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Abstract We present a unified approach to build error estimators based onH.div/-
reconstructed fluxes on the primal mesh, inspired by the hypercircle method. Here,
the transport equation is considered and discretized by discontinuous Galerkin,
nonconforming and conforming finite elements. We describe the local computation
of fluxes on patches, obtain upper error bounds and show some numerical tests.

1 Introduction

In order to achieve mesh adaptivity, one needs reliable and efficient, easily
computable a posteriori error estimators. A recent approach for their definition is
based on the reconstruction of locally conservative fluxes in the Raviart-Thomas
finite element space, yielding an a posteriori error estimator which consists only of
the L2-norm of a piecewise H.div/-vector.

Our aim is to propose a unified framework for several finite element approxima-
tions (conforming, nonconforming and discontinuous Galerkin). In this paper, we
focus on the transport equation but the method can be extended to other operators.

The idea of using H.div/-reconstruction was initially proposed in [4] and has
since been developed in several papers. As regards the diffusion-convection-reaction
problem, the works [3] for the dG method and [5] for the mixed finite element
method yield a unified approach, in which the fluxes are constructed on a dual mesh
formed by dual volumes around each vertex of the primal mesh.

The main advantage of our approach is to use, contrarily to the previous
references, only the primal mesh for the flux reconstruction, which presents certain
facilities from a computational point of view. For this purpose, the construction
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of the H.div/-vector is inspired by the hypercircle method [1] and is achieved
on patches, which may overlap and which depend on the type of the employed
finite elements. The definition of the patches is related to the support of the basis
functions.

In this paper, we explain the main ideas of the method and show first numerical
results. In particular, we describe the construction of the a posteriori estimator for
three discretizations on triangular meshes: discontinuous Galerkin, nonconforming
and continuous elements. The two latter methods necessitate stabilization. For the
sake of brievety, we discuss here only SUPG stabilization in the conforming case.

2 Unified Framework: The Main Ideas

We consider the model problem in a polygonal domain˝ of R2:

ˇ � ru D f in ˝ (1)

u D g on @˝�

where ˇ 2 R
2, f 2 L2.˝/, g 2 L2.@˝�/ are given data and where the inflow

boundary is defined by @˝� D fx 2 @˝I ˇ � n.x/ < 0g. We also put @˝C D @˝ n
@˝�.

The weak formulation of (1) consists in finding u 2 V g such that

a.u; v/ D
Z
˝

f v dx; 8v 2 V 0

where

a.u; v/ D
Z
˝

ˇ � ru v dx;

V D ˚
v 2 L2.˝/I ˇ � rv 2 L2.˝/� ; V g D ˚

v 2 V I vj@˝� D g
�
:

Let .Kh/h>0 be a regular family of triangulations of ˝ consisting of triangles
and let S int

h the set of internal edges. We denote by n the outward unit normal to
@˝ . On any S 2 S int

h such that fSg D @K1 \ @K2, we define a unit normal nS
and for a function  with  jKi 2 C .Ki/ we set:  in.x/ D lim"!0  .x � "nS /,
 ex.x/ D lim"!0  .x C "nS / and the jump

�
 

� D  in �  ex . For x 2 R, let
x� D minf0; xg and xC D x � x�. It is useful to recall the Raviart-Thomas space
RTk D P2

k C xPk , k 2 N.
We solve Eq. (1) by any of the following finite element methods: discontinuous

Galerkin, nonconforming or conforming, leading to a discrete weak formulation

uh 2 Vh; ah.uh; vh/ D lh.vh/ 8vh 2 Vh
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where the finite dimensional space Vh and the bilinear and linear forms ah.�; �/, lh.�/
will be specified later; the boundary conditions are treated by Nitsche’s method.

The goal of the method is to define an approximation � of ˇu satisfying

� 2 H.div;˝/; (2)

div� D fh in ˝; (3)

� � n D ˇ � ngh on @˝�; (4)

� � n D ˇ � nuh on @˝C; (5)

where fh and gh are appropriate projections of the data f and g.
Actually, we do not compute � but � D � �ˇ Quh with Quh either equal to uh itself or

to a correction, depending on the employed method. The local and global a posteriori
error estimators are then given by �2K D k�k20;K and �2 D P

K2Kh
�2K D k�k20;˝ .

The global vector � is obtained as the sum of local contributions �! on
(overlapping or non-overlapping) patches, a patch ! being defined as the support of
a finite element basis function. On each !, we built a piecewise H.div/-vector �!
satisfying .�!/jK 2 RTk for any K � !. Its computation is achieved by imposing
the values of

R
K

�! � r dx for any r 2 P2
k�1 if k > 0 and of

R
S

�! � n' ds on any
edge S � @!, for any basis function ' such that S � supp'. In addition, we impose
certain values of

R
K

div�!' dx for K � ! and of
R
S
Œ�! � ns� ' ds on any edge S

internal to the patch.
Note that there are more equations than degrees of freedom to be determined.

