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Abstract. Despite the diversity of video compression standard, the mo-
tion estimation still remains a key process which is used in most of them.
Moreover, the required coding performances (bit-rate, PSNR, image spa-
tial resolution, etc.) depend obviously of the application, the environment
and the network communication. The motion estimation can therefore
be adapted to fit with these performances. Meanwhile, the real time en-
coding is required in many applications. In order to reach this goal, we
propose in this paper a hardware implementation of the motion estima-
tor which enables the integer motion search algorithms to be modified
and the fractional search and variable block size to be selected and ad-
justed. Hence this novel architecture, especially designed for FPGA tar-
gets, proposes high-speed processing for a configuration which supports
the variable size blocks and quaterpel refinement, as described in H.264.

Keywords: Configurable motion estimation, hardware implantation,
H.264, search strategy, fractional search, video coding performances.

1 Introduction

Video coding has been the subject of many research works in last decades. A
large number of coding solutions have been described to fit with the diversity
of the compression standards and the required coding performances, which are
correlated to the constraints defined by the user or fixed by the environment (i.e.
networks used for data transmission and the target receiver setup). Consequently
a large number of video codec has been developed. Despite this diversity, some
particular processing stages, such as motion estimation [1], are implemented in
most of the proposed solutions. The motion estimation is well known to be the
most computation-intensive stage of video coding process. Any improvement on
this stage can therefore impact on the whole video codec’s performances. From
another point of view, the motion estimation configuration can be adjusted to
fit the application’s constraints (image spatial resolution, frame-rate, bit-rate,
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PSNR). For instance the motion estimation stage, described in the recent stan-
dards such as H.264 video or VP8, is highly efficient as well as highly sophisti-
cated and complex. Meanwhile, different configurations can be defined to match
with the required coding performances.

According to our analysis, the key features of motion estimation to be adjusted
in current standard as H.264 are:

– The format of input data (i.e. the size of the blocks to match),
– The integer search method,
– The optional fractional search.

Software solutions can easily support any configuration nevertheless they may
struggle to match the application’s requirements. Indeed, for high-quality appli-
cations, the computational cost often exceeds the available resources of a stan-
dard computer. Meanwhile, to define an efficient hardware accelerator which
supports such flexibility as well as high coding performances, it is still nowadays
a challenge. Therefore, we propose in this paper, a motion estimation accelerator,
fully compatible with H.264, which supports different configurations especially
modifications on the three key features previously identified. The paper is struc-
tured as follow. In the section 2, we review the basic principles of the motion
estimation. We recall and compare several integer search algorithms. Finally the
impact fractional search on the coding performances (PSNR, processing-time)
is presented. In section 3, we propose analysis on the integer motion estimation
(IME). The common parts of these algorithms are then bringing out in order to
prove that a generic structure can be proposed. The motion estimator’s archi-
tecture has been designed and optimized to propose an efficient FPGA imple-
mentation in respect with the complexity and the regularity of the integer search
and the fractional search. The hardware implementation results and discussion
are finally presented in section 4.

2 Motion Estimation Technique

The Motion Estimation (ME) is an effective stage to detect temporal redundan-
cies between successive frames in a video sequence. Therefore, it has become a
crucial part of many video compression standards. The motion estimation aims
to predict, as accurately as possible, the next frame from the current frame. The
frame is split into fixed size macroblocks, currently 16x16 pixels. The prediction
is processed for each macroblock of the current frame. As the motion estimation
algorithm is not fixed by the video standard, many solutions have been proposed.
The most popular is the Block-Matching Algorithm (BMA). In this method, the
basic idea is to localize a reference block within the search area in the previous
frame. A matching criterion is used to estimate similarities between any two
given blocks. The applied BMA is performed using the Sum of Absolute Differ-
ences (SAD) matching criterion. This approach is known as the integer motion
search as only integer displacements of the reference macroblock into the search
window are performed. Some sub-pixel refinement can be processed. The Frac-
tional Motion Estimation (FME) [2] is usually done for HalfPel and QuarterPel
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accuracy. The Variable Block Size Motion Estimation (VBSME) [3] is another
major refinement which is included in recent standards. Indeed this approach is
the use of BMA with the ability for the encoder to dynamically select the size
of the blocks. The macro-block is split into smaller blocks and the estimation
is performed on each sub-blocks. The VBS motion estimation can be processed
at both integer and fractional levels. The motion estimation performances are
therefore highly correlated not only to the selected integer search algorithm but
also to the optional refinement stages VBSME and FME. Therefore the follow-
ing sections discuss the impact of the integer search algorithms as well as the
VBSME and the FME algorithms on the quality of image and other encoder’s
requirements.

