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Abstract In this paper we present the analysis of the discontinuous Galerkin (DG)
finite element method applied to a nonstationary nonlinear convection-diffusion
problem. Using the technique of Zhang and Shu (SIAM J Numer Anal 42(2):641–
666, 2004), originally for explicit schemes, we prove apriori error estimates uniform
with respect to the diffusion coefficient and valid even in the purely convective case.
We extend the cited analysis to the method of lines using continuous mathematical
induction and a nonlinear Gronwall-type lemma. For an implicit scheme, we prove
that there does not exist a Gronwall-type lemma capable of proving the desired
estimates using standard arguments. Next, we use a suitable continuation of the
implicit solution and use continuous mathematical induction to prove error estimates
under a CFL-like condition.

1 Continuous Problem

Let ˝ � R
d ; d D 1; 2; 3 be a bounded open (polyhedral) domain. We treat the

following nonlinear convection-diffusion problem: find u W ˝ � .0; T / ! R such
that

(a)
@u

@t
C div f.u/ D "�u C g in ˝ � .0; T /; (1)

(b) u
ˇ
ˇ
�D �.0;T /

D uD; "
@u

@n

ˇ
ˇ
�N �.0;T /

D gN ; (2)
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370 V. Kučera

along with the initial condition u.x; 0/ D u0.x/ in ˝ . The diffusion coefficient
" � 0 is a given constant, g; uD; gN , and u0 are given functions.

We assume that the convective fluxes f D .f1; � � � ; fd / 2 .C 2
b .R//d D .C 2.R/\

W 2;1.R//d , hence f and f0 D .f 0
1 ; � � � ; f 0

d / are globally Lipschitz continuous. For
improved estimates via Remark 1, we shall assume f 2 .C 3

b .R//d . In [4], the error
analysis is extended, assuming only local properties, i.e. f 2 .C 2.R//d and f 2
.C 3.R//d .

In our analysis, we need to assume that �N is an outflow boundary for either u
or uh, i.e. e.g. for u, we assume �

.t/
N � fx 2 @˝I f0.u.x; t//:n � 0g and �

.t/
D WD

@˝ n �N .

2 Discretization

Let Th be (generally nonconforming) triangulation of ˝. For K 2 Th we set h D
maxK2Th

diam.K/. By Fh we denote the system of all faces of all elements K 2
Th. By F I

h ; FD
h ; FN

h ; FB
h we denote the sets on interior, Dirichlet, Neumann and

boundary edges, respectively. For each � 2 Fh we define a fixed unit normal n� ,
which has the same orientation as the outer normal to @˝ if � 2 FB

h .
Over a triangulation Th we define the broken Sobolev spaces H k.˝; Th/ D

fvI vjK 2 H k.K/; 8K 2 Thg. For � 2 F I
h we have two neighbours K

.L/
� ; K

.R/
� 2

Th, where n� is the outer normal to K
.L/
� . For v 2 H 1.˝; Th/ we define on � 2

F I
h : vj.L/

� D the trace of vj
K

.L/
�

on �; vj.R/
� D the trace of vj

K
.R/
�

on �; hvi� D
1
2

�

vj.L/
� C vj.R/

�

�

and Œv�� D vj.L/
� � vj.R/

� : On � 2 FB
h we set v� D vj.L/

� D
the trace of vj

K
.L/
�

on � , while vj.R/
� D uD on �D , vj.R/

� D vj.L/
� on �N .

Let p � 1 be an integer. The approximate solution will be sought in the space of
discontinuous piecewise polynomial functions Sh D fvI vjK 2 P p.K/; 8K 2 Thg;
where P p.K/ are polynomials on K of degree � p. By .� ; � / we denote the L2.˝/-
scalar product and by k�k the L2.˝/-norm. By k�k1, we denote the L1.˝/-norm.

