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Abstract. Heterogeneous intensity distribution inside the prostate
gland, significant variations in prostate shape, size, inter dataset con-
trast variations, and imaging artifacts like shadow regions and speckle
in Trans Rectal Ultrasound (TRUS) images challenge computer aided
automatic or semi-automatic segmentation of the prostate. In this pa-
per, we propose a supervised learning schema based on random forest for
automatic initialization and propagation of statistical shape and appear-
ance model. Parametric representation of the statistical model of shape
and appearance is derived from principal component analysis (PCA) of
the probability distribution inside the prostate and PCA of the con-
tour landmarks obtained from the training images. Unlike traditional
statistical models of shape and intensity priors, the appearance model
in this paper is derived from the posterior probabilities obtained from
random forest classification. This probabilistic information is then used
for the initialization and propagation of the statistical model. The pro-
posed method achieves mean Dice Similarity Coefficient (DSC) value of
0.96±0.01, with a mean segmentation time of 0.67±0.02 seconds when
validated with 24 images from 6 datasets with considerable shape, size,
and intensity variations, in a leave-one-patient-out validation framework.
The model achieves statistically significant t-test p-value<0.0001 in mean
DSC and mean mean absolute distance (MAD) values compared to tra-
ditional statistical models of shape and intensity priors.

Keywords: Prostate Segmentation, Random Forest, Statistical Shape
and Posterior Probability Models, Ultrasound.

1 Introduction

Prostate cancer is the most commonly diagnosed cancer in North America
and accounted for 33,000 estimated deaths in 2011 [1]. Accurate prostate

J. Blanc-Talon et al. (Eds.): ACIVS 2012, LNCS 7517, pp. 190–200, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Supervised Learning Framework for Automatic Prostate Segmentation 191

segmentation in TRUS may aid in radiation therapy planning, motion moni-
toring, biopsy needle placement and multimodal image fusion between TRUS
and magnetic resonance imaging (MRI) to improve malignant tissue extraction
during biopsy [19]. However, accurate computer aided prostate segmentation
from TRUS images is a challenging task due to low contrast of TRUS images,
speckle, and shadow artifacts. Moreover, inter-patient prostate shape, size and
deformation may vary significantly and heterogeneous intensity distribution in-
side the prostate gland may introduce further challenges in automatic prostate
segmentation.

Deformable models and statistical shape models are commonly used for
prostate segmentation in TRUS images. For example Badiei et al. [2] used a
deformable model of warping ellipse and Ladak et al. [14] used discrete dynamic
contour to achieve semi-automatic prostate segmentation. However, prostate seg-
mentation during TRUS guided biopsy procedures should necessarily be auto-
matic. Shen et al. [18] and Zhan et al. [20] presented an automatic method
that incorporated a priori shape and texture information from Gabor filters to
produce accurate prostate segmentation. However, the method is computation-
ally expensive and probably unsuitable for TRUS guided prostate intervention
[19]. In recent years, Cosio et al. [6] reported an automatic method for prostate
segmentation with active shape models [4]. However, the computationally inten-
sive optimization framework of genetic algorithm is unsuitable for TRUS guided
intervention.

In recent years, supervised machine learning methods have been adopted for
solving prostate segmentation problems in medical images [15,10]. Motivated by
these approaches we propose a novel prostate segmentation method in which
appearance and spatial context based information from the training images are
used to classify a new test image to achieve probabilistic classification of the
prostate. Further, statistical shape and appearance model derived from PCA
of prostate shape and posterior probabilistic values of the prostate region of
the training TRUS images are propagated in a multi-resolution framework to
segment a test image. The key contributions of this work are:

– The use of random forest classification framework to obtain a soft classifica-
tion of the prostate.

– Using such information in training, automatic initialization and propagation
of our model.

The performance of our method is compared with the traditional active appear-
ance model (AAM) [5] and also with our previous work [11]. Compared to the
use of intensity as in [5] and to the use of texture obtained from quadrature fil-
ter in [11], the posterior probabilistic information is used to train, initialize and
propagate our model. Statistically significant improvement is achieved when val-
idated with 24 images that have significant shape, size, and contrast variations
of the prostate in a leave-one-patient-out validation framework.
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Fig. 1. Schematic representation of our approach. Abbreviations used PDM = Point
Distribution Model, GPA = Generalized Procustes Analysis, Pb. = Probability.

