
Termination Proofs for Linear Simple Loops�

Hong Yi Chen1, Shaked Flur2, and Supratik Mukhopadhyay1

1 Department of Computer Science
Louisiana State University
Baton Rouge, LA 70803

hchen11@lsu.edu, supratik@csc.lsu.edu
2 Department of Computer Science

The Technion
Haifa 32000, Israel

fshaked@cs.technion.ac.il

Abstract. Analysis of termination and other liveness properties of an
imperative program can be reduced to termination proof synthesis for
simple loops, i.e., loops with only variable updates in the loop body.
Among simple loops, the subset of Linear Simple Loops (LSLs) is par-
ticular interesting because it is common in practice and expressive in
theory. Existing techniques can successfully synthesize a linear ranking
function for an LSL if there exists one. However, when a terminating LSL
does not have a linear ranking function, these techniques fail. In this pa-
per we describe an automatic method that generates proofs of universal
termination for LSLs based on the synthesis of disjunctive ranking rela-
tions. The method repeatedly finds linear ranking functions on parts of
the state space and checks whether the transitive closure of the transition
relation is included in the union of the ranking relations. Our method ex-
tends the work of Podelski and Rybalchenko [27]. We have implemented
a prototype of the method and have shown experimental evidence of the
effectiveness of our method.

1 Introduction

Termination proof synthesis for simple loops, i.e., loops with only variable up-
dates in the loop body, are the building blocks of the liveness analysis of large
complex systems [16, 29, 17, 10, 23, 26, 25, 28, 22, 24]. In particular, we consider
a subclass of simple loops which contain only linear updates with the flexibility
of handling nondeterminism. We call them Linear Simple Loops (LSLs). LSLs
are interesting because most loops in practice are indeed linear; more impor-
tantly, with its capability to handle nondeterminism LSLs are expressive enough
to serve as a foundational model for other simple loops.

� This research is partially supported by NSF under the grant 0965024. Any opinions,
findings, and conclusions or recommendations expressed in this material are those
of the author(s) and do not necessarily reflect the views of the National Science
Foundation.

A. Miné and D. Schmidt (Eds.): SAS 2012, LNCS 7460, pp. 422–438, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Termination Proofs for Linear Simple Loops 423

It is well known that termination of simple loops with linear guards and
linear assignments (they form the deterministic subclass of LSL) over rationals
or reals is decidable [34]. The termination problem for “homogeneous cases” over
integers, of the deterministic LSL subclass is also decidable [9]. Ben-Amram et
al. recently proved termination of LSLs is undecidable when the the coefficients
are from Z ∪ {r} with r being an arbitrary irrational number [2]. However,
when we reduce the analysis of a complex system to that of an LSL, knowing
whether or not the LSL terminates is not enough, we often need to obtain a
termination proof, such as a ranking function or a ranking relation, that the
overall analysis can build upon [16, 29, 17, 10, 23, 26, 25, 28]. When it comes to
finding termination proofs for LSLs, Podelski and Rybalchenko’s technique [27]
can generate a linear ranking function if there exists one. This method is based
on Farkas’s lemma [33] that provides a technique to derive hidden constraints
from a system of linear inequalities. The method is complete when LSLs range
over rationals or reals. However, if a terminating LSL has only non-linear ranking
functions, this method will return failure. In this paper, we extend the method
of Podelski and Rybalchenko, and solve cases for which only non-linear ranking
functions exist.

Our approach is closely related to the previous work on termination proof
synthesis based on disjunctive ranking relations. The traditional method for
proving program termination, proposed by Turing [35], relies on proving R ⊆
τ(f), where R is the program’s transition relation, τ(f) is a ranking relation
given by a ranking function f . The difficulty with Turing’s method is that a
single ranking function is usually hard to find. With LSLs in particular, non-
linear ranking functions are often difficult to synthesize. To address this problem
Podelski and Rybalchenko proposed [28] proving R+ ⊆ τ(f1)∪· · ·∪τ(fn), where
R+ is the transitive closure of R, and τ(f1)∪· · ·∪τ(fn) is a finite union of ranking
relations. Many recent approaches for proving termination for general programs
are based on disjunctive ranking relations [3, 4, 1, 18, 17, 29, 26, 25]. In this
paper, instead of trying to synthesize a single non-linear ranking function, we
generate disjunctive linear ranking functions and check the validity of R+ ⊆
τ(f1) ∪ · · · ∪ τ(fn).

To be able to apply the disjunctive ranking relation proof rule [28], we need
the technique of binary reachability check (BRC). That is, given a disjunctive
ranking relation T , we need to prove or disprove the inclusion R+ ⊆ T . We use
the technique developed by the Terminator team [17] to check this inclusion.
Their approach is to syntactically transform the program so that binary reach-
ability check is reduced to unary reachability check, which is a well studied task
and can be carried out on any temporal safety checker. Moreover, if the validity
of R+ ⊆ T is not satisfied, the construction of the transformed program will en-
able the safety checker to generate an error path that violates the inclusion. In
our problem setting, if the input to BRC is an LSL, the error path will induce a
new LSL which is an unrolling of the original LSL. Thus we can repeatedly check
for binary reachability and expand the current disjunctive ranking relation.