We introduce the following forms defined for v; ' 2 H 2.˝; Th/. Diffusion form:

ah.v; '/ D
X

K2Th

Z

K

rv� r' dx �
Z

F I
h

hrvi� nŒ'� dS � �

Z

F I
h

hr'i� nŒv� dS

�
Z

FD
h

rv� n' dS � �

Z

FD
h

r'� nv dS:

Interior and boundary penalty jump terms:

Jh.v; '/ D
Z

F I
h

�Œv�Œ'� dS C
Z

FD
h

�v' dS:
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Right-hand side form:

lh.'/.t/ D
Z

˝
g.t/' dxC

Z

FN
h

gN .t/' dS �"�

Z

FD
h

r'� nuD.t/ dS C"

Z

FD
h

�uD.t/' dS:

The parameter � in the diffusion and right-hand side forms is defined by � j� D
CW j� j�1, where CW > 0 is a constant, which is chosen large enough to ensure
coercivity of the diffusion form – cf. Lemma 2. Depending on the value of �

in the diffusion form, we get the symmetric .� D 1/, incomplete .� D 0/ and
nonsymmetric interior penalty .� D �1/ variants of the diffusion a right-hand side
forms.

Finally we define the convective form

bh.v; '/ D �
X

K2Th

Z

K
f.v/�rv dxC

Z

F I
h

H.v.L/; v.R/; n/Œ'� dSC
Z

FB
h

H.v.L/; v.R/; n/'.L/ dS:

The form bh approximates convective terms with the aid of a numerical flux
H.v; w; n/. We assume that H has the following standard properties: H is
Lipschitz-continuous, consistent, conservative and H is an E-flux, i.e.

�

H.v; w; n/ � f.q/� n
�

.v � w/ � 0; 8v; w 2 R; n 2 B1 and all q between v; w:

The E-flux condition was introduced as a generalization of monotone fluxes
by Osher in [5]. Many numerical fluxes used in practice are E-fluxes, e.g. Lax-
Friedrichs, Godunov, Engquist-Osher and the Roe flux with entropy fix, cf. [5].

Definition 1. We say that uh 2 C 1.Œ0; T �I Sh/ is a DG solution of (1) and (2), if
uh.0/ D u0

h 	 u0 and for all 'h 2 Sh; and t 2 .0; T /

d

dt

�

uh.t/; 'h

�Cbh

�

uh.t/; 'h

� C "Jh

�

uh.t/; 'h

�C "ah

�

uh.t/; 'h

� D lh
�

'h

�

.t/: (3)

3 Some Necessary Results

We assume that the weak solution u is sufficiently regular, namely ut WD @u
@t

2
L2

�

0; T I H pC1.˝/
�

, u 2 L1.0; T I W 1;1.˝//; where p � 1 is the degree of
approximation. These conditions imply u 2 C

�

Œ0; T �I H pC1.˝/
�

.
As for the mesh assumptions, we consider a system fThgh2.0;h0/, h0 > 0, of

triangulations, which are shape regular and satisfy the inverse assumption, cf. [2].
Now, for v 2 L2.˝/ we denote by ˘hv the L2.˝/-projection of v on Sh:

˘hv 2 Sh;
�

˘hv � v; 'h

� D 0; 8 'h 2 Sh:
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Let �h.t/ D u.t/ � ˘hu.t/ 2 H pC1.˝; Th/ and �h.t/ D ˘hu.t/ � uh.t/ 2 Sh for
t 2 .0; T /. Then we can write the error eh as eh.t/ WD u.t/ � uh.t/ D �h.t/ C �h.t/.
Standard approximation results give us estimates for �h.t/ in terms of power of h,
e.g. jj�jjL2.˝/ � C hpC1jujH pC1, cf. [2].

