
BPMN4TOSCA: A Domain-Specific Language
to Model Management Plans for Composite

Applications

Oliver Kopp, Tobias Binz, Uwe Breitenbücher, and Frank Leymann

Institute of Architecture of Application Systems,
University of Stuttgart,

Universitätsstraße 38, 70569 Stuttgart, Germany
{kopp,binz,breitenbuecher,leymann}@iaas.uni-stuttgart.de

Abstract. TOSCA is an upcoming standard to capture cloud applica-
tion topologies and their management in a portable way. Management
aspects include provisioning, operation and deprovisioning of an appli-
cation. Management plans capture these aspects in workflows. BPMN
2.0 as general-purpose language can be used to model these workflows.
There is, however, no tailored support for management plans in BPMN.
This paper analyzes TOSCA with the focus on requirements on work-
flow modeling languages to come up with a strong link to the application
topology with the goal to improve modeling support. To simplify the
modeling of management plans, we introduce BPMN4TOSCA, which
extends BPMN with four TOSCA-specific elements: TOSCA Topology
Management Task, TOSCA Node Management Task, TOSCA Script
Task, and TOSCA Data Object. Portability is ensured by a transforma-
tion of BPMN4TOSCA to plain BPMN. A prototypical modeling tool
supports the strong link between the management plan and the TOSCA
topology.

Keywords: Cloud Computing, Service Management, Management
Plans, BPMN Extension.

1 Introduction

To decrease cost and prevent vendor lock-in, portability of applications is—
especially in the area of cloud computing—very important. To face this chal-
lenge, the OASIS Topology and Orchestration Specification for Cloud Applica-
tions (TOSCA) [1] is a way to describe the structure of portable services in a
topology and their management as workflows, so called plans. A topology consists
of node templates which offer management operations to create new instances
or deploy software artifacts, for instance. Currently, the BPMN management
plans directly point to the service interfaces and are not linked to the topology
anymore. Therefore, we propose BPMN4TOSCA, a domain-specific BPMN [2]
extension, which enables convenient integration and direct access to the TOSCA
topology and provided management operations.

J. Mendling and M. Weidlich (Eds.): BPMN 2012, LNBIP 125, pp. 38–52, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



BPMN4TOSCA 39

Our contribution is fourfold: (i) Analyzing the requirements for modeling
TOSCA management plans using BPMN, (ii) the BPMN extension
BPMN4TOSCA allowing tight integration of topology data and management
operations into plans, (iii) a transformation of BPMN4TOSCA into standard-
compliant BPMN, and (iv) a prototypically implemented BPMN4TOSCA sup-
port in a TOSCA modeling tool.

The paper starts with a general introduction to the concepts behind TOSCA:
the topology templates and the management plans (Sect. 2). Section 3 presents
a concrete TOSCA use case, where the concepts of TOSCA are detailed. Based
on this use case, general requirements on the plan modeling language are de-
rived in Sect. 4. Based on the requirements, Sect. 5 presents BPMN4TOSCA, a
domain-specific variant of BPMN supporting TOSCA management plan model-
ing. As typical workflow engines are not capable of executing extended BPMN,
we present in Sect. 6 how to transform BPMN4TOSCA to plain BPMN 2.0
to enable execution on standard workflow engines. Section 7 presents a pro-
totype supporting modeling TOSCA documents including management plans
expressed in BPMN4TOSCA. Subsequently, Sect. 8 surveys on related work in-
cluding the field of modeling composite applications and service management.
Finally, Sect. 9 concludes and presents an outlook on future work.

2 Fundamentals

The Topology and Orchestration Specification for Cloud Applications, TOSCA
for short, is an exchange format to describe the components of composite appli-
cations, their relations, as well as how to manage them. TOSCA is currently
standardized in an OASIS Technical Committee1. Its main goal is enabling
portability of composite applications between different cloud management envi-
ronments to prevent vendor lock-in and increase automation in service manage-
ment. To facilitate this, a service template is described in TOSCA, as denoted
in Fig. 1. It consists of two major parts: the service’s topology and manage-
ment plans. The topology captures the structure of the composite application
as a graph of node templates which are semantically connected by relationship
templates. Each template is of a certain type. The type defines its properties,
lifecycle states, policies, related artifacts, and management operations. Types in
TOSCA are extensible, i. e., they can be defined as part of the service template
and are not a predefined closed set. Deployment artifacts attached to a node
define how this node is implemented. For instance, a virtual machine image may
be a deployment artifact for the Linux node type or a Java Web archive for the
Web application node type. The management operations supported by a node,
for example, start, backup, or upgrade a node, are defined as WSDL Web ser-
vice, REST service, script, or a combination thereof. If a management operation
is not provided by the deployment artifact itself, e. g., an application server of-
fering an JMX management service, or an external service, i. e., Amazon EC2
to start up virtual machines in their cloud, it can be included inside the service
1 http://www.oasis-open.org/committees/tosca

