
Stability Estimates and Numerical Comparison
of Second Order Time-Stepping Schemes
for Fluid-Structure Interactions

T. Wick

Abstract It is well-known that the Crank-Nicolson scheme for pure fluid problems
suffers from stability for computations over long-term time intervals. In the presence
of fluid-structure interaction in which the fluid equations are reformulated with
the help of arbitrary Lagrangian-Eulerian (ALE) mapping, the ALE convection
also causes stability problems. In this study, we derive a stability estimate of a
monolithically coupled time-discretized fluid-structure interaction problem. More-
over, a numerical comparison of all relevant second order time-stepping schemes,
such as secant and tangent Crank-Nicolson, shifted Crank-Nicolson, and Fractional-
Step-Theta, is demonstrated. The numerical experiments are based on a benchmark
configuration for fluid-structure interactions.

1 Introduction

It is already well-known from pure fluid problems on fixed meshes, that the second
order ordinary Crank-Nicolson scheme suffers from instabilities, particularly for
long-term computations [7]. Optimal error estimates Crank-Nicolson scheme.

The normally unconditionally stable Crank-Nicolson scheme is restricted by the
condition

k � ch2=3; (1)

where k and h denote the time-step size and the mesh-size parameter, respectively.
However, the scheme can be stabilized by moving the �-parameter (using a One-
Step-� scheme, see, e.g., [14]) slightly to the implicit side, leading to the shifted
Crank-Nicolson scheme [10, 12]. On the other hand, several authors detected
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numerical instabilities on moving domains for higher order time-stepping schemes
caused by the ALE convection term [2, 4, 5, 9].

Specifically, the ALE convection term is a numerical artifact that only appears on
moving domains [4,5,11]. However, the relevance in numerical computations is not
yet completely understand. The stability is closely related to the verification of the
Geometric Conservation Law (GCL) [2,4,5,9]. Moreover, they proved that the GCL
condition does not degrade the accuracy of the numerical schemes. In this study, the
previously mentioned results are combined with estimates for structural interactions.
Finally, some second-order time-stepping schemes are compared within a numerical
study.

2 The Equations

For the fluid, we consider a time-dependent domain ˝f .t/ � Rd , d D 2, with the
boundary � D �in[�wall[�out[�i . The boundary part �i denotes later the interface
between the fluid subsystem and the structural system. Moreover, we denote by I D
.0; T � the time interval. The unknowns are the fluid velocity vf W ˝f � RC ! Rd ,
and the fluid pressure pf W ˝f � RC ! R. Then, the Navier-Stokes equations of
an incompressible, isothermal fluid read:

�f
O@t vf C �f .vf � w/ � rvf � div�f D 0 in ˝f .t/ � I;

divvf D 0 in ˝f .t/ � I; (2)

where w denotes the fluid domain velocity, which is defined by vf D w D @Ous on
�i . The fluid Cauchy stress tensor reads

�f WD �pf I C �f .rvf C rvT
f /:

The (dynamic) viscosity is denoted by �f WD �f �f in which �f and �f denote

density and the (kinematic) viscosity, respectively. We notice that the term O@t vf

denotes the ALE time derivative [6].
The structure problem is defined in a fixed domain b˝s with the boundary

b� s,fixed [ b� i . The structure is fixed on b� s,fixed using homogenous Dirichlet con-
ditions. The physical unknown is the structure displacement Ous W b˝s � RC ! R3.
The governing equations for the structural subsystem in a mixed formulation read
([15]):

O�s@t Ovs � cdiv.bF b˙s.Ous// C 	w Ovs � 	s
cdiv.O
. Ovs// D O�s

Ofs in b˝s; t 2 I;

O�s.@t Ous � Ovs/ D 0 in b˝s; t 2 I;

Ous D 0; Ovs D @t Ous D 0 on b� s;in,out,wall D b� fixed:

(3)
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The structural stress tensor (namely the Saint Venant Kirchhoff material - STVK),
b˙s , is defined as

b˙s D .�s.trbE/ OI C 2�s
bE/; bE D 2�1.bF

T
bF � OI /;

bF D OI C br Ous; O
. Ovs/ D 2�1.br Ovs C br OvT
s /;

in which OI denotes the identity tensor. The elastic structure is characterized by the
Lamé coefficients �s , �s .

3 Stability of the Time-Discretized ALE Fluid Problem
and the FSI Problem

In this section, a slight modification of the classical Crank-Nicolson scheme (i.e., it
is a Gauss-Legendre implicit second-order Runge-Kutta method) is considered [5].
We work with an ALE map OA which is defined from the previous time step tn�1

to the the present time step tn. Thus, the reference configuration at time step tn is
denoted by ˝n. Moreover, vn 2 ˝n is used as an approximation to v.tn/, which is
transported from ˝n to any other configuration ˝l (for l ¤ n) through the ALE
map ([11]):

OAn;l D OAl ı OA �1
n :

For the sake of notation, we omit the explicit representation of the ALE map when
we work with the value vn in a domain ˝l with n ¤ l , i.e.,

