0 if ∀iv16 ∈ {0, 1, . . . , 255} : Dec(ckey , iv) = ”error”

(4)

Why this attack cannot be prevented by the classical countermeasure against
Bleichenbacher’s attack. The classical countermeasure against Bleichenbacher’s
attack is to let the decryption algorithm return a random key k, if ckey is invalid,
and then to proceed as if ckey was valid.

A first obvious drawback of this countermeasure is that the system has to
proceed with the random key even if it knows that this key is invalid. This may
lead to data inconsistencies at the receiver side.

Even worse, it turns out that this countermeasure cannot prevent our CBC-
based attack. Note that if ckey is valid, then among all 256 initialization vectors
chosen by the attacker theremust exist at least one iv such that cdata = (iv , C(1))
returns no error. In particular, if the attacker submits a ciphertext cdata that
decrypts to well-formed XML repeatedly to the Web Service, then it will always
respond that the ciphertext is valid. In contrast, if ckey is invalid, and a random
key k0 is chosen by the Web Service for further processing, then even if the
Web Service responds once that the tuple c = (ckey , cdata) is decrypted into
well-formed XML for k0, then the attacker can resubmit the same c to the Web
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Service. Again, another random key k1 �= k0 will be chosen for further processing,
and it is unlikely that the same c will decrypt to well-formed XML for k0 and k1
simultaneously. By repeating this procedure, the attacker can easily determine
whether ckey is valid with probability close to 1.

5 Experimental Analysis

In this section, we describe the results of our practical experiments. The timing-
based and padding-based attacks were carried out using “good” ciphertexts.
We did this to speed up our experiments, which was necessary due to limited
computational resources. However, a heuristical analysis shows that it is very
likely that a random ciphertext (e.g., encrypting a cryptographic key with correct
padding) meets this property: for a 1024-bit modulus a fraction of about 1/80
of all ciphertexts is good in the above sense.

We stress that all timing figures derived from our experiments are valid only
for this 1/80 fraction of all PKCS#1 ciphertext, which is however still a signif-
icant number. We also note that Bleichenbacher’s attack in principle allows to
decrypt any ciphertext, but for a 79/80 fraction the running time of the attack
will be longer. However, we stress that it is possible to test whether a given
ciphertext is good, by issuing at most N/(3B) − N/(2B) = N/(6B) ≈ 10, 000
oracle queries.

In order to evaluate our attacks, we deployed a Web Service secured with XML
Encryption and generated a valid SOAP message containing ckey in the SOAP
header. This element included a symmetric key for cdata decryption encrypted
with a 1024 bit RSA key. The results of the timing-based and padding-based
attacks shown here were all performed against Axis2. Please note that we also
got similar results when testing our attack against the other mentionend XML
Encryption implementations and other RSA key sizes.

Probability of “Good” Ciphertexts. The first step of Bleichenbacher’s
algorithm searches for an integer s such that m · s mod N is PKCS#1 v1.5
conformant. Note that m · s mod N can only be PKCS#1 conformant, if

i ·N
3B

≤ s ≤ i ·N
2B

for some i ∈ N. Therefore the Bleichenbacher algorithm starts with s = N/3B
and increments this value until a suitable s is found. Clearly, this procedure finds
s quickly, if m has the property that there exists an s such that

1 ·N
3B

≤ s ≤ 1 ·N
2B

and m · s mod N is PKCS#1 conformant. Moreover, in our application we will
only be able to learn that a ciphertext c = (ms)e mod N is PKCS#1-conformant,
ifms mod N has the formms mod N = 00||02||PS||00||k, where the byte-length
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of k is equal to 16, 24, or 32. In the sequel, we will say that a ciphertext is a
good ciphertext, if it satisfies these properties.

In order to save computation time, all our experiments were executed with
random good ciphertexts. Thus, all our experimental results are meaningful only
if the probability that a honestly generated ciphertext meets the above property
is sufficiently high. This leads us to the question what is the probability that a
real-world ciphertext is good?

We ran some additional experiments in order to determine the probability that
a random ciphertext is good. To this end, the algorithm depicted in Figure 4 was
implemented.

We repeated this algorithm 100 times, i.e., we generated 100 random moduli,
and tried � = 1, 000 padded plaintexts for each modulus, such that in total
100,000 plaintexts where tested. Among these 100,000 plaintexts there were 1,543
padded plaintext that lead to good ciphertexts. Thus, about each 80-th ciphertext
is good.

Timing-Based Attack. We used the RDTSC assembler instruction of re-
cent Intel Pentium processors to measure the timings with below nanosecond
accuracy.

Attack on Local Machine. In this measurement setup, we run the Axis2 server
and the attack script on the same computer. This is a very practical attack
scenario, e.g. in cloud computing and especially in a Platform as a Service,
where it is feasible for an attacker to rent a virtual machine that is co-located
on the same physical hardware [21] as the victim.

The measurement computer had 2 Intel XEON 2.4 GHz processors. Figure 5a
shows the response times measured during the calibration phase with 100KB
cdata ciphertext and a ckey encrypted with an 1024 bit RSA key. The solid line
denotes valid requests, the dashed horizontal line marks the learned boundary
and the dotted line indicates invalid requests. When compared to the learned
timing boundary tmin, it becomes clear that most invalid requests are below

1. Generate a random 1024-bit RSA modulus N . Set c = 0.
2. For i from 1 to 
 do:

– Choose a random bit string k
– Pad k according to PKCS#1 v1.5, such that

m = 00||02||PS||00||k

– If there exists s ∈ [N/3B,N/2B] such that
• m · s mod N is PKCS#1-conformant,
• ms mod N = 00||02||PS||00||k,

with |k| ∈ {16, 24, 32},
then set c = c+ 1.

Fig. 4. Experimental analysis of the distribution of “good” ciphertexts
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Fig. 5. Response times with valid and invalid ckey

tmin. Any request above tmin is treated as a candidate for a valid request and
repeated n times for confirmation. The figure suggests that only few invalid
requests slipped above tmin leading to a repetion of the request.

As a result, ckey could be reconstructed successfully in 200 minutes. Overall,
the 321,870 oracle queries resulted in 398,123 queries in our measurement setup,
i.e. the oracle needs to perform 1.24 actual Web Service requests per oracle
query. On our hardware, we could perform on average 37 Web Service requests
per second.

Attack through Internet. Additionally, we evaluated the effectiveness of the tim-
ing oracle for a remote attacker who attacks the Web Service through the Inter-
net. For this measurement setup, we chose two Planetlab nodes at universities.
The nodes were seven hops apart from each other and the round trip time was
approximately 22 milliseconds.

We calibrated the valid/invalid boundary of the timing oracle as shown in
Figure 5b and used 1,000KB of random data as cdata. In this configuration,
the oracle correctly answers approximately 2,000 queries per hour and needs to
perform approximately 2,400 actual Web Service requests to the server.
Thus, an attacker can learn ckey remotely across practical networks in less than
one week.

Padding-Based Attack. As the padding-based attack does not depend on
the network connection, we tested its functionality on the localhost. The attack
execution took less than five days, the attacker sent about 322,000 oracle queries,
which resulted in 82,180,000 (≈ 256 ∗ 322, 000) total server requests.
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Abstract. Password managers are critical pieces of software relied upon
by users to securely store valuable and sensitive information, from online
banking passwords and login credentials to passport- and social security
numbers. Surprisingly, there has been very little academic research on
the security these applications provide.

This paper presents the first rigorous analysis of storage formats used
by popular password managers. We define two realistic security models,
designed to represent the capabilities of real-world adversaries. We then
show how specific vulnerabilities in our models allow an adversary to
implement practical attacks. Our analysis shows that most password
manager database formats are broken even against weak adversaries.

1 Introduction

As the number of services offered on the Internet continues to increase, the num-
ber of passwords an average user is required to remember increases correspond-
ingly, to the point where it is no longer feasible for most people to remember a
new, strong password, for every account.

Users typically solve this problem in one of two ways. A common solution is to
reuse the same password on many different websites [1]. This approach increases
the potential damage if a password is stolen, cracked, or if a service that has
access to it is compromised, since the attacker will be able to reuse it on all
online services that share the password. Another approach is to use a “password
manager” to store strong (random) passwords for each site. A password manager
is a piece of software that requires a user to remember a single strong master
password, used to decrypt the password manager’s database. Remembering a
single master password is much more feasible for users, who still get the security
benefits of using a different password for each online service.

Using a password manager has other potential benefits. Full URLs (or at least
domain names) of are typically stored alongside the corresponding passwords,
and used to fill login form automatically. As such, users who rely on password
managers are less susceptible to typo-squatting and phishing attacks [2,3]: even
if a user is directed to a malicious website that is designed to look identical to
the website the user expects, the password manager will not log in automatically,
providing an extra layer of protection.

S. Foresti, M. Yung, and F. Martinelli (Eds.): ESORICS 2012, LNCS 7459, pp. 770–787, 2012.
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Due to the sensitivity of the information typically stored in password
databases, most password managers protect their content from unauthorized
access. Database formats typically rely on encryption for data protection, where
the encryption/decryption key is generated from a master password entered by
the user.

This protection is also often designed to allow users to store the password
manager database on untrusted storage. Several producers of password managers
suggest storing password databases on USB sticks [4–6], in the cloud [7,8] or on
mobile devices [9–11], to allow convenient access to stored passwords. These
storage options however, can also enable potential attackers to get hold of the
database. Even when a password database is stored on a local hard drive, it may
be possible for an attacker to obtain a copy through other means.

If the password manager database format is insecure, then all the advantages
of a good password manager are wasted and the user may actually be less secure
and more susceptible to, e.g., leakage of private information: privacy-conscious
users may want to keep their browsing habits private and therefore delete cookies,
history and cache often. On the contrary, password managers represent long-term
storage facilities, storing (ideally) the only copy of passwords, and therefore their
content is typically never deleted. If a password manager database leaks informa-
tion about browsing habits, e.g., by storing URL’s unencrypted, then clearing the
cache and browsing history does not prevent an attacker from learning sensitive
information.

In this paper we analyze the security provided by the database formats of
some of the most poplar password managers in use at the moment. We define
two different adversaries: a passive attacker that only tries to infer information
from a password database, and an active attacker that modifies the content
or meta-data. We highlight that using “industry standard practices”, such as
AES-CBC, is not enough to obtain a secure database format, even assuming the
implementation of AES-CBC is correct. Note that we do not attempt to provide
an exhaustive list of all possible attacks on all password managers. Rather, we
model the security provided by common password manager database formats
and provide examples of practical attacks.

The rest of this paper is organized as follows: Section 2 provides a brief
overview of password managers used in our study; Section 3 introduces our
system- and attacker models, while Section 4 analyzes the various database for-
mats in such models. In Section 5 we discuss various general issues regarding
database formats, and Section 6 covers related work. We conclude in Section 7.

2 Overview of Password Managers

Password managers differ in many aspects, including database format, function-
ality, availability of source code, supported platforms and access to cloud storage.
Table 1 summarizes the main features of the password managers we considered.
Some popular password managers invent their own database format, used ex-
clusively by them. This is especially true for the password managers embedded
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Table 1. This table shows the password managers that where analysed in detail, along
with the database format used by the software, the storage options available and the
platforms supported. In addition we indicate whether the source code is available and
whether the password manager is integrated with a browser.

Password Database Open Browser
Manager Format Storage Source Platform Integration

Google Chrome [12] Chrome local/cloud � Win/Mac/Linux �
Mozilla Firefox [13] Firefox local/cloud � Win/Mac/Linux �
Internet Explorer [14] MSIE local × Win �
1Password [9] 1Password local/cloud × Win/Mac �
KeePass 1.x [15] KDB local � Win ×
KeePass 2.x [15] KDB/KDBX4 local � Win/Mono ×
KeePassDroid [11] KDB/KDBX4 local � Android ×
KyPass [10] KDB/KDBX4 local � iOS ×
PassDrop [16] KDB/KDBX4 local × iOS ×
PINs [17] PINs local × Win ×
Password Safe [18] PasswordSafe local � Win ×
Password Gorilla [19] PasswordSafe local � Win/Mac/Linux ×
Roboform [20] Roboform local/cloud × Win/Mac/Linux �

in major browsers. We include these in our analysis because these password
managers are widely used [21]. Several stand-alone password managers share
the same database format, so even though each password manager provide a
different experience to the user, the underlying storage format is the same.

In the rest of this paper focus solely on database formats and the security they
provide, rather than on each password manager implementation. We assume that
the password managers themselves correctly implement what the format specifies.
As such, we do not consider, e.g., side channel attacks on the cryptographic
primitives, or other attacks against the implementation. Rather we investigate
the best possible security achievable given a specific storage format. For this
reason our analysis focuses primarily on password managers that provide local
storage, at least as an option. We leave the analysis of “cloud-only” password
managers to future work.

We investigate nine popular password database formats. Three database for-
mats used by in-browser password managers: Google Chrome, Mozilla Firefox
and Microsoft Internet Explorer; and six formats used by a large number of
stand-alone password managers: 1Password, KDB, KDBX4, PasswordSafe v3,
PINs and RoboForm (refer to Table 1.)

3 Adversary and System Model

We consider two efficient adversaries: Advr who has read access to the password
database, and Advrw who has read-write access. The goal of both adversaries is
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to extract as much information as possible and, for Advrw, to produce a database
that (1) was not created by the user and (2) once opened, will not trigger any
warning or error message from the password manager. Clearly, Advrw is strictly
stronger than Advr: any attack that can be performed by Advr is also available to
Advrw. Both adversaries are allowed to gather multiple snapshots of the database
at different points in time, in order to detect modifications in the database
content.

We emphasize that our analysis does not rely on any modification of the
user environment, e.g., tampering with the password manager code or installing
a key logger. We focus solely on the security provided by the password man-
ager databases, when the password manager software is operated in the “most
secure” setting provided. We assume that users choose a strong, high-entropy,
master password and that all underlying cryptographic algorithms (e.g., encryp-
tion, MAC, etc.) are properly implemented. Additionally, we assume that no
additional mechanisms are in place to prevent file tampering. This allows us to
compare the security offered by the database formats themselves.

3.1 Untrusted Storage

Consider an adversary who has full access to an encrypted password database,
and is able to record different versions of it. Such an adversary can clearly use
any of the recorded versions to replace the current database, as long as the
master password did not change. This is essentially a replay attack that applies
to both cloud-based- and local database formats.

The security notions we define below do not capture this attack, nor do we
attempt to address it in any other way. In order to protect against it, a password
manager must maintain some local state (e.g., a hash of the latest version of the
encrypted database) on a trusted medium. As such, while this attack is clearly
relevant when a password database is stored on the cloud or on an unattended
USB drive, it cannot be mitigated by the database format alone. Therefore we
exclude it from our analysis.

3.2 Security Definitions

We model password managers by defining four algorithms that represent various
functionalities: Setup, Create, Open and Valid. These algorithms are defined as
follows:

Definition 1. A password manager PM consists of the following efficient al-
gorithms: Setup(·) a probabilistic algorithm that, given a security parameter 1κ,
outputs a master password mp; Create(·, ·) a probabilistic algorithm that, on in-
put mp and a set of triples RS = {(r1, n1, v1), . . . , (r�, n�, v�)} (which represents
a record-set), outputs a database DB; Open(·, ·) a deterministic algorithm that,
given mp and a database DB, outputs the record-set RS encoded in DB if RS is
a valid record-set, i.e, there exist DB′ such that DB′ ← Create(mp,RS), and ⊥
otherwise; and Valid(·, ·) a deterministic algorithm that takes as input a master
password mp and a database DB and returns 1 if Open(mp,DB) �=⊥.



774 P. Gasti and K.B. Rasmussen

In practice, Valid is implemented by password managers within the Open func-
tionality: if validation fails, the password manager returns an error rather than
the database content.

We also define two new games, which we call indistinguishability of databases
game (IND-CDBA) and malleability of chosen database game (MAL-CDBA). The
former captures the capabilities of a realistic passive adversary, i.e., an adversary
that has read-only access to a password database. The latter models and active
adversary, which is allowed both read and write access to a password database.

Game 1 (Indistinguishability of databases game IND-CDBAAdvr ,PM(κ)).
A challenger Ch running PM interacts with Advr in as follows:

– Ch runs mp← Setup(1κ).
– Advr outputs two record-sets RS0, RS1

– Ch selects a bit b uniformly at random and the database DBb ←
Create(mp,RSb) is returned to Advr.

– Advr eventually outputs bit b′; the game outputs 1 iff b = b′.

We say that Advr wins the IND-CDBA game if it can cause it to output 1.

Definition 2 (IND-CDBA security). A password manager PM = (Setup,
Create,Valid,Open) is IND-CDBA-secure if there exists a negligible function negl
such that, for any probabilistic polynomial time adversary Advr, we have that
Pr[IND-CDBAAdvr ,PM(κ) = 1] ≤ 1/2+ negl(κ).

For most database formats an attacker can trivially win the IND-CDBA game
by submitting two record-sets of different sizes. In practice, this corresponds to
the fact that the size of the database file is often roughly proportional to the
number of records in the database and therefore an adversarymay be able to infer
information by simply observing the size of an encrypted database. While we do
consider this a valid attack, we ignore it in the vulnerability analysis. Database
formats that are only vulnerable to this attack will be considered secure.

Appendix A shows the relationship between IND-CPA and IND-CDBA. In par-
ticular, it shows that IND-CPA-security implies IND-CDBA-security.

Game 2 (Malleability of chosen database game MAL-CDBAAdvrw,PM(κ)).
A challenger Ch running PM interacts with Advrw in the following way:

– Ch runs mp← Setup(1κ).
– Advrw adaptively outputs n record-sets RSi and receives, from Ch, the corre-

sponding databases DBi ← Create(mp,RSi).
– Advrw eventually outputs DB′; the game outputs 1 iff Valid(DB′) = 1 and
DB′ �= DBi for i ≤ n.

We say that Advrw wins the MAL-CDBA game if it can cause it to output 1.

Definition 3 (MAL-CDBA security). A password manager PM = (Setup,
Create,Valid,Open) is MAL-CDBA-secure if there exists a negligible function negl
such that, for any probabilistic polynomial time adversary Advrw, we have that
Pr[MAL-CDBAAdvrw,PM(κ) = 1] ≤ negl(κ).
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Our definition of MAL-CDBA security is equivalent to the notion of “existential
unforgeability” of ciphertexts, introduced in [22]. As shown in the same paper,
this security notion along with IND-CPA security implies IND-CCA security.

“Integrity of ciphertexts” [23] (also known as INT-CTXT security) is a re-
lated security notion. In particular, the main difference between MAL-CDBA
and INT-CTXT is that an adversary for INT-CTXT is also given access to the
Verify(mp, ·) oracle.

We argue that MAL-CDBA security (together with IND-CDBA security) is an
appropriate security notion for a password manager database format in practice.
Consider a database format that is not MAL-CDBA-secure, i.e., where Advrw can
compute the encryption of a record-set of its choice, and produce the correspond-
ing valid output DB′. This format would be vulnerable to the following four-step
attack:

(1) Advrw replaces Alice’s password database DB with a new database
DB′ containing the login credentials for an amazon.com account created
by Advrw. (2) Advrw now induces Alice to go to amazon.com, at which
point the password manager automatically logs into the account created
by Advrw. (3) Alice buys something; during checkout, Alice is requested to
add her credit card to the account; since she trusts amazon.com, she com-
plies. (4) Advrw now replaces DB′with Alice’s original password database.

Advrw is now in possession of an account which can be used to purchase goods
on Alice’s behalf. It is very hard for Alice to detect this attack; she does not
receive any warning from her password manager or from amazon.com, since the
database is well formed and the login information corresponds to an existing
account. Additionally, SSL/TLS does not help since Alice is communicating
with amazon.com. Furthermore, Alice may not even be able to find out which
username was used in the maliciously crafted account after the adversary restores
her original password database.

4 Database Format Vulnerabilities

We now present our analysis, which includes several database formats currently
in use by stand-alone and browser-based password managers. For each format,
we provide a short description of the relevant features and analyze its security
with respect to the security model defined in Section 3. If the format allows for
different levels of security, we analyze the most secure configuration.

4.1 Google Chrome

Format Description. Google Chrome stores usernames and passwords in an
SQLite database file in the user profile directory. This database provides neither
secrecy nor integrity.

Google Chrome can optionally store all browser preferences (including pass-
words) on Google’s servers to allow synchronization between different devices.

amazon.com
amazon.com
amazon.com
amazon.com
amazon.com
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Chrome’s support pages claim that passwords are stored in encrypted form on
Google’s servers [24].

Security Analysis. Any user with access to the database file can recover
all its content and make arbitrary modifications. As such, users cannot rely on
Chrome’s password manager for integrity or secrecy of their data, and should
implement additional security layers around it.

4.2 Mozilla Firefox

Format Description. Mozilla Firefox stores login data in an SQLite database.
Users can specify an (optional) master password that is used to encrypt the
database content. URLs are always stored unencrypted regardless of whether a
master password is used or not.

Since the database is part of Firefox’ user profile, it can be automatically
synchronized across multiple devices, either through Firefox Sync [25], manually
(e.g., using rsync [26]), or stored on a USB stick and used on different computers.

Security Analysis. Firefox does not provide an effective protection against
Advr. In order to win in the IND-CDBA game, Advr creates two same-size record-
sets RS0, RS1 which differ in at least one URL field. The encrypted database
DBb can be immediately identified since URLs are not concealed. In practice
that means that an attacker can learn a considerable amount of information,
such as the websites in which the user has password-protected access, and it can
mount effecting phishing attacks based on user information. Moreover, given two
different versions of the same database, the attacker can identify which entries
have been modified and their corresponding domain name.

Similarly, given any non-empty database DB an active adversary Advrw can
trivially win the MAL-CDBA game by building DB′ from DB replacing one or
more URLs with a different valid URL. Since the entries are not integrity pro-
tected, Firefox cannot detect such an attack. This can be used to mount a very
effective man-in-the-middle attack by replacing legitimate domain names with
fraudulent ones controlled by Advrw. In this way, the password manager will
automatically submit sensitive information to an adversary-controlled website.
The attack is even more effective if Advrw can also modify Firefox’ bookmark
database, which is stored in the profile alongside the password database.

4.3 Microsoft Internet Explorer

Format Description. Internet Explorer stores usernames and passwords
in the registry. Each record is stored as a separate registry entry and en-
crypted using the system login credentials. When a user fills-in a password
form at address url, Internet Explorer computes h = SHA-1(url) (where and
url uses the unicode character set) and encrypts username and password as
c = Ek(metadata ‖ username ‖ 0x00 ‖ password ‖ 0x00), where metadata

contains additional information such as the size of encrypted elements.
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The encryption is performed using the CryptProtectData [27] system call,
which uses Triple-DES in CBC mode and a hash-based MAC. k is derived from
(1) a random salt (also stored in the ciphertext), (2) url and (3) the Windows
login credential for the current user. Finally, Internet Explorer creates a new
registry entry with key h and value c.

The security of Internet Explorer’s password manager depends on the strength
of the user account password. As such, accounts with no password provide no
protection of the password database.

Security Analysis. Internet explorer is not secure against Advr. Similarly to
Firefox, Advr wins the IND-CDBA game by building two same-size record-sets
RS0, RS1 which differ in at least one URL.

Say record rec with URL url is in RS0 but not in RS1. Advr can immediately
recognize which record-set corresponds to the challenge DBb by computing h =
SHA-1(url) and verifying whether h is in DBb.

In practice, a passive adversary can use Internet Explorer’s password database
to determine whether a user has visited a particular web page and entered his
username/password, even if the user deletes his browsing history and cache.

Assuming that CryptProtectData uses a secure MAC, an active adversary
cannot alter password entries. However, Advrw can delete password entries by
removing the corresponding registry entry, and as such Advrw can easily win the
MAL-CDBA game.

4.4 1Password

Format Description. 1Password stores its database in multiple files. Each file
contains a database entry, stored in JavaScript Object Notation (JSON). Entries
are listed in an index file called “content.js”.

1Password allows users to select a different “security level” for each record [28].
The lowest security level corresponds to unencrypted entries, while the highest
level means that sensitive fields, such as username and password, are encrypted
with a key derived from the user’s master password. Regardless of the security
level, some fields, e.g., the title of an entry, are never encrypted. We analyze the
protection offered by the highest security level.

The encryption scheme used is AES-128 in CBC mode. Neither the records
nor the index file are integrity protected. As a result, database corruption is only
detected when the JSON parser fails to process the database.

Security Analysis. 1Password’s database format is affected by vulnerabilities
that give adversaries a non-negligible advantage in both the IND-CDBA and
MAL-CDBA games.

Advr can win IND-CDBA with probability 1 as follows: Advr builds two same-
size record-sets RS0, RS1 such that there exist two records r0, r1 from RS0

and RS1 respectively, which differ in at least one of the following fields: title,
location, locationKey, createdAt, updatedAt or typeName. These fields cor-
respond to: the title of the record, the record URL, the URL used by the browser
plugin to perform auto-complete, the time of creation and last update and the
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type of record (e.g., web form, protected note, credit card information). Since
these fields are never encrypted, Advr can trivially determine bit b by testing
which record belongs to DBb. In practice this means that an adversary with
access to a 1Password database can read these fields and thus gather sensitive
information about the user’s browsing habits.

Advrw can win theMAL-CDBA game with probability 1 as follows. Advrw selects
an arbitrary record-set RS and receives the corresponding database DB. Then,
Advrw can (1) alter any of the fields listed above, and/or (2) remove any entry
by deleting the corresponding database file and altering the “content.js” index
file correspondingly. In general, as long as the database is still composed of a set
of correct JSON strings, 1Password will not show any warning. In practice, this
means that an adversary can mount phishing attacks by replacing a legitimate
URL with one pointing to an adversary-controlled website.

Additionally, if Advrw outputs at least two record-sets, say RS �= RS′ and
receives the corresponding databases DB,DB′ in the MAL-CDBA game, it can
construct DB′′ selecting records from both DB and DB′. This allows an adver-
sary, among other things, to replace individual records in a database with older
versions.

4.5 KDB (aka KeePass 1.x)

Format Description. The KDB database is composed of a single file, divided
in two sections: an unencrypted header (hdr) and an encrypted body (bdy).
bdy stores the encryption of the various database entries. hdr contains, among
other things, the number of groups and entries in the database and the hash
of bdy before encryption [15]. This hash is computed every time the database is
modified, and is used to check integrity. After decryption, the password manager
verifies that the computed plaintext hashes to the same value stored in hdr. If
this check fails, the application reports that either the database is corrupted or
the master password entered by the user is incorrect.

Security Analysis. Given a database DB, the hash stored (unencrypted) in
hdr is computed deterministically from the record-set RS encoded in DB. This
allows an adversary Advr to win the IND-CDBA game with probability 1 as fol-
lows. Advr selects two same-size record-sets RS0 �= RS1 and computes their hash
hi = H(RSi). Once it receives a challenge database DBb, Advr checks whether
the header of DBb contains h0 or h1 and outputs its choice for b′ accordingly.

In practice, given two databases, this allows Advr to determine whether their
content is identical even if their corresponding ciphertexts are different. Also,
assuming that the record-set encrypted in a database has lower entropy than
the database master password, Advr can recover the content of the record-set by
simply making a guess and comparing it against the hash value in hdr. In other
words, the complexity of breaking the database is a function of min(ηmp, ηRS) –
where ηmp is the entropy of the master password and ηRS is the entropy of the
record-set – rather than just a function of the master password.
hdr is not authenticated and, as such, is susceptible to malicious modifications.

This can be used by Advrw to win the MAL-CDBA game with probability 1 by
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selecting a challenge record-set RS which contains one or more entries. When
Advrw receives DB he changes the value corresponding to the number of entries
(stored in hdr) to a smaller number. Since bdy is not altered, the hash verification
does not fail. However, the record-set has been altered since the number of entries
shown in the password manager is now the one chosen by Advrw.

We verified that the latest version of KeePassX (0.4.3) is susceptible to this
attack. Moreover, if the victim makes any change in the modified database,
KeePassX stores only the entries displayed. This can lead to silent (undetected)
corruption of the database.

4.6 KDBX4 (aka KeePass 2.x)

Format Description. The KDBX4 database format is composed of a sin-
gle password-protected file, divided in two sections: an unencrypted header
(hdr) and a main encrypted body (bdy). hdr contains several fields, including
mseed and tseed (used to compute the encryption/decryption key from the
user-provided password), IV, pskey and ssbytes, used for secrecy and integrity
protection as detailed below.
bdy contains the database records encoded as a single XML string, optionally

compressed using the gzip algorithm [29] before encryption. bdy is encrypted
using AES-256 in CBC mode, although Twofish is also available. The first 32
bytes of bdy contains the encryption of the ssbytes field in order to efficiently
verify whether the provided master password is correct. The next 32 bytes of the
body contain the hash of the (possibly gzip-compressed) XML string representing
the various entries. This hash is used to detect modifications in the database.

In addition, all passwords in the XML string are XOR-ed with a pseudo-
random string, computed using Salsa20 [30]. Every time the database is saved,
a random 256-bit key k is generated and stored unencrypted in the pskey field;
each password pwdi is then encoded as si = pwdi ⊕ Salsa20(k, IV ) using a fixed
value IV . Each pwdi uses a different portion of the keystream generated by
Salsa20. Passwords are recovered as pwdi = si ⊕ Salsa20(k, IV ).

Security Analysis. KDBX4 fixes some of the weaknesses of KDB. hdr does
not store the (unauthenticated) number of entries, therefore an adversary cannot
alter this value to remove content from the password database. Also, the hash of
the unencrypted record-set is now stored in encrypted form. This prevents an ad-
versary from verifying its guesses on the database content and from determining
whether two encrypted databases carry the same content. More generally, Advr
cannot mount any successful attack on a KDBX4 database except with negligi-
ble probability. Due to lack of space, we omit the proof of IND-CDBA security
for KDBX4, which is available in the extended version of this paper [31].

Unfortunately, this format introduces new vulnerabilities. Similarly to KDB,
the main problem of this format is the lack of authentication of hdr. As such, is it
susceptible to modifications. In particular, Advrw can win the MAL-CDBA game
with probability 1 as follows. Advrw outputs a challenge record-set RS. Then,
after receiving the corresponding databaseDB, it replaces the value stored in the
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pskey field of hdr with an arbitrary 256-bit string and outputs that as DB′. This
modification is not detectable by the password manager, i.e., Valid(DB′) = 1,
since the integrity check on the records is performed before the XOR with the
output of Salsa20. However, a different pskey value will cause all passwords to
appear as pseudo-random data after the decoding process.

It is impossible to recover from this attack unless it is detected immediately,
i.e., before the user applies any modification to the record-set. The only way
to recover the database content is to restore the original pskey value. However,
this value is replaced with a fresh one, and all passwords are “re-scrambled”
accordingly, each time the database is modified and saved. For this reason if
a user alters, and then saves, a corrupted database, all passwords previously
affected by the attack are lost forever.

This attack highlights a remarkable design flaw. Even an accidental bit-flip in
the pskey field, e.g., due to a transmission error, cannot be detected, and leads
to complete corruption of the database. Such corruption is unlikely to be imme-
diately detected by users, who may subsequently add new entries. Over time,
the database will be composed of both correct and corrupted entries, making it
difficult to reconstruct the damaged records from a backup.

As an extension to the previous attack, Advrw can alter pskey in such a way
that an arbitrary (small) number of bits of the first password(s) in the database
are not altered. To do that Advrw computes a value k′ such that the first n bits
of Salsa20(k, IV ) are equal to the first n bits of Salsa20(k′, IV ). Then Advrw
stores k′ in pskey. k′ can be computed in exponential time in n, and therefore is
practical only when n is small. As a proof of concept, we developed an application
that implements such attack. The application is available upon request.

Finally, Advrw can also win the MAL-CDBA game as follows. Given an arbi-
trary database DB, Advrw flips a bit in the first 16 bytes of ssbytes, and then
flips the corresponding bit in the IV field of hdr to create DB′. The password
manager cannot detect the change, i.e., Valid(DB′) = 1, since flipping a bit in IV

causes the corresponding bit in the first block of plaintext to be flipped as well
(using CBC-mode), and no additional side effect. Since the first block of plain-
text corresponds to the first 16 bytes of ssbytes, the modification produces a
new correct database. This allows Advrw, given a database DB, to produce up
to 2128−1 different databases DB′

1, . . . , DB
′
2128−1 containing the same record-set

as DB.

4.7 PINs

Format Description. The PINs database is stored in a single file, and en-
crypted using AES in CBC mode. Records are encrypted separately and stored
one record per line, using hexadecimal representation written as ASCII text.

The first line of each database defines the version of the software used to
create the database, while the second line contains the encryption of the string
“#TEST VERIFY” followed by a variable number of up to fifty random bytes. This
is used to verify that the user-provided master password is correct. After deriving
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the database encryption/decryption key from the user’s input, PINs decrypts
the second line and determines whether the result corresponds to the expected
string.

Security Analysis. Each line containing user data is encrypted with AES in
CBC mode, which is known to be IND-CPA-secure [32]. As shown in Appendix A,
IND-CPA security implies IND-CDBA security. Therefore Advr cannot extract any
information from an encrypted database, besides the number of records and their
approximate length.

However, PINs’ database file does not provide any kind of data integrity. As
such, an adversary can exploit the malleability of the CBC mode of operation
to modify the content of the database. Since each line is encrypted separately,
changes in one record do not affect other records. Advrw can exploit this property
to win the MAL-CDBA game with probability 1. After receiving a challenge
database DB corresponding to an arbitrary record-set RS, Advrw flips one bit in
any of the records to obtain a new database DB′ which is considered correct by
PINs, i.e., Valid(DB′) = 1. Advrw can also remove arbitrary entries, or replace
them with versions collected from different challenge databases.

4.8 PasswordSafe v3

Description. The PasswordSafe v3 database is composed of a single file con-
taining all entries [33]. The file can be logically divided into two parts: a header
(hdr), an encrypted body (bdy). hdr includes (among other fields) an IV and a
pair of 256-bit keys, K and L, which are used to encrypt bdy and to provide au-
thentication using HMAC respectively. K and L are encrypted using Twofish [34]
in ECB mode, under a key derived from a user-provided master password. bdy
contains the various database entries, and terminates with an HMAC computed
over all fields (before encryption) from hdr to the last entry of bdy, only excluding
the database version number.

