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Abstract. In the paper a novel technique of noise removal in color im-
ages is presented. The proposed filter design is a modification of the
bilateral denosing scheme, which considers the similarity of color pix-
els and their spatial distance. However, instead of direct calculation of
the dissimilarity measure, the cost of a connection through a digital path
joining the central pixel of the filtering window and its neighbors is deter-
mined. The filter output, like in the standard bilateral filter, is calculated
as a weighted average of the pixels which are in the neighborhood relation
with the center of the filtering window, and the weights are functions of
the minimal connection costs. Experimental results prove that the new
denoising method yields significantly better results than the bilateral fil-
ter in case of color images contaminated by strong mixed Gaussian and
impulsive noise.

1 Introduction

Visual information processing is increasingly becoming widespread as multime-
dia becomes common in everyday life. With the expanding use of color images
in various multimedia applications and the proliferation of color capturing and
display units, the interest in color image enhancement is rapidly growing.

Quite often color images are corrupted by various types of noise introduced
by malfunctioning sensors in the image formation pipeline, electronic instability
of the image signal, faulty memory locations in hardware, aging of the storage
material, transmission errors and electromagnetic interferences due to natural
or man-made sources [1–4]. Therefore, noise reduction is one of the most fre-
quently performed image processing operation, as the enhancement of images or
video streams degraded by noise is indispensable to facilitate subsequent image
processing steps.

In this work, we focus on the restoration of color images corrupted by mixed
Gaussian and impulsive noise. The reduction of such kind of noise is quite a
challenging task, as the techniques capable of reducing efficiently the Gaussian
noise, fail in the presence of impulses and the methods suited for the removal of
impulsive noise are mostly ineffective when restoring images distorted by other
noise types [5–10].
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The most widely used filtering designs are based on the concept of the Vector
Median Filter (VMF), whose output is computed using the concept of vector
ordering of a set of pixels from the filtering window. The vector ordering scheme
is defined through the sorting of the cumulated distances from a given pixel to
all other pixels from the filtering window. Then the scalar sum of distances are
sorted and the associated vectors can be correspondingly ordered [1,11,12]. The
vector median filter is very effective at reducing impulsive noise, however its effi-
ciency is decreased when the image is distorted by Gaussian noise and therefore
in such a case the VMF is usually combined with other filtering solutions.

Many noise reducing designs are based on the concept of adaptive weighted
averaging, where the weights are assigned to pixels from a filtering window ac-
cording to some rules which downweight the influence of outliers [13–19].

An efficient scheme proposed in [20,21] divides the pixels of the filtering win-
dow into two sets. The first one consists of the pixels similar to the central pixel
of the local window and the other one is composed of those pixels, which diverge
greatly from the central pixel. The output is computed as a weighted average of
the peer-group members.

Similar concept is utilized by the technique proposed in [22], which calculates
the distances between the central pixel in a local window and its neighbors. If the
number of pixels classified as close to the central pixel is higher than a predefined
threshold then the pixel is treated as uncorrupted, otherwise it is replaced by a
vector median of all pixels from W or an average of the uncorrupted pixels in W .
In [23] the peer-group members were found using a technique based on the eval-
uation of the statistical properties of a sorted sequence of accumulated distances
used for the calculation of the vector median. The peer-group concept has been
also successfully extended to the fuzzy context, so that the proposed technique is
able to remove mixed noise by combining a statistical method for impulse noise
detection and a replacement scheme utilizing an averaging operation aimed at
smoothing out the Gaussian noise component [24, 25].

An efficient method of image denoising called Non-Local Means (NLM) was
proposed in [26,27]. This method is based on a non-local averaging of the image
pixels in such a way that the new pixel value of the restored image is estimated
as a weighted average of the pixels, whose local neighborhood is similar to the
local neighborhood of the pixel which is currently being processed. The NLM
filter is extremely efficient when restoring images corrupted by Gaussian noise,
but fails in the presence of distortions introduced by impulsive noise.

