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Abstract This note discusses convergence behaviors of multilevel Krylov methods
for some simple problems, mainly focusing on the possible choice of transfer
operators. This study is part of the search for an optimal multilevel Krylov method.

1 Introduction

In [3], Erlangga and Nabben proposed a multilevel method for solving the linear
system

Ax D b; A 2 R
n�n; (1)

which mimics a multigrid process, but, instead of a smoother, with a Krylov method
used at each level. Since a (optimal) Krylov method reduces, not smoothes, errors
in some norm, the underlying concept of this Krylov-based multilevel method is
different from that of multigrid. Algorithm 4 shows the main body of the two-level
version of a multilevel Krylov (MK) method, based on (flexible) GMRES [7].

Notice that a multigrid component is in play: the course-grid solve, which
involves a coarse-grid matrix Ac . In multigrid, this solve is associated with the
reduction of slow varying components of errors. The fine and coarse subspace
are connected by two transfer operators Ih

H and IH
h , which prolongate and restrict,

respectively, some quantities in the iteration process. In multigrid, these quantities
are related to errors made by an approximate solution, obtained after a few
smoothing steps or coarse-grid solves. In MK, this quantity is associated with
vectors, which build the approximation subspace.
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Algorithm 4 Two-level Krylov
Set an initial guess of solution x0;
Compute the residual r0 D b � Ax0; Set v1 D r0=kr0k;
For j D 1; : : : ; until convergence

p D Avj ;
q D IH

h .p � �nvj /;
Solve for s: Acs D q;
zj D vj � Ih

Hs;
w D Azj ;
Gram-Schmidt orthogonalization;

End
Extract the approximate solution from Z D Œz1 : : : zj �.

From an abstract point of view, if the second-level problem is solved exactly,
Algorithm 4 is the consequence of applying GMRES on the preconditioned linear
system

AQN Qx D b; x D QN Qx; (2)

with QN D I � Ih
HA�1

c IH
h A C �nIh

HA�1
c IH

h and �n D maxfj�i jg1�i�n, with �i

the eigenvalue of A. QN is called the shift operator, due to the following spectral
property [3].

Theorem 1. Let A be symmetric positive definite and �.A/ D f�1; : : : ; �ng, 0 <

�i � �j , for i < j . If Ih
H D Œz1 : : : zm�, with Azi D �i zi , m < n, IH

h D .Ih
H/T , and

Ac D .Ih
H/T AIh

H (Galerkin coarse grid), then �.AQN / D f�mC1; : : : ; �ng, with �n

having multiplicity of at least m C 1.

Thus, under the assumptions set in Theorem 1, QN somehow shifts m smallest
eigenvalues of A to �n, without changing the rest, making the spectrum more
clustered. Obviously, the system (2) is more favorable for a Krylov method than
the original system (1).

The first two terms in QN form the (right) deflation operator [6], denoted by QD .
The effect of QN and QD on A are spectrally equivalent in the following sense [3].

Theorem 2. Let A be symmetric positive definite. Let QD D I � Ih
HA�1

c IH
h A.

�.AQD/ WD f0; �mC1; : : : ; �ng ” f�mC1; : : : ; �n; �ng DW �.AQN /:

Furthermore, if PD D QT
D and PN D I �AIh

HA�1
c IH

h C�nIh
HA�1

c IH
h , then �.PDA/ D

�.AQD/ and �.PNA/ D �.AQN /, and the same equivalence holds.

Theorem 2 can be easily extended to a more general class of matrices A.
In this short note, we present observed convergence behaviors of this method,

based on some relatively simple problems. We shall base the presentation on the two
level Krylov method (Algorithm 4), which represents the best performance possibly
attained in terms of numbers of iterations, for a given multilevel Krylov setup.
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Throughout this note, �.�/, �.�/, �.�/, R.�/, and N .�/ denote respectively the
spectrum, eigenvalue, condition number, range, and null space of the argument.

2 Spectral Properties and Observed Convergence

In this section, we shall consider a hypothetical problem: a diagonal matrix A D
diag.1; 2; : : : ; n/. In this case, �.A/ D f1; 2; : : : ; ng, the eigenvectors vi D ˛i ei ,
˛i ¤ 0, and for any b D Œbi �, the linear system (1) has the solution x D Œxi �1�i�n D
Œbi =ai i �.