Security Analysis. PasswordSafe v3 is IND-CDBA-secure and MAL-CDBA-
secure. (Due to lack of space we omit a formal proof of this statement. The
proof is available in the extended version of the paper [31].) As such, neither
Advr nor Advrw can win their respective games with non-negligible probability
over 1/2.

However, we identified a design flaw that, although irrelevant in our security
model, should be considered when adopting this format. The PasswordSafe v3
database format stores both the encryption key and the MAC key used to secure
the database content in the file header. In this way, if the master password is
changed, the database does not need to be re-encrypted. This technique is usually
adopted by encrypted file systems (e.g., [35]) to avoid having to re-encrypt all
the data if the master password is changed. However, we believe that this choice
may not be appropriate for a password database file. In particular, every time
the database is modified, IV is changed and therefore the whole database is re-
encrypted. For this reason, the reuse of the same values for K and L does not
imply any savings.
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Additionally, this specification detail opens the door to an attack. Assume that
an adversary is able to obtain the master password for an encrypted database.
Using the master password, the adversary would also be able to retrieve (and
store) K and L. Subsequently, even if the user changes her master password,
the adversary can still decrypt and/or modify any new version of the database.
The only way to recover from a compromise of the master password is to com-
pletely discard the database and create a new one, i.e., changing the master
password serves no purpose. It should be noted that some implementations that
use the PasswordSafe v3 format are not vulnerable to this attack (e.g., Password
Safe [18]), since they choose a new random K and L every time the database is
saved. This makes such implementations less efficient than they could be, but
secure.

4.9 Roboform

Format Description. Roboform stores its password database in several files.
Each file contains a header, which encodes two URLs: goto, which is used as
a bookmark by Roboform’s browser plugin, and match, which is used by Robo-
form’s plugin to determine which username/password record should be used on
each web form.

The rest of the record is composed of a short header and an encrypted payload.
Roboform allows users to choose between AES, Blowfish, DES, Triple-DES and
RC6 for payload encryption.

Security Analysis. Roboform’s password format is vulnerable to attacks from
both Advr and Advrw in our security model.

Adversary Advr can win the IND-CDBA game with probability 1 by construct-
ing two same-size record-sets RS0 and RS1 which differ in at least one of the
URLs in their records. Since neither the goto nor the match fields are encrypted,
Advr can always identify which record-set corresponds to challenge DBb. As a
proof of concept, we wrote a small script that decodes the goto and match URLs.
The script is available upon request.

In practice, this allows Advr to gather recover a list of web site visited by the
user even if web cache and history have been deleted.

Similarly, Advrw can win the MAL-CDBA game with probability 1, since nei-
ther of the URLs stored in Roboform’s database are integrity protected. Advrw
requests a database corresponding to an arbitrary recordset RS, and after receiv-
ing the corresponding database DB, creates DB′ by altering one or both URLs.
The lack of integrity protection means that Valid(DB′) = 1.

In practice, an adversary can use this vulnerability to mount a phishing attack
by altering URLs and redirecting users to a malicious website designed to capture
login credentials.

5 Discussion

Table 2 summarizes the result of our security analysis. Almost all the formats are
vulnerable to attack either in the IND-CDBA or MAL-CDBA security model, or
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Table 2. Vulnerabilities overview. This table shows, for each format, whether it is
secure (�) or broken (×) in the two security games IND-CDBA and MAL-CDBA, defined
in Section 3. 1PasswordSafe v3 is secure in our model but with an interesting design
flaw (see Section 4.8).

Read-Only Attacker Read-Write Attacker
(IND-CDBA) (MAL-CDBA)

Google Chrome × ×
Mozilla Firefox × ×
Microsoft Internet Explorer × ×
1Password × ×
KDB (aka KeePass 1.x) × ×
KDBX4 (aka KeePass 2.x) � ×
PINs � ×
PasswordSafe v3 �1 �1

Roboform × ×

both. What does that mean for the use of these formats in practice? The answer
depends on the security provided by the storage mechanism that hosts the pass-
word database. We divide the database formats into three classes: Class I : those
that can be used on an insecure storage medium. According to our analysis, the
only format in this class is PasswordSafe v3; Class II : those that can be used if
the underlying storage mechanism provides integrity and data authenticity. This
class contains KDBX4 and PINs; and Class III : those that can be used securely
only if the underlying storage provides integrity, authenticity and secrecy. This
class contains the remaining formats.

Class I password managers can be used safely without any special considera-
tions, except for one caveat with PasswordSafe v3 described in Section 4.8. To
safely use Class II password managers in practice, users should make sure never
to rely on any information in the database that could have been changed by a
malicious adversary. For example, if privacy is not a concern and the password
database is kept on, e.g., a read-only smart card, KDBX4 and PINs can be used
to securely store passwords.

There is nothing inherently wrong with storing passwords in a Class III pass-
word manager, e.g., an unencrypted text file, as long as the user is made aware
that the format provides no secrecy, integrity or authenticity. In fact, if the user
is taking additional steps to store an unencrypted password database on a secure
medium (e.g., an encrypted file system) this may be a perfectly safe approach.
As an example, Google Chrome stores passwords in a database format that is
not designed to provide security. To use the Google Chrome password manager
in practice, users should completely prevent access to the database from any
unauthorized party (e.g., other users of the same machine).

It seems fair to require that a password manager that asks users to authenti-
cate themselves with a password, at least provides secrecy and data authenticity.
This is currently only achieved by a single password database format, namely
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PasswordSafe v3. As a general rule, a password manager should be explicit about
the security offered by the underlying database format.

6 Related Work

Although the concept of a password manager is well known and used by people
all over the world, there is very little scientific literature on the subject.

In 2003 Luo and Henry proposed a method for protecting multiple ac-
counts [36]. Their solution requires a user to remember only one password, called
a common password, to access any of a number of accounts. The authors propose
a Web based implementation with a password calculator written in JavaScript.

In an attempt to solve the same problem, Blasko published an IBM Research
Report in 2005 [37] proposing a Wristwatch-Computer Based Password-Vault.
Blasko describes the design and implementation of a wearable computer with
wireless connectivity, processing, input, and display capabilities, that is meant
to store a users passwords for different services.

A year later, Gaw and Felten published a study of Password Management
Strategies for Online Accounts [21]. The authors studied how many passwords
49 undergraduates had, and how often they reused these passwords. At that
time about 38% of the people participating in the study used password man-
agers. More than two thirds of those used online, web based password managers.
With the inclusion of password managers in popular browsers, that number is
presumably significantly higher today.

In 2009 Englert and Shah published a paper on the Design and Implementa-
tion of a secure Online Password Vault [38]. This works describes an architec-
ture where encryption and decryption is done locally on the user’s machine but
storage done online.

Bonneau and Preibusch reported results of, what they claim is, the first
large-scale empirical analysis of password implementations deployed on the In-
ternet [39]. This study included 150 websites which offer free user accounts for
a variety of purposes, including the most popular destinations on the web and
a random sample of e-commerce, news, and communication websites. This work
does not deal directly with password managers but the findings support the claim
that many online services use poor practices when dealing with user credentials.
This serves to highlight the need for password managers and consequently, the
need for secure password manager database formats.

In [40], Belenko and Sklyarov analyze the security of several password man-
ager applications running on iOS and BlackBerry smartphones. Their analysis
focuses on a passive adversary, who is able to access a password database at
rest. The goal of the adversary is to determine the database master password,
and therefore access the protected data. The authors show that most password
managers either force the user to protect the database using a short (four digit)
PIN, or do not use expensive key derivation functions to compute the database
encryption/decryption key from the master password. This allows an adver-
sary to perform password recovery attacks relatively short time for low-entropy
passwords.
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7 Conclusion

Password managers are critical pieces of software used to securely store sensitive
information. This paper presents the first rigorous analysis of the storage formats
used by popular password managers.

We defined two realistic security models, designed to represent the capabilities
of real-world attacks. One for passive and one for active attackers. We analyzed
popular password manager database formats in our security models; for each
vulnerable format, we provided a formal argument for why it is broken. We also
showed what the theoretical vulnerability means in terms of practical attacks.
Additionally, when a database format was found to be secure, we provided a
formal proof.

Unfortunately, most formats turned out to be broken even against very weak
adversaries. For this reason, users should carefully consider whether a particular
database format is acceptable for storing data in the cloud, on a USB drive or
on a machine shared with other users.

Finally, our works shows that it is indeed possible to construct a format that
provides security, usability and low computation and storage overhead, using
standard cryptographic tools.
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A Relationship between IND-CPA and IND-CDBA

In this section we shed light on the relationship between our notion of IND-CDBA-
security and the standard IND-CPA-security. Let Π = (Setup,Enc,Dec) be a
IND-CPAAdvr,Π(κ)-secure encryption scheme. We recall the standard definition of
IND-CPA security [41]:

Game 3 (IND-CPAA,Π(κ)). Indistinguishability of chosen plaintext attack. A
challenger Ch running Π interacts with A as follows:

– Ch runs mp← Setup(1κ).
– A is given oracle access to Encmp(·)
– Eventually A outputs two same size messages RS0, RS1

– Ch selects a bit b uniformly at random and the ciphertext DBb ←
Enc(mp,RSb) is returned to A.

– A eventually outputs bit b′; the game outputs 1 iff b = b′.

Definition 4 (IND-CPA security). An encryption scheme Π = (SetupΠ, EncΠ,
DecΠ) has indistinguishable encryptions under chosen plaintext attack if there
exists a negligible function negl(·) such that for any efficient adversary A,
Pr[IND-CPAA,Π(κ) = 1] ≤ 1/2+ negl(κ).

It is easy to see that IND-CPAA,Π(κ) security implies IND-CDBAAdvr ,PM(κ)
security. Let PM = (Setup,Create,Open,Valid) where Setup = SetupΠ, Create =
EncΠ, Open = DecΠ and Valid is defined as in Section 3.

Assume Advr is an adversary that has a non-negligible advantage in the
IND-CDBA game. We show how to build a simulator SIM that uses Advr to
win the IND-CPA game. SIM lets Advr choose RS0 and RS1, and forwards these
to Ch. Ch returns DBb which is forwarded to Advr. Eventually Advr outputs its
choice for b′, and SIM uses it to answer the challenger. Since (Setup,Create,Open)
is defined as (SetupΠ,EncΠ,DecΠ), Sim’s advantage is identical to Advr’s.

http://www.elcomsoft.com/WP/BH-EU-2012-WP.pdf
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Abstract. Industry reports and blogs have estimated the amount of
malware based on known malicious files. This paper extends this anal-
ysis to the amount of unknown malware. The study is based on 26.7
million files referenced in telemetry reports from 50 million computers
running commercial anti-malware (AM) products. To estimate the un-
detected malware, a classifier predicts the underlying nature of unknown
files recorded in the telemetry reports. The telemetry classifier predicts
that 69.6% (4.27 million) of the unknown files are malicious. Assuming
the unknown files predicted to be malicious by the classifier are malware,
the telemetry classifier also allows us to estimate the efficacy of the AM
system indicating that signatures detected 82.8% (20.6 million) of the
malicious files. We have validated our system by conducting a longitu-
dinal study to measure the false positive and false negative rates over a
period of thirteen months.

Keywords: malware classification, telemetry, sample collection,
prefilter.

1 Introduction

The anti-malware (AM) industry faces two significant problems in the battle
to protect their customers’ computers from being infected by malware. First
these companies are paradoxically confronted by the challenge of trying to dis-
cover malware in huge amounts of telemetry data while only having samples (i.e.
copies) of a small fraction of the unknown files hosted on their users’ computers.
Typically, commercial AM products transmit telemetry reports from a large per-
centage of their client computers when users try to download or install known
or potential malware. Although our company receives over 100,000 new file sam-
ples every day which need to be analyzed, we had previously collected samples
from only 3.1% of the files referenced in the set of telemetry reports received in
October 2010. Ideally, AM companies would have a copy of every unknown exe-
cutable file observed on their clients’ machines. In this scenario, analysts clearly
cannot investigate each new file manually, and anti-malware companies must
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automate detection of these threats. Researchers have described systems show-
ing great promise on automatically detecting malware [4], [6], [32]. However,
in-depth analysis can be time consuming. In some cases, Anubis [4] can require
several minutes to analyze each file [2]. Each month, we receive telemetry reports
corresponding to tens of millions of files that were not detected as being mali-
cious by the AM system’s signature detector. Even with distributed processing
and only analyzing new, incoming files, clearly these in-depth malware detection
systems will struggle to analyze all of the new, potentially malicious files. Second
the companies cannot accurately measure the performance of their systems in
detecting the amount of malware in the ecosystem. Consumers often see claims
that an anti-malware product detects X% of malware, and industrial reports
provide a glimpse of the amount of malware detected on user’s machines [13],
[24]. However these estimates are based on detections of known malware. What
is missing is the true detection rate, including the unknown files, found in the
wild. While it is impossible to measure this malware detection rate exactly, we
seek a better estimate of the amount of malware in this study.

To address these problems, we propose a lightweight telemetry report classi-
fier shown in Figure 1. AM clients transmit telemetry reports to the backend
system running the telemetry classifier. Each report contains metadata, includ-
ing file and machine identifiers, associated with the installation or scan of an
untrusted portable executable (PE) file including application binaries, screen
savers, drivers, and Active X controls. Unlike previous work, we assume that
the majority of the executable files cannot be accessed directly since they are
either located on remote computers or the installations were blocked by the sig-
nature detector. To help manage the collection and analysis of unknown files, the
telemetry classifier assigns a probability that the file associated with the report
is malicious solving two problems. The reports can be ranked to determine which
files are more likely to be malicious for collection from the remote users’ com-
puters. In addition, the telemetry classifier output allows the system to prefilter
the queue of unknown files for timely processing by an in-depth malware analy-
sis system. Files with the highest malware probability are collected or analyzed
first. Recently, several systems have been proposed for prefiltering (i.e. ranking)
samples for in-depth analysis [18], [26], [34], but these systems require a sample
of the file for classification and clustering on the results of static analysis. In our
system, the AM client can perform both static and dynamic analysis of the file
on the remote computer, and we use this telemetry information for prefiltering.
Although we only utilize a simple behavior feature in this study, more sophis-
ticated dynamic execution features could also be detected and reported by the
client. Furthermore, the performance of the signature detectors can be measured
by the telemetry classifier. Unlike previous work, our estimates include unknown
files which have not been previously detected. Using the proposed system, we
estimate the percentage of malicious files encountered in a large sample of 26.7
million telemetry reports, each corresponding to a unique file, received from a
population of over 50 million computers.
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Fig. 1. Classifying malware on the backend based on metadata reports generated by
anti-malware clients

A key aspect of this work is to investigate whether individual telemetry reports
can be accurately classified to predict if an unknown file residing on a remote
client is malicious or benign. Previous work [22], [30] proposes various types of
malware classifiers, but these systems assume access to the PE file. Recently,
commercial products including Symantec’s AM products [7], [8] and Microsoft’s
Internet Explorer have started using reputation data to detect malware or benign
files and consider files which have been frequently observed, but not detected as
malicious, to be benign. The approach followed in this paper does not rely on file
prevalence information. This choice was made explicitly to identify polymorphic
and zero-day attacks. In addition, the earlier file-based studies were conducted
on small training sets; while these preliminary efforts were promising, it was
unclear if the results scale with large numbers of labeled data. In this study, we
use over 253 thousand, labeled telemetry reports to train and test the telemetry
classifier.

To handle the large number of reports used for training, the system utilizes
several technically significant components. The telemetry classifier uses a limited
combination of features (Section 2) derived from the telemetry data including
static features from the binary file and one, simple behavioral feature indicat-
ing what action caused the report to be generated. Among these, using tri-
grams of the file’s locality sensitive hash is a novel implementation which scales
well. Excluding this feature from our model decreases the accuracy by over 18%
(Section 4). We use a feature selection algorithm based on 2x2 contingency tables
and the mutual information criterion to create the datasets (Section 3). Next we
describe several algorithms used to train both linear and non-linear classifiers
for analyzing the telemetry reports and highlight several machine learning algo-
rithms for the security community (Section 4). Logistic regression trained with
the L-BFGS algorithm and including L1 and L2 regularization performs best for
our task. A boosted decision tree algorithm trained with the MART criteria also
performs well. Lastly, an approximation to the SVM using L-BFGS optimization
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Table 1. Summary of the telemetry report attributes and additional data aggregated
by the backend system

Feature Description

File Name Name of the PE file
Original File Name File name in the original report
File Name Matches Does the file name in this report match the file name
Original? in the original report?
File Type What type of file is it?
Signer Name What organization signed the file?
Signing Authority What certificate authority issued the signature?
Signature Type Was the file signed or not? If signed, is the signature legitimate or invalid?
Description What is the description of the file in the header?
Organization Manufacturer of the binary file
Version Version number of the binary file
LS Hash Locality sensitive hash
Behavior Feature Represents the simple behavior that caused the report to be generated

is competitive and can require much less time to train compared to exact meth-
ods (e.g. sequential minimal optimization). We validate the telemetry classifier
in a thirteen month longitudinal study to measure the false positive and false
negative rates of the samples received one month after training.

We implemented the lightweight telemetry classifier and used it to estimate
the number of malicious executable files (Section 5). The telemetry classifier pre-
dicts that 69.6% (4.27 million) of the unknown files involved in the reports are
malicious. Although biased on the computers which sent the telemetry, this esti-
mate gives a better sense of the total amount of malware. The telemetry classifier
also allows us to estimate the efficacy of the signature detector. Assuming all of
the unknown files predicted to be malicious by the classifier are indeed malware,
the telemetry classifier indicates that signatures detected 82.8% (20.6 million)
of the malicious files. A summary of the contributions of this paper includes:

– A large-scale system to classify anti-malware telemetry reports is proposed and
implemented, and the results are presented. Using tri-grams of locality sensitive
hashes is a novel feature for the system.

– The number of malicious executable files and the effectiveness of a suite of anti-
malware products are estimated from a sample of 26.7 million telemetry reports
received from over 50 million computers.

– We demonstrate that the lightweight telemetry classification system can be used to
prioritize files for sample collection and prefilter these samples for more in-depth
analysis.

– Training classifiers based on six different algorithms including logistic regression

with L-BFGS optimization and L1 and L2 regularization as well as an approxima-

tion of the linear SVM are highlighted for the security community.

2 Telemetry Metadata and Features

This study is based on a large collection of telemetry reports received from a
suite of commercial anti-malware products. Our company manufactures these
security products which detect and remove spyware (e.g. Windows Defender) as
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well as viruses and other malware (e.g. Forefront Client Security, Windows Live
OneCare, Windows Live Security Scanner, and the Microsoft Malicious Software
Removal Tool). Our analysts utilize the reports in our efforts to detect new
malware on personal computers (PCs) running the Windows operating system.

The telemetry reports consist of various attributes measured by the AM client
running on the remote computer when it detects that a new file is being installed
or a previously undetected file is running. To limit the number of reports received
at the backend web service, only telemetry reports corresponding to files which
have not been signed by a trusted certificate authority are transmitted. Addi-
tional information can be constructed at the backend by examining the telemetry
reports across all of the reporting clients. This local and backend metadata cor-
responding to the (potential) installation of a file is summarized in Table 1.
All of the attributes are extracted by the AM client with the exception of the
second and third rows (i.e. original file name and file name matches) which are
determined on the backend. In addition to the low-level features discussed in
this section, we also construct other features indicating if a particular attribute
is blank or null. For example, if the organization is null, a boolean feature is set
to true. This high-level metadata is discussed in more detail below and serves as
the basis for the low-level features used to train the classifiers in Section 4.

In addition to the metadata listed in Table 1, the telemetry reports also
contain several unique file identifiers including the SHA1 and MD5 files hashes.
While these hashes cannot serve as features for any classification system since a
small change in the executable file leads to a large change in the corresponding
hash value, they allow us to assign a label to the incoming telemetry report
for files which have previously been collected, investigated and categorized (e.g.
malware, benign) by analysts. We could potentially also use files detected by
anti-virus signatures and include these in our dataset but we have not done
so for the following reason. Training primarily with samples determined by the
signature detector may lead to a situation where the telemetry classifier learns
to only recognize files we currently detect; doing so may prevent the telemetry
classifier from identifying files not currently identified by the signature detector.

While Table 1 illustrates the high-level metadata found in the telemetry re-
ports, we cannot directly use this information as the features for the telemetry
classifier described in later sections. There are too many values associated with
some of the attributes in the table. For example, we measured over 71 million
distinct file names in one month of telemetry data. Next, we describe the meth-
ods used to transform this metadata into a set of potential low-level features for
the telemetry classifier we train in Section 4. This transformation is just the first
step in determining the final classifier features. We further restrict (i.e. filter)
this set of low-level features through feature selection in the following section.
Only two features may vary when comparing telemetry reports from a unique
malware sample, namely, the file name and the behavior which caused the re-
port to be generated (described later). In addition to the file name associated
with the report, the telemetry classifier also considers other derived features. All
string features are efficiently encoded using 1.5 grams. Given the shear number
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Table 2. Most frequent malware signer
names

Name Percentage

Not Signed 95.68%
Freeze.com, LLC 0.26%
Zango 0.21%
WebDevAZ, Inc. 0.16%
WHENU.COM INC 0.15%

Table 3. Most frequent benign signer
names

Name Percentage

Not Signed 78.53%
Microsoft Windows Component 5.07%
Publisher
Microsoft Windows 3.54%
Microsoft Corporation 2.50%
Microsoft Windows Publisher 2.50%

of unique strings in the data, we cannot represent each string as a feature. To
limit the total number of possible features, we propose a compromise we call
1.5-grams (pronounced one and a half grams). To compute a 1.5-gram set for a
unicode string, we first convert the string to a byte array. The initial 1.5-gram
for the array is determined as the first 12 consecutive bits (i.e. 3 nibbles). To
compute the second 1.5-gram, we slide the index by 4 bits, and the 1.5-gram
is the value of next 12 consecutive bits. For standard 8-bit text, this encod-
ing represents a full character and half of the following character. It can also
fully represent more obscure non, 8-bit characters. Using the 1.5-gram repre-
sentation only requires 4096 (212) possible values for all possible file names. A
separate feature identifies if the file name in the report matches the file name
associated with the original report of the executable. Furthermore, the type of
file (e.g. keyboard driver, printer driver, application, DLL) is also used as a
feature.

Two important features of the system are which organization signed the file
and which certificate authority granted the certificate. These features were also
suggested by Nachenberg et al. [7]. In addition, the certificate is verified for
authenticity. The signature type feature indicates whether or not the file was
signed. If it was signed, was the signature valid? Tables 2 and 3 provide an ex-
ample of the most frequent organizations that signed the files associated with
malicious and benign reports, respectively; these tables do not necessarily de-
scribe the most discriminant (i.e. best) features for the telemetry classifier. For
example, since 95% of the malware and 78% of the benign files are not signed, a
signature value of “Not Signed” will not be a good feature. While it is not sur-
prising that most malware is not signed, the results for benign files is an artifact
of the telemetry reporting process. Reports are not sent by the AM clients for
files which are signed by trusted organizations. Thus, the signed, benign files in
the head of the distribution are not reflected in this data. The Microsoft signa-
tures in Table 3 are most likely particular signatures used on a small number of
files, and therefore, these signatures have not been added to the list of trusted
certificates.

Another important feature is the certificate authority (CA) which granted the
certificate, and the data for the CA is listed in Tables 4 and 5. Interestingly, a
small fraction of malware authors have managed to obtain certificates granted
from respectable CAs. The reason is that they are trying to provide assurance to
the users that the code is legitimate. This behavior indicating attackers trying
to build trust has been studied recently for website certificates [10]. We encoded
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Table 4. Most frequent malware
certificate authorities

Name Percentage

No Issuer 95.66%
VeriSign Class 3 Code 1.16%
Signing 2004 CA
Thawte Code Signing CA 1.15%
UTN-USERFirst-Object 0.59%
INVALID:Thawte Code 0.52%
Signing CA

Table 5. Most frequent benign
certificate authorities

Name Percentage

No Issuer 78.49%
Microsoft Windows Verification 7.88%
Intermediate PCA
VeriSign Class 3 Code 4.51%
Signing 2004 CA
Microsoft Windows 3.55%
Verification PCA
Microsoft Code Signing PCA 2.24%

each distinct value for the signer and certificate authorities in the set of potential
features.

All PE files contain information in the header such as the manufacturer, de-
scription, and version number. This data is transmitted to the backend in the
telemetry reports and encoded as features using 1.5-grams for the telemetry
classifier. In addition to the SHA1 hash, a locality sensitive hash (LS hash) is
also computed for the file by the AM client and transmitted to the backend.
Unlike standard hashes which completely change when a single bit in the file
is altered, LS hashes have the property that changing a small amount of code
introduces a small change in the resulting hash. Bayer, et al. [3] and Jang, et
al. [19] have utilized the LS hash as a feature for malware clustering. Clustering,
however, requires comparing pairs of LS hash values which can be computation-
ally expensive. In our design, the telemetry classifier uses tri-grams of each file’s
LS hash which is a novel feature representation. The LS hash tri-grams from
variants of malware families in the training set increase the likelihood that these
tri-grams are associated with malicious files. As a result, training and evaluation
are not adversely affected as the scale increases. It should be noted that since
the LS hash is composed of hexadecimal digits, only 212 features are required to
represent all possible tri-gram values.

The action that caused the report to be generated is also used as a feature
for the telemetry classifier. There are roughly 50 distinct behavior actions found
in our telemetry reports, and these behavioral actions are indicative of a file
being installed on the computer. Table 6 provides the five most frequent behav-
iors associated with a report generated by malicious files while the five most
frequent behaviors associated with benign files are given in Table 7. Example
behavior actions include installing an ActiveX control, Browser Helper Object,
or driver, adding a Run Key to automatically start a program each time the user
logs on, starting a process, or scheduling a task. For both malware and benign
files, downloading an ActiveX control is the main behavioral feature associated
with the telemetry reports. Surprisingly, only 2.93% of malicious reports were
associated with Browser Helper Objects.
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Table 6. Most frequent malware
behavioral features

Name Percentage

ActiveX Downloads 73.93%
Run Keys 9.56%
Running Processes 3.77%
Browser Helper Object 2.93%
Task Scheduler 1.96%

Table 7. Most frequent benign
behavioral features

Name Percentage

ActiveX Downloads 70.64%
Services 6.26%
Drivers 5.02%
Run Once Keys 3.91%
Run Keys 3.48%

3 Feature Selection and Dataset Creation

In this section, we describe the process used to create the dataset required to
train the telemetry classifier. The anti-malware telemetry classification training
system is illustrated in Figure 2. The raw telemetry logs and analyst labels
described earlier are input to the system which includes three processing blocks:
feature selection, dataset creation, and classifier training. An integral step in
the process is feature selection which excludes potential features that are not
beneficial during classifier training. In the previous section, we transformed the
high-level, telemetry metadata into a large number of potential low-level features,
but we cannot use all of these to train the telemetry classifier. The feature
selection algorithm determines the most discriminant (i.e. best) subset of all of
the features to be used for classification. Based on the selected features, a labeled
dataset is next constructed from the analysts’ labels and the low-level encoded
features derived from the telemetry reports. In the next section, we then use the
labeled dataset to train the telemetry classifier using several different algorithms.
The output of the training system is a classifier model (i.e. a set of weights or
parameters) which can be used to predict if unknown reports were transmitted
due to malware or benign files.

Constructing a dataset from all of the encoded data from the previous sec-
tion can lead to hundreds of thousands of potential features. Using too many
low-level features can cause overfitting which is due to training a complex ma-
chine learning algorithm with an insufficient number of training examples. If the
model is too complex, the results when the system is deployed to production
may be significantly worse compared to those observed when trained and tested

Feature Selection

Telemetry Logs

Classifier TrainingDataSet Creation Classifier Model

Analyst Labels

Fig. 2. Anti-Malware telemetry classification training system



796 J.W. Stokes et al.

on a small labeled dataset. A general rule is to select the number of features F
for the system to be the total number of samples divided by a sufficiently large
number (e.g. 8-10). The feature selection algorithm we use first computes a 2x2
contingency table for each potential feature based on the mutual information cri-
terion [23]. A maximum likelihood estimate of the mutual information criterion
serves as our ranking score R(f):

R(f) =
D

N
log2

N ·D
(B̂D)(ĈD)

+
B

N
log2

N · B
(ÂB)(ĈD)

+
C

N
log2

N · C
(B̂D)(ÂC)

+
A

N
log2

N ·A
(ÂB)(ÂC)

where A is the number of times the potential is not in the reports and the file
is determined to be benign, while D is the number of malicious reports which
include the potential feature. B (C) similarly is the report count for malicious
(benign) files not including (including) the potential feature. In addition, ÂB =
(A + B), ÂC = (A + C), B̂D = (B + D), ĈD = (C +D), and N = A + B +
C +D. Finally, the top F features are selected from the highest ranked mutual
information scores.

4 Telemetry Classifier Performance

Now that we have created our labeled dataset in the previous section, we turn
to the task of training our telemetry classifier. In this section, we investigate the
performance of five, linear and one, nonlinear classification algorithms. We are
particularly interested in linear classifiers because they are fast to train, but more
importantly, they can be used to evaluate unknown reports very quickly. Since
tens of millions of reports are received every day, evaluation of each unknown
report must be fast.

We first consider two forms of logistic regression [5] trained using stochas-
tic gradient descent (LR-SGD) and L-BFGS (LR-L-BFGS) [1] as the optimiza-
tion methods to learn the model parameters. Next, we train a support vector
machine (SVM) [5] with a linear kernel based on the Pegasos [31] algorithm
(SVM-Pegasos) as well as an approximation of the linear SVM [36] again using
L-BFGS (SVM-L-BFGS). The final linear classifier considered in this study is
the averaged perceptron [11]. We also train with a nonlinear algorithm employing
boosted decision trees using the MART [12] algorithm. Boosting has previously
been suggested for malware classification [22], [28].

To train and test the classifiers, we created a labeled dataset from 253,517
telemetry reports consisting of 173,548 malicious reports and 79,969 benign re-
ports collected over a four month period ending January 2012. We selected a
single telemetry report to represent each distinct file, as represented by a unique
SHA1 hash. To evaluate the performance of the six classification algorithms, we
use 5-fold cross validation which is the most fair way to do so. In cross valida-
tion, the entire labeled dataset is split equally into N (e.g. 5) sections. For each
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fold, we use one section as the test data and combine the remaining sections as
the training data. After the telemetry classifier has been trained and evaluated
for all folds, every sample in the dataset has been independently used in the
testing set. To be completely fair, we also rerun the feature selection algorithm
for each fold’s training data. Consequently, we never do feature selection using
samples from the test set. For these experiments, the number of selected features
was determined as one-tenth of the number of samples used for training. Using
4/5 of the total 253 thousand samples leads to the selection of 20,281 low-level
features.

Since we are dealing with a binary (i.e. two-class, malware versus benign)
classification problem, we investigate the performance of the classifiers using de-
tection error trade-off (DET) curves which plot the false negative rate versus the
false positive rate for the 5-fold cross validation results. Figure 3 shows the DET
curves for the six different classification algorithms. In addition, the equal error
rates, where the false positive and false negative rates match, and the training
time for one fold of the cross-validation are shown in Table 8. Of the six differ-
ent algorithms, LR-L-BFGS outperforms the remaining classifiers, particularly
at lower false positive rates. This version of logistic regression includes both L1
and L2 regularization terms. For L1 regularization, the algorithm tries to force
small weights to have a value equal to zero which helps improve the algorithm’s
ability to generalize to new telemetry reports. In this case, the L1 and L2 pa-
rameters are each set to 1.0. MART is competitive and is slightly better than
LR-L-LBGS at higher FP rates. SVMs have been well studied in the machine
learning literature [5], [15]. However, training an SVM for large data sets can
take a prohibitive amount of time. Zhang, et al. [36] proposed an approximation
to the linear SVM based on a modified version of logistic regression. The central
idea is that the SVM’s non-linear hinge loss can be approximated by the logistic
regression’s smooth log-loss function. We often use this algorithm to approxi-
mate the SVM in our work since the datasets tend to be very large. This SVM
approximation trained with L-BFGS (SVM-L-BFGS) also performs reasonably
well compared to LR-L-LBGS and MART. However, this implementation does
not include a separate L1 regularization term which may contribute to the de-
crease in detection accuracy compared to LR-L-BFGS. The averaged perceptron
and LR-SGD are competitive, but the SVM trained using the Pegasos algorithm
performed significantly worse compared to the other five algorithms. We con-
ducted another experiment to verify the contribution on the proposed LS Hash
features on the LR-L-LBGS model. Removing the LS Hash features from the
model increased the CV equal error rate for one particular dataset from 5.76%
to 6.81%, an increase of over 18.2%. As Table 8 shows, the classifiers are reason-
ably fast to train on a large server with dual, 2.0 GHz Intel E7540 processors
and 128 GBs of RAM. The best performing algorithm, LR-L-BGGS, requires
approximately 11 minutes to train. This training time is approximately one-
fourth of the time required to train the second best algorithm, MART, which is
significantly more complex.
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Table 8. Equal error rates and training times for six different telemetry classifier
algorithms

Algorithm Equal Error Rate (%) Training Time

LR-SGD 7.41 00:07:52.53
LR-L-BFGS 6.45 00:11:13.21
SVM-L-BFGS 6.77 01:59:32.89
SVM-Pegasos 10.34 00:01:12.59

Averaged Perceptron 7.21 00:02:54.15
MART 6.64 00:44:58.39

In Figure 4, we analyze how the telemetry report training set size affects the
equal error rate for three of the algorithms: LR-L-LBGS, MART, and LR-SGD.
The motivation for studying the effect of the training set size is that the results
presented in [22] and [30] are based on small training set sizes of 3622 and 4301,
respectively. We would like to understand if a particular classification algorithm
is the main factor in determining the classification performance or if the amount
of training data is more important. The figure clearly shows that increasing
the training set size leads to a significant decrease in the equal error rate for
all three models. For many of the different sample sizes, MART performs best
but is surpassed by LR-L-BFGS starting at 100 thousand samples. The relative
performance of LR-L-LBFGS and LR-SGD depends on the sample size. As the
sample size increases, the equal error rates become very close for the different
algorithms. One important result from Figure 4 is that the test error is still
decreasing even with a training set of 157 thousand samples. Although since the
x-axis is on a log scale, achieving better accuracies requires higher and higher
numbers of training samples.