Lemma 1. There exists a constant C � 0 independent of h; t , such that

bh

�

uh.t/; �h.t/
�� bh

�

u.t/; �h.t/
� � C

�

1C keh.t/k21
h2

��

h2pC1ju.t/j2
H pC1C k�h.t/k2

�

:

Proof. The proof follows the arguments of [7], where similar estimates are derived
for periodic boundary conditions or compactly supported solutions. The proof for
mixed Dirichlet-Neumann boundary conditions is contained in [4]. Here, we only
note that the estimate is based on performing second order Taylor expansions of and
using the E-flux properties for H . �

Remark 1. We can improve Lemma (1), if we suppose f 2 .C 3
b .R//d and �N D

;. Then we obtain a factor of h�1kehk21 instead of h�2kehk21 in the estimate of
Lemma (1). This improved estimate will be useful in proving the resulting estimates
for lower order polynomials and with a less restrictive CFL condition, cf. Remark 3.

Lemma 2 (Ellipticity and boundedness of Ah, cf. [3]). Let the constant CW be
large enough. Then the form Ah is elliptic and bounded, i.e.

kvk2
DG � Ah.v; v/; 8v 2 H 2.˝; Th/;

Ah.v; w/ � kvkDGkwkDG; 8v; w 2 H 2.˝; Th/;

where kwk2
DG D 1

2

� P

K2Th
jwj2

H k.K/
CJh.w; w/

�

and Ah.� ; � / D ah.� ; � /CJh.� ; � /.

4 Error Analysis for the Method of Lines

We proceed in a standard way. Due to Galerkin orthogonality, we subtract the
equations for u and uh and set 'h WD �h.t/ 2 Sh. Since

�
@�h

@t
; �h

� D 1
2

d
dt

k�hk2;

we get

1

2

d

dt
k�h.t/k2 C "Ah

�

�h.t/; �h.t/
�

D �"Ah

�

�h.t/; �h.t/
� C bh

�

uh.t/; �h.t/
� � bh

�

u.t/; �h.t/
� �

�@�h.t/

@t
; �h.t/

�

:

For the last right-hand side term, we use the Cauchy and Young’s inequalities and
standard estimates for �. For the convective and diffusion terms we use Lemmas 1
and 2. Integration from 0 to t 2 Œ0; T � yields
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k�h.t/k2 C
Z t

0
"k�h.#/k2

DG d# (4)

�C

Z t

0

�

1C keh.#/k21
h2

���

h2pC1C "h2p
�ju.#/j2

HpC1C h2pC2jut .#/j2
HpC1C k�h.#/k2

�

d#:

For simplicity we have assumed �h.0/ D 0, i.e. u0
h D ˘hu0. Otherwise, we must

assume e.g. k�h.0/k D O.hpC1=2/ and include this term in (4). We notice that if we
knew apriori that kehk1 D O.h/ then the unpleasant term h�2kehk21 in (4) would
be O.1/. Thus we could simply apply the standard Gronwall inequality to obtain
the desired error estimates.

Lemma 3. Let t 2 Œ0; T � and p � d=2. If keh.#/k � h1Cd=2 for all # 2 Œ0; t �,
then there exists a constant CT independent of h; t and " such that

max
#2Œ0;t �

keh.#/k2 C
Z t

0

"keh.#/k2
DG d# � C 2

T

�

h2pC1 C "h2p
�

: (5)

Proof. The assumptions imply, using the inverse inequality and estimates of �, that

keh.#/k1 � k�h.#/k1 C k�h.#/k1 � C hju.t/jW 1;1.˝/ C CI h�d=2k�h.#/k
� C h C CI h�d=2keh.#/k C CI h�d=2k�h.#/k � C h C C hpC1�d=2ju.#/jH pC1 � C h;

where the constant C is independent of h; #; t . Using this estimate in (4) gives us

k�h.t/k2 C
Z t

0

"k�h.#/k2
DG d# � QC �

h2pC1 C "h2p
� C C

Z t

0

k�h.#/k2 d#;

Applying Gronwall’s inequality gives us the desired estimate for �h, which along
with similar estimates for � gives us (5). �

Now it remains to get rid of the apriori assumption kehk1 D O.h/. In [7] this
is done for an explicit scheme using mathematical induction. Starting from ke0

hk D
O.hpC1=2/, the following induction step is proved:

ken
hk D O.hpC1=2/ H) kenC1

h k1 D O.h/ H) kenC1
h k D O.hpC1=2/:

(6)
For the method of lines we have no discrete structure with respect to time and
hence cannot use mathematical induction straightforwardly. However, we can divide
Œ0; T � into a finite number of sufficiently small intervals Œtn; tnC1� on which “eh does
not change too much” and use induction with respect to n. This is essentially a
continuous mathematical induction argument, a concept introduced in [1].