http://www.oasis-open.org/committees/tosca


40 O. Kopp et al.

template as so called implementation artifact. This enables service creators to
ship management and administration services as part of their service. All in all,
a service template consists of node templates and relationship templates. Each
node template has a node type and a relationship template has a relationship
type. A service template is instantiated to a service instance, where the node
templates become nodes and the relationship templates become relationships.

Node 
Template 

Pr
op

er
tie

s Interfaces 

Topology Template 

type 

Node Type 

Relationship 
Template 

Service Template 

type 

Pr
op

er
tie

s Relationship Type 
Node 

Template 
Node 

Template 

Plan 

Fig. 1. Overview of TOSCA Building Blocks (adapted from [1])

TOSCA enables service creators to model the management aspects of ser-
vices into plans. Plans express higher-level management tasks, which are, for
example, how to setup the service, how to scale it up, back it up, or upgrade
all operating systems. Having the management explicitly in the service template
makes the management knowledge portable, reusable, and enables automation.
Plans are modeled by the developer of the application or experienced operators
ensuring widespread usage of their accumulated best practice knowledge and
relieves enterprise IT from some of the management burden. Plans orchestrate
the different management operations offered by the nodes to fulfill their task.
The TOSCA specification defines three types of management plans: Build, mod-
ification, and termination plans. Technically, plans are workflows written, for
example, in BPMN [2] or BPEL 2.0 [3]. Binz et al. [4] discuss the advantages of
using workflow technology for plans. The key benefits are fault handling, com-
pensation, auditing, parallelism, and integration of humans.

TOSCA requires a compliant management environment to run the service
templates. We call such an environment “TOSCA container”. After importing a
new service template, the TOSCA container ensures, for example, that the im-
plementation artifacts implementing the management operations are available
before the service is instantiated for the first time. Additionally, the container’s



BPMN4TOSCA 41

responsibilities are to manage service templates and their instances, offer access
to the topology model and instance data, and handle the deployment artifacts
accompanying the service template. Before deploying the plans on a plan engine,
the TOSCA container binds the plans to the respective endpoints. This is nec-
essary as it is not known where the management operations have been deployed
and in which management environment the service template will be executed.
This binding is key to enable portable service management between different
TOSCA containers. In this paper, we focus on the mechanisms required to use
management operations and TOSCA container services in management plans.

TOSCA recommends BPMN 2.0 as workflow language to model management
plans. Other workflow languages—such as BPEL 2.0—may also be used. In con-
trast to BPEL 2.0, BPMN 2.0 is currently the preferred choice as it offers a
standardized graphical rendering and does not force the workflow graph to be
acyclic [5]. Starting in version 2.0, BPMN has also a well-defined execution se-
mantics. Tasks and the control flow between them are the central elements of
BPMN determining what the workflow does and in which order. BPMN defines
tasks to call services (service task), to execute scripts (script task), to trigger
human actions (human task), and others which are not important in our context.
In contrast to BPEL, data flow in BPMN is explicitly modeled by using data
objects. Tasks and events read from and write to data objects by using data
associations which may contain data transformation rules.

3 Use Case

OnlineBookstore 
(WAR) 

OperatingSystem 
(Ubuntu 12.04 LTS) 

VirtualServer 
(AWS EC2 Server) 

ServletContainer 
(Tomcat) 

EC2 

Fig. 2. Online Bookstore

In this section we describe a TOSCA use case used
in the following section to derive the requirements
towards BPMN4TOSCA. The use case describes an
online bookstore whose architecture is presented in
Fig. 2. Each component is rendered as a box represent-
ing a TOSCA node template. The dashed arrows de-
note relationship templates of type “hosted-on”. The
application uses Java Servlet and Java Server Pages
technology and is packaged into a single WAR (Java
Web archive) file. To run the application, the WAR
file has to be deployed on a servlet container, Apache
Tomcat in our case. The servlet container is hosted
on an operating system, Ubuntu 12.04 LTS in the
use case, which is hosted on a Amazon EC22 virtual
server.