424 H.Y. Chen, S. Flur, and S. Mukhopadhyay

In this paper we provide a method for automatically generating disjunctive
ranking relations as proofs of universal termination for LSLs. Roughly speaking,
the idea is to repeatedly partition the state space based on trace segments [19, 31,
21] such that one of the subspace is guaranteed to have a linear ranking function.
The partitioning will generate a series of linear ranking functions fi’s such that
R ⊆ ⋃

τ(fi). However this does not suffice as a termination proof since the
inclusion should refer to R+ and not to R. For a termination proof we leverage
BRC; if R+ ⊆ ⋃

τ(fi) is satisfied, it returns success; if not, BRC provides a new
LSL, and we look for the next series of ranking functions fj’s. We then again
check for the inclusion R+ ⊆ ⋃

τ(fi) ∪
⋃
τ(fj). This process continues until we

successfully find an over-approximation of R+. The question that remains is how
to effectively find the sub-space for which a linear ranking function exists. To
answer this question, we resort to the simple fact that when variables range over
Z and updates are deterministic, two constraints x ≥ b and x > x′, where b is a
number, x′ represents the value of x after one transition, guarantees x to be a
ranking function. Similarly, whenever we have a constraint of the form ϕ ≥ b, we
partition the state space by constraint ϕ > Shift(ϕ) (function Shift is formally
defined in Section 4.2) and its negation ϕ ≤ Shift(ϕ). When the variables range
over Q or R, or updates are nondeterministic, more complicated partition needs
to be performed, as is described in Section 3.2 and 4.2.

Lastly, we provide experimental results showing that our method outperforms
both linear ranking function synthesis [27] and polyranking method [7] on a suite
of LSL examples provided in [11].

Related Work. Rather than looking for disjunctive ranking relations as the
termination proof, Cousot [20] shows how non-linear ranking functions can be
synthesized over nonlinear loops based on the S-procedure for semi-definite pro-
gramming. Colón and Sipma’s work on linear loops with multiple paths and
assertional transition relations achieve to synthesize linear ranking functions via
polyhedral manipulation in [13, 14]. Bradley et al. show how to synthesize lexico-
graphic linear ranking functions with supporting linear invariants over loops with
linear assertional transition relations in [6]. Another type of termination proof
is polyranking functions raised by Bradley et al. A polyranking function needs
not always decrease but decreases eventually. It is a generalization of the regu-
lar polynomial ranking function. In [8], the authors show a method for finding
bounded expressions that are eventually negative over loops with parallel tran-
sitions. In [7], the authors demonstrate a method for synthesize lexicographic
linear polyranking functions with supporting linear invariants over linear loops.

Other related works include proving conditional termination, which aims to
find a set of initial states, usually an underapproximation of it, that guarantees
termination. Cook et al. in [15] proposed an approach that first finds potential
ranking functions then solves for the sub-space that guarantees the potential
ranking function to be a true ranking function. Bozga et al. represent the set
of non terminating states in terms of greatest fixpoint and then utilize quanti-
fier elimination to deduce the exact set and consequently the dual set (i.e. the
terminating states).

Termination Proofs for Linear Simple Loops 425

2 Preliminaries

2.1 Loop Model and Semantics

Through out this paper, all variables range over domain Z, Q, or R. The following
definition provides the syntax of LSLs.

Definition 1 (Linear Simple Loops). A Linear Simple Loop over program
variables X0 = (x1, x2, . . . , xm) and its n copies X1, X2, . . . , Xn (m,n ≥ 1) is
a tuple L = 〈Cond,Update, i, j〉 where
– Cond is a set of linear constraints of the form aiX

i �� b
(�� ∈ {<,≤,=,≥, >}).

– Update is a set of linear constraints of the form a0X
0 + · · ·+ anX

n �� b
(�� ∈ {<,≤,=,≥, >}).

– i and j are integers and 0 ≤ i < j ≤ n.
– ak and b are coefficients that range over Z or Q.

We sometime refer to Cond and Update as loop conditions and loop updates
respectively. Intuitively, L describes unrolling of a loop (and maybe some extra
constraints) with a back edge from j to i.

The formal semantics of LSL is defined as follows. Let L =
〈Cond,Update, i, j〉 be an LSL over variables X0 and its n copies
X1, X2, . . . , Xn. An (n + 1)-trace of L is a tuple (s0, s1, . . . , sn) such that all
the constraints in Cond and Update are satisfied simultaneously when assign-
ing s0 to X0, s1 to X1, . . . , sn to Xn. We denote by Rn+1(L) the set of all
(n+ 1)-traces of L and R(L) the relation L describes.

R(L) = {(si, sj) | (s0, s1, . . . , sn) ∈ Rn+1(L)}
The most simple LSL L = 〈Cond,Update, 0, 1〉 involves only X0 and X1.
Without explicitly stating i and j, by default we assume i = 0, j = 1. An
L = 〈Cond,Update, 0, 1〉 describes a transition relation from a state that is
before a transition (given by X0) to the corresponding state that is after the
transition (given by X1). For example, the following while loop

while (x > 0)

x := x− 1;

can be rewritten as the following LSL

L1 � 〈{x0 > 0}, {x1 = x0 − 1}, 0, 1〉
An L = 〈Cond,Update, 0, 1〉 can also have more than two copies of variables.
For example,

L2 � 〈{x0 > 0}, {x1 = x0 − 1, x1 > 0, x2 = x1 − 1, x2 ≤ 0}, 0, 2〉
X1 and X0 represent the values of the variable X after and before a transition,
respectively. The constraint x2 ≤ 0 restrains the input space of L2 to x0 ∈ {2}.