Remark 2. Due to the regularity assumptions, u; uh 2 C.Œ0; T �I L2.˝//. Since
Œ0; T � is a compact set, eh.� / is a uniformly continuous function from Œ0; T � to
L2.˝/, i.e.
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8N	 > 0 9ı > 0 W s; Ns 2 Œ0; T �; js � Nsj � ı ) keh.s/ � eh.Ns/k � N	:

Theorem 1 (Main theorem). Let p > 1 C d=2. Then there exists h1 > 0 such that
for all h 2 .0; h1� we have the estimate

max
#2Œ0;T �

keh.#/k2 C
Z T

0

"keh.#/k2
DG d# � C 2

T

�

h2pC1 C "h2p
�

:

Proof. We have p > 1Cd=2, thus for all sufficiently small h, we have CT .hpC1=2Cp
"hp/ � 1

2
h1Cd=2. We fix an arbitrary h. By Remark 2, there exists ı > 0, such

that if s; Ns 2 Œ0; T �; js � Nsj � ı, then keh.s/ � eh.Ns/k � 1
2
h1Cd=2. We define ti D

iı; i D 0; 1; : : : and set N WD maxfi D 0; 1; : : : I ti < T g, tN C1 WD T . This defines
a partition 0 D t0 < t1 < � � � < tN C1 D T of Œ0; T � into N C 1 intervals of length
(at most) ı.

We shall now prove by induction that for all n D 1; : : : ; N C 1

max
#2Œ0;tn�

keh.#/k2 C
Z tn

0

"keh.#/k2
DG d# � C 2

T

�

h2pC1 C "h2p
�

: (7)

The desired error estimate is thus obtained by taking n WD N C 1 in (7).

(i) n D 1: Since keh.0/k � 1
2
h1Cd=2. By uniform continuity, we have for all s 2

Œ0; t1�

keh.s/k � keh.0/k C keh.s/ � eh.0/k � 1
2
h1Cd=2 C 1

2
h1Cd=2 D h1Cd=2:

Therefore, by Lemma 3 we obtain estimate (7) on Œ0; t1�, i.e. for n D 1.
(ii) Induction step: We assume that (7) holds for general n < N C 1. Therefore

keh.tn/k � CT .hpC1=2 C p
"hp/ � 1

2
h1Cd=2. By uniform continuity, for all

s 2 Œtn; tnC1�

keh.s/k � keh.tn/k C keh.s/ � eh.tn/k � 1
2
h1Cd=2 C 1

2
h1Cd=2 D h1Cd=2:

This and the induction assumption imply that keh.s/k � h1Cd=2 for s 2 Œ0; tn� [
Œtn; tnC1� D Œ0; tnC1�. By Lemma 3, we obtain estimate (7) on Œ0; tnC1�. �

Remark 3. If we assume f 2 .C 3
b .R//d then by Remark 1 we get the improved

assumption p > .1Cd/=2 in Theorem 1. If " D 0 we need to assume only p > d=2.

Remark 4. For the method of lines we can use a nonlinear Gronwall-type lemma to
prove Theorem 1 directly, cf. [4]. As stated in Remark 6, this is not possible for an
implicit scheme, since an analogous discrete Gronwall lemma cannot exist.
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5 Error Estimates for a Fully Implicit Scheme

In this section, we shall introduce and analyze the DG scheme with a standard
implicit Euler time discretization. Here we cannot use the approach of [7] for the
explicit scheme, since we were unable to prove the first implication in the induction
step (6). On the other hand, in Lemma 6 we prove that for the implicit Euler scheme
we cannot use a discrete Gronwall-type lemma as mentioned in Remark 4.