Next in Table 9, we evaluated the performance of the telemetry classifier over
a period of thirteen months on new, unique reports (i.e. files) received in the
month following the classifier training but were not included in the training set.
For each test month, the telemetry classifier was trained on the previous five
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Table 9. Longitudenal results for the telemetry classifier system over a period of 13
months

Start Training Final Training Test Month CV Equal Test FP Test FN
Month Month Error Rate (%) Rate Rate

2010 09 2011 01 2011 02 7.66 9.73 9.45
2010 10 2011 02 2011 03 7.52 9.87 8.94
2010 11 2011 03 2011 04 7.43 13.36 6.63
2010 12 2011 04 2011 05 7.37 11.46 8.14
2011 01 2011 05 2011 06 7.43 18.14 16.17
2011 02 2011 06 2011 07 7.29 8.0 10.33
2011 03 2011 07 2011 08 7.23 7.44 11.07
2011 04 2011 08 2011 09 7.40 8.97 10.56
2011 05 2011 09 2011 10 7.13 10.77 14.61
2011 06 2011 10 2011 11 6.37 8.87 7.56
2011 07 2011 11 2011 12 6.33 6.95 9.12
2011 08 2011 12 2012 01 6.17 21.11 6.48
2011 09 2012 01 2012 02 6.78 8.35 6.11

months of unique labeled reports. The files associated with both the training
and test reports were previously determined to be malicious or benign by either
manual analysis by professional analysts or other automated means. For example,
computing the SHA1 hashes of all files in an off-the-shelf program and adding
them to a whitelist constitutes an automated method of determining a file’s
label. As noted earlier, we did not rely on detections based on AV signatures for
this validation. The table shows that cross validation rates on the training sets
are fairly consistent. However, due to a smaller amount of data, the FP and FN
rates for the test month have a larger variance and are almost always higher than
the cross-validation error on the training set. This is to be expected because it is
the most difficult test on previously unseen data. In January 2012, the FP rate
was 21.1% which can happen due to a small number of samples labeled benign
for a particular test month. In this case, the number of true positives was 29,836
and true negatives was 5,931. In addition, we found 1,587 false positives and
2,068 false negatives. Overall, there is reasonable agreement between the test
and training CV errors. For collecting new samples and sample submission to an
in-depth processing system, we believe these error rates are acceptable. In these
scenarios, a false positive results in the collection or submission of roughly one
benign sample for every nine malicious samples.

5 Malware Estimation

Now that we have trained our malware telemetry classifier to predict the label
of the unknown reports, we can use the classification system trained with LR-
L-LBFGS to estimate the number of malicious files. The 26.7 million telemetry
reports in our sample can be divided into several high-level sets as shown in
Figure 5. The figure indicates the number of reports received in October 2010
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Fig. 5. Anti-malware telemetry report description. All reports represent a distinct ex-
ecutable determined by a unique SHA1 hash.

considering only a single report for each distinct executable file. In other words,
we sample the most recent report received for each file and disregard each previ-
ous report containing that particular SHA1 file hash. These reports are divided
into two sets, namely those for files identified by the signature detector running
on the remote computer (20.5 million) and those for unknown files which were
not detected (6.2 million). One of the main goals of this paper is to predict
the label of these undetected reports in the shaded box. Furthermore, detected
reports include 255 thousand reports corresponding to executables where a sam-
ple of the file has been previously collected at the backend. Similarly, the file
collection system includes 578 thousand file samples found in the undetected re-
ports. From the figure, we see that we have only collected samples of files found
in 3.1% ((255K + 578K)/26.7M) of the reports thus providing motivation to
analyze reports in the absence of a file sample.

To estimate what percentage of unknown files are predicted to be malicious,
we first estimate the percentage of malicious executables from the unknown
reports in our sample population. The second and third columns of Table 10
provide the number of reports based on the three detection methods, manual
labeling, signature detection, and telemetry classifier prediction. In total, we
received reports for 26,749,556 distinct, files during October 2010. Of these 0.27%
(72,771) were generated due to files where we have a sample which has been
previously labeled as malicious by an analyst. These files are part of the set
of 255 thousand file samples in the detected reports in Figure 5. Similarly, we
observed that 0.07% (19,952) of the reports correspond to files labeled as benign
by analysts from the 578 thousand reports for which we have samples. The vast
majority (20,518,412, 76.7%) of reports were due to files that were detected as
malicious by the engine but not labeled by the analysts.

For the remaining reports for undetected files, we now use the telemetry clas-
sifier to predict how many of these were caused by malware and how many corre-
spond to benign files. Similar to the system described in Section 4, we trained a
telemetry classifier using the labeled samples up through October 2010 and then
used it to predict the label of the unknown reports. The equal error rate for this
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Table 10. Statistics for distinct files associated with telemetry reports received in
October 2010

Detection Type Malicious Benign

Manual Labeling 72,771 (0.27%) 19,952 (0.07%)
Signature Detection 20,518,412 (76.7%) Not Applicable
Telemetry Classifier Prediction 4,270,521 (16.0%) 1,867,900 (7.00%)
Total 24,861,704 (93.0%) 1,887,852 (7.1%)

version of the telemetry classifier is 5.9%. The third row of Table 10 shows that
16.0% (4,270,521) of the unknown reports are predicted to be malicious, while
7.0% (1,867,900) are predicted to involve benign files. The telemetry classifier
predicts that 69.6% (4,270,521/(4,270,521+1,867,900)) of the reports from un-
detected files are malicious. Furthermore, 93% of the total reports correspond to
malware. The telemetry classifier output also allows us to estimate the efficacy
of the signature detector. The table indicates that signatures detected 82.8%
(20,591,183/24,861,704) of the malicious files observed on the client computers.

6 Discussions

We believe the results in Section 4 are quite encouraging. After conducting the
experiment to measure how well the telemetry classifier can predict if the file
associated with the telemetry report is malicious or benign and reviewing the
results, we next set up a research web service for analysts to classify telemetry
reports from client machines. The system accomplishes several tasks, namely
providing a probability that a specific file is malicious given a report and gener-
ating a ranked list of the most malicious items for an analyst to review. For the
first instance, the analysts can evaluate the telemetry classifier results for any
file based on the SHA1 hash. In addition, the analyst has the option of evaluat-
ing the results for reports where we have samples of the file which are labeled
as malicious, labeled as benign, or not currently labeled. In the latter case, the
status of the file is unknown and the telemetry classifier provides an indication
whether or not the file is malicious. For files that are labeled by analysts or
the signature detector as malicious, reports which are predicted to be benign
should be considered potential false positive (FP) candidates; FPs are particu-
larly problematic for anti-malware products. Similarly, files which are labeled by
analysts as benign but the reports are predicted to be malicious are candidates
for false negatives and can be analyzed further.

Next we investigate potential methods to defeat the proposed system. The
main attack vector is to cause a report to be generated in such a way that
the metadata mimics the features associated with benign files (i.e. a mimicry
attack), but in some cases, this is not an easy task to accomplish. For example,
it would be very difficult to mimic the LS Hash of a benign file. Even if the
attacker is able to some create malware with a LS Hash similar to a benign file,



802 J.W. Stokes et al.

other features will help discriminate the malware from the legitimate file. For
example, malware often tries to masquerade as legitimate software by copying
legitimate signatures and certificate authorities. If the certificates are determined
to be invalid by the AM engine, this provides a very strong hint to the telemetry
classifier that the file is indeed malicious.

Another issue to consider is the accuracy of the reports analyzed in the previ-
ous section. For the results in Table 10, we consider all reports deemed malicious
by signature detection to be generated by malware. Although relatively rare,
false positives in the signatures lead to an increase in the number of reported
detections. In this case, we will overestimate the effectiveness of the signature
detection.

7 Related Work

The Microsoft Security Intelligence Report (SIR) [24] provides estimates of the
number of detected malicious files for different malware families. The telemetry
reports used to make the estimates in the SIR are the same as those used in this
paper. As noted earlier, this report is based on known signature detections and
does not attempt to estimate the amount of unknown malware.

Commercial software vendors have recently started using application and URL
reputation to determine if an application or URL is malicious. For example,
current versions of Symantec’s security products [7], [8] and Microsoft’s Internet
Explorer [14] both employ telemetry reports to infer a file’s reputation. The
key observation is that as more users run an application or visit a URL, these
entities can be considered more trustworthy. Applications which are only utilized
by a few individuals are more likely to be malware. In this paper, we do not
use the number of instances a particular SHA1 has been seen in the telemetry
data so that we can try to detect zero-day attacks. Waiting some period of
time to build a reputation could cause the system to miss many instances of
a single polymorphic attack. An alternate version of our system could also be
implemented with reputation data to better predict if an application is benign.
In addition, earlier systems [7], [8] appear to utilize telemetry reports to build a
reputation, but these papers do not attempt to classify the reports directly as
proposed in this work.

Security researchers have written many papers on malware classification, and
a recent survey of techniques used to detect malware is given in [16]. Most of
the features used in the telemetry classifier are determined by static analysis of
the file. As such, the telemetry classifier is closely related to early work in static
malware classification of executable binaries. Schultz et al. [30] train classifiers
to distinguish between malware and benign files based on three different feature
sets (DLLs, strings, executable byte sequences). In [22], Kolter and Maloof train
several different classifiers based on n-grams of executable byte code sequences
as features, among others.

There have been several in-depth malware analysis systems which have been
developed over the years and could be utilized in Figure 1 including Anu-
bis [17],[4], BitBlaze [32], and BAP [6]. Clustering and classification of the results
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of static analysis of files has been previously proposed for prefiltering for in-depth
file analysis [18], [26], [34]. Our work differs in that we classify telemetry reports
for files with analyzed on remote computers. Oberheide et al. [27] propose run-
ning simple clients on remote machines and transmitting the files to a backend
service to be analyzed by a suite of commercial malware products. This work
differs from the system described in this paper in that the entire file is not trans-
mitted to the backend. Instead malware is detected by classifying the metadata
in the telemetry reports.

8 Conclusions

For the first time, we estimate the total number of infected files including un-
known files which have been predicted to be malicious using our telemetry report
classifier. Based on a sample population of 50 million computers, we estimate
that 93% of the files observed in the telemetry in October 2010 are malicious.
While this estimate is somewhat biased, it confirms our suspicion that malware
is a serious problem. We are somewhat encouraged that the current signatures
have identified 82.8% of the known and predicted malware; we feel that this
percentage could have been much worse, and the telemetry classifier allows us
to measure our progress.

New AV signatures cannot be automatically generated using the proposed
system: the false positive rate is too high. However we believe this telemetry
classifier can serve several useful purposes including monitoring the current AV
signature detection rates, automatically requesting samples, and ranking un-
known files for more in-depth automated classification. The consequences of an
FP are low: a user may be prompted to submit an unknown file which turns out
to be benign or the in-depth analysis system spends a few minutes investigat-
ing a benign file. These outcomes can be minimized by only selecting files for
analysis which are predicted to be malicious with a high probability.

Acknowledgments. We thank Misha Bilenko, Matthew Richardson,
Ofer Dekel, and Galen Andrew for providing some of the machine learning al-
gorithms used in this study. We also thank the anonymous reviewers for their
insightful comments.

References

1. Andrew, G., Gao, J.: Scalable training of l1-regularized log-linear models. In: Proc.
of the 24th International Conference on Machine Learning (ICML), Corvalis, OR,
pp. 33–40. ACM, New York (2007)

2. Bayer, U., Habibi, I., Balzarotti, D., Kirda, E., Kruegel, C.: A view on current
malware behaviors. In: Proc. of 2nd USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET), Boston, MA, USA (2009)

3. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
behavior-based malware clustering. In: Proc. of the 16th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA (February 2009)



804 J.W. Stokes et al.

4. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: A tool for analyzing malware. In:
Proc. of 15th Annual Conference of the European Institute for Computer Antivirus
Research, EICAR (2006)

5. Bishop, C.: Pattern Recognition and Machine Learning. Springer (2006)
6. Brumley, D., Jager, I., Avgerinos, T., Schwartz, E.J.: BAP: A Binary Analysis

Platform. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806,
pp. 463–469. Springer, Heidelberg (2011)

7. Nachenberg, C., Seshadri, V., Ramzan, Z.: An analysis of real-world effectiveness of
reputation-based security. In: Proc. of Virus Bulletin Conference, VB, pp. 178–183
(2010)

8. Chau, D.H., Nachenberg, C., Wilhelm, J., Wright, A., Faloutsos, C.: Polonium:
Tera-scale graph mining and inference for malware detection. In: Proc. of SIAM
International Conference on Data Mining, SDM (2011)

9. Christodorescu, M., Jha, S., Kruegel, C.: Mining specifications of malicious be-
havior. In: Proc. of the 6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software
Engineering (ESEC/FSE), pp. 5–14 (2007)

10. Edelman, B.: Adverse selection in online “trust” certifications. In: Fifth Workshop
on the Economics of Information Security, pp. 26–28 (2006)

11. Freund, Y., Schapire, R.: Large margin classification using the perceptron algo-
rithm. Machine Learning, 277–296 (1999)

12. Friedman, J.: Greedy function approximation: a gradient boosting machine. Annals
of Statistics, 1189–1232 (2001)

13. Group, A.P.W.: Phishing activity trends report, 3rd quarter 2009 (2010), http://
www.antiphishing.org/reports/apwg_report_Q3_2009.pdf

14. Haber, J.: Smartscreen application reputation in ie9 (2011), http://blogs.msdn.
com/b/ie/archive/2011/05/17/smartscreen-174-application-reputation-

in-ie9.aspx
15. Hu, W., Liao, Y., Vemuri, V.R.: Robust support vector machines for anomaly

detection. In: Proc. 2003 International Conference on Machine Learning and Ap-
plications (ICMLA), pp. 23–24 (2003)

16. Idika, N., Mathur, A.: A survey of malware detection techniques. Tech. rep.,
Purdue Univ. (February 2007), http://www.eecs.umich.edu/techreports/cse/
2007/CSE-TR-530-07.pdf

17. Iseclab: Anubis, analyzing unknown binaries, http://anubis.iseclab.org
18. Jacob, G., Comparetti, P.M., Neugschwandtner, M., Kruegel, C., Vigna, G.: A

static, packer-agnostic filter to detect similar malware samples. In: Conference on
Detection of Intrusions and Malware & Vulnerability Assessment, DIMVA (2012)

19. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for
scalable triage and semantic analysis. In: Proc. of the 18th ACM Conference on
Computer and Communications Security (CCS), pp. 309–320 (2011)

20. Jiang, X., Wang, X., Xu, D.: Stealthy malware detection through vmm-based ”out-
of-the-box” semantic view reconstruction. In: Proc. of the ACM Conference on
Computer and Communications Security (CCS), pp. 128–138 (2007)

21. Kirda, E., Kruegel, C., Banks, G., Vigna, G., Kemmerer, R.A.: Behavior based
spyware detection. In: Proc. of the 15th USENIX Security Symposium, pp. 273–
288 (2006)

22. Kolter, J., Maloof, M.: Learning to detect and classify malicious executables in the
wild. Journal of Machine Learning Research (JMLR), 2721–2744 (2006)

23. Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Re-
trieval. Cambridge University Press (2009)

http://www.antiphishing.org/reports/apwg_report_Q3_2009.pdf
http://www.antiphishing.org/reports/apwg_report_Q3_2009.pdf
http://blogs.msdn.com/b/ie/archive/2011/05/17/smartscreen-174-application-reputation-in-ie9.aspx
http://blogs.msdn.com/b/ie/archive/2011/05/17/smartscreen-174-application-reputation-in-ie9.aspx
http://blogs.msdn.com/b/ie/archive/2011/05/17/smartscreen-174-application-reputation-in-ie9.aspx
http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://www.eecs.umich.edu/techreports/cse/2007/CSE-TR-530-07.pdf
http://anubis.iseclab.org


Scalable Telemetry Classification 805

24. Microsoft: Microsoft security intelligence report (July-December 2010) (2011),
http://www.microsoft.com/security/sir/default.aspx

25. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Proc. of the 23rd Annual Computer Security Applications Conference (AC-
SAC), pp. 421–430 (2007)

26. Neugschwandtner, M., Comparetti, P.M., Jacob, G., Kruegel, C.: Forecast – skim-
ming off the malware cream. In: 27th Annual Computer Security Applications
Conference, ACSAC (2011)

27. Oberheide, J., Cooke, E., Jahanian, F.: Cloudav: N-version antivirus in the network
cloud. In: Proc. of the 17th Conference on Security Symposium, pp. 91–106 (2008)

28. Perdisci, R., Lanzi, A., Lee, W.: Mcboost: Boosting scalability in malware collection
and analysis using statistical classification of executables. In: Proc. of the 2008
Annual Computer Security Applications Conference (ACSAC), pp. 301–310 (2008)

29. Preda, M., Christodorescu, M., Jha, S., Debray, S.: A semantics-based approach to
malware detection. In: Proc. of the 34th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, pp. 377–388 (2007)

30. Schultz, M., Eskin, E., Zadok, E., Stolfo, S.: Data mining methods of detection of
new malicious executables. In: Proc. of the 2001 IEEE Symposium on Security and
Privacy (SP), pp. 38–49. IEEE Press, New York (2001)

31. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: Primal estimated sub-gradient
solver for svm. In: Proc. of the 24th International Conference on Machine Learning
(ICML), Corvalis, OR, pp. 807–814. ACM, New York (2007)

32. Song, D., Brumley, D., Yin, H., Caballero, J., Jager, I., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A New Approach to Computer
Security via Binary Analysis. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 1–25. Springer, Heidelberg (2008)

33. Stolfo, S., Wang, K., Li, W.: Towards stealthy malware detection. In: Christodor-
escu, M., Jha, S., Maughan, D., Song, D., Wang, C. (eds.) Malware Detection.
Springer (2007)

34. Wicherski, G.: pehash: A novel approach to fast malware clustering. In: USENIX
Workshop Large-Scale Exploits and Emergent Threats, LEET (2009)

35. Zhang, B., Yin, J., Hao, J., Zhang, D., Wang, S.: Malicious Codes Detection Based
on Ensemble Learning. In: Xiao, B., Yang, L.T., Ma, J., Muller-Schloer, C., Hua,
Y. (eds.) ATC 2007. LNCS, vol. 4610, pp. 468–477. Springer, Heidelberg (2007)

36. Zhang, J., Jin, R., Yang, Y., Hauptmann, A.G.: Modified logistic regression: An
approximation to svm and its applications in large-scale text categorization. In:
Proc. of the 20th International Conference on Machine Learning (ICML), Menlo
Park, pp. 888–895 (2003)

http://www.microsoft.com/security/sir/default.aspx


Abstraction-Based Malware Analysis

Using Rewriting and Model Checking

Philippe Beaucamps1, Isabelle Gnaedig2, and Jean-Yves Marion1
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Abstract. We propose a formal approach for the detection of high-level
malware behaviors. Our technique uses a rewriting-based abstraction
mechanism, producing abstracted forms of program traces, independent
of the program implementation. It then allows us to handle similar be-
haviors in a generic way and thus to be robust with respect to variants.
These behaviors, defined as combinations of patterns given in a signa-
ture, are detected by model-checking on the high-level representation of
the program. We work on unbounded sets of traces, which makes our
technique useful not only for dynamic analysis, considering one trace at
a time, but also for static analysis, considering a set of traces inferred
from a control flow graph. Abstracting traces with rewriting systems on
first order terms with variables allows us in particular to model dataflow
and to detect information leak.

Keywords: Malware, behavioral detection, behavior abstraction, trace,
term rewriting, model checking, first-order temporal logic, finite state
automaton, formal language.

1 Introduction

Behavior analysis was introduced by Cohen’s seminal work [1] to detect mal-
ware and in particular unknown malware. In general, a behavior is described by
a sequence of system calls and recognition uses the formalism of finite state au-
tomata [2,3,4,5]. New approaches have been proposed recently. In [6,7], malicious
behaviors are specified by temporal logic formulas with parameters and detection
is carried out by model-checking. However, these approaches are tightly depen-
dent on the way malicious actions are realized: using any other system facility to
realize an action allows a malware to go undetected. This has motivated yet an-
other approach where a malicious behavior is specified as a combination of high-
level actions, in order to be independent from the way these actions are realized
and to only consider their effect on a system. In [8] and in [9], a captured execu-
tion trace is transformed into a higher-level representation capturing its semantic
meaning, i.e., the trace is first abstracted before being compared to a malicious
behavior. In [10], the authors propose to use attribute automata, at the price
of an exponential time complexity detection. These dynamic abstraction-based
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approaches, though they can detect unknown viruses whose execution traces
exhibit known malicious behaviors, only deal with a single execution trace.

In this paper, we propose a formal approach for high-level behavior analysis,
with the following features. Underpinned by language theory, term rewriting and
first-order temporal logic, it allows us to determine whether a program exhibits
a high-level behavior. Detection is achieved in two steps. First, traces of the pro-
gram are abstracted in order to reveal the sequences of high-level functionalities
they realize. Then, abstracted traces are compared with the behavior formula,
using usual model-checking techniques. Functionalities have parameters repre-
senting the manipulated data, so our formalism is adapted to the protection
against generic threats like the leak of sensitive information.

Our goal here is not to provide a ready-made software to detect behaviors, but
to propose a formal framework emphasizing fundamental detection mechanisms,
which are independent of implementation-based solutions.

Our approach has two main characteristics. First, we work on an unbounded
set of traces representing the behavior of a program, in order to consider a more
complete representation of the program than with a single trace. To deal with
the infinity of the set of traces, we restrict to regular sets and safely approximate
the set of abstract traces, so that we detect in linear time whether a program
exhibits a given behavior. Second, we work on abstract forms of traces, in or-
der to only keep the essence of the functions performed by the program, to be
independent of their possible implementations and to be generic with respect
to behavior mutations. Behavior components are abstracted in program traces,
by identifying known functionalities and marking them by inserting abstract
functionality symbols.

By working on sets of traces, which may consist of a single trace as well as of an
unbounded number of traces, our approach may be used not only for classical,
dynamic behavior analysis, but also for static behavior analysis i.e., behavior
analysis in a static analysis setting.

Static behavior analysis by abstraction is more challenging than its dynamic
counterpart because, precisely, this approach needs to abstract a program behav-
ior potentially representing an infinite set of execution traces. The construction
of an exhaustive representation of a program behavior is an intractable prob-
lem in general: in particular, a program flow may not be easily followed due to
indirect jumps, and a program may use complex code protection, for instance
by dynamically modifying its code or by using obfuscation. Self modification is
usually tackled by emulating the program long enough to deactivate most code
protections. Indirect jumps and obfuscation are usually handled by abstract in-
terpretation [11,12] or symbolic execution [13].

Static behavior analysis has many advantages and applications. First, it allows
us to analyze the behavior of a program in a more exhaustive way, as it analyzes
the unbounded set of the program execution traces, or an approximation of it.
Second, static behavior analysis can complement classical, dynamic, behavior
analysis with an analysis of the future behavior, to prevent damages when some
critical point is reached in an execution.
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An interesting application of static behavior analysis is the audit of programs
in high-level technologies, like mobile applications, browser extensions, web page
scripts, .NET or Java programs. Auditing these programs is complex and mostly
manual, resulting in highly publicized infections [14,15]. In this context, static
analysis can provide an appropriate help, because it is usually easier than for
usual programs, especially when additionally enforcing a security policy (e.g. pro-
hibiting self-modification [16]) or when enforcing strict development guidelines
(e.g. for iPhone applications).

To our knowledge, the use of behavior abstraction on top of static behavior
analysis has not been investigated so far. As our detection mechanism relies on
satisfaction of temporal logic formulas, it is akin to model checking [17], for which
there already exist numerous frameworks and tools [18,19,20]. The specificity of
our approach, however, is that, rather than being applied on the set of program
traces, verification is applied on the set of abstract forms of these traces, which is
not computable in general. Accordingly, we identify a property of practical high-
level behaviors allowing us to approximate this set, in a sound and complete way
with respect to detection, and then to apply classical verification techniques.

Our abstraction framework can be used in two scenarios:

– Detection of given behaviors: signatures of given high-level behaviors are ex-
pressed in terms of abstract functionalities. Given some program, we then
assess whether one of its execution traces exhibits a sequence of known func-
tionalities, in a way specific to one of the given behaviors. This can be applied
to detection of suspicious behaviors. Although detection of such suspicious
behaviors may not suffice to label a program as malicious, it can be used to
supplement existing detection techniques with additional decision criteria.

– Analysis of programs : abstraction provides a simple and high-level represen-
tation of a program behavior, which is more suitable than the original traces
for manual analysis, or for analysis of behavior similarity with known be-
haviors, etc. For instance, it could be used to detect not necessarily harmful
behaviors, in order to get a basic understanding of the program and to fur-
ther investigate if deemed necessary. It could also be used to automatically
discover sequences of high-level functionalities and their dataflow dependen-
cies, exhibited by a program.

Previous Work. In [21], we already proposed to abstract program sets of
traces with respect to behavior patterns, for detection and analysis. We tested
our approach on samples of malicious programs collected using a honeypot1 and
identified using Kaspersky Antivirus. These samples belonged to known malware
families, like Allaple, Virut, Agent, Rbot, Afcore and Mimail. Most of them were
successfully matched to our malware database.

But patterns were defined by string rewriting systems, which did not allow
the actions composing a trace to have parameters, precluding dataflow analysis.
Moreover, abstraction rules replaced identified patterns by abstraction symbols

1 The honeypot of the Loria’s High Security Lab: http://lhs.loria.fr

http://lhs.loria.fr
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in the original trace, precluding a further detection of patterns interleaved with
the rewritten ones.

The formalism proposed in this paper addresses both issues: first, we handle
interleaved patterns by keeping the identified patterns when abstracting them.
Second, we extend the rewriting framework to express data constraints on action
parameters by using term rewriting systems. An important consequence is that,
unlike in [21], using the dataflow, we can detect information leaks in order to
prevent unauthorized disclosure or modifications of information.

2 Background

Term Algebras. Let S = {Trace, Action,Data} be a set of sorts, F = Ft ∪Fa

∪Fd be a finite S-sorted signature, where Ft, Fa, Fd are mutually distinct and:

– Ft = {ε, ·} is the set of the trace constructors, where ε :→ Trace denotes
the empty trace, . has profile Data Trace→ Trace;

– Fa is a set of function symbols or constants, with profile Datan → Action,
n ∈ N, describing actions;

– Fd is a set of data constructors, with profile → Data or Datan → Data,
n ∈ N.

Let N∗
+ be the set of finite strings of positive natural numbers, called positions.

The empty string is denoted by λ, and u ≤ v means that u is prefix of v. Let X
be a set of S-sorted variables. A S-sorted term over (F , X) is a partial function
t : N∗

+ → F ∪ X , such that the domain of definition of t, denoted by Pos(t),
is finite and satisfies, for w ∈ N∗

+ and i ∈ N: (1) wi ∈ Pos(t) ⇒ w ∈ Pos(t),
(2) w ∈ Pos(t) ⇒ t(w) ∈ F ∪ X . Pos(t) is called the set of positions of t. We
denote by T (F , X) (resp. T (F)) the set of S-sorted terms over (F , X) (resp. the
set of finite ground terms over F). For any sort s ∈ S, and any of the above sets
of terms T we denote by Ts the restriction of T to terms of sort s and by Xs

the subset of variables of X of sort s. For a term t with p ∈ Pos(t), we denote
by t|p the subterm of t at position p. We denote by t[t′]p the term obtained by
replacing by t′ the subterm at position p in t. We use the abbreviated notation
x for variables x1, . . . , xn. So x ∈ X stands for x1, . . . , xn ∈ X , and if f ∈ F is
a symbol of arity n ∈ N, we denote by f (x) the term f (x1, . . . , xn).

The elements of TTrace(F) are called traces, the elements of TAction(F) are
called actions. We distinguish the sort Action from the sort Trace but, for a
sake of readability, we may denote by a the trace · (a, ε), for some action a.
Similarly, we use the · symbol with infix notation and right associativity, and
ε is understood when the context is unambiguous. For instance, if a, b, c are
actions, a · b · c denotes the trace · (a, · (b, · (c, ε))).

We partition Fa in a set Σ of symbols, denoting concrete program-level ac-
tions, and a set Γ , denoting abstract actions identifying abstracted functional-
ities. To construct purely concrete (resp. abstract) terms, we use FΣ = F \ Γ
(resp. FΓ = F \Σ). The projection t|Σ′ , also denoted πΣ′ (t), of a trace t on an
alphabet Σ′ ⊆ Fa corresponds to keeping in a trace only actions from Σ′. If X is
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a set of variables of sort Data, we define the projection on an alphabet Σ′ ⊆ Fa

of a term t ∈ TTrace (F, X), denoted by πΣ′ (t) or, equivalently, by t|Σ′ , in the
following way:

πΣ′ (ε) = ε

πΣ′ (b · u) =
{
b · πΣ′ (u) if b ∈ TAction (FΣ′ , X)

πΣ′ (u) otherwise

with b ∈ TAction (F, X) and u ∈ TTrace (F, X). The projection is naturally ex-
tended to sets of traces.

We define in a natural way the concatenation t · t′ of two traces t and t′. The
concatenation of two terms t and t′ of TTrace (F, X), where X is a set of S-sorted
variables and t �∈ X , is denoted by t·t′ ∈ TTrace (F, X) and defined by t·t′ = t [t′]p,
where p is the position of ε in t, i.e., t|p = ε. Projection and concatenation are
naturally extended to sets of terms of sort Trace. We also extend concatenation to
2TTrace(F,X)×2TTrace(F,X) with L ·L′ = {t · t′ | t ∈ L, t′ ∈ L′} and to 2TTrace(F,X)×
TAction (F, X) with L · a = L · {a · ε}.

Substitutions are defined as usual. A ground substitution on a finite setX of S-
sorted variables is a mapping σ : X → T (F) such that: ∀s ∈ S, ∀x ∈ Xs, σ (x) ∈
Ts (F). σ can be naturally extended to a mapping T (F , X) → T (F) in such a
way that:

∀f (t1, . . . , tn) ∈ T (F , X) ,
σ (f (t1, . . . , tn)) = f (σ (t1) , . . . , σ (tn)) .

By convention, we denote by tσ or by σ (t) the application of a substitution
σ to a term t ∈ T (F , X) and by Lσ the application of σ to a set of terms
L ⊆ T (F , X). The set of ground substitutions over X is denoted by SubstX.

Program Behavior. The representation of a program is chosen to be its set
of traces. When executing a program, the captured data is represented on the
alphabets Σ, denoting the concrete actions, and Fd, describing the data. In this
paper, we consider that the captured data is the library calls along with their
arguments. Σ therefore represents the finite set of library calls, while terms built
on Fd identify the arguments and the return values of these calls. A program
execution trace then consists of a sequence of library calls and is defined by
a term of TTrace (FΣ). A program behavior is defined by the set of its execu-
tion traces, that is a possibly infinite subset of TTrace (FΣ). For instance, the
term fopen (1, 2) · fwrite (1, 3) represents the execution trace of a file open call
fopen (1, 2) followed by a file write call fwrite (1, 3), where 1 ∈ Fd identifies
the file handle returned by fopen, 2 ∈ Fd identifies the file path and 3 ∈ Fd

identifies the written data.

First-Order Linear Temporal Logic (FOLTL). We consider the First-
Order Logic (FOLTL) defined in [17], without the equality predicate, where the
set of atomic predicates AP is a set of terms with variables in a set X . FOLTL
is an extension of the LTL Logic (see also [17]) such that:
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– If ϕ is an LTL formula, then ϕ is an FOLTL formula;
– If ϕ is an FOLTL formula and Y ⊆ X is a set of variables, then: ∃Y.ϕ and
∀Y.ϕ are FOLTL formulas, where as usual: ∀Y.ϕ ≡ ¬∃Y.¬ϕ.

Notation ϕ1 0 ϕ2 stands for ϕ1 ∧X (�Uϕ2).
We say that a FOLTL formula is closed when it has no free variable, i.e., every

variable is bound by a quantifier.
Let Y ⊆ X be a set of variables of sort Data and σ ∈ SubstY be a ground

substitution over Y . The application of σ to an FOLTL formula ϕ is naturally
defined by the formula ϕσ where any free variable x in ϕ which is in Y has been
replaced by its value σ (x).

A formula ϕ is satisfied on infinite sequences of sets of ground instances of
atomic predicates, denoted by ξ = (ξ0, ξ1, . . .). ξ |= ϕ (ξ satisfies ϕ) is defined in
the same way as for the LTL logic, with the additional rule: ξ |= ∃Y.ϕ iff there
exists σ ∈ SubstY such that ξ |= ϕσ.

In our context, a formula is satisfied over traces of TTrace (F) identified with
sequences of singleton sets of atomic predicates. A finite trace t = a0 · · · an is
identified with the infinite sequence of sets of atomic predicates ξt = ({a0} , . . . ,
{an} , {} , {} , . . .), and t satisfies ϕ, denoted by t |= ϕ, iff ξt |= ϕ.

We consider two distinct instances of this logic, depending on the fact that we
consider concrete traces or abstract traces. We denote by FOLTLΣ the FOLTL
logic, where the set of atomic predicates is APΣ = TAction (FΣ, X) and ξ is in(
2TAction(FΣ)

)ω
. We denote by FOLTLΓ the FOLTL logic, where the set of atomic

predicates is APΓ = TAction (FΓ, X) and ξ is in
(
2TAction(FΓ)

)ω
.

Note that in practice, to express behaviors, we only use FOLTL formulas
that are negations of safety properties. We do not use properties with liveness
aspects, which would note make sense on finite traces. Using FOLTL on finite
traces allows us a correct balance between behavior expressivity and decidability.

Tree automata and tree transducers are defined as usual [22].

