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Abstract

This short monograph develops basic stochastic analysis—including Itô’s formula,
Girsanov’s theorem, the Feynman–Kac formula, and results about Lévy processes
with finite-variation jump part—and select applications in the framework of Edward
Nelson’s Radically elementary probability theory [Annals of Mathematics Studies,
117, Princeton, NJ: Princeton University Press, 1987]. This approach requires
neither measure-theoretic probability theory nor functional analysis, but is based
on a rigorous, yet elementary use of unlimited natural numbers and infinitesimals.

The underlying axiomatic framework, a modest subsystem of Nelson’s Internal
Set Theory (IST) [Bulletin of the American Mathematical Society, 83(6):1165–
1198, 1977] and hence called Minimal Internal Set Theory, is truly elementary
and can be easily motivated through the incompleteness of the Peano axioms or
an ultrapower construction. (As a subsystem of IST, it is also conservative over—
and hence consistent relative to—conventional mathematics, i.e. ZFC; moreover, a
substantial fragment of it also admits an accessible relative consistency proof.)

In an excursion, the “radically elementary” approach to stochastic analysis will
be employed to provide a “radically elementary” proof of the fundamental theorems
of asset pricing. As an example for applications of Minimal Internal Set Theory
in mathematical physics, a fully rigorous “radically elementary” definition of the
Feynman path integral is proposed.

All these features recommend Minimal Internal Set Theory as a suitable frame-
work for teaching stochastic analysis to finance or physics students without previous
training in pure mathematics. The book is self-contained and written in expository
style; in particular, it assumes no prior knowledge of nonstandard analysis.

Keywords Internal Set Theory; Infinitesimals; Nonstandard analysis; Itô’s for-
mula; Girsanov’s theorem; Dynkin’s formula; Feynman–Kac formula; Lévy pro-
cesses; Fundamental theorems of asset pricing; Feynman path integral
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Preface

This work continues Edward Nelson’s programme of devising “radically elemen-
tary” approaches to analysis broadly conceived. This research agenda was initiated
by Nelson in the mid-seventies through the invention of Internal Set Theory (IST)
[59] and reached a first climax with the publication of Radically Elementary
Probability Theory, which appeared in 1987 in the Annals of Mathematics Studies
monograph series [60].

The objective of Nelson’s 1987 monograph was to make the theory of stochastic
processes (including continuous-time processes!) “readily available to anyone who
can add, multiply, and reason” (from the preface [60, p. vii]) through an elementary,
yet fully rigorous use of infinitesimals and unlimited numbers by invoking a very
modest and easily accessible fragment of nonstandard analysis. The core concepts
which make this possible are (a) the notion of a finite set with an unlimited number
of elements and (b) the notion of a positive infinitesimal number; the point is that
the employment of these concepts enables one to treat stochastic continuous-time
phenomena as stochastic processes on finite probability spaces with discrete time
lines of infinitesimal spacing.

This work extends Nelson’s elementarization even to stochastic analysis, cov-
ering topics such as stochastic integration and differentiation (Itô’s formula),
change of measure (Girsanov’s theorem), the link between diffusions and semi-
elliptic partial differential equations (Dynkin’s formula, Feynman–Kac formula),
jump-diffusion processes (Lévy processes) as well as applications of stochastic
analysis in financial economics (fundamental theorems of asset pricing), financial
engineering (volatility invariance in the Black–Scholes model), and mathematical
physics (rigorous definition of the Feynman path integral).

Viewed from an axiomatic perspective, we shall follow Nelson’s example in
assuming not just the axioms of conventional mathematics (say, Zermelo–Fraenkel
set theory with Choice, ZFC) but also some elementary axioms that allow for
basic nonstandard analysis; the resulting extension of ZFC will be called Minimal
Internal Set Theory and is a subsystem of IST. Nelson [59] showed through an
elaborate set-theoretic argument that IST is a conservative extension of ZFC; in
Appendix A, we shall give a simple proof for the fact that at least a powerful

ix
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subsystem of Minimal Internal Set Theory is a conservative extension of ZFC and
hence consistent relative to ZFC. In Appendix B, the relation of Minimal Internal
Set Theory to Robinsonian nonstandard analysis is briefly discussed. The remainder
of the text, however, requires no acquaintance with model theory or any other part
of mathematical logic whatsoever.

Munich, May 2012 Frederik S. Herzberg
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Introduction

In a visionary monograph, Edward Nelson [60] has constructed the fundamental
building blocks of a “radically elementary” theory of continuous-time stochastic
processes, based on a simplified axiomatic version of nonstandard analysis, viz. a
subsystem of Internal Set Theory (IST, also introduced by Nelson one decade earlier
[59]). Nelson [60] extensively studied the Wiener process, including Donsker’s
invariance principle and Lévy’s martingale characterization of the Wiener process
(nota bene: in a single theorem [60, Theorem 18.1]), in such a “radically elemen-
tary” setting. However, he left the—significantly simpler—task of developing a
radically elementary stochastic analysis from these building blocks to others.

The first and thus far only paper on radically elementary stochastic calculus
was written by Benoı̂t [10], who proved basic versions of both Itô’s formula and
Girsanov’s theorem in a radically elementary setting. Benoı̂t’s [10] main concern,
however, was the characterization of the measure induced by the Wiener walk.
van den Berg [13] has authored a finance course based on radically elementary
probability theory, but does not develop a fully fledged stochastic calculus therein.
Moreover, after the first draft of this work had been written, the author came
across the research by van den Berg and Amaro [16] who build upon Benoı̂t’s [10]
work and link stochastic differential equations with partial differential equations—
however, within the full framework of Internal Set Theory rather than within the
framework of radically elementary probability theory, and without providing a
systematic treatment of Itô diffusions.1

1There is, of course, also a significant body of research on stochastic integration and stochastic
differential equations within the Robinsonian framework of nonstandard analysis (based on
saturated enlargements of superstructures, cf. Robinson and Zakon [68]), starting from the seminal
work of Loeb [51] and Anderson [4]. Major contributions to this area of research include those by
Lindstrøm [45–48], Keisler [41], Hoover and Perkins [37, 38], Stroyan and Bayod [74], Capiński
and Cutland [21–23], and Osswald [64]. A survey of some of the earlier results as well as a
nonstandard approach to potential theory and the theory of Dirichlet forms can be found in
the volume by Albeverio et al. [3]. The very first application of nonstandard analysis to (the
foundations of) probability theory was given by Robinson’s student Allen R. Bernstein and Frank

xv



xvi Introduction

In this book, we develop basic stochastic analysis in the framework of radically
elementary probability theory. First, we shall define (and briefly discuss) the
axiomatic system of radically elementary probability theory. This axiom system
will be a small subsystem of Nelson’s Internal Set Theory [59] and thus a moderate
extension of the conventional Zermelo–Fraenkel set theory including the Axiom
of Choice (ZFC). This new axiomatic system, henceforth referred to as Minimal
Internal Set Theory, comes in three variants of slightly different strength, viz.
minISTC, minIST and minIST�, where minISTC contains minIST and minIST
contains minIST�. The results of this work will only depend on minIST, and much
of radically elementary stochastic analysis can even be developed in minIST�, the
weakest of these axiom systems.

A short review of radically elementary probability theory—which is nothing
more than finite probability theory with the additional axioms of Minimal Internal
Set Theory at hand—will follow. After defining Wiener walks, Wiener processes
and recalling some important results such as the radically elementary equivalent
of Lévy’s characterization of Wiener processes (Nelson’s “de Moivre–Laplace–
Lindeberg–Feller–Wiener–Lévy–Doob–Erdős–Kac–Donsker–Prokhorov theorem”
[60, Theorem 18.1]), we will present the original contributions of this work.

These new results include radically elementary versions of the martingale
representation theorem, Itô’s formula, Girsanov’s theorem, the diffusion invari-
ance principle, the Markov property of Itô diffusions, Dynkin’s formula, and the
Feynman–Kac formula. Finally, we shall propose a radically elementary theory
of Lévy processes. In addition, the book includes various excursions: a radically
elementary discussion of certain “geometric” Itô processes (Sect. 3.4 of Chap. 3),
a radically elementary approach to the fundamental theorems of asset pricing
(Chap. 5), a rigorous radically elementary definition of the Feynman path integral
(Chap. 8) as well as a proof of the conservativity of minIST� as an extension of
ZFC (Appendix A). One of the excursions in this book (Chap. 8) suggests another
area of application of Minimal Internal Set Theory within mathematical physics.
We shall provide a rigorous, yet radically elementary definition of the Feynman
path integral.

Most challenging to prove among these results is the radically elementary version
of Girsanov’s theorem. Just as Lévy’s [44] classical martingale characterization
of the Wiener process is a pivotal ingredient in the classical proof of Girsanov’s
theorem [27], we shall use the aforementioned radically elementary analogue of
Lévy’s martingale characterization of the Wiener process established by Nelson [60,
Theorem 18.1]) in order to prove our radically elementary version of Girsanov’s
theorem.

The logical interdependence of the various parts of the book is as follows.
Chapter 1 (axiomatic framework), Sect. 2.1 of Chap. 2 (Random variables and
stochastic processes), Sect. 2.3 of Chap. 2 (Wiener walks), and the definitions

Wattenberg [17], not long after the appearance of Robinson’s groundbreaking monograph Non-
standard analysis [67].
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from Sect. 3.1 of Chap. 3 are basic and will be needed throughout this work.
The discussion of Lévy processes (Chap. 9) assumes Sect. 3.5 of Chap. 3 (Lévy’s
characterization of Wiener processes). The proof of Girsanov’s theorem (Chap. 4)
assumes all of Chaps. 1–3, with the sole exception of Sect. 2.4 of Chap. 2 (which is
optional). In particular, none of the results in the excursions will be used elsewhere
in the text. The only exception to this rule is Sect. 3.4 of Chap. 3 (the excursion
on certain “geometric” Itô processes), which will be used towards the end of
the excursion on the fundamental theorems of asset pricing (Chap. 5). The brief
informal introduction to Lévy finance in Sect. 9.5 of Chap. 9 assumes, of course,
some familiarity with mathematical finance or financial economics, such as can be
found in Chap. 5.

Thus the logical interdependencies within this book, excluding the contents of
Chap. 4, may be visualized as follows:

Chap. 1 �! Chap. 8
#

Sects. 2.1 and 2.3 of Chap. 2
#

def.s from Sect. 3.1 of Chap. 3 �! Sect. 3.4 of Chap. 3
. # # & & #

Chap. 5 Chap. 6 Chap. 7 Chap. 9 end of Chap. 5
except (Lemma 5.9)

Lemma 5.9

For Chap. 4, we have the following, very simple, chart (which we only include
for the sake of completeness):

Chap. 1
#

Chap. 2 w/o Sect. 2.4
#

Chap. 3
#

Chap. 4

This work is self-contained, except for occasional references to some important
results from Nelson’s monograph [60], the content of which is fully described in
this book. These are:

• The underspill/overspill principle [60, Theorem 5.4] (see Remark 1.1)
• The radically elementary characterization of a.s. convergence [60, Theorem 7.1]

(see Remark 2.4)
• The radically elementary Radon–Nikodym theorem [60, Theorem 8.1] (see

Remark 2.2)
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• The radically elementary Lebesgue theorem [60, Theorem 8.2] (see Remark 2.3)
• The (near) equivalence of a.s. infinitely close processes [60, Theorem 17.2] (see

Remark 2.1)
• A radically elementary martingale inequality [60, paragraph following Theorems

11.1 and 11.2] (see Remark 2.12)
• The a.s. continuity of normalized martingales with infinitesimal increments [60,

paragraph following Theorem 13.1] (see Remark 3.5)
• The unified “de Moivre–Laplace–Lindeberg–Feller–Wiener–Lévy–Doob–

Erdős–Kac–Donsker–Prokhorov theorem” [60, Theorem 18.1] (see Remark 3.13)

For those readers who intend to study some or all of the above results in greater
detail by consulting Nelson’s original text [60], we briefly summarize the logical
interdependencies:

(1) The radically elementary characterization of a.s. convergence [60, Theo-
rem 13.1] follows from the underspill/overspill principle [60, Theorem 5.4].

(2) The radically elementary Lebesgue theorem [60, Theorem 8.2] is a consequence
of the radically elementary versions of the Radon–Nikodym theorem [60,
Theorem 8.1] and the characterization of a.s. convergence [60, Theorem 7.1].

(3) The (near) equivalence of a.s. infinitely close processes [60, Theorem 17.2]
follows from the radically elementary Lebesgue theorem [60, Theorem 8.2].

(4) The proof of the unified “de Moivre–Laplace–Lindeberg–Feller–Wiener–Lévy–
Doob–Erdős–Kac–Donsker–Prokhorov theorem” uses the following results:

(a) The underspill/overspill principle [60, Theorem 5.4]
(b) The radically elementary Lebesgue theorem [60, Theorem 8.2]
(c) A radically elementary supermartingale inequality [60, Theorem 11.1]
(d) A continuity result for martingales [60, Theorem 13.1], which in turn

depends on the limited-fluctuation criterion [60, Theorem 12.3] and by
that means on [60, Theorem 11.1] and some upcrossing inequalities [60,
Theorem 12.1–12.2]

(e) The fact that the Lindeberg condition makes (a.s.) increments infinitesimal
[60, Theorem 14.1], which depends on the radically elementary characteri-
zation of a.s. convergence [60, Theorem 7.1]

(f) A truncation lemma for martingales satisfying the Lindeberg condition
[60, Theorem 14.3], which depends again on [60, Theorem 7.1], on [60,
Theorem 14.1] and on the underspill/overspill principle [60, Theorem 5.4]

(g) The fact that a small change of the probability measure transforms a process
into a (nearly) equivalent one [60, Theorem 17.1]

(h) The (near) equivalence of a.s. infinitely close processes [60, Theorem 17.2]
(i) The fact that near equivalence respects continuity [60, Corollary 2 to

Theorem 17.3], which depends on the underspill/overspill principle [60,
Theorem 5.4]



Chapter 1
Infinitesimal Calculus, Consistently
and Accessibly

The most important feature of Nelson’s [60] radically elementary analysis is the
discretization of the continuum. The crucial step herein is the consistent use of
infinitely large (“nonstandard”) numbers and infinitesimals, in a manner which was
first proposed by Nelson through the axiom system of Internal Set Theory [59],
motivated by the groundbreaking work of Abraham Robinson [66, 67]. One decade
on, Nelson [60] introduced an even more elementary, yet still very powerful, formal
system, which we shall review presently.

1.1 An Accessible Axiom System for Infinitesimal Calculus:
Minimal Internal Set Theory

Mathematical analysis broadly conceived (including probability theory) can be
made much more intuitive if one allows for the use of infinitesimals—as engineers,
and partially also applied mathematicians, have done for centuries. A positive
infinitesimal is a number which is greater than zero, yet in some sense arbitrarily
small—viz. less than 1=2, less than 1=3, less than 1=4, less than 1=5 etc. In other
words, it is a number which is positive, yet smaller than the reciprocal of any
standard natural number—wherein, of course, the term “standard” still is in need
of being defined.

So, on the one hand, the mathematical community has known infinitesimals since
at least the days of Leibniz,1 and practitioners successfully use them every day. On
the other hand, it is not immediately obvious how to give a rigorous definition of the
predicate “standard” or equivalently of the notion of an infinitesimal.

1For some fascinating insights into—and some polemical comments on—the history of infinitesi-
mals, cf. e.g., Błasczcyk et al. [19].

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 1,
© Springer-Verlag Berlin Heidelberg 2013
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2 1 Infinitesimal Calculus, Consistently and Accessibly

While there are several approaches to accomplish this, the first modern rigorous
attempt to define infinitesimals—which will serve as our first motivation—is due
to Robinson [66] with a precursor by Schmieden and Laugwitz [72]. Robinson
extended the real line with a huge number of additional elements so that it became a
real-ordered field which also contained infinitesimals and infinitely large numbers.

The technique that Robinson employed has some similarity to the construction
of the reals out of Cauchy sequences of rational numbers: (a) The new numbers
that he constructed are equivalence classes of real numbers (where the equivalence
relation is such that two sequences are equivalent if and only if they agree on a
set to which a given non-trivial f0; 1g-valued finitely-additive measure on the set
of natural numbers assigns mass 1).2 (b) The arithmetical operations and the order
relation are defined element-wise (and can be verified to be well-defined).3 (c) The
original real numbers are embedded into the new number system as equivalence
classes of constant sequences.

On this Robinsonian account, the standard natural numbers, are images of
ordinary natural numbers under the canonical embedding. For an example of an
infinitesimal, just consider the �-equivalence class of any null sequence of real
numbers. If one considers �-equivalence classes of strictly increasing sequences
of natural numbers, one obtains infinitely large numbers, which nevertheless have
some relation to natural numbers and will therefore be called nonstandard natural
numbers.

We will not go further into the details of Robinson’s delicate construction
of which we only sketched the very basic steps. Readers who are interested in
learning more about Robinson’s nonstandard analysis and its exciting applications
are encouraged to have a look at Appendix B and the references therein. Instead

2Formally, let � be a map which assigns each set of natural numbers either 0 or 1 and is such that
whenever I; J are disjoint (i.e. I \ J D ¿), �.I [ J / D �.I /C �.J / and such that there is no
natural number k such that �.I / D 1 if and only if k 2 I for all I . Two infinite sequences
of real numbers .an/n; .bn/n are called �-equivalent, denoted .an/n �� .bn/n if and only if
� .fn W an D bng/ D 1. It is not difficult to show that �� is indeed an equivalence relation.
The new numbers are then just �-equivalence classes of infinite sequences of real numbers.
3It is also not difficult to verify that the following relation and operations are well-defined. For all
sequences of real numbers .an/n; .bn/n,

Œ.an/n�
��

> Œ.bn/n�
��

W, � .fn W an > bng/ D 1

Œ.an/n�
��

C Œ.bn/n�
��

WD Œ.an C bn/n�
��

Œ.an/n�
��

� Œ.bn/n�
��

WD Œ.an � bn/n�
��

Œ.an/n�
��
Œ.bn/n�

��
WD Œ.anbn/n�

��

Œ.an/n�
�1
��

WD Œ.1=an/n�
��

if an ¤ 0 for all n



1.1 An Accessible Axiom System for Infinitesimal Calculus 3

we will present a simple axiom system which captures a minimal fragment of
nonstandard analysis, but is just powerful enough for our purposes of developing
a stochastic calculus with infinitesimals.

In order to simplify both the presentation of the axiom system and the later
material, we take an important, at first sight radical step: Henceforth, when we refer
to “real numbers” or to the set R, we mean (elements of) the extended number
system—which, of course, not only contains ordinary real numbers, but also other,
“nonstandard” real numbers such as infinitesimals and infinitely large numbers. If
we want to refer to the ordinary natural numbers, we will refer to them as standard
natural numbers. Otherwise, the term “natural number” can refer to a standard
or nonstandard natural number, and N will be used to denote the set of all
(standard and nonstandard) natural numbers in this sense.4

With these conventions, we now introduce the following collection of axioms
and axiom schemes, which we shall henceforth refer to—for historical reasons
(see Sect. A.1 of Appendix A)—as Minimal Internal Set Theory, abbreviated
minIST5:

• All theorems6 of conventional mathematics are axioms of Minimal Internal Set
Theory, even with the new interpretation of N and R.7

• 0 is standard.
• For every n 2 N, if n is standard, then nC 1 is standard, too.
• There exists a nonstandard natural number n, i.e. some n 2 N which is not

standard.

4We will hardly ever have the need to refer to standard real numbers; we will, however, often refer
to limited (standard or nonstandard) real numbers (see below).
5The name is derived from Nelson’s [59] Internal Set Theory (IST), of which even Minimal
Internal Set Theory combined with the Sequence Principle (see footnote 5 on p. 3) is only a small
subsystem, see Sect. A.1 of Appendix A. Although Nelson [62] did not state this explicitly, an
axiom system such as minIST is most probably what he had in mind when suggesting the use of
“minimal nonstandard analysis” [62, p. 30].

In his 1987 monograph on Radically elementary probability theory [60], Nelson proposes an
axiom system which enlarges minIST by the following axiom scheme:

• (Sequence Principle) IfA .v0; v1/ is any formula (which may involve the predicate “standard”)
with the property that for all standard natural numbers n there exists some x withA .n; x/, then
there exists a sequence .xn/n2N such that A .n; xn/ holds for all standard n.

However, Nelson [60] only uses the Sequence Principle occasionally and conveniently marks those
results which are proved through the Sequence Principle by an asterisk; the greater part of radically
elementary probability theory—and in particular, all results from radically elementary probability
theory which we use in this book—can be developed in minIST. Again, none of the results of the
present work depend on the Sequence Principle.
6Equivalently one could write: “All axioms . . . ”.
7This principle is known as the Transfer Principle of nonstandard analysis. It is beyond the scope
of this book to give a rigorous justification. We only point out that the extended, nonstandard real
number system was devised to preserve very simple mathematical propositions (such as “x2 � 0

for all real numbers x”) and that by a beautiful theorem due to Łoś [52] this preservation property
can be shown to hold for complex mathematical propositions as well.
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• (External Induction) If A.v/ is any formula of the new, extended language8

such that A.0/ holds and such that A.n/ entailsA .nC 1/ for all standard n, then
A.n/ readily holds for all standard n.

Unless explicitly stated otherwise, we will in this book always assume the
axioms of Minimal Internal Set Theory (minIST).9

Formulae which do not involve the predicate “standard” will be called internal,
because they can already be expressed in conventional mathematics. All other
formulae (i.e. precisely those that involve the predicate “standard”) are called
external.

Note that we have not allowed that external formulae may be used to define new
sets; violation of this rule is called illegal set formation. (Robinsonian nonstandard
analysis has methods to treat external sets, too; in that framework, these sets are no
longer “illegal”.) For example, the usual principle of mathematical induction only
pertains to internal formulae; if one wishes to prove an external formula by means
of induction, one has to apply the above axiom scheme of External Induction.

1.2 Finer Classification of the Reals: Finite vs. Limited

By the first axiom of minIST, we just inherit all results and concepts from
conventional mathematics. For instance, a set v is finite if and only if v is bijective
to f0; � � � ; n � 1g for some n 2 N, which is then called the cardinality of v.

Now the number of elements of a finite set may be nonstandard. But any
nonstandard natural number is greater than every standard natural number,10

which—combined with the fact that 0; 1; 2; 3; 4; : : : ; 1000000000000; : : : are all
standard—shows that nonstandard natural numbers are very large indeed, yea, in

8Thus, the formula A.v/ may involve the predicate “standard”!
9In Appendix A, we shall consider an even weaker system than minIST, denoted by minIST�,
which still allows for much of radically elementary mathematics to be developed and also admits
a simple relative consistency proof.
10This could be an instructive exercise for students interested in the foundational aspects of
minIST. By External Induction in k, one can prove for all standard k 2 N that if n 2 N and
n � k, then n is standard:

• For the base step of the External Induction, note that the only n 2 N with n � 0 is 0, hence
standard by an axiom of minIST.

• For the induction step of the External Induction note that whenever n 2 N with n � kC 1, one
has

(1) either n � k, in which case n is standard by induction hypothesis of the External Induction,
(2) or n D k C 1, whence n again is standard (as k is standard and successors of standard

natural numbers are standard by another axiom of minIST).

Thus, there can be no pair of a nonstandard n 2 N and a standard k such that one would have
n � k. Hence nonstandard natural numbers are always greater than all standard natural numbers.



1.2 Finer Classification of the Reals: Finite vs. Limited 5

some sense unlimited. In particular, finite probability spaces can have an unlimited
number of elements and thus be very rich.

Any real number x which satisfies jxj � k for some standard k is called limited
(denoted jxj � 1), and any real number which is not limited is called unlimited
(denoted jxj ' 1). Any real number x which satisfies jxj � 1

k
for all standard

k ¤ 0 is called infinitesimal (denoted x ' 0). In particular, for every nonstandard
n, the reciprocal 1

n
is a strictly positive infinitesimal. Given x; y 2 R, we write:

• x ' y if and only if x � y is infinitesimal,
• x � y if and only if both x < y and x 6' y,
• x �< y if and only if x < y or x ' y.

Remark 1.1 (Underspill and Overspill Principles). In minIST, one can prove (cf.
Nelson [60, Theorem 5.4, p. 18]) that there are no sets which would consist of
either

• all the standard natural numbers, or
• all the nonstandard natural numbers, or
• all the limited reals, or
• all the unlimited reals, or
• all the infinitesimal reals.

This allows, for example, for the following proof principles. Let A.x/ be an internal
formula.

• Underspill in N. If A.n/ holds for all nonstandard n 2 N, then also for some
standard n 2 N.

• Overspill in R. If A.x/ holds for all infinitesimal x 2 R, then also for some
non-infinitesimal x 2 R.



Chapter 2
Radically Elementary Probability Theory

2.1 Random Variables and Stochastic Processes

The expressive power of minIST comes from the fact that it allows for the notions
of

• finite sets with unlimited cardinality, and
• finite subsets of the reals whose distance is at most an infinitesimal from every

point in some non-empty open interval.

In particular, there exist—in minIST and even some of its subsystems1—finite
probability spaces with a sample space � of unlimited cardinality, and every
compact interval Œt0; t1� allows for a discrete, finite subset T0 of infinitesimal spacing.
The Cartesian product � � T0 of such sets will still be a finite set. Radically
elementary probability theory approaches continuous-time random phenomena
using discrete, finite methods by studying stochastic processes � W � � T0 ! R.

For the rest of this book, we fix a finite set �. Unless stated otherwise, P
will denote a probability measure on the power-set of �. A (real-valued) random
variable is a map x W � ! R. The expectation operator with respect to P will be
denoted byEP , or justE , if no ambiguity can arise. Similarly, the variance operator
with respect to P will be denoted by VarP , or just Var, if no ambiguity can arise.
Since � is finite, EŒx� and VarŒx� are well-defined for all random variables x.

Let A.!/ be a formula (internal or external). We shall say that A holds almost
surely with respect to P (abbreviated P-a.s. A or a.s. A where no ambiguity can arise)
or A holds for P-almost every ! 2 � (abbreviated A.!/ for P -a.e. ! 2 � or just
A.!/ for a.e. ! 2 �) if and only if for all " � 0 there exists some N � � such
that P.N/ � " whilst A.!/ holds for all ! 62 N . Moreover, if A is internal, then we
define the event fAg by

fAg D f! 2 � W A.!/g ;

1Such as the system minIST� discussed in Appendix A.

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 2,
© Springer-Verlag Berlin Heidelberg 2013
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and one can show that P fAg ' 1 if and only if a.s. A.2 Again for any internal
formula A.!/, we shall say that A with P-probability 1 or just A if and only if
P fAg D 1.