In the following, we describe how to use the con-
cepts of TOSCA to deploy and manage the online
bookstore application without BPMN4TOSCA to show the limitations and in-
conveniences. To deploy the online bookstore, its components virtual server,

2 http://aws.amazon.com/ec2/

http://aws.amazon.com/ec2/


42 O. Kopp et al.

operating system, servlet container, and the online bookstore application itself
have to be deployed in the right order, typically from bottom up. The build plan
orchestrates the management operations, scripts, and operations offered by the
TOSCA container. The first step of the build plan in our use case is to create
and start the virtual server using the operating system image defined in the
topology, which establishes the hosted-on relationship defined in Fig. 2. After-
wards, the build plan invokes a management operation of the operating system
to copy a bash script3 onto the operating system. By invoking another manage-
ment operation the script is invoked and installs the Tomcat servlet container
on the operating system. This script uses Ubuntu’s package management system
to install Tomcat. After Tomcat is installed on the operating system, the servlet
container is started by calling the operation startService offered by the oper-
ating system implementation artifact. The last step of building the application is
deploying the online bookstore application on Tomcat. Therefore, the build plan
invokes the deployWar operation implemented by the implementation artifact
of the Tomcat node type and passes a reference to the WAR file. The operation
deploys this WAR file—which also may be stored online—into Tomcat. All in
all, the whole application is now deployed, running, and can be used.

4 Requirements

Based on the use case, we identified three requirements towards a solution which
facilitates the tight integration of the management plans with the managed ap-
plication topology.

TOSCA management plans typically process and manipulate properties of
nodes and relationships, for example, the IP address of the virtual server node
in our use case. In order to access and modify these instance properties, BPMN
service tasks are used to call the respective TOSCA container APIs. Due to
the fact that properties play a central role in management plans and, therefore,
are heavily accessed by different tasks, the management plans get polluted with
BPMN tasks. Thus, the management plans become complex and hard to under-
stand. Business process research has shown that the maintainability and under-
standability of business processes decrease rapidly with the number of tasks. For
example, Cardoso [6] proposes a measure for control-flow complexity increasing
with the number of tasks and Reijers et al. [7] discuss the business process com-
plexity in the context of modularization which is used to reduce the number of
tasks. Therefore, requirement R1 for BPMN4TOSCA is reducing this complex-
ity by providing ways to access and modify properties of nodes and relationships
without modeling overhead in terms of business process elements.

In addition to R1, management plans must be able to access the TOSCA
service topology model which is provided by the TOSCA container. TOSCA
model access is required for dynamic plans, for example, to retrieve all nodes of
a certain type. Therefore, requirement R2 is to enable the management plans to
access the TOSCA topology model.
3 http://www.gnu.org/software/bash/manual/bashref.html

http://www.gnu.org/software/bash/manual/bashref.html


BPMN4TOSCA 43

To deploy, instantiate, and manage topologies, plans typically invoke manage-
ment operations offered by nodes. The number of available management oper-
ations offered by nodes may become unmanageable for the modeler when there
are many different nodes in the topology. Furthermore, as many operations will
have similar names, e. g., deploy is a common operation name in this domain,
and as operations may be spread across multiple TOSCA files, it becomes a
complex task for the modeler to select the right management operation of the
correct node. Thus, requirement R3 for BPMN4TOSCA is to ease the selec-
tion of management operations and to provide support for strong integration of
management plans and management operations offered by nodes.

Scripts play an important role in the management of composite applications,
especially during their deployment. They are widely used to perform installa-
tion and configuration tasks in systems management. Typically, these scripts
are copied to the respective nodes and executed locally. TOSCA supports this
concept by providing script operations which are attached to nodes. Hence, re-
quirement R4 is: BPMN4TOSCA must support an easy and comfortable way to
execute scripts on nodes.