We consider a partition 0 D t0 < t1 < � � � < tN C1 D T of Œ0; T � and set

n D tnC1 � tn for n D 0; � � � ; N . The exact solution u.tn/ will be approximated by
un

h 2 Sh.

Definition 2. We say that fun
hgN

nD0 � Sh is an implicit Euler DGFE solution of the
convection-diffusion problem (1) and (2), if u0

h D ˘hu0 and for all 'h 2 Sh; n D
0; � � � ; N

�unC1
h � un

h


n

; 'h

�

C bh

�

unC1
h ; 'h

� C "Ah

�

unC1
h ; 'h

� D lh
�

'h

�

.tnC1/: (8)

Similarly as in Sect. 3, we define �n
h D u.tn/ � ˘hu.tn/ 2 H pC1.˝; Th/ and �n

h D
˘hu.tn/ � un

h 2 Sh. Then we can write the error en
h as en

h WD u.tn/ � un
h D �n

h C �n
h .

First, we analyze problem (8), proving that unC1
h exists uniquely and depends

continuously on 
n. To this end we define an abstract formulation of problem (8):

Definition 3. (Auxiliary problem) Let t 2 Œ0; T �; 
 2 Œ0; T � and Uh 2 Sh. We seek
u
 2 Sh such that

�

u
 � Uh; 'h

� C 
bh

�

u
 ; 'h

� C 
"Ah

�

u
 ; 'h

� D 
lh
�

'h

�

.t/; 8'h 2 Sh: (9)

Remark 5. If we take 
 WD 
n; Uh WD un
h; t WD tnC1 and define unC1

h WD u
 , the
auxiliary problem (9) reduces to equation (8), which defines unC1

h . If we take 
 WD 0

the solution of (9) is u
 D un
h. Between these two cases u
 depends continuously

on 
 :

Lemma 4. There exist constants C1; C2 > 0 independent of h; 
; t; ", such that
the following holds. Let t 2 Œ0; T �; h 2 .0; h0/; Uh 2 Sh and 
 2 Œ0; 
0/; where

0 D maxfC1"; C2hg. Then the solution u
 of (9) exists, is uniquely determined and
ku
k depends continuously on 
 2 Œ0; 
0/.

Proof. Problem (9) is a nonlinear equation for u
 on the finite-dimensional space
Sh. The statements follow from the nonlinear Lax-Milgram theorem, cf. [6]. For
details of the proof, see [4]. �

Definition 4 (Continuated discrete solution). Let Quh W Œ0; T � ! Sh such that for
s 2 Œtn; tnC1� we set Quh.s/ WD u
 , the solution of the auxiliary problem (9) with

 WD s � tn, t :D tnC1 and Uh WD un

h. Furthermore, we define Qeh WD u � Quh and
Q�h WD ˘hu � Quh.
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Under the assumptions of Lemma 4, Quh; Qeh 2 C.Œ0; T �I L2.˝// and Quh is
uniquely determined. Also, Quh.tn/ D un

h and Qeh.tn/ D en
h for n D 0; � � � ; N .

Therefore, estimates of Qeh.�/ imply estimates of en
h . Since Quh is constructed using

problem (9), which is essentially the implicit scheme (8) with special data, we
can derive error estimates for Quh in a standard manner. For simplicity we assume
a uniform partition of Œ0; T �.