426 H.Y. Chen, S. Flur, and S. Mukhopadhyay

Note that x0 = 1 is not in our input space, since there does not exist x1 and
x2 satisfying L2. In our approach, we add such constraints over future transition
states such that the restrainedLSL is guaranteed to have a linear ranking function.

An LSL L = 〈Cond,Update, 0, k〉 describes a transition relation between
X0 and Xk. For example, in

L3 � 〈{x0 > 0, }, {x1 = x0 − 1, x1 > 0, x2 = x1 − 1}, 0, 2〉

the transition pairs described by L3 include: (5, 3), (4, 2), (3, 1), We often use
L = 〈Cond,Update, 0, k〉 when we are looking at the k-th unrolling of some
L′ = 〈Cond′,Update′, 0, 1〉.

To further generalize our loop model, we provide the ability not only to look
ahead, but also to look back.

L4 � 〈{x1 > 0}, {x0 > 0, x1 = x0 − 1, x2 = x1 − 1, x2 ≤ 0}, 1, 2〉

Despite having the same constraints as in L2, the input space of L4(1, 2) is
x1 ∈ {1}.

Note that LSLs allow nondeterminism. To be specific, we can have linear
expressions on both sides of an update statement, and inequalities instead of
equal relation. This gives us more flexibility to model nondeterministic inputs
or non-linear operations. For example, we can have an LSL such as

L5 � 〈{x0 > 0}, {x0 + x1 ≤ 1}, 0, 1〉

that cannot be expressed in any conventional programming language.

2.2 Disjunctive Ranking Relations

Definition 2 (Well-Ordered Sets). A set D is well-ordered with respect to a
relation < if,

1. < is a strict total ordered and,
2. There is no infinite sequence d0, d1, d2, . . . of elements in D such that di+1 <

di for every i ∈ N.

Definition 3 (Ranking Functions). Given a transition relation R ⊆ S × S,
a function r : S → D is a ranking function, if D is a well-ordered set and for
every (s1, s2) ∈ R we have r(s2) < r(s1), where < is the well order associated
with D.

A Ranking Function is called linear (Linear Ranking Function) if r is linear.

Definition 4 (Ranking Relations). Given a ranking function r : S → D we
define the corresponding ranking relation by

τ(r) = {(s1, s2) | r(s2) < r(s1)}

where < is the well order associated with D.

Termination Proofs for Linear Simple Loops 427

Definition 5 (Disjunctive Ranking Relations). A disjunctive ranking re-
lation T is a finite union of ranking relations. That is,

T = T1 ∪ · · · ∪ Tn
where Ti is a ranking relation for 1 ≤ i ≤ n, n ∈ N

The relation between disjunctive ranking relations and termination has been
established in [28] using Ramsey’s theorem [30]. Let P be a program, R be
the corresponding transition relation induced by P , R+ be the non-reflexive
transitive closure of R, then P is terminating if and only if

R+ ⊆ T

for some disjunctive ranking relation T .

2.3 Binary Reachability Check

Given an LSL L and a disjunctive ranking relation T , the goal of binary reacha-
bility check is to verify whether R+(L) ⊆ T . If yes, the procedure returns “true”.
Otherwise, the procedure returns an error path which induces a new LSL L′ such
that L′ is an unrolling of L and R(L′) � T . The input and output of procedure
BRC is described as follows (see [17] for more details):

input
LSL L, disjunctive ranking relation T
output
if (R+(L) ⊆ T) return “true”
else return LSL L′ such that L′ is an unrolling of L and R(L′) � T

2.4 Simple Linear Ranking Function Synthesis

The following theorem is proved in [27].

Theorem. An LSL given by the system (A0A1)
(
x0

x1

) ≤ b (i.e. i = 0, j = 1) is
terminating if there exist nonnegative vectors λ1, λ2 over rationals such that the
following system is satisfiable:

λ1A
1 = 0 (1)

(λ1 − λ2)(A
0) = 0 (2)

λ2(A
0 +A1) = 0 (3)

λ2b < 0 (4)

More over, the LSL has a linear ranking function of the form

ρ(X0) =

{
rX0 if exists X1 such that (A0A1)

(
x0

x1

) ≤ b

δ0 − δ otherwise

where r � λ2A
1, δ0 � −λ1b, and δ � −λ2b.

We will extend this method in Section 4 so that it works for the general form of
LSLs.

428 H.Y. Chen, S. Flur, and S. Mukhopadhyay

3 Example

We first demonstrate our technique with a simple deterministic LSL over the
integers. Then we will extend our technique for nondeterministic updates and
rational / real variables.

3.1 Deterministic Updates over Integer Domain

Consider the while loop in Figure 1. It has only 3 simple assignments, but it
is not obvious whether it is terminating. It is easy to see that the traces of z
are composed of two alternating numbers, one negative the other non-negative,
and that the negative number has a higher value. The variable y always gets
assigned to value of z from the previous state. Hence it behaves like z, except
being one step behind. The variable x increments itself with y. Therefore x will
alternatively increase (or stay unchanged) and decrease. Moreover the decrease
is larger than the increase, hence x will eventually become negative and the loop
will terminate.

int x, y, z;

while (x ≥ 0)

x := x + y;

y := z;

z := -z - 1;

Fig. 1. Example

Let us first convert the while loop above to an LSL.