5 BPMN4TOSCA: Enabling TOSCA Plan Modeling

In this section we introduce the BPMN language extension BPMN4TOSCA.
To meet the requirements stated in the previous section, the design of
BPMN4TOSCA consists conceptually of two parts: The first part provides a
BPMN language extension (this section) and corresponding processing model,
which defines the semantics of the extension (Sect. 6). The second part defines
additional functionalities, which have to be provided by the modeling tool in ad-
dition to the language extension to provide the functionality (Sect. 7). Although
the second part makes BPMN4TOSCA to more than an extension of BPMN,
we nevertheless call the BPMN language extension BPMN4TOSCA, too.

The language extension consists of four new BPMN4TOSCA-elements, each
accompanied with a graphical representation: TOSCA Topology Management
Task (Sect. 5.1), TOSCA Node Management Task (Sect. 5.2), TOSCA Script
Task (Sect. 5.3), and TOSCA Data Object (Sect. 5.4).

5.1 TOSCA Topology Management Task

The TOSCA Topology Management Task extends the
BPMN service task in a way that standardized topology
management operations offered by the container are pre-
defined and can be directly used. An example operation is
getServiceTemplate to get the TOSCA service template
the plan works on. The selected operation is put in the

attribute operationRef [2, p. 159]. This addresses requirement R2 of Sect. 4:
By using a Topology Management Task, the operation can be directly chosen.



44 O. Kopp et al.

5.2 TOSCA Node Management Task

The TOSCA Node Management Tasks simplifies selecting
and invoking management operations of nodes. It extends
the BPMN Service Task. The node template id to work on
is stored in the existing attribute implementationRef [2,
p. 106]. The id itself is contained in the namespace of the
service template. The selected operation is put in the at-

tribute operationRef. This fulfills requirement R3: By using a Node Manage-
ment Task, the user directly selects the node template to work on and the
operation to call.

5.3 TOSCA Script Task

The TOSCA Script Task meets requirement R4 of Sect. 4
by providing the opportunity of referencing scripts and
corresponding nodes on which they shall be performed.
The TOSCA Script Task offers two possibilities to define
scripts which should be performed on nodes: First, scripts
can be defined inline the task itself, i. e., the script is part

of the task description. Second, the TOSCA Script Task can reference scripts
defined in TOSCA files as they are identified by unique ids. In addition to that,
a TOSCA Script Task specifies the node on which the intended script has to be
performed by using a unique id referencing to the corresponding node template
defined in the TOSCA file.

The scripts must be able to be copied automatically to the nodes and exe-
cuted on them. This is managed by the TOSCA container. For that, the con-
tainer needs special operations provided by the nodes to enable this kind of
generic script handling: Each of the target nodes has to provide an implementa-
tion artifact implementing an interface defining a set of pre-defined management
operations prescribed by BPMN4TOSCA. The implementation artifact does the
transformation from the generic container operation to the specifics of the re-
spective scripting language, e. g., transforming parameter data types and setting
environment variables.

The interface defines three main operations: deployScript, runScript, and
undeployScript. DeployScript gets the actual script passed as parameter and
returns a unique id which identifies the deployed script. RunScript gets this id
and the input parameters for the script passed as parameter and returns the
result of the script execution. UndeployScript also gets the id of the deployed
script and undeploys it from the respective node.

The TOSCA Script Task inherits from BPMN’s script task. In case the script
is part of the task, the script task semantics and its attributes scriptFormat
and script is re-used. In case the task references a script stored in the ser-
vice template, these two attributes are not used. Instead three attributes are
added: scriptReference, which references a script defined (or referenced) in



BPMN4TOSCA 45

the TOSCA file and targetNodeTemplateId, which references the node tem-
plate on which the script has to be executed, targetNodeInstanceId, defining
the concrete instance of the node template if multiple instances are allowed.

5.4 TOSCA Data Object

The language extension meets requirement R1 of Sect. 4 by intro-
ducing a TOSCA Data Object (TDO), which automatically
provides access to runtime property information of nodes and rela-
tionships. TOSCA Data Objects provide information without the
need to explicitly model BPMN service tasks requesting the respec-
tive information from the TOSCA container and sending modifi-

cations to the container. The data handling between TOSCA Data Object and
TOSCA container is done automatically “behind the scenes” and invisible to the
plan modeler. As soon as a TOSCA Data Object is defined in a plan, the refer-
enced information is accessible and can be modified. The issue of dealing with
multiple different plans using TOSCA Data Objects representing the same nodes
or relationship properties concurrently lead to well-known transactional problems
such as lost update or dirty reads breaking ACID properties [8]. This concurrent
access to any information objects defined in the topology through different plans
is a general problem, thus our approach does not need to deal with this issue as
we assume that the TOSCA container is responsible for avoiding the concurrent
execution of plans accessing the same information objects concurrently, i.e., the
TOSCA container is responsible for plan scheduling. Plan scheduling denotes the
order in which the plans are executed and not a refinement of the plans itself.