2 Bilateral Filter

Another powerful nonlinear noise reducing filtering design, whose aim is to
smooth images while preserving their edges, called Bilateral Filter (BF) was
proposed in [28] and discussed in [29–32].

In this method, the intensity value at each image pixel is being replaced
by a weighted average of the grayscale values of pixels belonging to the local
neighborhood. The weight function depends on the spatial distance between the
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central pixel of the local filtering window and the neighboring pixels as well as
on the difference of their intensities. The bilateral filter output J(x) at image
domain location x is defined as

J(x) =
1

Z

∑

y∈Nx

w(x,y) · I(y), Z =
∑

y∈Nx

w(x,y), (1)

where Nx is the local neighborhood of x and w(x,y) is the weight assigned to
pixel at location y which belongs to Nx. The weight assigned to pixel at y ∈ Nx

is defined as
w(x,y) = wS(x,y) · wI(x,y). (2)

This weight is a result of multiplication of two components

wS(x,y) = exp

(
−‖x− y‖2

2σ2
S

)
, wI(x,y) = exp

(
−|I(x)− I(y)|2

2σ2
I

)
, (3)

where ‖ · ‖ denotes the Euclidean distance between x and y, σS and σI are
weighting parameters in the spatial and intensity domains respectively.

The wS weighting function decreases with the spatial distance and the pixels
which are far away from the center of the processing window has low influence on
the weighted average expressed by (1). The wI weighting function is a decreasing
function of the absolute difference of pixel intensities. Thus, the weight wI op-
erating in the intensity domain reduces the influence of pixels with significantly
different intensities, which ensures the preservation of sharp image edges.

Figure 1 explains the construction of the bilateral filter. It depicts an ex-
emplary filtering window (a), the array of Euclidean distances (b) between the
central pixel and all other pixels of the window and the array of the absolute
differences of intensities (c).
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Fig. 1. Illustration of the bilateral filter construction

For color images, the difference of the intensity is replaced by the distance
between color pixels in the RGB color space
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‖I(x)− I(y)‖2 =
∑3

k=1
(Ik (x)− Ik (y))

2
, (4)

where ‖I(x) − I(y)‖ is the Euclidean distance between the color pixels I(x)
and I(y) and the index represents the k-th color channel (Red, Green or Blue).
Therefore, for color images the scheme given in (3) can be modified and the
weight wI can be expressed as

wI(x,y) = exp

(
−‖I(x)− I(y)‖2

2σ2
I

)
. (5)

255

255

255

255

255

0.36

0.
21

0.36

0.06

Fig. 2. Illustration of the BF inability to suppress impulsive noise

The bilateral filter is a highly efficient noise reducing scheme, however it has
severe problems to remove the pixels introduced by impulsive noise process.
Assuming that the central pixel of the local filtering window is an impulse and
some of the pixels in the window are also injected by the noise and possess similar
intensities or colors as the central pixel, then the weights expressed by (5) are
relatively high, which leads to the preservation of the corrupted pixel.

This undesired effect is illustrated by the situation depicted in Fig. 2. The
filtering window contains pixels whose intensities are equal to 128 and some white
impulses. The weights assigned to gray pixels are very close to 0 for σI = 20,
σS = 2 and the weights assigned to white pixels are depicted near the arrows. As
a result the white impulse in the center of the filtering window will be preserved.

So, if in the close neighborhood of a noisy central pixel, another similar pixels
corrupted by noise are present, then while calculating the new pixel value, the
noisy pixel will be included with large weights and as a result the impulses will
be preserved. Therefore, in this paper we propose a modification of the bilateral
filter, which alleviates the described above drawback.
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3 Modified Bilateral Filter

The concept of the proposed modification of the bilateral filter is based on as-
signing the pixels from the filtering window W a minimum connection cost of
a digital path which joins them with the central pixel. In this way, each pixel
is connected with the central pixel through a digital path with minimum cost
function value. The cost of a connection is used to calculate a weight assigned
to each pixel from W and the filter output is the weighted average of the local
neighborhood.