2.1 Eigenvectors

Let Ih
H D Œei �1�i�m, IH

h D .Ih
H/T , and set Ac D I H

h AI h
H (Galerkin-type coarse-grid

matrix). In this case, according to Theorem 2, �.PN A/ D fm C 1; : : : ; ng, with
�n D n having a multiplicity m C 1. Furthermore, �.PDA/ D f0; m C 1; : : : ; ng. As
PDA is symmetric positive semi-definite, �eff.PDA/ D n=.m C 1/ < n D �.A/.

Let x0 D 0, and consider the left-preconditioned version of the two-level Krylov
method: PNAx D PN b. The Krylov subspace after the k-th iteration is

K .PN A; r0/ D spanfr0; PN Ar0; : : : ; .PNA/k�1r0g:

Straight-forward computations lead to the following results:

r0 D �nD�1
m b C D0

n�mb; .PN A/i r0 D �i
nD�1

m b C Di�1
n�mb; i D 1; : : : ; k � 1;

with D�1
m D diag.A�1

m 0/ and Dn�m D diag.0 An�m/. Thus,

xk;N 2 spanf�nD�1
m b C D0

n�mb; �nD�1
m b C Dn�mb; : : : ; �k�1

n D�1
m b C Dk�1

n�mbg
� spanfD�1

m b; D0
n�mb; Dn�mb; : : : ; Dk�1

n�mbg:

Consider the (deflated) CG iteration applied to PDAx D PDb. In this case, CG
generates a sequence of approximate solutions, f Qxk;Dg, to this singular linear system
such that

Qxk;D 2 spanfD0
n�mb; Dn�mb; : : : ; Dk�1

n�mbg:
The solution of Ax D b is then constructed as follows: x D .I � P T

D /x C P T
D x D

Ih
HA�1

c IH
h b C P T

D x, implying a sequence xk;D D I sh
H A�1

c I H
h b C P T

D Qxk;D , and

xk;D 2 I h
H A�1

c I H
h b C spanfP T

D D0
n�mb; P T

D Dn�mb; : : : ; P T
D Dk�1

n�mbg
D D�1

n�mb C spanfD0
n�mb; Dn�mb; : : : ; Dk�1

n�mbg:
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Fig. 1 Convergence history
of CG with deflation PD

(solid) and shift PN (dotted)
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Fig. 2 Difference in the
A-norm:
kx �xk;N kA �kx �xsk; DkA

So, xk;N and xk;D are members of the same subspace. From [5], for every xk 2
spanfD�1

n�mb; D0
n�mb; Dn�mb; : : : ; Dk�1

n�mbg � L ,

kx � xk;Dk2
A � kx � xkk2

A:

Since xk;N 2 L ,
kx � xk;Dk2

A � kx � xk;N k2
A:

This result suggests the superiority of deflation technique to the shift operator,
shown in Figs. 1 and 2 for the hypothetical problem.
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Fig. 3 One dimensional (a) aggregation and (b) linear interpolation, with ı and � indicating the
fine and course nodes, respectively

A similar result holds also for (right preconditioned) GMRES, reading

kb � Axk;Dk2 � kb � Axk;N k2:

The proof is skipped, and will be presented in another paper.

2.2 Interpolation Matrices

Consider any sparse, full rank interpolation matrix Ih
H 2 R

n�m1 and let I h
H 2 R

n�m2

be another full rank matrix. The following theorem is proved in [5]:

Theorem 3. Let Ac;1 D .Ih
H/T AIh

H and Ac;2 D .I h
H /T AI h

H . Let PD;1 D I � AIh
H

A�1
c;1.Ih

H/T , and similarly for PD;2. If R.Ih
H/ � R.I h

H /, then

1. �n.PD;1A/ � �n.PD;2A/, and
2. �m1C1.PD;1A/ � �m2C1.PD;2A/.

The classical examples of interpolation matrices are those associated with aggre-
gation and linear interpolation in multigrid. They are illustrated for 1D in Fig. 3.
Let Ih

H and I h
H be matrices, associated with the “standard” aggregation and

augmented aggregation, respectively. For the latter, we augment Ih
H by a column

vector .1 0 : : : 0 1/T . So, m2 D m1 C 1, Ih
H and I h

H are full rank, and Ih
H � I h

H .
Thus, Theorem 3 holds. But, PN A (or AQN ) is no longer symmetric, even if A is
a diagonal matrix; CG certainly breaks down in this case, and GMRES has to be
employed. Convergence of two-level Krylov is shown in Fig. 4. The figure suggests
the faster convergence of the method with augmented aggregation. For deflation, this
performance is predicted by Theorem 3 and the well-known convergence bound of
CG (due to �eff.PD;I A/ � �eff.PD;I A//. For PN , the GMRES convergence bound
of [7] is, however, not useful for extracting detailed information about the behavior
of the method (see the residuals at the initial stage of iterations). However, better
clustering affects the overall convergence.