We fix a nonstandard natural numberN , and we put

T WD
�
0;
1

N
; : : : ;

N � 1

N
; 1

�
; dt WD 1

N
:

The normalized counting measure on the power-set of the time line will be denoted
�:

8I � T �.I / D card.I /

card.T/
D card.I /

N C 1
:

Given an arbitrary p >0, the term O ..dt/p/ denotes a random variable x such that
x

.dt /p is limited, and the term o ..dt/p/ denotes a random variable x such that x
.dt /p '

0. (This is the radically elementary analogue of Landau’s O and o.)
In this setting, a (real-valued) stochastic process is a map � W T0 ! R� for some

T0 such that T0 D T \ Œt0; t1� for some t0; t1 2 T. For any such stochastic process
� W T0 ! R�, we put

8t 2 T0 n ft1g d�.t/ WD �.t C dt/ � �.t/:

Through a slight abuse of notation, one can also view � as a random, real-valued
trajectory (or sample path), i.e. as a map � ! RT0

, ! 7! .�.t/.!//t2T0 so that
�.!/.t/ D �.t/.!/. The set

ƒ� WD f�.!/ W ! 2 �g � RT0

is a finite subset of RT0

, the set of trajectories of �.
Given a stochastic process �, a trajectory � 2 ƒ� is said to be (nearly) continuous

if and only if for all s; t 2 T0, one has �.s/.!/ ' �.t/.!/ whenever s ' t . A
stochastic process � is called P-a.s. continuous if and only if for P -a.e. ! 2 �, the
trajectory �.!/ is continuous.

We will often exploit the fact that every stochastic process � is uniquely
determined by � .t0/ and d� (and trivially vice versa), as is evident from the
telescoping sum identity

2 Proving this could be a useful exercise for students. If P fAg ' 1, then clearly a.s. A (simply
choose N D � n fAg). Conversely, if a.s. A, then the set

M D fn 2 N W 9N � �.P.N / � 1=n & � n fAg � N/g
contains all standard elements of N. Since there is no set which consists of all standard
natural numbers (see Remark 1.1), M must contain some nonstandard n0 2 N, too. But then,
P .� n fAg/ � 1=n0 ' 0, so P fAg ' 1.
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8s 2 T0 �.s/� � .t0/ D
X
t0<t<s

d�.t/:

Let now ƒ � RT be finite. A functional on ƒ is a map F W ƒ ! R. If ƒ� � ƒ

for a stochastic process � W T ! R� and F is a functional on ƒ, then F.�/ is
defined as the random variable

! 7! F.�/.!/ WD F .�.!// D F ..�.t/.!//t2T/ :

A functional F on ƒ is called

• continuous if and only if
F.�/ ' F.�/

for all �;� 2 ƒ which satisfy �.t/ ' �.t/ for all t 2 T,
• limited if and only if F.�/ is limited for all � 2 ƒ.

Two stochastic processes �; � W T ! R� are called nearly equivalent if and only
if E ŒF.�/� ' E ŒF.�/� for all limited continuous functionals F on ƒ� [ƒ�.

Remark 2.1. Nelson [60, Theorem 17.2, p. 73] has shown that two processes � and
� are already nearly equivalent if a.s. 8t 2 T �.t/ ' �.t/.

2.2 Integrability and Limitedness

Recall that given any event A � �, the indicator function of A is defined as

	A W � ! f0; 1g; ! 7!
�
1; ! 2 A;
0; ! 62 A :

Likewise, whenever I � T, the indicator function of T is the function

	I W T ! f0; 1g; t 7!
�
1; t 2 I;
0; t 62 I :

With this definition, a random variable x is L1.P / or integrable if and only if
E
�jxj	fjxj>ag

� ' 0 for all positive unlimited a, and x is Lp.P / or integrable of
p-th order (for any p > 0) if and only if jxjp is L1.P /. The real numberE Œjxjp� is
called the p-th moment of x.

Remark 2.2. The radically elementary Radon–Nikodym theorem (cf. Nelson [60,
Theorem 8.1, p. 30]; [62, Theorem 4]) says that a random variable x is L1.P / if
and only if E Œjxj� is limited and E Œjxj	M � ' 0 holds for all events M � � with
P.M/ ' 0.
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Remark 2.3. If x and y are two L1.P / random variables such that x ' y a.s., then
by the radically elementary Lebesgue theorem (cf. Nelson [60, Theorem 8.2, p. 31])
EŒx� ' EŒy�.

The proof uses the radically elementary Radon–Nikodym theorem (Remark 2.2)
and the following fact, which is interesting in its own right and whose proof uses
underspill/overspill:

Remark 2.4. For any random variable z, the following are equivalent:

• z ' 0 a.s.
• For all � � 0, P fjzj 	 �g ' 0.
• There exists some " ' 0 such that P fjzj 	 "g ' 0.

(cf. Nelson [60, Theorem 7.1]).

It is easy to prove a converse of the radically elementary Lebesgue theorem:

Theorem 2.5. Let x W � ! R. If E Œjxj� ' 0, then x ' 0 P -almost surely.

Proof. For all standard n 2 N, one has

1

n
P

�
jxj 	 1

n

�
� E Œjxj� � 1

n2
;

hence by overspill/underspill, there exists some nonstandard n 2 N such that

P

�
jxj 	 1

n

�
� 1

n
:

Obviously x ' 0 on� n ˚jxj 	 1
n

�
and P

˚jxj 	 1
n

�
< " for all " � 0. ut

For the special case � D T n fT g and P D �, this reads:

Theorem 2.6. Let f W T n fT g ! R. If
R T
0 jf .t/j dt ' 0, then f .t/ ' 0 for

�-almost every t .

As a corollary to these theorems, one arrives at:

Theorem 2.7. Let � W � � T n fT g ! R. If E
hR T
0 j�.t/j dt

i
' 0, then for P -a.e.

! 2 � and �-a.e. t 2 T n fT g, �.t/.!/ ' 0.

If a random variable is L1.P /, then also a.s. limited. This can easily be shown
through an application of the underspill proof principle (see Remark 1.1):

Remark 2.8. If x is L1.P /, then a.s. x is limited.

Proof. Let x is L1.P / and fix " � 0. Then for every nonstandard n 2 N,

nP fjxj > ng � E
�jxj	fjxj>ng

� ' 0;
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whence the formula
nP fjxj > ng < "

holds for all nonstandard natural numbers n. However, the set of such n cannot equal
N (see Remark 1.1), therefore it must also contain a standard n". Hence the event
N" D fjxj > n"g has probability< " while x is limited on�nN". Since " � 0 was
arbitrary, x is a.s. limited. ut

Finally, we have the following simple sufficient condition for integrability, due
to Nelson (personal communication):

Remark 2.9. For all p > q > 0 and every random variable x, if E Œjxjp� � 1 and
q

p
� 1, then x is Lq.P /.

Proof. Let p > q > 0 with q

p
� 1 and suppose E Œjxjp� � 1. The function

z 7! zp=q is convex on R>0 (its second derivative being z 7! p

q

�
p

q
� 1

�
zp=q�2 > 0),

hence by Jensen’s inequality

E Œjxjq�p=q � E Œjxjp� � 1:

Moreover, for all M � � with P.M/ ' 0, the Hölder inequality yields

E Œjxjq	M � � E Œjxjp�q=p E
	
	

1
1�q=p

M


1�q=p

D E Œjxjp�q=p P.M/1�q=p ' 0:

Hence, by Nelson’s Radon–Nikodym theorem (see Remark 2.2), jxjq is L1.P / and
thus x is L1.P /. ut

For stochastic processes, there are several notions of limitedness. A stochastic
process � is said to be limited if and only if �.t/ is limited for all t 2 T (with
P -probability 1).

Remark 2.10. A stochastic process � is limited if and only if there exists a limited
real number C such that maxt2T j�.t/j � C (with P -probability 1).

Proof. Since � and T are finite (though possibly of unlimited cardinality), the
maximum

C WD max
!2� max

t2T
j�.t/.!/j	fP f�g>0g.!/

is well-defined. It will be a limited real if and only if � is limited. Moreover,
maxt2T j�.t/j � C with P -probability 1 by definition. ut
Definition 2.11. A process � D .�.t//t2T0 is called a.s. limited if and only if a.s.
maxt2T0 j�.t/j is limited. (Because T0 is finite, this is equivalent to asserting that a.s.
for all t 2 T0, �.t/ is limited.)
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The notions of independence, filtrations, conditional expectations, and martin-
gales are inherited from conventional mathematics. Note, however, that .�;P / is
a finite probability space and that therefore, one only needs the concepts of finite
probability theory; radically elementary stochastic calculus does not require any
measure theory.

For example:

• An algebra of random variables is a subset A of R� containing all the constant
maps from � to R and such that for all x; y 2 A, also x C y 2 A and xy 2 A.
Let A be an algebra of random variables. An atom of A is a maximal subset A
of � such that all elements of A are constant on A. One can show that A equals
the set of all random variables which are constant on each of the atoms of A
(cf. Nelson [60, p. 6]). A random variable is called A-measurable if and only
if it is an element of A. A subset of � is called A-measurable if and only if
its characteristic function is A-measurable. The orthogonal projection operator
R� ! A is denotedEŒ�jA� and called conditional expectation with respect to A.

• Let x1; : : : ; xm be random variables, and let A be the smallest algebra containing
x1; : : : ; xm (the algebra generated by x1; : : : ; xm). Then, for every x 2 A, there
exists some function f W Rm ! R such that

x.!/ D f .x1.!/; : : : ; xm.!//

for all ! 2 �.
• A filtration is a family .Gt /t2T0 such that Gt � Gs whenever t � s and each Gt is

an algebra of random variables.
• Let .Gt /t2T be a filtration. We say that a stochastic process � is G-adapted if and

only if �.t/ is Gt -measurable for all t 2 T. A stochastic process � is called a
.G; P /-supermartingale if and only if � is G-adapted and

E Œ�.t/jGs� � �.s/

(with P -probability 1) for all s; t 2 T with s � t . A .G; P /-supermartingale is
simply called a supermartingale where no ambiguity as to G or P can arise. A
process � is a submartingale if and only if �� is a supermartingale, and it is a
martingale if and only if it is both a supermartingale and a submartingale.

• A G-adapted stochastic process � is a martingale if and only ifE Œ�.t C dt/jGt � D
�.t/ for all t 2 T n f1g, in other words, if E Œd�.t/jGt � D 0 for all t 2 T n f1g.

• The random variables �.t0/; : : : of a process .�.t//t2T0 are independent if and
only if

P f� D �g D
Y
t2T0

P f�.t/ D �.t/g

for all trajectories � W T0 ! R of �.

All results from finite probability theory are directly inherited, since our axiom
system is a simple extension of conventional mathematics.
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A criterion for the a.s. limitedness of martingales can be deduced from the
following martingale inequality (again due to Nelson [60]):

Remark 2.12. If � D .�.t//t2T is a super- or submartingale, then for all � 2 R>0,

P

�
max
t2T

j�.t/ � �.0/j 	 �

�
� 2

�
E Œj�.1/� �.0/j� :

(Cf. Nelson [60, Theorem 11.1].) If �D .�.t//t2T is a martingale, then for all � 2
R>0,

P

�
max
t2T

j�.t/ � �.0/j 	 �

�
� 1

�
E Œj�.1/� �.0/j� :

(Cf. Nelson [60, remark after Theorem 11.2].)

Corollary 2.13. If �D .�.t//t2T is a supermartingale or submartingale with
limited �.0/ and limited E Œj�.1/� �.0/j�, then � is a.s. limited.

Proof. Let " � 0, let k be the limited real

k D 1

"
E Œj�.1/� �.0/j� ;

and consider the event N D fmaxt2T j�.t/ � �.0/j 	 kg. Then, by Remark 2.12
applied to � D k, one has P.N/ � ", whilst

max
t2T

j�.t/j � j�.0/j C max
t2T

j�.t/ � �.0/j � j�.0/j C k

on � nN . ut

2.3 Wiener Walks and Wiener Processes

Now we introduce a fundamental object of radically elementary probability theory
and stochastic calculus: the radically elementary analogue of N. Wiener’s process.
A Wiener walk on .�;P / is a process W D .W.t//t2T such that

• W.0/ D 0,
• dW.0/; : : : ; dW.1 � dt/ are independent, and
• for all t 2 T n f1g,

P
n
dW.t/ D p

dt
o

D P
n
dW.t/ D �p

dt
o

D 1

2
:

A stochastic process is called a (near) Wiener process on .�;P / if and only if it
is nearly equivalent to some Wiener walk on .�;P /. It is worthwhile to note that
any Wiener process allows for a strong approximation by a Wiener walk through a
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coupling construction (cf. Lawler [43, Sects. 7.5, 7.6]). Note that a Wiener process
� does not necessarily have to be exactly a martingale; if it is a martingale, � will be
called a Wiener martingale.

Remark 2.14. If � is a Wiener process, then �.1/ is L2.P /.

Proof. In the first part of his proof of the radically elementary analogue of Wiener’s
characterization, Nelson [60, Proof of Theorem 18.1, part (i))(ii), p. 76] shows
exactly this. ut
Remark 2.15. Clearly, one can choose a finite probability space .�;P / in such a
way that there exists a Wiener walk (and hence a Wiener process) on .�;P /: Simply
let � D f˙p

dtgTnf1g, let P be the uniform distribution on �, and let

8s 2 T W.s/ D
X
t<s


.t/;

wherein 
.t/ W f˙p
dtgTnf1g ! f˙p

dtg, for any t 2 T n f1g, is the projection onto
the t-th Cartesian factor in f˙p

dtgTnf1g. Since P DN
t2Tnf1gP0 if P0 denotes the

uniform distribution on f˙p
dtg, it is obvious that the W thus defined is a Wiener

walk on .�;P /.3

In all that follows, we assume that W is a Wiener walk on .�;P /.
In a similar spirit, one can define a radically elementary analogue of Poisson’s

process. A Poisson walk on .�;P / is a process � D .�.t//t2T such that

• �.0/ D 0,
• d�.0/; : : : ; d�.1� dt/ are independent, and
• for all t 2 T n f1g,

P fd�.t/ D 0g D 1 � dt; P fd�.t/ D 1g D 1

2
dt; P fd�.t/ D �1g D 1

2
dt:

Remark 2.16. Again, it is easy to construct a finite probability space .�;P / in such
a way that there exists a Poisson walk on .�;P /: Let � D f�1; 0; 1gTnf1g, let P0
be a probability measure on f�1; 0; 1g defined by

P0f�1g D 1

2
dt; P0f0g D 1 � dt; P0f1g D 1

2
dt;

let P be the product measure P DN
t2Tnf1gP0, and let

8s 2 T �.s/ D
X
t<s


.t/;

3In Robinsonian nonstandard analysis, this Wiener walk is known as Anderson’s [4] construction
of the Wiener process.
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wherein 
.t/ W f1; 0; 1gTnf1g ! f�1; 0; 1g, for any t 2 T n f1g, is the projection
onto the t-th Cartesian factor in f�1; 0; 1gTnf1g. Clearly then, � will be a Poisson
walk on .�;P /.4

2.4 Distribution of the Wiener Walk

Benoı̂t [10, Proposition 4.2.1] has given an elementary proof which shows that a
Wiener walk at time t has essentially a Gaussian normal distribution with mean
zero and variance t :

Lemma 2.17 (Distribution of the Wiener walk). For any n 2 N \ Œ0; 1=dt � and
every k 2 Z \ Œ�n; n�,

P
n
W.n dt/ D k

p
dt
o

D 2�nnŠ�
nCk
2

�
Š
�
n�k
2

�
Š
;

hence for all limited x 2 R and all t 2 T with t � 0,

P
n
x � p

dt � W.t/ < x C p
dt
o

2
p

dt
' 1p

2
t
exp



�x

2

2t

�
:

The first, exact equation in this lemma is just elementary combinatorics. In order
to obtain the approximate formula, Benoı̂t [10, pp. 73–74] approximates—for x D
k

p
dt and t D n dt—the binomial coefficients by means of the infinitesimal Stirling

formula
8` ' 1 9" ' 0 `Š D .1C "/``e�`p`p2


(cf. van den Berg [11, Sect. 8.4.2, p. 180]),5 which is tantamount to

8` ' 1 9" ' 0 ln .`Š/ D


`C 1

2

�
ln ` � `C ln.2
/

2
C "

and can be applied to ` D n, ` D n C k and ` D n � k since n D t=dt ' 1
and k=n D p

dt x=t ' 0 (as t � 0 and x is limited); from there, the second-order
Taylor expansion of the logarithm function yields the result.

4In Robinsonian nonstandard analysis, this Poisson walk is known as Loeb’s [51] construction of
the Poisson process.
5One should note that this infinitesimal version of Stirling’s formula can also be proved in radically
elementary probability theory, cf. van den Berg [11, last paragraph on p. 172].
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2.5 Integrability and Limited Paths of the Wiener Walk

In Chap. 4, we shall present radically elementary versions of both Girsanov’s
theorem and the diffusion invariance principle. Because the density in Girsanov’s
theorem involves the exponential of W , it will be helpful to know that exp.W / is
integrable of any limited order.

Remark 2.18. exp .W.s// is Lp.P / for all s 2 T and every limited p > 0.

Proof. Let s 2 T. Since W.s/ D W.s/�W.0/ D P
t<s dW.t/, we have

E
h
exp .W.s//2p

i
D E

"
exp

 
2p
X
t<s

dW.t/

!#
D E

"Y
t<s

exp .2pdW.t//

#
;

and since the increments dW.0/; : : : ; dW.s � dt/ of W are independent and
identically distributed, we deduce

E
h
exp .W.s//2p

i
D
Y
t<s

E Œexp .2pdW.t//� D E Œexp .2pdW.0//�s=dt : (2.1)

Since p was assumed to be limited, a first-order Taylor expansion of exp yields the
existence of limited numbers a; b such that

exp.2p
p

dt/ D 1C 2p
p

dt C adt; exp.�2pp
dt/ D 1 � 2p

p
dt C bdt:

Hence, exploiting that exp.x/ D P1
kD0 xk=kŠ 	 1C x for all x 2 R�0,

E Œexp .2pdW.0//� D exp.2p
p

dt/C exp.�2pp
dt/

2
D 1C a C b

2
dt

� 1C jaC bj
2

dt � exp


 jaC bj
2

dt

�

and therefore by Eq. (2.1),

E
h
exp .W.s//2p

i
� exp


 ja C bj
2

dt

�s=dt

D exp



sjaC bj

2

�
:

Since a; b are limited, we arrive at

E
h
exp .W.s//2p

i
� 1: (2.2)

Combining estimate (2.2) with Remark 2.9, we obtain that exp .W.s//p D
exp .pW.s// is L1.P /, hence exp .W.s// is Lp.P /. ut
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To know that the exponential of the Wiener walk is L1 at any time, also means
that W is always a.s. limited at all times.

Corollary 2.19. W is a.s. limited.

Proof. Due to the Nelson’s Radon–Nikodym theorem (Remark 2.2) and the pre-
vious Remark 2.18, we see that E Œexp .W.1//� is limited. Since ex D P1

nD0 x
n

nŠ

and thus 2ex 	 x2 for all x 2 R, we conclude that E
h
jW.1/j2

i
is limited. By

the Cauchy–Schwarz inequality, this means that E ŒjW.1/j� is limited. Therefore,
Corollary 2.13 shows that W is a.s. limited. ut



Chapter 3
Radically Elementary Stochastic Integrals

3.1 Martingales and Itô Integrals

For any two processes �; �, the stochastic integral of � with respect to � is the
process

R
�d� defined by

Z s

0

�d� D
Z s

0

�.t/d�.t/ D
X
t<s

�.t/d�.t/

for all s 2 T. Note that d.t/D tCdt�t D dt for all t 2 Tnf1g, whence for the process
id D .t/t2T we have

R s
0
�d id D R s

0
�.t/d.t/ D R s

0
�.t/dt . (Since the radically

elementary approach to stochastic processes does not use conventional Riemann
integrals, there is no danger of confusion attached to the notation

R s
0
�.t/dt .)

Note that since � and T are finite, the expectation operator E and the finite
integral

R �dt always commute.

Theorem 3.1. Let .Gt /t2T be a filtration. A processm is a .G; P /-martingale if and
only if

R
�dm is a .G; P /-martingale for all G-adaptedm.

Proof. The constant deterministic process .1/t2T is clearly adapted and m can be
written as m D R

1dm.
Conversely, suppose m is a martingale and let � be G-adapted. Then for all t 2

T n f1g,
E Œ�.t/dm.t/jGt � D �.t/ E Œdm.t/jGt �„ ƒ‚ …

D0
D 0;

so
R
�dm is indeed a .G; P /-martingale. ut

Stochastic integrals with respect to W are also called Itô integrals. A martingale
with respect to F D .Ft /t2T (the filtration generated by W ) is just an Itô integral of
some adapted process, and vice versa:

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 3,
© Springer-Verlag Berlin Heidelberg 2013
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Theorem 3.2 (Martingale representation theorem and converse). A stochastic
process .mt/t2T is an .F; P /-martingale if and only if there exists a unique
F-adapted process � D .�t /t2Tnf1g such that for all s 2 T,

m.s/ D m.0/C
Z s

0

�.t/dW.t/:

E
h
jm.s/j2

i
is limited for all s 2 T if and only if E

hR 1
0

ˇ̌
�.t/2

ˇ̌
dt
i

is limited.

Proof. First, let m be a martingale. Let t 2 T n f1g. Since m is F-adapted, dm.t/ is
FtCdt -measurable and therefore, there is some f W Rt=dtC1 ! R such that

dm.t/.!/ D f .dW.0/.!/; : : : ; dW.t/.!//

for all ! 2 �. Therefore, exploiting that W has independent increments, each with

distribution
ıpdtCı�p

dt

2
, we obtain

E Œdm.t/jFt �
D E

h
f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�
	fdW.t/Dp

dtg
ˇ̌
ˇFt

i

CE
h
f
�

dW.0/; : : : ; dW .t � dt/ ;�p
dt
�
	fdW.t/D�p

dtg
ˇ̌̌
Ft

i

D f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�
P
n
dW.t/ D p

dt
o

Cf
�

dW.0/; : : : ; dW .t � dt/ ;�p
dt
�
P
n
dW.t/ D �p

dt
o

D 1

2
f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

C1

2
f
�

dW.0/; : : : ; dW .t � dt/ ;�p
dt
�

Since m is a martingale,E Œdm.t/jFt � D 0, hence

f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�

D �f
�

dW.0/; : : : ; dW .t � dt/ ;�p
dt
�
:

Defining

#.t/ D f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�
;
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we get

dm.t/ D f
�

dW.0/; : : : ; dW .t � dt/ ;
p

dt
�
	fdW.t/Dp

dtg
Cf

�
dW.0/; : : : ; dW .t � dt/ ;�p

dt
�
	fdW.t/D�p

dtg
D f

�
dW.0/; : : : ; dW .t � dt/ ;

p
dt
�
	fdW.t/Dp

dtg
�f

�
dW.0/; : : : ; dW .t � dt/ ;

p
dt
�
	fdW.t/D�p

dtg
D #.t/	fdW.t/Dp

dtg � #.t/	fdW.t/D�p
dtg

D #.t/dW.t/=
p

dt :

By definition, #.t/ is Ft -measurable. Hence, if we define �.t/ D #.t/=
p

dt , it is
also Ft -measurable and

dm.t/ D �.t/dW.t/:

Since t was arbitrary, this holds for any t , and yields, after writing m.s/ �m.0/ as
a telescoping sum,

m.s/ D m.0/C
X
t<s

dm.t/ D m.0/C
X
t<s

�.t/dW.t/:

If there were another process Q� D � Q�t
�
t2Tnf1g such that

R Q�dW D m D R
�dW ,

then for all t 2 T n f1g,

Q�.t/dW.t/ D dm.t/ D �.t/dW.t/;

whence Q�.t/ D �.t/ since dW.t/ D ˙p
dt ¤ 0, therefore Q� D �, proving the

uniqueness of �.
Conversely, suppose m.s/ D m.0/ C R s

0 �.t/dW.t/ for all s 2 T for some
F-adapted �. The definition of the stochastic integral and the F-adaptedness of W
imply that m is F-adapted. It remains to be shown that E Œdm.t/jFt � D 0 for all
t 2 T n f1g. This is straightforward:

E Œdm.t/jFt � D E Œ�.t/dW.t/jFt � D �.t/E ŒdW.t/jFt � D �.t/ E ŒdW.t/�„ ƒ‚ …
D0

:

By the Itô isometry (Lemma 3.4), one has

E
h
jm.s/j2

i
D E

	Z s

0

ˇ̌
�.t/2

ˇ̌
dt



;
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and the right-hand side is monotonely increasing in s. Hence,E
h
jm.s/j2

i
is limited

for all s 2 T if and only if E
�R s
0

ˇ̌
�.t/2

ˇ̌
dt
�

is. ut
Definition 3.3. A stochastic process � D .�.t//t2T is called a normalized martin-
gale (or just normalized) if and only if

8t 2 T n f1g E Œd�.t/jFt � D 0; E
�
.d�.t//2

ˇ̌
Ft
� D dt:

The Wiener walk W , for example, is normalized.

Lemma 3.4 (Radically elementary Itô isometry). Let m be a normalized mar-
tingale and � be an F-adapted stochastic process. Then for all s; v 2 T with s 	 v,

E

"ˇ̌
ˇ̌Z s

v

�.t/dm.t/

ˇ̌
ˇ̌2
ˇ̌
ˇ̌̌
Fv

#
D E

	Z s

v

�.t/2dt

ˇ̌
ˇ̌Fv



:

Proof.

E

"ˇ̌
ˇ̌Z s

v

�.t/dm.t/

ˇ̌
ˇ̌2
ˇ̌̌
ˇ̌Fv

#
D E

2
4
 

sX
tDv

�.t/dm.t/

!2 ˇ̌̌
ˇ̌
ˇFv

3
5

D 2
X

v�u<t<s

E Œ�.t/dm.t/�.u/dm.u/jFv�C
X
v�t<s

E
�
�.t/2dm.t/2

ˇ̌
Fv
�

D 2
X

v�u<t<s

E ŒE Œ�.t/dm.t/�.u/dm.u/jFt �jFv�

C
X
v�t<s

E
�
E
�
�.t/2dm.t/2

ˇ̌
Ft
�ˇ̌
Fv
�

D 2
X

v�u<t<s

E Œ�.t/E Œdm.t/jFt � �.u/dm.u/jFv�

C
X
v�t<s

E
�
�.t/2E

�
dm.t/2

ˇ̌
Ft
�ˇ̌
Fv
�

D 0C
X
v�t<s

E
�
�.t/2dt

ˇ̌
Fv
� D E

" X
v�t<s

�.t/2dt

ˇ̌̌
ˇ̌Fv

#

D E

	Z s

v

�.t/2dt

ˇ̌
ˇ̌Fv



:

ut



3.2 Radically Elementary Itô Processes 23

Remark 3.5. Nelson [60, deliberations following Theorem 13.1, p. 55] has shown
that if m is a normalized martingale such that dm.t/ is infinitesimal for all t 2
T n f1g, then m is P -a.s. continuous.