Lemma 5. Let p > d=2 and s 2 .tn; tnC1� for some n 2 f0; � � � ; N � 1g. If
kQeh.s/k � h1Cd=2 and kQeh.tk/k � h1Cd=2 for all k D 0; � � � ; n; then there exists
CT > 0 independent of s; n; h; 
 such that

max
t2ft0;��� ;tn;sg

kQeh.t/k2 C
nX

kD1


"kQeh.tk/k2
DG C.s�tn/"kQeh.s/k2

DG � C 2
T

�

h2pC1 C"h2p C
2
�

:

Proof. We subtract (9) from the equation for the exact solution. Thus Qeh.s/ satisfies

� Qeh.s/�Qeh.tn/; 'h

� C .s � tn/
�

bh.u.s/; 'h/ � bh.Quh.s/; 'h/
� C .s � tn/"Ah. Qeh.s/; 'h/

D �

u.s/ � u.tn/ � .s � tn/ut .s/; 'h

�

: (10)

We set 'h WD Q�h.s/ and use the fact that 2.a � b; a/ D kak2 � kbk2 C ka � bk2.
We estimate the convective terms using Lemma 1 and the diffusion terms using
Lemma 2. The right-hand side represents the temporal error and is estimated as
usual. Thus

kQ�h.s/k2 � kQ�h.tn/k2 C kQ�h.s/ � Q�h.tn/k2 C .s � tn/"kQ�h.s/k2
DG

� C

�

1 C kQeh.s/k21
h2

���

h2pC1 C "h2p/
ˇ
ˇuj2

L1.HpC1/
C 
2kut t k2

L1.L2.˝///
C kQ�h.s/k2

�

:

The assumptions imply kQeh.s/k1 � C h, eliminating the factor h�2. Thus

kQ�h.s/k2 C .s � tn/"kQ�h.s/k2
DG � kQ�h.tn/k2 C C


�

h2pC1 C "h2p C 
2 C kQ�h.s/k2
�

:

Similarly, we may derive estimates at tkC1:

kQ�h.tkC1/k2C
"kQ�h.tkC1/k2
DG � kQ�h.tk/k2CC


�

h2pC1C"h2pC
2CkQ�h.tkC1/k2
�

:

Combining these estimates and using the discrete Gronwall lemma gives us the
desired estimate for Q�h. Standard estimates for � give us the estimate for Qeh. �

Theorem 2 (Main theorem – implicit version). Let p > 1 C d=2. Let h1; 
1 > 0

be such that CT .h
pC1=2
1 C p

"h
p
1 C 
1/ D 1

2
h

1Cd=2
1 and 
1 < 
0, where 
0 is defined

in Lemma 4. Then for all h 2 .0; h1/; 
 2 .0; 
1/ we have the estimate
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max
n2f0;��� ;N g

ken
hk2 C

NX

nD1



�

"ken
hk2

DG CeJ h

�

en
h; en

h

�� � C 2
T

�

h2pC1 C "h2p C 
2
�

: (11)

Proof. Again, Qeh.� / is a uniformly continuous function from Œ0; T � to L2.˝/. This
allows to use continuous mathematical induction to eliminate the apriori assumption
kQeh.t/k D O.h1Cd=2/ from Lemma 5. The proof thus follows that of Theorem 1. �

Remark 6. The reason we introduced the continuation of un
h is that a more standard,

straightforward approach is insufficient. Specifically, we prove in [4] that there does
not exist a Gronwall-type lemma which could prove the desired error estimate (11)
only from the error equation of the implicit scheme tested by �nC1

h and the derived
estimates of individual terms contained therein.

6 Conclusion

We have presented an analysis of the DG method for a nonlinear convection-
diffusion problem. Building on results from [7], which dealt with an explicit
time discretization, we proved apriori L1.L2/ error estimates independent of
the diffusion coefficient for the method of lines and a fully implicit scheme. We
have derived the key estimates for the case of mixed Dirichlet-Neumann boundary
conditions, improving the results of [7]. For the method of lines, the error estimates
are derived using a continuous mathematical induction argument or a nonlinear
Gronwall lemma. For the implicit time discretization, we show that a similar discrete
Gronwall lemma does not exist and prove the error estimates using continuous
mathematical induction applied to a suitable continuation of the discrete solution.
However, using this technique, we obtain an unnatural CFL-like condition for the
implicit scheme. In [4], the presented results are extended to of a locally Lipschitz
continuous f.
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