TOSCA Data Objects extends the BPMN data object by adding two TOSCA-
related attributes to identify the nodes resp. relationships the TOSCA Data
Object is reffering to: (i) A reference to the corresponding node template or rela-
tionship template whose properties should be reflected by the TOSCA Data Ob-
ject, named nodeTemplateId and relationshipTemplateId, respectively. (ii)
The optional attributes nodeInstanceId and relationshipInstanceId iden-
tify the concrete node instance or relationship instance if there are multiple
instances, as defined by the min and max instances attributes in TOSCA. In
case the data object is a collection, only the template id attribute is allowed.
Iterating over each referenced node (or relationship) instance is enabled by the
inputDataItem property of a looping BPMN task [2, p. 192].

6 Processing BPMN4TOSCA

The BPMN4TOSCA extension leads to a non-standards-compliant BPMN and,
therefore, needs special treatment. The presented extensions are run-time ex-
tensions: They introduce new functionalities which are not natively supported
by the executing environment. Nevertheless, there are two options to enable the
extensions during runtime: (A1) extend the modeling tool and the workflow en-
gine to support the new functionality and (A2) transform the functionalities into



46 O. Kopp et al.

standards-compliant executable elements before deployment [9]. When choosing
option A1, the workflow engine is extended to support the new functionality. The
drawback is that the extension is supported by standards-compliant engines only
if they also support the extension. To avoid requiring an implementation of the
extension at workflow engines, one may provide a transformation of an extended
process model to a standard process model (option A2). This generated model
typically depends on external services to offer the functionalities.

In the case of BPMN4TOSCA, the transformation to plain BPMN is possible.
We opted for a transformation instead of extending the workflow engine for the
following reasons:

– Extending the execution environment for new capabilities renders TOSCA
non-portable, because only standards-compliant BPMN is portable across
different execution environments.

– Providing a modeling tool supporting the BPMN4TOSCA approach enables
transformation of BPMN4TOSCA to plain BPMN by the export functional-
ity of the modeling tool. Thus, BPMN4TOSCA is only visible in the tool and
transparent to the execution environment as the semantics and functionali-
ties remain only implicitly in the exported files while keeping all benefits of
the approach for the modeler.

The following subsections show how the four BPMN4TOSCA tasks are trans-
formed into standards-compliant BPMN:

6.1 TOSCA Topology Management Tasks

The TOSCA Topology Management Task references operations provided by the
TOSCA container. A new implementation reference is added. It points to the
concrete port type, where the WSDL service of the TOSCA container is of-
fered. This indirection is necessary as the management operation interface is not
standardized in TOSCA.

6.2 Transformation of TOSCA Node Management Task

The TOSCA Node Management Task references a node template in a service
topology and one operation. This information is replaced by a reference to the
concrete WSDL port type and WSDL operation of the referenced operation.

6.3 Transformation of TOSCA Script Tasks

TOSCA Script Tasks need to be transformed into BPMN service tasks as con-
ceptually shown in Sect. 5.3. A Script Task references the script and the node on
which it has to be performed. During plan transformation, the TOSCA Script
Task is replaced by three BPMN service tasks which are executed in sequence:
deploy script, run script, undeploy script. The TOSCA container binds these
three tasks to the services offered by the implementation artifact of the corre-
sponding node. These services implement the interface introduced in Sect. 5.3.



BPMN4TOSCA 47

To deploy the script on the target node, the first task invokes the deployScript
operation offered by the implementation artifact’s service and passes the entire
script and the type of the script, e. g., Ant script, to the service. The type of the
script is required for selecting the corresponding script handlers, which define how
each script type is processed. This is completely transparent to the plan. The re-
quired logic is implemented either in the implementation artifact or the node itself.
For some script types, there possibly is a need for some kinds of agents installed
directly on the node to interact with the implementation artifact, others are able
to implement the whole script handling in the implementation artifact and the
node remains totally unaware of executing scripts. This is script type specific im-
plementation design and therefore out of scope: BPMN4TOSCA defines only the
interfaces, not how to deal with scripts. Thus, for each script type, there is a spe-
cific implementation, i. e., a script handler, for dealing with this type. Referenced
scripts have to be resolved by the TOSCA container before passing the script to
the service. After successful deployment, the deployScript operation returns a
unique identifier used to identify the deployed script for further steps, i. e., execu-
tion and undeployment of the script.