3 Behavior Patterns

The problem under study can be formalized in the following way. First, using
FOLTL formulas, we define a set of behavior patterns, where each pattern rep-
resents a (possibly infinite) set of terms from TTrace (FΣ). Second, we need to
define a terminating abstraction relation R allowing to schematize a trace by ab-
stracting occurrences of the behavior patterns in that trace. Finally, given some
program p coming with an infinite set of traces L (static analysis scenario, for
instance by using the control flow graph, see our previous work [21] and [23,24]),
we formulate the detection problem in the following way. Let L↓R be the set of
normal forms of traces of L for R i.e., the set of abstracted traces of L, using
R. Given an abstract behavior M defined by an FOLTL formula ϕ, does there
exist a trace t in L↓R such that t |= ϕ? Our goal is then to find an effective and
efficient method solving this problem.

A behavior pattern describes a functionality we want to recognize in a program
trace, like writing to system files, sending a mail or pinging a remote host. Such a
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functionality can be realized in different ways, depending on which system calls,
library calls or programming languages it uses.

We describe a functionality by an FOLTL formula, such that traces satisfying
this formula are traces carrying out the functionality.

Example 1. Let us consider the functionality of sending a ping. One way of real-
izing it consists in calling the socket function with the parameter IPPROTO ICMP

describing the network protocol and, then, calling the sendto function with the
parameter ICMP ECHOREQ describing the data to be sent. Between these two
calls, the socket should not be freed. This is described by the FOLTL formula:
ϕ1 = ∃x, y. socket (x, α) ∧ (¬closesocket (x) U sendto (x, β, y)), where the first
parameter of socket is the created socket and the second parameter is the network
protocol, the first parameter of sendto is the used socket, the second parame-
ter is the sent data and the third one is the target, the unique parameter of
closesocket is the freed socket and constants α and β in Fd identify the above
parameters IPPROTO ICMP and ICMP ECHOREQ.

A ping may also be realized using the function IcmpSendEcho, whose pa-
rameter represents the ping target. This corresponds to the FOLTL formula:
ϕ2 = ∃x. IcmpSendEcho (x).

Hence, the ping functionality may be described by the FOLTL formula: ϕping =
ϕ1 ∨ ϕ2.

We then define a behavior pattern as the set of traces carrying out its func-
tionality i.e., satisfying the formula describing the functionality.

Definition 1. A behavior pattern is a set of traces B ⊆ TTrace (FΣ) satisfying
a closed FOLTLΣ formula ϕ: B = {t ∈ TTrace (FΣ) | t |= ϕ} .

4 Trace Abstraction

As said before, our goal is to be able to detect, in a given set of traces, some
predefined behavior composed of combinations of high-level functionalities. For
this, we associate to each behavior pattern an abstract symbol λ taken in the
alphabet Γ , called abstraction symbol. An abstract behavior is then defined by
combinations of abstraction symbols associated to behavior patterns, using an
FOLTL formula ϕ on APΓ = TAction (FΓ, X) instead of APΣ = TAction (FΣ, X).

Definition 2. An abstract behavior is a set of tracesM ⊆ TTrace (FΓ) satisfying
a closed FOLTLΓ formula ϕM : M = {t ∈ TTrace (FΓ) | t |= ϕM} . When M is
defined by a formula ϕM , we write: M := ϕM .

Example 2. The abstract behavior of sending a ping to a remote host can then
be trivially defined by the formula: ϕM = ∃x.Fλping (x) .

In the following, for the sake of simplicity, the initial F operator is implicit in
definitions of abstract behaviors.



Abstraction-Based Malware Analysis Using Rewriting and Model Checking 813

Now, let L be the set of program traces we want to analyze. To compare
these traces to the given abstract behavior, we have to consider the behavior
pattern occurrences they may contain, at the abstract level. For this, we define
an abstraction relation R, which marks such occurrences in traces by inserting
an abstraction symbol λB when an occurrence of the behavior pattern B is
identified.

From now on, if a behavior pattern is defined using an FOLTL formula ϕ and
associated to an abstraction symbol λ, we may denote it λ := ϕ.

The abstraction symbol can have parameters corresponding to those used
by the behavior pattern. This allows us to express dataflow constraints in a
signature. For instance, the abstraction symbol for the ping behavior pattern can
take a parameter denoting the ping target. A signature for a denial of service
could then be defined, for example, as a sequence of 100 pings with the same
target.

Example 3. The ping behavior pattern in Example 1 is abstracted in traces by in-
serting the λping symbol after the send action or after the IcmpSendEcho action.
Then, the trace socket(1, α) · gethostbyname(2) · sendto(1, β, 3) · closesocket(1)
can be abstracted into the trace socket(1, α) · gethostbyname(2) · sendto(1, β, 3) ·
λping(3) · closesocket(1).

Thus, abstraction of a trace reveals abstract behavior pattern combinations,
which may constitute the abstract behavior to be observed. We now formally
define the abstraction relation.

As said above, abstracting a trace with respect to some behavior pattern
amounts to transforming it when it contains an occurrence of the behavior pat-
tern, by inserting a symbol of Γ in the trace. This symbol is inserted at the po-
sition after which the behavior pattern functionality has been performed. This
position is the most logical one to stick to the trace semantics. Furthermore,
when behavior patterns appear interleaved, this position allows us to define the
order in which their functionalities are realized (see the full version of the paper
for an example [25]).

As said in the introduction, rather than replace behavior pattern occurrences
with abstraction symbols, we preserve them in order to properly handle inter-
leaved behavior patterns occurrences. Now, let us consider the following example.

Example 4. Abstraction of the ping in Example 3 is realized by rewriting us-
ing the rule A1(x, y) · B1(x, y) → A1(x, y) · λ(y) · B1(x, y), where A1(x, y) =
socket(x, α) · (TTrace (FΣ)\ (TTrace (FΣ) · closesocket(x) ·TTrace (FΣ))) ·sendto(x,
β, y) and B1(x, y) = {ε}, and the rule A2(x) ·B2(x) → A2(x) ·λ(x) ·B2(x), where
A2(x) = {IcmpSendEcho(x)} and B2(x) = {ε}.

As a behavior pattern is a set of possible traces realizing a given functionality, we
define the abstraction relation by decomposing the behavior pattern into a finite
union of concatenations of sets Ai (X) and Bi (X) such that traces in Ai (X) end
with the action effectively performing the behavior pattern functionality. These
sets Ai (X) and Bi (X) are composed of concrete traces only, since abstract
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actions that may appear in a partially rewritten trace should not impact the
abstraction of an occurrence of the behavior pattern.

Definition 3. Let λ ∈ Γ be an abstraction symbol, X be a set of variables of sort
Data, x be a sequence of variables in X. An abstraction system on TTrace (F, X)
is a finite set of rewrite rules of the form: Ai (X)·Bi (X)→ Ai (X)·λ (x)·Bi (X)
where the sets Ai (X) and Bi (X) are sets of concrete traces of TTrace (FΣ, X).

Dealing with sets as left(right)-hand sides of rules may seem to be heavy. In fact,
this allows us to recognize not only finitely enumerated patterns, but patterns
from languages i.e., patterns among possibly infinite sets of behaviors.

The system of rewrite rules we use generates a reduction relation on TTrace (F)
such that filtering works on traces projected on Σ.

Definition 4. The reduction relation on TTrace(F) generated by a system of n
rewrite rules Ai (X) · Bi (X) → Ai (X) · λ (x) · Bi (X) is the rewriting relation
→R such that, for all t, t′ ∈ TTrace (F) , t →R t′ iff:

∃σ ∈ SubstX, ∃p ∈ Pos(t), ∃i ∈ [1..n] ,

∃a ∈ TTrace (F) · TAction (FΣ) , ∃b, u ∈ TTrace(F),

a|Σ ∈ Ai (X)σ, b|Σ ∈ Bi (X)σ, t|p = a · b · u
and t′ = t [a · λ (x)σ · b · u]p .

An abstraction relation with respect to a given behavior pattern is thus the
reduction relation of an abstraction system, where left members of the rules
cover the set of the traces realizing the behavior pattern functionality.

Definition 5. Let B be a behavior pattern associated with an abstraction symbol
λ ∈ Γ . Let X be a set of variables of sort Data. An abstraction relation w.r.t.
this behavior pattern is the reduction relation on TTrace(FΣ) generated by an
abstraction system composed of n rules Ai (X) ·Bi (X)→ Ai (X) · λ (x) ·Bi (X)
verifying:

B =
⋃

i∈[1..n]

⋃
σ∈SubstX

(Ai (X) ·Bi (X))σ .

Finally, we generalize the definition of abstraction to a set of behavior patterns.

Definition 6. Let C be a finite set of behavior patterns. An abstraction relation
w.r.t C is the union of the abstraction relations w.r.t. the elements of C.

As we will see later, for R to be realizable by a tree transducer, the abstraction
relation R has to be terminating. However, even with a finite set of traces,
abstraction does not terminate in general, since the same occurrence of a pattern
can be abstracted an unbounded number of times. So we require that the same
abstract action is not inserted twice after the same concrete action. In other
words, if t = t1 ·t2 is abstracted into t′ = t1 ·α·t2, where α is the inserted abstract
action, then if t2 starts with a sequence of abstract actions, α does not appear in
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this sequence. Formally, we require that: ∀t1, t2 ∈ TTrace (F) , ∀α ∈ TAction (FΓ),
if t1 · t2 →R t1 · α · t2, then � ∃u ∈ TTrace (FΓ) , � ∃u′ ∈ TTrace (F) , t2 = u · α · u′.

Using the above condition, supposed to be verified from now on, a behavior
pattern occurrence can only be abstracted once. Furthermore, abstraction does
not create new abstraction opportunities so the relation R is clearly terminating.

Remark 1. A terminating abstraction relation with respect to a set of behavior
patterns is not confluent in general. We could adapt the definition of the abstrac-
tion relation to make it confluent, for instance by defining an order on the set
TAction (FΓ). However, as already mentioned, detection works on normal forms.
So having several normal forms for a trace does not compromise its mechanism.

In practice, a behavior pattern is regular, along with the set of instances of
right-hand sides of its abstraction rules. We show that this is sufficient, with
termination of the set of rules, to ensure that the abstraction relation is realizable
by a tree transducer, in other words that it is a rational tree transduction. The
tree transducer formalism is chosen for its interesting formal (closure by union,
composition, preservation of regularity) and computational properties. When
TAction(F) is finite, we can state the following result.

Theorem 1. Let B be a behavior pattern and R be a terminating abstraction
relation w.r.t. B defined by an abstraction system whose set of instances of right-
hand sides of rules is recognized by a tree automaton AR. Then R and R−1 are
rational and, for any tree automaton A recognizing a trace language L, R(L) is
recognized by a tree automaton of size O (|A| · |AR|).

5 Detection Problem

Then the detection problem can be formalized as follows.

Definition 7. A set of traces L ⊆ TTrace(FΣ) exhibits an abstract behavior M
defined by a formula ϕM , denoted by L �M , iff: ∃t ∈ L↓R|Γ , t |= ϕM .

When L is restricted to a single trace, or to a finite set of traces, like in dynamic
analysis, the set L↓R of normal forms of traces i.e., the set of traces that can-
not be rewritten anymore with R, is computable since the rewrite system R is
terminating. Moreover, as FOLTL quantification is performed over variables in
the domain TData(F), FOLTL verification is decidable when TData(F) is finite.
So in this case, it can be decided whether L exhibits M .

For an infinite set of finite traces L however, the computation of L↓R often
relies on the computation of the set of descendants R∗(L) of L i.e., the set of
all terms that can be rewritten from terms of L. But R∗(L) is computable only
for some classes of rewrite systems [26] and when L is regular. Unfortunately,
the rewrite systems which implement the abstraction relations and which are
described in Sect. 4 do not belong to any of these classes. Hence, we cannot rely
on the construction of L↓R to decide whether L exhibits M .
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Nevertheless, we will see that, for behaviors considered in practice, a partial
abstraction of the set of traces is sufficient i.e., computing the set of normal
forms is unnecessary. We therefore propose a detection algorithm relying on a
safe approximation of the set of abstract traces. This approximation must be
chosen carefully. For instance, it cannot consist in computing, for some n, the
set R≤n(L) of descendants of L until order n, as shown by the following example.

Example 5. Let λ1 := a, λ2 := b, λ3 := c be three behavior patterns associ-
ated to abstraction relations inserting the abstraction symbol after a, b and c
respectively. Let M := λ1 ∧ (¬λ2 Uλ3) be an abstract behavior. Assume there
exists a bound n such that L↓R may be approximated by R≤n(L) in Definition
7. The trace t = an−1 · b · c · d does not exhibit the behavior M . Yet the trace
t′ = (a · λ1)n−1 · b · c · λ3 · d is in R≤n({t}) and its projection on Γ is in M , so
we would wrongly infer that t exhibits M .

The problem comes from the fact that R≤n(L) contains contradictory traces
compromising detection i.e., traces seemingly exhibiting an abstract behavior
though a few additional abstraction steps would make them leave the signature.

Consequently, we want to exclude traces unreliably realizing the abstract be-
havior in R≤n(L), while not having to reach normal forms. In fact, we identify
a fundamental property we call (m,n)-completeness, verified by abstract behav-
iors in practice in the field of malware detection. This property states that, for a
program to exhibit an abstract behavior, a necessary and sufficient condition is
the following: there exists a partially abstracted trace, abstracted in at most m
abstraction steps, realizing the behavior and whose descendants until the order
n still realize it.

Definition 8. Let M be an abstract behavior defined by a formula ϕM and m
and n be positive numbers. M has the property of (m,n)-completeness iff for
any set of traces L ⊆ TTrace(FΣ):

L �M ⇔ ∃t′ ∈ R≤m(L), ∀t′′ ∈ R≤n (t′)
∣∣
Γ
, t′′ |= ϕM .

We then show in the next section that, when L is regular, there exists a sound and
complete detection procedure for every abstract behavior enjoying this property.
Moreover, the time and space complexity of this detection procedure is linear in
the size of the representation of L.

The following propositions show that the (m,n)-completeness property is re-
alistic for abstract behaviors considered in practice.

We first prove, for particular abstract behaviors describing sequences of ab-
stract actions with no constraints other than dataflow constraints, that we have
the property of (m,n)-completeness.

Proposition 1. Let Y be a set of variables of sort Data.
Let α1, . . . , αm ∈ TAction (FΓ, Y ). Then the abstract behavior M := ∃Y. α10α20
. . .0 αm has the property of (m, 0)-completeness.

Proofs of propositions and theorems can be found in [25].
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We now show that more complex abstract behaviors, forbidding specific ab-
stract actions, have this property.

For a behavior pattern λ, let Rλ denote the restriction of the abstraction
relation R to abstraction with respect to λ. We say that two behavior patterns
λ and λ′ are independent iff: Rλ ◦ Rλ′ = Rλ′ ◦ Rλ. Then we get the following
result.

Proposition 2. Let M := ∃Y. λ1(x1) ∧ ¬(∃Z. λ2(x2)) Uλ3(x3) be an abstract
behavior where Y and Z are two disjoint sets of variables of sort Data, x1, x3 ∈
Y , x2 ∈ Z, and where λ2 �= λ1, λ2 �= λ3 and λ2 is independent from λ3. Then
M has the property of (2, 1)-completeness.

In practice, as illustrated in Sect. 7, most signatures are disjunctions of formulas
of the form: ∃Y. α1 0 α2 0 . . .0 αm, from Proposition 1, or of the form:

∃Y.λ1 (x1) ∧ ¬ (∃Z1. λ (z1)) Uλ2 (x2) ∧ ¬ (∃Z2. λ (z2)) U . . . λk (xk)

where λ is independent from λ2, . . . , λk. From the proof of Proposition 2, we
conjecture that the last formula has the property of (k, 1)-completeness.

The independence condition is not necessary in general, in order to guarantee
that such abstract behaviors have a property of (m,n)-completeness for some m
and n, but absence of this condition results in significantly higher values of m
and n.

Fundamentally, by Definition 7, detection of an abstract behavior is decom-
posed into two independent steps: an abstraction step followed by a verifica-
tion step. The first step computes the abstract forms of the program traces
while the second step applies usual verification techniques in order to decide
whether one of the computed traces verifies the FOLTL formula defining the
abstract behavior. However, when using the (m,n)-completeness property to
bypass the general intractability of the abstraction step, this relies on comput-
ing a set

{
t ∈ TTrace (F) , R≤n(t) |= ϕM

}
and then intersecting it with R≤m(L).

So we lose the previous decomposition, thereby preventing us from leverag-
ing powerful techniques from the model checking theory. We therefore show
that, in the previous proposition, (m,n)-completeness allows us to nonethe-
less preserve that decomposition, so that the abstraction step now becomes
decidable.

Theorem 2. Let M be an abstract behavior defined by a formula ϕM = ∃Y.
λ1(x1) ∧ ¬(∃Z. λ2(x2))Uλ3(x3) where Y and Z are disjoint sets of variables
of sort Data, x1, x3 ∈ Y , x2 ∈ Z, and where λ2 �= λ1, λ2 �= λ3 and λ2 is
independent from λ3. Then, for any set of traces L ⊆ TTrace (FΣ), L exhibits
M iff:

∃t ∈ Rλ2

⏐7 (R≤2(L))
∣∣
Γ
, t |= ϕM .

When both the abstraction relation R and the relation Rλ2

⏐7 are rational, the

set Rλ2

⏐7 (R≤2(L)) is computable and regular, and detection then boils down to

a classical model checking problem. In the general case, Rλ2

⏐7 is not rational, but
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in our experimentations, the behavior pattern λ2 is defined by sets Ai and Bi

where Ai contains traces made of a single action and Bi = {ε}. Thus constructing
a transducer realizing the relation Rλ2

⏐7 is straightforward.

Remark 2. An equivalent definition of infection could consist in compiling the
abstract behavior, that is computing the set π−1

Γ (M)
⏐7
R−1 of concrete traces

exhibiting M . Then a set of traces L would exhibit M iff one of its traces is
in this set. This definition seems more intuitive: rather than abstracting a trace
and comparing it to an abstract behavior, we check whether this trace is an
implementation of the behavior. However, this approach would require to first
compute the compiled form of the abstract behavior, π−1

Γ (M)
⏐7
R−1 , which is not

generally computable and whose representation can quickly have a prohibitive
complexity stemming from the interleaving of behavior patterns occurrences (es-
pecially when traces realizing the behavior patterns are complex) and from the
variable instantiations.

6 Detection Complexity

The detection problem, like the more general problem of program analysis, re-
quires computing a partial abstraction of the set of analyzed traces. In practice,
in order to manipulate this set, we consider a regular approximation of it i.e., a
tree automaton. Moreover, in practice, as seen in Sect. 4, the abstraction relation
is rational, which entails the decidability of detection.

Theorem 3. Let R be an abstraction relation, such that R and R−1 are rational.
There exists a detection procedure deciding whether L exhibitsM , for any regular
set of traces L ⊆ TTrace(FΣ) and for any regular abstract behavior M having the
property of (m,n)-completeness for some positive integers m and n.

Definition 9. Let M be an abstract behavior having the property of (m,n)-
completeness. The set of traces n-reliably realizing M w.r.t an abstraction rela-
tion R is the set {t ∈ TTrace (F) | ∀t′ ∈ R≤n (t)

∣∣
Γ
, t′ |= ϕM}.

Using the set of traces n-reliably realizing M , when TAction(F) is finite, we get
the following detection complexity, which is linear in the size of the automaton
recognizing the program set of traces, a major improvement on the exponential
complexity bound of [10].

Theorem 4. Let R be an abstraction relation such that R and R−1 are ra-
tional. Let τ be a tree transducer realizing R. Let M be a regular abstract be-
havior with the property of (m,n)-completeness and AM be a tree automaton
recognizing the set of traces n-reliably realizing M w.r.t. R. Deciding whether
a regular set of traces L, recognized by a tree automaton A, exhibits M takes

O
(
|τ |m·(m+1)/2 × |A| × |AM |

)
time and space.
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7 Information Leak Behaviors

Abstraction can be applied to detection of generic threats, and in particular to
detection of sensitive information leak. Such a leak can be decomposed into two
steps: capturing sensitive information and sending this information to an exoge-
nous location. The captured data can be keystrokes, passwords or data read from
a sensitive network location, while the exogenous location can be the network, a
removable device, etc. Thus, we define a behavior pattern λsteal (x), representing
the capture of some sensitive data x, and a behavior pattern λleak (x), represent-
ing the transmission of x to an exogenous location. Moreover, since the captured
data must not be invalidated before being leaked, we define a behavior pattern
λinval (x), which represents such an invalidation.

Finally, the captured data is usually not leaked in its raw form, so we take
into account transformations of this data via the behavior pattern λdepends (x, y)
which denotes a dependency of x on y. For instance, x may be a string repre-
sentation of y, or x may be an encryption or an encoding of y.

Then, in order to account for one such transformation of the stolen data, we
define the information leak abstract behavior:

M := ∃x, y. λsteal (x) ∧ ¬λinval (x) Uλdepends (y, x) ∧Uλleak (y) .

We consider the following definitions of the four behavior patterns involved,
after looking at several malware samples, like keyloggers, sms message leaking
applications or personal information stealing mobile applications:

– keystroke capture functionality:

λsteal(x) := GetAsyncKeyState(x)∨
(RegisterDev(KBD, SINK)0GetInputData(x, INPUT))
∨(∃y. SetWindowsHookEx(y, WH KEYBOARD LL)∧
¬UnhookWindowsHookEx(y)UHookCalled(y, x))

∨∃y.T elephonyManager getDeviceId(x, y)

– network send functionality:

λleak(x) := ∃y, z. sendto(z, x, y) ∨ ∃y, z. (connect (z, y) ∧ ¬close(z)
U send(z, x)) ∨ ∃c, s.HttpURLConnection getOutputStream(s, c)∧

¬OutputStream close(s)UOutputStream write(s, x)

– overwriting or freeing:

λinval(x) := free(x) ∨ ∃y. sprintf0(x, y) ∨GetInputData(x, INPUT) ∨ . . .

– dependences:

λdepends(x, y) := sprintf0(x, y) ∨ ∃s. sprintf1(x, s, y)
∨∃sb. StringBuilder append(sb, y)0 SB toString(x, sb) .
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8 Experiments

Our goal is to detect the information leak behavior M defined in the previous
section. In order to perform behavior pattern abstraction and behavior detec-
tion in the presence of data, we use the CADP toolbox [19], which allows us
to manipulate and model-check communicating processes written in the LO-
TOS language. CADP features a verification tool, which allows on-the-fly model
checking of formulas expressed in the MCL language, a fragment of the modal
mu-calculus extended with data variables, whose FOLTL logic used in this paper
is a subset.

We first represent the program set of traces as a CADP process, using a
program control flow graph obtained by static analysis (see [21] and [23,24]).
Regularity of the set of traces is enforced by limiting recursion and inlining
function calls, an approximation that can be deemed safe with respect to the
abstract behaviors to detect. Note that there are two shortcomings to regular
approximation. First, approximation of conditional branches by nondetermin-
istic branches may result in false positives, especially when the program code
is obfuscated. And second, failure to identify data correlations during dataflow
analysis can result in false negatives. However, this does not significantly impact
our detection results.

Now, as expressed in Theorem 2, detection of the information leak abstract
behavior M can be broken down into two steps: abstracting the set of traces L
by computing Rλinval

⏐7(
R≤2(L)

)
and then verifying whether an abstracted trace

matches the abstract behavior formula.
So, we can simulate the abstraction step in CADP and delegate the verification

step to the evaluator4 module. For this, we represent the set of traces L of a given
program by a system of communicating processes expressed in LOTOS, with
a particular gate on which communications correspond to library calls. Then,
computation of R≤2(L) is performed by synchronization with another LOTOS
process which simulates the transducer realizing the abstraction. Moreover, the
relation Rλinval

⏐7 is rational and can also be simulated by process synchronization
in CADP.

For each malware sample we tested, we successfully ran evaluator4 on the re-
sulting process representing Rλinval

⏐7 (R≤2(L)), in order to detect the information
leak abstract behavior defined in the previous section.

We essentially applied our approach to two case studies. The first one comes
from a study on the detection rate of keylogger programs by existing antivirus [27],
which shows a high failure rate. For an example of a typical keylogger for test,
see [25]. From different keyloggers written in C for Windows, we constructed
abstract behaviors of keylogger features. Then, tests we ran on keyloggers to
know whether we are able to detect information leaking were successful.

Another example comes from an Android application for cell-phone named
SMS_Replicator_Secret, which forwards received SMS to the attacker. This
application defines a class SMSReceiver with a particular method OnReceive

(Context context, Intent intent). It then requests Android systems
through its file metadata, to execute OnReceive on each SMS received or sent. We
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extracted from this application abstract behaviors corresponding to SMS leaks.
Unlike the previous case study, we ran partial tests because of the difficulty to
set up an Android platform. They were successful.

9 Conclusion

We presented an original approach for detecting high-level behaviors in
programs, describing combinations of functionalities and defined by first-order
temporal logic formulas. Behavior patterns, expressing concrete realizations of
functionalities, are also defined by first-order temporal logic formulas. Abstrac-
tion of these functionalities in program traces is performed by term rewriting.
Validation of the abstracted traces with respect to some high-level behavior is
performed via usual model checking techniques. In order to address the general
intractability of the problem of constructing the normal form trace set for a
given program, we have identified a property of practical high-level behaviors al-
lowing us to avoid computing normal forms and yielding a linear time detection
algorithm.

Abstraction is a key notion of our approach. Providing an abstracted form
for program traces and behaviors allows us to be independent of the program
implementation and to handle similar behaviors in a generic way, making this
framework robust with respect to variants. The fact that high-level behaviors
are combinations of elementary patterns enables us to efficiently summarize and
compact the possible combinations likely to compose suspicious behaviors. More-
over, high-level behaviors and behavior patterns are easy to update since they
are expressed in terms of basic blocks.

Our approach is at an early stage. We think that the theoretical results on
behavioral analysis presented here are promising. Applicability of our detection
technique could be further enhanced by automating construction of reference
behavior patterns, for example using mining techniques as in [28].

Acknowledgements. We would like to thank Stephan Merz for fruitful discus-
sions on temporal logics.
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Abstract. Phishing causes billions of dollars in damage every year and
poses a serious threat to the Internet economy. Email is still the most
commonly used medium to launch phishing attacks [1]. In this paper, we
present a comprehensive natural language based scheme to detect phish-
ing emails using features that are invariant and fundamentally charac-
terize phishing. Our scheme utilizes all the information present in an
email, namely, the header, the links and the text in the body. Although
it is obvious that a phishing email is designed to elicit an action from the
intended victim, none of the existing detection schemes use this fact to
identify phishing emails. Our detection protocol is designed specifically
to distinguish between “actionable” and “informational” emails. To this
end, we incorporate natural language techniques in phishing detection.
We also utilize contextual information, when available, to detect phish-
ing: we study the problem of phishing detection within the contextual
confines of the user’s email box and demonstrate that context plays an
important role in detection. To the best of our knowledge, this is the
first scheme that utilizes natural language techniques and contextual
information to detect phishing. We show that our scheme outperforms
existing phishing detection schemes. Finally, our protocol detects phish-
ing at the email level rather than detecting masqueraded websites. This
is crucial to prevent the victim from clicking any harmful links in the
email. Our implementation called PhishNet-NLP, operates between a
user’s mail transfer agent (MTA) and mail user agent (MUA) and pro-
cesses each arriving email for phishing attacks even before reaching the
inbox.

1 Introduction

Phishing is a social engineering threat aimed at gleaning sensitive information
from unsuspecting victims. Attacks are typically carried out via communication
channels such as email or instant messaging by attackers masquerading as legit-
imate and trustworthy entities. In this paper, we focus only on email communi-
cation as it is the most popular medium to launch such attacks [1]. As observed
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before [2], detecting phishing email messages automatically is a non-trivial task.
Our primary contribution in this paper is a comprehensive and effective natu-
ral language based phishing detection scheme. Our scheme uses the information
present in the email header, text in the email body and the links embedded in
the email. We make use of novel techniques to process the header and link infor-
mation, and deeper natural language techniques to process the text information.
To the best of our knowledge, this is the first natural language based scheme for
phishing detection.

Natural language processing (NLP) by computers is well-recognized to be
a very challenging task because of the inherent ambiguity and rich structure
of natural languages. Perhaps this explains why previous researchers have not
used NLP techniques for email phishing detection. Despite this difficulty, we
show that our scheme outperforms all existing phishing detection strategies in
the literature and obtains a phishing detection rate of 97% or better with very
low false positives (0.7-0.8%). Our scheme is built on the observation that the
fundamental difference between a phishing and a legitimate email lies in its
objective. While a legitimate email typically conveys some information to the
reader, a phishing email is designed to elicit a response. This response often
involves making the reader click a link with the intention of obtaining personal
sensitive information. None of the detection schemes in the literature make use
of this distinction to detect phishing emails. Our scheme is designed specifically
to distinguish between “actionable” and “informational” emails. We focus on
objectives that are typical of phishing emails - language that intends to create
a sense of urgency, threat, worry, concern or offers an incentive to the user to
perform an action. Our scheme uses contextual information (when available) to
detect phishing. We study the problem of phishing detection within the con-
textual confines of the user’s mail box and show that context plays a signifi-
cant role in detection. We show that contextual phishing detection outperforms
many other non-contextual detection schemes in the literature and is the first
contextual scheme to the best of our knowledge. Moreover, the use of context
information makes our scheme robust against attacks that are aware of our
methods.

Finally, we believe in detecting phishing at the email level rather than detect-
ing fraudulent and masqueraded websites after the website has been visited by
the user. Our implementation PhishNet-NLP operates between a user’s MTA
and MUA and processes each arriving email for phishing attacks. This prevents
the user from clicking any harmful link in the email. This approach is in contrast
to schemes that analyze the target websites for authenticity. The motivation to
operate at the email level is due to the fact that clicking on the link and visiting a
phishing website exposes the user to potential malware that could be installed by
the website. Furthermore, it is our objective to maximize the distance between
the user and the phisher - clicking a malicious link puts the user closer to the
threat. The added advantage of this approach is that ISPs and email providers
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may now be able to prevent such emails from being delivered to the user thereby
saving precious bandwidth as well.

2 Prior Work

Phishing is primarily a social engineering attack and has attracted a lot of
research interest in this context. Different research groups have studied this
problem from various perspectives: server-side and browser-side strategies, ed-
ucation/training, evaluation of anti-phishing tools, detection schemes and fi-
nally studies that analyze the reasons behind the success of phishing attacks.
We note that phishing has been studied extensively. Here, for lack of space,
we briefly outline the prior related work on phishing categorized by research
objectives.

Phishing Detection Schemes - Email and Web pages. There are two primary clas-
sifications of phishing detection schemes: schemes that detect phishing based
on analyzing the content of the target web pages (targets of the embedded
email links) and schemes that operate directly on the content of the emails.
The schemes for detecting phishing attacks (email and web pages) in the lit-
erature can be broadly classified into three categories: 1. Schemes based on
information retrieval, 2. Machine learning based techniques and 3. String, pat-
tern and visual matching based detection schemes. Before the advent of such
schemes, the most popular (and still a widely-deployed solution) was the inte-
gration of blacklist-based anti-phishing techniques into browsers. Ludl et al. [3]
tested the effectiveness of the blacklists maintained by Google and Microsoft to
understand the viability of this approach, and found that blacklist-based solu-
tions are effective and useful components in the fight against phishing. On the
other hand, it has also been shown that blacklists are ineffective for protecting
users from phishing attacks initially and that their effectiveness increases with
time [4].

Phishing Detection Over Web page Content. A typical approach to detect phish-
ing using web page content is analyzing the structure of the URLs and vali-
dating the authenticity of the content of these target web pages. Cantina [5,6]
is one such scheme: a content-based approach to detecting phishing websites
based on information retrieval and text mining algorithms. A research team
from Google has presented a machine learning technique to accomplish a large
scale automatic classification of phishing web pages [7] by analyzing both the
URL and the content of the page and achieves 90% accuracy in classifying web
pages.

Phishing Detection Using URL analysis. [8] and [9] proposed schemes that iden-
tify phishing URLs by analyzing only the structure of the links and not the
content of the target web pages. In [8], the authors describe several features that
can be used to distinguish a phishing URL from that of a benign URL. They
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use these features to model a logistic regression filter and show that it has high
accuracy in detecting phishing emails. The algorithm of [9], LinkGuard, uses
the phishing data provided by the APWG to extract generic characteristics of
hyperlinks embedded in phishing emails. It successfully detected 195 out of the
203 phishing attacks.

Phishing Detection Over Email Content. Most phishing detection schemes that
operate at the email level use machine learning techniques on a feature set de-
signed to highlight user-targeted deception in electronic communication
[10,11,12,13,14,15]. A statistical classifier is trained on a set of features extracted
from the email content and structure over the training data. After the training,
this classifier is used to detect phishing emails from the email stream. These
detection schemes differ both in the number and type of features used in the
training process. These statistical filters can either be installed on the server or
the client side. One of the important maintenance aspects of a machine learning
phishing detection scheme is that these filters need to be updated on a regular
basis. [16] presents a comparison of machine learning techniques for phishing
detection. PhishCatch is a heuristic algorithm (not based on machine learning)
proposed by [17] which performs header, link and a cursory text analysis (scan-
ning for the presence of certain text filters) of incoming emails. In [2], the authors
study the evolution of phishing email messages and develop a classification of
phishing messages into two groups: flash and non-flash attacks, and classify
phishing features into transitory and pervasive. For more details on phishing
and detection schemes, the reader is encouraged to refer the books by [18,19]
and [20].

3 Definitions and Tools

3.1 TF-IDF

In information retrieval, TF-IDF (Term Frequency-Inverse Document Frequency)
is a weight used to determine the importance of a word to a document in a col-
lection of documents. The importance of a word increases proportionally to the
number of times a word appears in the document (term frequency) and is in-
versely proportional to the document frequency of the word in the collection.
The IDF is a measure of the discriminating power of the term. It measures how
common a term is across an entire collection of documents. Thus, a term has a
high TF-IDF weight by having a high term frequency in a given document and a
low document frequency in the whole collection of documents. For more details
about TF-IDF, refer to the book by [21].