L = 〈{x0 ≥ 0}, {x1 = x0 + y0, y1 = z0, z1 = −z0 − 1}, 0, 1〉

If we apply the method of Section 2.4 to L, it will return failure since L does
not have a linear ranking function. As mentioned earlier, we want to construct
multiple linear ranking functions, each of them over a restrained input space. We
do this by adding constraints to L such that the new LSL is guaranteed to have
a linear ranking function. From CondL we see that we already have the linear
expression x0 that is bounded, i.e., x0 ≥ 0. If we add to L a constraint x0 > x1,
then we know x0 can serve as a ranking function for the restrained LSL because
x0 has a lower bound and is strictly decreasing, which is a sufficient condition
for x0 to become a ranking function over the integer domain.

We break L into two LSLs L1.1 and L1.2 such that L1.1 is obtained by com-
bining L with constraint x0 > x1, and L1.2 is obtained by combining L with the
negation of the constraint, namely x0 ≤ x1.

L1.1 =〈CondL,UpdateL ∪ {x0 > x1}, 0, 1〉 (trivial case)

L1.2 =〈CondL,UpdateL ∪ {x0 ≤ x1}, 0, 1〉 (synthesis case)

Termination Proofs for Linear Simple Loops 429

We call L1.1 the trivial case since we immediately obtain a linear ranking function
from it.

ρ1(X
0) =

{
x0 if ∃X1 such that X0, X1 satisfies L1.1

−1 otherwise

We call L1.2 the synthesis case since it needs further examination. We callCondL

the Seed for partitioning L.
From this point onwards, we only need to take care of L1.2. First we check

whether L1.2 has a linear ranking function already. In this particular case we
find out that this is not true. Next, we would like to repeat the earlier process
on L1.2, i.e., adding constraints to L1.2 such that a linear ranking function must
exist. Since L1.2 already includes x0 ≤ x1, using x0 ≥ 0 ∧ x0 > x1 again will
no longer make sense. However observe that the new constraint in L1.2 gives a
new linear expression that is bounded below, i.e., x1 ≥ x0. This constraint will
become our new Seed, and we can use it to partition L1.2. This time we partition
with the constraint (x1 − x0) > (x2 − x1) and its negation.

At this point a new issue arises, x2 is introduced to denote the value of x after
one transition from x1. However from L1.2 alone, there is no such information
about x2. To remedy this situation, we first need to unroll L so that the unrolled
transition involves x2. We do this by making a copy of all the loop constraints
in L, then changing X1 to X2, X0 to X1 (the process is formally described by
Unroll(L) in Section 4). We get L2 as follows.

L′ =Unroll2(L)

=〈{x0 ≥ 0}, {x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1}, 0, 1〉
L2 =〈CondL′ ,UpdateL′ ∪ Seed, 0, 1〉

=〈{x0 ≥ 0}, {x1 = x0 + y0, y1 = z0, z1 = −z0 − 1,

x1 ≥ 0, x2 = x1 + y1, y2 = z1, z2 = −z1 − 1} ∪ {x1 ≥ x0}, 0, 1〉
Now we can partition L2 using the constraint mentioned above.

L2.1 =〈CondL2 ,UpdateL2 ∪ {(x1 − x0) > (x2 − x1)}, 0, 1〉 (trivial case)

L2.2 =〈CondL2 ,UpdateL2 ∪ {(x1 − x0) ≤ (x2 − x1)}, 0, 1〉 (synthesis case)

L2.1 is again the trivial case, where a linear ranking function is guaranteed

ρ2(X
0) =

{
x1 − x0 = y0 if ∃X1, X2 such that X0, X1, X2 satisfies L2.1

0 otherwise

Now we check whether the synthesis case has a linear ranking function. Notice
that this time we can not use the method described in Section 2.4 any more,
since now the synthesis case LSL involvesX2. In Section 4, we describe a general
ranking function synthesis method which can handle this general form of LSLs.

430 H.Y. Chen, S. Flur, and S. Mukhopadhyay

If we feed L2.2 to the method in Section 4, we get the following linear ranking
function.

ρ3(X
0) =

{
2x0 + z0 if ∃X1, X2 such that X0, X1, X2 satisfies L2.2

−1 otherwise

As shown in Figure 2, up to this point we have divided L to three LSLs, L1.1,
L2.1, and L2.2. Each of these three has a linear ranking function. Let T = τ(ρ1)∪
τ(ρ2)∪ τ(ρ3). Theorem 2 in Section 4 shows us that R(L) ⊆ T . That is, any two
consecutive states form a pair that belongs to T .

R(L) ⊆ T = τ (ρ1) ∪ τ (ρ2) ∪ τ (ρ3)

Fig. 2. Execution of L � 〈{x0 ≥ 0}, {x1 = x0 + y0, y1 = z0, z1 = −z0 − 1}, 0, 1〉

Recall that our goal is to find a T such that R+(L) ⊆ T . We first check whether
the T we found already satisfies R+(L) ⊆ T . As it turns out for this particular
case, it is not. BRC gives an error path that executes L twice. Therefore we get
a new LSL L′′ that unrolls L twice and L′′ describes a relation from X0 to X2.

