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Abstract We present an adaptive mimetic finite difference method for the approx-
imate solution of variational inequalities. The adaptive strategy is based on a
heuristic hierarchical type error indicator. Numerical experiments that validate the
performance of the adaptive MFD method are also presented.

1 The Obstacle Problem

Throughout the paper we will use standard notations for Sobolev spaces, norms and
seminorms. For a bounded domain D in R

2, we denote by Hs.D/ the standard
Sobolev space of order s � 0, and by k � kHs.D/ and j�jHs.D/ the usual Sobolev norm
and seminorm, respectively. For s D 0, we write L2.D/ instead of H0.D/. H1

0 .D/

is the subspace of H1.D/ of functions with zero trace on @D.
Let ˝ be an open, bounded, convex set of R2, with either a polygonal or a C2-

smooth boundary � WD @˝ . Let g WD Qgj� , with Qg 2 H2.˝/ and we set V g WD
fv 2 H1.˝/ W v D g on � g. Let us introduce the bilinear form a.�; �/ W H1.˝/ �
H1.˝/ �! R defined by a.u; v/ WD R

˝
ru � rv dx, and the linear functional

F.�/ W H1.˝/ �! R with F.v/ WD R
˝
f v dx, where we assume f 2 L2.˝/.

Finally, we define the function  2 H2.˝/ with  � g on � and the convex space

K WD fv 2 V g W v �  a.e. in ˝g:
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We are interested in solving the following variational inequality:

8
<

:

Find u 2 K such that

a.u; v � u/ � F.v � u/ 8v 2 K: (1)

It is well known (see e.g. [6]) that under the above data regularity assumption, the
elliptic obstacle problem (1) admits a unique solution u 2 H2.˝/.

2 The Mimetic Discretization

In this section we recall the mimetic discretization for the obstacle problem (1) (see
[2] for more details). Let ˝h � ˝ be a polygonal approximation of ˝ , in such
a way that all vertexes of ˝h which are on the boundary of ˝h are also on the
boundary of ˝ . The polygonal domain ˝h represents the computational domain
for the method. With a little abuse of notation, we also denote by ˝h a partition
of the above introduced computational domain into polygons E . We assume that
this partition is conformal, i.e., intersection of two different elements E1 and E2 is
either a few mesh points, or a few mesh edges (two adjacent elements may share
more than one edge) or empty. We allow ˝h to contain non-convex elements. Note
moreover that, differently from conforming finite element meshes, T-junctions are
now allowed in the mesh; indeed, this are included in the above conditions simply
by splitting single edges into two new (aligned) edges. For each polygon E , kE
denotes its number of vertexes, jEj its area, hE its diameter and

h WD max
E2˝h

hE:

We denote the set of mesh vertexes and edges by Nh and Eh, the set of internal
vertexes and edges by N 0

h and E 0
h , the set of boundary vertexes and edges by N @

h

and E @
h . The set of vertexes and edges of a particular elementE are denoted by N E

h

and E E
h , respectively. Moreover, we denote a generic mesh vertex by v, a generic

edge by e and its length both by he and jej. A fixed orientation is also set for the
mesh ˝h, which is reflected by a unit normal vector ne, e 2 Eh, fixed once for all.
For every polygon E and edge e 2 E E

h , we define a unit normal vector ne
E that

points outside E .
The mesh is assumed to satisfy the following shape regularity properties, which

have already been used in [7]. There exist

- An integer numberNs independent of h;
- A real positive number � independent of h;
- A compatible sub-decomposition Th of every˝h into shape-regular triangles,



An Adaptive MFD Method for the Obstacle Problem 5

such that

(H1) Any polygon E 2 ˝h admits a decomposition ThjE formed by less than Ns
triangles;

(H2) Any triangle T 2 Th is shape-regular in the sense that the ratio between the
radius rT of the inscribed ball and the diameter hT of T is bounded from
below by �; i.e. 0 < � � rT

hT
.