3.2 Natural Language Preliminaries

Despite the difficulty of natural language processing on computers, due to the
inherent ambiguity and rich structure of natural languages, our approach to
email text processing employs the following NLP techniques: lexical analysis,
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part-of-speech tagging, named entity recognition, normalization of words to lower
case, stemming and stopword removal. The goal of lexical analysis is to split the
email into sentences and each sentence into words. The part-of-speech tagging
phase tags each word with its part-of-speech, viz., noun, verb, etc. Named entity
recognition tags the named entities in the email, which are nouns that name
either person, location or organization. Words are converted to lower case in a
normalization phase. The goal of stemming is to reduce each word form to its
root or stem. For example, the verb acting is reduced to act. A popular program
for stemming is the Porter Stemmer [22]. The aim of stopword removal is to
remove common words such as it, a, an, the, etc. For this purpose a stopword list
is used. We also use semantic NLP techniques, viz., word-sense disambiguation
and WordNet, as opposed to purely syntactic or statistical ones based on feature
counting. The sense or meaning of a word depends on its context. For instance
the word “plant” could mean a factory in one context and could mean a tree in
another context. The goal of word-sense disambiguation is to find the appropriate
sense of a word based on the context.

3.3 WordNet

According to Fellbaum [23], WordNet combines features of both a dictionary
and a thesaurus. The building block in WordNet is a synset (a set of synonyms),
which consists of all the words that express a given concept, and the basic
semantic relation in WordNet is synonymy. The semantic relation that is the
most important in organizing nouns into a hierarchy is the hyponymy relation
between synsets. Hyponymy is the relation of subordination (or class inclusion
or subsumption). For example, the word “poodle” is a hyponym of the word
“dog” since a poodle is a kind of dog, and “dog” is the hypernym of “poodle.”
Miller writes ( [23] page 26): “Since a noun usually has a single hypernym,
lexicographers include it in the definition.” The key point to be noted is that
although the hypernymy relation is defined on synsets in WordNet, and hence it
could happen that a synset can have more than one hypernym, this situation is
not frequent for nouns1. However, for verbs the situation is quite different and
the hyponymy structure is not even acyclic [24]. The relation between verbs to
other verbs is used by PhishNet-NLP.

We use the hyponymy relation between verbs, which is defined as follows: A
is a hypernym of B if the meaning of A encompasses the meaning of B (B is
called the hyponym). All nouns in WordNet are stored in a graph (that is close
to a tree) that represents the hypernymy hierarchy. The word entity is the root
of the tree, because it is believed to encompass the meaning of all other nouns.
Traversing down the tree manifests more specific nouns as shown in Figure 1 of
a small portion of the hypernymy tree. All verbs in WordNet are arranged in
a hypernymy graph as well, but for verbs this graph is “forest-like” but not a
forest due to the presence of cycles.

1 We do take care of the situation in which there are multiple hypernyms as explained
in the Text Analysis subsection 4.1.
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Fig. 1. A tiny WordNet hypernymy tree

We need to invoke our word sense disambiguation software before we can call
the WordNet program. The reason is that a synset is designed to refer to a single
concept and hence we need to disambiguate words in the document to find the
correct synset for a noun. As mentioned above, the word “plant” could mean
a factory in one context and could mean a tree in another context. Hence the
word plant would be found in two different synsets in this case.

4 Phishing Detection Algorithm: PhishNet-NLP

PhishNet-NLP is a comprehensive scheme that makes use of all the informa-
tion present in an email, except attachments, to ascertain which class it belongs
to: phishing or legitimate. The first step in the protocol is parsing: PhishNet-
NLP accepts an incoming email from the MTA and proceeds to parse it into its
constituent components: header, links and text. If the email is HTML encoded,
as indicated by the header, we further decode the HTML email body to plain
text to perform further analysis. Having obtained the header, links and text, we
proceed to analyze each component through their respective classifiers as dis-
cussed below. PhishNet-NLP then proceeds to perform majority voting on the
scores obtained from the header, link and text analysis classifiers to determine
whether an email is legitimate or phish. The reason for using majority voting as
opposed to considering certain weight factors for each of the individual classifiers
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Input: SMTP server name, user name, password
Output: Label for each email: Phishing or Legitimate

1 Fetch email from SMTP server
2 if (new email downloaded) then
3 foreach email e do
4 header h = extractHeader();
5 if (h indicates that e is HTML encoded) then
6 decodedEmail dE=HTMLDecode(e);
7 end
8 parsedEmail pE = emailParser(dE);
9 headerScore = headerAnalysis(header);

10 linkScore = linkAnalysis(links);
11 textScore = textAnalysis(text);
12 cs = combineScore(headerScore, linkScore, textScore);
13 if cs ≥ 2 then
14 Output Label: Phishing
15 end
16 else
17 Output Label: Legitimate
18 end

19 end

20 end

Algorithm 1. PhishNet-NLP: Phishing Detection Algorithm

is to assign an equal importance to each of the classifiers. The first author has
proved that under the assumption of independence, the majority voting approach
has better coverage (accuracy) than that of each individual classifier whenever
each classifier in the combination has better than a 50% coverage (accuracy).
Majority voting also avoids the following two vexing problems: (i) how to com-
pute optimal weights, which requires a training corpus, and (ii) the optimal
weight combination is likely to be different for different corpus and users. Algo-
rithm 1 shows an outline of PhishNet-NLP. We begin our discussion of PhishNet-
NLP with our novel text analysis classifier and then discuss the header and link
analysis classifiers respectively.

4.1 Text Analysis

The goal of email text analysis is to classify the email into two classes: infor-
mational and actionable. This is done by analyzing the email text and giving a
score to the email called Textscore. The overall approach of PhishNet-NLP is
designed for maximum flexibility and efficiency. When the “context” information
of an email is available, PhishNet-NLP will use the context to generate a score
called Contextscore for the email as well. The context of an email is defined to be
the other saved emails of the user, this includes both sent and received emails.
For efficiency purposes, the user is given full control over PhishNet-NLP’s con-
text analysis option: whether or not to use context analysis, the context size to
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use for context analysis, and the date at which the context starts. Context size
could be specified in two ways: number of emails or a date range. When the
context option is used, then the two scores - the Contextscore and the Textscore
are combined logically.2

To generate the Textscore of the email, we employ a semantics-based method
since phishing emails are typically short and designed to hide their sinister pur-
pose and appear innocuous to the user. Hence, applying syntactic techniques,
such as sentence position, or purely statistical approaches, such as word frequen-
cies, to email text analysis are likely to prove suboptimal.

Our semantic approach to email text processing employs the following NLP
techniques: lexical analysis, part-of-speech (POS) tagging, named entity recog-
nition, normalization of words to lower case, stemming and stopword removal.
Stopword removal will include removal of common suffixes such as Jr., Sr., II,
etc., after names (named entities) and prefixes such as titles (Dr., Prof., Mr.,
Ms., etc.). The novelty of PhishNet-NLP consists in deeper word analysis by
extracting important words from the email text, tagging them with their senses
based on the surrounding contexts of the words, and using these to query Word-
Net. These distinguished words are called keywords. The sense of the word is
used in locating the word in the WordNet hypernymy tree and to generate a
score for the word as described below. We employ SenseLearner [25] for word
sense disambiguation, and TextRank keyword extraction for identifying the im-
portant words of the email text [26]. SenseLearner was trained using the SemCor
2.1 database, which was compiled using WordNet 2.1.

For a user u, let Basic-Names(u) denote the lower-case versions of u’s last
name, first name, middle name(s) if any, and their common spelling variants.
This set can be initialized by the user. Let Names(u) denote all permutations
of words from Basic-Names(u) taken two at a time, three at a time, and so
on until |Basic-Names(u)| at a time. For an email text, e, let Named-entity(e),
denote the set of named entities in e ignoring only the greeting part of the email,
which can be identified easily as a sentence fragment using parsing or heuristics
such as missing verb and presence of named-entity from Names(u). If |Named-
entity(e)−Names(u)| = 0, then email e receives a Textscore of 0 (a score of 1
represents phishing and 0 stands for legitimate). The reason is that a phishing
email is very likely to mention at least one institution in the body of the email.
Now, assume that |Named-entity(e)−Names(u)| ≥ 1. Since we are interested in
determining the extent to which an email is actionable, we score certain verbs
in the body of the email. If the email contains no text, we mark it as phishing,
since this means the email has either links or attachments only and legitimate
email senders usually write a few words to explain the links or attachments that
they are sending out.

2 The reason for these options is that the user may wish to restrict context analysis
when they have a large mail box with lots of emails unprocessed by our context
analysis routine, since for a large unprocessed mail box, context analysis will take
more time, which the user may not have. In such a case the user can be warned that
the context analysis is using limited information and could be less precise.
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Let V = {click, follow, visit, go, update, apply, submit, confirm, cancel, dis-
pute, enroll}. To each word in the set V , the appropriate verb sense (denoted by
#v at the end of the word in WordNet) is attached. For any set X containing
words along with a sense for each word, let Synset(X) = {synset(x) | x ∈ X},
where synset(x) is the WordNet synset of x for the specified sense. For nat-
ural number i ≥ 1, let Hypoi(Synset(V )) denote the union of all the synsets
reached by following up to i hyponymy links from the synsets in Synset(V ).
We let SV = Hypo4(Synset(V )) be the set of special verbs. Note that the
WordNet verb hierarchy is not a tree structure and is not even acyclic [24],
which means that following hyponymy links must be done together with cycle
detection. Let SA = Synset({here, there, herein, therein, hereto, thereto, hither,
thither, hitherto, thitherto}) with each word in this set SA having the adverb
sense, U = {now, nowadays, present, today, instantly, straightaway, straight, di-
rectly, once, forthwith, urgently, desperately, immediately, within, inside, soon,
shortly, presently, before, ahead, front} (words conveying a sense of urgency),
and D = {above, below, under, lower, upper, in, on, into, between, besides, suc-
ceeding, trailing, beginning, end, this, that, right, left, east, north, west, south},
the set of direction words. These words were chosen mainly based on the authors’
experience with the phishing emails that they have received in the past, and a
scan of about 20 (0.4%) emails in the phishing database.

To motivate the above definitions, consider a phishing email in which the bad
link appears in the top right-hand corner of the email and the email (among
other things) directs the reader to “click the link above.”

The score of verb v ∈ SV ,

score(v) = {1 + x(l + a)}/2L.

The parameter x = 1 if the sentence containing v also contains either a word
from SA ∪D, and, either a link or the word “url,” “link,” or “links” appears in
the same sentence; otherwise, x = 0. The parameter l = 2 if the email has two
or more links, l = 1 if the email has one link, and l = 0 if there are no links in
the email. The parameter a = 1 if there is a word from U or a mention of money
in the sentence containing v, otherwise a = 0. We include money since phishers
often lure targets by promising them a sum of money if they complete a survey,
or by stating that someone tried to withdraw a sum of money from the user’s
bank account recently, etc. The parameter L is the level of the verb, where level
of a verb in SV is one more than the least number of hyponymy links followed
to reach the verb from a synset in Synset(V ).

The reason for weighting the link score of the email (l) and the urgency
or incentive score (a) of the sentence with a directive to take action (x) with
respect to a link is to reduce the false positives for emails that acknowledge some
previous action of the user, or for emails received by user A that are replies to
emails sent by A and contain a link in either A’s signature included in the reply
or in the signature of the sender of the reply. For example, when someone submits
a proposal or report to FastLane, an automatic acknowledgment is sent by the
website and it usually includes a link. We are aware of several instances in which
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emails contain links in the signature fields. The reason for the exponential decay
with L is the diversity of verbs and the proliferation of their different senses at
greater distances from SV , which leads to an increase in the imprecision of word-
sense disambiguation. Even without this complexity, word-sense disambiguation
is a challenging problem due to the ambiguity inherent in natural languages.
The Textscore of an email e is given by Textscore(e) =Max{score(v) | v ∈ e}.
We also experimented with the average score of the scores of all verbs with a
nonzero score, but this function gave inferior results in our experiments.

Contextscore. For the Contextscore, we treat the email as a vector of TF-
IDF [21] values in the semantics space as opposed to traditional syntactic tech-
niques after stopword elimination and stemming. Note that the TF-IDF scheme
converts a vector of words to a vector of real values using the product of term
frequency and inverse document (for our purposes this is the email) frequency
as mentioned above in Section 3. WordNet is again employed for this purpose
after POS tagging and word sense disambiguation. Words belonging to the same
synset are represented by a common word in the vector. For instance, different
forms of the same verb “is”, “was” , etc. are represented by the common verb “to
be” and also different verbs with the same sense and meaning such as “is” and
“exists”, etc., are also represented by the verb “to be.” Then, we perform simi-
larity computation between the email vector ev and the corresponding vector for
each email in the context, say ec. For the similarity computation we adopt the
cosine measure, Similarity(ev, ec) = cosine θ, where θ is the angle between the
two vectors. The smaller the θ, the bigger is the similarity between two emails.
Finally, Contextscore(ev) = maxec∈CSimilarity(ev, ec). We also compute the
size of the intersection |Named-entity(ev) ∩ Named-entity(ec)| for each email
ec with similarity of over high-threshold and if this intersection is null, then we
lower the Contextscore down to 0. If Contextscore is below low-threshold it is
rounded down to 0. If it is above high-threshold and the size of the intersection
is at least one, then it is rounded up to 1. Low-threshold and high-threshold are
initially set to 0.5 (an angle of 60 degrees or higher) and

√
3/2 (an angle of 30 de-

grees or lower) respectively and can be fine-tuned further, if necessary, based on
experiments. No rounding is performed if Contextscore is between low-threshold
and high-threshold. For efficiency purposes, PhishNet-NLP saves the vocabulary
and named-entity information for the context examined, and the corresponding
vectors for the emails examined in a database for subsequent reuse. Multiple
indices can be constructed on this information for efficient retrieval based on the
context options provided in PhishNet-NLP.

4.2 Combining Textscore and Contextscore

The combination of Textscore(e) and Contextscore(e) is done logically to yield
Final-text-score(e). It does not make sense to combine them algebraically. If no
context information is available, Final-text-score(e) = 1 if Textscore(e) ≥ 1 and
0 otherwise. When context information is available, we proceed as follows.



834 R. Verma, N. Shashidhar, and N. Hossain

If Contextscore(e) = 1 and any one of the emails that yield the maximum
similarity score is marked as dangerous by the user, the Final-text-score(e) = 1. If
Contextscore(e) = 1 and all of the emails that yield the maximum similarity score
are marked safe by the user, then Final-text-score(e) = 0. If Contextscore(e) = 0,
then the email is not very similar to any email in the context. In this case, Final-
text-score(e) = 0 if Textscore(e) < 1 and Final-text-score(e) = 1 otherwise. If
low-threshold < Contextscore(e) < high-threshold, then the email has moderate
similarity to some email in the context. In this case, if Textscore(e) < 1, then
Final-text-score(e) = 0, else Final-text-score(e) = 1.

If user input is an acceptable response, then the user could be queried to
determine whether the email has arisen from some past action of the user. This
would be useful in two “gray” areas: Contextscore is between low and high
threshold and Textscore is less than 0.5 and Contextscore is zero and Textscore
is between 0.5 and 1. If 0.5 ≤ Textscore(e) < 1, the user could be prompted
to determine if the email has arisen from some past action of the user. If yes,
Final-text-score(e) = 0, otherwise Final-text-score(e) = 1. In our experiments,
we simplify the logical combination: rounding down the context score to 0 if it
is between 0 to 0.866 (angle greater than 30◦) and rounding up to 1 otherwise.
These thresholds were not finetuned using the data.

To maintain user’s privacy, context analysis can be a separate application that
works under user control without downloading user emails into its space.

4.3 Header Analysis

Our header analysis classifier is significantly more advanced than the classifier
presented by PhishCatch [17] in several aspects: (i) we deal with email forwarding
issues, (ii) we make use of DKIM and SPF information whenever it is available,
and (iii) we account for the differences in the headers based on whether the
email is sent from a mobile device or relayed by multiple servers in the user’s
domain. In this classifier, we perform analysis on the data from the extracted
headers to determine whether the email is phish. First, the user is asked to input
his/her other email addresses that forward emails to this current email address
and this information is stored. We assume that these forwarding email accounts
and the Local Host also have PhishNet-NLP installed. An in-depth discussion
of DKIM/SDID is beyond the scope of this paper and the interested reader is
referred to RFC 5585 [27] for an overview of the DKIM service and SDID and to
the IETF publication RFC 4408 [28] for more information on SPF. In [29], we
present a more detailed treatment of headerAnalysis() and present an interesting
discussion on the significance of DKIM signatures and SPF through examples.

Phase 1 - Extracting the data:
We extract the FROM and DELIVERED-TO fields from the header. Then, we
extract the RECEIVED FROM field(s) as follows. We look at the received from
fields in order, starting with the first such field and then the next such field if
present and so on.
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– If the Received From section of the email contains a DKIM signature, we
store the Signing Domain Identifier [SDID].

– Otherwise, if there is a Received-SPF field below a Received From field,
then first we store the Received From field. Additionally, if the SPF query
returns “pass,” and if the domain in the From Field accepts an IP address as
a permitted sender in the Received-SPF field, we perform an NSLOOKUP
on this IP address, and store the domain name corresponding to this IP
address in the variable SPFQuery.

– Otherwise, we store the RECEIVED FROM field.

Phase 2 - Verifying the data:

– If the first Received From field has the same domain name as the FROM
FIELD or LOCALHOST or ANY FORWARDING EMAIL ACCOUNT, or if
the NSLOOKUP on the IP address of the permitted sender in the Received-
SPF field yields the same domain name stored in the variable SPFQuery,
then this email is legitimate.

– Otherwise, if the first Received From field has the same domain name as the
user’s current email account’s domain name, then we look at the next re-
ceived from field. The justification for this is provided in the security analysis
of our scheme.

– Otherwise, we mark the email as phishing.

4.4 Link Analysis

In this classifier, our objective is to determine whether the URLs present in the
email point to the legitimate website that the text in the body of the email
claims. We extract all domains from the links in the email in an array (let this
array be called DOMAINS). The linkAnalysis() classifier assigns an email a score
of 1 for phishing and 0 for legitimate as follows:

– If the length of DOMAINS is 0 (no links), the email is legitimate.
– If the email has more than 10 distinct words, we calculate the top four terms

in the email using the TF-IDF scores. The IDF value of a word can be ob-
tained by either doing a Google search for the word and obtaining the number
of web pages in which it appears, or by using a standard NLP corpus. If the
Google search approach is adopted, then the search information, together
with the total number of web pages in Google’s database, can be used to
calculate the IDF value for each word. However, we note that Google returns
only a somewhat loose upper bound on the number of web pages containing
the word for efficiency purposes, which is progressively refined as the user
examines the search results list. For this reason and the fact that Google
discourages frequent automated searching (see the Implementation details
Section 5.1), we used the email database itself to estimate the IDF value.
We Google search each domain together with the top four terms.

– Otherwise, if the total number of distinct words in the email is less than
10, then we Google search each domain. If all domains appear in the top 30
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results returned by the Google search, then we mark the email as legitimate,
otherwise phishing. The reason for insisting on 10 words as a threshold is
the very small likelihood of obtaining at least four content words in a text
fragment that is shorter. Cantina’s [5] experiments with varying result sizes
of Google search justify our choice.

Combining Scores of the Three Classifiers: Recall that a score of 1 rep-
resents phishing and 0 stands for legitimate. If the combined score of the three
classifiers (header, link and text) is≥ 2, PhishNet-NLP labels the email phishing,
otherwise it labels it legitimate.

5 Analysis and Results

In this section, we present an overview of our results. On a database of 2000
phishing emails (using the same phishing corpus as PhishCatch [30]), the
percentage of emails that are marked by PhishNet-NLP as phishing is over
98% compared to PhishCatch’s result in low 80%. On 1000 legitimate emails,
PhishNet-NLP marked 99.3% of the emails as legitimate compared to 99% for
PhishCatch [17]. However, note that the databases are different in this case since
the authors of PhishCatch do not mention how they collected their legitimate
emails. In this sense, we were able to increase coverage by about 18% for the
phishing emails while obtaining higher accuracy. Furthermore, our header anal-
ysis classifier is more advanced than PhishCatch [17] in the sense that we also
deal with email forwarding issues and also account for the differences in the
headers based on whether the email is sent from a mobile device or relayed by
multiple servers in the user’s domain. Our header analysis goes beyond that of
PhishCatch and examines DKIM (DomainKeys Identified Mail) signatures and
SPF (Sender Policy Framework) fields when available. Although the phishing
corpus emails were collected five to eight years ago, we still feel it is a good test
since phishing sites are so short-lived [6] that the link analysis results should not
change significantly when run on more recent phishing emails.

Cantina’s experiments [5] were on the detection of masqueraded web pages
rather than on phishing emails, and they experimented with only 100 websites.
Still, they have a much higher false positive rate for legitimate web pages and
lower coverage of masqueraded sites. Moreover, their algorithms exhibit a trade-
off between coverage and accuracy. In contrast, our first run coverage (without
context information) is never lower than 97.7% for the largest 4550 phishing
database and simultaneously achieves high accuracy with high coverage.

[10] apply machine learning techniques on a set of 860 phishing emails, and
6950 non-phishing emails, and are able to correctly identify 92% of the phishing
emails with 0.1% false positive rate. Using structural properties of emails, [11]
were able to detect 95% of phishing emails but did not explicitly state their false
positive percentages. Finally, it is important to note that the above mentioned
machine learning approaches require a training corpus of emails whereas our
approach does not.
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Fig. 2. Results

As explained at the beginning of Section IV, our results show that all three
classifiers satisfy the minimum threshold needed for helping to improve the com-
bined classifier since they are all above 50% in coverage and accuracy. However,
there is some dependence between the text analysis and link analysis classifiers
since one analyzes links and the other uses the presence of links in its scoring.
We carefully considered whether to remove even this dependence, but decided
against it since links are central to phishing via emails and since text analysis
only considers the presence or absence of links and not on analyzing them.

The relatively lower percentage of phishing emails detected by textAnalysis()
in the two big mail boxes is explained by the imprecision of NLP tools and the
three types of emails: foreign language, emails with unusable text, and emails
with tables and pictures and insufficient text that we encountered. Also, in each
individual mailbox, the 2nd run produced an increased phishing detection by the
textAnalysis() classifier and a small increase in the overall phishing detection.
This is a direct consequence of the effect of the Context Score, which was not
available in the first runs, but available in the 2nd runs after the first runs
assigned scores to each email in the database. We could have obtained a higher
detection rate on the first run of textAnalysis() by using the previous context of
the first N emails when processing email N + 1. However, we preferred to keep
a fixed context for analysis of each email rather than a growing context, since in
this case our results are insensitive to the order in which emails are processed.

5.1 Implementation Details

We implemented PhishNet-NLP using Perl v5.12.4, WordNet version 2.1 and
SenseLearner 2.0. We used the Stanford POS tagger 2006-05-21 and Stanford
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Named Entity Recognizer 1.0. Our implementation platform was a core 2 Duo
2.66 GHz processor, 4 GB RAM machine running 32 bit Windows 7. We used
Cygwin for the POS tagger, NER, SenseLearner and WordNet. Some of the
challenges we faced during implementation were: 1) The Google Search API
would not allow us to perform frequent automated searches. We were forced to
use a random delay of 10 to 20 seconds after every search to circumvent this issue.
2) Parsing an email into the constituent header and body and then extracting
the text and links from it was challenging since most emails are HTML encoded
and the headers do not always end with the same line format.

Our method of extracting data from emails relies on the use of regular expres-
sions. From analyzing thousands of emails, we observed that the message headers
were formatted differently among them. So we had to study a large number of
email formats to design the decoder (which decodes html if present, extracts info
from the header and body and removes any attachments). To summarize, our
decoder is reliable, but not 100% efficient in extracting the maximum possible
data from all the emails. This is an area of improvement that we are working
on at this moment. If an attachment is present in an email, then the last por-
tion of the message header contains one of the following: Content-Disposition:
attachment or Content-Disposition: inline. This is followed by the encoded
attachment file. We used this information to ignore all attachments. Given that
we had to employ a random sleep time between subsequent Google searches, in
our future work, we would like to make use of different search engines for con-
secutive searches to eliminate this problem and possibly obtain better results.

5.2 Security Analysis and Discussion

We now analyze the security of our scheme against several scenarios and discuss
some interesting aspects of our approach.

Is textAnalysis() or linkAnalysis() Redundant? Observe that while the
headerAnalysis() classifier alone shows very high coverage and high accuracy,
the importance of link and text analysis stems from the fact that a sophisticated
phisher can manipulate the originating “Received From”, “From” and the “De-
livered To” information completely (e.g., see Chapter 3 of [18]). To this end,
link and text analysis are very important and provide robustness to our scheme.
The case of insider attacker discussed below further justifies their inclusion.

Attacks Based on Knowledge of Our Scheme. The reader might think
that a phisher can analyze how our detection algorithm works and then design
a phishing email to fool PhishNet-NLP. But our results from the LinkAnalysis
show that it is very difficult to create a fraudulent link to bypass LinkAnalysis.
Moreover, unless the phishers have hacked into the mail server or the user’s ac-
count, they would not have access to the context of the user’s mailbox. Hence, it
is likely that Context Analysis will also play a part in detecting such an email.

Insider Attacker. When someone hacks into an account in some domain and
uses a friend list to attack any user in the same domain, headerAnalysis() will
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fail to detect this. But even in such a case, PhishNet-NLP can use the linkAnal-
ysis() and textAnalysis() to mark the email as phishing since the intent of the
email is still to steal sensitive information by asking the user to click on a link
for a malicious website. This even works for the scenario when user A’s account
is hacked and user A receives a phishing email, for example, if A’s sensitive
information is stored in an encrypted form.

Is textAnalysis() Flawed? Observe that as of this implementation, our tex-
tAnalysis() classifier will score the following email as phishing: “I found this
video to be funny! Click on this link <legitimate link here>”. This email will
be scored as phishing even when coming from a genuine sender and a legitimate
link. We would like to clarify that this is not a limitation of our approach - this
is actually a design feature of PhishNet-NLP. The reason is that both header
and link analysis will have a high likelihood of returning a score of 0 (indicating
legitimate) on such emails and therefore, the majority vote will be legitimate.
We also argue that while it may seem counterintuitive, such emails MUST be
scored as phishing, since otherwise a sophisticated phisher who could fool head-
erAnalysis() would escape detection as the majority vote would be legitimate
if the header and text score say legitimate and only linkAnalysis() indicates
phishing.

Foreign Language Email or Emails with Insufficient Text. As of the
present design, emails in foreign languages or emails with insufficient text (only
links or attachments) present a challenge to the textAnalysis() classifier which
leads to a low phishing detection rate by the textAnalysis() classifier. How-
ever, we were able to offset this to a certain extent by using context analysis to
correctly identify the email as phishing.

Efficiency Considerations. For efficiency, PhishNet-NLP is designed to first
execute headerAnalysis() and linkAnalysis() on the email that is being ana-
lyzed. If the sum of the scores of these two classifiers is equal to 1, only then will
PhishNet-NLP execute textAnalysis() (because if the combined score is either
0 or 2 from the first two classifiers, then the score from textAnalysis() cannot
change the final output label of PhishNet-NLP). But we disabled this feature
during our testing phase to obtain the results from each classifier.

Justification of Strategy for Examining Received from Fields.As DKIM
becomes widely deployed, sending domains will develop reputations as sources
of spam or useful messages. We believe that senders are not able to create covert
sub-domains under their main domain (unless an authorized insider attacker is
involved which we believe may be unlikely) and cannot manipulate the “Received
From” fields of legal intermediate MTAs. We note that it is not very easy to
identify whether a “Received From” field is from a genuine intermediate MTA or
just added by the phisher to confuse the header analysis. The highest probability
for a “Received From” field of truly originating from a genuine intermediate MTA
is the one closest to the recipient’s domain, justifying our use of the closest MTA
in our scheme.
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6 Conclusion

In this paper, we presented a phishing detection scheme called PhishNet-NLP.
To the best of our knowledge, this is the first scheme to utilize natural language
based techniques and context information when available to detect phishing.
PhishNet-NLP operates by inferring the “intention” of the email - whether it
is informational or actionable. Our phishing detection rate is at least 97% with
very low false positives. Another novel feature in PhishNet-NLP is that we uti-
lize all of the information available in an email, namely, the header, links and
text of an email. Our scheme operates in the default mode and does phishing
detection in the absence of any history. The novelty lies in the fact that when
prior history is available, our scheme takes advantage and improves the detection
capability. Finally, our scheme is designed to detect phishing at the email level
rather than to detect fraudulent, masqueraded websites thereby protecting the
user from the start. As future work, we plan to implement PhishNet-NLP to
permit the user to be interactive enabling us to understand if a particular email
resulted by an action of the user. Processing attachments in emails is also an
interesting direction for the future. We have reduced our reliance on Google for
link analysis [29].
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Abstract. Although Java provides strong support for safety and secu-
rity, native libraries used in a Java application can open security holes.
Previous work, Robusta, puts native libraries in a sandbox to protect the
integrity and security of Java. However, Robusta’s implementation mod-
ifies the internals of OpenJDK, a particular implementation of a Java
Virtual Machine (JVM). As such, it is not portable to other JVM imple-
mentations. This paper shows how to make the idea of sandboxing native
libraries JVM-portable. We present a two-layer approach for sandboxing
without modifying the internals of a JVM. We also discuss our experi-
ence of sandboxing Java’s core native libraries. Experiments show that
our approach of JVM-portable sandboxing incurs modest performance
overhead on SPECjvm 2008 benchmark programs.

1 Introduction

The Java Native Interface (JNI) [1] is Java’s foreign function interface. Through
the JNI, Java code can invoke native libraries developed in low-level languages
such as C, C++, or even assembly languages. The JNI allows Java program-
mers to reuse legacy code modules without porting them to Java. Furthermore,
performance-critical portions of an application can be developed in C/C++ and
invoked through the JNI.

However, native libraries in Java applications, as the “snake in the grass”, is
notoriously unsafe [2]. Native libraries in a Java application reside in the same
address space as a Java Virtual Machine (JVM), but are outside the control of
Java’s security model. Java provides strong safety and security support, but once
a Java application incorporates native libraries, there is no assurance about the
safety and security of the whole application. Native libraries with programming
bugs or malicious native libraries may cause an unexpected crash of the JVM,
leak of confidential information, or even a complete takeover of the JVM by
attackers.

To counter the threats of native libraries, our idea is to put them in a sand-
box and allow only controlled access from the code in the sandbox to JVM
services. Following this idea, we implemented Robusta [3], a security layer in-
corporated into a JVM for sandboxing native libraries in Java applications. It
adopts software-based fault isolation (SFI [4]) to isolate untrusted native libraries
from the rest of the JVM. Furthermore, native libraries’ access to the outside
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world is restricted to the JNI interface and OS system calls, both of which are
modulated by Robusta’s reference monitor to ensure security. Robusta’s design
will be briefly described in Sec. 2.

Robusta demonstrated the feasibility of sandboxing native libraries inside
the implementation of a JVM. At the same time, a few questions were left
unanswered when it was used to evaluate the practicality of sandboxing native
libraries.

– JVM Portability. Robusta was implemented inside OpenJDK 1.7. Various
places in OpenJDK were modified. The JVM-specific implementation makes
it hard to evaluate whether the idea of native-library sandboxing can func-
tion well in a different JVM implementation, such as IBM’s J9 or Kaffe JVM.
In fact, since IBM J9 is not open sourced, it is not possible for an outsider
to modify its internals. Even for an open-source JVM, a JVM-specific sand-
boxing framework such as Robusta has to be upgraded whenever the JVM
makes an upgrade. Indeed, Robusta was implemented in OpenJDK 1.7, but
OpenJDK has upgraded from version 1.7 to 1.8.1

– Java’s Core Libraries. The most common usage of native libraries is actu-
ally to support classes in the standard Java Class Library (JCL). Sun’s JDK
1.6 has over 800,000 lines of C/C++ code in its native libraries. Robusta
did not attempt to sandbox those core Java libraries. It was not clear how
difficult it would be to sandbox those core libraries and not clear what the
performance slowdown would be for Java applications after the core libraries
are sandboxed.

– Evaluation on Standard Benchmarks. Robusta’s experimental evalu-
ation was performed on a set of handpicked, medium-sized JNI programs.
While the experiments were acceptable as preliminary evidence of demon-
strating Robusta’s practicality, it would be much more convincing if it were
evaluated on some standard benchmark programs. However, the challenge is
that there are no standard benchmark suites that target the evaluation of
JNI applications. Java benchmark suites such as SPECjvm and DaCapo [5]
are themselves pure Java programs and cannot directly be used to evaluate
Robusta.

In this paper we describe Arabica2, a newly designed JNI sandboxing framework
to further evaluate the practicality of JNI native-code sandboxing. Arabica has a
JVM-independent design that requires no changes to a JVM’s internals. It relies
on a combination of the standard Java Virtual Machine Tool Interface (JVMTI)
and a layer of stub libraries. Using Arabica, we have sandboxed several Java’s
core native libraries. This improves Java’s security by reducing the size of trusted
native libraries. More importantly, sandboxing core Java libraries enables us
to evaluate the performance overhead of native-library sandboxing by running

1 Google engineers are interested in integrating Robusta into Google App Engine.
During a discussion, they explicitly mentioned that App Engine uses OpenJDK 1.8,
but Robusta was implemented on version 1.7.

2 Coffee Arabica is a species of coffee with better taste and quality than coffee Robusta.
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standard Java benchmark suites, because all Java applications make heavy use
of the core libraries.

The rest of the paper is organized as follows. We first introduce necessary
background about the JNI and Robusta in Sec. 2. In Sec. 3, Arabica’s JVM-
independent design and implementation are presented. We then discuss our ex-
perience of sandboxing OpenJDK’s standard native libraries in Sec. 4. Evaluation
of Arabica is presented in Sec. 5. We discuss related work in Sec. 6, future work
in Sec. 7, and conclude in Sec. 8.