L′′ = Unroll2(L) with iL′′ = 0, jL′′ = 2

Note L′′ has the same set of constraints as L′, but has different backedge. We
feed L′′ to the method described in Section 4.1. It shows that L′′ has a linear
ranking function already.

ρ4(X
0) =

{
x0 + y0 if ∃X1, X2 such that X0, X1, X2 satisfies L′

−1 otherwise

Again we update T by T = T ∪τ(ρ4) and this time the test R+(L) ⊆ T succeeds,
i.e., we have successfully found a disjunctive ranking relation T for the original
LSL L.

Termination Proofs for Linear Simple Loops 431

3.2 Variables over Q or R and Nondeterministic Updates

Notice that when variables range over Q or R, the two constraints ϕ ≥ b and
ϕ > Shift(ϕ) can no longer guarantee ϕ to be a linear ranking function. One
way to remedy that is to pick a small positive value c and partition the state
space by ϕ − Shift(ϕ) > c and its negation ϕ − Shift(ϕ) ≤ c. Similar to the
integer example, the former constraint will generate the trivial case, and the
latter constraint will generate the synthesis case.

Another way is to still partition with ϕ > Shift(ϕ) and its negation ϕ ≤
Shift(ϕ). However since the former can no longer generate a trivial case, we
need to continue the partition process on the trivial case as well.

Nondeterministic updates are also an issue. If we look at ranking function ρ2
above, the expression y0 originates from the expression x1 − x0. We cannot use
x1 − x0 directly because the ranking functions need to be expressed in terms
of X0. With deterministic updates, we can get rid of x1 by substituting it with
x0 + y0. With nondeterministic updates, we may not be able to simplify the
expression in this manner. Therefore we need to apply Theorem 1 in Section 4.1
to generate ranking functions on X0 only, and when we fail to find one, we need
to partition the trivial case further. In our algorithm shown in Figure 4, this is
the approach we take in all situations.

4 Algorithm for Synthesizing Disjunctive Ranking
Relations

4.1 Extended Linear Ranking Function Synthesis

Let A denote the row vector (A0 . . . Ai . . . Aj . . . An), Ai denote the i-th element
Ai, A−i denote the row vector with all but the i-th element (A0 . . . Ai−1Ai+1 . . .
Aj . . . An). Similarly we define column vectors X, Xi, and X−i. Then we prove
the following theorem.

Theorem 1. An LSL L = 〈Cond,Update, i, j〉 given by the system AX ≤ b
is terminating if there exist non-negative vectors λ1, λ2 over rationals such that
the following system is satisfied:

λ1A−i = 0 (1)

λ2A−i,−j = 0 (2)

(λ1 − λ2)Ai = 0 (3)

λ2(Ai +Aj) = 0 (4)

λ2b < 0 (5)

More over, the LSL has a linear ranking function of the form

ρ(X i) =

{
rX i if exists Xj such that (X i, Xj) ∈ R(L)

δ0 − δ otherwise

where r � λ2Aj, δ0 � −λ1b, and δ � −λ2b.

432 H.Y. Chen, S. Flur, and S. Mukhopadhyay

Note that Theorem 1 cannot be replaced by using the Theorem in Section 2.4
because Theorem 1 guarantees to generate ranking functions expressed in X i

only, while the original theorem does not. Just as in [27], the converse of the
above theorem is true for rationals and reals. Since this paper does not focus on
the application of the converse theorem, we do not elaborate it here.

4.2 Formal Description

To help describing the algorithm, we need to define a few notations here. We
start by defining Shift which is the process of transforming constraint from a
certain copy of X to a higher copy. It does so by incrementing the superscript
of each X i. For example, Shift(x0 − x1 < 1) = x1 − x2 < 1.

Definition 6 (Shift). Given a linear combination ψ : a0X
0+a1X

1+· · ·+anXn,
a linear constraint ϕ : ψ ≤ b, a set of linear constraints C, where b ∈ Z, we define

Shift(ψ) � a0X
1 + a1X

2 + · · ·+ anX
n+1

Shift1(ϕ) � Shift(ψ) ≤ b

Shiftk+1(ϕ) � Shiftk(Shift(ψ) ≤ b)

Shiftk(C) � {Shiftk(ϕ) | ϕ ∈ C}
Next we define function Unroll. This function produces an LSL with the same
traces as the original but with more copies of X . It does so by adding Shift of
the constraints to itself. Note that function Unroll is used in the partitioning
process (see L′ in Section 3.1). The BRC procedure also unrolls an LSL (see
L′′ in Section 3.1). The only difference between the two unrolling is that BRC
changes the value of j to the number of iterations in the error path.

Definition 7 (Unroll). Given a set of linear constraints C, an LSL L =
〈Cond, Update, i, j〉, we define

Unroll1,d(C) � C

Unrollk+1,d(C) � C ∪ Shiftd(Unrollk,d(C))

Unrollk(L) � 〈Cond,Unrollk,j−i(Cond ∪Update), i, j〉
Lastly we define function Diff. This function creates new constraints that we
use to partition the original LSL. It does so by taking constraint, shifting it and
then binding the constraint and its shift with > or ≤. For instance, for constraint
ϕ : x0 ≤ 0 we have Diff1,>(ϕ) = x1 > x0 and Diff1,≤(ϕ) = x1 ≤ x0.