For the calculation of the weights we treat the image as a graph and utilize the
Dijkstra algorithm for finding the optimal connections between the pixels (graph
vertices), where the graph weights are simply the absolute differences between
adjacent pixels intensities. Thus, a connection cost of a pixel at position y is
defined as a minimum sum of absolute differences between the pixels constituting
a digital path connecting this pixel with the central pixel I(x) [33].

For the computation of the optimal paths connecting the pixels with the
central pixel x a cost array C is created. Initially C(x) = 0 and C(y) = ∞
for all other pixels y belonging to W , which indicates that the pixels were not
yet assigned a connection cost value. At the beginning the cost of the crossing
between the central pixel and its neighbors is calculated. Afterwards the Dijkstra
algorithm assigns to each pixel in the window the lowest connection cost relative
to the central pixel and creates the paths of the lowest total cost. Every pixel of
W is visited and whenever a path with a lower cost is found, the current value in
the array C is updated. Finally, this array includes the lowest costs and enables
to find optimal paths connecting a given pixel with the starting point as shown
in Fig. 3.

The connection costs can be treated as similarity measures between the cen-
tral pixel of W and the pixels of the local neighborhood and in this way the
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Fig. 3. Connection costs with some exemplary optimal paths
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proposed filtering scheme is simply a weighted average of the pixels y which are
in neighborhood relation with the central pixel x. The weights are defined as

w(x,y) = exp

(
−C(x,y)2

h2

)
, (6)

where h is a tuning parameter and C(x,y) is a cost function of the optimal path
connecting x and y.

The cost function is the sum of the connection costs of the pixels creating the
optimal optimal paths:

C(x,y) =

m∑

j=1

|I(xj)− I(xj−1)| , (7)

where x0 = x is the starting point of a path, xm = y and m is the number of
path segments.

For color images the connection costs are calculated using the Euclidean dis-
tance in RGB color space between neighboring pixels. Thus, the structure of
filter output is the same as in the case of the bilateral filter

J(x) =
1

Z

∑

y∈Nx

w(x,y) · I(y), Z =
∑

y∈Nx

w(x,y). (8)

4 Experimental Results

In this section we compare the bilateral filter with the proposed modification in
terms of the visual quality of the restored image and also in terms of objective
quality measures.

First, the relationship between the control parameters of the filters and the
noise level was analyzed. The effectiveness of the new filter was tested on the
standard color test images LENA, PEPPERS and GOLDHILL corrupted with
Gaussian and mixed Gaussian and impulse noise.

We used two kinds of impulsive noise. In the first model, which will be denoted
by I, the noisy signal is modeled as xi = {xi1, xi2, xi3}, with xik = ρ with
probability π, and oik with probability 1 − π. The original, uncorrupted image
pixel is denoted by oi and the contamination component ρ is a random variable,
which takes the value 0 or 255 with the same probability. In this noise model
the contamination of the color image components is uncorrelated and the overall
contamination rate is p = 1− (1− π)3.

The second type of impulsive noise, called random-valued or uniform noise
denoted as U is modeled as xi = ρi with probability p, and oi with probability
1− p, where ρi is a noisy pixel with all channels corrupted by noise of uniform
distribution in the range [0, 255]. In the first model the noise can corrupt one,
two or all three channels. In the second model all channels are contaminated by
random values within the range [0, 255].
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The test images were contaminated by: Gaussian noise of σ = 10, σ = 20,
σ = 30, and mixed Gaussian and impulsive noise of σ = 10 and p = 0.1, σ = 20
and p = 0.2, σ = 30 and p = 0.3, where p denotes the contamination probability.

The noise removal capabilities of the modified bilateral filter were extensively
tested. To quantitatively evaluate the denoising methods we used the Peak Signal
to Noise Ratio (PSNR) measure [2].

As can be derived from (3) the properties of the bilateral filter are controlled
by the parameters σS and σI . Figure 4 shows the dependence of the PSNR on
the σI and σS values for the noisy images restored by the bilateral filter.