2 Background: JNI and Robusta

The Java Native Interface (JNI) allows Java code to invoke native methods.
A native method is declared in a Java class by adding the native modifier.
The following code snippet of the Inflater class is extracted from the pack-
age java.util.zip in Sun’s JDK. It declares a native inflateBytes method.
Once declared, native methods are invoked in the same way as how ordinary
Java methods are invoked. In the example, the inflate Java method invokes
inflateBytes.

public class Inflater {

...

public synchronized int inflate(byte[] b, int off, int len)

{ ...; return inflateBytes(b, off, len);}

private native int inflateBytes (byte[] b, int off, int len);

static {System.loadLibrary(‘‘zip’’); ...;}

}

A native method is implemented in a language such as C, C++, or assembly
languages. The JDK implementation of inflateBytes above invokes the popular
Zlib C library for the inflation (decompression) operation. There is also a small
amount of native glue code between Java and the Zlib C library. The glue code
uses JNI functions to interact with Java directly. Through these JNI functions,
native code can inspect, modify, and create Java objects, invoke Java methods,
catch and throw Java exceptions, and so on.

Threats Posed by Native Libraries.We list the most vicious kinds of attacks
that can be launched by exploiting vulnerabilities in a native library:

(1) Unconstrained native libraries have access to the entire address space. As
native libraries reside in the same address space as a JVM, bugs in native
libraries can enable attackers to read and write the JVM’s memory.

(2) Abusive JNI calls can cause integrity or confidentiality violations. The JNI
interface was not designed with security in mind and does not mandate
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any security checks. Native code can steal confidential information from the
Java side, for example, by reading a private field of a Java object through
the JNI API function GetObjectField. Native code can also violate Java’s
type safety. For instance, it can invoke SetObjectField to modify a field
of an object to a value whose type is incompatible with the field’s declared
type, resulting in so-called type-confusion attacks [6].

(3) Native code may invoke an OS system call to read from a system file or send
data to the network. This may violate the security policy that JVM imposes
on a Java application.

As examples, vulnerabilities have been discovered in the C/C++ modules of
Sun’s JDK [7–9].

Robusta.We next summarize Robusta’s design and implementation; details can
be found in the Robusta paper [3]. First, Robusta adopts software-based fault
isolation (SFI [4]) to isolate untrusted native libraries from the rest of a JVM.
Native libraries are constrained within a sandbox so that direct memory access
and control transfers outside of the sandbox are disallowed. The implementa-
tion of Robusta extends Google’s Native Client (NaCl [10]), a state-of-the-art
SFI implementation. Since native libraries are loaded dynamically by the JVM,
Robusta extended NaCl with support for dynamic linking and loading. Second,
Robusta interposes between Java and native libraries, inserting security checks
into the JNI to prevent abusive JNI calls. Finally, Robusta connects to Java’s
security manager to mediate native libraries’ system calls. An OS system call
issued by a native library is rerouted to Java’s security manager to decide on the
system call’s safety based on a predefined security policy. This design enables
Robusta to place native libraries under the same runtime security restrictions as
Java code and reuse much of Java’s policy-driven security infrastructure.

The implementation of Robusta modified various places in OpenJDK 1.7. We
next summarize these changes. We will use the phrase Robusta OpenJDK to
refer to the OpenJDK after Robusta’s changes.

(a) Sandbox initialization. When Robusta OpenJDK starts running, it con-
structs an SFI sandbox and loads the dynamic linker/loader (ld.so in Linux)
into the sandbox. The dynamic linker/loader is put into the sandbox to sup-
port dynamic loading of native libraries.

(b) Loading native libraries and symbol resolution. When Robusta OpenJDK
needs to load a native library, it invokes the dlopen routine of ld.so for
loading the library into the sandbox. When Robusta OpenJDK needs to look
up a symbol in a native library, it invokes the dlsym routine for resolving
the symbol’s address in the sandbox.

(c) Calling a native method and returning. When Java code invokes a native
method, Robusta OpenJDK transfers the control to the address of the native
method in the sandbox (after copying method arguments into the sandbox).
The address is the result of symbol resolution through an invocation of
dlsym. After the method finishes, Robusta OpenJDK transfers the control
back to the Java code and copies out the return value (if there is one).
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(d) Support for Java multi-threading. Multiple Java threads may be running
inside the JVM. Robusta OpenJDK maintains a per-thread data structure
to support Java multi-threading.

(e) JNI safety checking. Robusta OpenJDK inserts safety checks at the bound-
ary of the JNI. For instance, if native code invokes SetObjectField to up-
date an object’s field, Robusta checks that the new value is of the expected
type of the field.

3 Arabica: JVM-Portable Sandboxing of Native Libraries

Robusta’s JVM-specific implementation limits its applicability. A much better
design should provide sandboxing of native libraries as a service to a JVM. This
requires the sandboxing functionality be implemented outside of the JVM and
be compatible with a variety of JVM implementations.

What made us believe that JVM-portable sandboxing is achievable is because
that almost all implementations of JVMs support two standard interfaces: the
JNI and the Java Virtual Machine Tool Interface (JVMTI [11]). We have dis-
cussed the JNI, the standard interface between Java and native code. The second
interface, JVMTI, is the standard JVM interface that allows an external tool to
inspect the internal JVM state and control the running of applications in a JVM.

Therefore, our initial idea to achieve JVM portability was to design and im-
plement a JVMTI-based tool. The idea almost worked until we discovered that
JVMTI is not fine grained enough to meet all our demands. Sandboxing native
libraries requires a greater control over a JVM than what the JVMTI interface
allows. In retrospect, this is not surprising as JVMTI was mainly designed to
support debuggers and profilers, not security tools.

In the end, Arabica achieves JVM-portable sandboxing through a two-layer
approach: a JVMTI-based agent plus a layer of trusted stub libraries. Fig. 1
shows the architecture of Arabica. The first layer is a layer of trusted stub li-
braries. The stub libraries serve as intermediaries between the JVM and the real
native libraries. Its functionalities include native-library loading, symbol reso-
lution, and native-method calling and returning. The second layer is a JVMTI
agent library. Its functionalities include sandbox initialization, support for Java
multi-threading, and JNI safety checking.

The detailed design of Arabica is presented next in three steps: (1) a brief
overview of JVMTI; (2) Arabica’s JVMTI agent; (3) Arabica’s stub-library layer.

JVMTI Overview. JVMTI provides a programming interface that allows Java
programmers to write tools to inspect and control the execution of a JVM.
Such a tool, called a JVMTI agent, is loaded during initialization of a JVM. A
JVMTI agent monitors and controls a JVM by calling JVMTI interface func-
tions. JVMTI supports an event-driven model. An agent can register a callback
function that is invoked when a certain type of events happens inside a JVM.
For instance, a callback function can be registered for the thread-start event,
which occurs when the JVM creates a new Java thread. The callback function
can perform appropriate actions to support the implementation of a JVM tool.
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Fig. 1. Architecture of Arabica

Arabica’s JVMTI Agent. At a high level, Arabica’s JVMTI agent implements
those functionalities in items (a), (d), and (e), which were presented when we
discussed Robusta’s implementation at the end of Sec. 2.

For sandbox initialization, Arabica constructs an SFI sandbox in function
Agent OnLoad, which is part of the JVMTI agent. This function is automatically
invoked by the JVM when the agent is loaded during the start of the JVM.

To support Java multi-threading, Arabica registers a callback function for the
JVMTI thread-start event and also a callback function for the thread-end event.
The callback functions are invoked whenever the JVM creates a new thread and
terminates a thread, respectively. In the callback function for the thread-start
event, a per-thread data structure is constructed to store information such as
the per-thread JNI environment pointer [1]. The data structure is freed in the
callback function for the thread-end event.

Finally, JNI safety checks are implemented in the following way. First, Arabica
registers a callback function for the native-method-bind event, which occurs
when the JVM binds a native method to the address of a native-library function
that implements the native method. This callback function initializes the data
structures that are necessary for performing JNI safety checks. Second, Arabica
adds JNI interface function wrappers, which intercept JNI calls made by native
code and perform necessary safety checks before invoking the real JNI functions
in the JVM. The implementation of performing JNI safety checks follows the
implementation of Jinn [12], a tool for detecting bugs and safety violations in
the JNI code.

Arabica’s Layer of Stub Libraries. It turns out that a pure JVMTI-based
approach is insufficient to achieve JVM-portable sandboxing of native libraries.
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The main reason is that JVMTI does not support a “native-library-loading”
event. When a native library is loaded, a JVM loads the library into its memory
using its own dynamic loader. Without the ability to intercept native-library-
loading events, Arabica’s JVMTI agent cannot change the process of library
loading inside the JVM to allow it to load the native library into the sandbox
via the dynamic loader installed inside the sandbox.

Arabica’s solution is to introduce a level of indirection through a layer of
trusted stub libraries. At a high level, the stub-library layer performs native-
library loading, symbol resolution, and native-method calling and returning;
that is, it performs functionalities (b) and (c) presented at the end of Sec. 2.

We next illustrate the basic process using the native-method implementa-
tion of inflateBytes in the library libzip.so. The first step is to rename
libzip.so to reallibzip.so. The second step is to create a new libzip.so,
a stub library for libzip. The stub library contains a stub function for each
native-method implementation. The following code presents the implementation
of the stub function for inflateBytes.

1 void * _handle = NULL;

2 void * _sym_addr = NULL;

3 jint Java_java_util_zip_Inflater_inflateBytes

4 (JNIEnv *env, jobject this, jarray b, jint off, jint len) {

5 if (_handle == NULL)

6 _handle = (void *) loadLib(env, ‘‘reallibzip.so’’);

7 if (_sym_addr == NULL)

8 _sym_addr = (void *)

9 loadSym(_handle, "Java_java_util_zip_Inflater_inflateBytes");

10 return call_in(_sym_addr, env, obj, b, off, len);

11 }

The following steps outline what happens when the JVM loads libzip.so and
invokes the method inflateBytes:

(1) When the JVM loads libzip.so, it loads the stub version outside the sand-
box, not the real one.

(2) When the JVM resolves the address for the native method inflateBytes, it
finds the address of the stub function for inflateBytes in the stub library.

(3) When the JVM invokes the inflateBytes native method, the control trans-
fers to the stub function. The stub function (a) uses loadLib to load the real
library into the sandbox if it has not been loaded (lines 5 and 6); 3 (b) uses
loadSym to find the address of inflateBytes in the real library (lines 7–9);
and (c) uses a function call in to copy arguments and perform a function
call to the real inflateBytes (line 10).

3 Note that the name of a native method in a library is mangled; additional information
about package and class names are added to the method name.
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For each native library that needs to be sandboxed, a stub library needs to be
generated. The stub library can be manually written, but we automated the
process of stub-library generation using a stub-library generator. The generator
first reads in a configuration file, which specifies the source files for native li-
braries, the output filename and other options. The stub generator then parses
the source files to search for functions that implement native methods. For each
native method, the stub generator records the function name, parameter list and
return type, and generates the stub function accordingly.

Prototype Implementation. Arabica has been implemented in Linux. Ara-
bica’s JVMTI agent is written in around 27,000 lines of C code. The majority of
the code is for implementing the JNI function wrappers, which performs safety
checks before invoking real JNI functions. When a JVM starts, the agent is
loaded into the JVM by specifying the “-agentlib” or the “-agentpath” option.
The stub-library generator is implemented in less than 1,000 lines of Java code.
The current version of the stub generator works only with native libraries whose
source code is available. The stub generator parses a source file, recognizes func-
tions that implement native methods, and generates stub functions. A C function
with the JNIEXPORT modifier is recognized by the generator as the implementa-
tion of a Java native method. In the future, we will change the stub generator
so that it generates stub functions based on Java class files. The benefit of this
approach is that it will enable sandboxing of native libraries in a Java package
on the fly because stub libraries can be generated online based on the Java class
files in the package—no off-line processing will be needed.

4 Sandboxing Standard Libraries in OpenJDK

Sandboxing the standard native libraries in the Java Class Library (JCL) pro-
vides multiple benefits. First, it improves a JVM’s security. Without constraints,
those native libraries are in the TCB. A security vulnerability in the libraries
may enable attackers to take over the JVM. In an empirical security study [2],
we examined the standard native libraries in Sun’s JDK (version 1.6). In 38,000
lines of C code covered by the study, we identified 126 software bugs, of which 59
bugs are security critical. Since Sun’s JDK 1.6 has over 800,000 lines of C/C++
code in its native libraries, we expect many more security-critical bugs are there.
By sandboxing those libraries and constrain their capability, the size of the TCB
is reduced and the JVM’s security is improved.

The second benefit of sandboxing JCL’s standard libraries is that it enables us
to evaluate the performance of native-code sandboxing by running standard Java
benchmark suites such as SPECjvm or DaCapo [5]. One difficulty in evaluating
JNI-based systems is that there are no standard benchmark suites that target
the JNI. As a result, the performance evaluation of Robusta was performed on
a set of handpicked JNI applications. With the sandboxing of standard native
libraries, a more sound evaluation strategy can be adopted to evaluate Arabica.
Since all Java applications make heavy use of JCL’s native libraries, we can
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just sandbox those libraries and run standard Java benchmark suites for the
evaluation.

Given the benefits of sandboxing standard native libraries, one natural ap-
proach is just to put all code in JCL’s native libraries into the sandbox. However,
this approach has two disadvantages.

– Lack of portability. In the ideal case, the JCL would be portable across JVM
implementations. The reality, however, is that each JVM implementation
uses its own version of native libraries. For instance, OpenJDK and IBM J9
come with their own JCL packages, which are incompatible with each other.
One reason for the incompatibility is that many JCL native libraries may
be used for purposes more than just implementing native methods declared
in Java classes. Take libzip in OpenJDK as an example. Part of its code is
invoked directly by OpenJDK’s JVM, forming “native-to-native” communi-
cation.4 For instance, the function ZIP Open in libzip is directly invoked by
OpenJDK during the JVM initialization stage. The second reason for incom-
patibility is that code in a native library may invoke JVM-specific intrinsics.
For instance, native code that supports the java.io package in OpenJDK
uses JVM intrinsics to manipulate files (e.g., JVM Open for opening a file).
Because of these reasons, if all code in a JCL native library were put in the
sandbox, then the sandbox interface to Java had to go beyond the JNI in-
terface to allow, for example, functions like JVM Open. This approach would
make the sandbox interface dependent on a specific JVM, while our goal is
to keep the interface to be the portable JNI interface.

– Security concerns. Part of Java security is implemented through standard
JCL packages such as java.lang.SecurityManager, java.lang.ClassLoad
-er, and java.security.AccessController. Since Arabica has only one
sandbox for all native code, putting native code that implements Java secu-
rity in the same sandbox as other untrusted native libraries might jeopardize
security: one vulnerability in untrusted native libraries might allow attackers
to disable Java’s security manager.5

Therefore, we decided to manually separate a native library in JCL into two
portions: a portion that is put into the sandbox, and a trusted portion that is
outside the sandbox. The sandboxed portion contains the code that implements
native methods declared in a JCL class that is not part of Java’s security in-
frastructure; it is JVM-independent and the only way it interacts with a JVM
is through the standard JNI interface. The trusted portion contains the rest of
the code, including JVM-specific native code and native code that implements
Java security. Take libzip in package java.util.zip as an example. A piece
of native code is put into the sandboxed portion if the following conditions hold:

4 We call this “native-to-native” communication because the JVM itself is imple-
mented in native code. By contrast, “Java-to-native” communication includes the
cases that Java code invokes a native method.

5 One solution is to construct multiple sandboxes and put native code of different
security levels into separate sandboxes, as discussed in the future-work section.
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Table 1. Sandboxed JCL libraries and their descriptions

Library Description

libjava The core library that supports java.lang, java.io and part of
java.util.

libzip The library that supports java.util.zip; it includes the ZLib C
library for compression/decompression.

libnet The library that supports java.net.
libnio The library that supports java.nio.

– There is a Java class in java.util.zip that is not part of Java security and
the Java class declares a native method.

– The piece of native code is used to support the implementation of the native
method.

Conceptually, the separation process takes out the JVM-independent, Java-
security-independent portion from a JCL package. In our view, there is no
fundamental reason why JCL packages cannot be reused in multiple JVMs.
For instance, regardless of how a JVM is implemented, the standard package
java.util.zip should include Java classes and a native library for compres-
sion/decompression; the library communicates with the Java side through the
standard JNI interface. This would be a welcome design for JVM implementers
as they do not need to reinvent those standard packages.

The manual separation process does come with a few complications. First,
code occasionally needs to be duplicated in the two portions. For instance, if a
function in a native library is both directly invoked by the JVM and used by
another native function that implements a Java class’s native method, then that
function needs to be duplicated in both the sandboxed and the trusted portion
of the library. Second, we may make mistakes during the manual separation
process. For instance, code that should be sandboxed may be wrongly put into
the trusted portion.

Separating JCL Libraries. For the purpose of evaluating the performance
of native-library sandboxing, we investigated what JCL libraries are used by
benchmark programs in SPECjvm 2008. Table 1 lists these libraries except the
AWT library. The AWT library contains over 100k lines of source code and we
had difficulty of compiling it through NaCl’s toolchain.6 Fortunately, only one
benchmark program, sunflow, in SPECjvm 2008 uses the AWT library and we
excluded that program in our performance evaluation.

Table 2 shows the lines of source code of the JCL’s libraries we have treated
and the sizes after the manual separation process. Note that the total size is not
the same as the sum of the sandboxed portion and the trusted portion because
some code is duplicated during the separation process. Also note that a relatively

6 Both Robusta and Arabica rely on NaCl’s toolchain to create NaCl-compatible
modules.
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Table 2. JCL library sizes and the sizes of the two portions after manual separation
(lines of source code)

Library Total size Sandboxed portion Trusted portion

libnet 6339 6245 192
libnio 3566 3566 0
libzip 8725 8070 1325
libjava 11011 7919 3459

large portion of libjava is not sandboxed because native code that implements
Java security such as java.lang.SecurityManager is in that library. In our
implementation, the trusted portion is put into the stub library, which was dis-
cussed in the previous section. That is, the new “stub library” contains both the
stub functions and the trusted portion.

Adding Permissions for the JCL Libraries. Recall that Robusta reroutes
system calls issued by native libraries to let Java’s security manager decide
whether system calls are allowed according to a security policy. Arabica inherited
that mechanism from Robusta. For JCL packages, we changed the JVM’s policy
file to give a minimum set of permissions on a per-package basis. For instance,
the package java.util.zip has permission java.io.FilePermission but no
other permissions. As another example, the package java.net has permissions
java.net.NetPermission and java.net.SocketPermission. Permissions as-
signed to a package apply to both Java and native code in the package and they
are enforced by Java’s stack inspection [13]. In particular, in the presence of
native method calls, the JVM’s method-call stack consists of a mixed Java and
native frames. When the security manager performs stack inspection, it can find
the right protection domain even for a native frame based on the class where
the native method is declared. For instance, if the native code that supports
java.util.zip attempted to access the network, the request would be rejected
by the security manager since Java classes under java.util.zip do not have
networking permissions.

Since Arabica has only one sandbox for all native libraries, one might worry
that native code for one package might gain more permissions by exploiting other
packages’ native code that has a larger permission set. We do not believe this
can happen for the following reason. The SFI sandbox for native libraries has
separate code and data regions. The code region is immutable; as a result, one
package’s native code cannot modify other packages’ native code. It can modify
the data region, which is shared by all native code. But it cannot affect Java’s
security manager because the security manager stays outside of the sandbox and
stack inspection is based on a stack outside of the sandbox. Note that when we
sandboxed libjava, we did not put the native code of the security manager in
the sandbox because otherwise it would create security-critical data in the data
region modifiable by other untrusted native code.
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Table 3. Performance overheads of Arabica on a set of JNI programs

Program Context switches Arabica increase Arabica increase Robusta increase
(per millisecond) (OpenJDK 1.7) (IBM J9 1.7.0)

zip (1KB) 18.50 23.90% 19.84% 9.64%
zip (2KB) 9.93 12.26% 10.41% 7.51%
zip (4KB) 5.00 6.36% 5.17% 5.22%
zip (8KB) 2.34 3.10% 2.75% 2.42%
zip (16KB) 0.95 1.31% 1.32% 1.40%

libharu 68.85 59.23% 58.86% 48.22%

libjpeg 0.002 8.43% 11.60% 3.82%

StrictMath 269.57 1588.81% 1647.83% 729.48%

5 Evaluation

We have evaluated Arabica’s functionality, portability and performance using a
set of microbenchmarks, a set of handpicked JNI programs, and SPECjvm 2008.
All tests were performed on a system with Ubuntu 8.10 and an Intel Core2
Quad CPU at 2.66GHz. All experimental results we report is the average of
ten runs. To evaluate Arabica’s portability, experiments were conducted on two
JVM implementations: OpenJDK 1.7.0 and IBM J9 1.7.0 R26.

Microbenchmarks for Functionality Testing. A set of small programs were
used to test Arabica’s basic functionality. The microbenchmarks include pro-
grams for testing basic JNI features, such as passing parameters of various
types and sizes from Java to native code, calling back Java functions in na-
tive code, synchronization between Java and native code using MonitorEnter

and MonitorExit, and others. The microbenchmarks also include programs for
testing Arabica’s effectiveness for preventing errors such as unsafe JNI calls. All
microbenchmarks performed correctly on both OpenJDK and IBM J9.

A Set of Handpicked JNI Programs. Our previous implementation, Ro-
busta, was evaluated on a set of handpicked JNI programs. For comparison, we
evaluated Arabica also on the same set of JNI programs. Table 3 presents these
programs and the runtime increase of Arabica (on both OpenJDK and IBM J9)
and Robusta.

In Robusta’s experiments, we discovered that its runtime overhead is closely
related to context switch intensity, which refers to how often an application
makes context switches between the JVM and the sandbox. Since each context
switch comes with the cost of saving and restoring states and other costs such
as JNI safety checks, the intuition is that the higher the context switch inten-
sity, the higher the runtime overhead. This was confirmed by the experiment
on the zip program. The Java side of the zip program compresses a file of a
fixed size by dividing the file into data segments of small sizes and passing a
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Table 4. Performance overheads of Arabica on SPECjvm2008

Benchmark Context switches Arabica increase
(per millisecond)

compiler 4.38 7.49%
compress 0.10 11.89%
crypto 1.15 3.09%
derby 0.03 4.07%
mpegaudio 19.36 6.33%
scimark 0.02 9.49%
serial 3.10 4.86%
xml 55.60 112.12%

data segment through a buffer to Zlib, which performs the compression and re-
turns the result to the Java side. Then the Java side passes the next buffer of
data to Zlib. Therefore, the bigger the buffer size, the smaller the number of
context switches between Java and the sandbox, and therefore the smaller the
performance overhead. The zip program was tested with buffer sizes 1KB, 2KB,
4KB, 8KB, and 16KB. As shown in the table, the runtime increase of Arabica
on zip demonstrates the same trend as Robusta: as the buffer size increases,
the performance overhead decreases. The StrictMath experiment is an extreme
case. It repeatedly invokes native code for calculating mathematical functions
such as cos. It stays in the sandbox for only a very short amount of time before
switching out. Consequently, it has high context-switch intensity and thus high
performance overhead.

Arabica has a higher overhead than Robusta. This is not surprising as Arabica
uses JVMTI for portable sandboxing. JVMTI traces events that happen inside
the JVM and therefore comes with extra overhead.We believe this is a reasonable
price to pay for portability.

SPECjvm 2008. As presented in Section 4, we have manually separated the
core JCL libraries used in SPECjvm 2008 (except for the AWT library). This
enables a full evaluation of the performance overhead of native-library sandbox-
ing since SPECjvm2008 contains Java benchmarks whose workload resembles
realistic Java applications.

Table 4 presents the performance overheads of SPECjvm2008 benchmarks
except for sunflow. The benchmark sunflow is a GUI program that uses the
Java AWT library; we have not yet sandboxed the AWT library, as noted before.
All benchmarks were run ten times with sandboxed JCL libraries and another
ten times with unsandboxed ones to calculate the average performance overhead.
All benchmarks were run under the default configuration of SPECjvm 2008
(2-minute warming up time, one iteration with 4-minute iteration time).

On average, Arabica causes moderate overhead on most benchmarks (less than
15% except for xml). The xml benchmark makes a high number of invocations
of the StrictMath library and incurs significant performance penalty.
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In general, the experiments demonstrate that the idea of native-library sand-
boxing can be made portable across JVMs and with modest overhead, especially
for programs with low context-switch intensity.

6 Related Work

We adopt SFI [4, 10, 14–17] for sandboxing untrusted code in a trusted envi-
ronment. Sandboxing is an intensively studied topic in computer security and
can be achieved in many ways. One natural approach is an OS-level solution. A
number of systems aimed to address the insufficiency of commodity-OS isolation
primitives by implementing new OSes or augmenting OS kernels [18–22]. These
systems map protection domains to OS processes. In comparison, SFI sand-
boxes untrusted code within the same address space and provides faster context
switches between untrusted code and the trusted environment. Virtual-machine
based isolation is both conceptually elegant and practically feasible (e.g., [23]).
But it is even more heavyweight in terms of time, space, and communication
costs than OS-level abstractions. Another approach is through language-based
isolation, which is fine-grained, portable, and flexible. For example, languages
such as E [24] and Joe-E [25, 26] enforce language-level isolation through an
object-capability model. Their downsides are an overall loss of performance, and
more importantly, a single language model has to be adopted. Isolation tech-
niques using pure static types (e.g., [27]) have no runtime overhead, but require
nontrivial support from developers and compilers. Finally, hardware-level pro-
tection domains within a single address space have also been explored [28, 29].
This approach is efficient, but is incompatible with commodity hardware on
which most user applications run.

Arabica achieves portable sandboxing across JVMs. This is made possible by
the availability of two standard interfaces supported by most JVM implemen-
tations: the JNI interface and the JVMTI interface. We believe it should be
a desirable goal to design portable mechanisms for sandboxing untrusted code
in other environments such as web browsers or other language runtimes (e.g.,
Python). For instance, Native Client [10] does not function in browsers other
than Chrome; but if all browsers support some common interface such as the
Pepper Plugin API [30], then browser-portable sandboxing should be obtainable
with similar ideas we used to construct Arabica.

Sandboxing standard libraries like what we performed on Java’s core libraries
is always a good way of improving application security since all applications use
those libraries. A bug in a common library can impact a large number of appli-
cations. Previous work [31] demonstrated the security benefits of decomposing
Python’s runtime and libraries into a minimal, security-isolated kernel with a
set of sandboxed modules for providing basic services such as networking and
file I/O, similar to the micro-kernel approach in the operating system domain.
Our sandboxing of Java’s core libraries puts all native code in one sandbox, but
a future direction is to construct one sandbox for each basic service the JVM
supports.
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7 Future Work

One immediate work we will perform is to support multiple sandboxes. Arabica
constructs one sandbox for all native code because we are mainly concerned
with protecting the JVM from native code. But the downside is that one native
library may interfere with other libraries since they share the data region in the
sandbox. Having only one sandbox is also the reason why we cannot put native
code that implements Java security into the sandbox. We would like to construct
one sandbox for each native library. This would isolate native code of varying
trust levels.

We also plan to continue the process of sandboxing those JCL standard native
libraries. Our experience for sandboxing the ones used by SPECjvm suggests that
putting those native libraries into the sandbox causes only modest performance
slowdown. The security benefits are substantial. In the long run, we would like
to put most of the JCL’s native libraries into the sandbox. The major challenge,
as we have experienced, is to define a clear boundary and carve JVM-portable
portions out of the libraries. The manual partitioning process we are using is slow
and mistakes might be made. The approach of automatic partitioning based on
static analysis seems promising.

8 Conclusions

Putting native libraries into a sandbox and constraining their capability is an
effective strategy for preventing them from destroying Java’s strong support for
safety and security. Arabica demonstrates that this idea can be made JVM-
portable with modest performance slowdown. Compared to Robusta, Arabica is
much easier to be integrated into a Java environment as it does not modify a
JVM’s internals. We believe our techniques for making the sandboxing portable
across environments and our experience of sandboxing core libraries will be help-
ful in other contexts, including sandboxing native libraries in languages such as
Python and OCaml, and sandboxing plugins in web browsers.
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proach for native-code sandboxing. This research is supported by US NSF grants
CCF-0915157, CCF-1149211, a research award from Google, and in part by
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14. Erlingsson, Ú., Schneider, F.: SASI enforcement of security policies: A retrospec-
tive. In: Proceedings of the New Security Paradigms Workshop (NSPW), pp. 87–95.
ACM Press (1999)

15. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: 15th
Usenix Security Symposium (2006)

16. Ford, B., Cox, R.: Vx32: Lightweight user-level sandboxing on the x86. In: USENIX
Annual Technical Conference, pp. 293–306 (2008)

17. Castro, M., Costa, M., Martin, J.P., Peinado, M., Akritidis, P., Donnelly, A.,
Barham, P., Black, R.: Fast byte-granularity software fault isolation. In: ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), pp. 45–58 (2009)

18. Efstathopoulos, P., Krohn, M., Vandebogart, S., Frey, C., Ziegler, D., Kohler, E.,
Mazières, D., Kaashoek, M.F., Morris, R.: Labels and event processes in the As-
bestos operating system. In: ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), pp. 17–30 (2005)

19. Zeldovich, N., Boyd-Wickizer, S., Kohler, E., Mazières, D.: Making information
flow explicit in HiStar. In: USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pp. 263–278 (2006)

20. Krohn, M., Yip, A., Brodsky, M., Cliffer, N., Kaashoek, M.F., Kohler, E.,
Morris, R.: Information flow control for standard OS abstractions. In: ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), pp. 321–334 (2007)

21. Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge: splitting applications
into reduced-privilege compartments. In: Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implementation, pp. 309–322 (2008)

http://www.illegalaccess.org/java/ZipBugs.php
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html
http://docs.oracle.com/javase/1.5.0/docs/guide/jvmti/jvmti.html


858 M. Sun and G. Tan

22. Watson, R., Anderson, J., Laurie, B., Kennaway, K.: Capsicum: Practical capabil-
ities for UNIX. In: 19th Usenix Security Symposium, pp. 29–46 (2010)

23. Cox, R.S., Gribble, S.D., Levy, H.M., Hansen, J.G.: A safety-oriented platform
for web applications. In: IEEE Symposium on Security and Privacy (S&P), pp.
350–364 (2006)

24. Miller, M.: Robust composition: towards a unified approach to access control and
concurrency control. PhD thesis, Johns Hopkins University, Baltimore, MD (2006)

25. Mettler, A., Wagner, D., Close, T.: Joe-E: A security-oriented subset of Java. In:
Network and Distributed Systems Symposium, NDSS (2010)

26. Krishnamurthy, A., Mettler, A., Wagner, D.: Fine-grained privilege separation for
web applications. In: Proceedings of the 19th International Conference on World
Wide Web (WWW 2010), pp. 551–560 (2010)

27. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. ACM Transactions on Programming Languages and Systems 21(3), 527–
568 (1999)
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Abstract. Dynamically linked libraries are commonly used in software
programs to facilitate code reuse. Once a library is linked into a software
program, a bug in the library can lead to compromise of the whole pro-
gram. Moreover, the library may also contain malicious code. Existing
solutions for software component isolation assume simple interactions
between a library and the main program, otherwise, they require signif-
icant modification of the main program and the library. In this paper,
we propose a novel solution, Codejail, which supports a partial isolation
of libraries that have tight memory interactions with the main program.
Codejail requires no modification to the main program or the library.
We demonstrate using a Linux prototype that Codejail can work easily
with real-world programs and libraries. The performance is good for a
portable implementation with costs commensurate with the degree of
tight interaction.

1 Introduction

Software today heavily relies on dynamically-linked libraries. Libraries are usu-
ally seen as a necessary step to facilitate code reuse. While the use of libraries can
considerably simplify and speedup software development, there is a downside,
namely, the libraries can themselves have bugs. In this paper, we distinguish be-
tween the code in specific libraries (or simply library) with the code outside the
library which we call the main program. Once a library is linked into the main
program, a bug in the library can lead to compromise of the entire program.

Specifically, there are two main threats posed by third-party libraries to its
main program. First, the library may be vulnerable because it contains a bug
that can be exploited by an attacker. Typical attacks are through memory cor-
ruptions, such as buffer overflow together with code injection or return-oriented
programming [1]. Even though the main program contains no vulnerabilities, vul-
nerabilities in the library may propagate and affect the main program. Second,
a library could also be malicious. The extensive use of libraries, i.e. dynamically
linked libraries, only exacerbates these problems.
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To mitigate the threats from dynamic libraries, a range of solutions have been
proposed to isolate program components to control their privilege [2–5]. Most so-
lutions adopt a separated memory model: a component can only access its own
memory, which is mutually exclusive with the memory of the main program.
While this model works with simple inter-component interactions, it either does
not work or is not efficient for libraries that engage in tight interactions with
the main program. Rather, it is more common for programs and libraries to be
written with tight interactions, such as sharing global variables, passing refer-
ences to complex data structures, callbacks, longjmp, etc. It is not practical to
assume that such libraries can be rewritten to eliminate the tight interaction,
let alone doing so for all software using such libraries. This is even less practical
for close-source libraries/programs.

Our goal is to mitigate the threats from dynamic libraries in a transparent
fashion. Ideally, we want to reduce or prevent these threats without the need to
modify either the libraries or the main program when there are tight interactions
between them. Existing solutions, however, are not transparent to the main
program and libraries. Often, significant work is needed to port a library and
a main program in order to make library execution safe while preserving the
functionality. This usually needs source code, thus, preventing reuse of existing
binaries. We argue that while existing solutions can provide security, they do
not address transparency and hence are of limited applicability.