Definition 8 (Diff). Given a linear constraint ϕ : ψ ≤ b and set of constraints
Seed, where b ∈ Z. We define

Diffi,∼(ϕ) � Shifti(ψ) ∼ ψ

Diffi,∼(Seed) � {Diffi,∼(ϕ) | ϕ ∈ Seed}
where ∼ is one of {>,≤}.

Termination Proofs for Linear Simple Loops 433

Now we give two procedures Main and DRR (for “Disjunctive Ranking Rela-
tion”). DRR, described in Figure 4, is a recursive procedure, that given an LSL
L returns a disjunctive ranking relation T such that R(L) ⊆ T . Procedure Main,
described in Figure 3, repeatedly calls DRR while R+(L) � T , each time feeding
DRR with an unrolling of the original L.

procedure Main
input: LSL Loriginal = 〈Cond,Update, 0, 1〉
output: disjunction ranking relation T or “fail”
begin

L← Loriginal

T ← ∅
do

if DRR(L,CondL) succeeds with disjunctive ranking relation T ′

T ← T ∪ T ′

else
return “fail”

while (binary reachability check on (Loriginal, T) fails with updated L)
return T

end.

Fig. 3. Procedure Main

Suppose that DRR is called recursively k times with inputs (L1, Seed1),
(L2, Seed2), . . . , (Lk, Seedk). If the linear ranking function synthesis for Lk

succeeds and return the parameters r, δ0, δ the following is the ranking function
we use,

ρk(X) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r(X) if exists X1 such that

(X,X1) ∈ R(Lk) [case-0]

δ0 − δ else if exists X1 such that

(X,X1) ∈ R(Lk−1) [case-1]

δ0 − 2δ else if exists X1 such that

(X,X1) ∈ R(Lk−2) [case-2]
...

...

δ0 − (k − 1)δ else if exists X1 such that

(X,X1) ∈ R(L1) [case-(k-1)]

δ0 − kδ otherwise [case-k]

(
)

4.3 Correctness Proof

Theorem 2 insures the disjunctive ranking relation returned by DRR is large
enough to contain the transition relation of the input LSL. This, in turn, insures
that BRC will give a new counterexample for each iteration (until R+(L) ⊆ T)

434 H.Y. Chen, S. Flur, and S. Mukhopadhyay

procedure DRR
input: LSL L = 〈Cond,Update, 0, j〉, and Seed a subset of Cond ∪Update.
output: disjunction ranking relation T
begin

if linear ranking function synthesis on L succeeds with function r
return τ (r)

Lunroll ← Unroll2(L)
for each ϕ ∈ Seed

Seedtriv ← {Diffj,>(ϕ)}
Ltriv ← 〈CondLunroll ,UpdateLunroll ∪ Seedtriv, 0, j〉
T ← T∪ DRR(Ltriv, Seedtriv)

Seed← Diffj,≤(Seed)
L← 〈CondLunroll ,UpdateLunroll ∪ Seed, 0, j〉
return T∪ DRR(L, Seed)

end.

Fig. 4. Procedure DRR

and the termination condition converges towards a solution. The proof of theo-
rem 2 relies on lemma 1. Lastly theorem 3 asserts the correctness of the algo-
rithm.

Lemma 1. Let s0, . . . , sj , . . . , sm·j be an (m · j + 1)-trace of some L = 〈Cond,
Update, 0, j〉 and let Seed be over X0, . . . , Xm·(j−1). If DRR is called with L
and Seed as input and it succeeds then (s0, sj) is contained in the return set of
DRR.

Theorem 2. Suppose that DRR is called with input (L = 〈Cond,Update, 0, j〉,
Seed) where L is over X0, . . . , Xj and Seed = CondL. If DRR terminates suc-
cessfully with return value T then R(L) ⊆ T .

Theorem 3. If procedure Main terminates successfully on a program P , then
P terminates and has a disjunctive linear ranking relation T .

4.4 Termination and Complexity of the Algorithm

The procedures Main and DRR as given in this section may not always terminate,
in particular when the input LSL is not terminating. When implemented we need
to bound the recursion depth of DRR and the number of iterations of the main
loop. When the input LSL is deterministic and the variables range over Z, the
recursive calls to DRR for each ϕ ∈ Seed will succeed with no further calls and
therefore the number of calls to DRR will be linear in the depth bound. When
the LSL is non-deterministic or the variables range over Q or R, the number of
calls to DRR in the worst case is exponential in the depth bound. Finally we
note that the LSL Unrollk(L) has k times as many constraints and variables
as in L.