2.1 Impact of the Search Strategy - Related Work

Many ME algorithms have been described in the literature. The most accurate
strategy is the Full Search (FS) algorithm, which by exhaustively comparing
all positions in the search window, gives the most accurate motion vector which
causes SAD to be minimum. On the other hand, fast but sub-optimal algorithms
compute the best matching candidate by guiding the search procedure using pre-
defined search patterns. For instance, in Three-Step-Search (TSS) [4], the New
Three Step Search (NTSS) [5] , Four Step Search (4SS) [6], the Hexagon-Based
Search (HEXBS) [7] , the Diamond Search (DS) [8], the Cross-Diamond Search
(CDS) [9], and the Block-Based Gradient Descent Search (BBGDS) [10] algo-
rithms, square-shaped or hexagon-shaped or diamond-shaped search patterns
with different sizes are employed. These algorithms performed well in relatively
small search range and low-resolution video sequences. Improving the quality of
image is achieved by finding the best possible motion vectors, which means mo-
tion vectors that will generate the smallest residual difference during the motion
compensation. Reducing the total search time is achieved by selecting the proper
fast motion estimation, which consists to reduce the Number of Search Points
per block (NSP) to be checked. Nevertheless, the image quality can decrease
compared with a FS approach. Hence, the mentioned fast search algorithms are
also evaluated regarding the output PSNR. This fact is illustrated in [11]. It
is noted that, for low and medium motion activity video sequences (Carphone,
Foreman, and Mobile) the degradation of PSNR is slightly or negligible but the
speedup is much improved. The situation is changed for the high-motion activ-
ity video sequences (Tennis Table, Football): the PSNR significantly decreases
and the degradation of image quality is then visible. Otherwise, DS and BBGDS
algorithms provide better PNSR performances than other fast algorithms while
maintaining nearly the same search speed for the sequences Table tennis and
Football. An enhanced efficient DS algorithm, named Modified Diamond Search
(MDS), is proposed and compared with others fast approach and FS method
in [12]. The proposed method as well as the others fast search methods DS, 4SS
and N3SS achieves significant speed-up compared to FS. Hence the processing
time respectively decreases of 99%, 94%, 73% and 65% for high motion video
sequence (Football). A negligible degradation in both PSNR and bit-rate is ob-
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served. The low complexity of DS approach family induces that this kind of
algorithms can be considered for hardware implementation. The FS algorithm
is suitable to high-speed motion and/or high texture variation.

2.2 Impact of VBSME and FME - Related Work

H.264 introduces two new features to ME, the VBSME and the Sub-pixel ac-
curacy motion estimation. The VBSME is carried out in two phases: integer
motion estimation (IME) and fractional motion estimation (FME). In H.264,
VP8 and others video codec, a 16x16 sized macroblock can be further parti-
tioned into 16x8, 8x16, 8x8, 8x4, 4x8 and 4x4 sub-blocks. When all sub-blocks
are in uniform motion, all sub-block motion vectors will be the same as the mo-
tion vector for the entire macroblock. However, if fine grain motion exists and
sub-blocks are moving in different directions, sub-block motion vectors can dif-
fer significantly from each other and from the motion vector of the macroblock.
Consequently the ME unit must be able to generate a separate motion vector
for each of the sub-blocks. The advantages of a large block size are (i) simplicity
and (ii) the limited number of vectors that must be encoded and transmitted.
However, in areas of complex spatial structures and motion, better performance
can be achieved with the smaller block size.

Usually, the motion of blocks does not match exactly in the integer positions.
So, to find best matches, fractional position accuracy is used. If the best motion
vector is a fractional position, an interpolation is needed to predict the current
block. According to [2] and [13], fractional motion estimation (FME) upgrades
rate distortion efficiency by + 4dB in peak signal-to-noise ratio (PSNR) and re-
quests 45% of the inter-prediction processing time. In [14], four sequences with
different characteristics are used for the experiment. Foreman stands for medium
motions, Soccer sequence for high motions, Mobile and Optis have complex tex-
tures. Clearly using half or quarter-pel increases image quality. The accuracy
of motion compensation is in quarter-pel resolution for H.264/AVC, which can
provide significantly better compression performance, especially for images with
complex texture. As shown in the state of the art analysis, the three key features
which are the data block sizes (defined with VBSME), the IME strategy and the
optional FME have high impact on the video codec’s performances. Therefore,
an efficient hardware implementation of a configurable motion estimator which
supports modification on these three features can be considered as a significant
contribution.