The second BPMN service task invokes the runScript operation and passes
the script identifier and corresponding input parameters which are contained in
the input data object associated with the TOSCA Script Task to the service. The
implementation artifact uses the identifier to find the deployed script handler,
passes the input parameters, and executes it. After successful execution, the
operation returns the output parameter which is in turn returned from the script
via its script handler and writes the values to the associated output data object.
Passing data from data objects to data input and from data output is done using
the BPMN way using dataInputAssociation and dataOutputAssociation [2,
p. 224]. Defining these associations is out of scope and has to be done by the
modeler.

The third BPMN service task invokes the undeployScript operation and
passes the script identifier. The operation undeploys the executed script.

6.4 Transformation of TOSCA Data Objects

The transfer of property information data from the TOSCA container to plans
happens transparently to the modeler. TOSCA Data Objects are converted to
BPMN data objects. For reading TOSCA data, additional BPMN service tasks

 

BPMN4TOSCA 
 
 
 
 
 
 
 

Plan 
Transformation 

 

BPMN 
 
 
 
 
 
 
 

Fig. 3. Injection of Service Tasks (framed in red color) for Accessing Data



48 O. Kopp et al.

are injected. They request information from the TOSCA container and write the
information to the data objects as shown in Fig. 3. Vice versa, if BPMN tasks
modify data in TOSCA Data Objects, the modified information is sent to the
TOSCA container via additional service tasks, too. To achieve this in a coherent
way, the TOSCA container offers standardized interfaces to access and modify
property information of nodes and relationships.

7 Prototype

Valesca4 is a modeling tool with full support for TOSCA. Valesca uses the Sig-
navio Core Components5, which are the commercially-supported enhancements
of Oryx [10]. Besides creating service templates, Valesca supports creation of cus-
tom node types and relationship types. In the BPMN plan modeling component,
the BPMN4TOSCA tasks and data object are added the palette.

When dragging a TOSCA Topology Management Task (cf. Sect. 5.1) from the
palette into the plan, the modeling tool suggests a list of topology management
operations offered by the container.

When dragging a TOSCA Node Management Task (cf. Sect. 5.2) from the
palette into the plan, the modeling tool lists all node templates contained in the
topology. After selecting one template, the tool lists all corresponding manage-
ment operations to let the modeler select the appropriate one. Then, a TOSCA
Node Management Task is created having the TOSCA attributes set accord-
ingly. Management operations need input parameters and return values. BPMN
foresees the usage of dataInput and dataOutput [2, pp. 213 and 231]. The data
types of the input and output are corresponding to the input and output pa-
rameter types defined in the node template’s management operation and are
generated automatically by the modeling tool.

When dragging a TOSCA Script Task (cf. Sect. 5.3) from the palette into the
plan, the modeling tool lists all node templates contained in the topology. After
selecting one template, the tool lists all corresponding management operations
with script operations as implementation to let the modeler select the appropri-
ate one. The modeler may also choose to discard the choice to specify a script
stored directly in the script task.

The modeling tool supports TOSCA Data Objects (cf. Sect. 5.4) in two ways:
(i) It provides a separate TOSCA Data Object element in its palette and (ii) man-
ages the corresponding schemas of the properties. When dragging a TOSCA Data
Object from the palette into the plan, the modeling tools lists all node templates
and relationship templates contained in the topology. One can be chosen to have
their property data reflected via the data object. Properties are stored as XML
documents defined by an XML schema document (XSD) [1, Sect. 4.2 and 5.2].
In the BPMN modeling tool the TOSCA Data Objects must be typed with the
XSD to enable the modeler to extract and process information contained in the

4 http://www.cloudcycle.org/valesca/
5 http://code.google.com/p/signavio-core-components/

http://www.cloudcycle.org/valesca/
http://code.google.com/p/signavio-core-components/


BPMN4TOSCA 49

Fig. 4. Deploying the Example Bookstore Application: BPMN4TOSCA Plan in Valesca

properties. Therefore, the modeling tool supports recognizing TOSCA Data Ob-
jects, which are syntactically only identified by the additional TOSCA-related at-
tributes, and injects the corresponding itemDefinitions whose structureRef
attributes reference the corresponding XSD.