The discretization of problem (1) requires to discretize a scalar field in H1.˝/.
To this aim, we start introducing the degrees of freedom for the discrete approxima-
tion space. The discrete space Vh is defined as follows: a vector vh 2 Vh consists of
a collection of degrees of freedom

vh WD fvvgv2Nh
;

one per mesh vertex, e.g. to every vertex v 2 Nh, we associate a real number
vv. The scalar vv represents the nodal value of the underlying discrete scalar field.
The number of unknowns is equal to the number of vertexes of the mesh. We also
define the discrete space V g

h � Vh of functions which satisfy the Dirichlet boundary
condition:

V
g

h WD fvh 2 Vh W vv
h D g.v/ 8v 2 N @

h g :
Accordingly, V 0

h represents the space of discrete functions which vanish at the
boundary nodes.

We define the following interpolation operator from the spaces of smooth enough
functions to the discrete space Vh. For every function v 2 C 0. N̋ / \ H1.˝/, we
define vI 2 Vh by

vv
I WD v.v/ 8v 2 Nh:

Moreover, we analogously define the local interpolation operator from C 0. NE/ \
H1.E/ into VhjE given by

vv
I WD v.v/ 8v 2 N E

h :

We endow the space Vh with the following discrete seminorm

kvhk21;h WD
X

E2˝h
kvhk21;h;E D

X

E2˝h
jEj

X

e2EE
h

�
1

jej .v
v2 � vv1 /

�2
; (2)

where v1 and v2 are the two vertexes of e. The quantity k � k1;h is a H1.˝/-type
discrete seminorm, which becomes a norm on V 0

h . We denote by ah.�; �/ W Vh�Vh !
R the discretization of the bilinear form a.�; �/, defined as follows:

ah.vh;wh/ WD
X

E2˝h
aEh .vh;wh/ 8vh;wh 2 Vh; (3)
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where aEh .�; �/ is a symmetric bilinear form on each element E . We introduce two
fundamental assumptions for the local bilinear form aEh .�; �/. The first one represents
the coercivity (up to the kernel) and the correct scaling with respect to the element
size.

(S1) There exist two positive constants c1 and c2 independent of h such that, for
every uh; vh 2 Vh and each E 2 ˝h, we have

c1kvhk21;h;E � aEh .vh; vh/; aEh .uh; vh/ � c2kuhk1;h;Ekvhk1;h;E :

(S2) For every elementE , every linear vector functionp1 onE , and every vh 2 Vh,
it holds

aEh .vh; .p
1/I/ D

X

e2E E
h

.rp1 � ne
E/

jej
2

�
v

v1
h C v

v2
h

�
; (4)

where v1 and v2 are the two vertexes of e 2 ne
E .

We remark that the meaning of the consistency condition .S2/ is that the discrete
bilinear form respects integration by parts when tested with linear functions. The
bilinear form ah.�; �/ can be easily built element by element in a simple algebraic
way; see for instance [2, 7]. Finally, we are able to define the proposed mimetic
discrete method for the obstacle problem. Let the loading term

.f; vh/h WD
X

E2˝h
Nf jE

kEX

iD1
vvi !iE ; (5)

where v1; : : : ; vkE are the vertexes of E , Nf jE WD 1
jEj

R
E
f dx, and !1E; : : : ; !

kE
E

are positive weights such that
PkE

iD1 !iE D jEj. Finally, let us introduce the discrete
convex space

Kh WD fvh 2 V g

h W vv
h �  .v/ 8v 2 Nhg:

Then, the mimetic discretization of problem (1) reads:

8
<

:

Find uh 2 Kh such that

ah.uh; vh � uh/ � .f; vh � uh/h 8vh 2 Kh:
(6)

Thanks to property (S1) it is immediate to check that the bilinear form ah.�; �/ is
coercive on Vh=R. As a consequence, recalling again that Kh � Vh is convex and
closed, standard results [8] give the existence and uniqueness of a solution for the
discrete problem (6). The following convergence result has been proved in [2].

