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Abstract. In this paper, we propose a method for computing convolu-
tion of large 3-D images with respect to real signals. The convolution is
performed in a frequency domain using a convolution theorem. Due to
properties of real signals, the algorithm can be optimized so that both
time and the memory consumption are halved when compared to com-
plex signals of the same size. Convolution is decomposed in a frequency
domain using the decimation in frequency (DIF) algorithm. The algo-
rithm is accelerated on a graphics hardware by means of the CUDA
parallel computing model, achieving up to 10× speedup with a single
GPU over an optimized implementation on a quad-core CPU.

1 Introduction

Convolution is one of the essential operations in both image and signal pro-
cessing. In some applications, it can be also viewed as a filter of a signal f ,
parametrized by g, so-called filter kernel. A kernel is given by so-called point
spread function (PSF), a function that describes the impulse response of an
imaging system to a point source [14]. The PSF can be a simple function; for
example, Gaussian is a typical representative of common convolution kernel. In
some applications, such as optical microscopy, the PSF can be a non-analytic
function, obtained e.g. from empirical measurements of an optical system. An
example of the convolution is shown in Fig. 1.

The convolution can be employed for blurring images, edge detection, noise
suppression, image registration, and in many other applications [8,14,26]. It can
be used to simulate image formation in optical systems, such as optical micro-
scopes [32], as shown in Fig. 1. In image restoration, it is employed as an essential
part of deconvolution algorithms [24,29,34].

The convolution can be time-demanding. A näıve convolution of two discrete
signals f and g, according to the definition, has the computational complexity of
O(MfMg) where Mf and Mg are number of samples of f and g, respectively. In
some applications, this is sufficient since the kernel is usually small (hundreds or
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(a) Phantom image (b) PSF (c) Blurred image

Fig. 1. Example of a 3-D convolution. The images show an artificial (phantom) image
of a tissue, a PSF of an optical microscope, and blurred image, computed by the
convolution of the two images. Each 3-D image is represented by three 2-D views (XY,
YZ, and XZ).

thousands of samples in maximum) or it is separable [2]. In other applications—
such as optical microscopy—one deals with millions of samples. In this case,
it is advisable to compute the convolution in the frequency domain, according
to the so-called convolution theorem [2]. This approach allows to decrease the
computational complexity to O(M logM) where M = Mf+Mg [35]. In practice,
this means that the computation can take seconds or minutes instead of hours
or days. The comparison of convolution in the spatial and the frequency domain
was made e.g. in [5]. Further speed-up can be achieved using graphics cards.

At present, graphics processing units (GPU) are used not only for visuali-
sation purposes but also to accelerate general computations. This phenomenon
is often referred to as general-purpose computing on graphics processing units
(GPGPU) [23]. Recently, two programming frameworks are widely used among
the GPGPU community, namely CUDA [21] and OpenCL [10].

The GPU implementations of a näıve convolution and a convolution with
separable kernel can be found in [25]. These algorithms can be used in many
applications, such as fast computation of Canny edge detection [16,22]. As for
the convolution in the frequency domain, the essential part of this approach is
the Fourier transform. Recently, the CUFFT library [19] by NVIDIA offers a
framework for implementing convolution in a straightforward manner. Besides
CUFFT, other FFT libraries for GPU were developed, such as [9,18]. GPU
acceleration of FFT and convolution in practical applications have been well
described in literature [4,5].

Relatively small global memory of the GPU architecture poses a significant
problem in applications where one deals with huge images. Several approaches
exist to decompose the convolution into sub-problems, such as the partition in
the spatial domain described in [33] and succesfully adopted in [1,31]. In [15],
authors proposed a new method, based on the decimation in frequency (DIF)
algorithm and specifically designed for the GPU architecture. This approach
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allows efficient computation of the convolution on GPU that is not limited by the
size of the GPU memory. The main drawback is that it is designed for complex
input data, hence it is relatively inefficient when processing real signals.