3 A Flexible Motion Estimation Architecture

3.1 Overview of the Proposed Architecture

Using a full search strategy, the motion detection process is regular. All possi-
ble positions of the pattern in the search window are scanned contrary to fast
search approach. All the search strategies are intended to converge to the right
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motion vector with a regular process and can eventually be initialized by pre-
vious information (such as the vectors previously computed). Therefore using
fast or reduced search strategies enables the number of matching to be reduced,
decreasing the processing time. As mentioned previously, even if the number
of matching is reduced, it is possible to achieve optimal coding results using
appropriate (for the video application) reduced search algorithms. Our analy-
sis of the IME approaches, lead us to propose a structure based on the highest
possible common parts between fast motion algorithm and FS. Indeed, for all al-
gorithms, a list of matching (positions) is processed during each Integer Motion
Search Phase (IMEP). As shown in Fig.1, after the reception of the list and the
number of matching, each matching is processed until all positions have been
considered. Finally, the best vector and, optionally, all the resulting vectors are
available. Depending on the search algorithms, all the vectors may be required
and transmitted to the unit in charge of the address generation. All of the re-
sulting vectors may be used during the generation of the next eventual list of
matching. The iterative phase is depicted in figure 1.

Halfpel
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Integer Motion
Estimation ( IME )

Quaterpel
mode

No

Yes
Quaterpel
refinement

Start
results

transmission

Other IME
phase

New address list
generation
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No

halfpel refinement

Star t

Optional  phase

Iterative
 phase

Fig. 1. Proposed algorithm

For all configurations, the address generation unit is described using a sched-
uler. This description could be very simple for a Full Search algorithm or more
complex and irregular for more complex algorithms. The Diamond search has
several phases of address generation. The full-search strategy is obviously sup-
ported in this scheme. Note that in this case, all possible addresses of the
reference block in the search window are then transmitted to the operating



Hardware Implementation of a Configurable Motion Estimator 101

part and therefore a unique phase is required to determine the best motion
vector. In our implementation, a state machine has been used nevertheless a
micro-processor (embedded in the FPGA) which represents a flexible solution
as described in [15]. However, even if the state machine design may be more
time consuming, higher system frequency can be achieved compared with the
micro-processor based solution. Finally, depending of the user configuration, the
optional fractional motion estimation (FME) can be performed with HalfPel
or QuaterPel accuracy. The halfpel stage is processed systematically before the
quaterpel refinement to reduce the search area and therefore memory require-
ment. Indeed, the subpel refinement and especially the interpolation phase are
costly in terms of hardware resources [2,13,11]. Note that using a fast search for
IME, induces that the FME represents the slower stage of the motion estima-
tion. Therefore, an optimized and efficient architecture should be proposed for
the FME unit. The architecture proposed is depicted Fig.2. The addresses of
all matching are provided to the cache memory unit and the column extraction
unit by the external address generation unit. A trade-off between the efficiency
and the required resources, one matching is processed in several stages. A full
parallel approach would request a large cache memory, to avoid important bot-
tlenecks on the external memory, and extremely large processing resources for
real-time implementation. We propose a trade-off between the complexity and
performances with a matching done column by column.
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Fig. 2. The top-level view of the proposed motion estimation architecture

So as to guarantee the random access in any position of a search window the
search window pixels have to be accessible to the matching engine and need to
be stored in the FPGA to reduce the number of access to the external memory,
so as not to exceed the available bandwidth. The cache memory permits access
of two columns, one extracted from the block and the corresponding one in the
search window. The architecture allows to access in one clock cycle any search
window column and consecutive pattern matching evaluations do not need to
be adjacent in terms of memory locations. The cache memory is obtained with
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dual-port memory blocks available into FPGA component. Our architecture en-
ables an efficient random access, without any latency to be obtained. Moreover,
any search-window width can be set according to the available processing. The
Address Generator Unit (AGU) is charge of address generation for all configura-
tions. The AGU allows selecting one column into the search window and one into
the current block. The extraction unit enables the right amount of pixel to be
selected into the search window column according to the selected matching and
the motion estimation to be processed. Hence, for IME, 16 pixels (128 bits) are
systematically extracted as the 16x16 macro-block and all possible sub-blocks
can be processed in parallel. For FME, an interpolation phase is required. As 6
tap filters are used to interpolate the search window pixel, therefore the region to
be extracted in slightly larger than the block width. The pixel number extracted
also depends on the selected mode (16x16, 16x8, 8x8, 8x4, 4x4, etc.). For block’s
width equal to 16 pixels, 8 pixels and 4 pixels respectively, 22, 14 and 10 pixels
should be extracted.