Termination Proofs for Linear Simple Loops 435

Table 1. Experiment results

Vars Terminating Linear Polyrank Ours BRC DRR Failed Proc

1 1 yes no no no - - DRR

2 1 yes yes yes yes 0 1 -

3 1 yes yes yes yes 0 1 -

4 1 yes yes yes yes 0 1 -

5 1 yes yes no yes 0 1 -

6 2 yes no no yes 0 2 -

7 2 no - - - - - DRR

8 2 no - - - - - DRR

9 2 no - - - - - DRR

10 2 no - - - - - DRR

11 2 yes no no no - - DRR

12 2 yes no no yes 0 2 -

13 2 yes no no yes 0 2 -

14 2 yes no no yes 0 2 -

15 2 yes yes no yes 0 1 -

16 2 no - - - - - DRR

17 2 no - - - - - DRR

18 2 yes no no yes 0 2 -

19 2 no - - - - - DRR

20 2 no - - - - - DRR

21 2 yes no no yes 0 2 -

22 2 no - - - - - DRR

23 2 yes no no yes 0 2 -

24 2 yes no no yes 0 2 -

25 2 yes yes yes yes 0 1 -

26 2 yes no no yes 0 2 -

27 2 yes no no yes 0 2 -

28 3 yes no no yes 0 2 -

29 3 no - - - - - DRR

30 3 yes no no no ∞ 3 BRC

31 3 yes no no yes 0 2 -

32 3 yes no no yes 0 2 -

33 3 no - - - - - DRR

34 3 yes no no yes 1 3 -

35 3 yes no no yes 0 2 -

36 3 yes no no yes 0 2 -

37 3 yes yes yes yes 0 1 -

38 4 yes no no yes 0 2 -

5 Experiments

We created a test suite of LSL loops. To our knowledge it is the first LSL test
suite. The loops are collected from other research work [27, 15, 34, 28, 9, 12, 6, 8,

436 H.Y. Chen, S. Flur, and S. Mukhopadhyay

13, 5] and real code. The test suite is still growing. At the time of our submission,
it contains 38 LSL loops. Among them 11 are non-terminating loops, 7 are
terminating with linear ranking functions, 20 are terminating with non-linear
ranking functions. Moreover, 6 are non-deterministic, 32 are deterministic, 5 have
1 variable, 22 have 2 variables, 10 have 3 variables, and one has 4 variables. All
loops are executed over domain Z. The test suite as well as the implementation
are available at [11].

We compared our method to linear ranking function synthesis method [27] us-
ing the implementation found in [32], and the polyranking method [7] using the
implementation found in [5]. Detailed experimental results are provided in Table
1. The “Vars” column indicates the number of variables used in the LSL. The
“Terminating” column indicate whether the LSL terminates. The columns of
“Linear”, “Polyrank”, and “Ours” indicate whether the methods of Podelski et
al.’s linear ranking function synthesis method [27], Bradley et al.’s polyranking
method [7], and our method, respectively, have successfully found a termination
proof. The “BRC” column states the number of times procedure BRC was called
and the “DRR” column states the accumulative depth of DRR recursion. The
“Failed Proc” column indicates which procedure, Main or DRR, failed termi-
nating if the whole process failed to terminate. Since the runtime for all three
methods was in the magnitude of a few milliseconds we omitted them from the
table.

As shown in the table, our method considerably outperformed the other two
methods. We succeed for all 7 loops with a linear ranking function. Out of the 20
terminating loops that have no linear ranking function we are successful for 17.
For all non-terminating loops, the execution needs to be manually terminated.
Except for one loop, all the proof searches fail in procedure DRR. In comparison,
the linear ranking function synthesis method [27] succeeds for all the 7 loops
with a linear ranking function; it fails to find a termination proof for all the
20 examples among the rest that were terminating. The polyranking method [7]
succeeds in proving termination for 5 out of the 7 examples with a linear ranking
function; it fails to find a termination proof for all the 20 examples among the
rest that were terminating. We set the tree depth to be 100 for the polyranking
method.

6 Conclusions

This paper describes an automatic method for generating disjunctive ranking
relations for Linear Simple Loops. The method repeatedly finds linear ranking
functions on restricted state space until it reaches an over-approximation of the
transitive closure of the transition relation. As demonstrated experimentally we
largely expanded the scope of LSLs that can be solved. We also extended an
existing technique for linear ranking function synthesis. The extended method
can handle more general form of LSLs. Another contribution is that we created
the first LSL test suite.

Termination Proofs for Linear Simple Loops 437

Acknowledgments. We thank Byron Cook for providing inspiring examples.
We thank the anonymous reviewers for their valuable insights.

References

[1] Balaban, I., Cohen, A., Pnueli, A.: Ranking Abstraction of Recursive Programs.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp.
267–281. Springer, Heidelberg (2005)

[2] Ben-Amram, A.M., Genaim, S., Masud, A.N.: On the Termination of Integer
Loops. In: Kuncak, V., Rybalchenko, A. (eds.) VMCAI 2012. LNCS, vol. 7148,
pp. 72–87. Springer, Heidelberg (2012)

[3] Berdine, J., Chawdhary, A., Cook, B., Distefano, D., O’Hearn, P.: Variance analy-
ses from invariance analyses. In: Proceedings of the 34th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2007, pp.
211–224. ACM, New York (2007)

[4] Berdine, J., Cook, B., Distefano, D., O’Hearn, P.W.: Automatic Termination
Proofs for Programs with Shape-Shifting Heaps. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 386–400. Springer, Heidelberg (2006)

[5] Bradley, A.R.: polyrank: Tools for termination analysis (2005),
http://theory.stanford.edu/~arbrad/software/polyrank.html

[6] Bradley, A.R., Manna, Z., Sipma, H.B.: Linear Ranking with Reachability. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504.
Springer, Heidelberg (2005)

[7] Bradley, A.R., Manna, Z., Sipma, H.B.: The Polyranking Principle. In: Caires, L.,
Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 1349–1361. Springer, Heidelberg (2005)

