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Abstract We present three different approaches to model, in a computationally
cheap way, problems characterized by strong horizontal dynamics, even though
in the presence of transverse heterogeneities. The three approaches are based on
the hierarchical model reduction setting introduced in Ern et al. (Hierarchical
model reduction for advection-diffusion-reaction problems. In: Kunisch K, Of G,
Steinbach O (eds) Numerical mathematics and advanced applications. Springer
(2008), pp 703–710) and Perotto et al. (Multiscale Model Simul 8(4):1102–1127,
2010).

1 Motivations

We focus on the modeling of engineering applications which exhibit a dominant
dynamic (e.g., flows in tubular domains as in haemodynamics or in a channel
network as in hydrodynamics, flows through anisotropic porous media). For this
modeling, downscaled models, where only the dominant space dependence is
considered, are sometimes advisable. Nevertheless, in the presence of signif-
icant transverse dynamics, these downscaled models may become uneffective
(see, e.g., [2]).

We move consequently to a different approach, known as Hierarchical Model
(Hi-Mod) reduction to get a sort of trade-off between accuracy and efficiency
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[1, 3]. We suitably rewrite the full problem as a set of coupled 1D differential
problems (i.e., the reduced model) associated with the dominant dynamic, while
the information along the transverse directions are lumped in the coefficients of
the reduced formulation. We focus on a generic second-order elliptic full problem,
given by

find u 2 V W a.u; v/ D F .v/ 8v 2 V; (1)

with V � H1.˝/ a Hilbert space, a.�; �/ W V � V ! R a continuous and coercive
bilinear form and F .�/ W V ! R a continuous linear functional.

In this paper we propose three different techniques for a Hi-Mod reduction. The
first two approaches have already been validated with good results (see [1, 3]). The
nodewise Hi-Mod reduction represents the novelty of this paper.

2 Hierarchical Model Reduction Techniques

We fix the basic ingredients to perform a Hi-Mod reduction [1,3]. We first introduce
a constraint on the computational domain. We assume ˝ D S

x2˝1D fxg � �x ,
i.e., ˝ coincides with a fiber bundle, where ˝1D D .x0; x1/ is the supporting fiber
(parallel to the dominant dynamics) while �x is the transverse fiber at x (parallel to
the secondary transverse dynamics). In particular, we focus on 2D domains.

Then, for any x 2 ˝1D, we introduce the map  x W �x ! b� between the generic
fiber �x and the reference fiber b� , so that the physical domain˝ is mapped into the
reference domain b̋ D ˝1D � b� via the map � W ˝ ! b̋ , given by �.z/ D bz,
where z D .x; y/,bz D .bx;by/ with bx D x and by D  x.y/. We assume that  x is a
C1-diffeomorphism for all x 2 ˝1D and that � is differentiable with respect to z.
A standard choice for  x is an affine map.

The fiber structure on ˝ is at the basis of all the Hi-Mod reduction techniques
below. The common idea is to differently tackle the dependence of the full solution
on the dominant and on the transverse directions. The former is spanned via a
standard (1D) finite element basis. The latter are expanded into a modal basis
f'kgk2INC of functions in H1.b�/, orthonormal with respect to the L2.b�/-scalar
product and compatible with the boundary conditions along the horizontal sides
of ˝ .

2.1 Uniform Hi-Mod Reduction

This approach resorts to a global one-dimensional space V1D �H1.˝1D/ to
describe the solution along the fiber ˝1D as well as to the same number of modal
functions along the transverse directions [1, 3]. In particular, the functions in V1D
take into account the boundary conditions on the vertical sides of ˝ .
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The discrete uniform Hi-Mod reduced formulation for (1) reads: for a certain
modal indexm 2 INC,

find uhm 2 V h
m W a.uhm; v

h
m/ D F .vhm/ 8vhm 2 V h

m; (2)

where the discrete reduced space

V h
m D

n
vhm.x; y/ D

mX

kD1
ev h
k .x/ 'k. x.y//; with ev h

k 2 V h
1D; x 2 ˝1D; y 2 �x

o

(3)
establishes an actual hierarchy of reduced models marked by the modal index m,
i.e., by the different level of detail in describing the transverse dynamics of the full
problem. Space V h

1D � V1D is a finite element space associated with a subdivision
Th of ˝1D, with dim.V h

1D/ D Nh < C1. A standard density assumption is made
on V h

1D . Then, suitable hypotheses of conformity and of spectral approximability
guarantee the inclusion V h

m � V as well as the well-posedness of the reduced
formulation (2).