3.2 Radically Elementary Itô Processes

An Itô process is essentially an Itô integral plus an absolutely continuous process.

Definition 3.6. Let NW be a Wiener process, let �.0/ 2 R, and let � D .�.t//t2Tnf1g
and 
 D .
.t//t2Tnf1g be two F-adapted processes. A stochastic process � is called
an Itô process on .�;P / with respect to NW and with drift coefficient �, diffusion
coefficient 
 and initial value �.0/ if and only if

�.s/ D �.0/C
Z s

0

�.t/dt C
Z s

0


.t/d NW .t/

for all s 2 T. The equation

8t 2 T n f1g d�.t/ D �.t/dt C 
.t/d NW .t/

is called the stochastic differential equation solved by �.

The representation of an Itô process in the form � D �.0/ C R
�.t/dt CR


.t/dW.t/ is called Itô decomposition. Under certain assumptions, the Itô decom-
position is essentially unique. We give a proof under fairly restrictive assumptions
(recall that � denotes the normalized counting measure on T n fT g):

Theorem 3.7 (Uniqueness of the Itô decomposition). Let �1; �2; 
1; 
2 be F-
adapted processes. Suppose for all t 2 T n f1g, we have

�1.t/dt C 
1.t/dW.t/ D �2.t/dt C 
2.t/dW.t/CR .t C dt/ .dt/3=2 (3.1)

for someR.tCdt/ such thatE
� R 1

0
R.tCdt/2dt

�
is limited.1 AssumeE

� R 1
0

j�1.t/�
�2.t/j2dt

�
is limited. Then for P -a.e. ! 2 � and �-a.e. t 2 T n f1g,


1.t/.!/ ' 
2.t/.!/; �1.t/.!/ ' �2.t/.!/:

Proof. Put � D �1 ��2 and 
 D 
1 � 
2. We need to verify that for P -a.e. ! 2 �
and �-a.e. t 2 T n f1g, 
.t/.!/ ' 0 ' �.t/.!/.

1We denote this random variable by R .t C dt / rather than R .t/ because it is FtCdt -measurable,
but in general not Ft -measurable.
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For this purpose, first note that by definition of � and 
 and by the assumption
(3.1) in the Theorem, we have for all t 2 T n f1g,

�.t/dt D 
.t/dW.t/CR .t C dt/ .dt/3=2: (3.2)

Squaring both sides of this equality and afterwards rearranging terms yields
�.t/2.dt/2 � R .t C dt/2 .dt/3 � 2R .t C dt/ .dt/3=2dW.t/ D 
.t/2dt , hence
(dropping nonnegative terms and using the triangle inequality)

E

	Z s

0


.t/2dt



D
Z s

0

E
�

.t/2

�
dt

D
X
t<s

E
�
�.t/2

�
.dt/2 �

X
t<s

E
�
R.t C dt/2

�
.dt/3

�2
X
t<s

E ŒR .t C dt/ dW.t/� .dt/3=2

�
X
t<s

E
�
�.t/2

�
.dt/2 � 2

X
t<s

E ŒR .t C dt/ dW.t/� .dt/3=2

�
X
t<s

E
�
�.t/2

�
.dt/2

C2
X
t<s

jE ŒR .t C dt/ dW.t/�j .dt/3=2:

However, the last expression can be estimated, due to Jensen’s inequality, as follows:

jE ŒR .t C dt/ dW.t/�j � E
h
R .t C dt/2 dt

i1=2
;

so we actually have shown that

E

	Z s

0


.t/2dt



� E

	Z s

0

�.t/2dt



dt (3.3)

C2
X
t<s

�
E
h
R .t C dt/2

i
dt
�1=2

.dt/3=2:

In order to further simplify the right-hand side, we apply Jensen’s inequality again
(this time for the average on T \ Œ0; s/ as expectation operator):

X
t<s

�
E
h
R .t C dt/2

i
dt
�1=2

D card .T \ Œ0; s// 1

card .T \ Œ0; s//
X
t<s

�
E
h
R .t C dt/2

i
dt
�1=2



3.2 Radically Elementary Itô Processes 25

� card .T \ Œ0; s//
 

1

card .T \ Œ0; s//

X
t<s

E
h
R .t C dt/2

i
dt

!1=2

D card .T \ Œ0; s//1=2 E
	Z s

0

R .t C dt/2 dt


1=2
:

Inserting this into Eq. (3.3) and exploiting that card .T \ Œ0; s// D s=dt � 1=dt ,
hence card .T \ Œ0; s//1=2 D .dt/�1=2, we conclude that

E

	Z s

0


.t/2dt



� E

	Z 1

0

�.t/2dt



dt C 2E

	Z 1

0

R .t C dt/2 dt


1=2
dt:

However, by assumption, both E
hR 1
0
R .t C dt/2 dt

i
and E

hR 1
0
�.t/2dt

i
are lim-

ited, whence

E

	Z s

0


.t/2dt



D O.dt/ ' 0:

This entails that for P -a.e. ! 2 � and �-a.e. t 2 T n f1g, 
.t/.!/ ' 0 (by
Theorem 2.7).

In order to complete the proof, we also need to verify that�.t/.!/ ' 0 forP -a.e.
! 2 � and �-a.e. t . To achieve this, we first compute (the conditional expectation
of) �.t/dt . Now, according to Eq. (3.2), the latter term is the same as 
.t/dW.t/C
R .t C dt/ .dt/3=2, hence, using the Ft -linearity of the operatorE Œ �jFt �, we get

�.t/dt D E Œ�.t/dt jFt � D 
.t/ E ŒdW.t/jFt �„ ƒ‚ …
D0

CE ŒR .t C dt/jFt � .dt/3=2:

Therefore, �.t/ D E ŒR .t C dt/jFt � .dt/1=2, hence (applying the conditional
Jensen inequality)

�.t/2 D E ŒR .t C dt/jFt �2 dt

� E
h
R .t C dt/2

ˇ̌̌
Ft

i
dt:

It follows that

E

	Z 1

0

�.t/2dt



� E

	Z 1

0

E
h
R .t C dt/2

ˇ̌
ˇFt

i
dt



dt

D
Z 1

0

E
h
E
h
R .t C dt/2

ˇ̌̌
Ft

i
dt
i

dt



26 3 Radically Elementary Stochastic Integrals

D
Z 1

0

E
h
R .t C dt/2 dt

i
dt

D E

	Z 1

0

R .t C dt/2 dt



dt:

SinceE
hR 1
0
R .tCdt/2 dt

i
was assumed to be limited, we deduceE

hR 1
0
�.t/2dt

i
D

O.dt/ ' 0. This, however, means—again by Theorem 2.7—that �.t/.!/ ' 0 for
P -a.e. ! 2 � and �-a.e. t 2 T n f1g. ut

For special Itô processes one can prove their a.s. limitedness:

Lemma 3.8. If � is an Itô process with respect toW , with limited initial value �.0/,

with drift coefficient � and diffusion coefficient 
 . Suppose that E
hR 1
0 
.t/

2dt
i

is

limited and that � is a.s. limited. Then � is a.s. limited.

Proof. Since � is a.s. limited, it follows that a.s.
R s
0
�.t/dt is limited (because

a.s. maxt2Tnf1g j�.t/j is limited and maxs2T
ˇ̌R s
0
�.t/dt

ˇ̌ � maxt2Tnf1g j�.t/j), and
hence so is �.0/CR s

0
�.t/dt . What remains to be shown is that

R

dW is a.s. limited.

However,

E

"ˇ̌
ˇ̌Z 1

0


dW

ˇ̌
ˇ̌2
#

D E

	Z 1

0


.t/2dt




by the Itô isometry (Lemma 3.4), hence by the Cauchy–Schwarz inequality,

E

	ˇ̌̌
ˇ
Z 1

0


dW

ˇ̌̌
ˇ



� E

	Z 1

0


.t/2dt


1=2
;

and the right-hand side is limited by assumption. Since
R

dW is a martingale

(Theorem 3.2), we may apply the corollary to Nelson’s martingale inequality
(Corollary 2.13) and obtain that

R

dW is a.s. limited. Since we have already seen

that
R
�.t/dt is a.s. limited, we conclude that � is a.s. limited. ut

3.3 A Basic Radically Elementary Itô Formula

A function f W R ! R is said to be uniformly limited if and only if there is some
limited real C such that jf .x/j � C for all x 2 R. f is said to be limited if and
only if f .x/ is limited for all limited x 2 R.

If ! 2 � and � is a stochastic process, then �.!/ will also be called the
!-trajectory of �; a trajectory � W T0 ! R is said to be limited if and only if
�.t/ is limited for all t 2 T0.

Let now p 2 R. A trajectory � W T0 ! R is said to be o ..dt/p/ (limited,
respectively) if and only if maxt2T0 j�.t/j is o ..dt/p/ (limited, respectively).
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The following result, a basic radically elementary version of the Itô–Doeblin
formula, is essentially due to Benoı̂t [10, Proposition 4.6.1]. It allows to calculate
the increment process of a function of a Wiener walk plus linear drift.

Lemma 3.9 (Itô–Doeblin formula for Wiener walks with additive linear drift).
Let L.t/ D �t C 
W.t/ for all t 2 T for limited �; 
 2 R, and let f be a thrice
continuously differentiable function. Then for every s 2 T and every ! such that the
!-trajectories of f 00.L/ and f 000.L/ are o

�
.dt/�1=2

�
,

f .L.s/.!// � f .L.0/.!// '
Z s

0

f 0.L.t/.!//dL.t/.!/ (3.4)

C
2

2

Z s

0

f 00.L.t/.!//dt:

In particular, if f 00 and f 000 are uniformly limited, then the above formula (3.4)
holds for all ! 2 �.

Proof. Let us suppress the argument !. Fix t 2 T n f1g. Then, by the third-order
Taylor formula,

df .L.t// D f 0.L.t//dL.t/C 1

2
f 00.L.t// .dL.t//2 C 1

6
f 000.�.t// .dL.t//3 ;

for some �.t/ 2 ŒL.t/; L.t C dt/�. By assumption on L,

.dL.t//2 D �2.dt/2 C 2�
dt dW.t/C 
2dt;

hence
.dL.t//3 D �

�2dt C 2�
dW.t/C 
2
�3=2

.dt/3=2:

By assumption,

max
t2T\Œ0;s�

ˇ̌
f 00 .L.t//

ˇ̌ _ ˇ̌f 000 .L.t//
ˇ̌ D o

�
.dt/�1=2

�
;

so

ˇ̌̌
ˇf .L.s// � f .L.0// �

Z s

0

f 0.L.t//dL.t/ � 
2

2

Z s

0

f 00.L.t//dt
ˇ̌̌
ˇ

D
ˇ̌̌
ˇ̌X
t<s

df .L.t//f 0.L.t//dL.t/ � 
2

2
f 00.L.t//dt

ˇ̌̌
ˇ̌

D
ˇ̌
ˇ̌̌X
t<s



1

2
f 00.L.t//

�
�2.dt/2 C 2�
dt dW.t/

�
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C 1

6
f 000.�.t//

�
�2dt C 2�
dW.t/C 
2

�3=2
.dt/3=2

�ˇ̌ˇ̌

� C
X
t<s

1

2

ˇ̌
�2.dt/2 C 2�
dt dW.t/

ˇ̌

C1

6

ˇ̌̌�
�2dt C 2�
dW.t/C 
2

�3=2
.dt/3=2

ˇ̌̌

� C
s

dt



1

2
�2.dt/2 C j�
 jdt p

dt C 1

6

�
�2dt C 2j�
 jpdt C 
2

�3=2
.dt/3=2

�

� Cs



1

2
�2dt C j�
 jpdt C 1

6

�
�2dt C 2j�
 jpdt C 
2

�3=2 p
dt

�

' 0:

ut
In applications, one will rather often not be able to literally apply this version of

the Itô–Doeblin formula in Lemma 3.9, as it is usually not obvious how to establish
sufficient upper bounds on f 00.L/ of f 000.L/. Nevertheless, the proof idea—i.e. a
third-order Taylor expansion—will usually be applicable even in those settings. An
important example will be studied in Sect. 3.4 of Chap. 3, which is concerned with
a particularly simple class of Itô processes.

3.4 Analytic Excursion: A Radically Elementary Treatment
of Geometric Itô Processes with Monotone Drift

Geometric Itô processes are processes which satisfy a stochastic differential equa-
tion of the form

8t 2 T n f1g d�.t/ D �.t/�.t/dt C �.t/
.t/dW.t/ (3.5)

for some limited �.0/. For limited �; 
 , one can show that �.t/ > 0 for all t 2 T.
(See the proof of Lemma 3.10.) Hence, whenever�.t/ 	 0 for all t 2 T or �.t/ � 0

for all t 2 T, the drift coefficient of the Itô process � will be either monotonely
increasing or decreasing in t (for every fixed ! 2 �).

Such processes are of paramount importance in applications of Girsanov’s
theorem, in particular to mathematical finance, and therefore merit to be studied
in some detail. (For instance, the radically elementary analogue of the stock price
process of the classical Black–Scholes [18] model satisfies Eq. (3.5) for constant
limited �; 
 .) However, the main parts of the book—in particular our version of
Girsanov’s theorem—do not depend on the results of this Sect. 3.4.



3.4 A Radically Elementary Treatment of Geometric Itô Processes with Monotone Drift 29

Lemma 3.10. Let �; 
 be F-adapted limited processes, let � be the process given
by

8t 2 T n f1g d�.t/ D �.t/�.t/dt C �.t/
.t/dW.t/

for some limited �.0/ 2 R>0. Suppose that either �.t/ 	 0 for all t 2 T or �.t/� 0
for all t 2 T. Then, for all s 2 T, �.s/ is L1.P / with limited second moment.
Moreover, with probability 1, one has �.s/ > 0 for all s 2 T.

The proof uses a radically elementary analogue of the Harnack inequality.

Lemma 3.11 (Harnack inequality). Let ˛; � 2 R>0 and v W T ! R. If

8s 2 T v.s/ � ˛ C �

Z s

0

v.t/dt;

then
8s 2 T v.s/ � ˛e�s :

Proof of the Harnack inequality. The proof proceeds by induction on s 2 T.
Let C D e� and suppose v.s/ � ˛C t for all t < s. Then, using that e� dt DP1

nD0
�n.dt /n

nŠ
	 1C � dt , one obtains

v.s/ D ˛ C �

Z s

0

˛C tdt D ˛ C �˛

s=dt�1X
`D0

C ` dtdt

D ˛ C �˛
C s � 1

C dt � 1
dt D ˛



1C � dt

e�s � 1

e� dt � 1
�

� ˛



1C � dt

e�s � 1
� dt

�

D ˛e�s D ˛C s:

ut
Proof of Lemma 3.10. Since �; 
; �.0/ are limited, there must be some limited
C 2 R>0 such that j�.t/j _ j
.t/j _ �.0/ � C for all t 2 T. Combining this
estimate with the fact that Itô integrals are martingales (Theorem 3.2), the Itô
isometry (Lemma 3.4) and the Cauchy–Schwarz inequality, we may calculate for
all s 2 T,

E
�
�.s/2

�

D �.0/2 C 2�.0/

0
BBB@E

	Z s

0

�.t/�.t/dt



C E

	Z s

0

�.t/
.t/dW.t/



„ ƒ‚ …

D0

1
CCCA
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CE
"ˇ̌̌
ˇ
Z s

0

�.t/�.t/dt

ˇ̌̌
ˇ
2
#

C E

"ˇ̌̌
ˇ
Z s

0

�.t/
.t/dW.t/

ˇ̌̌
ˇ
2
#

C2E
	
Z s

0

�.t/�.t/dt

�
Z s

0

�.t/
.t/dW.t/

�


� �.0/2 C 2�.0/E

"ˇ̌
ˇ̌Z s

0

�.t/�.t/dt

ˇ̌
ˇ̌2
#1=2

CE
"ˇ̌
ˇ̌Z s

0

�.t/�.t/dt

ˇ̌
ˇ̌2
#

C E

	Z s

0

�.t/2
.t/2dt




C2E
"ˇ̌̌
ˇ
Z s

0

�.t/�.t/dt

ˇ̌̌
ˇ
2
#1=2

E

"ˇ̌̌
ˇ
Z s

0

�.t/
.t/dW.t/

ˇ̌̌
ˇ
2
#1=2

� �.0/2 C 2�.0/E

"ˇ̌
ˇ̌Z s

0

�.t/�.t/dt

ˇ̌
ˇ̌2
#1=2

CE
"ˇ̌
ˇ̌Z s

0

�.t/�.t/dt

ˇ̌
ˇ̌2
#

C E

	Z s

0

�.t/2
.t/2dt




C2E
"ˇ̌̌
ˇ
Z s

0

�.t/�.t/dt

ˇ̌̌
ˇ
2
#1=2

E

	Z s

0

�.t/2
.t/2dt


1=2
:

Note that 1
s

R s
0 �dt defines an expectation operator on T \ Œ0; s/. Applying Jensen’s

inequality, we find for arbitrary � and s 2 T,

ˇ̌
ˇ̌1
s

Z s

0

�.t/dt

ˇ̌
ˇ̌2 D s2

ˇ̌
ˇ̌1
s

Z s

0

�.t/dt

ˇ̌
ˇ̌2

� s2
1

s

Z s

0

�.t/2dt D s

Z s

0

�.t/2dt

�
Z s

0

�.t/2dt:

Applying this to � D �� in the above estimates, we obtain

E
�
�.s/2

� � �.0/2 C 2�.0/E

	Z s

0

�.t/2�.t/2dt


1=2

CE
	Z s

0

�.t/2�.t/2dt



C E

	Z s

0

�.t/2
.t/2dt
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C2E
	Z s

0

�.t/2�.t/2dt


1=2
E

	Z s

0

�.t/2
.t/2dt


1=2

� C2 C 2C 2 E

	Z s

0

�.t/2dt


1=2

CC2 E

	Z s

0

�.t/2dt



C C2 E

	Z s

0

�.t/2dt




C2C 2 E

	Z s

0

�.t/2dt


1=2
E

	Z s

0

�.t/2dt


1=2

� C2 C 2C 2 E

	Z s

0

�.t/2dt


1=2
C 4C 2 E

	Z s

0

�.t/2dt



:

Now, clearly x1=2 � 1C x for all x 	 0, whence

E
�
�.s/2

� � 3C 2 C 6C 2 E

	Z s

0

�.t/2dt



:

Applying the Harnack inequality (Lemma 3.11) with v W t 7! E
�
�.t/2

�
and suitable

˛ and � , we find thatE
�
�.s/2

�
is limited (as C is limited). Therefore, �.s/ isL1.P /

by Remark 2.9, and E Œj�.s/j� is limited (by the Cauchy–Schwarz inequality).
Now one can prove that �.t/ > 0 for all t 2 T. Indeed, let ! 2 � be such

that ft 2 T W �.t/.!/ � 0g is nonempty, and let t! C dt be its least element
(which must be 	 dt , as �.0/ > 0). Then, �.t!/.!/ > 0 while 0 	 �.t! C
dt/.!/ D �.t!/.!/ .1C �.t/.!/dt C 
.t!/.!/dW.t!/.!//, so 1 C �.t/.!/dt C

.t!/.!/dW.t!/.!/ � 0, hence either 
.t!/.!/ � � .1C �.t/.!/dt/ =

p
dt (if

dW.t!/.!/ D p
dt) or 
.t!/.!/ 	 .1C �.t/.!/dt/ =

p
dt (if dW.t!/.!/D�p

dt).
In either case, 
.t!/.!/ is unlimited (as � is limited and thus 1C �.t/.!/dt ' 1).
Hence the set of ! such that �.t/.!/ > 0 for all t 2 T is for every limited C 0 > 0 a
superset of the set of all ! 2 � such that j
.t/.!/j � C 0, and for sufficiently large
limited C 0, this set has probability 1, as 
 is a limited process.

Therefore, since�.t/ is either nonpositive for all t2T or nonnegative for all t 2 T,�R s
0
�.t/�.t/dt

�
s2T is either a decreasing or an increasing process. On the other

hand,
R
�
dW is a martingale (by the converse of the martingale representation

theorem, Theorem 3.2) as the recursive definition of � ensures its adaptedness, so
� D �.0/CR �.t/�.t/dtCR �.t/
.t/dW.t/ is a submartingale or a supermartingale.
Therefore, we may apply the corollary to Nelson’s super-/submartingale inequality
(Corollary 2.13), which, combined with the limitedness of �.0/ and E Œj�.s/j� (see
above), yields that � is a.s. limited. ut
Lemma 3.12. Let �; 
 be limited F-adapted stochastic processes, and let � be the
process defined by

d�.t/ D �.t/�.t/ dt C �.t/
.t/ dW.t/
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for all t 2 T n f1g, wherein �.0/ is a limited real number > 0. Suppose that either
�.t/ 	 0 for all t 2 T or �.t/ � 0 for all t 2 T. Then, a.s. for all s 2 T,

�.s/ ' �.0/ exp


Z s

0

�.t/dt C
Z s

0


.t/ dW.t/� 1

2

Z s

0


.t/2dt

�
: (3.6)

Hence, if �.0/ � 0, then a.s. for all s 2 T, �.s/ � 0.

Proof. Since 1
�.t/

d�.t/ D R s
0 �.t/dt C R s

0 
.t/ dW.t/ (the subtrahend in the
argument of the exponential function in Eq. (3.7)) it is enough to prove that

ln �.s/ � ln �.0/ '
Z s

0

1

�.t/
d�.t/� 1

2

Z s

0


.t/2dt;

and since

1

�.t/2
.d�.t//2 D �.t/2.dt/2C2�.t/
.t/dtdW.t/C
2dt D 
.t/2dtCO

�
.dt/3=2

�
;

it is actually enough to show that

ln �.s/ � ln �.0/ '
Z s

0

1

�.t/
d�.t/ � 1

2

Z s

0

1

�.t/2
.d�.t//2 : (3.7)

Now, since ln0 W x 7! 1=x, ln00 W x 7! �1=x2, ln000 W x 7! 2=x3, the third-order
Taylor formula yields for every t 2 T

d .ln �.t// D 1

�.t/
d�.t/ � 1

2

1

�.t/2
.d�.t//2 C 1

3

1

N�.t/3 .d�.t//
3

for some N�.t/ 2 Œ�.t/; � .t C dt/� [ Œ� .t C dt/ ; �.t/�, hence

ln �.s/ � ln �.0/ D
Z s

0

d .ln �.t// D
Z s

0

1

�.t/
d�.t/� 1

2

Z s

0

1

�.t/2
.d�.t//2

C1

3

Z s

0

1

N�.t/3 .d�.t//
3

for all s 2 T. All we need to prove therefore is that a.s. for all s 2 T,

Z s

0

1

N�.t/3 .d�.t//
3 D

Z s

0

�.t/3

N�.t/3 .�.t/dt C 
.t/dW.t//3 ' 0:

However, combining �.t/ > 0 with the fact that N�.t/ 2 Œ�.t/; �.t C dt/�[ Œ�.t C
dt/; �.t/�, one gets the following uniform bound:
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ˇ̌
ˇ̌�.t/N�.t/

ˇ̌
ˇ̌ � �.t/

�.t/ ^ �.t C dt/„ ƒ‚ …
D�.t/Cd�.t/

� 1 _ 1

1C �.t/dt C 
.t/dW.t/„ ƒ‚ …
'0

' 1 � 2:

Moreover, �.t/dt C 
.t/dW.t/ D O
�
.dt/1=2

�
, therefore we obtain indeed a.s.

Z s

0

�.t/3

N�.t/3 .�.t/dt C 
.t/dW.t//3„ ƒ‚ …
DO..dt /3=2/

D O
�
.dt/1=2

� ' 0:

ut

3.5 The Radically Elementary Version of Lévy’s
Characterization of Wiener Processes

One of the most remarkable results in Nelson’s Radically elementary probability
theory is a single, unified theorem, called “de Moivre–Laplace–Lindeberg–Feller–
Wiener–Lévy–Doob–Erdős–Kac–Donsker–Prokhorov theorem” by Nelson [60,
Chap. 18], which entails:

• The necessity and sufficiency of the Lindeberg–Feller condition for the central
limit theorem of de Moivre and Laplace.

• Wiener’s result about the a.s. continuity of the trajectories of Wiener processes.
• Donsker’s invariance principle.
• Lévy’s martingale characterization of Wiener processes.

The last item (Lévy’s martingale characterization of Wiener processes) is of great
importance in stochastic analysis and its applications. It means that whenever a
martingale (with respect to the filtration generated by a given Wiener process) has
the same quadratic variation as the Wiener process, it already is the Wiener process;
a related result is the theorem that the only path-continuous and square-integrable
martingale which has stationary and independent increments (i.e. is a Lévy process2)
is a (constant multiple of a) Wiener process.

Keeping in mind that the filtration generated by the Wiener process is a
particularly simple and natural one, Lévy’s martingale characterization informally
asserts that any martingale which has a few desirable properties will already be, up
to multiplicative constants, a Wiener process or the exponential of a Wiener process
plus a linear drift term (a geometric Wiener process). As a consequence, Lévy’s
martingale characterization can be fruitfully applied both within pure mathematics

2For more on Lévy processes—from the perspective of radically elementary probability theory—
see Chap. 9.
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(for instance, in the proof of Girsanov’s theorem, which establishes a relation
between changing the probability measure and adding a linear drift term to the
Wiener process) and in mathematical finance (as a mathematical rationale for the
adequacy of the Samuelson–Black–Scholes model).

Nelson’s unified result, which entails a radically elementary version of Lévy’s
martingale characterization, can be stated as follows:

Remark 3.13. (Cf. Nelson [60, Theorem 18.1, p. 75].) For a normalized martingale
.�.t//t2T with �.0/ D 0, the following three conditions are equivalent:

• � is a Wiener process,
• �.1/ is L2.P / and � is P -a.s. continuous,
• � satisfies the (near) Lindeberg condition, i.e.

E

2
4 X
t2Tnf1g

.d�.t//2

3
5 ' E

2
4 X
t2Tnf1g

�
d�.t/	fjd�.t/j�"g

�2
3
5

for all " � 0.