For each finite element method, the corresponding values are computed such that
the above linear system is compatible and moreover, the relations (2)–(5) hold.

As regards the error analysis, we focus here on upper bounds with respect to the
following weak norm on V C Vh:

jjjujjj D sup
v2W

� R
˝

uˇ � rvdx C R
@˝C

ˇ � nuv ds

krvk0;˝ (6)

where the Hilbert space W is defined by W D ˚
v 2 H1.˝/I vj@˝� D 0

� � V 0.
For the discontinuous Galerkin and the nonconforming methods, we obtain by

integration by parts, for any v 2 W and vh 2 Vh, that:

�
Z
˝

.u � uh/ˇ � rvdx C
Z
@˝C

ˇ � n.u � uh/v ds

D a.u; v/� ah.uh; v/

D �
Z

Kh

� � r.v � vh/ dx C
Z
˝

.f � fh/.v � vh/ dx: (7)
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As regards the conforming method, it is well-known that it necessitates an
additional stabilization term, which we denote by sh.�; �/. The norm of the error
is then modified correspondingly. In the case of the SUPG method, we can show:

�
Z
˝

.u � uh/ˇ � rvdx C
Z
@˝C

ˇ � n.u � uh/v ds C sh.u � uh; v/

D a.u; v/� ah.uh; v/C sh.u; v/ (8)

which will be further discussed in Sect. 3.3.
Finally, for any of the three methods one deduces the upper error bound:

jjju � uhjjj � �C chkf � fhk0;˝ : (9)

3 Computation of Local Vectors on Patches

In what follows, we describe how to compute the vectors on a patch for the
discontinuous Galerkin, the nonconforming and the conforming methods. For
simplicity of presentation, we consider here k D 1 although it is possible to extend
the methods to higher polynomial degrees. Nevertheless, the extension in the dG
case being trivial, we allow for arbitrary k in this case.

3.1 Discontinuous Galerkin Method

The discrete formulation is obtained by taking Vh the space of (fully discontinuous)
piecewise polynomials of degree k on any cell and

ah.uh; vh/ D
Z

Kh

ˇ � ruhvh dx C
Z

S int
h

F .vh;nS ;�ˇ/Œuh� ds C
Z
@˝�

jˇ � njuhvhds;

lh.vh/ D
Z

Kh

f vh dx C
Z
@˝�

jˇ � njgvh ds;

where the upwind numerical flux on an internal edge S is given by:

F.vh;nS ;ˇ/ D .ˇ � nS /Cvinh C .ˇ � nS /�vexh :

For any cell K , we take !K D K and we define �!K 2 RTk by imposing
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Z
K

�!K � r dx D 0; 8r 2 P2
k�1 if k > 0 (10)

Z
S

�!K � n' ds D �
Z
S

.ˇ � n/�Œuh�' ds; 8S � @K; 8' 2 Pk: (11)

On a boundary edge S , we put Œuh� D 0 if S � @˝C and Œuh� D uh � gh
if S � @˝�, with gh the piecewise Pk L2-orthogonal projection of g. The
conditions (10) and (11) correspond to the degrees of freedom of RTk and thus
completely determine �!K .

By taking as test-function in the weak formulation '�K with ' 2 Pk and �K the
characteristics function of the cellK , it follows thanks to the previous relations that

div�!K D fh � ˇ � ruh and
�
�!K

� � nS D �ˇ Œuh� � nS ;

for all K 2 Kh and S � @K , with fh the L2-orthogonal projection of f on
piecewise Pk elements. We finally put � D P

K2Kh
�!K and � D � C ˇuh.

Note that (7) is obtained by writing ah.�; �/ in the following equivalent form:

ah.uh; vh/ D �
Z

Kh

uhˇ � rvh dxC
Z

S int
h

F .uh;nS ;ˇ/Œvh� dsC
Z
@˝C

ˇ � nuhvhds:

3.2 Nonconforming Method

We now consider Vh the space of piecewise linear functions, continuous at the
midpoints of the internal edges and we take the same forms as in the dG case.

To any edge S , we associate a patch !S consisting of the support of the basis
function 'S associated to S . In the case of an internal edge fSg D @K1 \ @K2,
we have !S D K1 [ K2 and we build �!S with .�!S /jKi 2 RT1 for 1 � i � 2

by defining the corresponding 16 degrees of freedom as follows. We impose for
i D 1; 2:

�!S � n D 0 on @!S (12)Z
Ki

�!S dx D 0; (13)

Z
Ki

div�!S 'S dx D
Z
Ki

.f � ˇ � ruh/'S dx C
Z
@KinS

.ˇ � n/�Œuh�'S ds (14)

Z
Ki

div�!S '
.i/
2 dx D �

Z
S

.ˇ � n/�Œuh�'.i/2 ds: (15)

Here above, '.i/2 and '.i/3 denote the two other basis functions onKi , see Fig. 1a.
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a bFig. 1 Patch and basis
functions for the
nonconforming and
conforming methods.
(a) Nonconforming.
(b) Conforming

Remark 1. Note that thanks to the relation 'SC'.i/2 C'.i/3 D 1 onKi for 1 � i � 2,

one can impose either
Z
Ki

div.�!S /'
.i/
2 dx or

Z
Ki

div.�!S /'
.i/
3 dx in (15).