We use NativeClient (NaCl) [5] as an example to illustrate the need for a
transparent library security mechanism. NaCl is designed for isolating untrusted
native browser plugins. It adopts a separated memory model that ensures an
untrusted component can only access its own dedicated memory and code. As
a result, communication between the trusted and untrusted components are in
a remote-procedure-call style, i.e. parameters and return values are passed by
value and data structures are serialized. However, libraries are not typically
designed for this model. Instead, most libraries assume that the library and
main program share the same memory and by-reference parameter passing is
commonly used for efficiency. There are practical difficulties with porting any
code that uses such assumptions. Good software engineering practices mean
that details of data structures are encapsulated and (mostly) opaque, and thus
porting requires reverse engineering the implementation. Many complex libraries
employ tight interactions such as callbacks and longjmp, which are not allowed in
NaCl because the code segment is isolated, e.g. the popular libpng library uses
an opaque structure to keep internal states with longjmp as the error handling
mechanism. Thus, NaCl cannot be used to isolate libpng, and libpng is used
in a number of web browsers. Many security vulnerabilities have been found in
libpng, rendering such browsers vulnerable.

In this paper, we present Codejail, a framework to isolate untrusted libraries.
We assume that libraries have well defined APIs, which specify the extent of the
tight interactions with the main program. This is reasonable since it is necessary
for the user of a library to understand how to make use of it. To prevent bugs in
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a library from compromising the whole program, Codejail ensures: (i) memory
access in the library is sandboxed so that side effects are limited to conform
to its API; and (ii) system privileges are controlled to be only what is allowed
for its designed tasks. The design goal of Codejail is to provide application-
transparent solutions for isolating libraries that have tight interaction with the
main program. Unlike the separated memory model, Codejail proposes a semi-
shared memory model, which allows common tight interactions while ensuring
the integrity of main program’s data. In this model, the jailed library has full
access to its own memory and read access to other memory. In addition, the
main program can selectively allow the jailed library to write to any memory.
We support callbacks where the jailed library needs to run a function supplied
by the main program using the main program’s data and the use of longjmp to
return to the main program from the jailed library. As we work at the binary
library API level, library source code is not needed and Codejail works with
dynamically linked libraries.

Although the overall goal is to support tight interactions of the main program
with an untrusted library transparently, we have some restrictions. Codejail en-
sures that a jailed library is not able to modify arbitrary memory outside its
sandbox. This restriction applies even if the library has no vulnerabilities nor is
it malicious, so not every library with tight interaction can work transparently
with Codejail. Nevertheless, we believe that a much larger class of libraries and
software will function with Codejail than with more strongly separated memory
models such as software fault isolation.

We have built a portable Unix prototype implementation of Codejail in Linux.
We demonstrate the usability of Codejail to transparently sandbox well-known
dynamic libraries using the off-the-shelf binaries of standard programs and li-
braries. Even though our prototype is portable and works in user-mode, the
performance impact is still reasonable. Where there are large numbers of calls
to a jailed library (or callbacks) and the library needs to write significant data
outside its own memory, there will naturally be more overhead. We have tested
libpng with the Mozilla Firefox browser and were able to protect against attacks
from libpng to Firefox. From a performance standpoint, we did not observe any
degradation in the user experience when using Firefox.

In summary, our major contribution is the design and prototype implemen-
tation of a novel approach, Codejail, that isolates untrusted libraries. Codejail
supports tight program interactions required by a signification portion of li-
braries. It can also be applied transparently, without modifying the software
program or the untrusted library.

2 Related Work

Applying the principle of least privilege by partitioning a program into a num-
ber of processes with different privilege has been studied by many researchers.
Provos et al. [6] partitioned OpenSSH into two parts, a privileged master to only
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handle authentication and unprivileged slaves to handle the rest of the work.
Kilpatrick [7] proposed Privman, a library to help partition privileged UNIX
daemons where the main program talks to a privileged server with the Priv-
man library to perform privileged tasks. This is by replacing privileged function
calls to the corresponding Privman wrappers, but a significant amount of man-
ual work is still necessary. Brumley et al. [8] proposed Privtrans to automate
the privilege separation work. The programmer manually specifies privileged
data and functions. Privtrans automatically separates the program into an un-
trusted slave and a trusted monitor, each running in a separated process. Access
to privileged data and functions only takes place in the trusted monitor. Both
Privman and Privtrans adopt a trusted callee model where the main program
is untrusted and the privileged operations are performed by a trusted monitor
process. In contrast, Codejail addresses the opposite situation with a trusted
caller and untrusted callee.

There are other solutions on confining memory access of a software component
without separation into different processes. Software Fault Isolation (SFI) [2]
ensures all memory accesses of the untrusted component is within the mem-
ory dedicated to the component by statically verifying direct memory access
instructions and dynamically checking indirect access. Other work [3–5, 9, 10]
uses the same idea while using different techniques and hardware features.
Vx32 [4] uses the segment register in x86 to confine memory access in hardware.
Other solutions [11–13] provide isolation by confining the untrusted compo-
nent to a memory region assigned to the component, we call such a mem-
ory model as a separated memory model. There are two problems with this
model. Firstly, existing code typically assumes global memory access and has to
be recompiled or manually ported. Secondly, inter-component pass-by-reference
function calls need to be changed to pass-by-value, as the callee cannot ac-
cess the memory of the caller. This is not easy or efficient for complex data
structures.

Wedge [14] uses tagged memory to restrict memory accesses of software
components, where each memory allocation is explicitly associated with a tag.
Software is partitioned into least-privilege components, which can only access
memory with specific set of tags. Compared to the separated memory model,
Wedge allows memory sharing, such as by-reference function parameters, if the
memory regions have compatible tags. However, it needs each component to un-
derstand how memory is used by other components. This requires understanding
the memory access behavior of all components in the software and memory al-
location has to be modified to specify the correct tag. When modification is
not possible, Wedge provides a way to specify the default tag for all allocations
made by a component. This can lead to the confused deputy problem. Consider
a malicious component C1 and a benign component C2 both using component
C3. C2 uses C3 to allocate memory to store critical data. C1 may be able to
tamper with C2’s data by using C3.
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3 Problem Statement

3.1 Motivating Example

We use the libpng library to demonstrate the problem of tight interactions be-
tween a main program and a library. It shows the difficulty of supporting such
interactions in the separated memory model. Fig. 1 shows a sample main pro-
gram using libpng. We underline the key points in the listing, and we emphasize
whether main or libpng manage the memory of particular data structures, as
well as who uses it.

The main data structure for libpng is an opaque structure png struct pointed
by png. It is created at Line 7 with png create read struct (similarly, info at Line
8) – memory allocated by libpng is used in main. This structures pointed by png

and info can be thought of as identifying the interaction between main and libpng

but as they are not directly accessed by the main program, the details should be
considered as private and implementation specific. If libpng is sandboxed using
a separated memory model, parameter marshalling of png struct will break the
separation between interface and implementation. Rather than marshalling, png
can be treated as a resource handle rather than pointer. However, this can crash
the main program if it tries to dereference it. png destroy read struct at Line 10
& 22 is used to free the opaque structure as well as resetting the pointer to
NULL – libpng changes png in main.

Due to lack of language-based exception handling in C, setjmp and longjmp

are often used in libraries including libpng. At Line 9, setjmp is used to create
the error handling code in main, the jmpbuf comes from memory managed by
libpng. Such library code does not fit with the separated memory model, e.g.
the longjmp branches outside the allowed code range and stack frame in NaCl.

The function main reads the PNG file in a loop. It passes chunks of PNG data
to libpng using png process data at Line 19 – libpng reads buff managed by
main. The main program also passes the function pointer row callback to libpng

at Line 14 – the function resides in main. In png process data, row callback is
called by libpng whenever a row of pixels is decoded. The main program then
displays the row through its row callback function. This mechanism is known
as function callback, where the main program registers a function pointer in the
library, which will be called by the library. The callback mechanism will cause a
similar problem as longjmp in separated memory model approaches.

3.2 Tight Interactions

We now examine the typical interactions between the main program and a li-
brary, including those that are challenging to support under the separated mem-
ory model, such as the side effects of library functions and function callbacks:

1. By-Value Parameter Passing and Return: The parameters are copied
from the caller to the callee and vice versa for return values, e.g. sqrt().
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1 stat ic void r ow ca l lback ( png s truct ∗png , png bytep new row ,
2 png u int 32 row num , int pass ) {
3 // d i s p l ay the row
4 }
5 int main (void ) {
6 FILE ∗ fp = fopen ( ” f oo . png” , ” rb” ) ;
7 png s truct ∗png = png c r e a t e r e ad s t r u c t ( . . . ) ;
8 png in f o ∗info = pn g c r e a t e i n f o s t r u c t ( png ) ;
9 i f (setjmp(png jmpbuf( png ) ) ) {

10 png de s t r oy r ead s t r u c t (&png , &info , NULL) ;
11 c l o s e ( fp ) ;
12 return 1 ;
13 }
14 png s e t p r o g r e s s i v e r e ad f n ( ptr , . . . , row callback , . . . ) ;
15 while (1) {
16 char bu f f [ 1 0 2 4 ] ;
17 s i z e t l en = f r ead ( buf f , 1 , 1024 , fp ) ;
18 i f ( ! l en ) break ;
19 png proces s data (png , in f o , buff , l en ) ;
20 }
21 f c l o s e ( fp ) ;
22 png de s t r oy r ead s t r u c t (&png , &info , NULL) ;
23 return 0 ;
24 }

Fig. 1. Using libpng to read a PNG file

2. By-Reference Parameter Passing and Return: The caller passes point-
ers of the parameters, and memory is dereferenced by the callee and possibly
modified, e.g. strlen() and asctime r().

3. Global Variable: Some libraries export global variables that can be directly
accessed by the main program or other libraries, e.g. errno from libc.

4. Function Callback: Library functions may need to call the main program
in order to read/write data or signal task completion, e.g. png process data()

makes a callback as described in Sec. 3.1.
5. Long Jump: Some libraries, e.g. libpng, use setjmp/longjmp as an error-

handling mechanism. This can cause the library to transfer control to the
main program without using the return mechanism.

The first type of interaction involves no tight memory interactions, which can
be easily supported by memory isolation models. However, the other types
of interactions are not compatible with memory isolation models. They either
have implicit shared memory operands, or involve non-standard control transfer
between code of the main program and the library.

3.3 Threat Model and Design Goal

Threat Model. In our approach, we aim to mitigate the untrusted library’s threat
to directly access undesired system resources or memory. Note that the untrusted
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library can cause indirect threats through the data it returned to the main pro-
gram, such as returning malicious data to exploit memory errors in the main
program. This type of threats is out of the scope of our solution (and the related
solutions in Section 2). It can be addressed by the main program through data
sanitizing, checking returned data (including updates of by-reference parame-
ters) from the untrusted library.

Design Goal. Under this threat model, an untrusted library must be separated
from the main program to prevent it directly accessing the main program’s
resources and memory. However, the library needs tight interactions with the
main program. The goal of Codejail is to isolate untrusted libraries into different
execution contexts. The contexts share a flexible memory model which supports
close interactions. Specifically, our solution guarantees the following properties:

– The untrusted library cannot execute arbitrary code in the trusted context.
– The untrusted library cannot crash the main process through, for example,

null pointer dereference, illegal memory access and deadlock.
– The untrusted library cannot make arbitrary system calls, for example, only

system calls explicitly specified by the main process are allowed. The speci-
fication can include a set of allowed system calls, a set of files and directories
and system resource limits such as memory usage, time limits, etc.

4 The Codejail Approach

We describe Codejail’s key techniques showing how they meet our design goals.
An untrusted library is typically used in the following fashion. The software
consists of a trusted main program, an untrusted library, and a trusted library.
The main program uses functions from both libraries; the untrusted library uses
the trusted library. The main program only interacts with the untrusted library
through the library’s API, which specifies functions exported from the libraries
with their parameter types and calling conventions. For by-reference parameters,
the API should specify whether the callee updates the parameter. The API also
specifies exported global variables and their data types. For data types that are
directly accessed externally, their data structures have to be specified, e.g., in a
header file. We do not assume availability of source code of the main program or
the libraries. However, we assume the header file of the library to be available.
We have no assumption about the binary of the untrusted library, i.e. it can
contain arbitrary code including indirect branches and system calls.

4.1 Codejail Overview

Fig. 2 gives an overview of Codejail. Codejail creates contexts to separate the
main program and the untrusted library. The main program runs in the trusted
context, while the untrusted library runs in the untrusted context. When the
main program calls (Step 2) a function in the untrusted library, Codejail switches
execution to the untrusted context. When the untrusted library function returns
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Fig. 2. An overview of Codejail

(Step 5) to the main program, execution switches back to trusted context. Calling
functions in the trusted library does not change the context. Calling any function,
including functions in the main program, in the untrusted context remains in
the untrusted context. However, callbacks can be set up so that the untrusted
library can call them to switch from untrusted to trusted context. The untrusted
context is unprivileged, and its system resource accesses are sandboxed.

Memory access in the untrusted context is sandboxed. It can write to its own
memory. However, for writes to the main program’s memory, changes are only
observable in the untrusted context but not in the trusted context. In Fig. 2 Step
3, the untrusted library assigns 20 to variable y, which is in its memory. The
main program observes this change in Step 6. However, in Step 4, the assignment
of 30 to x, which is in the main program, is not observable by the main program
in Step 7, where the old value 10 is read. The main program can selectively
“commit” changes made in untrusted context, so that it sees the value 30 in x.
Other changes are lost in both contexts.

4.2 Memory Access Policies

Codejail classifies writable memory into three types: Mm, memory of the main
program; Mj , memory of the untrusted library; and Ml, memory of the trusted
library. The semantics of memory access depends on context and memory type.

Table 1 shows the classification of writable memory types. The static allocated
memory typically includes global variables and static local variables. In the ELF
binary format, such variables reside in the .bss and initialized data segment. The
static allocated memory is associated with the code that declares it. In Codejail,
we further divided it into three parts: the main program, trusted libraries, and
untrusted libraries. Codejail divides the stack into two parts: one used by the
trusted context (including the main program and trusted libraries) and the other
used by untrusted context. Similarly, the heap is divided into two – different
contexts allocate memory in different heaps.

We now describe the policies for memory access on the three types of memory:

– Mm Memory of Main Program: Initially, Mm memory in both contexts
is synchronized, i.e. memory read gives the same value for the same address.
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Table 1. Memory types in Codejail

Memory Type

static allocated memory
main program Mm

untrusted library Mj

trusted library Ml

stack
trusted context Mm

untrusted context Mj

heap
trusted context Mm

untrusted context Mj

After the main context writes to it, the memory is still synchronized. How-
ever, after the untrusted context writes to it, the memory is not synchronized.
Each context has a different view of the memory, so that the memory writes
are only observable in its own context. As a result, after the untrusted li-
brary function returns, the main program is not able to observe the change
made by the untrusted library. In this way, we prevent the untrusted library
from corrupting data of the main program.

In some cases, we want the library to update some data. For example,
we want memcpy(dest, src, n) to update [dest, dest+n]. Codejail provides
the API (cj recv(void *ptr, size t size)) to copy data from the untrusted
context to the trusted context.

Before each untrusted function call,Mm memory is re-synchronized to the
synchronized state, and changes made by the previous untrusted function,
unless committed through cj recv, are discarded.

– Mj Memory of Untrusted Library: Both contexts can observe the up-
dates made by each other. As a result, the main program should sanitize it
before using its value.

– Ml Memory of Trusted Library: Initially Ml memory in both contexts
is synchronized. However, memory writes made by either context cause it
to be not synchronized, thus the other context is not able to observe the
changes. Ml memory is never re-synchronized. For example, if we consider
libc as the trusted library, the random seed used by rand() is in Ml. Thus
a different copy of the random seed is kept in each context. The untrusted
context cannot modify the trusted context’s seed.

4.3 Supporting Tight Interactions

Using the memory types and access policies, Codejail supports tight interactions
between the trusted context and the untrusted context.

Pass-by-Reference: The main program passes pointer p to the untrusted li-
brary. Memory pointed by p can be allocated in trusted context (Mm) or un-
trusted context (Mj). In Line 10 & 22 of Fig. 1, &png points to memory in
the main program’s stack, i.e. in Mm. The main program has to call cj recv to
“commit” the change made in libpng. In Line 19, png points to memory allocated
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png_uint_32 wrapper_png_get_text (png_structp png_ptr,

png_infop info_ptr, png_textp *text_ptr, int *num_text)

{

png_uint_32 retval = (png_uint_32) cj_jail(

real_png_get_text, 4, png_ptr, info_ptr, text_ptr, num_text);

cj_recv(text_ptr, sizeof(png_textp));

cj_recv(num_text, sizeof(int));

return retval;

}

Fig. 3. An wrapper function for png get text() in libpng

in libpng, i.e. in Mj. The main program does not need to call cj recv in this
case.

Global Variables of the Untrusted Library: The memory model of Code-
jail allows the main program to transparently read and write global variables
exported by the untrusted library. This is because they are in Mj , which allows
both contexts to observe changes made by each other.

Callback: Codejail allows the untrusted library to call the main program’s func-
tions in a trusted context. To do this, the main program calls Codejail API
cj reg callback to register a callback function. A function pointer f is passed
to cj reg callback and another function pointer f ′ is returned. f ′ is then passed
to the untrusted library. When the untrusted library calls f ′ in the untrusted
context, Codejail will switch to trusted context and call f . After f returns, exe-
cution switches back to untrusted context. Both call and return are transparently
handled by Codejail. Callbacks can be nested recursively, i.e. during a callback,
the main program can call untrusted library functions, which then make more
callbacks.

Long Jump: Codejail allows long jumps between different contexts. To prevent
the untrusted library from jumping to arbitrary code in the trusted context,
Codejail ensures all long jumps are using a jmp buf registered with setjmp.

We handle typical cases of tight interactions. However, there are cases that
Codejail does not support. For example, memory allocation in the trusted con-
text is freed in the untrusted context, which is not allowed to protectMm. When
the interface between the library and the main program is not well defined, Code-
jail cannot support the interaction. This includes undocumented memory write
by the library, undocumented library functions called by the main program, and
passing opaque data structures to the library. Such not well defined interactions
are less common being not good software engineering practices.

4.4 Codejail Primitives

There are two ways to apply Codejail. One is to write a wrapper library exporting
the same set of functions as the untrusted library. The wrapper library calls the
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Codejail API. In this way, we do not need to modify the main program. The
wrapper library is reusable on any program that uses the untrusted library.

Fig. 3 shows an example of the wrapper function for png get text(), which
passes back a number of strings to the caller. real png get text is the real libpng
function. A string pointer and integer are allocated in the trusted context (Mm).
cj recv is necessary to pass them from the untrusted context. The actual string
is allocated in untrusted context (Mj) but it is not necessary to call cj recv to
pass the string. In this example, assuming 32-bits, 20 bytes (one function address
and 4 parameters) are passed before the jailed call. 12 bytes (one return value
and 2 output parameters) are passed after the jailed call.

The second way is where a general wrapper library is not feasible, or some
assumptions in the main program can make Codejail to be more efficient. In
these cases, we can modify the main program, to call Codejail API directly.

We list the Codejail API functions which are called from the trusted context:

– void *cj jail (void *func, int argc, ...)

It switches the context from trusted to untrusted and calls function func

with argc number of integer type1 arguments and return value.
– void cj recv (void *data, size t size)

It synchronizes Mm and Ml memory from the untrusted context to the
trusted context. Note that only one address is specified, because the address
space layout is the same in both contexts.

– void *cj reg callback (void *mainfunc, int argc)

It takes a function pointer in the main program and returns another function
pointer which can be called from the untrusted context. When it is called,
the context is switched from untrusted to trusted.

– void *cj jail func (void *libfunc, int argc)

It takes a function pointer in the untrusted library and returns another
function pointer which can be called from the trusted context. When it’s
called, context is switched from trusted to untrusted.

– FILE *cj duplicate file (FILE *fp)

It takes a file pointer opened in the trusted context and returns a shadow file
pointer to be used in the untrusted context. The purpose of this function is
to allow passing FILE pointers from the trusted context to untrusted context
without understanding the internal data structure of the FILE structure. The
untrusted context is able to operate on the shadow file which points to the
same underling file. The limitation is that the file will be corrupted if both
contexts operate on the file after calling this function, because the file pointer
in both FILE structures will be out of sync.

4.5 Security Analysis

Although Codejail’s design achieves the functionality requirement, attackers may
launch attacks targeting Codejail. We consider the following potential attacks.

1 For simplicity, this notation assumes integer type arguments which include char,
short, int, long and pointer types but can be extended in a straightforward way.
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– Denial-of-Service: The untrusted library can refuse to perform its ex-
pected function by, for example, infinite looping, infinite memory allocation,
segmentation fault. This can be caught by timeout or signal handler and
handled appropriately.

– Return-to-Libc, Return oriented attacks: Some library APIs allow the
libraries to pass function pointers in returned data structure and the main
process will call the pointed function. A potential attack is for the untrusted
library to pass a pointer to a malicious function and hope the function is
invoked in the trusted context. This is prevented by not allowing the library’s
code to be executed in the trusted context. In case the main program intends
to call the function, it can call the Codejail API cj jail func described in
Sec 4.4 to wrap the function pointer.

Another attack is to return pointer to code in the main program or trusted
library, similar to return-to-libc attack and return-oriented-programming.
This is prevented by wrapping all function pointers.

– Abusing system privileges: We assume system privileges requested by
the untrusted library to be examined by either the programmer of the main
program or system administrator, depending on how Codejail is applied.

5 Implementation

Our prototype Codejail is implemented portably in Linux in user mode. We now
discuss the implementation choices and challenges.

Context for Isolating Libraries. We choose process as the basic mechanism for
implementing the two contexts, a main process for trusted context and a jailed
process for untrusted context. Communication across contexts is supported by
sending and receiving data through a UNIX socket. In the jailed process, we
use etrace [15] as a portable user-mode system call interposition mechanism.
(However, kernel-based system call sandboxing mechanisms, e.g. Systrace [16],
can be used). When etrace finds a suspicious system call, it sends a signal to the
Codejail process. Now, the Codejail process can abort the execution and safely
pass the control back to the main program. Thus, Codejail is effective against
memory corruption and arbitrary code execution attacks as well as side effects
from system calls.

Memory Sharing Across Contexts.Memory ofMm andMj is shared between two
processes using the standard shm open and mmap API. Codejail creates virtual
files to be mapped into both processes. Mj memory is mapped as MAP SHARED

in both processes, so that memory writes can be observed by each other. Mm

memory is mapped as MAP SHARED in the main process and MAP PRIVATE in jailed
process, so that the main process cannot observe jailed process’ memory writes.
Re-synchronization of Mm memory is done by re-mapping (munmap and mmap) it
in the jailed process.

Codejail hooks the memory allocation routines in order to control memory
allocation in the Mm for the main process and Mj for the jailed process. This



Codejail: Application-Transparent Isolation of Libraries 871

works for most programs using the standard library memory allocator or custom
allocators which call the standard allocator.2

Since Codejail has to maintain a symmetric memory address layout, mmap per-
formed in one process has to be performed in the other. For readonly mmap, we
can simply call mmap with the same parameters in the other process. However,
writable mmap has to be handled properly in order to ensure our memory model.
The rule is that mmap performed by the main process should be in Mm; while
mmap by jailed process should be in Mj . For writable anonymous mmap, we can
consider it as a heap allocation. For writable file-backed and MAP PRIVATE mmap,
we can allocate on the heap and read in the file. However, this is inefficient as it
breaks the sole purpose of mmap, which is not to read the whole file.

Implementation of Codejail Primitives. The initialization of Codejail is per-
formed after dynamic linking and before calling main. It is implemented transpar-
ently by hooking libc start main. Codejail forks a new process and setups the
shared memory and the communication channel. After that, the jailed process
reads and waits for a message from the socket.

When the main process calls cj jail, the target function address and ar-
guments are send through the UNIX socket. The jailed process receives them
and calls the target function. After the function returns, jailed process sends
the return value to the main process through the socket. Callbacks are handled
similarly in the reverse direction. To prevent the jailed process from invoking
arbitrary internal functions in the main process, a callback table is used (sim-
ilar to the jump table in related work in control flow integrity [17–19]). When
the main process calls cj recv, the address and size are sent and the memory
is received. At the end of the main program, main process sends a termination
message and the jailed process exits.

Codejail supports multi-threaded program, but for simplicity we assume only
one thread uses the untrusted library at a time. We have one thread in the jailed
process servicing multiple threads in the main process. A pthread mutex prevents
multiple simultaneous library calls.

Application-Transparency Support. To transparently support existing program
and libraries, we use a wrapper library exporting the same functions as the iso-
lated library. The LD PRELOAD environment variable “injects” the wrapper library
into a program so that it transparently calls our wrapper functions instead of
the real untrusted library functions.3 Functions in the wrapper library iden-
tify the original functions using dlsym(RTLD NEXT, name), and call the original

2 Some programs use completely custom allocators, e.g. Firefox uses jemalloc. In Code-
jail, the allocated memory will not be shared, but only valid in the allocating process.
If the process passes the memory to the other process, it will cause a segmentation
fault when it is accessed. We get around this by re-building Firefox and disabling
jemalloc in the build configuration.

3 If dynamic loading with dlopen() is used, our wrapper library will be opened when
a relative path is used. If an absolute path is used, which is uncommon, the original
library will be opened, calling its API has an exception as it is not executable in the
main context.
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Table 2. Libraries used in evaluation and their types of program interactions

Name Callback
Shadow Modify main’s Pass-by-

longjmp
File Memory Reference

libpng Yes Yes Yes Yes Yes

libexpat Yes No No Yes No

libbzip No Yes Yes Yes No

libtiff No Yes Yes Yes Yes

functions using cj jail then cj recv to receive data from the jailed library when
necessary.

Attacks targeting the implementation. When the attackers are aware of the
Codejail implementation mechanism, they may launch attacks targeting the
implementation. We discuss possible attacks and the defenses.

– Attacking Codejail’s internal states: In the jailed process, the Codejail’s in-
ternal routines such as heap allocator, signal handler, and RPC handler, ex-
ecute in the same memory and privilege state as the jailed library routines.
Thus, we consider the Codejail’s internal routines only as helper routines
rather than trusted routines. The security guarantees are not based on the
correctness of these routines, thus attacking the internal routines and states
does not break the guarantees.

– Denial-of-service attacks: Infinite loops and memory allocation can be dealt
with by setrlimit, causing an exception in the jailed process. It can then
caught by a timeout set in the main process.

– Controlling the main program using ptrace, /proc/[pid]/mem: The jail pro-
cess can use system mechanisms such as ptrace and /proc interface to modify
the main process’ memory. This is prevented by the system call policy.

– Library constructor: The separation into two processes takes place after li-
brary loading and before calling main(). Before the separation, the process
run with full privilege, thus a malicious library can call system calls in li-
brary constructor, which is called before main(). One way to prevent this is
to delay the library constructor and call it after the separation.

6 Evaluation

We have evaluated the Codejail prototype using a number of real-world programs
using complex real world libraries. The experiments are run on an Intel Core 2
Duo 2.80GHz processor with 4GB of RAM in Linux 2.6.35.

We evaluate the following libraries which exhibit a full range of tight pro-
gram interactions: libpng (1.4.2) provides handling of Portable Network Graph-
ics (PNG) images; libtiff (3.8.2) provides support for Tag Image File Format
(TIFF) images; libexpat (2.0.1) is a XML parser library; and libbzip2 (1.0.4)
provides a general purpose compressor/decompressor. The types of program
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interactions used by the above libraries are shown in Table 2. For example,
libtiff does not use callbacks, while libpng and libexpat do. We also chose
these libraries for their popularity and because the particular versions have the
following known vulnerabilities: CVE-2010-1205, CVE2009-3720, CVE-2008-1372 and
CVE-2010-3087.

6.1 Functionality and Usability

We wrote wrappers for all the libraries and evaluated them on the command
line utilities listed in Fig. 4. We tested transparency by using the wrappers with
executables of each program together with corresponding DLL binary. In all
cases, we could transparently deploy Codejail for the program and library with
the same functional behavior.

In addition, for libpng, which exhibits the full range of close interaction in
Table 2, we tested with several GUI programs that display PNGs using libpng,
namely, the eog image viewer, the Mozilla firefox web browser and the xfig

and dia graphics editors. All these programs are multi-threaded. The programs
all worked and displayed images correctly with Codejail. As these are GUI pro-
grams, we did not measure performance, rather their overall usability. We did
not find any perceptible delays or other differences in the usage.4

As Firefox is a complex program, we show some details of how we jail libpng
in Firefox (3.6.4). This version of Firefox is selected as having modern features
but still being single process (due to the existing restrictions of the prototype).
Normally, Firefox includes its own malloc library, jemalloc, and a special version
of libpng. This is because it supports the Animated Portable Network Graphics
(APNG) file format which is an unoffical extension to PNG and thus not sup-
ported by libpng. However, there is also a patch available to support APNG files
with the standard libpng library. While it is feasible to hook the internal Firefox
code and redirect them to the appropriate wrappers, we want use Codejail to
jail untrusted dynamically linked libraries. Thus, we simply recompiled Firefox,
to not use jemalloc and its own internal libpng code so that Codejail can use
the APNG patched libpng DLL.

6.2 Performance Evaluation

Fig 4 shows benchmarking Codejail on four command-line programs using the
libraries. For each library, we used two input files of different sizes. We measured
execution time without Codejail; with Codejail but not jailing any library func-
tions (to see the impact of Codejail on the main program and trusted library);
and jailing all library functions. In all the test cases, using Codejail without
jailing the library has small overhead.

4 The figures in the paper are drawn using dia with Codejail.
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Fig. 4. Performance evaluation: (i) native; (ii) program with Codejail but the library
is not jailed; and (iii) program with Codejail and library being jailed

The libpng library, although the most complex, has the best performance.
The overhead is low as there are only 15 jailed function calls and no call-
backs are used by pngtopnm as it uses file I/O style of using libpng rather than
the display function style.5 The pixel buffer is allocated by libpng thus not
copied.

On the other end of the scale is, xmlwf with libexpat. It has large overheads
due to the large number6 of callbacks made. The callbacks have more overhead
as they incur context switches.

bzip2 using libbzip2 shows the advantage of the Codejail memory model
where the jail can access the main memory. In bzip2, the main program handles
I/O to do with decompressed file while the library handles I/O of the compressed
file. When compressing, the original data can be accessed directly in the jail
which handles the compression and writing of the compressed file, thus, the
overheads are small (∼ 5%). Decompression has a higher overhead as the main
program allocates the output buffer and ask the library to fill it. Thus, cj recv is
needed to copy the buffer. In total 298.9MB is copied, which is about the same
size of the decompressed file.

5 However, eog and firefox use callbacks with libpng.
6 It registers callbacks which are called for all XML nodes. 425931 callbacks for a
15MB XML and 960961 for 30MB.
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The overheads for tifftopnm with libtiff are due to transferring the pixel
buffer processed by the jail process to the main process using cj recv. For a 1MB
TIFF file, 1.1MB is copied using cj recv; and 34.3MB for a 32MB file.

7 Discussion

We discuss limitations and other issues of Codejail and its implementation.

Handling the fork System Call. fork needs to be treated specially. Firstly, both
the main process and the jailed process have to be forked. They have to remain
in the same state of execution. Secondly, the shared memory and communica-
tion socket has to be duplicated. In particular,Mm andMj should be duplicated
into M ′

m and M ′
j. Modification in Mm should not be reflected in M ′

m. For sim-
plicity, our current implementation does not support fork. However, we support
multi-threading which does not need to handle new jail processes.

Inline Function and Macros. Inline library functions and macros cause binary
code to be generated in the main program which then execute in the trusted con-
text. The simplest solution is to ensure that they stay in the library by turning
them into functions and recompiling. This is not totally transparent but is easy
to do with source code. Of course, if these functions do not have any security
issues, then nothing needs to be done.

Efficient Memory Sharing. The cj recv function is implemented by reading mem-
ory in the jailed process, sending it through socket, and writing it to main pro-
cess’ memory. We remark that there are further optimizations which are possible
but are not easily doable in a user-mode implementation. A kernel-based imple-
mentation only needs to update memory if it has been changed in the jail and
copying costs is also more efficient than socket IPC.

Multiple Untrusted Libraries. Codejail can be extended easily to have multiple
untrusted contexts for multiple untrusted libraries if they do not interact with
each other, i.e., they only directly interact with the main program. Otherwise,
it is simpler to place them in the same untrusted context.

8 Conclusion

We presented Codejail, a novel solution that achieves partial isolation of un-
trusted libraries that require tight interaction with the main program. Codejail
transparently supports existing software and library binaries, working without
the need to rebuild them. The key techniques of Codejail is to use a separate con-
text to confine untrusted libraries with the Codejail memory model. Our Linux
prototype shows that Codejail works with real-world programs and libraries and
overheads are small except when there is excessive tight interactions.
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Abstract. Existing research on net-centric attacks has focused on the
detection of attack events on network side and the removal of rogue pro-
grams from client side. However, such approaches largely overlook the
way on how attack tools and unwanted programs are developed and
distributed. Recent studies in underground economy reveal that sus-
picious attackers heavily utilize online social networks to form special
interest groups and distribute malicious code. Consequently, examin-
ing social dynamics, as a novel way to complement existing research
efforts, is imperative to systematically identify attackers and tactically
cope with net-centric threats. In this paper, we seek a way to understand
and analyze social dynamics relevant to net-centric attacks and propose
a suite of measures called SocialImpact for systematically discovering
and mining adversarial evidence. We also demonstrate the feasibility and
applicability of our approach by implementing a proof-of-concept proto-
type Cassandra with a case study on real-world data archived from the
Internet.

1 Introduction

Today’s malware-infected computers are deliberately grouped as large scale de-
structive botnets to steal sensitive information and attack critical net-centric
production systems [1]. The situation keeps getting worse when botnets make
use of legitimate social media, such as Facebook and Twitter, to launch botnet
attacks [2]. Previous research efforts on countering botnet attacks could be clas-
sified into four categories: (i) capturing malware samples [3], (ii) collecting and
correlating network and host behaviors of malware [27], (iii) understanding the
logic of malware [4], and (iv) infiltrating and taking over botnets [5].

Notably, most studies in the area of countering malware and botnets have
been focused on detecting bot deployment, capturing and controlling bot behav-
iors. However, there is little research on examining how these malicious programs
are created, rented and sold by adversaries. Even though preventive solutions
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against thousands of known bots have been deployed on networked systems,
and some botnets were even taken down by law enforcement agencies [6], the
majority of adversaries are still at large and keep threatening the Internet by
developing more bots and launching more net-centric attacks. The major reason
for this phenomenon is that previous malware-related activities–such as devel-
oping, renting and selling bots–occurred mostly offline, which were way beyond
the scope of security analysts.