Chapter 4
The Radically Elementary Girsanov Theorem
and the Diffusion Invariance Principle

4.1 Girsanov’s Theorem

Lemma 4.1. Let � be a limited, F-adapted stochastic process, let � be the process
defined by �.0/ D 1 and d�.t/ D �.t/�.t/ dW.t/ for all t 2 T n f1g. Then, for all
s 2 T,

(1) �.s/ > 0 (with P -probability 1).
Moreover,

(2) � is an .F; P /-martingale.
(3) Q W A 7! R

A �.1/ dP is a finite probability measure.
(4) Q � Ft W A 7! R

A �.t/ dP for all t 2 T. (� is the density process of Q.)

By Lemma 3.8, � is a.s. limited.

Proof of Lemma 4.1.

(1) A particularly simple form of the argument in the proof of Lemma 3.10 can be
used here. Let ! 2 � be such that ft 2 T W �.t/.!/ � 0g is nonempty, and
let t! C dt be its least element (which must be > dt , as �.0/ D 1 and � is
limited, whence �.dt/ ' �.0/ � 0); for all other !0 2 �, put t!0 D 0. Then,
�.t!/.!/ > 0 and 0 	 �.t! C dt/.!/ D �.t!/.!/ .1C �.t!/.!/dW.t!/.!//,
so 1 C �.t!/.!/dW.t!/.!/ � 0, hence either �.t!/.!/ � �1=pdt (if
dW.t!/.!/ D p

dt) or �.t!/.!/ 	 1=
p

dt (if dW.t!/.!/ D �p
dt). In either

case, �.t!/.!/ is unlimited. Since� is finite, the minimum of j�.t!/.!/j for all
those ! 2 � with t! > 0 exists and must be an unlimited number, say C . Thus,

[
t2T

f�.t/ � 0g D f! 2 � W � .t! C dt/ .!/ � 0g

� f! 2 � W j�.t!/.!/j 	 C g �
[
t2T

fj�.t/j 	 C g ;
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and the right-hand side has probability zero since � was assumed to be limited.
(2) Fix s 2 T. Note that one can prove, via an induction on t , that �.s/ D �.0/CP

t<s �.t/�.t/dW.t/ is Fs-measurable. It follows that � is F-adapted. Hence, by
the converse of the martingale representation theorem (Theorem 3.2),

R
��dW

is a martingale, and so is � D �.0/C R
��dW .

(3) Part 1 of the lemma says that �.1/ > 0 with P -probability 1, and part 2 of the
lemma allows to calculate E Œ�.1/� D �.0/ D 1.

(4) Let t 2 T and A be Ft -measurable. Then, using that � is an .F; P /-martingale
(part 2 in the Lemma)

Q.A/ D
Z
	A�.1/ dP D

Z
	AE Œ�.1/jFt � dP D

Z
	A�.t/ dP:

ut
Theorem 4.2 (Girsanov’s theorem). Let � be limited and F-adapted stochastic
process, and let � andQ be as in Lemma 4.1. Define a process W G by

W G.0/ D 0; 8t 2 T n f1g dW G.t/ D dW.t/� �.t/dt:

Then,W G is a Wiener martingale on .�;Q/.

A simpler radically elementary version of Girsanov’s theorem (one which relates
the distribution of W G underQ to the distribution of W under P ) was established,
by means of a second-order Taylor expansion, by Benoı̂t [10, Theorem 4.6.1].

Proof. Our proof strategy is as follows: First, we shall prove that the process W Q,
defined by

W Q.0/ D 0; 8t 2 T n f1g dW Q.t/ D dW.t/� �.t/dtp
1 � �.t/2dt

;

is aQ-a.s. continuous normalized martingale on .�;Q/ withW Q.1/ beingL2.Q/.
Nelson’s radically elementary version of Lévy’s martingale characterization of
Wiener processes (see Remark 3.13) allows us then to deduce that W Q is a Wiener
process on .�;Q/. Thereafter, we will show that for all t 2 T, one has W G.t/ '
W Q.t/. This implies, due to yet another result of Nelson’s (see Remark 2.1), that
W G is nearly equivalent to W Q—and hence a Wiener process, too. In passing, we
shall see that W G is a Q-martingale (as W Q is a Q-martingale).

Let us first show that W Q is a normalized martingale: Exploiting parts 3 and 4
of Lemma 4.1 and using a general form of Bayes’ formula (which asserts that for
every s > t one has

�.t/EQ Œ zjFt � D E Œ�.s/zjFt � ; (4.1)
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wherein z is an Fs-measurable random variable and Q a probability measure,
equivalent to P , with density process �)1 we see

EQ
�

dWQ.t/
ˇ̌
Ft
� D 1

�.t/
E
�
�.t C dt/dW Q.t/

ˇ̌
Ft
�
:

Hence, resubstituting dWQ.t/ and using the definition of the increments of �, we
obtain

EQ
�

dWQ.t/
ˇ̌
Ft
�

D 1

�.t/
E

"
�.t C dt/

dW.t/� �.t/dtp
1 � �.t/2dt

ˇ̌
ˇ̌̌
Ft

#

D 1p
1 � �.t/2dt E

2
6664

D�.t/Cd�.t/‚ …„ ƒ
�.t C dt/

�.t/
.dW.t/� �.t/dt/

ˇ̌
ˇ̌
ˇ̌̌
ˇ̌
Ft

3
7775

D 1p
1 � �.t/2dt E Œ .1C �.t/dW.t// .dW.t/� �.t/dt/jFt �

D 1p
1 � �.t/2dt

�E
2
4dW.t/C �.t/ .dW.t//2„ ƒ‚ …

Ddt

��.t/dt � �.t/2dW.t/dt

ˇ̌
ˇ̌̌
ˇFt

3
5

D 1p
1 � �.t/2dt

0
@E ŒdW.t/jFt �„ ƒ‚ …

D0
��.t/2dt E ŒdW.t/jFt �„ ƒ‚ …

D0

1
A

D 0;

1Bayes’ formula can be proven as follows: For all s > t , every Fs-measurable z and every Ft -
measurable A, one has

Z
A

�.t/EQ Œ zjFt � dQ D
Z
A

EQ Œ �.t/zjFt � dQ

D
Z
A

�.t/z dQ D
Z
A

�.t/z�.s/ dQ

D
Z
A

�.t/�.s/z dP D
Z
A

�.s/z dQ

D
Z
A

E Œ �.s/zjFt � dQ:
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and similarly, one gets (using the definition of the increments of � as well as Bayes’
formula, Eq. (4.1))

EQ ŒdW.t/jFt � D 1

�.t/
E Œ�.t C dt/dW.t/jFt �

D E

2
6664

D�.t/Cd�.t/‚ …„ ƒ
�.t C dt/

�.t/
dW.t/

ˇ̌
ˇ̌
ˇ̌̌
ˇ̌
Ft

3
7775

D E Œ.1C �.t/dW.t// dW.t/jFt �

D E

2
4dW.t/C �.t/ .dW.t//2„ ƒ‚ …

Ddt

ˇ̌̌
ˇ̌
ˇFt

3
5

D E ŒdW.t/jFt �C �.t/dt D �.t/dt;

which leads to

EQ
h�

dW Q.t/
�2 ˇ̌̌

Ft

i

D 1

1 � �.t/2dt
EQ

2
64

Ddt‚ …„ ƒ
.dW.t//2 �2�.t/dt dW.t/C �.t/2.dt/2

ˇ̌
ˇ̌
ˇ̌̌Ft

3
75

D 1

1 � �.t/2dt

0
B@dt C �.t/2.dt/2 � 2�.t/dt EQ ŒdW.t/jFt �„ ƒ‚ …

D�.t/dt

1
CA

D 1

1 � �.t/2dt

�
dt � �.t/2.dt/2

� D dt

1 � �.t/2dt

�
1 � �.t/2dt

�

D dt:

Therefore, W Q is a normalized martingale on .�;Q/. Moreover, its increments
are infinitesimal as � is limited. Hence, W Q is Q-a.s. continuous by Remark 3.5.
In addition, since

p
1 � �.t/2dt dWQ.t/ D dW.t/ � �.t/dt D W G.t/ and � is

F-adapted, we have

EQ
�

dW G.t/
ˇ̌
Ft
� D

p
1 � �.t/2dtEQ

�
dW Q.t/

ˇ̌
Ft
� D 0

for all t 2 T n f1g, whenceW G is a martingale.
Next we shall show thatW Q.1/ is L2.Q/, and for that purpose, we first compute

EQ
�
W Q.1/4

�
. For some standard natural numbers C1; C2; C3; C4 (viz. limited
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integer multiples of certain multinomial coefficients), we have

EQ
�
W Q.1/4

�

D EQ

2
4
 X
t<1

dW Q.t/

!43
5

D C1E
Q

" X
r<s<t<u<1

dW Q.r/ dWQ.s/ dWQ.t/ dW Q.u/

#

CC2EQ

" X
r<s<t<1

dW Q.r/ dWQ.s/
�
dWQ.t/

�2#

CC3EQ

"X
s<t<1

�
dW Q.s/

�2 �
dW Q.t/

�2#

CC4EQ

" X
r<s<1

dWQ.r/
�
dWQ.s/

�3#C EQ

"X
r<1

�
dWQ.r/

�4#
:

Taking conditional expectations and exploiting the Fv-linearity ofEQŒ�jFv� for v D
t C dt; s C dt , we obtain

EQ
�
W Q.1/4

�

D C1E
Q

" X
r<s<t<u<1

dWQ.r/ dW Q.s/ dW Q.t/EQ
�

dW Q.u/
ˇ̌
FtCdt

�#

CC2EQ

" X
r<s<t<1

dWQ.r/ dWQ.s/EQ
h�

dW Q.t/
�2ˇ̌ˇFsCdt

i#

CC3EQ

"X
s<t<1

�
dWQ.s/

�2
EQ

h�
dWQ.t/

�2 ˇ̌ˇFsCdt

i#

CC4EQ

" X
r<s<1

dW Q.r/
�
dW Q.s/

�3#CEQ

"X
r<1

�
dW Q.r/

�4#
:

SinceW Q is a normalized martingale on .�;Q/, we haveEQ
�

dW Q.u/
ˇ̌
FtCdt

�D 0

and EQ
h�

dW Q.t/
�2ˇ̌ˇFsCdt

i
D dt for all u > t and t > s, hence

EQ
�
W Q.1/4

�

D C2dt EQ

" X
r<s<t<1

dW Q.r/ dW Q.s/

#
C C3dt EQ

"X
s<t<1

�
dW Q.s/

�2#
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CC4EQ

" X
r<s<1

dW Q.r/
�
dWQ.s/

�3#C EQ

"X
r<1

�
dW Q.r/

�4#

D C2dt E
Q

" X
r<s<t<1

dW Q.r/EQ
�

dW Q.s/
ˇ̌
FrCdt

�#

CC3dt
X
s<t<1

EQ
h�

dW Q.s/
�2i

CC4EQ

" X
r<s<1

dW Q.r/
�
dWQ.s/

�3#C EQ

"X
r<1

�
dW Q.r/

�4#

D C3dt
X
s<t<1

dt

CC4EQ

" X
r<s<1

dW Q.r/
�
dWQ.s/

�3#C EQ

"X
r<1

�
dW Q.r/

�4#

D C3.dt/2
X
s<t<1

1

CC4
X
r<s<1

EQ
h
dW Q.r/

�
dW Q.s/

�3iC
X
r<1

EQ
h�

dW Q.r/
�4i

:

However, for every t 2 T,

X
s<t<1

1 D
X
t<1

X
s<t

1 D
t=dt�1X
kD0

k�1X
iD0

1

D
t=dt�1X
kD0

k D 1

2

t

dt



t

dt
� 1

�
D 1

2.dt/2
t.t � dt/ <

1

2.dt/2
;

so C3.dt/2
P

s<t<1 1 < C3
2

, and similarly,
P

r<s<1 1 < 1
2.dt /2 . Also, clearly,P

r<1 1 D 1
dt .

Therefore, we can now estimate EQ
�
W Q.1/4

�
as follows:

EQ
�
W Q.1/4

� � C3

2
C C4

2.dt/2
max
r<s<1

EQ
h
dWQ.r/

�
dWQ.s/

�3i

C 1

dt
max
r<1

EQ
h�

dW Q.r/
�4i

� C3

2
C



C4

2.dt/2
C 1

dt

�
max
r;s<1

EQ
h
dWQ.r/

�
dW Q.s/

�3i
(4.2)
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However, since � is limited, there is some limited real number C such that

8t 2 T j�.t/j � C

(see Remark 2.10), whence we can establish an upper bound on the norm of the
increments of W Q:

8t 2 T
ˇ̌
dWQ.t/

ˇ̌ � jdW.t/j C j�.t/j dtp
1 � �.t/2dt � 2.

p
dt C Cdt/ � 3

p
dt;

whence for all r; s < 1,

ˇ̌
ˇdW Q.r/

�
dW Q.s/

�3ˇ̌ˇ � 81 .dt/2;

so

EQ
hˇ̌ˇdW Q.r/

�
dW Q.s/

�3 ˇ̌ˇi � 81 .dt/2:

Combining this with Eq. (4.2), we see that

EQ
�
W Q.1/4

� � C3

2
C 81 � C4

2
C 81dt � 1:

Hence, by Remark 2.9, it follows that W Q.1/ is L2.Q/.
Therefore, W Q is a Q-a.s. continuous normalized martingale on .�;Q/ with

W Q.1/ being L2.Q/. Thus, by Nelson’s radically elementary version of Lévy’s
martingale characterization of Wiener processes (see Remark 3.13),W Q is a Wiener
process on .�;Q/.

Using the limitedness of �, we now show that the process W G is infinitely close
to W Q, in the sense that W Q.t/ ' W G.t/ for all t 2 T. Indeed,

ˇ̌
dWQ.t/ � dW G.t/

ˇ̌ D jdW.t/� �.t/dt j
 

1p
1 � �.t/2dt

� 1

!
: (4.3)

The second factor on the right-hand side of Eq. (4.3) can be estimated using a first-
order Taylor expansion for the function x 7! 1p

1�x around x0 D 0 at x D �.t/2dt :

For all t 2 T, there exists some �.t/ 2 ���.t/2dt; �.t/2dt� such that

1p
1 � �.t/2dt

� 1 D 1

2 .1 � �.t//3=2
�.t/2dt:

Hence, exploiting that there is some limited real number C such that j�.t/j � C

holds for all t 2 T, we deduce that for all t 2 T,
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1p
1 � �.t/2dt

� 1 � 1

2 .1 � C2dt/3=2
C 2dt:

In order to estimate the first factor on the right-hand side of Eq. (4.3), it is enough
to note that as C limited, one has

jdW.t/ � �.t/dt j � jdW.t/j C j�.t/j dt � p
dt C Cdt � 2

p
dt

for all t 2 T.
Inserting these estimations into Eq. (4.3), we finally obtain

max
t2T

ˇ̌
W Q.t/ �W G.t/

ˇ̌ � max
t2T

X
s<t

ˇ̌
dWQ.s/ � dW G.s/

ˇ̌

� card.T/max
t2T

ˇ̌
dW Q.t/ � dW G.t/

ˇ̌

� 1

dt
max
t2T

jdW.t/� �.t/dt j
 

1p
1 � �.t/2dt � 1

!

� 1

dt

1

2 .1 � C2dt/3=2
C 2dt 2

p
dt

D C2

.1 � C2dt/3=2
p

dt

' 0:

(The last line holds since C and thus also C2

.1�Cdt /3=2
is limited.) This proves that

W Q.t/ ' W G.t/ for all t 2 T, just as claimed.
This implies (see Remark 2.1) that W Q and W G are equivalent. Hence, W G is

equivalent to a Wiener walk on .�;Q/, too. In other words,W G is a Wiener process
on .�;Q/. ut

4.2 The Radically Elementary Diffusion Invariance Principle

A corollary to Girsanov’s theorem is the diffusion invariance principle, which asserts
that under some technical conditions, the diffusion coefficient of an Itô process
remains essentially the same even when the probability measure is changed. A
number of definitions is necessary to state our—even though rather basic—radically
elementary version of this important result.

A probability measure Q on � is said to be P -continuous if and only if for all
subsets A of � with P.A/ D 0 also Q.A/ D 0 (equivalently, if for all ! 2 �, one
has Qf!g D 0 whenever P f!g D 0). The probability measures Q and P are said
to be equivalent if and only if Q is P -continuous and Q is P -continuous.
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The density of Q with respect to P is the random variable

dQ

dP
W ! 7!

(
Qf!g
P f!g ; P f!g > 0;
0; P f!g D 0:

The density process ofQ with respect toP is the stochastic process
�
E
h

dQ
dP

ˇ̌
ˇFt
i�
t2T

.

If Q is P -continuous, then

Q.A/ D
X
!2A

Qf!g D
X
!2A

dQ

dP
.!/P f!g D E

	
dQ

dP
	A



;

and for all t 2 T and Ft -measurable A,

Q.A/ D E

	
dQ

dP
	A



D E

	
E

	
dQ

dP
	A

ˇ̌̌
ˇFt




D E

	
E

	
dQ

dP

ˇ̌̌
ˇFt



	A



:

Remark 4.3 (Positive density process for equivalent measures). If Q is equivalent

to P , then dQ
dP > 0 (with P -probability 1) and therefore E

h
dQ
dP

ˇ̌
ˇFt

i
> 0 (with

P -probability 1) for all t 2 T.

Proof. If dQ
dP .!/ D 0 for some ! 2 �, then by the equivalence of P and Q, we

must have P f!g D 0. ut
Definition 4.4. Let � be a stochastic process. The quadratic-variation derivative of
� is the process h�i D .h�i.t//t2Tnf1g defined by

h�i.t/ D .d�.t//2

dt

for all t 2 T n f1g. The relative quadratic-variation derivative of � is the process� h�i.t/
�.t/2

	f�.t/¤0g
�
t2Tnf1g.

Corollary 4.5 (Diffusion invariance principle). Let Q be equivalent to P with
a density process that has a limited relative quadratic-variation derivative. Then,
there exists a Wiener martingale W G on .�;Q/ such that for all processes �; 

there is some process �
;Q such that for all s 2 T,

Z s

0

�.t/dt C
Z s

0


.t/dW.t/ D
Z s

0

�
;Q.t/dt C
Z s

0


.t/dW G.t/: (4.4)

Note that the left-hand side of Eq. (4.4) is an Itô process on .�;P / whilst the
right-hand side is an Itô process on .�;Q/—however, although under different
probability measures, the diffusion coefficients are the same.
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Proof. Let � be the density process of Q. By the tower property of conditional
expectations, � is a martingale. The martingale representation theorem (Theo-
rem 3.2) yields the existence of some adapted process � such that

d�.t/ D �.t/dW.t/

for all t 2 T n f1g. By Remark 4.3, �.t/ > 0 (with P -probability 1) for all t 2 T,
whence we may define

�.t/ D �.t/

�.t/

for all t 2 T. By assumption, there exists a limited C such that

.d�.t//2

�.t/2dt
� C;

hence

C 	 .�.t/dW.t//2

�.t/2dt
D


�.t/

�.t/

�2
D �.t/2;

whence � is limited, whilst by definition

d�.t/ D �.t/�.t/dW.t/:

Therefore, Girsanov’s theorem (Theorem 4.2) may be applied, and ensures that
W G D �

W.s/� R s
0 �.t/dt

�
s2T is a Wiener martingale on .�;Q/. Clearly,

�.t/dt C 
.t/dW.t/ D �.t/dt C 
.t/
�
dW G.t/C �.t/dt

�
D .�.t/C 
.t/�.t// dt C 
.t/dW G.t/

for every t 2 Tnf1g. As soon as we define�
;Q.t/ D �.t/C
.t/�.t/ for all t 2 T,
Eq. (4.4) is established. ut



Chapter 5
Excursion to Financial Economics:
A Radically Elementary Approach
to the Fundamental Theorems of Asset Pricing

What follows in this excursion is the attempt to construct a radically elemen-
tary version of continuous-time financial economics. Mathematicians sometimes
confuse financial economics with mathematical finance (also known as financial
mathematics) or even financial engineering. There is however, a profound difference
in interest and methodology between the two: While mathematical finance and
financial engineering are concerned with technical mathematical problems aris-
ing from the analysis of quantitative models of financial markets (in particular,
models used at financial institutions), financial economics is a subdiscipline of
economic theory and has a conceptual interest in understanding how financial
markets work.

In this excursion, we present a radically elementary approach to the fundamental
theorems of asset pricing. These theorems, while fairly elementary in the discrete-
time setting, are notoriously difficult to prove in a continuous-time framework and
were only established in their greatest generality in the mid-1990s by Delbaen and
Schachermayer [24, 25]. Our findings, while lacking the same technical strength
as the results by Delbaen-Schachermayer [24, 25], are incommensurably easier to
prove and allow nevertheless for a rigorous economic justification of the martingale
pricing method in very general continuous-time financial market models. The proof
ideas are similar to the discussion of the first fundamental theorem in the standard
textbook by Duffie [26].

First, we need to introduce some notation and terminology related to multi-
dimensional stochastic processes.

An m-dimensional tuple of real-valued stochastic processes X D .X.1/; : : : ;

X.m// is called an m-dimensional stochastic process.
For convenience, we shall omit the dot in the scalar product: If a; b 2 Rm, we

define ab D Pm
iD1 aibi , and more generally, if X D �

X.1/; : : : ; X.m/
�

and # D�
#.1/; : : : ; #.m/

�
are m-dimensional stochastic processes, we define #X to be the

real-valued process
Pm

iD1 #.i/X.i/ obtained by scalar multiplication.

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 5,
© Springer-Verlag Berlin Heidelberg 2013
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The m-dimensional increment dX is defined as the m-tuple of real-valued
stochastic processes given by applying the increment operator d componentwise:

dX D �
dX.1/; : : : ; dX.m/

�
:

If G is a filtration, then we shall say that an m-dimensional stochastic process X is
G-adapted if and only if X.i/ is G-adapted for all i 2 f1; : : : ; mg.

In the following, let X D �
X.1/; : : : ; X.m/

�
be a G-adapted m-dimensional

stochastic process, to be called the process of (discounted) asset prices.
Let # be another m-dimensional stochastic process. Let us adopt the following

definitions, which are ubiquitous in the asset pricing and financial economics
literature (cf. e.g. Duffie [26]):

• The process
R
#dX is called the (discounted) gains-from-trading process of #

given X . The random variable
R 1
0
#dX is the (discounted) terminal gains from

trading.
• The process #X is called the (discounted) value process of # given X . The

initial value of # given X is #.0/X.0/, and the (discounted) terminal value is
#.1/X.1/.

• The process # is said to be a self-financing trading strategy with respect to X if
and only if # is G-adapted and satisfies the intertemporal budget constraint

d.#X/.t/ D #.t/dX.t/

for all t 2 T.
• Let ‚.X/ be the set of all self-financing trading strategies with respect to X .

Since the increment operator d is linear, it is easy to prove that for all ˛; ˇ 2 R
and #; � 2 ‚.X/, them-dimensional process ˛#Cˇ� (defined componentwise)
is not only G-adapted, but also self-financing. In other words, ‚.X/ is a linear
space ofm-dimensional processes.

• The marketed space with respect to X , denoted M.X/, is the set of random
variables of the form #.1/X.1/ for some # 2 ‚.X/. Since ‚.X/ is a linear
space, it is immediate that M.X/ is a linear space of random variables.

For any real-valued random variable x, we shall write x 
 0 if and only if x �> 0
a.s. and there exists some event A such that both P.A/ � 0 and x.!/ � 0 for all
! 2 A. With this definition, we can now propose a radically elementary definition
of approximate arbitrage or free lunch with vanishing risk: A process # 2 ‚.X/ is
called a free lunch with vanishing risk (FLVR) or near arbitrage if and only if either

#.1/X.1/ 
 0 	 #.0/X.0/

or
#.1/X.1/ �> 0 � #.0/X.0/ a.s.
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Lemma 5.1. If there exists no FLVR, then the map  W M.X/ ! R defined by

 .#.1/X.1// D #.0/X.0/

is well-defined and linear.

Proof. That  is well-defined can be seen by contraposition: If  were not well-
defined, then there would exist #; � 2 ‚.X/ such that #.1/X.1/ D �.1/X.1/while
#.0/X.0/ ¤ �.0/X.0/. Let us say #.0/X.0/ < �.0/X.0/. Then

.# � �/.0/X.0/ < 0 D .# � �/.1/X.1/:

Hence, there exists some real ˛ > 0 such that

˛.# � �/.0/X.0/ � 0 D ˛.# � �/.1/X.1/:

On the other hand, ˛.#��/ 2 ‚.X/ as‚.X/ is a linear space. Therefore, ˛.#��/
is a FLVR.

Since ‚.X/ andM.X/ are linear spaces, one can easily check that  is linear.
ut

Lemma 5.2. Suppose there is no FLVR and assume that there exists some k 2
f1; : : : ; mg such that X.k/.t/ D 1 for all t 2 T. Then,  is strictly increasing in the
sense that for all x; y 2 M.X/,
• if x 	 y, then  .x/ 	  .y/, and
• if x 
 y, then  .x/ �  .y/.

Since  is linear, it would be enough to prove this for y D 0, but the proof is short
anyway.

Proof by contraposition. Consider x; y 2 M.X/, and let #; � be such that x D
#.1/X.1/ and y D �.1/X.1/, hence  .x/ D #.0/X.0/ and  .y/ D �.0/X.0/.

• First suppose x 	 y while  .x/ <  .y/. By the linearity of  , it follows that

.# � �/ .1/X.1/„ ƒ‚ …
Dx�y

	 0 > .# � �/ .0/X.0/„ ƒ‚ …
D .x/� .y/D .x�y/

:

Then # � � is a FLVR.
• Now suppose x 
 y while  .x/ �<  .y/. Again by the linearity of  , it follows

that
.# � �/ .1/X.1/„ ƒ‚ …

Dx�y

 0 �> .# � �/ .0/X.0/„ ƒ‚ …

D .x/� .y/D .x�y/
:

Let " D �.#��/.0/X.0/, let ek be them-dimensional process such that e.i/k D 1

(deterministic constant) if i D k and e.i/k D 0 otherwise. It then follows that
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.# � � C "ek/ .1/X.1/ D .# � �/ .1/X.1/C " 
 0 D .# � � C "ek/ .0/X.0/;

whence # � � C "ek is a FLVR.
ut

A probability measure Q is said to be

• near-equivalent to P , denoted Q � P , if and only if for all events A, one has
Q.A/ � 0 if and only if P.A/ � 0.

• a (near-)equivalent martingale measure forX underP (abbreviated: near-EMM)
if and only if Q � P and X is a .G;Q/-martingale.