2 Proposed Segmentation Framework

The proposed method is developed on two major components: 1) Supervised
learning framework of decision trees (random forest) to determine the posterior
probability of a pixel being prostate, and 2) adapting statistical models of shape
and intensity priors to incorporate the posterior probabilities of the prostate
region for training, initialization and propagation of the parametric model. We
present the random forest framework for determining posterior probability of the
prostate region, followed by our statistical shape and probability prior model of
the prostate region in the following subsections. The schema of our proposed
method is illustrated in Fig. 1.

2.1 Random Forest Based Probabilistic Classification

In traditional AAM [5], the point distribution model (PDM) [4] of the contour
is aligned to a common reference frame by generalized Procrustes analysis [13].
Intensities are warped into correspondence using a piece-wise affine warp and
sampled from a shape-free reference. Intensity distribution inside the prostate
region may vary significantly from one dataset to another depending on the
ultrasound image acquisition parameters and nature of the prostate tissue of a
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patient. Hence, the use of intensity distribution of the prostate region to build the
texture model as in traditional AAM introduces larger variations producing an
inaccurate texture model that adversely affects segmentation results. To reduce
the inter-dataset intensity variations and intensity variations inside the prostate
region, we propose to determine the posterior probability of the image pixels
being prostate in a supervised learning framework and use PCA of the posterior
probabilities of the prostate region to build our appearance model.

Our approach of using pixel location to determine the prior position infor-
mation of the prostate is based on the works of Cosio et al. [6] and Shen et al.
[18]. Both used prior prostate location information in TRUS images to automat-
ically initialize their model. Cosio et al. [6] used a 3D feature vector of pixel
location and intensity value to classify and localize prostate in TRUS images
for initialization of their model. Similarly, Shen et al. [18] proposed to use the
relative position of the prostate with respect to the TRUS probe (located at the
center of the base line of the TRUS image) for initialization. More recently Li
et al. [15] used a spatial context based machine learning approach to achieve a
probabilistic segmentation of the prostate. Motivated by these approaches we
propose a supervised learning framework that exploits the location and image
feature information of the prostate in TRUS images to determine the posterior
probability of the prostate region.

In this paper, the probabilistic classification addressed by supervised random
decision forest may be formalized as a soft classification of pixels into either
background or prostate. Decision trees are discriminative classifiers which are
known to suffer from over-fitting. However, a random decision forest achieves
better generalization by growing an ensemble of many independent decision trees
on a random subset of the training data and by randomizing the features made
available at each node during training [10].

During training, to minimize the pose and intensity variations, our datasets
are rigidly aligned based on intensities. We have used Evangelidis et al. [9] for
rigid alignment. The inter-patient intensity variations are linearly normalized
between 0 and 1. The data consists of a collection of features obtained from
3 × 3 neighborhood of pixels, each centered at V = (X,F ). Where, X = (x, y)
denotes the position of the pixel associated with a feature vector F . The mean
and standard deviation of the 3 × 3 pixel neighborhood are used as the feature
vector F . Each tree τi, i = 1, . . . , T in the decision forest receives the full set
V , along with the label and the root node and selects a test to split V into two
subsets to maximize information gain. A test consists of a feature (like the mean
of a pixel neighborhood) and a feature response threshold. The left and the right
child nodes receive their respective subsets of V and the process is repeated at
each child node to grow the next level of the tree. Growth is terminated when
either information gain is minimum or the tree has grown to maximum depth.
Each decision tree in the forest is unique as each tree node selects a random
subset of features and threshold.

During testing, the test image is rigidly aligned to the same frame of the
training datasets and its intensities are normalized. The pixels are routed to one
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(a)

(b)

Fig. 2. Random forest classification framework (a) Random forest training (b) Random
forest classification with a test image

leaf in each tree by applying the test (selected during training). Each pixel of
the test dataset is propagated through all the trees by successive application of
the relevant binary test to determine probability of belonging to a class c. When
reaching a leaf node lτ in all trees where τ ∈ [1, . . . , T ], posterior probabili-
ties Pτ (c|V ) are gathered in order to compute the final posterior probability of

the pixel defined by P (c|V ) = 1
T

∑T
τ=1 Pτ (c|V ). Computation of class posterior

probabilities in decision forest is illustrated in Fig. 2.