If we replace in (2) the reduced solution with the corresponding discrete modal
representation (uhm.z/ D Pm

kD1 eu h
k .x/ 'k. x.y//) and choose vhm D #i'j , with #i

the generic finite element basis function, we are led to solve

mX

kD1
a.eu h

k 'k; #i'j / D F .#i'j / j D 1; : : : ; m; i D 1; : : : ; Nh (4)

i.e., a set of coupled 1D problems instead of the full 2D problem. From an algebraic
viewpoint, (4) coincides with a linear system with an m � m block matrix, where
each block is an Nh �Nh matrix exhibiting the sparsity of the finite element space.

An appropriate choice of the modal index m in (3) is certainly the most critical
issue of the uniform Hi-Mod reduction. This choice can be driven, e.g., by an a
priori knowledge of the phenomenon at hand. In [3] a “trial and error” approach is
suggested: we move from the computationally cheapest choice for m (m D 1) and
then we gradually increase such a value. We stop when the addition of the successive
modal function does not significantly improve the accuracy of the reduced solution.
This choice may become really uneffective when strongly localized transverse
dynamics are present. In such a case a large number of modal functions is required
on the whole ˝ , even though it would be strictly necessary only on the portion of
˝ where the strong dynamics occur.

2.2 Piecewise Hi-Mod Reduction

To overcome the intrinsic limit of a uniform Hi-Mod reduction, we move in [3]
to a new formulation, where a different number of modes is employed in different
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parts of ˝: essentially, large values of m are used where the transverse dynamics
are relevant, small values where the dynamics are less important. In particular, we
resort to a domain decomposition approach to glue the models associated with a
different number of modes: the reduced problem is thus split and iteratively solved
on subdomains of ˝ . The modal index m becomes therefore a piecewise constant
vector: this justifies the name of this approach.

Following [4], the discrete piecewise Hi-Mod reduced formulation for (1) reads:
for a certain modal multi-index m 2 ŒINC�s ,

find ub;hm 2 V b;h
m W a˝.u

b;h
m ; vb;hm / D F˝.v

b;h
m / 8vb;hm 2 V b;h

m ; (5)

with a˝.ub;hm ; vb;hm / D Ps
iD1 ai .ub;hm

ˇ
ˇ
˝i
; vb;hm

ˇ
ˇ
˝i
/, F˝.v

b;h
m / D Ps

iD1 Fi .v
b;h
m

ˇ
ˇ
˝i
/

where ai .�; �/ and Fi .�/ are the restrictions of the bilinear and linear forms in (1) to
the s subdomain ˝i of ˝ , such that ˝ D [s

iD1˝i . The modal multi-index m D
fmigsiD1 collects the number of modes employed on each ˝i . The discrete reduced
space V b;h

m is defined by

V b;h
m D

n
vb;hm 2 L2.˝/ W vb;hm j˝i D

miX

kD1
ev i;h
k j˝1D; i .x/ 'k. x.y// 2 H1.˝i /

8i D 1; : : : ; s; with ev i;h
k 2 V b;h

1D and s.t., 8k D 1; : : : ; m
j

? with j D 1; : : : ; s � 1;

(6)
Z

b�

�
vb;hm j˝jC1

.�j ;  
�1
�j
.by// � vb;hm j˝j .�j ;  �1

�j
.by//

�
'k.by/ dby D 0

o
;

with mj

? D min.mj ;mjC1/, ˝1D; i D ˝1D \˝i , �j D ˝j \˝jC1. Space V b;h
1D is

a suitable discrete space associated with the finite element partition Th: it represents
a subset of the one-dimensional broken Sobolev space H1.˝1D;T˝1D / depending
on the partition T˝1D D f˝1D;i gsiD1 of the supporting fiber ˝1D . Likewise, the
space V b;h

m is a subset of the two-dimensional broken Sobolev space H1.˝;T˝/

associated with the partition T˝ D f˝igsiD1 of ˝ .
Notice that the integral condition in (6) weakly enforces the continuity of the

solution in correspondence with the minimum number of modes employed on the
whole ˝ . This does not guarantee a priori the conformity of the reduced solution
ub;hm in (5). Different strategies can be adopted to impose this interface condition:
in [4] we resort to an iterative substructuring Dirichlet/Neumann method (with
relaxation).

From a computational viewpoint, at each iteration of the Dirichlet/Neumann
scheme, we apply, separately, a uniform Hi-Mod reduction on the subdomains
˝i . This leads to solve s systems of coupled 1D problems as in (4), with an
miN

i
h �miN

i
h block matrix, whose factorization is stored once and for all at the first

iteration and with N i
h < C1 the dimension of the finite element space associated

with ˝1D; i .
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The choice of the modal multi-index m in (5) can be made a priori, as in [3],
when we have some hints about u, or automatically, as in [4], if a suitable a posteriori
modeling error estimator drives the selection of both ˝i and m.