Lemma 5.3. Suppose x is L1.Q/ for some probability measureQ withQ � P .

• If x �> 0 a.s., then EQ Œx� �> 0.
• If even x 
 0, then EQ Œx� � 0.

Proof. If x �> 0 a.s., there exists for all standard n 2 N some event N1=n such that
both P

�
N1=n

� � 1
n

and x.!/ �> 0, in particular x.!/ 	 � 1
n

, for all ! 2 N1=n.
Therefore, by the underspill/overspill principle in N (see Remark 1.1) there exists
some nonstandard n 2 N such that both P

�
N1=n

� � 1
n

and x.!/ 	 � 1
n

for all ! 62 N1=n. Since Q � P , also Q
�
N1=n

� ' 0. Hence, we have Q-a.s.
x ' x	�nN1=n , and since x is L1.Q/, the truncated random variable x	�nN1=n is
L1.Q/, too. Therefore, Nelson’s Lebesgue theorem (Remark 2.3) may be applied,
which yields

EQ Œx� ' EQ
�
x	�nN1=n

� 	 �1
n
Q
�
� nN1=n

�

	 �1
n

' 0

and thus establishes that EQ Œx� �> 0.
If even x
 0, then there exists some event A such that both P.A/ � 0 and

x.!/ � 0 on ! 2 A. Since � is finite, so is A, whence min!2A x.!/ exists and is
� 0. Hence, we can choose a limited c � 0 such that x.!/ 	 c for all ! 2 A.
Since Q � P , also Q.A/ � 0. In this situation, we get the following chain of
equations and estimates (exploiting that x.!/ 	 c for ! 2 A and x.!/ 	 � 1

n
for

! 62 N1=n):

EQ Œx� ' EQ
�
x	�nN1=n

�

D EQ
�
x	AnN1=n

�C EQ
h
x	�n.N1=n[A/

i

	 c Q
�
A nN1=n

� � 1

n
Q
�
� n �N1=n [ A

��
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	 c

0
B@Q.A/�Q

�
N1=n

�
„ ƒ‚ …

'0

1
CA � 1

n

' c„ƒ‚…
	0

Q.A/„ƒ‚…
	0

� 1

n„ƒ‚…
'0

� 0:

ut
An m-dimensional process # is said to be limited if and only if it has limited

norm, i.e. if the real-valued process j#j D
�P2

iD1
ˇ̌
#.i/

ˇ̌2�1=2
is limited.

The following theorem asserts that no trading strategy which satisfies a natural
integrability condition can be a FLVR; thus, up to technicalities, the existence of
a near-EMM is sufficient for the absence of FLVR. This result provides a rigorous
economic justification of the martingale pricing method.

Theorem 5.4 (First fundamental theorem of asset pricing, sufficiency part).
Suppose there exists a near-EMM Q for X . Then there is no FLVR among those
trading strategies which haveQ-integrable terminal gains from trading and limited
initial value (all with respect to X ).

Corollary 5.5. If there exists a near-EMM Q for X and X.1/ is L1.Q/, then no
limited trading strategy can be a FLVR with respect to X .

Proof of Theorem 5.4. Let # be a self-financing trading strategy such that
R 1
0
#dX

isL1.Q/ and #.0/X.0/ is limited. We need to prove that # cannot be a FLVR. Now,

#.1/X.1/ D
Z 1

0

#dX C #.0/X.0/

as # is self-financing, while
R
#dX is a .G;Q/-martingale (by Theorem 3.1, as NX

is a .G;Q/-martingale and # is G-adapted) with initial value 0. Thus,

EQ Œ#.1/X.1/� D #.0/X.0/:

Hence, whenever #.1/X.1/
0, we not only have EQ Œ#.1/X.1/� � 0 (by
Lemma 5.3), but even #.0/X.0/� 0, and whenever #.1/X.1/ �> 0, we have
EQ Œ#.1/X.1/� �> 0 (by Lemma 5.3) and thus #.0/X.0/ �> 0. Therefore, # cannot
be a FLVR. ut

We have seen that the existence of a near-EMM implies the absence of “well-
behaved” FLVR. Almost the converse is also true: The absence of FLVR implies the
existence of a near-EMM, hence the existence of a near-EMM is necessary for the
absence of FLVR.
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Theorem 5.6 (First fundamental theorem of asset pricing, necessity part).
Suppose X.k/ D 1 for some k 2 f1; : : : ; mg, and assume there is no FLVR with
respect to X . Then there exists a near-EMM Q.

The proof needs the following Lemma:

Lemma 5.7. Suppose there is no FLVR with respect to X . Then,  is near-
continuous in the sense that for all x; y 2 M.X/, if x ' y, then also .x/ '  .y/.

Proof of Lemma 5.7. Since  is linear, it is enough to prove this for y D 0. Let
x 2 M.X/ with x ' 0 and choose # 2 M.X/ such that x D #.1/X.1/ ' 0.
Suppose, for a contradiction, that #.0/X.0/ 6' 0. Then either #.0/X.0/ � 0, in
which case # is a FLVR, or #.0/X.0/ � 0, in which case �# is a FLVR. Thus, in
any case, there exists a FLVR, contradiction. ut
Proof of Theorem 5.6. We have already remarked that the marketed space M.X/
is a linear subspace of R�, and that  W M.X/ ! R is a well-defined, linear,
and strictly increasing map (Lemmas 5.1; 5.2). Let B be a basis of M.X/, and
choose a basis C of the orthogonal complementM.X/? of M.X/. Without loss of
generality, we can ensure that max !2�

Pf!g>0
jx.!/j D 1 for all x 2 C . Now define a

map ‰ W R� ! R such that ‰ � M.X/ D  and such that ‰ � M.X/? D EŒ��,
that is

8x 2 M.X/? ‰.x/ D EŒx�:

Note that ‰ is then a linear and increasing functional. By the Riesz representation
theorem applied to the finite-dimensional linear space R�, there must exist some
element of R�, henceforth denoted �.1/, such that

8x 2 R� ‰.x/ D
X
!2�

x.!/�.1/.!/ D E Œx�.1/� :

Since  is strictly increasing, one has ‰.x/ 	 0 for all x	 0. This entails
that �.1/ 	 0. Define Q W A 7! R

A
�.1/dP . It is clear that Q is a measure.

Moreover, since X.k/ D 1, there is a self-financing trading strategy, namely ek
(the m-dimensional process whose k-th coordinate is constantly 1 and whose other
coordinates are zero), such that both ek.1/X.1/ D 1 and ek.0/X.0/ D 1, therefore
 .1/ D 1, and thus ‰.1/ D 1, which means that E Œ�.1/� D 1. Therefore, Q is
even a probability measure.

Let us next show that Q is near-equivalent to P . Let A be an event. Then there
exist events A0; A00 such that 	A0 2 M.X/, 	A00 2 M.X/? and 	A D 	A0 C 	00

A

whilst by definition E Œ	A0	A00 � D 0, that is A D A0 [ A00 and P .A0 \ A00/ D 0.
Now suppose P.A/ � 0, then either P .A0/ � 0, in which case

Q.A/ 	 Q.A0/ D ‰ .	A0/ D  .	A0/ � 0
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since  is strictly increasing (Lemma 5.2) or P .A00/ � 0, in which case

Q.A/ 	 Q.A00/ D ‰ .	A00/ D E Œ	A00 � D P
�
A00� � 0

by definition of ‰ on M.X/?. Conversely, if Q.A/ � 0, then either Q.A0/ � 0,
in which case  .	0

A/ � 0 (by contraposition from Lemma 5.7) or Q .A00/ � 0, in
which case

0 � EQ Œ	A00 � D ‰ .	A00/ D E Œ	A00 � D P
�
A00� :

This proves that Q � P .
Finally, let us show that EQ

�
X.i/.�/

� D X.i/.0/ for all T [ fC1g-valued stop-
ping times � . This implies then that X is a .G;Q/-martingale. By the construction
of Q from ‰ and thus ultimately from  , it is enough to prove that  

�
X.i/.�/

� D
X.i/.0/. Thus we only have to find a self-financing trading strategy # such that
#.1/X.1/ D X.i/.�/ and #.0/X.0/ D X.i/.0/. However, one can easily convince
oneself that the strategy # defined by #.t/ D 	Œ0;�/.t/ei C 	Œ�;1�.t/

�
X.i/.�/ek

�
(i.e.

hold asset i up to time � , sell it, and invest the proceeds into asset k) meets this
requirement. ut
Remark 5.8 (Second fundamental theorem of asset pricing). An inspection of the
proof of Theorem 5.6 shows that, given the absence of FLVR with respect to X , the
choice of ‰ and thus of Q is unique if and only if X is a complete market model in
the sense that M.X/ D R�.

Having developed a radically elementary version of the fundamental theory of
asset pricing in continuous time, we should now at least examine whether it is
applicable to the radically elementary version of the (Samuelson-) Black–Scholes
model as well. The point of this is not to analyse the Black–Scholes model,
but rather to check the adequacy of the radically elementary economic theory
of continuous-time financial markets outlined in the preceding paragraphs. The
following deliberations simply serve as a demonstration that the theory devised in
this chapter is not vacuous, but is at least applicable to the most important model of
a continuous-time financial market.

First, let us describe very briefly the (Samuelson-) Black–Scholes model in
the language of radically elementary probability theory. The (radically elementary
version of the) Black–Scholes [18] model is defined on a probability space .�;P /
carrying a Wiener walk W that in turn generates a filtration F. It models a financial
market with a risky asset and a risk-free bond, and assumes that the discounted price
process of the risky asset X.2/ follows, under P , a geometric Itô process of the form

8t 2 T n f1g dX.2/.t/ D �X.2/.t/dt C 
 X.2/.t/dW.t/ (5.1)

D X.2/.t/ .� dt C 
 dW.t//

for some limited �; 
 2 R with 
 � 0 and limited X.2/.0/ � 0, whereas the
discounted price processX.1/ of the risk-free bond is, of course, just constantly D 1.
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Lemma 5.9. For the Black–Scholes model X D �
X.1/; X.2/

�
given by X.1/ D 1

and Eq. (5.1), there exists a unique near-EMMQ, given by

�.0/ D 1; 8t 2 T n f1g d�.t/ D ��


�.t/dW.t/: (5.2)

Hence, the Black–Scholes model admits no well-behaved FLVR (by Theorem 5.4)
and it is a complete market model in the sense that M.X/ D R� (by Remark 5.8).

Proof. For every probability measure Q, the density process � is a .P;F/

-martingale (by the tower property of conditional expectations) with �.0/ D 1

and hence, by the martingale representation theorem (Theorem 3.2), there exists an
adapted process � such that � D 1 C R

�dW . Now, X.2/ is a .Q;F/-martingale if
and only if EQ

�
dX.2/.t/

ˇ̌
Ft
� D 0 for all t 2 T n f1g, and Bayes’ formula (4.1)

allows us to simplify the latter equation as follows:

0 D EQ
�

dX.2/.t/
ˇ̌
Ft
�

D 1

�.t/
E

2
64 �.t C dt/„ ƒ‚ …

D�.t/Cd�.t/

dX.2/.t/

ˇ̌̌
ˇ̌
ˇ̌Ft

3
75

D E
�

dX.2/.t/
ˇ̌
Ft
�

„ ƒ‚ …
DX.2/.t/EŒ� dtC
 dW.t/jFt �DX.2/.t/� dt

C 1

�.t/
E

2
64 d�.t/„ƒ‚…

D�.t/dW.t/
dX.2/.t/„ ƒ‚ …

DX.2/.t/.� dtC
 dW.t//

ˇ̌
ˇ̌̌
ˇ̌Ft

3
75

D X.2/.t/� dt

C 1

�.t/
E

2
4X.2/.t/�.t/

0
@� dW.t/ dt C 
 .dW.t//2„ ƒ‚ …

Ddt

1
A
ˇ̌
ˇ̌
ˇ̌Ft

3
5

D X.2/.t/

�.t/

0
@��.t/ dt C �.t/

0
@� dt E ŒdW.t/jFt �„ ƒ‚ …

D0
C
 dt

1
A
1
A

D X.2/.t/

�.t/
.� �.t/C �.t/
/ dt:

Hence, X.2/ is a .Q;F/-martingale if and only if ��.t/ C �.t/
 D 0 for all t 2
T n f1g, hence �.t/ D ��



�.t/ for all t 2 T n f1g. In other words, X.2/ is a .Q;F/-

martingale if and only if the density process � of Q is the unique solution of the
stochastic differential equation
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8t 2 T n f1g d�.t/ D ��


�.t/dW.t/

with initial condition �.0/ D 1. Hence, if there exists a near-EMM for X , it must be
unique.

What remains to be shown is that the probability measure Q with the density
process � given by Eq. (5.2) is actually a near-EMM. We have already seen that
X.2/ and hence X D �

1;X.2/
�

is a .Q;F/-martingale by the choice of � and hence
of Q; we still need to show that Q � P .

Since 
 � 0 and � is limited, the fraction ��



is limited, hence Lemma 3.10

yields that �.1/ is L1.P /, whence Nelson’s Radon–Nikodym theorem (see
Remark 2.2) shows that for every A � � with P.A/ ' 0, we have Q.A/ ' 0.
For the converse implication, suppose that there were some A � � with Q.A/ ' 0

but P.A/� 0. Then, we must have P -a.s. �.1/	A ' 0, for otherwise there
would be some � � 0 with P f�.1/	A 	 �g � 0 (see Remark 2.4) and hence
Q.A/ D E Œ�.1/	A� 	 �P f�.1/	A 	 �g � 0. On the other hand, Lemma 3.12 can
be applied (as �



is limited and �.0/ � 0) to see that P -a.s. �.1/ � 0. Combining

this with the previously observed fact that P -a.s. �.1/	A ' 0, we see that P -a.s.
	A ' 0. Since 	A is a characteristic function and only assumes values from f0; 1g,
we conclude that P -a.s. 	A D 0. This implies that P .� nA/ D P f	A D 0g ' 1,
hence P.A/ ' 0 (see footnote 2 on page 8). ut



Chapter 6
Excursion to Financial Engineering:
Volatility Invariance in the Black–Scholes Model

It is well-known that the diffusion invariance principle conveys an important insight
for financial economics: when (logarithmic) Itô processes are used as models of
stock prices, the drift coefficient of the logarithmic price process is interpreted
as a measure for the expected return, and its diffusion coefficient is interpreted
as a measure for the volatility. In this context, the diffusion invariance principle
asserts roughly that under an equivalent change of probability measure, only the
expected returns will be affected, but not the volatilities. In particular, a price process
will have the same volatility under the real-world probability measure as under
an equivalent risk-neutral (i.e. arbitrage-free) probability measure; changing the
probability measure corresponds to changing the expected return (and vice versa).

If the logarithmic price process is just a multiple of the Wiener walk plus linear
drift (Black–Scholes [18] model; compare Eq. (5.1) with Lemma 3.12), then a result
with the same financial interpretation can be proved by purely elementary estimates,
as a consequence of the following theorem.

Theorem 6.1. Let 
 � 0 be limited. Then, for every limited � 2 R, there is a
unique q 2 .0; 1/ and a unique probability measureQ on� such that the increments

ofW are independent underQ withQ
n
dW.t/ D p

dt
o

D q for all t 2 T n f1g and

EQ
�
e
dW.t/

� D e� dt ;
1

dt
VarQ

�
e
dW.t/

� ' 
2 ' 1

dt
Var

�
e
dW.t/

�

for all t 2 T n f1g.Q is equivalent to P , the density being given by

dQ

dP
D .4q.1 � q// 1

2dt



q

1 � q

� 1

2
p

dt
W.1/

(6.1)

' exp



�W.1/ � �2

2

�
; (6.2)

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 6,
© Springer-Verlag Berlin Heidelberg 2013
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wherein

� D 1

2
p

dt
.ln.q/� ln.1 � q// (6.3)

D
��



� 


2

�p
dt C 
2

12
dt C O

�
.dt/3=2

�
;

q D e� dt � e�
p
dt

e

p

dt � e�
p
dt

(6.4)

D 1

2
C
� �
2


� 


4

�p
dt C 
2

12
dt C O

�
.dt/3=2

�
:

Proof. Let us first consider an arbitrary q 2 .0; 1/. Let Q be a probability measure
on � for which the increments of W are independent and distributed according to

Q
n
dW.t/ D p

dt
o

D q for all t 2 T n f1g. (Such a Q can be constructed by the

same procedure as in Remark 2.15.) First, we shall establish the density formula for
Q in Eq. (6.1) (which entails the uniqueness of Q given q). Let � W T ! R be a
trajectory of W . Then, P fW D �g D 2�1=dt and

Q fW D �g D qcardft2Tnf1g W d�.t/Dp
dtg.1 � q/cardft2Tnf1g W d�.t/D�p

dtg:

However,

card
n
t 2 T n f1g W d�.t/ D p

dt
o

Ccard
n
t 2 T n f1g W d�.t/ D �p

dt
o

D 1

dt

and

p
dt card

n
t 2 T n f1g W d�.t/ D p

dt
o

�p
dt card

n
t 2 T n f1g W d�.t/ D �p

dt
o

D �.1/;

whence

card
n
t 2 T n f1g W d�.t/ D p

dt
o

D 1

2dt
C �.1/

2
p

dt

and

card
n
t 2 T n f1g W d�.t/ D �p

dt
o

D 1

2dt
� �.1/

2
p

dt
:
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It follows that

Q fW D �g
P fW D �g D 2

1
dt q

1
2dt C �.1/

p

dt .1 � q/ 1
2dt � �.1/

2
p

dt

D .4q.1 � q// 1
2dt q

�.1/
p

dt .1 � q/
� �.1/

2
p

dt

D .4q.1 � q// 1
2dt



q

1 � q
� �.1/

2
p

dt

;

hence
dQ

dP
D .4q.1 � q//

1
2dt



q

1 � q

� W.1/

2
p

dt

:

In order to obtain the infinitesimal approximation in Eq. (6.2), we first rewrite the
exact formula for dQ

dP as

dQ

dP
D exp

 
1

2
p

dt
.ln.q/� ln.1 � q//W.1/

C 1
2dt .ln.q/C ln.1 � q/C 2 ln 2/

!

D exp



�W.1/C 1

2



1

dt
.ln.q/C ln.1 � q/C 2 ln 2/

��

and we note that for q D 1
2

C �
p

dt C ı dt C O
�
.dt/3=2

�
(for any limited �; ı), a

third-order Taylor expansion of the logarithm function around 1
2

yields

ln.q/ D � ln 2C 2�
p

dt C ı dt � 2�2dt C O
�
.dt/3=2

�
;

ln.1 � q/ D � ln 2 � 2�
p

dt � ı dt � 2�2dt C O
�
.dt/3=2

�
;

so

� D ln.q/ � ln.1 � q/
2
p

dt
D 2� C ı

p
dt C O.dt/;

ln.q/C ln.1 � q/C 2 ln 2

dt
D 4�2 C O

�
.dt/1=2

�
;

and therefore

�2 � ln.q/C ln.1 � q/C 2 ln 2

dt
D O

�
.dt/1=2

�
:

Put u D e

p

dt and d D e�
p
dt and let t 2 T. Since the distribution of dW.t/

underQ does not depend on t , clearly

EQ
�
e
dW.t/

� D qu C .1 � q/d D q.u � d/C d
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and

VarQ
�
e
dW.t/� D q.1 � q/.u � d/2

(the formula for the variance uses qu2 C .1� q/ d2 � .qu C .1� q/d/2 D
q .1 � q/ �u2 � 2ud C d2

�
), in particular (for q D 1=2)

Var
�
e
dW.t/

� D .u � d/2

4
;

which (through a third-order Taylor expansion of the exponential function around 0)
becomes

Var
�
e
dW.t/�

D 1

4



1C 


p
dt C 
2dt

2
� 1C 


p
dt � 
2dt

2
C O

�
.dt/3=2

��2

D 1

4

�
2


p
dt C O

�
.dt/3=2

��2 D 
2dt C O
�
.dt/3=2

�

Let us now fix qD e� dt�d
u�d as in the Theorem. By the above formula for

EQ
�
e
dW.t/

�
, this is the unique q that leads to EQ

�
e
dW.t/

� D e� dt . Moreover,
for such q, we have

VarQ
�
e
dW.t/� D q.1 � q/.u � d/2 D e� dt � d

u � d
u � e� dt

u � d .u � d/2

D �
e� dt � d

� �
u � e� dt � D e� dt .u C d/� ud„ƒ‚…

D1
�e2� dt

D e� dt
�

e

p

dt C e�
p
dt
�

� 1 � e2� dt

A third-order Taylor expansion of the exponential function around 0 yields

VarQ
�
e
dW.t/�

D �
1C � dt C O

�
.dt/2

��

�


1C 


p
dt C 
2dt

2
C 1 � 
p

dt C 
2dt

2
C O

�
.dt/3=2

��

�1 � �
1C 2� dt C O

�
.dt/2

��
D �

1C � dt C O
�
.dt/2

�� �
2C 
2dt C O

�
.dt/3=2

��
�2 � 2� dt C O

�
.dt/2

�
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D 2C 2� dt C 
2dt � 2 � 2� dt C O
�
.dt/3=2

�
D 
2dt C O

�
.dt/3=2

�

and a fourth-order Taylor expansion of the exponential function around 0 yields

q D 1C � dt � 1C 

p

dt � 
2

2
dt C 
3

6
.dt/3=2 C O

�
.dt/2

�
1C 


p
dt C 
2dt

2
� 1C 


p
dt � 
2dt

2
C O

�
.dt/3=2

�

D 

p

dt C .� � 
2=2/dt C 
3

6
.dt/3=2 C O

�
.dt/2

�
2


p
dt C O

�
.dt/3=2

�

D 1

2
C
� �
2


� 


4

�p
dt C 
2

12
dt C O

�
.dt/3=2

�
:

ut



Chapter 7
A Radically Elementary Theory of Itô Diffusions
and Associated Partial Differential Equations

7.1 Itô Diffusions

Definition 7.1 ((Time-homogeneous) Itô diffusions). Let t0 2 T n f1g and a; b W
R � Œ0; 1� ! R. A family � D .�.t//t2T\Œt0;1� is called an Itô diffusion with drift
coefficient function a and diffusion coefficient function b starting at time t0 if and
only if

d�.t/ D a .�.t/; t/ dt C b .�.t/; t/ dW.t/ (7.1)

for all t 2 T \ Œt0; 1/. If a; b are constant in the second argument, then � is called a
time-homogeneous Itô diffusion.

Equation (7.1) is called the diffusion equation of �.

Definition 7.2. For x 2 R, the unique Itô diffusion � with drift coefficient function
a and diffusion coefficient function b starting at time t0 with initial value �.t0/ D x

is denoted by �t0;x . If G is any subalgebra of the finite set 2� and f W Rm ! R, we
shall use the abbreviation

Et0;x Œf .�.t1/; : : : ; �.tm//jG� WD E
�
f
�
�t0;x.t1/; : : : ; �

t0;x.tm/
�ˇ̌
G
�
:

If x W � ! R, then Et0;x Œf .�.t1/; : : : ; �.tm//� shall denote the random variable
! 7! Et0;x.!/ Œf .�.t1/; : : : ; �.tm//�.

If t0 D 0, we shall suppress the first superscript, thus writing Ex and �x instead
of E0;x and �0;x , respectively.

The following result is another radically elementary version of the Itô–Doeblin
formula (cf. Benoı̂t [10, Proposition 4.6.1] for a special case); it is a straightforward
generalization of Lemma 3.9, but its statement and proof need some notational
effort.

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 7,
© Springer-Verlag Berlin Heidelberg 2013
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Lemma 7.3 (Itô–Doeblin formula). Let � be an Itô diffusion with drift coefficient
function a and diffusion coefficient function b starting at time t0, let f W R�Œt0; 1� !
R be thrice continuously differentiable, and let ! 2 � be such that the stochastic
processes a.�; �/, b.�; �/, f 00 .�; �/, f 000 .�; �/ have limited !-trajectories. Then for all
s 2 T \ Œt0; 1�, suppressing the argument !,

f .�.s/; s/ � f .�.t0/; t0/ '
Z s

t0

@1f .�.t/; t/ d�.t/C
Z s

t0

@2f .�.t/; t/ dt

C1

2

Z s

t0

@1;1f .�.t/; t/ b .�.t/; t/
2 dt

Proof. Let t 2 T \ Œt0; 1/. Note that jdW.t/j D p
dt , whence

jd�.t/j � ja .�.t/; t/j dt C jb .�.t/; t/j jdW.t/j D O
�
.dt/1=2

�
:

and thus
d�.t/dt D O

�
.dt/3=2

�
; jd�.t/C dt j3 D O

�
.dt/3=2

�
:

Moreover,

.d�.t//2 D a .�.t/; t/2 .dt/2 C 2a .�.t/; t/ b .�.t/; t/ dW.t/dt„ ƒ‚ …
DO..dt /3=2/

Cb .�.t/; t/2 .dW.t//2„ ƒ‚ …
Ddt

;

so
.d�.t//2 D b .�.t/; t/2 dt C O

�
.dt/3=2

�
:

Therefore, using the third-order Taylor formula and the symmetry of the Hessian
(Schwarz’s theorem),

df .�.t/; t/

D >



d�.t/
dt

�

@1f .�.t/; t/

@2f .�.t/; t/

�

C1

2
>



d�.t/
dt

�0B@
@1;1f .�.t/; t/ @1;2f .�.t/; t/

@2;1f .�.t/; t/„ ƒ‚ …
D@1;2f .�.t/;t /

@2;2f .�.t/; t/

1
CA



d�.t/
dt

�

CO
�
jd�.t/C dt j3

�

D @1f .�.t/; t/ d�.t/C @2f .�.t/; t/ dt
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C1

2

0
BB@@1;1f .�.t/; t/ .d�.t//2„ ƒ‚ …

Db.�.t/;t /2dtCO..dt /3=2/

C@2;2f .�.t/; t/ .dt/2
1
CCA

C@1;2f .�.t/; t/ d�.t/dt C O
�
jd�.t/C dt j3

�

D @1f .�.t/; t/ d�.t/C @2f .�.t/; t/ dt C 1

2
@1;1f .�.t/; t/ .d�.t//

2

CO
�
.dt/3=2

�

D @1f .�.t/; t/ d�.t/C @2f .�.t/; t/ dt C 1

2
@1;1f .�.t/; t/ b .�.t/; t/

2 dt

CO
�
.dt/3=2

�
:

Integrating this while noting that
R s
t0
O
�
.dt/3=2

�
dt D s�t0

dt O
�
.dt/3=2

� D O
�
.dt/1=2

�
' 0 (as T \ Œ0; s/ is finite) for all s 2 T, one obtains

f .�.s/; s/ � f .�.t0/; t0/ D
Z s

t0

df .�.t/; t/

'
Z s

t0

@1f .�.t/; t/ d�.t/C
Z s

t0

@2f .�.t/; t/ dt

C1

2

Z s

t0

@1;1f .�.t/; t/ b .�.t/; t/
2 dt

for every s 2 T, which already is the Itô–Doeblin formula. ut
As a corollary one obtains:

Corollary 7.4 (Dynkin’s formula). Let � be an Itô diffusion with drift coefficient
function a and diffusion coefficient function b starting at time t0 with �.t0/ D x,
assume that the stochastic processes a.�; �/ and b.�; �/ are limited, and let f W R �
Œt0; 1� ! R be thrice continuously differentiable with uniformly limited second- and
third-order derivatives. Then,

1

dt
E Œdf .�.t0/; t0/� ' @1f .x; t0/ a .x; t0/C @2f .x; t0/

C1

2
@1;1f .x; t0/ b .x; t0/

2 :

In the special case where f W R ! R,

1

dt
E Œdf .�.t0//� ' f 0 .x/ a .x; t0/C 1

2
f 00 .x/ b .x; t0/2 :
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Proof. From the Itô–Doeblin formula, we obtain

E Œdf .�.t0/; t0/� D @1f .�.t0/; t0/E Œd�.t0/�C @2f .�.t0/; t0/ dt

C1

2
@1;1f .�.t0/; t0/ b .�.t0/; t0/

2 dt

CO
�
.dt/3=2

�
:

This leads us, after noting that

E Œd�.t0/� D a .�.t0/; t0/ dt C b .�.t/; t/ E ŒdW.t0/�„ ƒ‚ …
D0

D a .�.t0/; t0/ dt

and that �.t0/ D x, to the desired result. ut

7.2 The Markov Property of Itô Diffusions
and the Feynman–Kac Formula

Whenever a; b W R ! R, we can view a and b as functions from R � Œ0; 1� !
R which are constant in the second argument. Then, any Itô diffusion with drift
coefficient function a and diffusion coefficient function b will be time-homogeneous
as defined in Definition 7.1.