2.2 Statistical Shape and Appearance Model

The process of building the parametric statistical model of shape and appearance
variations involves the task of building a shape model, an appearance model,
and consecutively a combined model of shape and appearance priors. To build
the shape model, a PDM [5] is built by equal angle sampling of the prostate
contours to determine the landmarks automatically. The PDM of the contours
are aligned to a common reference frame by generalized Procrustes analysis [13].
PCA of the aligned PDMs identifies the principal modes of shape variations.
Posteriori probabilistic information (of pixels being prostate) of the segmented
region are warped into correspondence using a piece-wise affine warp and are
sampled from a shape-free reference similar to that of AAM [5]. PCA of the
posterior probabilities from Section 2.1 is used to identify their principal modes
of variation. The model may be formalized in the following manner. Let s and t
represent the shape and posterior probability models, then
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s = s+ Φsθs, t = t+ Φtθt (1)

where s and t denote the mean shape and posterior probability information
respectively, then Φs and Φt contain the first p eigenvectors (obtained from
98% of total variations) of the estimated joint dispersion matrix of shape and
posterior probability information and θ represent the corresponding eigenvalues.
The model of shape and posterior probability variations are combined in a linear
framework as,

b =

[
Wθs
θt

]
=

[
WΦT

s (s− s)
ΦT

t (t− t)

]
(2)

where W denotes a weight factor (determined as in AAM [5]) coupling the
shape and the probability space. A third PCA of the combined model ensures
the reduction in redundancy of the combined model, and is given as,

b = Eα (3)

where E is the matrix of eigenvectors and α the appearance parameters.

2.3 Optimization and Segmentation of a New Instance

In our model, we use the optimization framework similar to that proposed by
Cootes et al. [5]. The objective function of our model is similar to AAM. However,
instead of minimizing the sum-of-squared differences of intensities between the
mean model and target image, we minimize the sum-of-squared differences of
the posterior probabilities of the mean model and the target image. The prior
knowledge of the optimization space is acquired by perturbing the combined
model with known model parameters and perturbing the pose (translation, scale
and rotation) parameters. Linear relationships between the perturbation of the
combined model (δc) and the residual posterior probability values (δt) (obtained
from the sum-of-squared differences between the posterior probabilities of the
mean model and the target image), and between the perturbation of the pose
parameters (δp) and the residual posterior probability values are acquired in
multivariate regression frameworks as,

δc = Rcδt, δp = Rpδt (4)

Rc and Rp refer to the correlation coefficients. Given a test image, the posterior
probability values of the pixels being prostate is determined with random forest
soft classification. The sum-of-squared differences of the posterior probability
values with the mean model is used to determine the residual value δt. The
combined model (δc) and the pose parameters (δp) are then updated using Eq.
(4) to generate a new shape, and combined model and consequently the new
posterior probabilities. The process continues in an iterative manner until the
difference of the mean model with the target image remains unchanged. The
model is initialized at a resolution one fourth the size of the original image
and the model propagates in a multi-resolution schema from lower to higher
resolution to achieve segmentation.
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Table 1. Prostate segmentation quantitative comparison (HD, MAD and MaxD in
mm, Spec., Sens., and Acc., are for Specificity, Sensitivity and Accuracy respectively.)
Statistically significant values are italicized

Method DSC HD MAD MaxD Spec. Sens. Acc.

AAM
[5]

0.94±0.03 4.92±0.96 2.15±0.94 5.3±0.48 0.89±0.03 0.993±0.006 0.97±0.009

Ghose
et al.
[11]

0.95±0.02 3.82±0.88 1.26±0.51 3.92±0.93 0.94±0.03 0.97±0.02 0.97±0.01

Our
Method

0.96±0.01 2.99±0.73 0.96±0.31 3.01±0.73 0.94±0.02 0.991±0.005 0.98±0.007

3 Experimental Results and Discussions

We have validated the accuracy and robustness of our method with 24 axial
mid-gland TRUS images of the prostate with a resolution of 354×304 pixels from
6 prostate datasets in a leave-one-patient-out evaluation strategy. The ground
truth for the experiments are prepared in a schema similar to MICCAI prostate
challenge 2009 [17], where manual segmentations performed by an expert radi-
ologist were validated by an experienced urologist. Both doctors have over 15
years of experience in dealing with prostate anatomy, prostate segmentation,
and ultrasound guided biopsies. We have fixed the number of trees to 100, tree
depth to 30 and the lower bound of information gain to 10−7 in decision forest.
These parameters were chosen empirically as they produced promising results
with test images.