2.3 Nodewise Hi-Mod Reduction

The piecewise Hi-Mod reduction represents a significative computational improve-
ment with respect to the uniform Hi-Mod approach. Yet, it exhibits some limitations
especially when dealing with extremely localized (almost pointwise) transverse
dynamics or, on the contrary, with dynamics which involve the whole domain, even
though with a different intensity (see Sect. 3 for an example). In the former case,
a sufficiently large number of modes is assigned to a subdomain around the localized
dynamic but, likely, the size of this domain will be excessively large compared with
the entity of the dynamic; in the latter case, a piecewise Hi-Mod reduction may
become uneffective so that the only feasible way is the uniform approach.

These considerations prompt us to set up a third Hi-Mod reduction procedure:
the novelty is that now the modal functions are associated with the nodes of the
finite element partition, in contrast to the piecewise approach where the modes
are associated with subdomains of ˝ . The association of the modes with the finite
element nodes motivates the name chosen for this approach.

The trick which inspired us in setting up the nodewise approach consists of
properly rewriting the modal expansion in the discrete space (3). By exploting the
finite element basis f#ig, we have indeed

vhm.x; y/ D
mX

kD1
ev h
k .x/ 'k. x.y// D

mX

kD1

h NhX

iD1
ev h
k;i #i .x/

i
'k. x.y//: (7)

Notice that the leading role in such an expansion is taken by the summation on the
modes. Simply by exchanging the two summations, we get

vhm.x; y/ D
NhX

iD1

h mX

kD1
ev h
k;i 'k. x.y//

i
#i .x/; (8)

i.e., a representation for vhm, equivalent to (7), where the expansion runs over the
finite element nodes. This leads us to define, in a straightforward way, a new discrete
reduced space V h

M where, ideally, the number of the modal basis functions may vary
on each finite element node:

V h
M D

n
vhM.x; y/ D

NhX

iD1

h mNiX

kD1
ev h
k;i 'k. x.y//

i
#i .x/; with x 2 ˝1D; y 2 �x

o
:

(9)
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The global modal indexm in (8) is here replaced by the nodewise modal indexmN
i ,

with M D fmN
i gNhiD1 the vector of the modes for each finite element node.

The discrete nodewise Hi-Mod reduced formulation for (1) thus reads: for a
certain modal multi-index M 2 ŒINC�Nh ,

find uhM 2 V h
M W a.uhM; v

h
M/ D F .vhM/ 8vhM 2 V h

M (10)

where a.�; �/ and F .�/ coincides with the bilinear and linear forms in (1).
The algebraic counterpart of (10) is represented by a linear system whose matrix

has a structure similar to that of the uniform case (with m D maxi mN
i ), except that

some rows and columns are deleted where mN
i < maxi mN

i .
The change of perspective introduced by the nodewise Hi-Mod reduction relieves

us from using a domain decomposition scheme in the presence of a different number
of modal functions in ˝ . This represents a significative improvement with respect
to the piecewise Hi-Mod approach. No iterative procedure is now required to get the
reduced solution; on the contrary, a domain decomposition scheme could now be
employed to deal with more complex geometries (e.g., a bifurcation) not taken into
account by the setting in Sect. 2.

The nodewise Hi-Mod reduction yields a reduced solution which is continuous,
i.e., H1-conformal, in ˝ unlike the piecewise approach, where model discontinu-
ities may occur. Moreover, the nodewise formulation makes sense, by definition,
only after introducing the finite element basis. Spaces V h

m and V b;h
m have, on the

contrary, a continuous counterpart obtained by replacing the modal coefficients in
(3) and (6) with functions in V1D and H1.˝1D;T˝1D /, respectively (see [1, 3] for
the details).

Concerning the choice of the modal multi-index M in (10), we can ideally
proceed via an a priori or an automatic selection, exactly as for the piecewise
approach.

3 Numerical Assessment

We numerically validate the proposed Hi-Mod reduction procedures, to focus on the
corresponding advantages and limits. In particular, we use affine finite elements to
discretize the problem along ˝1D, while employing sinusoidal functions to model
the transverse dynamics. We evaluate the integrals of the sine functions via Gaussian
quadrature formulas, based on, at least, four quadrature nodes per wavelenght.