The next result shows that time-homogeneous Itô diffusions also have another
property which might also be termed time-homogeneity.

Lemma 7.5 (Distribution-wise time-homogeneity). Let x 2 R, s 2 T n f1g
and a; b W R ! R (so that �x and �s;x are time-homogeneous). Then, the
joint P -distribution of �x.0/; : : : ; �x.1 � s/ equals the joint P -distribution of
�s;x.s/; : : : ; �s;x.1/.

Proof. Define a new process QW through

QW .t/ D W.s C t/ �W.s/

for all t 2 T \ Œ0; 1 � s�, so that QW .0/ WD 0 and d QW .t/ D dW.s C t/ for all
t 2 T \ Œ0; 1 � s/.

Inductively in t 2 T \ Œ0; 1 � s�, we shall prove that the joint P -distribution
of �x.0/; : : : ; �x.t/;W.0/; : : : ;W.1 � s/ equals the joint P -distribution of
�s;x.s/; : : : ; �s;x.s C t/; QW .0/; : : : ; QW .1 � s/. For the basis step (t D 0), one
only has to verify that W.0/; : : : ;W.1 � s/ have the same joint distribution as
QW .0/; : : : ; QW .1� s/. For the induction step, fix an arbitrary t 2 T \ Œ0; 1� s/, and

assume that the joint distribution of �x.0/; : : : ; �x.t/;W.0/; : : : ;W.1 � s/ equals
the joint distribution of �s;x.s/; : : : ; �s;x.s C t/; QW .0/; : : : ; QW .1 � s/. Let F be
the function
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F W R3 ! R; .y; z;w/ 7! y C a.y/dt C b.y/.z � w/:

Then, applying the diffusion equation of �, we have

�s;x.s C t C dt/

D �s;x.s C t/C d�s;x.s C t/

D �s;x.s C t/C a .�s;x.s C t// dt C b .�s;x.s C t// dW.s C t/

D F .�s;x.s C t/;W.s C t C dt/;W.s C t//

D F .�s;x.s C t/;W.s C t C dt/ �W.s/;W.s C t/ �W.s//

D F
�
�s;x.s C t/; QW .t C dt/; QW .t/�

and similarly

�x.t C dt/ D �x.t/C d�x.t/

D �x.t/C a .�x.t// dt C b .�x.t// dW.t/

D F .�x.t/;W.t C dt/;W.t// :

Our induction hypothesis implies that the joint distribution of �x.0/; : : : ; �x.t/;
W.0/; : : : ;W.1 � s/; F.�x.t/;W.t C dt/;W.t// equals the joint distribution of
�s;x.s/; : : : ; �s;x.s C t/; QW .0/; : : : ; QW .1 � s/; F.�s;x.s C t/; QW .t C dt/; QW .t//.
This completes the induction step, whence we have established that for every
t 2 T \ Œ0; 1 � s�, the joint distribution of �x.0/; : : : ; �x.t/;W.0/; : : : ;W.1 � s/

equals the joint distribution of �s;x.s/; : : : ; �s;x.s C t/; QW .0/; : : : ; QW .1 � s/. This
vacuously implies the result asserted in the lemma. ut
Theorem 7.6 (Markov property of time-homogeneous Itô diffusions). Let x 2
R and a; b W R ! R. For all s 2 T n f1g, t 2 T \ Œ0; 1 � s�, and f W R ! R

Ex Œf .�.s C t//jFs� D E�x.s/ Œf .�.t//� : (7.2)

Proof. Define a function g by

g W R �� ! R; .x; !/ 7! f .�s;x.s C t/.!// :

The set � being finite, one can find functions �k;  k , k 2 f1; : : : ; mg for m 2 N,
such that

g.x; !/ D
mX
kD1

�k.x/ k.!/

for all .x; !/ 2 R � �. (Simply choose m D card.�/, and letting � D
f!1; : : : ; !mg, define  k.!`/ D 1 if ` D k and  k.!`/ D 0 otherwise, and define
�k.x/ D g.x; !k/ for all k and x.)
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Note that by definition, �x.s C t/.!/ D ��
x.s/.!/.t/.!/ for all ! 2 � and

therefore
Ex Œf .�.s C t//jFs� D E Œg .�x.s/; �/jFs� ;

wherein g .�x.s/; �/ denotes, of course, the random variable ! 7! g .�x.s/.!/; !/.
It then follows from the choice of the functions �; and from the Fs-

measurability of �x.s/ that on the one hand

Ex Œf .�.s C t//jFs�

D E Œg .�x.s/; �/jFs� D E

"
mX
kD1

�k .�
x.s//  k

ˇ̌
ˇ̌̌
Fs

#

D
mX
kD1

�k .�
x.s// E Œ k jFs� D

mX
kD1

�k .y/E Œ k jFs�
ˇ̌̌
ˇ̌
yD�x .s/

D
mX
kD1

�k .y/E Œ kjFs�
ˇ̌̌
ˇ̌
yD�x .s/

D E

"
mX
kD1

�k .y/ k

ˇ̌̌
ˇ̌Fs

#ˇ̌̌
ˇ̌
yD�x .s/

D E Œg.y; �/jFs�jyD�x .s/ :

On the other hand, �s;y.s C t/ is, for every fixed y 2 R, a function of
dW.s/; : : : ; dW.sCt�dt/, all of which are independent of Fs; therefore, �s;y.sCt/
and hence f .�s;y.s C t// are independent of Fs , too. Moreover, the distribution of
�s;y.s C t/ equals the distribution of �y.t/ by the time-homogeneity result of
Lemma 7.5. Therefore,

E Œg.y; �/jFs� D E Œf .�s;y.s C t//jFs� D E Œf .�s;y.s C t//�

D E Œf .�y.t//� :

Combining this with the previously established equationEx Œf .�.s C t//jFs� D
E Œg.y; �/jFs�jyD�x .s/, we finally arrive at

Ex Œf .�.s C t//jFs� D E Œg.y; �/jFs�jyD�x .s/
D E Œf .�s;y.s C t//�jyD�x .s/
D E Œf .�y.t//�jyD�x .s/ ;

hence
Ex Œf .�.s C t//jFs� D E�x.s/ Œf .�.t//� :

ut
If u W R � T ! R, define—in analogy to the increment process �—for all .x; t/ 2
R � .T n f1g/,
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du.x; t/ D u.x; t C dt/ � u.x; t/:

If u W R�Œ0; 1� ! R is a function which is differentiable in the second argument and
can be defined internally without parameters, then one can verify that du.x; t/=dt '
@2u.x; t/ for all t 2 T n f1g and limited x 2 R.

Theorem 7.7 (Feynman–Kac formula). Let a; b W R ! R, let g W R ! R be
thrice continuously differentiable with uniformly limited second- and third-order
derivatives, and let u be the function

u W R � T ! R; .x; t/ 7! Ex Œg .�.t//� :

Then for all .x; t/ 2 R � .T n f1g/,
du.x; t/

dt
' @1u .x; t/ a .x/C 1

2
@1;1u .x; t/ b .x/

2 : (7.3)

Proof. Fix t 2 T n f1g. Since g is thrice continuously differentiable with uniformly
limited second- and third-order derivatives and� is finite, it is not difficult to prove
that u.�; t/ must also be thrice continuously differentiable with uniformly limited
second- and third-order derivatives @1u.�; t/, @1;1u.�; t/, @1;1;1u.�; t/. Hence, we may
apply Corollary 7.4 (Dynkin’s formula) to the function u.�; t/ and obtain for all
x 2 R,

1

dt
Ex Œu .�.dt/; t/ � u .�.0/; t/�

' @1u .x; t/ a .x/C 1

2
@1;1u .x; t/ b .x/

2 :

However, on the other hand, the Markov property of the Itô diffusion � and the
definition of u allow us to calculate

Ex Œu .�.dt/; t/� D Ex
�
E�.dt / Œg .�.t//�

� D E
h
E�x.dt / Œg .�.t//�

i

D E ŒE Œg .�x.t C dt//jFdt ��

D E Œg .�x.t C dt//� D u.x; t C dt/;

hence

Ex Œu .�.dt/; t/ � u .�.0/; t/� D u.x; t C dt/ � u.x; t/ D du.x; t/

for all x 2 R. Therefore, for all x 2 R,

1

dt
du.x; t/ ' @1u .x; t/ a .x/C 1

2
@1;1u .x; t/ b .x/

2 :

ut
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Our Feynman–Kac formula (7.3), whilst not being a classical partial differential
equation, constitutes for every fixed x 2 R a difference equation of infinitesimal
spacing in t (up to an infinitesimal). Such difference equations have been studied
extensively in the framework of Internal Set Theory (and successfully linked to
classical ordinary differential equations) by the Alsatian school of nonstandard anal-
ysis, following an initiative of Reeb and Callot; cf. Sari [69, 70] and van den Berg
[12, 14, 15].

The Feynman–Kac formula has proven to be fruitful in quantum mechanics. Con-

sider the semigroup



e�t

�
� „

2

2m�CV
��

t2Œ0;1�
generated by the Hamiltonian � „2

2m
�CV

of a particle of mass m moving in a potential V . Given any f W R ! R in the

domain of the operator, the function .x; t/ 7! e�t
�
� „

2

2m�CV
�
f .x/ is the solution u to

the initial value problem

@2u D �



� „2
2m

�C V

�
u D „2

2m
�u � V u:

The following Corollary 7.8 to the Feynman–Kac formula provides a proba-
bilistic interpretation of (infinitesimal approximations of) such partial differential
equations—and thus of the semigroup generated by the Hamiltonian—for the case
of dimension one.

Corollary 7.8 (Feynman integral). Let m 2 R>0, let V W R ! R be limited, let
f W R ! R be thrice continuously differentiable with uniformly limited second-
and third-order derivatives. For any x 2 R, let �x be the Itô diffusion given by
�x.t/ D x C „p

m
W.t/ for all t 2 T, and let u be the function

u W R � T ! R; .x; t/ 7! e�tV .x/Ex Œf .�.t//� :

Then for all t 2 T n f1g and all limited x 2 R,

du.x; t/

dt
' „2
2m

@1;1u .x; t/ � V.x/u .x; t/ : (7.4)

The proof of Corollary 7.8 uses the following radically elementary product rule
of stochastic differentiation, which is interesting in its own right: If f; g W Y �T ! R
for some set Y , then for all y 2 Y and t 2 T n f1g,

d.fg/.y; t/

D df .y; t/ dg .y; t/C df .y; t/ g .y; t/C f .y; t/ dg .y; t C dt/ (7.5)
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as an easy algebraic calculation shows.1

In addition, the proof of Corollary 7.8 uses the fact that whenever V W R ! R,
then for all t 2 T n f1g, one has

de�tV .x/

dt
' �V.x/e�tV .x/ (7.6)

for all x 2 R such that V.x/ is limited, which can be easily proven through a
second-order Taylor expansion of the exponential function.2

Proof. First, note that f is limited, on account of the uniform limitedness of its
second derivatives, as a second-order Taylor expansion shows.

Let Ou be the function .x; t/ 7! Ex Œf .�.t//�, so that u.x; t/ D e�tV .x/ Ou.x; t/ for
all x; t . Let x 2 R be limited and t 2 T n f1g. By Eq. (7.3) and the definition of
�, one has dOu.x;t/

dt ' „2
2m
@1;1 Ou .x; t/ and by the limitedness of V.x/ combined with

Eq. (7.6) also de�tV .x/

dt ' �V.x/e�tV .x/. Note that this implies that dOu.x;t/
dt is limited,

even uniformly in t (because @1;1 Ou is uniformly limited as f has uniformly limited

second-order derivatives), and de�tV .x/

dt is limited, too (because V.x/ is limited),

whence Ou.x; t/ is limited and moreover dOu.x;t/de�tV .x/

dt D dOu.x;t/
dt

de�tV .x/

dt dt ' 0.
Clearly, e�tV .x/ is limited as V.x/ is limited. Hence, the product rule (7.5) yields

1Indeed, by adding both 0D � f .y; t/ g .y; t C dt / C f .y; t/ g .y; t C dt / and 0 D
�df .y; t/ g .y; t/C df .y; t/ g .y; t/ on each side of the equation, one obtains

d.fg/.y; t/ D f .y; t C dt / g .y; t C dt /� f .y; t/ g .y; t/

D f .y; t C dt / g .y; t C dt /� f .y; t/ g .y; t C dt /

Cf .y; t/ g .y; t C dt /� f .y; t/ g .y; t/

D df .y; t/ g .y; t C dt /C f .y; t/ dg .y; t C dt /

D df .y; t/ dg .y; t/C df .y; t/ g .y; t/C f .y; t/ dg .y; t C dt / :

2Indeed,

de�tV .x/

dt
D �

e�tV .x/e�dtV .x/ � e�tV .x/
�
=dt

D e�tV .x/

0
BB@ e�dtV .x/ � 1„ ƒ‚ …

D�dtV .X/CO..dt/2/

1
CCA =dt

D �e�tV .x/V .x/:
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du.x; t/

dt
D dOu.x; t/

dt
e�tV .x/ C Ou.x; t/de�tV .x/

dt
C dOu.x; t/de�tV .x/

dt

' e�tV .x/ „2
2m

@1;1 Ou .x; t/ � V.x/e�tV .x/ Ou.x; t/

D „2
2m

@1;1
�
e�tV .x/ Ou .x; t/� � V.x/e�tV .x/ Ou.x; t/:

ut
All results in this work, including the Feynman–Kac formula, can easily

be generalized to multi-dimensional Itô diffusions, even with respect to multi-
dimensional Wiener walks. For instance, a d -dimensional Wiener walk can be
defined as a d -tuple

�
W .1/; : : : ;W .d/

�
of independent Wiener walks; equivalently,�

W .1/; : : : ;W .d/
�

is a d -dimensional Wiener walk if and only if

dW .1/.0/; : : : ; dW .1/.1 � dt/; : : : : : : : : : ; dW .d/.0/; : : : ; dW .d/.1 � dt/

is a finite sequence of independent random variables. Generalizing the Feynman–
Kac formula from dimension 1 to dimension d also allows for a d -dimensional
generalization of Corollary 7.8; this result will then be an infinitesimal approximate
probabilistic interpretation of the semigroup generated by the Hamiltonian of a
particle of mass m moving in a potential V on Rd .



Chapter 8
Excursion to Mathematical Physics:
A Radically Elementary Definition of Feynman
Path Integrals

In this excursion, which is inspired by Albeverio et al. [3, Sect. 6.6] and the classical
article by Nelson [58], we give another demonstration of the usefulness of radically
elementary mathematics in mathematical physics, by providing a rigorous, radically
elementary definition of Feynman path integrals in Minimal Internal Set Theory. A
summary of these ideas—combined with a brief introduction to radically elementary
mathematics for mathematical physicists and some references to previous attempts
at formalizing the Feynman path integral by means of nonstandard analysis—can be
found in [35].

Consider a particle of massmmoving in a potential V on Rk , with the initial state
(time 0) described by '0, and let  be the particle’s wave function. Mathematically,
this means that  is the solution of the Schrödinger equation:

i„@kC1 D H ;  .�; 0/ D '0

with H being the Hamiltonian operator

H D H0 C V; H0 D � „2
2m

�

(wherein we assume V to be Lebesgue measurable and '0 to be Lebesgue
square-integrable). The physical interpretation of  rests on the fact that j j2 is
a probability density and views—following the Copenhagen school of quantum
mechanics—j .x; t/j2 as the likelihood for the particle to be in x at time t .

The quest for a mathematically rigorous definition of the Feynman path integral
concerns the problem whether one can find, for any t > 0 and x 2 Rk , a
measure �tx on some space � of Rk-valued trajectories such that  .x; t/ is given byR

f�2� W �.t/Dxg exp
�

i
„St .�/

�
'0 .�.0//d�tx.�/, wherein St is the energy functional

on the path space � . If that were possible, the solution of the Schrödinger equation
at time t could be written, up to a constant, as the expected value of a very simple

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 8,
© Springer-Verlag Berlin Heidelberg 2013
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term with a straightforward physical interpretation—the mean being with respect to
a distribution on paths.

Since it is well known that  is, as a function of time, given by the semigroup
generated by the Hamiltonian, i.e.

8t > 0  .�; t/ D exp



� i

„ tH
�
'0;

the search for the Feynman path integral is tantamount to the problem
of writing exp

�� i
„ tH

�
', at least for sufficiently regular ', in the formR

f�2� W �.t/Dxg exp
�

i
„St .�/

�
' .�.0//d�tx.�/ .

Let us fix t > 0 and, for simplicity, let us consider a smooth ' with compact
support. By the Lie–Trotter product formula,

exp



� i

„ tH
�
' D lim

n!1



exp



� i

„
t

n
V

�
exp



� i

„
t

n
H0

��n
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Therefore, for sufficiently large (nonstandard) n,1 we have

exp



� i

„ tH
�
' '



exp



� i

„
t

n
V

�
exp



� i

„
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H0

��n
': (8.1)

On the other hand for all x 2 Rk
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�
'.x/ D
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i„
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t

n

��k=2 Z
Rk

exp



im

2„t=n jx � yj2
�
'.y/dy;

if the complex fractional power function z 7! z�k=2 is appropriately determined.
Thus for all x 2 Rk ,

exp
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„
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n
V

�
exp
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�
'.x/
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i„
m

t

n

��k=2 Z
Rk

exp



i

„
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m

2.t=n/2
jx � yj2 � V.x/

��
'.y/dy

1An analysis of the proof of the Lie–Trotter product formula (cf. e.g. Nelson [58, Appendix B,
proof of Theorem 9]) shows that the condition which n has to meet is

exp
�� i

„

t
n
H0

�
exp

�� i
„

t
n
V
�
 �  C i

„

t
n
H 

t=n
' 0:

At least when we impose limited bounds on m, V and  , this holds for all nonstandard n.
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and therefore, after defining

S .xn; : : : ; x0/ D
nX

jD1



m

2.t=n/2
jxj � xj�1j2 � V.xj /

�
t

n

for all x0; : : : ; xn 2 Rk , we obtain
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„
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n
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�
exp
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„
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n
H0

��n
'.x/ (8.2)

D
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��kn=2 Z
Rk

� � �
Z

Rk
exp



i

„S .x; xn�1 : : : ; x0/
�

'.x0/dx0 � � � dxn�1:

Combining Eq. (8.2) with the approximate identity (8.1), we arrive at

exp
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„ tH
�
'.x/ (8.3)

'
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i„
m

t

n

��kn=2 Z
Rk

� � �
Z

Rk
exp



i

„S .x; xn�1 : : : ; x0/
�

'.x0/dx0 � � � dxn�1:

Let us fix x 2 Rk and define a measure �.t;x/ on R.nC1/
k by

d�.t;x/.y; xn�1 : : : ; x0/ D


2


i„
m

t

n

��kn=2
dx0 � � � dxn�1 ıx.dy/

(wherein ıx is the Dirac measure concentrated on fxg) and introduce the convention
that E� always denotes a R.nC1/
k matrix with columns �n; � � � ; �0 (i.e., E� D
.�n; � � � ; �0/). Then we can rewrite Eq. (8.3) as

exp



� i

„ tH
�
'.x/ '

Z
R.nC1/�k

exp



i

„S
�E��

�
'.�0/d�.t;x/.E�/

D
Z

fxg
Rn�k

exp



i

„S
�E��

�
'.�0/d�.t;x/.E�/: (8.4)

Observe that one can interpret R.nC1/
k as a space of trajectories—with time-line of
cardinality nC 1—in Rk and S as an energy functional on those paths. Next define

� D
(
� W Œ0; t � ! Rk W � continuous;

8j 2 f1; : : : ; ng � �
h
.j�1/t
n
;
jt

n

�
affine-linear

)
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and

�x D f� 2 � W �.t/ D xg :

Then � Š R.nC1/
k , the isomorphism being

� 7! .�.t/; �.t � t=n/; � � � ; �.t=n/; �.0// ;

and under this isomorphism, �x is mapped to fxg � Rn
k . Denote the image of
� 2 � under this isomorphism by E� , again denoting its columns �n; � � � ; �0, and
define St .�/ D S.E�/ for all � 2 �x . Thereby, St can be viewed as an energy
functional on �x , for:

St.�/ D
nX

jD1



m

2.t=n/2
j�j � �j�1j2 � V.�j /

�
t

n

D
nX

jD1



m

2.t=n/2
j�.jt=n/� � ..j � 1/t=n/ j2 � V .�.jt=n//

�
t

n

D m

2

t

n

nX
jD1

ˇ̌
ˇ̌�.jt=n/ � � ..j � 1/t=n/

t=n

ˇ̌
ˇ̌2 � t

n

nX
jD1

V .�.jt=n//

D m

2

Z t

0

j P�.s/j2 ds �
Z t

0

V .�.s// ds;

wherein m
2

R t
0 j P�.s/j2 ds is the kinetic energy associated with the path � and

� R t
0
V .�.s// ds is its potential energy. (Note that, unlike in those parts of this

monograph that deal with stochastic analysis proper, we do employ conventional
Riemann integrals in the present excursion.)

Furthermore, the measure �.t;x/ on fxg � Rn
k induces a measure �tx on �x
under the isomorphism � 7! E� . Then finally, the approximate equation (8.4) can be
paraphrased

exp
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�
'.x/

'
Z
�x

exp
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„St .�/
�
' .�.0// d�tx.�/

D
Z

f�2� W �.t/Dxg
exp



i

„


m

2

Z t

0

j P�.s/j2 ds �
Z t

0

V .�.s// ds

��

' .�.0//d�tx.�/; (8.5)
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and
R

f�2� W �.t/Dxg � � � d�x is an actual measure-theoretic integral (with respect to the
measure �x) over all paths in � that satisfy �.t/ D x. Thus, Eq. (8.5) provides a
rigorous definition of the Feynman path integral—based on Minimal Internal Set
Theory.



Chapter 9
A Radically Elementary Theory of Lévy
Processes

9.1 Random Walks and Lévy Walks

Classically, a Lévy process is defined as a stochastically continuous process, pinned
to the origin, with independent and stationary increments (cf. e.g. Sato [71]). Lévy
processes have also been studied by the means of Robinsonian nonstandard analysis
(in particular by Lindstrøm [49] with sequels by Albeverio and Herzberg [2],
Lindstrøm [50], Albeverio et al. [1, Chap. 5], Herzberg and Lindstrøm [36] and
[33]). The nonstandard analogue of a Lévy process is, following Lindstrøm [49],
a hyperfinite Lévy process, that is a hyperfinite random walk which almost surely
does not become unlimited. Drawing on the ideas developed by Lindstrøm’s [49],
we shall now formulate a theory of random walks and Lévy walks in the setting of
radically elementary probability theory.

A random walk is a stochastic processes whose sequence of increments is
independent and such that all increments have the same distribution, given by a
finite (possibly unlimited) set of increments and a probability distribution on it.

Definition 9.1. A stochastic process L W T ! R� is a random walk on .�;P / if
and only if it satisfies all of the following:

(1) Pin to the origin. L.0/ D 0.
(2) Independence of increments. dL0; : : : ; dL1�dt are independent random vari-

ables.
(3) Stationarity of increments. For all s; t 2 T n f1g and all b 2 R,

P fdL.s/ D bg D P fdL.t/ D bg :

Remark 9.2 (and Definition). If L is a random walk, then there exists a finite set
A � R and a family .pa/a2A 2 Œ0; 1�A such that

P
a2A pa D 1 and

8t 2 T n f1g 8a 2 A P fdL.t/ D ag D pa:

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 9,
© Springer-Verlag Berlin Heidelberg 2013

77
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The set A is called the increment set and .pa/a2A the family of transition
probabilities of L. If A consists only of limited elements, then L is said to have
limited increments.

Proof. We define A D fa 2 R W P fdL.0/ D ag > 0g. This set is finite: For, given
any a 2 R, we can only have P fdL.0/ D ag > 0 if there exists some ! 2 � such
that dL.0/.!/ D a, and the set of such a is finite as � is finite. For all a 2 A, we
define

pa D P fdL.0/ D ag > 0:
ut

Remark 9.3. Given any finite setA � R and a family .pa/a2A 2 Œ0; 1�A, there exists
a probability space .�;P / and a Lévy walk L on .�;P / with increment set A and
transition probabilities .pa/a2A.

Proof. The same construction as in Remarks 2.15 and 2.16 can be used: Let P0 be
the probability measure onA defined byP0fag D pa for all a 2 A, put� D ATnf1g,
let P be the product probability measure P D N

t2Tnf1g P0, and let

8s 2 T L.s/ D
X
t<s


.t/;

wherein 
.t/ W ATnf1g ! A, for any t 2 T n f1g, is the projection onto the t-th
Cartesian factor in ATnf1g. ut

A Lévy walk is a random walk which is almost surely limited:

Definition 9.4. A Lévy walk is a random walk which is a.s. limited.