Z

˝l

vn dx WD
Z

˝l

vn ı OAn;l dx; and jjvnjj˝l WD jjvn ı OAn;l jj˝l ;

which we use frequently in the following.
To get a stability result for the time-discretized Crank-Nicolson scheme on

moving domains, we use the methodology used in [4, 5, 11]. It holds:

Proposition 1. For the time-discretized solution of ALE fluid problems with the
help of the Crank-Nicolson scheme holds:

�f jjvnC1
f

jj2
˝

nC1
f

C k�f jjD.vnC1
f

C vn
f /jj2

˝
nC1
f

C k

4
�f

Z

˝
nC1
f

r � wnC 1
2 jvnC1

f
C vn

f j2 dx

D �f jjvn
f jj2

˝
nC1
f

:

For r �w > 0 for all x 2 ˝f and for all t 2 I (a uniform contraction of the mesh), the
Crank-Nicolson scheme is unconditionally stable. Otherwise, the ALE convection
term causes instabilities that restricts the choice of the time step size [5, 11].
Therefore, the convection term is estimated as follows:
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k�f

4

Z

˝
nC1
f

r � wnC1 jvnC1
f C vn

f j2 dx � kıw
�jjvnC1

f jj2
˝

nC1
f

C jjvn
f jj2

˝
nC1
f

�

;

in which the Young inequality is used to estimate the right-hand-side term. Specifi-
cally, it holds:

k � ı�1
w ; with ıw WD �f

2
jjr � wnC1jj

L1.˝
nC1
f /

:

Proof. For the proof, we refer the reader to [15].

Combining this result with the restriction (1), which was analyzed by Rannacher
et al. [7, 12], provides us

Proposition 2. Using the ordinary (i.e., unstabilized) Crank-Nicolson scheme
leads to the following time step condition for pure fluid problems on moving
domains:

k � min
n

ch2=3; ı�1
w

o

: (4)

Using the shifted Crank-Nicolson scheme [12], the first condition in (4) can be
removed, such that k � k�, with some constant k� that only depends on the problem.

It seems that the time step restriction k � ı�1
w induced by the mesh movement seems

to be of lower order and it has less influence than the first condition k � ch2=3. In
fact, Formaggia and Nobile [5], p. 4098, state that they found no example of blow-
up caused by the ALE convection term for linear advection-diffusion equations.
This might be due to the fact that the ALE convection term is only defined on a
lower-dimensional manifold and not over the whole domain.

We utilize the previous results to analyze the monolithically coupled fluid-
structure interaction system. First, we recall the coupling conditions that are
required for an implicit solution algorithm:

OunC1
f D OunC1

s on b�i ; OwnC1 D 1

k
.OunC1

f � Oun
f / in b˝f ; (5)

2�1.vnC1
f C vn

f / D wnC1
f on �i ; OunC1

s D 0 on b� s;D:

Using the Crank-Nicolson scheme for temporal discretization, the second relation
in (5), can be further developed into

OwnC1 D k�1.OunC1
f � Oun

f / D 2�1. OvnC1
f C Ovn

f /: (6)

Fernández and Gerbeau [3] proved a result using the backward Euler scheme to
discretize the fluid. The structure is discretized with a second-order mid-point
rule. In our study, both systems are time-discretized with the same time-stepping
scheme. We emphasize, that fluid flows on moving meshes with a Crank-Nicolson
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time discretization only serve for a conditioned stability (see Proposition 1).
Consequently, we cannot expect a better result for the overall problem.

To derive the next proposition, we use a Crank-Nicolson discretization for the
fluid with the stability result proven in Proposition 1. The coupling term on the
interface �i reads:

�f .vnC1
f C vn

f /nf C bF b˙.OunC1
s C Oun

s / Ons C 	s O
. OvnC1
s C Ovn

s / Ons D 0: (7)

Proposition 3. Let the fluid-structure interaction problem be coupled via an
implicit solution algorithm and let both subproblems be time-discretized with the
second order Crank-Nicolson scheme. The coupled problem is assumed to be
isolated, i.e., vnC1

f D 0 on @˝f n �i and bF b˙.OunC1
s / Ons D 0 on @b˝s n b� i . Further,

in the case of strong damping 	w > 0, let O
. OvnC1
s / Ons D 0 on @b˝s n b� i . Then,

�f jjvnC1
f

jj2
˝

nC1
f

C O�s jj OvnC1
s jj2

b̋s

C
Z

b̋s

W
�

bF .OunC1
s /

�

dx C k�f jjD.vnC1
f

C vn
f /jj2

˝
nC1
f

C k�f

4

Z

˝
nC1
f

r � wnC1jvnC1
f

C vn
f j2 dx C k	w

2
jj OvnC1

s jj2
b̋s

C k	s

2
jjO
. OvnC1

s /jj2E

� �f jjvn
f jj2

˝
nC1
f

C �s jj Ovn
s jj2

b̋s

C
Z

b̋s

W.bF .Oun
s // dx C k	w

2
jj Ovn

s jj2
b̋s

C k	s

2
jjO
. Ovn

s /jj2E :

Proof. For the proof, we refer to [15].