First test case. This test case is meant to compare the three approaches onto the
same full configuration. For this purpose, we consider a problem characterized by an
analytical solution. We solve the Poisson problem ��u Df on˝D .0; 2/� .0; �/,
completed with full homogeneous Dirichlet boundary conditions, so that V �
H1
0 .˝/, V1D � H1

0 ..0; 2//. The source term f is chosen such that the full
solution is
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Fig. 1 First test case: full solution (left); uniformly reduced solutions, uh7 (center), uh16 (right)

u.x; y/ D .256�x8/.256�.2�x/8/
64800

˚
100
247
y.� � y/.2 � x/

C y
�
�
5

� y
��

�
3

� y
��

3
5
� � y

��
3
4
� � y

�
.� � y/

�
1C tanh.10x � 10/

��
:

In Fig. 1 (left) we show the contour plot of u approximated via a finite element
scheme on a uniform unstructured grid of about 25,300 elements. Solution u clearly
exhibits a smooth behaviour on the left part of ˝ and a more irregular trend on the
right.

We first apply the uniform Hi-Mod approach, by selecting m D 7 and m D 16

modes and choosing a uniform partition Th of ˝1D into 20 subintervals. Figure 1
(center-right) gathers the contour plots of the corresponding reduced solution: as
expected, 16 modes provide us with a more close approximation, even though the
difference between uh7 and uh16 is not so striking.

We successively assess the piecewise approach, inspired by the intrinsic het-
erogeneity of u. We split ˝ into the subdomains ˝1 D .0; 0:9/ � .0; �/ and
˝2 D .0:9; 2/ � .0; �/; then we employ m1 D 1 and m2 D 7 modes, respectively
and the same partition Th as above. The domain decomposition algorithm (with
relaxation equal to 0:5) converges after three iterations to the reduced solution ub;h1;7
in Fig. 2 (left). The model discontinuity is evident: we are in the presence of a
nonconformal reduced solution. Formulation (6) guarantees indeed the continuity
on ˝ of both the trace and the flux only of the first mG? D minsjD1 mj modal
components of ubm (i.e., only of the first one in such a case). More in general, as
proved in [3], for a partition T˝ D f˝igsiD1 of˝ , anH1-conforming approximation
is yielded only if mi > miC1, for any i D 1; : : : ; s � 1. By comparing Fig. 2 (left),
e.g., with Fig. 1 (center), we recognize that a single mode is enough to describe u on
˝1 with sufficient accuracy.

Finally, we resort to the node-wise Hi-Mod approach. The adopted modal
distribution is shown in Fig. 2 (right): it is based on a uniform partition Th with
50 subintervals. The corresponding reduced solution (see Fig. 2 (center)) is fully
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Fig. 2 First test case: piecewise reduced solution ub;h1;7 (left); nodewise reduced solution uhM
(center) and corresponding modal ditribution (right)

comparable with the uniform one, uh16, in Fig. 1: nevertheless, 16 modes are now
employed only on few nodes with a reduction of the size of the corresponding
linear system, i.e., of the whole computational cost. As expected, the current reduced
solution is continuous.

To make the comparison among the three approaches more quantitative, we
consider the L2-norm of the corresponding errors: ku � uh7k D 0:2028; ku � uh16k D
0:0388; ku � ub;h1;7k D 0:2506; ku � uhMk D 0:0566. As expected, ub;h1;7 is thoroughly
comparable with uh7 , while the nodewise reduced solution is not so far from uh16.

Second test case. This test case provides an example of nodewise Hi-Mod reduction
applied to a strong dynamic involving the whole˝ . We solve on˝ D .0; 4/�.0; 1/
the advection-diffusion problem �r � �

a.z/ru
� C b � ru D 1, with a.z/ D 5 C

4:8 sin.�x/ cos.�y/1=5 the diffusive coefficient, b D .100; 0/T the advective field.
We assign homogeneous Dirichlet boundary conditions along the horizontal sides,
a nonhomogeneous Dirichlet datum, u D 4 sin.�x/, at the inflow, homogeneous
Neumann conditions at the outflow. This problem may model the density u of a
fluid flowing horizontally (from left to right) in a media with a nonhomogenous
permeability a. A distributed source, f D 1, is also present.

Due to the complex dynamics involved, it turns out to be a hard task to identify,
a priori, suitable subdomains with a view to a piecewise approach. We consequently
resort to both a uniform and a nodewise Hi-Mod reduction, by comparing the
corresponding performances. Figure 3 (top) shows the uniform solution obtained by
employing ten modes on the whole˝ . In Fig. 3 (bottom-left) we show the nodewise
solution based on the modal distribution on the right. The two reduced solutions are
really similar, but in the latter case at most eight modes are associated with a node.
The order of the system reduces from 501 to 251.
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Fig. 3 Second test case: uniformly reduced solution uh10 (top); nodewise reduced solution and
associated modal distribution (bottom)

To summarize, the numerical assessment suggests that the nodewise Hi-Mod
reduction is effective to deal with both localized and spread transverse dynamics.
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