In this paper, we propose an optimized method for convolution of huge images
on GPU which consists of two concepts: (i) the decomposition of the problem,
as proposed in [15], (ii) the optimization for real input data (i.e. data with zero
imaginary part) which are of interest in most practical applications. In Section 2,
we recall the convolution, some of its properties, and the decomposition concept.
In Section 3, we recall approaches to optimize the convolution for real data. We
consider which one is the most suitable to be combined with the decomposition.
In Section 4, we test the performance and the precision of the GPU implemen-
tation. Finally, the conclusions summarize the main contributions of our work.

2 Convolution

A 1-D convolution of two discrete finite signals f , g is defined by following:

[f ∗ g](m′) ≡
Mg−1∑

m=0

f(m′ −m)g(m), m′ = 0, . . . ,M − 1, (1)

where Mf and Mg is the number of samples of f and g, respectively. The con-
volution then produces a signal of size M = Mf +Mg − 1. The convolution can
be extended to any number of dimensions. For details, refer to [2,11].

2.1 Convolution Theorem

An efficient approach to compute a convolution is given by so-called convolution
theorem. Having two periodic signals f , g, it can be proved that

f ∗ g = F−1 [F [f ]F [g]] , (2)

where F denotes a discrete Fourier transform (DFT).

2.2 Decimation in Frequency (DIF) Algorithm

FFT algorithms are based on the divide-and-conquer approach. To perform the
data division, two algorithms can be used: decimation in time (DIT) and deci-
mation in frequency (DIF) [3]. We will introduce the idea of the DIF algorithm
for the 1-D case. Let us have a function f(m) and its Fourier transform F (μ),
m,μ = 0, . . . ,M−1. Supposing that M is even we introduce new functions r(m′)
and s(m′), m′ = 0, . . . ,M/2− 1 as follows [28,12]:

r(m′) ≡ f(m′) + f(m′ +M/2), (3a)

s(m′) ≡ [f(m′)− f(m′ +M/2)]W−m′
M , (3b)
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where WM = ei
2π
M . Vice versa, it is simple to deduce

f(m′) =
[
r(m′) + s(m′)Wm′

M

]
/2, (4a)

f(m′ +M/2) =
[
r(m′)− s(m′)Wm′

M

]
/2. (4b)

Then it can be proved that the Fourier transforms R(μ′) and S(μ′) of the func-
tions r(m′) and s(m′) fulfil the following property:

R(μ′) = F (2μ′), (5a)

S(μ′) = F (2μ′ + 1). (5b)

2.3 GPU Accelerated Convolution

In [15], authors proposed the efficient GPU implementation of convolution of
large 3-D images. The algorithm has three phases: (i) both signal and kernel are
decomposed into P parts on CPU, using the DIF algorithm; (ii) the convolution is
computed piecewise in the frequency domain on GPU; (iii) the result is composed
from the subparts on CPU. The scheme of the algorithm is shown in Fig. 2.

The most important contribution of this approach is that the computation is
not limited by the size of GPUmemory which is usually significantly smaller than
CPU memory. The main drawback is that the algorithm is designed for complex
input data; therefore, it is sub-optimal in most applications. In this paper, we
will describe how this algorithm can be further optimized for real input data.
We will show that a significant improvement can be achieved in means of both
the time and the memory complexity.

The method specified in the following section consists basically of two con-
cepts. One, already described in [15], will be referred to as data decomposition.
The new concept, introduced in the section 3.1, will be reffered to as real data
optimization.

3 Method

3.1 Fourier Transform of a Real Signal

The (discrete) Fourier transform of a real signal keeps some specific properties,
which can be used for further optimization, when processing real images. Many
of these properties were described in the literature [2,13,27]. In particular, if the
input signal f(m), m = 0, 1, . . . ,M − 1 is real, then the following property is
held:

F (m) = F ∗(M −m). (6)

As a result, one half of the output data is redundant. It is reasonable not to
compute redundant data in order to reduce computation complexity as well as
memory requirements.
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Fig. 2. A scheme description of the convolution algorithm with a decomposition in
a frequency domain proposed in [15]. An input signal is decomposed into 2 parts by
the decimation in frequency (DIF) algorithms, i.e. P = 2. The parts are subsequently
processed independently on GPU, using the discrete Fourier transform (DFT). Moving
the border line between CPU and GPU to the right is equivalent to setting P = 4, 8, . . .