In Fig. 4, we show also the convergence based on the linear interpolation. The
associated interpolation matrix (denoted by I h

H ) is set such that it is of the same
rank as the aggregation matrix (denoted by Ih

H). In this case, however, the inclusion
condition of Theorem 3 does not hold. Use of linear interpolation clearly leads to
a better convergence. This behavior is unfortunately not generally the rule, as we
shall see in some examples in the subsequent sections.
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Fig. 4 GMRES convergence history, based on “standard” aggregation, augmented aggregation,
and linear interpolation

3 Does Eigenvector-Based Transfer Operator Lead
to a Better Convergence?

An almost general wisdom in deflation is to use eigenvectors or some (accurate)
approximations to accelerate the convergence. The only reason one in practice
avoids using them is because of the computational cost of computing even some
of them. We shall address this issue in this section.

We consider a 1D Poisson problem in Œ0; 1�:

� u00.x/ D f .x/; u.0/ D u.1/ D 0; (3)

discretized by the second-order central difference. The eigenvalues and eigenvectors
of the associated finite difference matrix A are

�k D 4 sin2

�
�k

2

�
; vk D .sin �k; sin.2�k/; : : : ; sin.n�k//T ; k D 1; : : : ; n;

with �k D k�=.n C 1/, with n the number of interior grid points (and hence, the
size of A). In Fig. 5, we compare the performance of two-level MK method based
on eigenvectors, (augmented) aggregation, and linear interpolation for n D 200 and
m D n=2 D 100. Interestingly, methods based on aggregation perform the best;
they converge to the machine accuracy in two iterations. The spectrum of AQN in
this case consists of just two eigenvalues, i.e., �.AQN / D f2; 3:999g, while with
eigenvectors, �.AQN / D f100; 101; � � � ; 200g.
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Fig. 5 GMRES convergence history for a 1D Poisson problem, based on eigenvectors, aggrega-
tion, and linear interpolation

Figure 6 shows a similar comparison, based on the 2D version of (3), discretized
on a uniform finite difference mesh. In this case, eigenvector-based two-level
method converges faster than the other scenarios, but aggregation-based techniques
remain promising, and the (bi)linear interpolation performs the worst. This kind
of performance is not one that we typically expect from multigrid (bilinear
interpolation works well, and aggregation does not converge).

4 Singular but Consistent Systems

The last example is based on the 2D diffusion equation with Neumann conditions
at the boundaries, set such that the resultant linear system is consistent. The matrix
A is now singular, and is of rank n � 1. If Ac is nonsingular, it can be shown that
N .PN A/ D N .AQN / D N ..PN A/T / [2]. In this case, according to Theorem 2.4
of [1], GMRES is guaranteed to converge to the least-squares solution of (2). An
invertible coarse-grid matrix Ac can be obtained by modifying ann such that the
sum of the last row is nonzero.

Figure 7 shows the convergence history for different choices of Ih
H ,

for constant density. In this case, the (augmented) aggregation strategy outperforms
both eigenvector– and bilinear interpolation–based approach. Convergence of the
problem with one bubble is shown in Fig. 8. Use of eigenvectors leads to the fastest
convergence, even though it is not as fast as the convergence seen from the previous
examples.
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Fig. 6 GMRES convergence history for a 2D Poisson problem, based on eigenvectors, aggrega-
tion, and bilinear interpolation
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Fig. 7 GMRES convergence history for a 2D diffusion problem with uniform density
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Fig. 8 GMRES convergence history for a 2D diffusion problem with one bubble and density
ratio 103

5 Final Remarks

The potential of multilevel Krylov methods has been demonstrated in a number
of papers; see also, e.g., [4]. This short note sheds some additional glimpse about
this potential. Some examples suggest that eigenvector-based approach does not
necessarily turn out to be the best way of setting up a multilevel Krylov method.
Therefore, one can also argue that any approximation to eigenvectors may also lead
to a non-optimal method. On the other hand, some examples show that it may be
possible to get an extremely fast converging method using a rather simple transfer
operator. What is crucial in this respect seems to lie in the choice of the transfer
operator Ih

H . Unfortunately, at this point, no guideline is available in this direction.
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