Besides offering a palette, the modeling tool offers drag’n’drop from the topol-
ogy model to the BPMN plan model. At the drop of a node template, Valesca
asks the modeler to whether he wants to add a TOSCA Data Object or a TOSCA
Node Management Task. After the selection, Valesca continues as described in
above. The dragging area is shown in Figure 4, which also presents the deploy-
ment plan for the use case.

8 Related Work

Extending modeling languages is a common technique to tailor them towards
specific needs. For instance, there are at least 62 BPEL extensions including
modeling and runtime extensions [9]. The classification in [9] shows that there
are a number of design time BPEL extensions which are transformed into plain
BPEL. Zor et al. [11] propose a BPMN extension for the manufactoring do-
main to explicitly handle products and resources. The inclusion of security as-
pects, such as access control or intrusion detection, into BPMN is described by



50 O. Kopp et al.

Rodŕıguez et al. [12] through a set of new annotations. However, the presented
BPMN extensions do not address the execution of the extended BPMN processes
and, therefore, not the transformation to an executable format.

Brucker et al. [13] present SecureBPMN, which is a methodology for secure
and compliant business processes covering modeling and runtime. This includes
a BPMN extension to add requirements such as access control or separation of
duty into the process model. To address the business process runtime, Brucker
et al. use a model-based approach to push the security and compliance require-
ments as configurations into existing systems. The tool chain was prototypically
implementation based on Activiti6, extending the Eclipse designer and process
engine.

Discussions on business process transformations usually regard the business-
IT-gap and transform high level processes into lower level, more technical, busi-
ness processes. For instance, Stein et al. [14] survey on transformations to BPEL.
Due to the fact that BPMN 2.0 process models are executable, they can be
directly deployed to workflow engines for execution. Typically, BPMN 2.0 is
transformed to a proprietary meta model of the workflow engine [15].

Before the standardization of TOSCA there have been different approaches in
research and practice to model composite applications: Cafe [16] uses a declarative
application model to deploy composite application which defines a
depends-onand deployed-on relationship. Two approaches using UML [17] to de-
scribe the applications or architectures are presented by Machiraju et al. [18] and
Arnold et al. [19]. An extensive overview on related work in the field of composite
application and enterprise topology modeling is presented by Binz et al. [20].

9 Conclusions and Outlook

In this paper we motivated the upcoming OASIS standard TOSCA and showed
how management plans enable the portability of services and their management.
We argued that the integration between the service topology and management
plans is important for the service creator modeling TOSCA service templates. To
offer a tight integration, we propose a BPMN extension called BPMN4TOSCA
adding four TOSCA-specific elements to BPMN: (i) The TOSCA Topology Man-
agement Task to access the TOSCA service topology from management plans,
(ii) the TOSCA Node Management Task to invoke management operations of
nodes, (iii) the TOSCA Script Task to execute scripts defined in the TOSCA
service topology on nodes, and (iv) the TOSCA Data Object to read and write
properties of nodes and relationships. We described the integration into a model-
ing tool and prototypically implemented our approach in the TOSCA modeling
tool Valesca. Due to the fact that TOSCA containers use standard BPMN-
compliant workflow engines, we showed how to transform BPMN4TOSCA into
plain BPMN.

The set of TOSCA topology management operations is not yet fixed. In the
context of the CloudCycle project we are working on an open source TOSCA
6 http://www.activiti.org

http://www.activiti.org


BPMN4TOSCA 51

container, which will provide new management operations to be included in
Valesca. The industry partners of the CloudCycle project have started to use
Valesca. We are going to use their feedback to further improve user’s experience
in modeling TOSCA with Valesca.

Acknowledgments. This work was funded by the BMWi project CloudCycle
(01MD11023).