In recent years, the pursuit of more profit in underground communities leads to
the requirement for global collaboration among adversaries, which tremendously
changed the division of labor and means of communication among them [8].
(Un)fortunately, adversaries started to communicate with each other, distribute
and improve attack tools with the help of the Internet, which leaves security
analysts new clues for evidence acquisition and investigation on unwanted pro-
gram development and trade. Before the widespread use of online social networks
(OSNs), adversaries would communicate via electronic bulletin board systems
(BBS), forums, and Email systems [10].

Content-rich Web 2.0, ubiquitous computing equipments, and newly emerging
online social networks provide an even bigger arena for adversaries. In particular,
the value of OSNs for adversaries is the capability to cooperate with destructive
botnets. The role of OSNs in botnet attacks is twofold: first, OSNs are the plat-
forms to form online black markets, release bots, and coordinate attacks [3,9];
second, OSN user accounts act as bots to perform malicious actions [7] or C&C
server nodes coordinates other networked bots [2]. Although our efforts in this
paper are mainly concerned about the former case, our proposed model for on-
line underground social dynamics and corresponding social metrics can be also
utilized to identify compromised and suspicious OSN profiles.

Given the great amount of valuable information in online social dynamics, the
investigation of the relationships between online underground social communities
and network attack events are imperative to tactically cope with net-centric
threats. In this paper, we propose a novel solution using social dynamics analysis
to counter malware and botnet attacks as a complement to existing research
investments.

The major contributions of this paper are summarized as follows:

– We formulate an online underground social dynamics considering both social
relationships and user-generated contents.

– We propose a suite of measures named SocialImpact to systematically
quantify social impacts of individuals and groups along with their online con-
versations which facilitate adversarial evidence acquisition and
investigation.

– We implement a proof-of-concept system based on our proposed model and
measures, and evaluate our solution with real-world data archived from the
Internet. Our results clearly demonstrate the effectiveness of our approach
for understanding, discovering, and mining adversarial behaviors.

The rest of this paper is organized as follows. Section 2 presents our online
underground social dynamics model and addresses SocialImpact, which is a
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systematic ranking analysis suite for mining adversarial evidence based on the
model. In Section 3, we discuss the design and implementation of our proof-of-
concept system Cassandra. Section 4 presents the evaluation of our approach
followed by the related work in Section 5. Section 6 concludes this paper.

2 SocialImpact: Bring Order to Online Underground
Social Dynamics

In this section, we first address the modeling approach we utilized to represent
online underground social dynamics (OUSDs). Unlike existing OSN models [11]
which emphasize on user profile, friendship link, and user group, our model gives
attention to user-generated contents due to the fact that a wealth of informa-
tion resides in online conversations. We also elaborate the design principles of
social metrics to identify adversarial behaviors in OUSDs. Then, we present
SocialImpact, which consists of nine indices, to bring order to underground
social dynamics based on our OUSD model.

2.1 Online Underground Social Dynamics Model

As shown in Figure 1, an OUSD can be represented by six fundamental entities
and five basic types of unidirectional relationships between them.

User

Group

String

Article

Comment

Post
followerOf

memberOf

hostOf

containerOf

authorOf

Fig. 1. OUSD Model: Entities and Relationships

Users are those who have profiles in the network and have the rights to join
groups, post articles, and give comments to others. Groups are those to which
users can belong. In an OUSD, groups are mainly formed based on common
interests. Articles are posted by users who want to share them with the soci-
ety. In an OUSD, articles might introduce the latest technologies, analyze recent
vulnerabilities, call for participation of network attacks, and trade newly devel-
oped and deployed botnets. In terms of the form of articles, they do not have
to be literary. They could also contain multimedia contents, such as photos and
melodies. Comments are the subsequent posts to articles. Posts are the union
of articles and comments. Strings are the elementary components of articles and
comments. Strings are not necessarily meaningful words. They could be names,
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URLs, and underground slangs. A user has a relationship authorOf with each
post s/he creates. A user has a relationship followerOf with each user s/he
follows. A user has a relationship memberOf with each group s/he joins. An
article has a relationship hostOf with each comment it receives. A post has a
relationship containerOf with each string it consists of.

The following formal description summarizes the above-mentioned entities
and relationships.

Definition 2.1 (Online Underground Social Dynamics). An OUSD is
modeled with the following components:

– U is a set of users;
– G is a set of user groups;
– A is a set of articles;
– C is a set of comments;
– P is a set of posts. P = A ∪ C;
– S is a set of strings;
– UP = {(u, p)| u ∈ U, p ∈ P and u has an authorOf relationship with p} is a
one-to-many user-to-post relation denoting a user and her posts;

– FL = {(u, y)| u ∈ U, y ∈ U and u has a followerOf relationship with y} is a
many-to-many user-to-user follow relation;

– MB = {(u, g)| u ∈ U, g ∈ G and u has a memberOf relationship with g} is
a many-to-many user-to-group membership relation;

– AC = {(a, c)| a ∈ A, c ∈ C and a has a hostOf relationship with c} is a one-
to-many article-to-comment relation denoting an article and its following
comments; and

– PS = {(p, s)| p ∈ P, s ∈ S and p has a containerOf relationship with s} is a
many-to-many post-to-string relation.

We focus on the main structure and activities in online underground society and
overlook some sophisticated features & functionalities, such as online chatting,
provided by specific OSNs and BBS. Hence, our OUSD model is generic and can
be a reference model for most real-world OSNs and BBS. As a result, security
analysts could easily map real-world social dynamics data archived from any
OSNs and BBS to our model for further analysis and investigation.

2.2 Principles of Metric Design and Definitions

We also address the following critical issues related to evidence mining in under-
ground society: How can we identify adversaries among a crowd of social users?
Given the additional evidence acquired from other sources, how can we correlate
them with underground social dynamics? How can we measure the evolution
in underground community? To answer these questions, we articulate several
principles that the measures for underground social dynamics analysis should
follow: 1) The measures should support identifications of interesting adversaries
and groups based on both their social relationships and online conversations; 2)
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The measures should be able to take external evidence into account and sup-
port interactions with security analysts; and 3) The measures should support
temporal analysis for the better understanding of the evolution in adversarial
groups.

To this end, we introduce several feature vectors to achieve aforementioned
goals. For the mathematical notations, we use lower case bold roman letters such
as x to denote vectors, and uppercase bold roman letters such as V to denote
matrices. We assume all vectors to be column vectors and a superscript T to de-
note the transposition of a matrix or vector. We also define max() as a function
to return the maximum value of a set.

Definition 2.2 (Article Influence Vector). Given an article a ∈ A, the ar-
ticle influence vector of a is defined as vT

a = (v1, v2, v3), where v1 is the length
of the article, v2 = |{c | c ∈ C and (a, c) ∈ AC}| is the number of comments
received by a, and v3 is the number of outlinks it has.

When stacking all articles’ influence vector together, we get the article in-
fluence matrix V. We assess an article’s influence by its activity generation,
novelty and eloquence [12].

Definition 2.3 (Article Relevance Factor). Given a set of strings s =
{s1, s2, ..., sn} ⊆ S and an article a ∈ A, article relevance factor, denoted as
r(a, s), is defined as the number of occurrence of strings s in the article a.

The strings s could represent an external evidence that security analysts acquired
from other sources and query keywords in which security analysts are interested.

Definition 2.4 (User Activeness Vector). The user activeness vector of u
is defined as zTu = (z1, z2, z3), where z1 = |{p | p ∈ P and (u, p) ∈ UP}| is the
number of articles and comments u posted, z2 = |{y | y ∈ U and (u, y) ∈ FL}|
is the number of users u follows, and z3 = |{g | g ∈ G and (u, g) ∈MB}| is the
number of groups u joins.

We measure a user’s activeness by the number of posts s/he sends, users s/he
follows, and groups s/he joins. By aggregating all users’ zu, we get user active-
ness matrix Z.

Definition 2.5 (Social Matrix). Social matrix, denoted as Q, is defined as a
|U | × |U | square matrix with rows and columns corresponding to users. Let v be
a user and Nv be the number of users v follows. Qu,v = 1/Nv, if (v, u) ∈ FL
and Qu,v = 0, otherwise.

Social matrix is similar to transition matrix for hyperlinked webpages in PageR-
ank. The sum of each column in social matrix is either 1 or 0, which depends on
whether the vth column user follows any other user.

Definition 2.6 (δ-n Selection Vector). A δ-n selection vector, denoted as
yn
δ , is defined as a boolean vector with n components and ‖yn

δ ‖1= δ.
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A δ-n selection vector is used to select a portion of elements for one set. For
example, the top 10 influential articles of a user a could be represented by a

selection vector y
|A|
10 over the article set A. By stacking all users’ δ-n selection

vectors over the same set together, we get the δ-n selection matrix Yn
δ .

2.3 Ranking Metrics

As shown in Figure 2, SocialImpact consists of nine indices, which are classified
into three categories: string & post indices, user indices, and group indices. Each
index in upper categories is computed by the indices from lower categories.

To fulfill Principle 1, user and group indices are devised to identify influential,
active, and relevant users and groups. We devise personalized PageRank mod-
els [13] to calculate UserInfluence and UserRelevance, since it could capture the
characteristics of both user-to-user relationships and user-generated contents in
social dynamics. To accommodate Principle 2, ArticleRelevance, UserRelevance
and GroupRelevance are designed to take external strings as inputs, combine
them with existing data in social dynamics, and generate more comprehensive
results. To fulfill Principle 3, all feature vectors and indices could be calculated
for a given time window and StringPrevalence could indicate the topic evolu-
tion in the society. Moreover, we believe the combination of UserActiveness and
UserInfluence could also be used to identify suspicious spam profiles in online
social networks.

We consider a weighted additive model [14] when there exist several indepen-
dent factors to determine one index. To reduce the bias introduced by different
size of sets, we use δ-n selection vector to choose a portion of data in calculation.
The followings are the detailed descriptions of indices.

ArticleInfluence, denoted as x1(a), represents the influence of article a. x1(a)
is computed as vT

a w1, where w1 denotes the weight vector.
By normalizing x1(a) to [0, 1] and stacking x1(a) from all articles together,

we get a vector x1.

x1 = VTw1

maxb∈A(x1(b))
(1)

ArticleRelevance, denoted as x2(a, s), represents the relevance of the article a to
given strings s. x2(a, s) is proportional to the occurrence of the given strings in
the article and the influence of the article.

StringPrevalence

GroupInfluence GroupActivenessGroupRelevance

UserInfluence UserActivenessUserRelevance

ArticleInfluence ArticleRelevance

Group Indices

User Indices

String & Post 
Indices

Fig. 2. SocialImpact: Systematic Ranking Indices
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x2(a, s) =
r(a,s)x1(a)

maxb∈A(r(b,s)x1(b))
(2)

By stacking x2(a, s) from all users together, we get a vector x2(s) denoting all
articles’ relevance to s.

UserInfluence, denoted as x3, represents the influence of a user. x3 can be
measured by two parts. One is the impact of the user’s opinions, which is modeled
by ArticleInfluence. The other is the user’s social relationships, which is modeled
by Q. x3 is devised as a personalized PageRank function to capture both parts.

By stacking x3 from all users together, we get a vector x3.

x3 = d3Qx3 + (1− d3)Y|A|
α x1 (3)

Where d3 ∈ (0, 1) is the decay factor which makes the linear system stable and

convergent. Y
|A|
α is the δ− n selection matrix corresponding to all users’s top α

influential articles.
UserRelevance, denoted as x4(s), represents the relevance of a user to

strings s.
By stacking x4(s) from all users together, we get a vector x4.

x4(s) = d4Qx4(s) + (1− d4)(Y|A|
α x2(s)) (4)

Where d4 ∈ (0, 1) is the decay factor. Y
|A|
α is a δ − n selection matrix corre-

sponding to all users’s top α relevant articles to s.
UserActiveness, denoted as x5, represents the activeness of a user.

x5 = ZTw5 (5)

We use the addition of a group’s top α members’ influence, relevance, and active-
ness to model its influence, relevance, and activeness, respectively. As mentioned
before, this model can reduce the bias caused by the number of members.

GroupInfluence, denoted as x6, represents the influence of a group.
By stacking all x6 together, we get x6.

x6 = Y
|U|
α x3 (6)

Where Y
|U|
α is the δ-n selection matrix corresponding to all groups’ top α influ-

ential users.
GroupRelevance, denoted as x7, represents the relevance of a group to

strings s.
By stacking all x7 together, we get x7.

x7 = Y
|U|
α x4 (7)

Where Y
|U|
α is the δ-n selection matrix corresponding to all groups’ top α relevant

users.
GroupActiveness, denoted as x8, represents the activeness of a group.
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By stacking all x8 together, we get x8.

x8 = Y|U|
α x5 (8)

Where Y
|U|
α is the δ-n selection matrix corresponding to all groups’ top α active

users.
StringPrevalence, denoted as x9(s), represents the popularity of a string s.

x9(s) =
∑
pj∈P

tis,pj (9)

where tis,pj is the term frequency-inverse document frequency [15] of a string s
in post pj .

The computations for UserInfluence and UserRelevance are proven to be con-
vergent [16]. And the corresponding time complexity is O(|H |log(1/ε)), where
|H | is the number of followerOf relationships in the social dynamics and ε is a
given degree of precision [16]. The time complexity for calculating StringPreva-
lence is O(|P ||S|), where |P | is the number of posts and |S| is the size of string
set. The complexities for all other indices are linear if the underlying indices are
calculated.

3 Cassandra: System Design and Implementation

In this section, we describe the challenges in analyzing real-world underground
social dynamics data. We address our efforts to cope with these challenges and
present the design and implementation of our proof-of-concept system
Cassandra.

3.1 Challenges from Real-World Data

The first challenge of real-world data is its multilingual contents. The most ef-
fective way of coping with this challenge is to take advantage of machine transla-
tion systems. Cassandra utilizes Google Translate1 to detect the language of the
contents and translate them into English. However, machine translation systems
may fail to generate meaningful English interpretations for the following cases: i)
adversaries may use cryptolanguages that no machine translation system could
understand. For instance, Fenya, a Russian cant language that is usually used in
prisons, is identified in online underground society [17]; and ii) both intentional
and accidental misspellings are common in online underground society [18]. In
order to cope with this challenge, Cassandra maintains a dictionary of known
jargons, such as c4n as can and sUm1 as someone.

Another challenge is that the social dynamics data may not be in a consistent
format. Different OSNs use different styles in web page design. Even in one
OSN, in order to make the web page more personalized, the OSN allows users to

1 http://code.google.com/apis/language/translate/overview.html

http://code.google.com/apis/language/translate/overview.html
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customize the format of their posts. Since HTML is not designed to be machine-
understandable in the first place, extracting structural information from HTML
is a tedious and heavy-labor work. To address this problem, we first cluster data,
and then devise an HTML parser for each cluster. We also design a light-weight
semi-structure language to store the information extracted from HTML.

Since one major component in social dynamics is the relationships between
entities, storing and manipulating social dynamics data in a relational database
become relatively time-consuming. We choose a graph database [19] which em-
ploys the concepts from graph theory, such as node, property, and edge, to realize
faster operations for associative data sets.

3.2 System Architecture and Implementation

Figure 3 shows a high level architecture of Cassandra. The upper level of
Cassandra includes several visualization modules and provides query control
for security analysts to provide the additional evidence. In reality, these evi-
dences could be in the format of text, picture, video, audio or any other forms.
Yet, representing multimedia contents like pictures and videos in a machine-
understandable way is still a difficult challenge. Cassandra acts like a modern
web search engine in response to keyword queries. Social graph viewer is designed
to show social relationships among users and groups. Ranking analysis viewer
is used to list the ranking results based on security analysts’ queries. Content
viewer can show both original and translated English web resources.

The lower level of the architecture realizes underlying functionalities addressed
in our framework. After underground community data is crawled from the In-
ternet, the HTML parser module extracts meaningful information from it. If
the content is not in English, our translator takes over and generates English
translation. All extracted information is stored in a graph database for the ef-
ficient retrieval. Analysis modules have two working modes: offline and online.
The offline mode generates demographical information with demographical anal-
ysis engine (DAE) and intelligence, such as user influence and activeness, with
SocialImpact engine (SIE). When security analysts provide the additional ev-
idence, SocialImpact engine switches to online mode and generates analysis

Pre-process Modules

Graph 
Database

Visualization Modules

Analysis Modules

Underlying Functionality Modules

Extra 
Evidence

Query Control

Social 
Dynamics

Social Graph Viewer

Ranking Analysis Viewer

Content Viewer

Web Crawler

Translator

HTML Parser

SocialImpact 
Engine (SIE)

Demographical
Analysis Engine 

(DAE)

Fig. 3. System Architecture of Cassandra
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(a) Social Graph (b) User Ranking (c) Article Ranking

Fig. 4. Screenshots of Cassandra

results, such as user relevance, based on data in the graph database and addi-
tional evidence provided by security analysts.

Cassandra was implemented in Java programming language. We took advan-
tage of Java swing and JUNG to realize graphical user interfaces and graph
visualization. As we mentioned before, Cassandra uses Google Translate API to
translate texts. In most cases, Google Translate could output acceptable transla-
tions from original texts. Cassandra stores user profiles, user-generated contents,
and social relationships among users in a Neo4j2 graph database. For each group,
user, article, and comment, Cassandra creates a node in the database, stores as-
sociated data–such as the birthday of user and the content of article–in each
node’s properties, and assigns the relationships among nodes.

3.3 Visualization Interfaces of Cassandra

Figure 4 depicts interfaces of Cassandra. As illustrated in Figure 4(a), all users
in a social group are displayed by a circle. And their followerOf relationships
are displayed with curved arrows. It is clear to view that some users have lots
of followers while others do not. By clicking any user in the group, Cassandra
has the ability to highlight this user in red and all his followers in green. In
this way, Cassandra helps analysts understand the social impact of any specific
user. Another window as shown in Figure 4(b) displays the ranking results.
Analysts can specify the ranking metric, such as UserInfluence and UserActiveness,
to reorder the displayed rank. Clicking a user’s name which is the second column
in Figure 4(b) would bring the analysts to the list of all articles posted by the
user in descending order of ArticleInfluence. Clicking the user’s profile link which
is the third column in Figure 4(b) would bring the analysts to the webpage of
the user’s profile archived from the Internet. Analysts could also specify some
keywords in query control and Cassandra would display the results in descending
order of ArticleRelevance. As shown in Figure 4(c), Cassandra displays both the
original and translated texts and highlights the input keywords in red.

2 http://neo4j.org/

http://neo4j.org/
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4 A Case Study on Real-World Online Underground
Social Dynamics

In this section, we present our evaluation on real-world social dynamics. We
evaluated Cassandra on 4GB of data crawled from Livejournal.com which is a
popular online social network especially in the Russian-speaking countries. We
anonymized the group names and user names in this OSN for preserving privacy.

All webpages in this OSN could be roughly divided into two categories in terms
of content: i) profile and ii) article. A profile webpage contains basic information
of a user or a group, which includes name, biography, location, birthday, friends,
and members. Every article has title, author, posted time, content, and several
comments by other users. The webpages are mainly .html files, along with some
.jpeg, .gif, .css, and .js files. Our solution only considers text data from .html
files.

We started to crawl group profiles from six famous underground groups in this
OSN 3. Then we crawled all members’ profiles and articles of these six groups.
We also collected one-hop friends’ articles of these members. Therefore, we ended
up with 29,614 articles posted by 6,364 users which are from 4,220 groups. Based
on the information in user profiles, we noticed that about 32.7% and 52.7% users
were born in early and mid-late 80’s. This clearly illustrates the age distribution
of active users in this community.

4.1 Post, User and Group Analysis

Cassandra calculated all articles’ ArticleInfluence and identified top 50 articles
over a time window of 48 months. Since not all of these articles are related
to computer security, we checked these articles in descending order of their in-
fluences and picked five articles that are highly related to malware. We could
observe some popular words related to malware, such as PE (the target and ve-
hicle for Windows software attacks), exploits (a piece of code to trigger system
vulnerabilities), hook (a technique to hijack legitimate control flow) and so on.

Table 1. Top Five Influential/Active Users/Groups

Top Five Influential Users Top Five Active Users Top Five Influential Groups Top Five Active Groups

User UserInfluence User UserActiveness Group GroupInfluence Group GroupActivenss

z xx ur 49.5020 xsbxx ur 4024 b gp 344.4807 b gp 57798
andxx ur 43.7800 enkxx ur 3942 c gp 79.7781 d gp 28644
arkxx ur 34.8074 kalxx ur 3936 d gp 45.5222 demxx gp 20846
moxx ur 26.7700 exixx ur 3170 murxx gp 26.2094 beaxx gp 20290
kyp ur 20.6292 kolxx ur 3092 chrxx gp 18.6487 hoxx gp 19486

Cassandra also generated each user’s UserInfluence and UserActiveness and
group’s GroupInfluence and GroupActiveness over a time window of 48 months.

3 These targeted groups are indicated by law enforcement agency who sponsored this
project.
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Fig. 5. Correlation Coefficient of UserActiveness & UserInfluence and GroupActiveness
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Fig. 6. Temporal Pattern Analysis

And, Table 1 shows the top five influential/active users/groups for the entire
period of our observation. We can notice that there is no overlap between the
top five influential users and the top five active users, while there exists similarity
for the top five influential groups and the top five active groups.

We calculated the correlation coefficient (corrcoef) for the pairs of
UserInfluence and UserActivenss, GroupInfluence and GroupActivenss based on the
results generated from Cassandra. Similar to the phenomenon we identified in
Table 1, in Figure 5(a) we observed that the correlation coefficient between
UserInfluence and UserActivenss is around 0.52 (the maximum value for correla-
tion coefficient is 1 indicating a perfect positive correlation between two vari-
ables), which means one user’s influence is not highly correlated to her/his active-
ness. This phenomenon indicates that talking more does not make a user more
influential in a community. On the other hand, as shown in Figure 5(b) we ob-
served that the correlation coefficient between GroupInfluence and GroupActivenss
is around 0.90, which indicates a very strong positive correlation between the
influence and the activeness of a group. The application of influence and active-
ness indices is not limited to identify such a social phenomenon. We could also
leverage the high UserActivenss and the low UserInfluence as indicators for the
analysis of social spammers in any OSN.

The temporal patterns of the influential/active users/groups could be ob-
served in Figure 6, where x-axis denotes the users/groups who were identified
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Table 2. Results from Cassandra for Queries

(a) Results for Botnet

Keywords Relevant Articles #

spam 490

botnet 44

zeus 9

rustock 1

mega-d 0

(b) Results for Identity Theft
and Credit Card Fraud

Keywords Relevant Articles #

pin 129

credit card 93

carding 1

credit card sale 0

ssn 0

(c) Results for Vulnerabil-
ity Discovery and Malicious
Code Development

Keywords Relevant Articles #

vulnerability 418

shellcode 169

polymorphic 12

zero-day 11

cve 2

as the most influential/active ones for each month. For example, x = 1 denotes
the most influential/active user/group of the first month in our time window
and x = 48 denotes the most influential/active user/group of the last month in
our time window; y-axis denotes the entire 48 months in the time window; and
z-axis denotes user/group’s influence/activeness value. As shown in Figure 6(a),
some users maintain their influence status for several months. The large plain
area in the right part of this figure indicates most users come as the most influ-
ential ones suddenly. This observation implies that a user does not need to be
a veteran to be an influential one in the community. On the other side, we can
see from Figure 6(b) that most active users remain active before they became
the most active ones. The plain area in the left portion of Figure 6(b) implies
that most users do not always keep active. Normally they keep active for 15 - 30
months, then get relatively silent. While the smaller plain area in the left part
of Figure 6(a) shows once a user becomes influential, s/he keeps the status for a
long period of time. Figure 6(c) shows that there are 2 or 3 groups who maintain
the status of influence during the whole 48 months and get even more influential
as time goes on. While, other groups only keep influential for a relatively short
period of time and just fade out. Figure 6(d) shows the similar phenomenon.

4.2 Evidence Mining by Correlating Social Dynamics
with Adversarial Events

We present our finding with keyword queries on the same dataset in Cassandra.
For each query, Cassandra returns the lists of articles, users, and groups in
descending order of ArticleRelevance, UserRelevance and GroupRelevance, respec-
tively. The results we present in this section are with regard to three major
adversarial activities: i) botnet; ii) identity theft and credit card fraud; and iii)
vulnerability analysis and malicious code development.

Botnet. As we mentioned before, botnet is a serious threat to all networked
computers. In order to identify adversaries and their conversations in our dataset
related to botnet, we queried the keywords shown in Table 2(a) in Cassandra.
Cassandra was able to identify 490 articles related to ‘spam’, 44 articles related
to ‘botnet’, 9 articles related to ‘zeus’ and 1 article about ‘rustock’.
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Then, we checked the results returned by Cassandra carefully and Table 3
shows several interesting articles and their information including the number of
comments they received, ArticleRelevance of each article, and authors of these
articles. We first noticed one article titled ‘Rustock.C’ with very high ArticleRev-
elance and ArticleInfluence. This article presented an original analysis of the C
variant of Rustock that once accounted for 40% of the spam emails in the world.

Table 3. Selected Top Relevant Articles

Translated Article Title # Comments Received x2
1Author

Rustock.C 13 135.3 swx ur
On startup failure to sign the drivers in Vista x64 5 59.8 crx ur
video 3 35.6 zlx ur
sleepy 3 32.3 crx ur
FireEye Joins Internet2 2 27.8 eax ur

1 ArticleRelevance.

Another article titled ‘On startup failure to sign the drivers in Vista x64’ re-
turned by Cassandra as a top relevant article to ‘botnet’ attracting our attention
as well. In this article, the author crx ur discussed about how to load unsigned
driver to Windows Vista x64 by modifying PE file header. The corresponding
author claimed that malware vendors would use this technique to build bots
and infect thousands of computers. A further investigation on this user shown
in Table 4 reveals that s/he authored several security-related articles. Her/his
profile indicated that s/he was very active in malicious code development and
interested in several cybercrime topics, such as rootkit, exploits, and shellcode.

Table 4. Selected Articles by crx ur and Her/His Information

Translated Article Title # Comments Received x1
1 Translated Interests

The old tale about security 7 79.6
malware, ring0, rootkit,
botnets, asm, exploits,
cyber terrorism,
shellcode, viruses,
underground,
Kaspersky, paintball

Malcode statistics 6 68.9
Cold boot attacks on encryption keys 2 37.6
Wanted Cisco security agent 2 28.1
Antirootkits bypass 1 18.7
Syser debugger 0 8.9
Termorektalny cryptanalysis 0 7.8

1 ArticleInfluence.

Identity Theft and Credit Card Fraud. Identity theft and credit card
fraud are both serious issues in Internet transactions. Online identity theft in-
cludes stealing usernames, passwords, social security numbers (SSNs), personal
identification numbers (PINs), account numbers, and other credentials. Credit
card fraud also consists of phishing (a process to steal credit card information),
carding (a process to verify whether a stolen credit card is still valid), and selling
verified credit card information.

Table 2(b) shows results that Cassandra returned when these keywords are
queried. Cassandra identified one article that was authored by a user dx ur
related to ‘carding’ in the dataset. A further investigation on this user revealed



SocialImpact: Systematic Analysis of Underground Social Dynamics 891

Table 5. Information about dx ur

Translated Interests carding, banking, shells, hacking, freebie, web hack, credit card
fraud, security policy, system administrators, live in computer
bugs

# Articles Posted 1295
# Comments Posted 7294
# Comments Received 2693

that s/he was a member of a carding interest group, which had more than 20
members around the world. Table 5 shows some basic information of dx ur.
Compared to crx ur, it is obvious that dx ur has more interests in financial
security issues, such as credit card fraud, web hack, and banking. We could also
notice that dx ur was very active in posting articles and replying others’ posts.

Vulnerability Analysis and Malicious Code Development. We analyzed
several keywords related to vulnerability analysis and malicious code develop-
ment, such as polymorphism (a technique widely used in malware to change
the appearance of code, but keep the semantics), CVE (a reference-method for
publicly-known computer vulnerabilities), shellcode (small piece of code used
as the payload in the exploitation of software vulnerabilities), and zero-day
(previously-unknown computer vulnerabilities, viruses and other malware).

As shown in Table 2(c), the community is very active in these topics. More
than 400 articles related to vulnerabilities were found. However, we noticed most
of these articles have low-ArticleInfluence. We checked these low-ArticleInfluence
articles and discovered that most of them were articles copied from other re-
search blogs and kept the links to original webpages. Our ArticleInfluence index
successfully identified these articles were not very novel, thus calculated low
ArticleInfluence for them.

At the same time, as shown in Table 6, Cassandra also identified several
high-ArticleInfluence vulnerability analysis articles. For example, the article en-
titled ‘Blind spot’ authored by arx ur which analyzed a new Windows Internet
Explorer vulnerability even attracted 79 replies.

Table 6. Selected Top Relevant Articles

Translated Article Title # Comments Received x2
1Author

Blind spot 79 793.2 arx ur
Seven thirty-four pm PCR 14 146.4 tix ur
HeapLib and Shellcode generator under windows 1 15.6 eax ur
Who fixes vulnerabilities faster, Microsoft or Apple? 0 5.6 bux ur
FreeBSD OpenSSH Bugfix 0 4.2 sux ur

1 ArticleRelevance

4.3 Comparison with HITS Algorithm

In order to evaluate the effectiveness of our approach, we implemented the hubs
and authorities algorithm (HITS) [20] in Cassandra and compared the results
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with our SocialImpact metrics. HITS algorithm is able to calculate the au-
thorities and hubs in a community by examining the topological structure where
authority means the nodes that are linked by many others and hub means the
nodes that point to many others. Note that the fundamental difference between
SocialImpact and HITS is that SocialImpact takes more parameters, such
as user-generated content and activity, into account, therefore ranking results
are based on a more comprehensive set of social features.

Table 7. Top Five Authorities and Hubs by HITS

Top Five Authorities Top Five Hubs

User auth User hub

zhengxx ur 0.506 zlo xx ur 0.265
crx xx ur 0.214 zhengxx ur 0.237
yuz ur 0.163 crx xx ur 0.234
t1mxx ur 0.148 yuz ur 0.205
rst ur 0.143 t1mxx ur 0.183

Comparing the results for authorities and hubs shown in Table 7 with
UserInfluence and UserActiveness (SocialImpact) in Table 1, we can observe
that the authorities and hubs have much overlap with HITS algorithm when
online conversations are ignored and the results generated by SocialImpact

are different from HITS counterparts.

5 Related Work

Computer-aided crime analysis (CACA) utilizes the computation and visual-
ization of modern computer to understand the structure and organization of
traditional adversarial networks [21]. Although CACA is not designed for the
analysis of cybercrime, its methods of relation analysis, and visualization of so-
cial network are adopted in our work. Zhou et al. [22] studied the organization
of United State domestic extremist groups on web by analyzing their hyperlinks.
Chau et al. [23] mined communities and their relationships in blogs for under-
standing hate group. Lu et al. [24] used four actor centrality measures (degree,
betweenness, closeness, and eigenvector) to identify leaders in hacker community.
Motoyama et al. [29] analyzed six underground forums. In contrast, our proposed
solution in this paper considers both social relationships and user-generated con-
tents in identifying interesting posts and users for cybercrime analysis.

Systematically bringing order to a dataset has plenty of applications in both
social and computer science. With the development of web, ranking analysis in
hyperlinked environment received much attention. Kleinberg [20] proposed HITS
by calculating the eigenvectors of certain matrices associated with the link graph.
Also, Page and Brin [25] developed PageRank that uses a page’s backlinks’ sum
as its importance index. However, both HITS and PageRank only consider the
topological structure of given dataset but ignore its contents [16]. Therefore, we
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devised a ranking system based on personalized PageRank, which is proposed
to efficiently deal with ranking issues in different situations [13].

In order to provide a safer platform for net-centric business and secure the
internet experience for end users, huge research efforts have been invested in
defeating malware and botnets. Cho et al. [26] proposed to infer protocol state
machines in botnet C&C protocols. Gu et al. analyzed botnet C&C channels
for identifying malware infection and botnet organization [27]. Stone-Gross et
al. [5] took over Torpig for a period of ten days and gathered rich and diverse
set of data from this infamous botnet. Besides research efforts, legal actions are
taken to shutdown certain botnets. Srizbi and Mega-D botnets were taken down
in late 2008 and 2009 [6]. Recently, Microsoft took down Rustock by blocking
the controller and clearing out the malware infected [28]. Our work focusing on
the analysis of malware circulation is complementary to those existing efforts on
countering net-centric attacks.

6 Conclusions

In this paper, we have presented a novel approach to help identify adversaries by
analyzing social dynamics. We formally modeled online underground social dy-
namics and proposed SocialImpact as a suite of measures to highlight interest-
ing adversaries, as well as their conversations and groups. The evaluation of our
proof-of-concept system on real-world social data has shown the effectiveness of
our approach. As part of future work, we would continuosly test the effectiveness
and the usability of our system with subject matter experts and broader datasets.
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Mödersheim, Sebastian 127
Moriyama, Daisuke 661
Mu, Yi 609

Narendran, Paliath 73

Ohkubo, Miyako 661
Ole Tippenhauer, Nils 415

Paar, Christof 716
Pang, Jun 325
Platt, John C. 788
Pustogarov, Ivan 469

Raghavendra, K.R. 591
Ranganathan, Aanjhan 415
Rasmussen, Kasper B. 770
Reiter, Michael K. 523
Riedmaier, Thomas 217
Rios, Ruben 163
Roy, Arnab 573

Sabelfeld, Andrei 55
Sadeghi, Ahmad-Reza 253
Santiago, Sonia 73
Sasse, Ralf 73
Sathyanarayan, Sai 859
Saxena, Nitesh 379
Schinzel, Sebastian 752
Schnoor, Henning 91

Schulz, Steffen 253
Shakarian, Paulo 145
Shashidhar, Narasimha 824
Sherr, Micah 181
Shulman, Haya 271
Singelée, Dave 415
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