When optimizing computation of DFT of the aforementioned input signal
f(m), several approaches can be considered. In the first—used by most pop-
ular implementations of DFT, including the FFTW [7] and the CUFFT [19]
libraries—only the half transform F (m′), m′ = 0, 1, . . . ,M/2 is computed. Yet
it is difficult to combine this approach with our decomposition method. Firstly,
it requires padding the input signal (for details, refer to [7]) that leads to reallo-
cating of the whole memory block. Secondly, the ”R2C”1 method implemented
in CUFFT, according to our experiments, is less efficient than a ”classic C2C”2

method applied to a complex signal of half size.
In the second approach, two real input signals f(m), g(m) of the same size

are combined into one complex signal h(m) = f(m) + ig(m) of the same length.
Unfortunately, this combination requires creating an additional buffer of at least
the size of f . This places higher demands on CPU memory.

Our method is based on the third approach which uses the following idea: A
real input signal f(m), m = 0, . . . ,M−1 is processed as a complex signal f̂(m′),
m′ = 0, . . . ,M/2 − 1 of the half size (provided that the size of the input signal
is even):

f̂(m′) ≡ f(2m′) + if(2m′ + 1). (7)

Using the common representation of real and complex numbers in the C lan-
guage, this means that a real signal can be turned into a complex one by simply
over-casting the data type, avoiding any data transfers. The relationship between

1 Real-to-complex.
2 Complex-to-complex.
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Fig. 3. A scheme description of the modified algorithm, P = 2. For a comparison with
original algorithm, refer to Fig. 2.

the Fourier transform F (m) of the real signal f(m) and the Fourier transform

F̂ (m′) of the complex signal f̂(m′) is given by following [12]:

F (m′) =
1

2

(
α+(m

′)− iW−m′
M α−(m′)

)
, (8a)

F (m′ +M/2) =
1

2

(
α+(m

′) + iW−m′
M α−(m′)

)
, (8b)

where
α±(m′) ≡ F̂ (m′)± F̂ ∗(M/2−m′). (9)

3.2 Optimization of the Decomposition Algorithm

The real data optimization, described above, can be seamlessly combined with
the data decomposition method, proposed in [15]. The optimization basically re-
quires no modifications to the composition and decomposition functions. Some
changes must be made to the CUDA kernel which computes the point-wise mul-
tiplication so that it incorporates the recombination described in Eq. (8a) and
(8b). The scheme of the modified algorithm is shown in Fig. 3.

It can be noted that the algorithms for both decimation and array permutation
were originally introduced in 1970s not only to reduce the time complexity of
FT but also to allow efficient use of memory spaces available [6]. In this context,
our approach can be viewed as a revival of such techniques.

3.3 Getting Further

One has to take into account more dimensions when processing d-dimensional
data. For implementation reasons, described in the previous section, it is reason-
able to perform real data optimization in the last (usually x) axis. On the other
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hand, to achieve maximum data transfer efficiency, it is advisable to perform the
decomposition in the first (y for d = 2 or z for d = 3) axis, as explained in [15].

For example, in 2-D space, Eq. (8a) and (8b) can be extended as follows:

F (m′, n) =
1

2

(
α+(m

′, n)− iW−m′
M α−(m′, n)

)
, (10a)

F (m′ +M/2, n) =
1

2

(
α+(m

′, n) + iW−m′
M α−(m′, n)

)
, (10b)

where m′ = 0, 1, . . . ,M/2− 1, n = 0, 1, . . . , N − 1, and

α±(m′, n) ≡ F̂ (m′, n)± F̂ ∗(M/2−m′, N − n). (11)

The real data optimization can be combined with data decomposition for any
number of parts P that the data are decomposed into. It should be noted
that due to the recombination phase, memory requirements change for P > 2.
Whereas first two parts recombine with themselves, the others recombine in
pairs. Therefore, the GPU memory requirements are no longer (Mf + Mg)/P
but 2(Mf +Mg)/P . For a practical example, refer to the following section.