Theorem 1. Let u 2 K \ H2.˝/ be the solution to the continuous problem (1),
and uh 2 Kh be the corresponding mimetic approximation, obtained by solving the
discrete problem (6). Then, it holds
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kuh � uIk1;h � Ch;

where the constant C is independent of the mesh-size h.

3 An Adaptive MFD Algorithm

In this section we extend the h-adaptive MFD algorithm presented in [3] to the case
of the obstacle problem (1). The adaptive procedure, based on a posteriori error
indicator of hierarchical type, has the following form:

SOLVE ! ESTIMATE ! MARK ! REFINE:

Here SOLVE computes the discrete solution to (6). The module ESTIMATE makes
use of a suitable fluctuation problem (cf. (12) below) to build the hierarchical error
indicators, while the procedure MARK employs the fixed fraction strategy, with
refinement fraction set to 30 %, to make a selection of the elements to be refined.
Finally, the module REFINE uses the strategy described in Sect. 3.1 to subdivide
elements marked for refinement. In the next two sections we will briefly describe
the modules REFINE and ESTIMATE.

3.1 Mesh Refinement

Given a mesh ˝h we can build a uniformly refined mesh b̋
h as follows. We start

assuming that

(H3) All polygonsE 2 ˝h are convex.

Then, we introduce the point xE 2 E

xE WD 1

N

X

v2@E
x.v/ ; (7)

where N is the number of vertexes in @E and x.v/ is the position vector of node
v 2 N .

Remark 1. We remark that assumption (H3) is made essentially for the sake of
exposition. What follows can be adapted to cover more general cases such as, for
instance, elements which are star shaped with respect to a ball. In particular, (7) has
to be modified to define an interior point, and (10) has to be changed, for v D xE ,
in such a way that the operator preserves the linear functions.
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Fig. 1 Refinement strategy: coarse element E 2 ˝h and sub-elements bE 2 b̋h. Circles denote
the coarse vertexes, while diamonds refer to additional vertexes in the finer mesh

The uniformly refined mesh b̋
h is built by subdividing each element E of ˝h

in the following way: each midpoint m D m.e/ of each edge e 2 @E is connected
with the point xE . This determines a subdivision of E into sub-elements which are
collected for all E 2 ˝h to form the new mesh b̋

h (see Fig. 1). In the following,
we will indicate all geometrical objects of the finer grid b̋

h with a hat symbol, the
meaning being the same as in the original mesh. For instance, we will indicate with
bE a generic element of b̋

h, and with cNh the set of all its vertexes. Note that

cNh D Nh [ fm.e/ge2E [ fxEgE2˝h;

i.e. the edge midpoints m.e/ and the points xE become additional vertexes in the
new mesh b̋

h. In addition, bh will denote the mesh-size of the finer mesh b̋
h, i.e.

bh D maxbE2b̋h
hbE .

3.2 Hierachical Error Indicators

Following the construction given in Sect. 2, we can introduce the finer discrete
spaces bV h and bKh associated to the mesh b̋

h, a bilinear form bah.�; �/ W bV h � bV h !
R and a suitable loading term, so that the finer version of the coarse discrete
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problem (6) reads as follows

8
<

:

Findbuh 2 bKh such that

bah.buh; vh �buh/ � .f; vh �buh/bh 8vh 2 bKh:
(8)

We now introduce two operators that maps the finer space into the coarser one and
viceversa. Let ˘ W bV h ! Vh be defined by

�
˘.vh/

�
.v/ D vh.v/ 8v 2 Nh; 8vh 2 bV h: (9)

Given any midpoint m D m.e/, e 2 Eh, we indicate with vm and with v0
m the two

vertexes which are endpoints to the edge e. We then define ˘� W Vh ! bV h by

�
˘�.vh/

�
.v/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

vh.v/ 8v 2 Nh

1

2

�
vh.vm/C vh.v0

m/
�

if v D m.e/; e 2 E

1

N

X

v2@E
vh.v/ if v D xE; E 2 ˝h;