The values of PSNR depend mainly on σI parameter, however σS has strong
influence on the PSNR value in the range [1, 3]. Examining the plots, it can be
observed that the optimal value of σS is relatively insensitive to noise level in
the case of mixed noise but has to be tuned when restoring images polluted by
Gaussian noise.

The color images contaminated by mixed Gaussian and impulsive noise were
also restored by the modified bilateral filter. This filter was applied for different
values of the parameters h in (6) and the dependence of PSNR measure on the
parameter h is depicted in Fig. 5.

As can be observed, for test images contaminated by Gaussian noise of increas-
ing intensity, the optimal results depend significantly on the tuning parameter
h. Similarly, as in the case of the bilateral filter, the value of h increases with the
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Fig. 4. Dependence of PSNR on σS and σI parameters for the bilateral filter operating
in 5×5 window. The color image GOLDHILL was corrupted by Gaussian (a, b, c) and
mixed Gaussian and impulsive, uniform noise U (d, e, f).
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Table 1. Comparison of PSNR values obtained when restoring the color test images
with the proposed algorithm and other denoising techniques

IMAGE NOISE FILTER

N
L
M

V
M
F

A
N
N
M
F

F
V
M
F

V
D
F

B
F

5
×
5

M
B
F

5
×
5

B
F

9
×
9

M
B
F

9
×
9

G(10) 34.76 27.09 31.46 31.55 31.01 32.86 32.26 32.92 31.93

G(20) 31.93 26.53 28.18 28.21 27.77 29.38 29.78 29.68 29.48

G(30) 30.39 25.84 25.51 25.53 25.12 27.27 28.06 27.90 27.98

M(10)I 19.51 26.75 31.02 31.16 30.23 27.50 28.28 28.27 27.48

M(20)I 20.22 25.15 26.97 27.19 25.41 24.81 26.41 26.22 26.89

L
E
N
A

M(30)I 21.09 23.11 23.29 23.70 21.03 22.66 24.55 24.34 25.98

M(10)U 19.11 28.57 29.38 30.45 29.53 26.87 28.67 27.52 28.47

M(20)U 16.93 23.3 24.45 25.29 24.23 23.32 25.25 24.23 26.11

M(30)U 15.41 19.4 20.65 21.07 20.08 20.57 21.99 21.46 23.00

G(10) 33.40 25.31 29.47 29.55 28.71 31.90 30.91 31.90 30.74

G(20) 30.21 24.94 27.04 27.11 26.18 28.56 28.30 28.74 27.98

G(30) 28.19 24.47 24.74 24.85 23.70 26.47 26.79 26.84 26.55

M(10)I 17.92 25.00 29.13 29.11 23.24 25.52 25.99 26.16 25.13

M(20)I 19.68 23.92 25.81 26.11 20.36 23.91 24.95 25.06 25.15

M(30)I 20.63 22.29 21.61 22.93 17.31 21.97 23.50 23.51 24.70

G
O
L
D
H
IL

L

M(10)U 19.34 27.25 27.98 28.70 27.84 26.33 27.32 26.7 26.94

M(20)U 17.53 22.89 23.44 24.67 22.92 23.36 24.84 24.08 25.33

M(30)U 15.48 19.42 19.69 21.03 19.02 20.93 22.16 21.74 22.98

G(10) 33.71 26.54 30.85 31.13 30.32 32.15 31.74 32.29 31.55

G(20) 31.31 25.97 27.86 28.07 27.23 28.73 29.51 28.92 29.39

G(30) 29.81 25.27 25.23 25.47 24.55 26.70 27.61 27.13 27.75

M(10)I 18.54 26.01 30.27 30.66 29.22 26.37 26.95 27.07 26.46

M(20)I 19.48 24.50 26.11 26.86 24.17 23.46 24.87 24.69 25.61

M(30)I 19.68 22.96 21.84 23.29 19.56 21.18 22.82 22.57 24.37

P
E
P
P
E
R
S

M(10)U 18.49 28.13 28.47 29.91 28.33 26.04 27.96 26.68 28.02

M(20)U 16.62 22.93 23.20 24.84 23.16 22.35 24.24 23.14 25.18

M(30)U 14.36 19.05 19.35 20.66 19.07 19.61 21.03 20.36 21.98

noise magnitude. The obtained results also show that the optimal h parameter
does not depend significantly on the image structure. For images contaminated
by mixed Gaussian and impulse noise the optimal value of h is not consider-
ably sensitive to the noise level. The range of of the h parameter, for which the
optimal PSNR values can be obtained, is about [200, 250].

The effectiveness of the new filtering design was compared with some of the
existing methods:
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Fig. 5. Dependence of PSNR when applying the modified bilateral filter using a 5× 5
window on the h parameter for the color image PEPPERS corrupted with Gaussian
(a, b, c) and mixed Gaussian and impulsive, uniform noise U (d, e, f)

– Non-Local Means filter (NLM) [26, 27],
– Vector Median Filter (VMF) [12],
– ANNMF - Adaptive Nearest-Neighbor Multichannel Filter [15],
– FVMF - Fuzzy Vector Median Filter [16–18],
– VDF - Vector Directional Filter [19] .

The Bilateral Filter (BF) and the proposedModified Bilateral Filter (MBF) were
tested for windows of size 5 × 5 and 9 × 9. The control parameters were selected
experimentally to obtain optimal results in terms of the PSNR quality coefficient.
The comparison of the efficiency of the proposed MBF with the mentioned above
filters are summarized in Tab. 1.

As can be observed, for images contaminated by Gaussian noise, the best
results are obtained by the NLM algorithm and the results of the modified
bilateral are quite similar to those obtained using the bilateral filter. However, the
results for images contaminated by mixed Gaussian and impulse noise obtained
using the new filter are significantly better especially for images contaminated
by high and medium mixed noise levels.

Figure 6 exhibits the restoration results of the modified and standard bilateral
filter. As can be observed the image is smoothed, edges and details are better
preserved and the filtering output is visually more pleasing. Unfortunately, as
can be noticed in the images contaminated by a mixed Gaussian and impulse
noise, small clusters consisting of two or more pixels distorted by impulsive
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Comparison of the efficiency of the bilateral filter with the proposed approach:
(a) GOLDHILL image corrupted by mixed noise (σ=20, p=0.2, impulsive noise I), (b)
BF output , (c) MBF output, (d) GOLDHILL image corrupted by mixed noise (σ=20,
p=0.2, impulsive noise U), (e) BF output, (f) MBF output, (filtering window 5×5)

(a) PSNR=24.93 dB (b) PSNR=26.16 dB(c) PSNR=24.21 dB (d) PSNR=25.49 dB

Fig. 7. Results of the restoration of the test color image GOLDHILL corrupted by
mixed noise (σ=20, p=0.2, impulsive noise U) using a 5×5 filtering window: (a) BF
output , (b) MBF output, (c) BF with additional denoising of impulses using the
method described in [22], (d) MBF with the same impulsive noise removal technique

noise are preserved. However, for images processed with the modified bilateral,
this artifact can be easily removed using a switching filter with good impulse
detection mechanism [9, 34].
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For images processed with the standard bilateral filter, the removal of the
remaining impulse noise is more difficult, because the impulses are blurred by the
image restoration technique. The restoration results with additional impulsive
noise reduction, using the method described in [22], are presented in Fig. 7.

5 Conclusions

In the paper a novel filtering scheme has been presented and analyzed. The
results of the performed experiment indicate that very good restoration quality
has been achieved for color images contaminated by strong mixed Gaussian and
impulsive noise. The new filtering method yields significantly better results in
comparison with other denoising methods both in terms of subjective quality and
objective restoration measures. The beneficial feature of the proposed method
is the removal of mixed noise with preservation of edges and image details.
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