References

1. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0 Working Draft 07 (June 2012), https://www.oasis-open.org/committees/
download.php/46274/TOSCA-v1.0-wd07.zip

2. Object Management Group (OMG): Business Process Model and Notation
(BPMN) Version 2.0, OMG Document Number: formal/2011-01-03 (2011)

3. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS
Standard (2007)

4. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using
TOSCA. IEEE Internet Computing 16(03), 80–85 (2012)

5. Kopp, O., Martin, D., Wutke, D., Leymann, F.: The Difference Between Graph-
Based and Block-Structured Business Process Modelling Languages. Enterprise
Modelling and Information Systems 4(1), 3–13 (2009)

6. Cardoso, J.: How to Measure the Control-flow Complexity of Web Processes and
Workflows. In: Workflow Handbook 2005, pp. 199–212 (2005)

7. Reijers, H.A., Mendling, J.: Modularity in Process Models: Review and Effects.
In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp.
20–35. Springer, Heidelberg (2008)

8. Weikum, G., Vossen, G.: Transactional Information Systems. Morgan Kaufmann
Publishers (2002)

9. Kopp, O., Görlach, K., Karastoyanova, D., Leymann, F., Reiter, M., Schumm, D.,
Sonntag, M., Strauch, S., Unger, T., Wieland, M., Khalaf, R.: A Classification of
BPEL Extensions. Journal of Systems Integration 2(4), 2–28 (2011)

10. Decker, G., Overdick, H., Weske, M.: Oryx – An Open Modeling Platform for the
BPM Community. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 382–385. Springer, Heidelberg (2008)

11. Zor, S., Leymann, F., Schumm, D.: A Proposal of BPMN Extensions for the Manu-
facturing Domain. In: Proceedings of the 44th CIRP Conference on Manufacturing
Systems (2011)

12. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN Extension for the
Modeling of Security Requirements in Business Processes. IEICE Transactions on
Information and Systems 90(4), 745–752 (2007)

13. Brucker, A.D., Hang, I., Lückemeyer, G., Ruparel, R.: SecureBPMN: Modeling and
Enforcing Access Control Requirements in Business Processes. In: ACM Sympo-
sium on Access Control Models and Technologies (2012)

14. Stein, S., Kühne, S., Ivanov, K.: Business to IT Transformations Revisited. In:
Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP, vol. 17,
pp. 176–187. Springer, Heidelberg (2009)

https://www.oasis-open.org/committees/download.php/46274/TOSCA-v1.0-wd07.zip
https://www.oasis-open.org/committees/download.php/46274/TOSCA-v1.0-wd07.zip


52 O. Kopp et al.

15. Leymann, F.: BPEL vs. BPMN 2.0: Should You Care? In: Mendling, J., Weidlich,
M., Weske, M. (eds.) BPMN 2010. LNBIP, vol. 67, pp. 8–13. Springer, Heidelberg
(2010)

16. Mietzner, R.: A Method and Implementation to Define and Provision Variable
Composite Applications, and its usage in Cloud Computing. Dissertation, Univer-
sity of Stuttgart, Germany (August 2010)

17. OMG: Unified Modeling Language, UML (2011), http://www.omg.org/spec/UML
18. Machiraju, V., Dekhil, M., Wurster, K., Garg, P., Griss, M., Holland, J.: Towards

generic application auto-discovery. In: IEEE/IFIP Network Operations and Man-
agement Symposium (2000)

19. Arnold, W., Eilam, T., Kalantar, M., Konstantinou, A.V., Totok, A.A.: Pattern
Based SOA Deployment. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC
2007. LNCS, vol. 4749, pp. 1–12. Springer, Heidelberg (2007)

20. Binz, T., Fehling, C., Leymann, F., Nowak, A., Schumm, D.: Formalizing the Cloud
through Enterprise Topology Graphs. In: Proceedings of 2012 IEEE International
Conference on Cloud Computing (2012)

All links were last followed on June 29, 2012.

http://www.omg.org/spec/UML

	BPMN4TOSCA: A Domain-Specific Language to Model Management Plans for Composite Applications
	Introduction
	Fundamentals
	Use Case
	Requirements
	BPMN4TOSCA: Enabling TOSCA Plan Modeling
	TOSCA Topology Management Task
	TOSCA Node Management Task
	TOSCA Script Task
	TOSCA Data Object

	Processing BPMN4TOSCA
	TOSCA Topology Management Tasks
	Transformation of TOSCA Node Management Task
	Transformation of TOSCA Script Tasks
	Transformation of TOSCA Data Objects

	Prototype
	Related Work
	Conclusions and Outlook
	References