3.2 Proposed Integer Motion Estimator

The IME phase is highly regular. In our approach, each matching is operated
column by column. A Processing Element (PE) is operating the comparison be-
tween a pattern pixel and the corresponding search window. The SAD matching
evaluation criterion has been used in matching operator unit. It performs three
operations on the input pixel stream: subtraction, absolute and accumulation.
Due to regularity, 16 PEs are used in parallel as presented Fig.3.
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Moreover the architecture should support VBSME. Once again this estimation
is regular as the different sub-blocks can be processed simultaneously with the
16x16 pixel macro-block. Accumulators (AC) are included inside the pipelined
structure to enable the comparison to be done for all 40 sub-blocks. Such kind
of efficient approach has been presented in [16]. Our version is adapted to the
”two columns” process and represents therefore a low-cost approach in terms of
hardware resources.

3.3 Proposed Fractional Motion Estimator

After the best integer motion vector is estimated, the fractional motion esti-
mation accuracy can start. The HalfPel refinements of the surrounding eight
half-search positions are computed, and then the QuarterPel refinements of eight
quarter search positions surrounding the best half-search position are computed.
In the MPEG-4/AVC H.264 standard, the QuarterPel accuracy luminance pic-
ture is interpolated with two successive filtering operations. The HalfPel refine-
ment is more complex than the QuarterPel one and requires a 6-tap separable
FIR filters with coefficients [1,-5, 20, 20, -5, 1] instead of bilinear filters. As shown
in Fig.4a), each half pixel value is calculated from 6 adjacent pixels horizontally
or vertically. The horizontal value h3,3 is computed from the six adjacent integer
pixel samples located at horizontal direction according to the following equation:

h3, 3 = i1, 3− 5i2, 3 + 20i3, 3 + 20i4, 3− 5i5, 3 + i6, 3. (1)

In a similar way, the vertical half-pel value v3,3 is performed using the six adja-
cent pixel values located in the vertical direction as:

v3, 3 = i3, 1− 5i3, 2 + 20i3, 3 + 20i3, 4− 5i3, 5 + i3, 6. (2)

The diagonal half-pel value d3,3 is obtained from the six adjacent horizontal
values hi or alternatively, verticals values vi,j according to:

d3, 3 = v1, 3− 5v2, 3 + 20v3, 3 + 20v4, 3− 5v5, 3 + v6, 3. (3)

d3, 3 = h3, 1− 5h3, 2 + 20h3, 3 + 20h3, 4− 5h3, 5 + h3, 6. (4)

Once half-pixel samples are available, the pixel values at QuarterPel locations
are processed with basic bilinear weighting of the values at half-pel and integer-
pel positions. Nevertheless, the quaterpel processing is less regular. As shown
in Fig.4b), the orientation of the pixels is considered, and 12 different kinds of
processing , which generate the QuaterPel positions, can be observed. Therefore
we propose a novel architecture using four different memory banks for HalfPel
processing and 12 banks for the QuaterPel refinement. For instance for HalfPel
refinement, the original pixel named I and three kinds of interpolated pixel are
stored respectively in I, H, V and D memory banks. This approach has been pro-
posed by Ruiz [17] only for HalfPel refinement, we propose in this paper to apply
it also to QuaterPel refinement. This architecture is highly efficient in term of
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data broadcasting therefore the processing decrease. Nevertheless the number of
small cache memory is increased. Each bank is implemented with dual port mem-
ory embedded into the FPGA component. Only two memory blocks are required
to store the reduced number of each class of interpolated pixels. Therefore, the
used hardware resources are still low and suitable for FPGA implementation.
For instance, the 32 memory blocks represent less than 8% of Virtex6 6vlx240
FPGA. The Fig.5 depicts the overall block diagram of the proposed architecture
of FME. It consists of two processors used in pipeline: HalfPel and QuarterPel
processors which are interpolation based units, processors units, memory unit
and comparator unit. The architecture of processor and comparator unit is the
same for both HalfPel and QuarterPel. In each refinement stage, eight candidates
around the refinement center are evaluated simultaneously.