4 Experimental Results

Experiments were conducted on a machine described in Table 1. The CPU im-
plementation uses the multi-threaded FFTW library while the GPU implemen-
tation uses our algorithm along with the CUFFT library. The decomposition
and the composition functions are performed on CPU and improved with SSE
intrinsics for a better performance.

Table 1. Machine used for experiments

CPU/GPU # of cores Clock speed RAM size Bandwidth

IntelCore i7 950 4 3.07 GHz 6GB 12.8 GB/s

NVIDIAGeForceGTX 480 480 1.40 GHz 1.5GB 88.7 GB/s

In the experiments, we used randomly generated images of certain sizes. Two
datasets were created. In the first dataset, the image dimensions were powers of
2 which allows most efficient computation of FFT. In the second dataset, the
images were arbitrarily sized except that in the z dimension the padded size is
kept so that the decomposition can be performed without the need of additional
image padding. We refer to the images from the two datasets as specifically and
arbitrarily sized, respectively. For details, refer to Table 2.

In the first experiment, we compared CPU and GPU implementations for a
single value of P , various image sizes, and both real and complex input data. The
parameter P was chosen the smallest possible in all cases, allowing the best GPU
performance. As shown in the following experiment, and described in [15], the
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Table 2. Sizes of the images used in experiments

Image size [Mpx] 1st dataset 2nd dataset

34 512× 512× 128 514× 514× 128

67 1024× 512× 128 1028 × 514× 128

134 1024 × 1024× 128 1028× 1028 × 128

268 1024 × 1024× 256 1028× 1028 × 256

GPU performance slightly decreases when increasing P . The results are shown
in Fig. 4(a),(b). For better visual comparison of implementations in plots, the
performance P is computed as P = s/t, where s is the output image size and t
is the computation time including data transfers between CPU and GPU.

The results clearly show that the real data optimization not only increases
the performance significantly, it also allows processing images that could not be
processed without the optimization, due to insufficient CPU memory. The GPU
performance slightly decreases as the image size increases. This is in fact due to
increase of the P parameter. Still, the speed-up over the CPU implementation
is approx. 4× for the 1st dataset and up to 10× for the 2nd dataset.

In the second experiment, we measured the performance of CPU and GPU
implementations for various values of P , fixed image size, and real input data.
We also evaluated the GPU memory requirements. The results are shown in
Fig. 5(a),(b). The experiment confirmed that the GPU performance decreases
with the increase of the P parameter. On the other hand, the amount of the
GPU memory required decreases except the step between P = 2 and P = 4.
This is due to algorithm properties, explained in Section 3.3.

4.1 Multi-GPU Performance

As described in [15], the decomposition algorithm can be adopted for multi-
GPU systems, allowing further speed-up. However, bandwidth of data transfers
is limited by the PCI-Express bus data processing [30]. This has negative impact
on GPU performance and can cause even its decrease. In the third experiment,
we measured performance of 2 GPUs computing simultaneously, using the same
system with an additional graphics card, namely the NVIDIAGeForceGTX285.
Again, we measured the performance for various values of P and fixed image size.

The results, shown in Table 3, indicate that in the case of a specifically-sized
image (columns 2 and 3), the data transfer overhead is crucial. Hence, adding the
second GPU brings no speed-up. In case of an arbitrarily-sized image (columns
3 and 4), the computation of FFT is the most time-demanding phase of the
algorithm so with 2 GPUs, a significant speed-up can be achieved. In general,
the contribution of the multi-GPU implementation increases with the increase
of P .
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(b) 2nd dataset (arbitrarily sized images)

Fig. 4. Comparison of CPU and GPU implementations for a single value of P (best
choice), various image sizes, and both real and complex input data
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Fig. 5. Comparison of CPU and GPU implementations for various values of P , fixed
image size, and real input data. Plots also show GPU memory requirements.