By taking as test-function in the discrete formulation 'S and by using that
.'S/jS D 1, it follows from (12), (14) and (15) that

Z
S

Œ�!S � nS �ds D �
Z
S

ˇ � nS Œuh�ds

Z
S

Œ�!S � nS �'
.i/
2 ds D �

Z
S

ˇ � nS Œuh�'
.i/
2 ds i D 1; 2:

Since '.1/2 jS D '
.2/
2 jS and

n
1; '

.1/
2 jS

o
is a basis of P1 on S , we deduce from the

two previous equalities that Œ�!S � nS � D �ˇ � nS Œuh� on S . Since � D P
S2Sh

�!S
satisfies Œ� � nS � D Œ�!S � nS � on any S , it follows that � D � C ˇuh belongs to
H.div;˝/.

3.3 Conforming Method

Vh is now the space of piecewise linear and continuous functions. For any node
N we define the patch !N D S

1�i�iN Ki where fKig1�i�iN is the set of cells
containingN as node. We consider the discrete formulation with SUPG stabilization
(cf. [2]), which yields:

ah.uh; vh/ D
Z
˝

ˇ � ruhvh dx C
Z
@˝�

jˇ � njuhvh ds C sh.uh; vh/;

sh.uh; vh/ D
X
K2Kh

ıK

Z
K

ˇ � ruhˇ � rvh dx;

lh.vh/ D
Z
˝

f vh dx C
X
K2Kh

ıK

Z
K

f ˇ � rvh C
Z
@˝�

jˇ � njgvh ds
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and ıK a stabilization parameter. In the case of an internal node N , we define the
local vector �!N such that .�!N /jKi 2 RT0 for 1 � i � iN and the corresponding
3 iN degrees of freedom are given by:

�!N � n D 0 on @!N ; (16)Z
Ki

div�!N 'N dx D 1

3

Z
Ki

.f � ˇ � ruh/'N dx 1 � i � iN ; (17)

Z
Si

Œ�!i � nSi �'N ds D 1

2

Z
Si

ˇ � nSi ŒıK.ˇ � ruh � fh/�'N ds 1 � i � iN (18)

where Si denotes an interior edge of the patch which hasN as a node. Note that the
above linear system (16)–(18) is compatible but does not have a unique solution.
Indeed, let us denote by AN the linear operator of the previous system. Then one
can see that KerAN is of dimension 1 and contains the vectors ofH.div; !N / which
are divergence free, piecewise RT0 and of zero normal trace on @!N . One can also
show that the kernel of AN is characterized by:

� 2 KerAN ”
Z
˝

� � rvdx D 0; 8v 2 H1.˝/:

Let us next consider the orthogonal decomposition �!N D �?
!N

C �Ker!N
. According

to (7), it now follows that only �?
!N

contributes to the error estimator �. Therefore,
in order to determine it, we add to the system (16)–(18) the condition �!N ? KerA .

We set � D P
N2Nh

�!N . The numerical scheme leads to a flux � D � C ˇ Quh,
where Quh represents a correction of uh defined on each cell by Quh D uh � ıK.ˇ �
ruh � fh/, with fh the piecewise constant L2-orthogonal projection of f .

As regards the a posteriori error analysis, we obtain by imposing appropriate
values of � � n on the boundary @˝ that

a.u; v/� ah.uh; v/C sh.u; v/ D �
Z

Kh

� � r.v � vh/ dx C
Z
˝

.f � fh/.v � vh/ dx

C
X
K2Kh

ıK

Z
K

.f � fh/ˇ � r.v � vh/ dx;

which implies the desired estimate (9).

4 Numerical Results

We show next our first numerical results, obtained with our CCC library Concha.

We consider˝ D ��1; 1Œ2 with data such that u.x/ D e� kx�x0k

ı is an exact solution,
where x0 D .0:5; 0:5/ and ı D 0:03. We employ the dG method with k D 0 and
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Fig. 2 L2-error versus estimator for dG approximation (k D 0) in log-log scale (Uniform mesh
(left), Adaptive mesh (right))

Fig. 3 L2-error versus estimator for dG approximation (k D 1) in log-log scale (Uniform mesh
(left), Adaptive mesh (right))

then k D 1. We represent in Figs. 2 and 3 the error and the estimator with respect
to the number of cells, for uniform and adaptive mesh refinements. We have used
the L2.˝/-norm of the error since the weaker norm kj � jk is not easily computable.
Besides the obvious gain, one can also see that both the error and the estimator

converge with the same convergence rate O.N� kC1
2 /. For k D 1, we show in Fig. 4

a sequence of adapted meshes. As expected, the refinement takes place near x0.
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Fig. 4 Sequence of adapted meshes for dG approximation (k D 1)
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