Our halfpel interpolation unit is based on the well-known Yang’s solution [13]
which processes a row 16-pixel interpolation unit. Indeed, a problem related to
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Chen’s 4-pixel interpolation unit [2] is the redundant interpolating operations
which appear in the overlapping area of the adjacent interpolation window. To
overcome this problem, a new architecture based on 16-pixel interpolation unit
with nine or eighteen 16x16 processing units is proposed by Yang’s which re-
moves all the redundancies. Our design, as Yang’s, adopts a short-latency 16-
pixel wide interpolator to increase throughput and eliminate redundant inter-
polation. Moreover, all sizes of blocks are processed by 16x16 processing units.
Therefore, the hardware utilization is low when processing small size blocks (4x4
and 4x8). When 4x8 and 4x4 blocks are processed in parallel, a large memory
bandwidth of search window memory is then required for reading the reference
pixels in parallel. Yang’s architecture enables higher processing performance to
be obtained than with Chen’s implementation. We used Half-pel interpolation
unit proposed by Yang’s. We proposed a pipeline architecture which enables Half-
pel and Quarter-pel to be processed simultaneously. Consequently, the number of
cycles is reduced. The processors request exactly the same scheduling in Half-pel
and Quater-pel modes, therefore the performances are identical for both modes.

4 Implementation Results and Discussion

The proposed architecture can be considered as a low cost implementation of a
motion estimator. The hardware ressources required for our implementation are
presented in Table 1. The implementation have been done on a Virtex6 FPGA
target (6vlx240tff784-3).

Table 1. Motion estimator’s implementation results

Motion Estimator (Device :6vlx240tff784-3 )
Logic Utilization Used (IME  / FME) Available Utilization (IME  / FME)
Number of Slice

Registers 1168 11944 301440 >1% 3%

Number of Slice
LUTs 1281 17426 150720 >1% 11 %

Number of Block
RAM/FIFO 1 32 416 >1% 8 %

Maximum
Frequency Frequency IME : 438 MHz  -Frequency FME: 253 MHz

The integer and fractional estimators are regrouped in this table. Note that
only two search strategies are currently implemented: FS and DS. This flexible
low-cost implementation for IME provides efficient results with a global fre-
quency of 438 MHz. The architecture enables a matching to be processed in 16
cycles (36,5 ns) and without latency is required between two matching. With a
41x25 search window (1025 matching), 1080 HD (1920x1088) video streams can
be processed at 3 fps in a FS mode. Meanwhile, using a DS method and consid-
ering a realistic average range of 15-30 matching per macro-blocks, a 1080 HD
video stream can be processed between 223 and 111 fps. The same performances
are obtained for HalfPel and QuaterPel mode. The Table 2, presents the number
of cycle for each block size. The last row of Table 2 presents the full processing
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time of the 41 possible blocks in VSBME. As expected and detailed in section
3.3, the very low-cost architecture proposed by Chen is less performing than
Yang’s. Our architecture proposes very competitive performances and similar
results to Yang’s one. Comparing the two architectures, our solution reduces by
two the memory size and decreases by 8 (instead of 18) the processor number
for each sub-pel refinement. Our solution cannot process in parallel two 4x8 or
4x4 sub-blocks, nevertheless the pipeline structure enables Half and Quarter-
Pel refinement to be processed simultaneously. Therefore, this architecture can
save approximately 66% and 30% in processing time, compared with Chen’s and
Yang’s respectively. The global time is reduced to 553 cycles .Yang’s architecture
has been implemented with a 0.18 µm technology. It can process 1080 HD video
streams at frame rate of 30fps when running at 200 MHz. Our architecture, us-
ing the 40 nm technology available on Virtex 6 FPGA, can process this video
stream at frame rate of 29 fps at 250 MHz (around 232K Macroblocks/s).

Table 2. Number of cycles required depending on sub-block size

5 Conclusion

We proposed in this paper, a flexible motion estimator which enables the integer
search strategy to be adjusted and the optional VBSME and sub-pel refinements
to be processed. This low-cost implementation, based on Virtex FPGA enables
to reach high-speed performances. Hence for IME, 1080 HD video streams can
be processed up to 200 fps. Moreover for FME mode, the same video streams can
be processed at frame rate of 29 fps at 250 MHz (around 232K Macroblocks/s).
Current developments aim to improve these performances, specially the sub-pel
interpolation units. This solution can therefore represent an efficient adapta-
tive solution more many video coding applications. Finally, the use of FPGA
technology enables the dynamic reconfiguration to be considered. Therefore the
ME accelerators could be even more scalable and can be dynamically adjusted
according to the events happening in the video scene or some environment mod-
ifications (as a network bandwidth reduction).
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