[8] Bradley, A.R., Manna, Z., Sipma, H.B.: Termination of Polynomial Programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 113–129. Springer, Heidelberg
(2005)

[9] Braverman, M.: Termination of Integer Linear Programs. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 372–385. Springer, Heidelberg (2006)

[10] Chawdhary, A., Cook, B., Gulwani, S., Sagiv, M., Yang, H.: Ranking abstractions.
Technical report (2008)

[11] Chen, H.Y., Flur, S., Mukhopadhyay, S.: Lsl test suite,
https://tigerbytes2.lsu.edu/users/hchen11/lsl/

[12] Colon, M.A., Uribe, T.E.: Generating Finite-State Abstractions of Reactive Sys-
tems Using Decision Procedures. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998.
LNCS, vol. 1427, pp. 293–304. Springer, Heidelberg (1998)

[13] Colón, M.A., Sipma, H.B.: Synthesis of Linear Ranking Functions. In: Margaria,
T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 67–81. Springer, Heidelberg
(2001)

[14] Colón, M.A., Sipma, H.B.: Practical Methods for Proving Program Termination.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 442–454.
Springer, Heidelberg (2002)

[15] Cook, B., Gulwani, S., Lev-Ami, T., Rybalchenko, A., Sagiv, M.: Proving Condi-
tional Termination. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123,
pp. 328–340. Springer, Heidelberg (2008)

[16] Cook, B., Podelski, A., Rybalchenko, A.: Abstraction Refinement for Termination.
In: Hankin, C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 87–101. Springer,
Heidelberg (2005)

http://theory.stanford.edu/~arbrad/software/polyrank.html
https://tigerbytes2.lsu.edu/users/hchen11/lsl/

438 H.Y. Chen, S. Flur, and S. Mukhopadhyay

[17] Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2006, pp. 415–426. ACM, New York (2006)

[18] Cook, B., Rybalchenko, A.: Proving that programs eventually do something good.
In: POPL 2006: Principles of Programming Languages, pp. 265–276. Springer
(2007)

[19] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S.S., Jones,
N.D. (eds.) Program Flow Analysis: Theory and Applications, ch. 10, pp. 303–342.
Prentice-Hall, Inc., Englewood Cliffs (1981)

[20] Cousot, P.: Proving Program Invariance and Termination by Parametric Abstrac-
tion, Lagrangian Relaxation and Semidefinite Programming. In: Cousot, R. (ed.)
VMCAI 2005. LNCS, vol. 3385, pp. 1–24. Springer, Heidelberg (2005)

[21] Cousot, P., Cousot, R.: An abstract interpretation framework for termination. In:
POPL, pp. 245–258 (2012)

[22] Gulwani, S., Jain, S., Koskinen, E.: Control-flow refinement and progress invari-
ants for bound analysis. SIGPLAN Not. 44, 375–385 (2009)

[23] Gulwani, S., Mehra, K.K., Chilimbi, T.: Speed: precise and efficient static esti-
mation of program computational complexity. In: Proceedings of the 36th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, pp. 127–139. ACM, New York (2009)

[24] Gulwani, S., Zuleger, F.: The reachability-bound problem. In: Proceedings of the
2010 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI 2010, pp. 292–304. ACM, New York (2010)

[25] Kroening, D., Sharygina, N., Tsitovich, A., Wintersteiger, C.M.: Termination
Analysis with Compositional Transition Invariants. In: Touili, T., Cook, B., Jack-
son, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 89–103. Springer, Heidelberg (2010)

[26] Podelski, A., Rybalchenko, A.: Software model checking of liveness properties via
transition invariants. Technical report (2003)

[27] Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear
Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937,
pp. 239–251. Springer, Heidelberg (2004)

[28] Podelski, A., Rybalchenko, A.: Transition invariants. In: LICS, pp. 32–41 (2004)
[29] Podelski, A., Rybalchenko, A.: Transition predicate abstraction and fair termi-

nation. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2005. ACM (2005)

[30] Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30, 491–504
(1930)

[31] Rival, X., Mauborgne, L.: The trace partitioning abstract domain. ACM Trans.
Program. Lang. Syst. 29(5) (August 2007)

[32] Rybalchenko, A.: Rankfinder, http://www.mpi-sws.org/~rybal/rankfinder/
[33] Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons, Inc.,

New York (1986)
[34] Tiwari, A.: Termination of Linear Programs. In: Alur, R., Peled, D.A. (eds.) CAV

2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)
[35] Turing, A.M.: Checking a large routine. Report of a Conference on High Speed

Automatic Calculating Machines, pp. 67–69 (1948)

http://www.mpi-sws.org/~rybal/rankfinder/

	Termination Proofs for Linear Simple Loops
	Introduction
	Preliminaries
	Loop Model and Semantics
	Disjunctive Ranking Relations
	Binary Reachability Check
	Simple Linear Ranking Function Synthesis

	Example
	Deterministic Updates over Integer Domain
	Variables over Q or R and Nondeterministic Updates

	Algorithm for Synthesizing Disjunctive Ranking Relations
	Extended Linear Ranking Function Synthesis
	Formal Description
	Correctness Proof
	Termination and Complexity of the Algorithm

	Experiments
	Conclusions
	References