Comparing Propositions 1 and 3, we notice that global stability of solutions
depends only on the uncertainty of the ALE convection term. We draw the following
conclusion from our previous findings:

Hypothesis 1 (Stable long-term computations of FSI problems). Numerically
stable long-term computations of fluid-structure interaction can be computed by
(at least) strictly A-stable time-stepping schemes (such as the shifted Crank-
Nicolson scheme and the Fractional-Step-� scheme) provided that the time step k is
restricted by

k � ı�1
w ;

as shown in Proposition 2.

3.1 Discretization of the ALE Convection Term

In this section, we discuss possible temporal discretizations of the ALE convection
term. From Eq. (2), we extract
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Fig. 1 Elastic beam attached
at a cylinder with
circle-center C D .0:2; 0:2/

and radius r D 0:05

.vf � w/ � rvf D vf � rvf � w � rvf in ˝f :

In detail, the One-Step-� discretization yields (� D 0:5 or � D 0:5 C k):

�vf � rvf C .1 � �/vn�1
f � rvn�1

f � k�1.uf � un�1
f / � rvf ; ŒSec CN.v/�

�vf � rvf C .1 � �/vn�1
f � rvn�1

f � �w � rvf � .1 � �/wn�1 � rvn�1
f ; ŒSec CN.vw/�

�.vf C vn�1
f / � r�.vf C vn�1

f / � �.w C wn�1/ � r�.vf C vn�1
f / ŒTang CN.vw/�:

We notice that the tangential scheme is used for a stability and accuracy analysis for
pure fluid problems [7]. This scheme is slightly more stable than the secant Crank-
Nicolson scheme [13], which we also observed in our numerical tests (see at left of
Fig. 2).

4 Numerical Tests and Observations

In the final section, we compare all relevant second-order time-stepping schemes for
solving fluid-structure interaction. For details on temporal discretization, we refer
the reader to [15, 16]. Spatial discretization is based on a Galerkin finite element
scheme; for details on our solution algorithm, we refer to [15, 16].

We consider the numerical benchmark test FSI 2 [1, 8]. The (qualitative) con-
vergence with respect to space and time on three different (globally-refined) mesh
levels is studied using with 1914; 7176 and 27744 degrees of freedom using the
Qc

2=P dc
1 element. Moreover, we use three different time levels with the time steps

k D 0:01; 0:005 and 0:001. It is sufficient to study the results for the drag evaluation
because we observed the same qualitative behavior for all the four quantities of
interest (the x- and the y-displacement, the drag, and the lift). Specifically, the drag
is computed as line integral over the cylinder and the interface of the elastic beam.
The configuration is sketched in Fig. 1.

Boundary conditions
A parabolic inflow velocity profile is given on O�in by
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Fig. 2 Blow-up (using the time step k D 0:01) of the unstabilized Crank-Nicolson schemes
(secant and tangent) whereas the shifted Crank-Nicolson schemes is stable throughout the whole
time interval. We notice that the secant Crank-Nicolson scheme exhibits the instabilities earlier
than the tangent version. The unit of the time axis is s, whereas the drag unit is kg=m s2

vf .0; y/ D 1:5 Nv 4y.H � y/

H 2
; Nv D 1:0ms�1:

At the outlet O�out the do-nothing outflow condition is imposed. Homogenous
Dirichlet boundary conditions are prescribed on the remaining boundary parts.

Initial conditions
For the unsteady tests, a smooth increase of the velocity-profile in time is chosen:

vf .t I 0; y/ D
8

<

:

vf .0; y/
1�cos. �

2 t/

2
if t < 2:0s

vf .0; y/ otherwise:

Parameters
We choose for our computation the following parameters. For the fluid, we use

�f D m2s
�1

. The elastic structure is characterized by %s D 104kgm�3, �s D 0:4,
�s D 5 � 105kgm�1s�2. Moreover, we set 	w D 	s D 0.

Discussion of the results
We observed in our computations that there are only minor differences in the

drag evaluation computed with the unstabilized Crank-Nicolson scheme using
the different ALE convection term discretizations defined in the problems above.
Specifically, we observed unstable behavior (blow-up) for computations over long-
term intervals, as illustrated in Fig. 2. Naturally, we expected this behavior from our
previous numerical analysis.

As expected, the shifted Crank-Nicolson scheme and the Fractional-Step-�
scheme showed no stability problems in long-term computations, even for the large
time step k D 0:01 (see at left of Fig. 3). This result indicates that the instabilities
induced by the ALE convection term have minor consequences, and our observation
is in agreement with the statement in [5]. Furthermore, all time-stepping schemes
are stable over the entire time interval for a sufficiently small time step k D 0:001;
(see the bottom Fig. 3). Consequently, we were able to find a suitable bound such
that the requirements of Proposition 2 are satisfied.
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Fig. 3 Left: stable solution (using the large time step k D 0:01) computed with the shifted Crank-
Nicolson and the Fractional-Step-� scheme. Recall the blow-up of the unstabilized Crank-Nicolson
scheme in this case. Right: using the smaller time step k D 0:001 yields stable solutions for any
time-stepping scheme. The unit of the time axis is s, whereas the drag unit is kg=m s2
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