(10)

for all vh 2 Vh. The operator˘� embeds the coarse space Vh into the finer space bVh
by averaging the coarse vertex values. We denote by bV

c

h the subspace of bVh given
by the image of ˘� and we refer to it as to the embedded coarse space. Finally, we
introduce the fluctuation space

bV
f

h D fvh 2 bV h j vh.v/ D 0 8v 2 Nhg:

It is immediate to check that

bV h D bV
c

h ˚ bV
f

h :

Let k � k
1;bh and k � k

1;bh;bE , bE 2 bV h, denote the global and local norms of the finer

space bV h (cf. (2)). Accordingly, we indicate with k �k
1;bh;E the norm of the fine space

restricted to the coarse element E 2 ˝h

kvhk2
1;bh;E

D
X

bE2E
kvhk2

1;bh;bE
8vh 2 bV h:

For all E 2 ˝h, we can define a bilinear form aEh .�; �/ on the coarse space Vh as
follows

aEh .vh;wh/ WD
X

bE2E
babEh .˘

�.vh/;˘
�.wh// 8vh;wh 2 Vh : (11)
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Similarly, we can also define a loading term

.f; vh/h D
X

E2˝h

X

bE2E
.f;˘�.vh//bh;bE

where .f; �/bh;bE represents a local scalar product on the fine mesh constructed
analogously to (5).

Inspired by Zou et al. [10] (see also [1, 4, 5]) we introduce the following
fluctuation discrete problem:

8
<

:

Findbefh 2 bKf

h such that

bah.be
f

h ; v
f

h �befh / � .f; v
f

h �befh /bh �bah.˘�uh; v
f

h �befh / 8vfh 2 bKf

h ;
(12)

where

bKf

h D fvfh 2 bV
f

h W vfh .v/ �  .v/�˘�uh.v/ 8v 2 cNh n Nhg:

Note that the right-hand side in (12) is the residual of the approximate solution uh
when tested with the fluctuation space bK

f

h . The local heuristic error indicators are

�E WD P
bE2Ekbefh k2

1;bh;bE
being befh the solution of problem (12), while we set �2 D

P
E2˝h�

2
E . The quantities �E , computed in the module ESTIMATE, are employed

by the procedure MARK to select the elements of the mesh˝h to be refined. We refer
to [3] (where a similar approach has been employed for the solution of linear elliptic
problems) for more details on the construction of possible inexpensive heuristic
variants of the error indicators �E .

3.3 Numerical Results

Next we investigate the numerical performance of our adaptive MFD method. We
consider the domain ˝ D��1; 1Œ2. For the parameter r D 0:7, we define the
(continuous) load

f .x; y/ WD
8
<

:

� 8.2x2 C 2y2 � r2/ if
p
x2 C y2 > r;

� 8r2.1 � x2 � y2 C r2/ if
p
x2 C y2 � r;

(13)

and the Dirichlet boundary data g.x; y/ WD .x2 Cy2� r2/2. We consider a constant
obstacle .x; y/ WD 0, so that the exact minimizer of model problem (1) is given by

u.x; y/ WD .maxfx2 C y2 � r2; 0g/2I (14)

cf. [9].
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Fig. 2 First four levels of computational meshes generated by the adaptive refinement strategy
employing the fixed fraction marking strategy
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Fig. 3 Left: actual errors and error indicator versus the number of degrees of freedom (loglog-
scale). The adaptive meshes are constructed by employing the fixed fraction marking strategy.
Right: adaptive approximate solution after four iterations

In Fig. 2 we report the first four levels of meshes generated by the adaptive
algorithm employing the fixed fraction marking strategy. We observe that the mesh
is correctly refined along the boundary of the contact region and not in its interior
where the solution (equal to the obstacle) is indeed smooth. In Fig. 3 the error
estimator computed on the sequence of the adaptively generated meshes together
with the actual error in the discrete energy norm and the error ku � ˘�uhk1;bh are
plotted as a function of the number of degrees of freedom (loglog-scale).
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