Table 3. Computing time of the GPU implementation: 1 GPU vs 2 GPUs

Image size 512 × 512 × 128 514 × 514 × 128

P 1 GPU [ms] 2 GPUs [ms] 1 GPU [ms] 2 GPUs [ms]

2 146.4 176.7 403.7 293.6

4 157.9 175.8 442.5 274.6

8 203.0 192.4 515.9 275.9

16 213.9 201.2 568.4 298.6
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4.2 Precision Analysis

In this experiment, we evaluated the error of the output data in a practical
application. The tissue image from Fig. 1(a) was cropped to various sizes and
convolved with the PSF from Fig. 1(b) of size 128×128×96. The input data was
16-bit integers. The convolution was computed on GPU in the single precision
and on CPU in the double precision. The error δmax was computed as a maximum
difference between the two output images. The results for various output image
sizes and various values of P are shown in Table 4. In some cases, the convolution
could not be computed for P = 1, due to insufficient GPU memory.

Table 4. Computation error

Image size δmax

x× y × z P = 1 P = 2 P = 4 P = 8 P = 16

384× 384× 160 0.006 0.097 0.112 0.105 0.105

640× 384× 160 0.007 0.143 0.112 0.117 0.122

640× 640× 160 0.008 0.225 0.211 0.166 0.121

640× 640× 224 0.009 0.177 0.162 0.132 0.103

386× 386× 160 0.018 0.100 0.113 0.106 0.107

642× 386× 160 0.017 0.146 0.112 0.122 0.125

642× 642× 160 — 0.226 0.213 0.169 0.125

642× 642× 224 — 0.178 0.164 0.133 0.113

The results show that the error is significantly smaller for P = 1, i.e. when
no decomposition is performed. Nevertheless, the error does not grow with the
increase of P . As δmax < 1 in all cases, the output 16-bit integer images are
virtually the same. Still, it is likely that in some practical applications, the
single precision will not be enough. Fortunately, the recent GPU architecture
allows efficient computation in the double precision [17,20].

5 Conclusions

We have reviewed efficient approaches to compute convolution of large 3-D im-
ages, with special regard to the currently popular GPU architecture. At present,
the GPU architecture achieves significantly higher performance than the com-
mon multi-core CPU architecture. The main drawback of GPU is relatively small
memory which can impose limitations on practical applications, such as optical
microscopy, where huge images are of interest. In this paper, we have recalled
our GPU implementation of convolution which allows to decompose the problem
into sub-parts in an efficient way.



GPU Optimization of Convolution for Large 3-D Real Images 69

The main contribution of this paper is the optimization of the aforementioned
method for the real data which are of interest in most practical applications.
Thanks to the optimization, the GPU implementation achieves up to 10× speed-
up—including data transfers—over the multi-core CPU implementation, namely
the one in the FFTW library which is widely used and considered the state of
the art. The GPU implementation is able to compute the convolution of two
270 Mpx images within less than 2 s.

Our experiments proved the GPU implementation to be not only efficient but
also precise enough for the optical microscopy images. In applications where the
precision is crucial, double precision can be used.

Both concepts, the decomposition and the optimization, are designed to be
performed in-place in the CPU memory which allows the maximum exploitation
of resources. However, in some applications, the images can even exceed the
CPU memory. Here, our method can potentially be combined with the approach
described in [31] so that the convolution can be decomposed on multiple levels.
Furthermore, the proposed method is not strictly dependent on CUDA nor on the
GPU architecture. It can be implemented also in OpenCL and other languages.
Other parallel architectures can be taken into account as well. Generally, it can
be implemented on a heterogeneous cluster of computers allowing both CPU
and GPU to take part in the computation.
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cation of the Czech Republic (Project No. 2B06052) and the Grant Agency of
the Czech Republic (Grant No. P302/12/G157).
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