Examples are the Wiener walk or the Poisson walk; for these processes, the a.s.
limitedness follows from the corollary to Nelson’s radically elementary martingale
inequality (Corollary 2.13).

An alternative characterization of Lévy walks will be provided later on in
Theorem 9.9.

Remark 9.5. Obviously, a random walk L is a Lévy walk if and only if

P

�
max
t2T

jL.t/j 	 k

�
' 0

for all unlimited k > 0.

Proof. Indeed, if maxt2T jL.t/j is a.s. limited, then for every " � 0 there
exists some set N with P fmaxt2T jL.t/j 	 kg � P.N/ � ". Conversely, if
P fmaxt2T jL.t/j 	 kg ' 0 for all unlimited k > 0, then for every " > 0, the inter-
nal formula P fmaxt2T jL.t/j 	 kg < " is satisfied for all unlimited k and thus, by
underspill (Remark 1.1) also for some limited k". The eventN" D fmaxt2T jL.t/j 	
kg has then probability< ", but maxt2T jL.t/j is limited on its complement. ut
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Let us now fix a random walk L with increment set A and transition probabilities
.pa/a2A which is not constantly D 0.

Definition 9.6. The drift coefficient �L and the diffusion coefficient 
L of L are
defined by

�L D 1

dt

X
a2A

apa D 1

dt
E ŒdL.0/� ;


L D


1

dt
E
h
jdL.0/j2

i�1=2
D
 
1

dt

X
a2A

a2pa

!1=2
:

The following lemma translates a result by Lindstrøm [49, Lemma 1.2]; its proof
can essentially be copied directly from Lindstrøm’s original proof:

Lemma 9.7. For every s 2 T,

E
�
L.s/2

� D 
2Ls C �2Ls.s � dt/:

(Cf. Lindstrøm [49, Lemma 1.2]).

Proof. Fix s 2 T. Clearly,

L.s/2 D
 X
t<s

dL.t/

! X
u<s

dL.t/

!

D
X
t<s

jdL.t/j2 C 2
X

u<t<s

dL.t/dL.u/:

However, dL.t/ and dL.u/ are independent for all u < t and have the same
distribution as dL.0/, so

E ŒdL.t/dL.u/� D E ŒdL.t/� E ŒdL.u/� D E ŒdL.0/�2 D �2L.dt/
2

and
E
h
jdL.t/j2

i
D E

h
jdL.0/j2

i
D 
2Ldt:

Therefore,

E
�
L.s/2

� D
X
t<s


2Ldt C 2
X

u<t<s

�2L.dt/
2

D s

dt

2Ldt C 2

.s=dt/.s=dt � 1/
2

�2L.dt/
2:

ut
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9.2 Integrability of Lévy Walks with Limited Increments

We have the following integrability result for Lévy walks with limited increments,
which corresponds to Lindstrøm’s integrability theorem for hyperfinite Lévy pro-
cesses [49, Theorem 2.3]. The proof is by and large a translation of Lindstrøm’s
arguments into the setting of radically elementary probability theory. We will denote
by G the filtration generated by L.

Theorem 9.8. If L is a Lévy walk with limited increments, then L.t/ is Lp for all
t 2 T and all limited p > 0. (Cf. Lindstrøm [49, Theorem 2.3].)

Proof of Theorem 9.8. For all K 2 N, define

�K WD min ft 2 T W jL.t/j 	 Kg

with the usual convention min ¿ D 1. (Then �K is a stopping time: For all
t 2 T, the event f�K � tg is Gt -measurable.) Since L is a Lévy walk, we have
P f�K D 1g ' 1. Therefore,

P

�
�K >

1

2

�
>
1

2

for all nonstandard K , hence by Underspill in N (Remark 1.1) even for all
sufficiently large standard K , in particular for some K which is > maxa2A jaj. Fix
such a K and define

˛ D E Œe��K �

(with the convention that e�1 D 0). The choice of K means that ˛ � 1.
Now define a sequence .�n/n�N of stopping times recursively by �0 D 0 and

8n < N �nC1 D min ft 2 T W t > �n; jL.t/ � L.�n/j 	 Kg ;

so that �1 D �K . From the fact that L has independent and stationary increments,
one can show that the random variables �1��0; : : : ; �N ��N�1 are independent and
all have the same distribution as �1 � �0, that is �K . Therefore, for all n � N ,

E Œe��n � D E Œexp .� .�n � �0//� D E

"
exp

 
�
n�1X
`D0

�`C1 � �`

!#

D E

"
n�1Y
`D0

exp .� .�`C1 � �`//
#

D
n�1Y
`D0

E Œexp .� .�`C1 � �`//� D
n�1Y
`D0

E Œe��K � ;
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in other words,
E Œe��n � D ˛n: (9.1)

On the other hand, K was chosen such that K > maxa2A jaj D max jdL.0/j and
thus (for any n < N ) the minimal t > �n satisfying jL.t/ � L.�n/j 	 K must also
satisfy jL.t/ �L.�n/j < 2K (otherwise there would be a smaller t > �n such that
jL.t/ �L.�n/j 	 K). Hence, for all n < N

jL.�nC1/ �L.�n/j < 2K;

whence fjL.t/j 	 2nKg � ft > �ng for any t 2 T and n � N and therefore

e�t P fjL.t/j 	 2nKg � e�t P f�n < tg � E Œe��n � :

By Eq. (9.1), this yields

P fjL.t/j 	 2nKg � et ˛n: (9.2)

Since N D 1=dt and K was chosen to be > maxa2A jaj, we have

jL.t/j � t

dt
max
a2A jdL.t/j � 1

dt
max
a2A jaj � KN:

Moreover, since K was chosen to be limited and ˛ � 1, we can find some " � 0

such that ˛e2K" � 1. Then, estimate (9.2) allows us to calculate for all t 2 T,

E
h
e" jL.t/j

i
�
X
n<N

E
h
	f2nK�jL.t/j<2.nC1/Kge" jL.t/j

i

�
X
n<N

P f2nK � jL.t/j < 2.nC 1/Kg e2.nC1/K"

�
X
n<N

P f2nK � jL.t/jg e2.nC1/K"

�
X
n<N

et˛ne2.nC1/K" � ete2K"
X
n<N

�
˛e2K"

�n

� ete2K"
1 � �

˛e2K"
�N

1 � ˛e2K"
;

and the right-hand side is limited since " chosen such that ˛e2K" � 1. Hence, we
already have E

�
e" jL.t/j� � 1.

Now, for every p 2 N, the Taylor expansion of order p of the exponential
function around 0,

e" jL.t/j 	 1C "p

pŠ
jL.t/jp :
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Since we have already seen that E
�
e" jL.t/j� � 1, we may concluded that

E
�jL.t/jp� � 1 for all standard p 2 N. Therefore, by Remark 2.9,L.t/ isLq.P /

for every limited q > 0 and every t 2 T. ut

9.3 Lindstrøm’s Characterization of Lévy Walks

We shall now turn to a characterization of Lévy walks which can be used to examine
whether a given random walkL is a Lévy walk (Theorem 9.9). This result is a direct
translation of a theorem by Lindstrøm [49, Theorem 4.3] into our framework of
radically elementary probability theory. Most of the proof and the auxiliary results
that prepare it can be directly adapted from Lindstrøm’s paper [49], as they only
involve combinatorics, some elementary, although non-trivial estimates, and the
underspill principle, all of which can be done in minIST. The only significant
exception is Auxiliary Lemma 9.10 (the analogue of Lindstrøm’s [49, Corollary
2.4]) which depends on martingale theory.

In order to state the radically elementary analogue of Lindstrøm’s characteriza-
tion of Lévy walks, let us fix some notation. For all k 2 R, it will be helpful to
define truncated processes L�k and L>k as follows.

8s 2 T L�k.s/ D
X
t<sjdL.t/j�k

dL.t/;

L>k.s/ D
X
t<sjdL.t/j>k

dL.t/ D L.s/ � L�k.s/:

Clearly, L�k and L>k are random walks. In addition, we define

qk D 1

dt

X
jaj>k
a2A

pa:

Moreover, for all m 	 k 2 R, we define

8s 2 T L.k;m�.s/ D
X
t<s

k<jdL.t/j�m

dL.t/:

Theorem 9.9 (Lindstrøm’s characterization of Lévy walks). L is a Lévy walk if
and only if the following conditions are met:

• For all limited, yet non-infinitesimal k 2 R,
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1

dt

ˇ̌
ˇ̌̌
ˇ̌
X
jaj�k
a2A

apa

ˇ̌
ˇ̌̌
ˇ̌ � 1:

• For all limited k 2 R,
1

dt

X
jaj�k
a2A

jaj2pa � 1:

• For all non-infinitesimal " > 0, there is a standard n 2 N such that for every
k 	 n, qk < ": (Equivalently: qk ' 0 for all unlimited k 2 R.)

Now we shall give our translation of Lindstrøm’s proof into the setting of
radically elementary probability theory. Just as in Lindstrøm’s original proof, it
is helpful to first establish a series of auxiliary statements (cf. Lindstrøm [49,
Corollary 2.4; Lemma 3.1; Lemma 3.2; Corollary 3.3; Corollary 4.2]). Only in the
proof of Auxiliary Lemma 9.10 will we have to deviate from Lindstrøm’s reasoning,
as we cannot invoke the martingale theory of Robinsonian nonstandard analysis;
unsurprisingly, we will employ Nelson’s [60] radically elementary martingale
theory instead.

Auxiliary Lemma 9.10. If L has limited increments, then L is a Lévy walk if and
only if both �L and 
L are limited. (Cf. Lindstrøm [49, Corollary 2.4].)

Proof. IfL is a Lévy walk with limited increments, thenL.1/ isL2 by Theorem 9.8,
whence E

�
L.1/2

�
is limited by Nelson’s radically elementary Radon–Nikodym

theorem (Remark 2.2). The formula of Lemma 9.7 implies that both �L and 
L
are limited.

Conversely, suppose L has limited increments and both �L and 
L are limited.
The processM , defined via

8s 2 T M.s/ D L.s/ � �Ls

is a martingale with respect to the filtration G generated by the increments of L.
Indeed, since the increments are independent and stationary, dL.t/ is independent
of Gt , hence

E ŒdM.t/jGt � D E ŒdL.t/jGt � � E ŒdL.0/� D E ŒdL.t/� � E ŒdL.0/� D 0

for all t 2 T n f1g. Moreover, the formula of Lemma 9.7 implies that E
�
M.s/2

� D

2Ls, hence E

�
M.s/2

�
is limited, and so is (by Jensen’s inequality) E ŒjM.s/j�.

Therefore, applying the corollary to Nelson’s radically elementary martingale
inequality (Corollary 2.13), we find that M is a.s. limited. Since �L is limited, this
implies that L is a.s. limited. ut
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Auxiliary Lemma 9.11. If L is a Lévy walk, then for all non-infinitesimal " > 0,
there is a standard n 2 N such that for every k 	 n, qk < ". (Cf. Lindstrøm [49,
Lemma 3.1].)

Proof. Suppose, for a contradiction, that there were some non-infinitesimal " > 0

such that qk 	 " for all limited k 2 R>0. Then, by Remark 1.1 (underspill/overspill),
there exists some unlimited K 2 R>0 such that qK 	 ". Then, for every non-
infinitesimal s 2 T n f1g, the probability that jdL.t/j � K for all t < s is given by
.1 � qKdt/s=dt � .1 � "dt/s=dt . However, a Taylor expansion of order s=dt for the
exponential function around 0 yields that

.1� "dt/s=dt ' exp.�"s/ � 1:

Hence, 1 � .1 � qKdt/s=dt , which is the probability that jdL.t/j 	 K for some
t < s, is non-infinitesimal. This, however, contradicts the assumption that L is a
Lévy walk. ut
Auxiliary Lemma 9.12. (Cf. Lindstrøm [49, Corollary 3.3].) Suppose for every
" > 0 there exists a standard n 2 N such that for all m 	 n, qm < " and L�m
is a Lévy walk. Then L is a Lévy walk.

Proof. If L were not a Lévy walk, then by Remark 9.5 would be some nonstandard
n such that the probability p, defined by

p D P

�
max
t2T

jL.t/j > n
�

is non-infinitesimal. On the other hand,

P

"\
t2T

˚
L�m.t/ D L.t/

�# D .1� qmdt/1=dt ;

hence by a Taylor expansion of order N D 1=dt of the exponential function
around 0,

P

"\
t2T

˚
L�m.t/ D L.t/

�# ' e�qm :

By assumption on the sequence .qm/m2N, for sufficiently large, but standard m,
qm � � ln.1 � p/, so

P

"\
t2T

˚
L�m.t/ D L.t/

�# ' e�qm � 1 � p D 1 � P

�
max
t2T

jL.t/j > n
�
;
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whence the event
�

max
t2T

jL.t/j > n
�

\
\
t2T

˚
L�m.t/ D L.t/

�

has positive probability. However, this event is actually empty, since it entails that

n < jL.t/j ˇ̌L�m.t/
ˇ̌ � m < n:

Contradiction. ut
Auxiliary Lemma 9.13. IfL is a Lévy walk, then for all sufficiently large limited k,
the processes L�k and L>k are Lévy walks, too. (Cf. Lindstrøm [49, Lemma 3.2].)

Proof. First, we shall show thatL.k;m� is a Lévy walk for all limitedm. For, in order
for maxt2T

ˇ̌
L.k;m�.t/

ˇ̌
to be greater in norm than a given unlimited K , the number

of times t at which
ˇ̌
dL.k;m�.t/

ˇ̌
> k must be at least K=k, hence nonstandard.

However, a simple combinatorial argument shows that for every nonstandard n0, the
probability that the number of such times is greater or equal n0, is ' 0: First, note
that card

˚
t 2 T n f1g W ˇ̌dL.k;m�.t/ˇ̌ > k� D card ft 2 T n f1g W jdL.t/j > kg,

whence

P fcard ft 2 T n f1g W jdL.t/j > kg D ng

D
 
1=dt

n

!
.1 � qkdt/1=dt�n .qkdt/n :

On the other hand, by a Taylor expansion of order N D 1=dt of the exponential
function around 0,

 
1=dt

n

!
.1 � qkdt/1=dt�n .qkdt/n ' 1

.dt/n
1

nŠ
e�qk .qkdt/n ' e�qk 1

nŠ
qk
n

for all standard n. Therefore, for all standard n0,

P fcard ft 2 T n f1g W jdL.t/j > kg 	 n0g ' e�qk
n0X
nD0

1

nŠ
qk
n;

and the right-hand side is ' 1 for nonstandard n0. By our initial deliberations, the
probability of maxt2T

ˇ̌
L.k;m�.t/

ˇ̌
being greater in norm than a given unlimited K is

' 0. Therefore, L.k;m� is a Lévy walk for all limited m.
Applying Auxiliary Lemma 9.12 and Auxiliary Lemma 9.11, we conclude that

L>k is a Lévy walk. Since L�k D L�L>k and the difference of two Lévy walks is
itself a Lévy walk, it follows that L�k is a Lévy walk, too. ut
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Auxiliary Lemma 9.14. If L is a Lévy walk, then for every non-infinitesimal and
limited k 2 R, the processes L�k and L>k are Lévy walks (Cf. Lindstrøm [49,
Corollary 4.2])

Proof. With exactly the same arguments as in the proof of Auxiliary Lemma 9.13,
we can prove that L>k is a Lévy walk. In order to perform this argument, however,
we need that qk is limited for non-infinitesimal k. We will prove this presently:
one only has to note that qm < 1 for sufficiently large standard m and thus,
using Auxiliary Lemma 9.10 and the fact that L�m is a Lévy walk (from Auxiliary
Lemma 9.13), we already have

qk � 1C 1

dt

X
k<jaj�m

pa � 1C 1

dt

1

k2

X
k<jaj�m

jaj2pa � 1C 1

k2

2L�m � 1:

Since L�k D L � L>k and the difference of two Lévy walks is itself a Lévy
walk, it follows that L�k also is a Lévy walk. ut
Proof of Theorem 9.9. IfL satisfies the first two conditions of the Theorem, then for
every non-infinitesimal limited k, �L�k and 
L�k are limited, whenceL�k is a Lévy
walk by Auxiliary Lemma 9.10. From here, the third condition in the Theorem can
be combined with Auxiliary Lemma 9.12 to establish that L itself is a Lévy walk.

Conversely, if L is a Lévy walk, then Auxiliary Lemma 9.11 says that the third
condition is satisfied. Consider now a non-infinitesimal, limited k. By Auxiliary
Lemma 9.14, L�k is a Lévy walk with limited increments, hence both �L�k and

L�k are limited by Auxiliary Lemma 9.10. Since 
L�k is increasing in k, we
conclude that �L�k is limited for all non-infinitesimal, limited k (the first condition
in the Theorem) and that 
L�k for all limited k (the second condition in the
Theorem). ut

9.4 A Radically Elementary Itô–Doeblin Formula for Lévy
Walks with Limited-Variation Jump Part

Our goal in this chapter is to prove a version of the Itô–Doeblin formula in a
radically elementary setting. For this purpose, we restrict ourselves to the case of
those Lévy walks which do not have arbitrarily small jumps and use some kind of
jump-diffusion decomposition, motivated by Lindstrøm’s approach [49].1

Definition 9.15. An element a 2 A is called a jump of L if and only if both pa ¤ 0

and jaj=pdt is unlimited. L is said to be a (pure) jump process if and only if every
a 2 A with pa ¤ 0 is a jump. A jump a is called observable if and only if jaj 6' 0.

1In the classical setting, these processes correspond to Lévy walks whose Lévy measure is
concentrated on a set that is bounded from below in norm.
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L is said to be an observable jump process if and only if every a 2 A with pa ¤ 0

is an observable jump. If L is a Lévy walk and a jump process (observable jump
process), it is called a jump Lévy walk (observable-jump Lévy walk).

Remark 9.16. If all jumps of L are observable, then there exists some � � 0 such
that jaj=pdt is limited for each a 2 A\ R�� with pa ¤ 0. We define recursively a
new process L� by

L�.0/ D L.0/; 8t 2 T n f1g L�.t C dt/ D L�.t/C dL.s/	fjdL.s/j��g:

Proof. By assumption, for every both pa ¤ 0, if jajp
dt

is unlimited, then already

jaj 6' 0. Thus, the set

�
k 2 N W 8a 2 A


 jajp
dt

	 k ) jaj > 1

k

��

contains all nonstandard natural numbers. Therefore, by underspill (see Remark1.1),
it must contain a standard natural number n. Put � WD 1

n
� 0. Then

8a 2 A

 jajp

dt
	 1

�
) jaj > �

�
;

hence

8a 2 A



jaj � � ) jajp
dt
<
1

�

�
:

ut
First, we note that if L has no jumps, then it is a multiple of the Wiener process

plus constant drift.

Lemma 9.17. Suppose L is a Lévy walk which has no jumps and 
L 6' 0. Then
the process M , defined by M.t/ D L.t/��Lt


L
is a normalized martingale and even a

Wiener process.

Proof. First, since L is not constantly D 0, we have 
L ¤ 0, whence M is well-
defined. Since L has independent increments, one can easily check that M is a
martingale. A simple calculation shows thatM is even a normalized martingale and
that M.0/ D 0. Since L is a Lévy walk without jumps, Theorem 9.9 says that both
�L and 
2L are limited. Also, since L has no jumps, there is a limited C such that
jdL.t/j � C

p
dt ' 0 for all t 2 T. Now, since 
L 6' 0, we have

p
dt=
L ' 0, so

jdM.t/j � C
p

dt C �Ldt


L
� 2C

p
dt=
L ' 0:

Thus, M has no jumps and dM.t/ D dM.t/	fjdM.t/j�"g for all t 2 T and " � 0.
This entails that M satisfies the (near) Lindeberg condition [60, p. 57].
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By Nelson’s unified “de Moivre–Laplace–Lindeberg–Feller–Wiener–Lévy–
Doob–Erdős–Kac–Donsker–Prokhorov theorem” (see Remark 3.13), we find that
M must be a Wiener process. ut

If 
L ' 0, then Lemma 9.7 says that

E
h
jL.t/ � �Lt j2

i
D 
2Lt C �2Lt.t � dt/ � 2�Lt E ŒL.t/�„ ƒ‚ …

D t
dt EŒdL.0/�D�Lt

C�2Lt2

' 
2Lt ' 0;

therefore L.t/ ' �Lt a.s. for all t 2 T.
For the remainder of this chapter, we will only consider Lévy walks which are

of the form L.t/ D �Lt C 
LW.t/ C J.t/, wherein J is a random walk whose
increment set consists of jumps only.

We will now prove a radically elementary Itô–Doeblin formula for Lévy walks
with observable jump part. The proof idea is borrowed from a relatively recent
paper [33] which—using Lindstrøm’s theory of hyperfinite Lévy processes—gives
a simple nonstandard proof of the Itô–Doeblin formula for Lévy walks with finite-
variation jump part.

Theorem 9.18 (Itô–Doeblin formula for Lévy walks). Suppose L.t/ D �t C

W.t/C J.t/ for all t 2 T for some Wiener walk W , some observable jump Lévy
walk J and limited �; 
 , and let f be a thrice continuously differentiable function.
Consider some ! such that f 00.L/ and f 000.L/ have limited !-trajectories. Then
one has for all s 2 T, suppressing !,

f .L.s// � f .L.0//

'
Z s

0

f 0.L�.t//dL.t/C 
2L
2

Z s

0

f 00.L�.t//dt

C
X
t<s

f .L.t// � f .L�.t// � .L.t/ � L�.t// f 0.L�.t///:

The proof needs the following result, a corollary to Theorem 9.9:

Corollary 9.19. Define processes LC and L� by

8s 2 T LC.s/ D
X
t<s

dL.t/	fdL.t/�0g;

L�.s/ D
X
t<s

dL.t/	fdL.t/<0g:

If L is a Lévy walk, then LC and L� are Lévy walks.
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Proof of Corollary 9.19. Clearly,LC andL� are random walks with increment sets
AC D A \ R>0 [ f0g and A� \ R<0 [ f0g, respectively and transition functions
.pa;C/a2AC

and .pa;�/a2A
�

, respectively, wherein pa;C D pa for all a 2 AC n f0g
and pa;� D pa for all a 2 A� n f0g. Clearly, LC and L� satisfy the conditions of
Theorem 9.9 and thus are Lévy walks. ut
L� is the analogue of a pathwise left limit.

Proof of Theorem 9.18. By Remark 9.16, there exists some � � 0 such that
jaj=pdt is limited for each a 2 A\ R��. We now define recursively a sequence of
stopping times as follows:

�0 WD 0; �n WD min ft 2 T W t > �n�1; jdL.t � dt/j 	 �g ^ 1:

Exploiting that T has finite cardinality, we may define an N-valued random variable
M W � ! N by

M WD card ft 2 T W jdL.t/j 	 �g :
Next we show that for all nonstandard k 2 N,

P fM 	 kg ' 0: (9.3)

Indeed, if M.!/ 	 k for any k, then either maxt2T jLC.t/.!/j 	 �

2
k or

maxt2T jL�.t/.!/j 	 �

2
k, hence either LC.1/.!/ 	 �

2
k or L�.1/.!/ �

� �

2
k. However, LC and L� are Lévy walks by Corollary 9.19, whence

P
˚
LC.1/ 	 �

2
k
� ' 0 and P

˚
L�.1/ � � �

2
k
� ' 0 for all unlimited k. Therefore,

P fM 	 kg � P
hn
LC.1/ 	 �

2
k
o

[
n
L�.1/ � ��

2
k
oi

' 0;

which establishes the approximate equation (9.3).
Hence, for any " � 0, the set fk 2 N W P fM 	 kg � "g contains all nonstan-

dard k 2 N, and thus by underspill (see Remark 1.1) must contain some standard
k", such that P fM 	 k"g � ". Therefore,M is limited a.s. For this reason, the set˚
�0.!/; : : : ; �M.!/.!/

�
is limited for almost every !. Moreover, clearly �M D 1.

By assumption onL,A\Œ�"; "�[f0g D
n
0; �dt; 


p
dt ;�
p

dt
o

for any " � 0.

Combining this fact with the choice of � � 0, we find that for all t 2 T with
�i < t < �iC1, we must have L.t/ D L.�i / C �t C 
W.t/ and hence by Itô’s
formula (Lemma 3.9)

X
�i<t<�iC1

df .L.t// '
X

�i<t<�iC1

f 0 .L.t// dL.t/C 
2L
2
f 00 .L.t// dt

'
X

�i<t<�iC1

f 0 .L�.t// dL�.t/C 
2L
2
f 00 .L�.t// dt
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'
X

�i�t<�iC1

f 0 .L�.t// dL�.t/C 
2L
2
f 00 .L�.t// dt:

Therefore, using �M D 1,

f .L.s// � f .L.0// D
X
t<s

df .L.t//

D
M�1X
iD0

X
�i<t<�iC1

df .L.t//C
MX
iD0

df .L.�i //

'
M�1X
iD0

X
�i�t<�iC1

f 0 .L�.t// dL�.t/C 
2L
2
f 00 .L�.t// dt

C
MX
iD0

f .L.�i //� f .L�.�i //

D
X

0�t<�M
f 0 .L�.t// dL�.t/C 
2L

2
f 00.L�.t//dt

C
MX
iD0

f .L.�i // � f .L�.�i //

D
X
0�t<1

f 0 .L�.t// dL�.t/C 
2L
2
f 00 .L�.t// dt

C
X
t<s

f .L.t// � f .L�.t//

D
X
0�t<1

f 0 .L�.t// dL.t/C 
2L
2
f 00 .L�.t// dt

C
X
t<s

f .L.t// � f .L�.t//C
X
t<s

.L.t/ � L�.t// f 0.L�.t//:

ut

9.5 A Brief Look at Lévy Finance

Since the mid-1980s and in particular during the last years of the twentieth century,
Lévy processes have gained great popularity among (academic) researchers in
mathematical finance, the reason being that they have a number of mathematically
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very pleasant properties (including a beautiful parametrization, through the Lévy–
Khintchine formula), but on the other hand constitute a relatively rich class of
stochastic processes which include examples of pure-jump processes, of diffusions
and of jump-diffusions. In the field now known as Lévy finance, risky asset price
processes are modelled, after appropriate scaling, as exponential Lévy processes.