We have used most of the popular prostate segmentation evaluation metrics
like DSC, 95% Hausdorff Distance (HD) [17], MAD [19], Maximum Distance
(MaxD) [16], specificity [8], sensitivity, and accuracy [2] to evaluate our method.
Furthermore, the results are compared with the traditional AAM [5], and to
our previous work in which we used texture features extracted with quadrature
filters in the statistical shape and appearance model [11]. It is observed from
Table 1 that a probabilistic representation of the prostate regions in TRUS im-
ages significantly improves segmentation accuracy when compared to traditional
AAM and to [11]. As opposed to the manual initialization of traditional AAM
and as in [11], we use the posterior probability information for automatic initial-
ization and training of our statistical shape and appearance model. We achieved
a statistically significant improvement in t-test p-value for DSC, HD and MAD
compared to traditional AAM [5] and to [11]. A high DSC value and low values of
contour error metrics of HD and MAD are all equally important in determining
the segmentation accuracy of an algorithm. In this context, we obtained better
segmentation accuracies compared to [5] and [11]. To provide qualitative results
of our method we present a subset of results in Fig. 3.

Our method is implemented in Matlab 7 on an Intel Core i5, 2.8 GHz proces-
sor and 8 GB RAM. The mean segmentation time of the method is 0.67±0.02
seconds with an unoptimized Matlab code. Even with an unoptimized Matlab
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Table 2. Qualitative comparison of prostate segmentation

Reference Area Accuracy Contour Accuracy Datasets Time

Betrouni [3] Overlap 93±0.9% Distance 3.77±1.3 pixels 10 images 5 seconds
Shen [18] Error 3.98±0.97% Distance 3.2±0.87 pixels 8 images 64 seconds
Ladak [14] Accuracy 90.1±3.2% MAD 4.4±1.8 pixels 117 images -
Cosio [6] - MAD 1.65±0.67 mm 22 images 11 minutes
Yan [19] - MAD 2.10±1.02 mm 19 datasets

/301 images
0.3 seconds

Ghose [12] DSC 0.96±0.01 MAD 0.80±0.24 mm 6 datasets/
24 images

5.95 seconds

Our
Method

DSC 0.96±0.01 MAD 3.44±1.11 pixels/
0.96±0.31 mm

6 datasets/
24 images

0.67 seconds

code in Table 2 we observe that our mean segmentation time is better when
compared to [3], [18] and [6], although inferior to [19]. However, [19] used an
optimized C++ code to achieve their results. We believe that a speed-up of
computational time is possible with a parallelized and optimized code in GPU
environment.

A quantitative comparison of different prostate segmentation methodologies is
difficult in the absence of a public dataset and standardized evaluation metrics.
Nevertheless, to have an overall qualitative estimate of the functioning of our
method, we have compared with some of the existing 2D segmentation methods
as shown Table 2. In Table 2, we may consider the area overlap and the area
accuracy as equivalent of DSC measure and the average distance as equivalent of
the average MAD. Analyzing the results, we observe that our mean DSC value
is better than the area overlap accuracy values of Betrouni et al. [3] and Ladak
et al. [14] and very similar to the area overlap error of Shen et al. [18]. However,
it is to be noted that we have used more images compared to Shen et al. Our
MAD value also shows improvement when compared to [3], [18], [14], [6] and
[19]. From these observations we may infer our method performs well in overlap
and contour accuracy measures when assessed qualitatively.

Furthermore, the obtained contour and area overlap accuracies are similar
to the results obtained in [12]. In our previous work [12] we fused probabilities
obtained from expectation maximization (EM) [7] based clustering and spatial
probabilities to achieve a soft clustering of the prostate. In a schema similar to
our proposed model in this article, automatic initialization and propagation of
the deformable model was achieved with posterior probabilities. However, our
previous work [12] was computationally more expensive due to the EM frame-
work adopted for the model. Transforming the EM framework with a supervised
learning framework, our proposed method achieves prostate segmentation in sig-
nificantly less time than that required for [12]. The mean segmentation time of
[12] with current machine configuration is 4.33±0.21 seconds while the proposed
method using supervised learning with random forest takes 0.67±0.02 seconds
without compromising the segmentation accuracies. Mean segmentation time is
often a critical element in selecting one segmentation method over the other for
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Fig. 3. The green contour gives the ground truth and the red contour gives the obtained
result

near real-time multimodal image fusion between TRUS and MRI to improve
malignant tissue sampling during biopsy. In this context, we may claim that our
present method shows improvement over our previous work in [12].

4 Conclusion and Future Works

A novel approach of multiple statistical models of shape and posterior probabil-
ity information of prostate region with the goal of segmenting the prostate in
2D TRUS images has been proposed. Our approach is accurate, and robust to
significant shape, size and contrast variations in TRUS images compared to tra-
ditional AAM. While the proposed method is validated with prostate mid-gland
images, effectiveness of the method for the base and the apical slices is yet to be
validated.
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