The earliest and most popular models in Lévy finance take simple Lévy
processes other than the Wiener process to model logarithmic asset price processes.
Historically, the first example of such a model was proposed by Nobel laureate
Robert C. Merton [57] as early as 1976, only three years after the publication of
Fischer Black’s and Myron S. Scholes’ famous paper [18] and his own seminal
work on the “theory of rational option pricing” [56]. Lévy finance as a research area
in its own right did, however, not come into existence until the circulation of the
papers by Madan and Seneta [53–55].

Merton’s [57] jump-diffusion model—the earliest and most well-known model
of Lévy finance—assumes that after scaling, the price processX of a risky asset can
be modelled as

X.t/ D exp .�t C 
W.t/C ��.t//

for all t , whereW and � are Wiener and Poisson processes, respectively, and 
; �; �
are real constants (
 > 0).

It is an easy exercise in mathematical finance to verify that given any interest rate
r , there will be infinitely (indeed continuum-many) equivalent martingale measures
for the discounted price process .e�rtX.t//t�0 associated with Merton’s jump-
diffusion model. Thus, in light of the First and Second Fundamental Theorems of
Asset Pricing (for radically elementary versions, see Theorem 5.4, Theorem 5.6 and
Remark 5.8), we not only have in Merton’s model (i) the absence of well-behaved
free lunches with vanishing risk, but also (ii) market incompleteness in the sense
that the marketed space does not contain all conceivable contingent claims. This
property of incompleteness is shared by all exponential Lévy-process models in
mathematical finance—except for the Black–Scholes model, of course.

On the one hand, this feature of Lévy market models makes them quite attractive
from an empirical point of view, because they provide mathematically beautiful and
analytically (fairly) tractable models of phenomena (market incompleteness, jumps,
non-Gaussian distributions) which one observes on real-world financial markets.
On the other hand, incomplete models have the disadvantage that they no longer
produce—at least not in a straightforward manner—strategies for hedging deriva-
tives. Incomplete financial markets call for much more sophisticated approaches to
hedging than just replication of contingent claims—but this is “merely” a practical
problem and should in many contexts not affect modelling choices.

For an overview of the subject and more references, one may refer to the volume
edited by Barndorff-Nielsen et al. [8], to Applebaum’s survey article on Lévy
processes [5] or to textbooks such as Boyarchenko and Levendorskiı̆ [20], Schoutens
[73] and Applebaum [6].

Very recently, a fundamental concern about Lévy financial market models has
surfaced, which is that they might—except for the Black–Scholes model—lack
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a foundation in terms of general equilibrium theory (cf. [34]). The mathematical
treatment of this question, by the way, relies heavily on (Robinsonian) nonstandard
analysis in general and on Loeb probability theory in particular. (See Appendix B for
a brief discussion of the relation of this book to Robinsonian nonstandard analysis.)



Chapter 10
Final Remarks

Nelson [60, Appendix] has proved that in a rigorous sense the concepts of radically
elementary probability theory are equivalent to the concepts of the classical theory
of stochastic processes. For this reason, the radically elementary approach to
stochastic calculus as presented in the present work has the same scientific content
as the usual approach to the subject.

As we have seen, radically elementary probability theory allows for elementary
proofs of many results in stochastic analysis, including Itô’s formula, Girsanov’s
theorem, the Feynman–Kac formula, and even stochastic calculus for Lévy walks
with finite-variation jump part. The only prerequisites to teach basic stochastic
analysis in this framework are finite probability theory, basic real analysis, and the
fact that the Peano axioms do not completely characterize the natural numbers. For
this reason, the radically elementary approach to stochastic analysis seems ideally
suited for introductory courses on stochastic calculus in the mathematics curricula
of quantitative finance, engineering, and physics programmes.

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7 10,
© Springer-Verlag Berlin Heidelberg 2013
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Appendix A
Excursion to Logic: Some Remarks on the
Metamathematics of Minimal Internal Set
Theory

A.1 An Alternative Road to Minimal Internal Set Theory

When we introduced Minimal Internal Set Theory in Chap. 1, we have tacitly
assumed that most readers of this book will find it more intuitive to conceive of
Minimal Internal Set Theory as an axiom system which describes an extended
universe. Some readers, however, might be more comfortable with the idea that an
“appropriate” mathematical model of the real numbers should contain infinitesimals
and infinitely large numbers anyway. On this account, it would be more intuitive to
simply extend the language of conventional mathematics by a new predicate, e.g.
“. . . is a standard natural number”, and impose additional axioms regulating the use
of this predicate—in order to allow for a consistent and fruitful use of infinitesimals.

Of course, the choice of the axioms requires care, as the resulting axiom system
should be consistent,1 simple and powerful enough to permit a productive use
of these axioms for infinitesimal calculus. In order to motivate our choice of an
axiom system (which is inherited from Nelson’s Radically Elementary Probability
Theory [60]), we could have pointed to the relatively well-known fact that the
Peano axiomatization of the natural numbers does not characterize the set of
natural numbers completely.2 For example, any model of the Peano axioms can
be elementarily embedded as a proper subset into some other model of the Peano
axioms. This observation already suffices to motivate the consistency of axiom
systems with a modified principle of mathematical induction for the standard natural
numbers. The axiom system in Nelson’s Radically elementary probability theory
[60] is exactly of such a kind.

1At least relative to the consistency of conventional mathematics, which because of Gödel’s second
incompleteness theorem [28] admits no consistency proof.
2More precisely, indeed, by Gödel’s first incompleteness theorem [28], no extension of the Peano
axioms could provide such a unique characterization up to isomorphism.

F. S. Herzberg, Stochastic Calculus with Infinitesimals, Lecture Notes in
Mathematics 2067, DOI 10.1007/978-3-642-33149-7,
© Springer-Verlag Berlin Heidelberg 2013
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On this syntactic account of Minimal Internal Set Theory, the presentation of
the axiom system only needs to be prefaced (as in Nelson’s monograph [60]) by
observing that the language of conventional mathematics does not use the word
“standard”, whence one may without hesitation introduce a new unary predicate for
natural numbers with that name, i.e. a predicate of the form “. . . is a standard natural
number”. Having thus extended the language of conventional mathematics,3 all that
is left to do is to specify rules that govern the use of that predicate.

On this account, one may note4 that the introduction of Minimal Internal Set
Theory did not per se involve the addition of any new mathematical objects (be it
atoms or sets). One may take the view that the universe of mathematical objects
has remained the same, and only the language has been extended—by adjoining
a new predicate which allows us to distinguish between standard natural numbers
and nonstandard natural numbers. As one can gather from the axioms of Minimal
Internal Set Theory and the fact (provable by External Induction, see below) that
any nonstandard natural number is greater than every standard natural number, the
correct interpretation of “standard” is “not extremely large”.

Readers with an interest in the foundations of mathematics will observe that (i)
the axiom system minIST would obviously be inconsistent if the Peano axioms
characterized the natural numbers completely, and (ii) conversely, the incomplete-
ness of the Peano axioms readily suggests that the axiom system minIST is
consistent. In any case, it can be rigorously shown that minIST only proves those
internal formulae can already be proved in conventional mathematics: minIST is a
conservative extension of conventional mathematics and thus—in light of ex falso
quodlibet—(relatively) consistent. The reason for the conservativity of minIST
lies in the fact that it can be seen as a subsystem of Nelson’s [59] (cf. Nelson
[60, Appendix, p. 80]) which itself is a conservative extension of conventional
mathematics.

We close this section with a few more technical comments on the axioms
of minIST. First, the term “conventional mathematics” in the first axiom of
Minimal Internal Set Theory is, of course, context-dependent; at present, most
mathematicians would understand the term “conventional mathematics” to refer to
Zermelo–Fraenkel set theory plus the Axiom of Choice (ZFC). In the following, we
will side with the majority and view Minimal Internal Set Theory as an extension of
ZFC by definition. We note, however, that radically elementary probability theory
and radically elementary stochastic analysis certainly do not use ZFC to its fullest
strength. Therefore, they might continue to be acceptable even when the consistency
of ZFC should some day be subject to considerable doubt. (Edward Nelson for
instance is less than convinced that Peano Arithmetic is consistent [63].)

3In fact, as Cantor, Frege, Russell, Whitehead and others had shown by the early 1900s, all
of conventional mathematics may be reduced to set theory, so “the language of conventional
mathematics” comes down to all that can be expressed with the 2-relation.
4This applies especially to those readers who already have come into loose contact with
nonstandard analysis.
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The additional axioms beyond ZFC are theorems of Nelson’s [59] Internal Set
Theory (cf. Nelson [60, Appendix, p. 80]), which itself is a conservative extension
of ZFC (Nelson [59, Theorem 8.8, in part due to William C. Powell]) and thus
consistent relative to ZFC. Hence, minISTC also is consistent relative to ZFC and
every internal theorem of minISTC can also be proved in ZFC. It might be possible
to develop Nelson’s [60] radically elementary probability theory, at least partially,
even when one replaces ZFC in our definitions of minISTC or minIST (or the
even weaker system minIST� of Appendix A) by a weaker set-theoretic axiom
system. This would be an interesting question for future research.5

A.2 A Simple Relative Consistency Proof for a Substantial
Subsystem of minIST

Nelson [60, Appendix, p. 80] has shown, invoking the saturation principle of
Internal Set Theory (cf. Nelson [61]), that the axioms of minISTC follow from
IST, and since Nelson has also shown that IST is a conservative extension of ZFC
[59, Theorem 8.8, in part due to William C. Powell], it follows that so is minISTC.

The proof of the fact that IST is a conservative extension of ZFC, however,
is a sophisticated argument using so-called adequate ultrapowers and ultralimits.
For pedagogical reasons, one would wish to find a simple proof at least for the
consistency of some subsystem of minISTC in which a substantial part of radically
elementary probability theory can be developed. This is what we will now aim
at. Consider the subsystem, henceforth denoted minIST�, of minIST which one
obtains through replacing the External Induction principle by the following two
axioms:

• (Unlimitedness of nonstandard numbers) If n 2 N is nonstandard, then n > k
for all standard k 2 N.

• (Standard Induction) Let A.n/ be a formula which is of the formQst
1 v1 : : : Q

st
m

vm' .p1; : : : ; p`; v1; : : : ; vm; n/, wherein Qst
i vi is a quantification either of the

form “for all standard vi 2 N” (abbreviated 8stvi ) or of the form “there exists
a standard vi 2 N” (abbreviated 9stvi ), p1; : : : ; p` are standard natural numbers
and ' is a formula of set theory with `CmC1 free variables (and no parameters).
Assume that A.0/ holds and that A.n/ entails A .nC 1/ for all standard n. Then
A.n/ readily holds for all standard n.

Note that the most important proof principle of minIST, viz. the under-
spill/overspill principle (Remark 1.1), still holds in minIST�. For example, in order
to prove that there is no set which consists only of the standard natural numbers,

5In fact, Henson and Keisler [30] have shown that adding nonstandard elements to certain relatively
weak axiom systems of set theory may result in a stronger, i.e. non-conservative extension of the
original weak axiom system.
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we only have to remark that if there were such a set, one could prove by internal
induction (i.e. induction in N, which of course holds in minIST� as it extends
ZFC) that this set is the whole of N, contradicting the existence of nonstandard
natural numbers (which continues to hold in minIST�).

Furthermore, the External Induction principle can be replaced by the Standard
Induction principle in proving a number of basic results of radically elementary
mathematics. We give some examples for results which Nelson [60, p. 17] proves
with the External Induction principle and which can also be proved in minIST�
through the Standard Induction principle.

Lemma A.1 (minIST�).

(1) If m and n are standard natural numbers, then so is mC n.
(2) If m and n are standard natural numbers, then so is mn.
(3) If n is a standard natural number and a > 0 is limited, then an is limited.
(4) For all n 2 N, n is standard if and only if it is limited.
(5) If x is infinitesimal and y is limited, then xy is infinitesimal.
(6) If x ' y and y ' z, then x ' z.
(7) Let n 2 N be standard and .xi /i<n ; .yi /i<n 2 Rn. If xi ' yi for all i < n, thenP

i<n xi ' P
i<n yi .

Proof. (1) Let m 2 N be standard. An inspection of the definition of ordinal
addition and the proof of the ordinal recursion theorem shows that there exists a
formula of set theory, denoted  C .m; n; k/, whose only parameters arem; n; k
and such that for all m; n; k 2 N,

mC n D k ,  C .m; n; k/ :

Let us hence apply Standard Induction to the formula

9stk mC n D k:

The base step of the induction is tautological. For the induction step, it suffices
to remark that if m C n is standard (induction hypothesis), then m C n C 1 is
standard.

(2) Letm 2 N be standard. Again, an inspection of the definition of ordinal addition
and the proof of the ordinal recursion theorem shows that there exists a formula
of set theory  
 .m; n; k/ whose only parameters are m; n; k and such that for
all m; n; k 2 N,

mn D k ,  
 .m; n; k/ :

We apply Standard Induction to the formula

9stk mn D k:
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Base step: m0 D 0 is standard. Induction step: Suppose mn is standard
(induction hypothesis). Then m.n C 1/ D mn C n is the sum of two standard
numbers and thus itself standard by part 1 of the present lemma.

(3) Of course, an > 0. Since a is limited, there exists some standard m 2 N such
that a < m. It is enough to verify the formula

9stk mn D k:

An inspection of the definition of ordinal addition and the proof of the ordinal
recursion theorem shows that there exists a formula of set theory  exp .m; n; k/

whose only parameters arem; n; k and such that for all m; n; k 2 N,

mn D k ,  exp .m; n; k/ :

Hence, we may apply Standard Induction to prove that 9stk mn D k. Base
step: m0 D 1 is standard. Induction step: Suppose there is a standard k such
thatmn D k (induction hypothesis). ThenmnC1 D km, which is the product of
two standard numbers and thus itself standard by part 2 of the present lemma.

(4) If n is standard, then obviously limited (by the trivial estimate n � n). The
converse follows from the unlimitedness of nonstandard numbers, an axiom of
minIST�.

(5) Fix a standardm 2 N. We have to prove jxyj � 1=m. Choose a standard n 2 N
such that jyj � n. By part 2 of the present lemma, mn is standard, whence

jxyj D jxj jyj � 1

mn
n � 1

m
:

(6) Fix a standardm 2 N. We have to prove jx� zj � 1=m. By part 2 of the present
lemma, 2m is standard (as 2 D 0C 1C 1 is standard), whence

jx � zj � jx � yj C jy � zj � 1

2m
C 1

2m
D 1

m
:

(7) Fix a standard m 2 N. We need to prove
ˇ̌P

i<n .xi � yi /
ˇ̌ � 1

m
. However, mn

is standard (by part 2 of the present lemma), so

ˇ̌̌
ˇ̌X
i<n

.xi � yi /

ˇ̌̌
ˇ̌ �

X
i<n

jxi � yi j �
X
i<n

1

mn
D 1

m
:

ut
An advantage of minIST over minIST� is that its axioms are simpler and shorter

to formulate; what speaks for minIST� is that it admits a short proof of its relative
consistency.

Theorem A.2. The axiom system minIST� is a conservative extension of ZFC.
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As an immediate corollary, minIST� is consistent relative to ZFC.

Proof. Let  be a formula of set theory which is not provable in ZFC. We shall
construct a model �V of minIST� in which  fails. By the compactness theorem,
let V be a set-size, transitive model of ZFC, called ground model, which models
: . Let NV be the set of natural numbers as recognized by V , and let 2V denote
the element-relation as recognized by V . Let I be an infinite set and let U be a non-
principal ultrafilter on I . Consider the ultrapower �V D V I =U, into which V can
be canonically embedded, through � W v 7! Œ.v/i2I �U. By Łoś’s theorem, this is an
elementary embedding: � W V � �V .

Let �N be the set of natural numbers as recognized by �V , and let �2V denote the
element-relation as recognized by �V . Call an element n of �N standard (denoted
st.n/) if and only if it is of the form �n0 for some n0 2 NV .

We now have to prove that
��V ; �2V ; st

�
is a model of minIST� and of : .

Indeed, �V is a model of ZFC and of : since V � �V . Moreover,

0
�V D ¿�V D �¿ D �0

and for all n0 2 NV , one has

�n0�C�1 D �.n0 C 1/:

Therefore, 0
�V is standard and for every standard n, n�C1 is standard, too.

Consider next some k 2 �N with k� �n for some standard n D �n0. Let k D
Œ.ki /i2I �U, then fi 2 I W ki � n0g 2 U by Łoś’s Theorem. Since U is non-principal
and fi 2 I W ki � n0g D Sn0

jD0 fi 2 I W ki D j g for some finite number n0, we
must have fi 2 I W ki D j0g 2 U for some j0 � n0. But then k D �j0, whence k
is standard.

Finally, we prove the Standard Induction principle in �V . Let

A.n/ D Qst
1 v1 : : : Q

st
mvm '

��p1; : : : ; �p`; v1; : : : ; vm; n
�
;

wherein p1; : : : ; p` 2 NV and ' is a formula of set theory without parameters, and
define

AV .n/ D Q1v1 : : :Qmvm ' .p1; : : : ; p`; v1; : : : ; vm; n/ :

Inductively in m (the number of external quantifiers in A) one can prove that for
every n0 2 NV ,

��V ; �2V ; st
� ˆ A.�n0/ , .V;2V / ˆ AV .n0/: (A.34)

(The base step of the induction uses that V � �V .) Therefore, the assumptions in
the Standard Induction principle mean that AV .0/ and AV .n/ ) AV .nC 1/ hold
for every n 2 NV , whence AV .n/ must hold for all n 2 NV (by induction in V ).
Therefore, again by equivalence (A.34) we have thatA.�n/ holds for all n 2 NV and
thus A.n/ holds for all standard n. ut
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A.3 Definable Models for (Minimal) Nonstandard Analysis

The consistency proofs for IST (cf. Nelson [59]) or Robinsonian nonstandard
analysis (cf. Robinson [67])—and also our simple consistency proof for minIST�—
use ultrapower constructions and thus rest on the existence of non-principal
ultrafilters, typically obtained from Zorn’s Lemma. This, however, does not mean
that the Axiom of Choice is an indispensable ingredient of these consistency proofs,
since the ultrafilter existence theorem is in fact strictly weaker than the Axiom of
Choice (cf. Halpern and Levy [29] and Banaschewski [7] for a discussion of the
strength of the ultrafilter existence theorem).

Based on a technique developed by Kanovei and Shelah [40], Kanovei and
Reeken [39] have shown that a slightly stronger set-theoretic axiom system than
ZFC implies the existence of definable models of IST and thus of minISTC. The
definable nonstandard enlargement constructed in [31,32] is obviously a model of a
significant subsystem of minIST�, viz. the subsystem obtained by removing those
set-theoretic axiom scheme instances which do not hold for superstructures (such as
Extensionality for atoms, in this case the reals). Moreover, by applying Kanovei
and Shelah’s [40] technique one can produce a countably saturated, definable,
ultrapower-like extension of a set universe. In a similar manner as in the proof of our
consistency result (Theorem A.2) one can then verify that this definable structure is
a model of minIST�.



Appendix B
Robinsonian vs. Minimal Nonstandard Analysis

The point of this book was to present a different approach to stochastic analysis,
one that—for the sake of accessibility to mathematics undergraduates and students
of other disciplines—avoids the use of measure theory and functional analysis
which the classical approach requires and instead invokes a small axiom system,
which might just be dubbed minimal nonstandard analysis,1 but is a fragment of
Internal Set Theory and thus called Minimal Internal Set Theory. Contrary to this
intention, Robinsonian [67] nonstandard analysis has the express purpose to be
just an additional tool in the hands of any research mathematician, so that any
“nonstandard arguments” should yield standard theorems. For instance, the seminal
result of nonstandard probability theory is the “conversion from nonstandard to
standard measure spaces” [51] now known as the Loeb construction in honor of
its inventor (or discoverer, depending on one’s belief or disbelief in mathematical
Platonism), Professor Peter A. Loeb.

From a more technical perspective, the two approaches also differ substantially:
Internal Set Theory extends the syntax of conventional mathematics and views, say,
the set of natural numbers as containing some (hitherto unclassified) nonstandard
numbers—this is also the point of view taken in Nelson’s Radically Elementary
Probability Theory [60], where Minimal Internal Set Theory is derived from.

Robinsonian nonstandard analysis, however, operates semantically: It starts from
(what may be seen as) a model of a modified fragment of Zermelo–Fraenkel set
theory (with the real numbers as atoms or urelements) which is just sufficient for
analysis in its broad sense—a superstructure over the real numbers. This is then
extended to a nonstandard universe, viz. a superstructure over an extended set
of real numbers, the hyperreal numbers (which is a real ordered field including
infinitesimals and unlimited numbers), which also contains an extended set of
natural numbers (including unlimited numbers), called hypernatural numbers.

1This term was suggested by Nelson in a more recent paper [62].
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The extension is constructed in such a way that (among other properties) the
canonical embedding is well-behaved with respect to the 2-relation.2 Images of
elements of the original superstructure under the canonical embedding are called
standard, elements of standard sets are called internal, all other sets are called
external.

As our motivation of Minimal Internal Set Theory in Chap. 1 already suggests,
one does not need to view Minimal Internal Set Theory merely as a fragment of
Internal Set Theory. Instead, Minimal Internal Set Theory can also be linked to
Robinsonian nonstandard analysis relatively easily—for instance, by noting that the
nonstandard universe can be viewed as a model of minIST: If one takes (i) the set
of hypernatural numbers to be the interpretation of the constant N in the language
of minIST and (ii) the class of all those hypernatural numbers which were already
present in the original superstructure to be the interpretation of the predicate “. . . is
a standard natural number” in the language of minIST, then the axioms of minIST
are satisfied, and the internal sets of the superstructure are just those sets which can
be defined by internal formulae (possibly with parameters) in minIST.

This last observation permits a new reading of the present work from the
perspective of Robinsonian nonstandard analysis: The content of this book is an
analysis, frequently using external formulae, of certain internal sets which intu-
itively3 correspond to objects of conventional stochastic analysis. In many instances,
the results of Robinsonian nonstandard analysis applied to probability theory in
general and to stochastic analysis in particular (cf. e.g. Loeb [51], Anderson [4],
Lindstrøm [45–48], Keisler [41], Hoover and Perkins [37, 38], Stroyan and Bayod
[74], Capiński and Cutland [21–23] as well as Albeverio et al. [3] or Osswald and
Y. Sun [65] and the references therein) imply that the corresponding conventional
(“standard”) objects of stochastic analysis can be viewed as the standard part of our
(internal) objects in a deep, well-defined, rigorous and topologically meaningful
sense: Our external notions usually correspond to the so-called S -notions of
Robinsonian nonstandard analysis; for example, our definition of continuity for
trajectories is known as S -continuity in the Robinsonian framework, our notion of
integrability is known as S -integrability, etc.

When the present book is viewed in this light, one finds that (1) the event-wise
standard part (in the topology of the real line) of any of our probability measures
is—by a celebrated theorem of Loeb’s [51]—always a probability measure in the
conventional sense, (2) the standard part of a Wiener walk (with respect to a natural
path-space topology) is—by virtue of Anderson’s [4] results—a Wiener process in
the sense of conventional probability theory, (3) the right standard part of our Lévy

2The usual method to achieve this is to define the field of hyperreals as the ultrapower of the reals
with respect to a non-principal ultrafilter, and then to use some kind of 2-recursion in order to
embed the superstructure over the reals into the superstructure over the hyperreals. The result is
also known as a bounded ultrapower construction, cf. e.g. Albeverio et al. [3, Sect. 1.2].
3And, as Nelson [60, Appendix] has shown for the objects of his radically elementary probability
theory, even in a formal, rigorous sense.
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processes (again with respect to a natural path-space topology) is—as we know
through Lindstrøm’s work [49]—a Lévy process as the term is used in conventional
probability theory.

A systematic, historically as well as philosophically informed comparison of
Robinsonian nonstandard analysis and (subsystems of) Internal Set Theory would
be beyond the scope of this book and can be found in other works such as the
monographs by Kusraev and Kutateladze [42] and, in particular, Vakil [75]. Any
graduate student with an interest in mathematical logic (in particular, model theory)
as well as in stochastic analysis should feel encouraged to study Robinsonian
nonstandard probability theory and its very interesting applications by the authors
cited above, their co-authors, and many others. Hopefully the brief explanations in
this section will make the transition from radically elementary stochastic analysis
to stochastic nonstandard analysis in the Robinson–Loeb–Anderson setting—and
to standard stochastic analysis—a little bit easier. (The mere possibility of such
a transition on the basis of radically elementary stochastic analysis also is an
advantage over a rival infinitesimal approach to the theory of continuous-time
stochastic processes due to Benci et al. [9].)

In any case, the present book shows how to formulate an accessible, yet
rigorous introduction to stochastic calculus with infinitesimals that does not require
acquaintance with model theory, measure theory or functional analysis.
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Sciences de Toulouse. Mathématiques. Série 6 17(3), 635–660 (2008)

15. Berg, I.v.d.: Asymptotics of families of solutions of nonlinear difference equations. Logic
Anal. 1(2), 153–185 (2008)

16. Berg, I.v.d., Amaro, E.: Nearly recombining processes and the calculation of expectations.
ARIMA. Revue Africaine de la Recherche en Informatique et Mathématiques Appliquées 9,
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21. Capiński, M., Cutland, N.: Stochastic Navier-Stokes equations. Acta Appl. Math. 25(1), 59–85
(1991)
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for Lévy walks, 88
for Wiener walks with additive linear drift,

27
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Lévy walk, 78
Itô–Doeblin formula for Lévy walks, 88
Lindstrøm’s characterization of Lévy

walks, 82
limited, 5, 49
limited functional, 9
limited process, 11
Lindeberg condition, 34
L1.P /, 9

marketed space, 46
Markov property (of time-homogeneous Itô

diffusions), 65
martingale, 12
martingale inequality, 13
martingale representation theorem,

20
measurable, 12
minIST�, 4, 97
moment, 9

near-EMM, 48
near-equivalent martingale measure, 48
near-equivalent probability measure, 48
nearly equivalent, 9
nonstandard natural number, 3
normalized martingale, 22

overspill, 5

Poisson walk, 14
product rule of stochastic differentiation,

68

quadratic-variation derivative,
43

random variable, 7
random walk, 77

sample path, 8
self-financing trading strategy, 46
Sequence Principle, 3
Standard Induction, 97
standard natural number, 96
stationary increments, 77
stochastic differential equation, 23
stochastic integral, 19
stochastic process, 8, 45
submartingale, 12
supermartingale, 12

terminal gains from trading, 46
time-homogeneous Itô diffusion, 61
trading strategy, 46
trajectory, 8

underspill, 5
unlimited, 5

value process, 46

Wiener martingale, 14
Wiener process, 13

Lévy’s characterization, 33
Wiener walk, 13
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